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by

Pradeep Sreekanthan

Submitted to the Department of Materials Science and Engineering on May 9, 1997, in
Partial Fulfillment of the requiren1ents for the Degree of Master of Science in Materials
Science and Engineering.

Abstract

A study was undertaken to understand the int1uence of various shielding gases on the
composition and oxidation states of various n1etals in welding fun1e. Particular attention
was paid to chron1ium in welding fume during the gas n1etal arc welding (GMA W) of
stainless steels. This research is part of a larger project aimed at understanding the
science of welding fun1e, from formation to absorption by the hun1an body. One form of
chrome, hexavalent chromium (Cr VI), whose presence in welding fume is uncertain, is
known to be a human carcinogen, and there are strict OSHA mandates that have reduced
the permissible exposure levels (PELs) to Cr VI. Evolution of fun1e was observed under
different shielding gas conditions. Thermodynamic calculations show that hexavalent
chroll1ium is indeed present as welding fume is evolved, but in n1inor at110untsas it
evaporates from the welding droplet. Analysis of the fUll1efurther dcn10nstrated that Cr
VI concentration is a function of the shielding gas used.

Thesis Supervisor: Thon1as W. Eagar
Title: Department Head, POSCO Professor of Materials Engineering

2



I. Table Of Contents

1. Table of Contents 3

11. List of Tables 6

111. List of Figures 5

IV. List of Abbreviations 7

v. Acknowledgments 8

1. Introduction 10

2. Background and Prior Work 16
2.1 Welding Fun1e 18
2.2 Effects of Exposure 19
2.3 Fume Sources 20
2.4 Process Variables Affecting Fume Generation 22

3. Theoretical Considerations
3.1 Electrode Tip
3.2 Arc Column
3.3 Weld Pool

.............................................................. 25
26
26
27

4. Thermodynamic Calculations 29

5. Experiments 39
5.1 Welding Equipn1ent 39
5.2 FUlne Collection 39
5.3 Experin1ental Details 42

5.3.1 Source of Fume 42
5.3.2 Metals and Chrome Studies 43

5.4 Fume Analysis 44
5.4.1 Elemental Analysis 44
5.4.2 Chrome Analysis 45
5.4.3 X-Ray Photo-electron Spectroscopy 45

3



6. Results and Discussion 47
6.1 Source of FUll1e 47
6.2 Metals and Chroll1e Analysis 47
6.3 Other Discussion 49

7. Conclllsi ons 50

8. References 52

9. TabIes and Figllres 55

10. Appendix A: Reactants and Products in GMAW 80

11. Appendix B: Elemental Analysis of Welding Electrodes 81

12. Appendix C: Analysis for Welding Fume Composition 83

13. Appendix D: NIOSH method 7600 88

14. Bi0graph y 93

4



ii. List of Tables

Table 4.1 Con1position of type 308 Stainless Steel 55

Table 4.2 Chen1ical EquilibriUln in the Cr-O Systen1 56

Table 4.3 Activities of Selected Components of Type 308 Electrodes 57

Table 4.4 Theoretical Predictions of Metal Content in Vapor 58

Table 4.5 Theoretical Calculations for Chrome Species in Vapor 59

Table 6.1 Elemental Compositions of Electrodes and Pipes 60

Table 6.2 Chemical Analysis of MS and SS FUll1e 61

Table 6.3 Surface Analysis of MS and SS Fume 62

Table 6.4 Chell1ical Analysis of FUll1eSamples For Metals Only 63

Table 6.5 Surface Analysis of fUllie Samples 64

Table 6.6 Chrome Analysis Results 65

Table 6.7 Con1parisoll of Results with Literature 66

5



Hi. List of Figures

Fume Forll1ation Model for GMA W 67

Vapor Pressure for Cr (g) 68

Partial Pressures for Alloying Elements in Stainless Steels 69

Chrome Species Vapor Pressures for 99% Argon, 1% O2 70
Shielding Gas

Chroll1e Species Activities for 99% Argon, 1% O2 Shielding Gas 71

Chrolne Species Activities for 980/0 Argon, 20/0 O2 Shielding Gas 72

Chrome Species Activities for 950/0 Argon, 50/0 O2 Shielding Gas 73

Chroll1e Species Activities for 900/0 Argon, 10% O2 Shielding Gas 74

Chroll1e Species Activities for 95% Argon, 50/0 CO2 Shielding Gas 75

Figure 2.1

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9 ChrOlne Species Activities for 100% CO2 Shielding Gas 76
Figure 4.10 Metal Percentages in Vapor for 99% Argon, 1% O2 Shielding Gas 77

Figure 5.1

Figure 5.2

Fume Chamber Setup

Spiral Welding Bead

78

79



iv. List of Abbreviations

GMAW

FCAW

GTAW

SS
MS

PEL

BBB

XPS

ICP-MS

Gas Metal Arc Welding

Flux Cored Arc Welding

Gas Tungsten Arc Welding

Stainless Steel

Mild Steel

Pern1issible Exposure Level

Blood brain barrier

X-Ray Photo-electron Spectroscopy

Inductively Coupled Plasn1a - Mass Spectroscopy

7



v. Acknowledgments

The current project would not have happened without the support and guidance
from my advisor, Prof. Thonlas Eagar. I have not only gained a knowledge of joining
technologies fronl hinl, but have also learned several other lessons in life. Among other
things, I admire his undaunting commitment to excellence and his sparkling enthusiasm.
He exudes so much confidence that I have always come out of his office charged and
motivated. Moreover, I cherish the freedom given me in pursuing my research and other
interests. I thank hinl for everything.

When the project was in its infancy, Prof. Gael Ulrich at the University of New
Hampshire saved Ine a lot of trouble by donating their fume chanlber. I appreciate his
generosity, and thank him for this and his helpful discussions. His student Joe Quimby
was of tremendous help in transferring the equipment. Joe sincerely responded to nlY
SOS calls, making several trips from New Hampshire. We had very nlany interesting
conversations and I have found a good friend in him. I wish him luck in his new career.

Prof. Joe Brain at the Harvard School of Public Health offered nle the use of their
facilities. I thank him for this, as also G.G. Krishna Murthy and Jinl Antonini. Krishna
devoted a lot of his personal time and effort to ensure that I finished my work on time,
giving me valuable suggestions and insight. I am thankful to him for his support.

Edward Wu, the UROP at MIT, assisted nle at crucial times. More importantly,
Don Galler, our lab engineer, was available throughout the project, helping Ine with
various things from setting up to trouble-shooting to even rides honle. I thank them both,
along with the rest of the Joining Group - Hilary Sheldon, Jeff Nystrom, John Matz,
Renkae Shuie, Mike Zhuang, Patricio Mendez, Chris McDonald, Chris Manning, Dietmar
Weiss, Sun-Woo Lee, Dongwoo Suh, and Kin-ichi Matsuyama. They helped make my
days both pleasant and enjoyable - I'll certainly remember all the engaging conversations
and discussions we've had.

Non-academically, life at the institute was interesting, thanks to involvenlent in
various activities - 3.911, The-Tech, Sangam, MITHAS,just to nanle a few.
Additionally, I had the opportunity to interact with some extraordinary people - Abhijit
Sarkar, Anant Sahai, Garlen Leung, Prof. George Ruckert, Ling Liao, Neeraj Karhade,
Ramdas Sunder, Ramnath Subramaniam, Sankar Sunder, Venkatesh and Rashmi
Saligrama, Sumanth and Bhuvana Kaushik, T.A. Venkatesh, V.T. Srikar, Vincent
Ponette, and a host of others. I value nlY association with thenl, and wish them the best
in their respective endeavors.

Inlust mention nlY fanlily, which has been supportive and encouraging of this and
other pursuits. Many of thenl were here in Boston and I was lucky to enjoy their



company through graduate school - it was like being at hon1e! My folks have been very
understanding of n1e, and I appreciate each one of then1 - t11Y parents, grandparents,
sister, brother-in-law, nephew, uncles, aunts, cousins - for being so wonderful. I could
write volumes in their praise, but I'll just end with a BIG THANK YOU!

There were many more who added to the present experience - the DMSE
adn1inistrative staff, the Lincoln Lab - MIT shuttle drivers (Phil, Brad, Gary, and Scott)
who safely ferried n1e to and fron1 work everyday. I acknowledge their contributions, as
well as the encouragement received from all the other unmentioned well-wishers.

This work was sponsored by the United States Department of the Navy,
Office of Naval Research.

9



1. Introduction

Welding productivity and weld quality have always been critical issues facing the

welding community. However, extensive research has produced continuous

improvenlents in these areas for nlany decades. Today welding is carried on

econolnically and reliably, yet there are proposed standards that could dramatically

reverse the progress that has been made over the past 50 years. The problem is welding

fume.

Welding fume is an unwelcome byproduct of the welding process, leading to

losses in worker productivity and other inconveniences. As occupational safety and

health gain inlportance, workplace exposure COlnesunder strict scrutiny. In the welding

environment, attention is paid to welding fumes and gases. In particular, nlanganese and

chromium, both of which are present in welding fume, are now recognized, in certain

chenlical states and concentrations as a neurotoxin and a carcinogen respectively.

Although there is no epidelniological data that shows that welders have greater incidences

of cancer than the general population, and there is no doclllnented case of nlanganisll1 due

to welding ll1ild steels, OSHA and other organizations are proposing lowering of the

PELs (Permissible Exposure Levels) of Mn and Cr by 10 to 100 fold. In the worst case,

this would require welders to wear space-suit like protective equiplnent, and in the best

case, it will severely retard productivity and greatly increase costs. For exal11ple, the

estimated costs for c0l11pliance with the anticipated OSHA Cr VI standard for a PEL of

0.5 Jlg/mJ at Navy production facilities alone include an initial, one-tinle cost of about

$22 Inillion and annual costs of about $46 n1illion per year (ref. I). While this might be
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considered a social problen1 rather than a scientific one, there are a host of scientific

questions reIllaining to be addressed concerning the risk of Mn and Cr in welding fume.

Welding fume has recently attracted attention after reports of adverse health

effects of Mn and Cr observed in other industries and processes. The OSHA standards

are based upon studies of chromiun1 in electroplating shops and Inanganese in paint

pigments and in manganese ore n1ines (ref. 2). By the mid 1980' s there were a number of

studies underway in Europe, which prompted the International Agency on Research on

Cancer (IARC) to develop the overall assessn1ent that welding fmne was possibly

carcinogenic to hun1ans (ref. 3).

In the United States, Sferlazza and Beckett described a possible association

between chrolnimll in welding fun1es and lung cancer. They found an increased rate in

lung cancer in welders cOInpared with that in matched control groups. l11vitro studies

reported by Sferlazza and Beckett showed fun1es from manual n1etal arc welding

(MMA W) to be mutagenic in bioassays. However, they pointed out that epiden1iological

studies were unclear, since these did not separate the effects of asbestos and sn10king (ref.

4). Beun10nt and Weiss, in a study of shipyard welders, reported an excess lung cancer

mortality, but, again, they made no distinction between effects of welding fun1e and

effects of smoking (ref. 5).

In 1989, OSHA promulgated revised n1andates reducing pennissible exposure

lilnits for n1etal fume in half. The validity of this reduction was questioned by Inany who

argued that it would cost US industry Inillions of dollars in capital and n1illions n10re per

year for maintenance and operation of ventilation equipment with no proven gains in
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worker health. OSHA argued that medical fees, liability suits, and lifestyle limitations

attributed to welding fume were likely to cost nluch more (ref. 6).

OSHA's proposed standard was eventually challenged in the courts and was

rejected. Many observers expected that imposition of tighter constraints is only a matter

of time. Recently, OSHA has announced their intention to reduce the PEL for hexavalent

chromiulll frolll the present ceiling level of 100 !lg/nT" as chrOillates, to an 8-hour til11e-

weighted average of between 0.5 !lg/1113and 5.0 !lg/n13
• The final standard is expected to

be cOlllpleted in 1998, with full inlplementation in 2000 (ref. 1).

While it is known that Mn and Cr exist in welding funle, the exact chenlical fornl

of the Mn and Cr in the fUllle is not understood. It nlay or l11aynot be silllilar to the

chemistry of Cr in electroplating baths and Mn in paint pigments or Mn ore dust. The

toxicologists take the overly sinlplistic approach that it is the mere presence of a chelllical

element in any form that damages the body. It is known that Na and Cl are poisons,

whereas NaCl is essential to life. Clearly, the chelllical fornl and its pathway into the

human body nlust be understood scientifically if we are to establish 111eaningfulstandards

for the workplace environnlent. This is becoming one of the nlost pressing issues in

welding today. Unfortunately, most people are not taking a scientific approach to the

problenl. This is what the following thesis seeks to address.

There is an hypothesis that l11anganese in welding funle, COlllbined with iron, may

not be transferred in harnlful anlolmts across the blood-brain barrier (BBB). Work by

Michael and Judy Aschner shows that Mn uptake across the BBB is nl0dulated by plasnla

iron h0l11eostasis. They have demonstrated that the Mn brain uptake levels in ferric-
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hydroxide dextran-treated rats are significantly reduced compared to Mn brain levels in

iron-free dextran-treated rats (ref. 7). Mn is transferred across the BBB by transferrin,

which is also responsible for Fe transport. Since Fe is present in larger amounts in

welding fun1e than Mn, the Fe n10lecules preferentially occupy the transferrin sites. Thus

it is likely that the Fe in welding fume prevents the transport of Mn in harmful amounts

across the BBB.

Oxidation is a critical factor in evaluating the activities of chromium compounds

(ref. 8). Chromiun1 exists in myriad forms and oxidation states, of which trivalent

chromium (Cr III) and hexavalent chromium (Cr VI) are of interest. Cr VI is more toxic

than Cr III -- its strong oxidative nature may be the underlying basis for its genotoxicity.

In comparison, the trivalent state is the most thermodynan1ically stable (ref. 8). The

majority of Cr VI that enters the body via ingestion or inhalation is quickly reduced to Cr

III. Inhaled Cr VI is acted upon by alveolar macrophages (in conjunction with diverse

cells throughout the lungs) and epithelial fluids within the bronchial tree. Their actions

reduce the n1etal to its trivalent forn1 and thereby diIl1inish the aI110untof Cr VI that n1ight

enter the bloodstrean1 after crossing the alveoli. The Cr VI that does enter the blood is

reduced to Cr III by redox reactions with several blood-borne constituents and with red

bloods. Cr VI readily enters cells, penetrating the erythrocyte men1brane via the general

anion channel protein. Within cells Cr VI is again reduced to Cr III, in a process that is

ultin1ately responsible for DNA daIl1age. If Cr VI is reduced to Cr III extra-cellularly, this

form of the n1etal is not readily transported into cells and so toxicity is not observed (ref.

9). The balance that exists between extra-cellular Cr VI and intracellular Cr III is what
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ultinlately dictates the mnount and rates at which Cr VI can enter cells and impart its

toxic effects. Therefore, any nleaningful standards for chronliunl in welding fUlne should

take into account the oxidation states, and must include an analysis of the various

interactions within biological pathways.

To understand the chenlical form of fume, a study of the evolution of welding

fume under different shielding gas conditions during the gas metal arc welding (GMA W)

of stainless steels is perfornled. The shielding gas composition is a critical process

variable that influences the operation of GMA W. In the high telnperature encountered in

GMA W, the reactive conlponents of the shielding gas dissociate and react with the

nl0lten metal alloy, with the result that oxygen dissolves into the lnetal and oxidizes

certain alloying elelnents. The molten metal - shielding gas interactions are important in

determining the reactions that lead to funle formation, and also the conlposition of the

resulting fume. The effect of chronlium and manganese as alloying elenlents is

summarized as follows:

Chromiunl in amounts greater than 1% ilnproves the oxidation resistance of the

steel in high telnperature applications and when present in amounts greater than 10 to

12% it nlakes the steel 'stainless.' The resistance of stainless steel to corrosion is due to a

thin tenacious layer of chromium oxide which fornls on the surface of these steels when

exposed to an oxidizing atnl0sphere (ref. 10).

Manganese is added to the wire along with the deoxidizer silicon to aid in slag

fornlation; although nlanganese is also oxidized into nlanganese oxide, the lnanganese

silicate slag which fornls in the nlolten nletal separates from the weld pool nlore easily
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than silicon dioxide alone (ref. 10). Manganese also inhibits the formation of iron

sulfides.

A study of fume formation based on fundamental principles is presented. In the

preceding sections, a thermodynamic model is developed, one that will allow us to predict

the composition of fume from known initial conditions. Currently, the focus is limited to

chromium and chromium compounds generated by GMA W of stainless steels, though the

same model can easily be extended to other alloying elements and other processes as

well. In the next section, background information on welding fume is reviewed along

with a discussion of prior work in this area. Then, the theoretical basis for this study is

presented, highlighting some of the thermodynamic calculations. The next section

discusses the experiments conducted to study chromium in welding fume. Subsequently,

the results and discussion section discusses the information gathered from the current

research. Finally, the conclusions section summarizes current findings and suggests

recommendations for future work.
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2. Background and Previous Work

Several researchers have undertaken to study the evolution and composition of

welding fume under different conditions, but very few have proposed models based on

thermodynamic principles to explain the effect of shielding gas on fume forll1atioll,

especially in chrome analysis.

Kimura, et. aI, conducted an investigation of chromium in stainless steel. Their

study suggested that chromium ll1ight be present in hexavalent or trivalent states and in

soluble or insoluble forms, of which insoluble Cr (VI) was believed to be carcinogenic.

In their analysis, they found that GMAW fume contained 15% Cr, with no Cr (VI)

content (ref. 11). However, they do not report the shielding gas used, and have not

considered its effect on fume formation and chrome content.

In GMA W, an inert shielding gas protects the molten electrode and work-piece

from interaction with reactive atmospheric gases, such as oxygen, acts as mediun1 in

which a current can flow to sustain an arc, and affects the shape of the weld bead and

resulting mechanical properties of the weldment. However, the addition of a sn1all

amount of reactive gas, usually carbon dioxide or oxygen, greatly ill1proves the arc

stability and weld penetration during GMA W. An inert gas, such as argon, used alone

has been found to have unacceptable arc characteristics, bead shape and spatter, although

oxygen contan1ination is minimized.

Shielding gas - n10lten ll1etal interactions are iInportant in determining the

composition of fun1e. Heile and Hill were the first to conduct a Inajor study of fume

generation rates for various arc welding processes and advanced a ll10del which predicts
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fUll1eformation rates given the consumable composition, volatility of the constituents,

transfer mode, arc tell1perature and stability as derived from the welding parameters and

shielding gas. They reported that elements in the welding electrode vaporize as droplets

of the electrode are transferred through the arc to the weld pool. While welding steel,

they found a disproportionately high concentration of silicon in the fume. If fume

formation occurred by simple vaporization of elements in the electrode, then the

concentration of silicon in fUll1emust have been much smaller than what was reported,

given that its concentration in steel and its vapor pressure are quite low. They also

observed that silicon levels in fume increased with the oxygen content in the shielding

gas. There were greater amounts of silicon monoxide (SiO), which is volatile, than silica

(Si02), which is not volatile. From these results they developed a vaporization-

condensation-oxidation ll1echanism for fume formation (ref. 12). This is elaborated in the

next section.

Gray, Hewitt, and Hicks (ref. 13) confirm the effect of oxygen on the rate of fume

formation in metal inert gas welding arcs. To investigate the effect of oxygen content of

the shielding gas, they conducted a nUll1berof experill1ents with a range of oxygen

contents in an argon shielding gas. They found that the fUIne fOrInation rate was a direct

function of the of the oxygen content of the shielding gas. In their experill1ents, the fUIne

formation rate fell to a Ininimull1 of 0.22 g/n1in when the shielding gas was pure argon,

- for a variety of stainless steel welding wires, cOll1paredwith values ranging up to 0.4

g/min when the shielding gas contained 4 volume-percent oxygen (ref. 13).
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The current work is also based on previous research in our laboratories: Gibson

considered elemental transfer for 0.07 carbon MIL-140S type wire to HY 130 steel under

different shielding gas conditions. She developed the ability to predict, from basic

thermodynamic relationships, elemental transfer rates through the arc for GMA W over a

wide variety of initial alloy chen1istries and shielding gas conlpositions. Using this

framework, it was possible to calculate the final weld pool chen1istry knowing only the

initial electrode, plate, and gas compositions (ref. 14). The current research extends the

application of these concepts to fume studies.

Block-Bolten and Eagar conducted an analysis of metal vaporization from arc

weld pools using a sin1ilar approach based on thermodynan1ic data. They concluded that

Mn and Fe were the dominant vapors when welding steel and stainless steel, with a

maximum weld pool temperature of 2500°C (ref. 15). This model of weld pool

vaporization will now be extended to fume studies to include interactions in the arc

column under different shielding gas conditions.

Sonle relevant background inforn1ation will be reviewed, along with peltinent

investigations, before the details of the current research are presented.

2.1 Welding fume

The An1erican Welding Society defines fun1e as the particles forn1ed by electrode

{and base metal) that are vaporized and subsequently condensed in the welding area (ref.

16). In fact, any lnaterial when heated to high ten1peratures is a potential source of funle.

Welding fume is produced whenever a material which is nonnally solid at roon1
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temperature, such as n1etal in the welding consumable, is heated near its boiling point and

the vapors condense, react, oxidize or coalesce to form a dispersion of fine airborne solid

particles. During welding, most of the consumable electrode is deposited onto the base

plate, however, a sn1all portion (on the order of one percent) is emitted to the atmosphere

as fume. The fume generation rate, composition (and potential toxicity), morphology and

particle size, all vary depending on the welding conditions and materials involved. In

general, fume formation involves the thermodynamics of vaporization of metals from the

molten electrode, the agglomeration of respirable size particles, their oxidation in the

atmosphere, and the solubility of these particles in the lungs and gastro-intestinal tract

(ref. 3).

The vaporized n1etal condenses into very small particles that remain in the aerosol

form for extended periods of tin1e. These particles have mass and size, so they are

affected by air n10ven1ent, electric fields, gravity, diffusional forces, and other external

forces. They tend to agglomerate into clumps that generally settle down. However, while

they are suspended they are inhaled by the welder and all others in the vicinity (ref. 16)

2.2 Effects of Exposure

The degree of hazard to the welder depends on the con1position of the fumes and

their concentration in the air that is breathed. Welding fun1e norn1ally enters the body

through inhalation. Once in the lungs, it can remain there or be absorbed into the blood

stream. Inside the body, each n1aterial initiates different and specific effects.
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Sferlazza and Beckett observed acute effects (those that develop shortly after

exposure and do not last very long) in welders that included airway irritation, acute

bronchitis, metal fun1e fever (attributable n1ainly to zinc) (ref. 4). None of these diseases

can be attributed to the chromiun1 content in fun1e. Chronic respiratory effects reported

were chronic bronchitis, pneumoconiosis, fibrosis, and, as mentioned earlier, certain

incidences of lung cancer. They recorded a presence of substances in welding fun1e that

are known to cause excess lung cancer in other occupations (ref. 4). Chron1ium in

welding fUlne was labeled as possibly carcinogenic following studies dealing n10stly with

workers in the chromate production industry, chromate pign1ent workers, and workers in

the chrome-platting and ferro-chrome industries (ref. 9). Furthermore, it was not possible

to pinpoint welding fume as the causative agent for cancer since welders are also exposed

to asbestos and cigarette-smoke, both of which are confirmed carcinogens (ref. 4).

Antonini, et. aI, studied the pneumotoxicity and puhnonary clearance of different

welding fumes in rats. They found a greater retention of stainless steel (SS) spray

particles from GMA W con1pared to lnild steel (MS) spray and MS-pulsed welding. They

concluded that SS fUlnes were lnore toxic than MS fumes. However, the pulmonary fate

of the particles generated during welding and the potential of these particles to induce

lung injury and inflan1n1ation are largely unknown (ref. 17).

2.3 Fume sources

In GMA W, the primary sources of welding fume are the electrode, the base plate,

and surface coatings, if any. Figure 2.1, illustrates gas-shielded welding on an uncoated
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metal, highlighting the potential sources of funle. According to Gray, Dewitt, and Dare,

fume comes from droplet evaporation, the weld pool, electrode spots, the exploding wire,

deflected droplets, funle nletal droplets ejected by wire explosion, and from the molten

weld bead (ref. 18).

Ulrich identifies similar sources, as in figure 2.1, for fume formation, with a few

modifications. The droplet at the electrode tip is believed to contribute to fume via two

mechanisms, droplet evaporation and arc-root evaporation. Droplet evaporation is

defined as the diffusion of metal from all surfaces of the molten droplet other than the

arc-root, while the arc-root evaporation simply refers to diffusion of nletal from the arc-

root, which is the part of the droplet heated by the electric arc. Ulrich considers droplet

evaporation to be insignificant relative to arc-root evaporation because the droplet

temperature is much lower at surfaces other than the arc-root. Looking at other

mechanisms, he disregards the weld pool and bead as fUIne sources since they are clean

and at nluch lower teinperatures. He observes that GMA W occurs under low-spatter

conditions, so ejected nletal particles are also not significant in funle fornlation. He

summarizes that the nl0st iinportant nlechanisms for funle formation are thus arc-root

evaporation and explosive evaporation (the violent ejection of droplets into the gas phase)

(ref. 6).

Castner points out that Bl0st of the fume COBlesfroin the electrode, with hardly

10% coming from the base Inetal (ref. 19). Voitkevich reports that the drop on the

electrode is the nlain source of welding fUIne because the drop stage is characterized by a

high specific surface (an order of nlagnitude more specific surface area than the weld
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pool) and by a higher level of overheating (ref. 20). Voitkevich and others (ref. 20, 12)

perforn1ed gas tungsten arc welding (GT AW) using an inert electrode and found no fume

even after the arc 111eltedthe base-metal. Fro111this they concluded that the electrode, and

not the weld pool, was the source of fume. However, the Saine cannot be said about of

GMA W since this would be a comparison of two entirely different processes. Instead,

reference is made to Heile and Hill who conducted experiments on Mg bearing Al plates

to determine the source of fume. They used two types of electrodes -- type 5356

containing Mg and type 1100 containing no Mg. Mg was found when the 5356 electrodes

were used, but no Mg was found when the 1100 electrodes were used, even though the

base metal contained Mg. From these results, they conclude that n10st of the fU111ecomes

from the electrode tip and the welding arc, with insignificant quantities fro111the weld

pool (ref. 12). Independent tests were performed, as discussed later on, to verify for

ourselves the source of welding fume.

2.4 Process variables affecting fume generation

A number of researchers have studied the effects of major process variables on

fume generation rates (ref. 19, 12, 20, 17). These include welding conditions (such as

current and voltage), electrode cOlnposition, electrode dian1eter, work-piece travel speed,

1110deof metal transfer, and shielding gas con1position.

Fume generation rate usually increases with an increase in current, unless one is at

the transition region from globular to spray transfer, where there is a decrease in fume

generation (ref. 19, 21). As current is increased, the arc temperature is increased,
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vaporizing more of the Inetal. Additionally, the melting rate of the electrode is increased

with higher currents, which leads to more 11laterialpassing through the arc per unit time,

thereby, resulting in increased fume (ref. 19). The exact behavior of fume as a function

of current, however, depends on the choice of shielding gas. Castner reports a steady

linear increase for CO2 (ref. 19), while argon-based mixtures show a more complicated

behavior (ref. 19, 21).

With an increase in voltage, funle generation increases again. This follows from

the fact that an increased voltage leads to a lengthened arc, which results in 11loltendrops

spending more time in the air, increasing the molten metal-gas reactions (ref. 19).

Shielding gas composition, welding current, and arc voltage influence the mode of

metal transfer, and, therefore, the size and temperature of the metal droplets transferred

through the arc, the tinle for the droplet to transfer through the arc, and the degree of

spatter, which in turn affects funle formation (ref. 19). For short circuit transfer (Inetal

transfer during a period when the electrode is in contact with the work-piece), which

occurs at low welding currents and low voltages, fume generation is low. An increase in

welding current and voltage results in 1110remetal deposited, signaling the onset of

globular transfer (characterized by a drop larger than the electrode diameter, easily acted

upon by gravity). Spatter increases and with it funle generation rates. Castner reports

that with CO2 shielding gas, the fUlne generation rate increases with current and voltage,

while in an argon-based shielding gas, there is an eventual transition to spray transfer (ref.

19). During spray transfer, transfer occurs in the for111of very small drops that are formed

and detached at the rate of hundreds per second. This transition results in a decrease in
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spatter and fun1e levels. According to Heile and Hill, this reduction is due to a dran1atic

decrease in the surface area of luolten drops exposed to the arc (ref. 12). While operating

in the spray mode in argon-based shielding gases, there is an increase in fume forn1ation

with increases in welding current and voltage.

Considering other variables, Heile and Hill studied the effects of work travel

speed and found no appreciable int1uence on fume generation. They found that

increasing the travel speed by a factor of two only resulted in a 5% reduction in fume (ref.

12).
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3. Theoretical Considerations

It is often mistakenly believed that the dominant specie in the consumable is also

the dominant specie in n1etal vapor or in welding fume. However, this is not the case

since the systen1 contains various substances with different vaporization potentials and

volatile natures. These materials vaporize under different conditions. Fume formation is

not so simple and is presented as a two-step process. The first is elemental vaporization,

wherein the elements in the welding electrode vaporize from the droplets of the electrode

as they are transferred through the arc to the weld pool. Other researchers suggest that

more volatile con1pounds are concentrated Inore heavily in the gaseous phase and that

elemental vaporization alone does not account for all the constituents in fume (ref. 12,

15). The presence of oxides in fume suggests that oxidation of the fume in the air might

be important, so the second process is oxidation-enhanced vaporization. The con1plete

picture of fume fonnation is therefore given by a vaporization - condensation - oxidation

n10del.

Our objective in this study is to develop a predictive capability for chrome content

in welding fun1e, given the shielding gas composition. This can be obtained from known

initial conditions through a consideration of a thermodynan1ic model of the reactions

occurring in GMA W. Our concern is the I110ltenll1etal - shielding gas reactions that take

place. The reaction conditions in the welding process are dependent on the locations of

the reaction. Prior researchers have established that the areas of ilnportance are the

"electrode tip, the arc plasI11acoluI11n,and the weld pool (ref. 22, 23, 24). The Inolten
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metal - shielding gas interactions in each of these areas are reviewed, after which are

presented the thermodynamic calculations used to n10del fume forn1ation.

3.1 Electrode Tip

As the electrode n1elts into lnolten droplets at the electrode tip, what is seen is the

vaporization of the n1etal and dissolution of oxygen into the molten metal. Fume is

generated by the vaporization of the elemental metals. Additionally, lnetal oxides are

also created by the addition of oxygen to the metallic elements, thereby contributing to

fume generation. The continuous introduction of the solid electrode keeps the tip cool as

droplets enter the arc plasn1a column. Other researchers clain1 telnperatures reaching

2000°C (ref. 14). Jones explains the presence of a temperature gradient along the vertical

axis of the melting droplet, given the large size of the droplet: Near the bottom of the

drop the temperature is found to be approximately 2200° C, at the equator 1950° C, and

the liquid/solid interface approxin1ately 1600° C (ref. 25). As the drop detaches from the

electrode tip, it enters the arc plasnla colun1n. Its te111peratureis now close to the

111axi111un1te111peraturepern1itted by the balance between the heat input fron1 the arc and

the evaporative cooling due to metal vaporization.

3.2 Arc Plasma Column

There are conflicting reports as to what reactions occur in the arc plasn1a column.

Grong and Christensen clailn that vapors of iron and 111anganeseenvelop the molten
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droplet throughout the arc plasma colullln, preventing any further reactions (ref. 22).

However, Gedeon and Rudd suggest that oxygen pickup does continue past the electrode

tip and throughout the droplet's course through the arc plasma column (ref. 26). Thus, in

the arc plasma colullln, the relevant reactions are the continued dissolution of oxygen

from the ionized shielding gas into the droplets and the reaction of this oxygen with the

various llletals in the steel to forlll metal oxides (ref. 14). Measurements of average

temperatures of the transferring drop, made with calorimeters, give results between 20000

C and 2700° C (ref. 27). However, measurements of drop temperatures by direct

impingement on a thermocouple suggest agreement with the evaporation cooling limit of

2400° C (ref. 27).

3.3 Weld Pool

The weld pool can be seen as two portions, the hot and the cool. In the hot

portion, the reactions of relevance are the same as those occurring in the arc plaslna

column. According to Grong and Christensen, no further oxygen absorption occurs here

(ref. 22). However, Francis et. al disagree and suggest that a good portion of the gas-

metal reactions occur in the weld pool because a negative oxygen content in the

transferred droplets is calculated for low oxidizing shielding gases if such is not the case

(ref. 28). According to Gedeon and Rudd, the hot and cool areas of the weld pool exhibit

turbulence, allowing the systenl to tend toward thernl0dynamic equilibriulll

concentrations of alloying llletal and residual gases under the weld pool conditiolls (ref.
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26). Block-Bolten and Eagar suggest a model of selective evaporation of metals from

weld pools based on thermodynamic data and the kinetic theory of gases, recognizing that

the don1inant specie in the weld pool was not the dominant specie in the metal vapor.

They calculate a 1l1aXimUn1weld pool ten1perature of 2500°C (ref. 15), though Grong and

Christensen record n1uch cooler temperatures (ref. 22).

The exact location of the 1l1oltenmetal - shielding gas reactions has been observed

to depend on the choice of shielding gas and resultant droplet behavior (ref. 12, 18). For

CO2-based shielding gases, 1l1etaltransfer occurs by globular transfer. The droplet grows

at the tip of the electrode, usually until it is significantly larger in diameter than the

electrode, then becomes detached and falls into the weld pool (ref. 18). The droplet

spends a larger amount of time on the electrode tip than it spends in the arc column (ref.

29). For Ar-based shielding gases, transfer occurs by the spray lllode. Very slnall drops

form and detach at the rate of hundreds per second. The drop spends far less time at the

tip of the electrode; drop volun1e decreases rapidly, while the rate of transfer increases

(ref. 12). The drop detaches from the electrode and passes through the arc column, which

is the dominant region for the vaporization-condensation-oxidation process.
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4. Thermodynamic Calculations

The topic to be addressed is the molten metal-shielding gas reaction. This

situation can be elegantly modeled using the tool of thermo-chemical analysis. Thermo-

chemical analysis allows us to evaluate the oxidizing potentials of reactive gas mixtures,

the thermo-chemical stability of condensed metal and oxide phases, and the equilibrium

pressures of volatile species over the condensed phase (ref. 30). These are a function of

temperature and oxygen content of the gas mixtures.

With an understanding of the thermodynamics, various quantities such as final

molar fractions for different shielding gas mixtures can be determined and applied to

fume composition calculations. To keep the model simple, flexible, and accurate,

thermodynan1ic equilibrium for the gas-metal reactions will be assulned in the following

computations.

Thermo-chemical analyses use free energy data, ~Gof' and equilibrium constant

data, log Kp• The basic equations for deriving and using thermo-chelnical data is as

follows:

4.1

Equation 4.1 is the expression for the standard Gibbs free energy ~Go in terms of the

equilibrium constant Kp (ref. 30).

Thermo-chemical data for elements, compounds and vapor species have been

collected in numerous publications like the JANAF tables. More recently, computer

techniques have eased thern10-chelnical analysis, as den10nstrated later on.
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For a pure nletal A, the free energy of evaporation, L.\Goc, is given by:

L.\Goe = -RT In po A

where R is the gas constant, T the absolute temperature (in Kelvin) and poAis the

equilibriun1 vapor pressure of pure A at tenlperature T.

Values for L.\Goc are tabulated for a range of temperatures. Hence, given a

4.2

temperature, the equilibrium vapor pressure can easily be obtained. In figure 4.1, we use

equation 4.2 and tabulated values of from HSC Chemistry's (a thermodynamic software

package describe later on) database to plot the equilibrium vapor pressure as a function of

telnperature for the reaction Cr (s,l) <==~ Cr (g).

If A is not pure, but is in solution, the free energy change on evaporation is given

by L.\Goe - L.\G, where L.\G is the partial molar free energy of mixing of A for the reaction

Asollltioll <==~ Agas

From equation 4.1, we know that

L.\G = - RT In PA 4.3

where PAis the partial pressure of A above the alloy.

When metal A evaporates from an alloy, the total free energy change is then given

by subtracting equation 4.3 from equation 4.2 to obtain:

4.4

The ternl ( PA/ POA)is defined as the thernl0dynanlic activity, where we can use the

expresSlOn:
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In P A = In po A + In aA 4.5

That is, the (natural) logarithm of the partial pressure of an alloy conlponent in the gas

phase is proportional to the sum of the logarithms of the standard pressure of the pure

element and the activity of the elenlent in the alloy.

If the composition of the metal is known, the activity for an element can be

obtained from Hultgren's tabulated values for binary melts (ref. 31). These numbers are

strictly for binary melts, however, in the absence of strong interactions between atoills,

the data can be used to approximate a more complex alloy (ref. 15). Hultgren's activity

data (Clu) are recorded for a particular tenlperature, To. These values can be extrapolated to

other temperatures, Tn' using the following relationship:

4.6

where ilGx" the partial excess free energy of mixing, can also be obtained from tabulated

values (ref. 31).

Using the above equations, it is possible to calculate the vapor pressures for

alloying elenlents in any typical alloy. Figure 4.2 is a plot of the partial pressures for

different alloying elelnents in various stainless steel conlpositions. As seen in the figure,

manganese and chromium have high vapor pressures in the tenlperatures of interest,

which explains their volatile behavior. Mn and Cr evaporate sooner than other elements

present in the electrode. Therefore, their concentration in fume is greater than their

concentration in the welding consumables.

These calculations have only dealt with elemental vaporization from the alloys.

To lllodel funle formation in its entirety, oxidation-enhanced vaporization also needs to
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be considered. The following calculations are performed for stainless steels, using type

308 (whose cOlnposition is given in table 4.1) as an exan1ple (the san1e electrode has been

used in the experiments). It is just as easy to apply these concepts to other alloys as well.

The focus of this study is chron1iun1, so the current calculations are limited to chromium

and chrome oxides, though the san1e model can easily be extended to other alloying

metals as well. Table 4.2 shows the chemical equations for the Cr-O volatile species

above the condensed phases Cr (s,l) and Cr20] (s,l). Volatile species are forn1ed by direct

evaporation and by the addition or removal of oxygen from Cr (s,l) and CliO] (s,l)

respecti vely.

Fume forn1ation involves the evolution of the gaseous species listed in the table.

Elemental evaporation of Cr (g) has already been considered. For the reactions involving

the evolution of the oxide species, reference is made to equation 4.1, the free energy

equation:

For these reactions the n1ass action constant can be expressed as:

K IT (, )coefficicnts / IT (, )cocfficieills= dprodncls drcaClanlS

4.1

4.7

For gases, the activities are represented by the equilibrium partial pressures. The activity

of the reacting liquid metal can be obtained from Hultgren's tables looking up a Fe-Cr

binary alloy (ref. 31). For 308 steels, with a chromium content of 20.5 % by weight, the

activity is calculated to be 0.315. The activities for son1e of the alloying elements in this

steel con1position is given in table 4.3. The coefficients in equation 4.7 vary depending
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on the reaction in consideration. For a general oxidation of Cr, the reactions can be

written as:

Equation 4.7 then becomes:

K = PCrx02y / (P 02)Y / ac/

For this system, equation 4.1 can be rewritten as:

4.8

4.9

From equation 4.9, the vapor pressure of the chronlium oxides is a function of

temperature and also the partial pressure of oxygen, which is given by the oxygen content

in the shielding gas (typically argon-based). For a pure argon shielding gas, there is no

oxygen present in the shielding gas, so one would expect only Cr(g) in the funle during

formation. With an addition of 1% oxygen in the shielding gas mixture, P02=O.Ol. Using

this value in equation 4.9, activities (vapor pressures for gases) for the chronlium species

are plotted as a function of tenlperature, as shown in figure 4.3. From this figure, it is

possible to identify the dominant specie for any given tel1lperature - e.g. at 240cr C Cr (g)

is the dominant form. We notice that for Cr02 (g) and CrO" (g) an increase in

temperature is acconlpanied by an decrease in vapor pressure, whereas for Cr (g) and CrO

(g), there is a increase in vapor pressure with tel1lperature.

Cr (g) is representative of elelllental vaporization. The oxides represent the

various valencies of chrome in fUl1le. That is, the presence of CrO signals Cr II, CI20"

shows Cr III, Cr02 Cr IV, and finally CrO" Cr VI. The specific anlounts of these

compounds depends on the oxygen partial pressure as seen in equation 4.9, which
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suggests that the valency of chromium varies with the oxygen potential of the shielding

gas.

The treatment so far has considered chromium and oxygen as the only

components of the systenl. However, the welding atmosphere is actually a multi-

component system. The presence of several alloying elements with different properties

leads to numerous reactions occurring simultaneously and / or in competition with one

another. This represents a nlore complex situation since there are lnultiple equilibria to

model. Fortunately, the task is silnplified with the aid of a personal computer and

appropriate thermodynamic software.

This study uses HSC Chemistryfor Windows by Outokun1pu Research Oy,

Finland. The equilibrium compositions subroutine is evoked to analyze multiphase

equilibriunl conlpositions easily in the heterogeneous system, represented here by the

molten n1etal - shielding gas interactions. The user specifies the reaction systenl and

gives the an10unt of raw nlaterials and the progran1 calculates the mnounts of products at

equilibrium. The progranl takes as inputs molar quantities and activity coefficients of the

reacting species and outputs equilibriunl values for the entire systenl.

The analysis begins by specifying the elemental compositions of the electrode and

shielding gas, fron1 which is generated a list of all the reacting species and resultant

products. Appendix A contains such a list for GMA W of 308 stainless steels using

argon-based shielding gases. The molar quantities of the species involved in the molten

metal - shielding gas reactions depend on the welding paranleters. The amount of molten

ll1etal available for reaction is a function of electrode dimneter and wire feed speed, while

34



the amount of shielding gas is governed by the gas-flow rate. Calculations are therefore

made for a fixed tin1e period recognizing that some variables are time-dependent

quantities.

From the electrode diameter and wire feed speed, the amount of electrode

consumed is obtained using the following relationship:

Alliount of electrode = (Tillie) x (Volun1e of electrode/Unit time) x (Density)
= (Duration of weld) x (Wire feed speed) x (Cross-sectional area) x (Density of electrode)

The duration of welding is known, as also the wire feed speed. The cross-sectional area

can be calculated from the electrode dian1eter. Density of the alloy is easily found in

tabulated sources like the Metals Handbook (ref. 10), etc. The relationship outlined

above gives the weight of the electrode consumed, from which it is possible to determine

the molar quantities of the constituents since the weight percent of the alloy is already

known (table 4.1).

The activity coefficient for substance i is defined as the ratio of activity to

concentration:

4.10

It has earlier been shown how activities can be obtained as a function of temperature.

The activity coefficients are calculated in an identical fashion, except for a n1inor

modification to equation 4.6 that now includes the concentration ter111in the deno111inator

of equation 4.10:

log "111 = log Yo+ i1Gxs (To - TII) / (4.575 ToT II) + log Xi 4.11

Equation 4.11 is then entered for each of the alloy C0111pOnents.
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For the shielding gas, calculations proceed as follows. The volume of gas that is

consumed is found by multiplying the duration of welding by the gas-flow rate. Molar

quantities are calculated by simple extension of the ideal gas law:

n = PV / RT 4.12

The fraction of each component is given by the gas composition. Equation 4.10 is used

for activity coefficients, where £\ is the partial pressure of the gas, which is its percentage

in the shielding gas con1position.

The progran1 is instructed to make calculations for temperature increments

between 1500° C and 2700° C - a broad range of temperatures that includes typical

droplet / weld-pool temperatures. Total pressure is assun1ed to be 1 atmosphere. Once

the relevant data are entered, the computer calculates equilibrium compositions using the

Gibbs Energy Minimization Method. The program finds the most stable phase

compositions where the Gibbs energy of the system reaches its n1inimum at a fixed mass

balance (a constraint minin1ization problem), constant pressure and temperature.

The vapor pressures for the chrome systen1 are now obtained recognizing that the

chrome reactions are actually occurring in a Inulti-con1ponent system. Figures 4.4

through 4.7 show the equilibriun1 activities (vapor pressures for gases) as functions of

temperature for a variety of argon-based shielding gases with different oxygen contents.

Figure 4.4 is for 1% oxygen (this is figure 4.3 now recast in a multi-con1ponent systen1),

figure 4.5 for 2% oxygen, figure 4.6 for 5% oxygen, and figure 4.7 for 10% oxygen.

Since carbon dioxide Inay also be used in place of oxygen in the shielding gas, figures 4.8
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and 4.9 consider the equilibrium activities for gas compositions of 95% argon - 50/0

carbon dioxide, and 100% carbon dioxide respectively.

The trend is as before. Cr (g) is the dominant form in the chrollle system. Cr VI,

in the form of Cr03 (g) has the lowest activity anl0ng the gaseous species.

The advantage of the computer program is the ability to predict relative amounts

of the products. In figure 4.10, the amount of vaporized llletal as a fraction of the total

vapor in the products is given for a shielding gas composition of 99% argon, 1 % oxygen.

The percentages are plotted as a function of temperature. Table 4.4 lists the percentages

of metals in the vapor during formation for 2400° C, the theoretical droplet temperature,

as explained earlier. The table lists these percentages for all the shielding gases

considered in this study. The table shows that iron is the dominant metal although there

are also significant amounts of chronlium and lllanganese as well.

Considering only the chrome system, it is possible to identify the amounts of the

different species in the vapor. This is shown in table 4.5 for 2400° C, though it is as easy

to calculate these percentages for other temperatures. One notices that Cr (g) is the

dominant form for all gas cOlnpositions. Cr03 (g), and hence Cr VI, is found only in very

small amounts, about 1.30E-4 % of total vapor, or 5.00E-4 percent of the chronle content.

As oxidizing potential increases, there is an increase in the Cr03 (g) content, although this

is very small - as seen from the table, a 900% increase in the oxygen content sees hardly

a 1% increase in the Cr03 (g) content.

This nlodel has only predicted percentages during funle formation. However,

upon formation these particles are exposed to air and are subject to further oxidation.
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Oxidation will change the conlposition of fume. This composition can easily be obtained

by conducting appropriate experinlent. However, there is no theoretical tool available to

predict these numbers earlier by simple calculations. What is now required is a nl0del

that will correlate the percentages calculated by the model of fume formation to those

obtained via experilllentation.

Furthermore, the aforenlentioned calculations have only included the reactions

occurring on the droplet surface. As has been explained earlier, other parts of the droplet

are at much lower telllperatures than the surface, and, hence, the reactions occurring here

are not believed to participate in fume formation. Additionally effects of the arc plasma,

where the diatomic gas 1110leculesdisassociate to monatomic forms, have not been

considered. This consideration requires nl0deling of a partially-ionized arc plasnla

colullln, a systenl that is not cOlllpletely understood. A nlore thorough investigation will

have to include these influences also, but is beyond the scope of the current study.
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5. Experiments

The focus of the experiments is two-fold. The first is to verify the source of fume

in GMAW, while the second is an analysis of chrome evolution during GMA Wunder

different shielding gas conditions.

5.1 Welding Equipment

GMA W is performed using a Hobart Arc-Master 500 power supply and a Hobart

2410 semiauton1atic solid-state control wire feeder (Hobart Brothers, Troy, OH). The

Arc-Master 500 is a primary inverter power source current-rated at 500 aIl1pereS/ 40 volts

at 100 % duty cycles, and is suitable for all l110desof operation. The 500 can support

GMA W, steady and pulsed, as well as SMA Wand FCA W.

A constant voltage of 30 volts and a wire feed speed of 300 inches per minute

(127 n1m1sec) is l11aintained for the experiments, and the equipment is operated in DCEP

polarity. The corresponding current is recorded for each weld. Shielding gas is supplied

at a steady rate of 50 cubic feet per hour. Throughout the experin1ents it is necessary to

maintain these constant welding conditions since varying welding parameters can

appreciably influence fume formation.

5.2 Fume Collection

Experiments are perforn1ed in a fun1e chamber specially designed by Ulrich and

coworkers at the University of New Hampshire (ref. 32). An important consideration in
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this design has been the desire to operate a welding torch at steady-state for extended

periods of time. This suggests the use of a cooled rotating pipe as the work-piece rather

than a disc as recomnlended by the Anlerican Welding Society standards (ref. 33). A

stock cylindrical pipe, about 25 cnl. in diameter (10 inch, schedule 40) by 30 cnl. long, is

used. The pipe is encased by a chamber, constructed by welding together two large

bottomless pressure cookers. Figure 5.1 shows this setup. As illustrated, the pipe rotates

as though it were in a lathe. The chamber moves horizontally along the same axis as the

work, nluch as the cutting bit traverses the work-piece in a lathe. Both rotational and

linear motion are independently controlled by two separate stepper motors (ref. 32). For

the experiments, rotational motion was set at 0.42 revolutions per minute, corresponding

to a linear work-piece travel speed of 14 inches per minute as recommended by the

American Welding Society (ref. 33).

The weld gun is attached to the chamber. An auto-darkening lens is installed

beside the welding port to allow observation. The weld bead is laid on the enclosed pipe,

forming a spiral as shown in figure 5.2. Cooling is achieved via roonl air which flows

through the supporting shafts. Cooling water or metered air can also be used. The sanle

rotating shaft also acts as the ground path with a Tweeco™ ground-union attached at the

free end.

Metal fume is collected by creating a negative pressure in the chanlber using a

Omega Vac self-contained fine filtration vacuum (Atrix International, Burnsville, MN),

equipped with high efficiency filters to trap small particles. HEPA (High Efficiency

Particulate Air) filters (Atrix International, Burnsville, MN), with a labeled efficiency of
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99.67 % at 0.12 n1icrons, are used. As particles collect in these filters, the vacuun1

cleaner becomes less efficient, thereby reducing the flow-rate of air through the chamber.

The flow rates were monitored using aMagnehelix water pressure gauge (Dwyer

Instrull1ents Inc., Mich. City, IN), which was later on calibrated using a Model 1440

digital air velocity ll1eter (Kurz Instruments Inc., Monterey, CA). Flow rates through the

exhaust dropped from approxin1ately 1700 liters per minute to values around 700 to 800

liters per minute.

Fume exits the chall1ber through the exhaust located on the top of the chan1ber.

The exhaust houses the filter holder, where appropriate filters collect fun1e froin the

exhaust strean1. These filters are connected to a vacuun1 pump (GAST Manufacturing

Corp., Banton Harbor, MI) that maintained a flow rate of around 3 liters per minute.

Three different filters were used for each weld. Nuclepore men1brane filters, 37 ll1m in

diameter, with a pore size of 0.2 ~m (Corning-Costar, Can1bridge, MA) were used to

collect fume for elen1ental analysis. PVC membrane filters, 37 ll1min dian1eter, 0.8 Jlm

pore size (FKC, Eighty Four, PA, through DataChem Labs, Salt Lake City, UT) were

used to collect fume for chrome analysis. MCE filters, 37 n1n1in dian1eter, 0.2 ~n1 pore

size (FKC, Eighty Four, PA through DataChem Labs, Salt Lake City, UT) were used to

collect samples for analysis by x-ray photo-electron spectroscopy (XPS). Smnpling was

begun after the arc was struck and steady state conditions established. The san1pling tiine

was 3 minutes to allow sufficient collection for the various analyses.
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5.3 Experimental details

Two sets of experiments are reported:

1. Those conducted to verify the source of welding fume.

2. Those performed to study the influence of shielding gas composition on the n1etal and

chron1e content in fun1e

5.3.1 Source of fume

The electrode and work-piece compositions were respectively changed to analyze

the source of welding fun1e. Weld beads were laid on the rotating pipes (work-pieces)

according to the following scenario:

1. Stainless steel (SS) electrode, 0.045 inches diameter, type 308 (McKay, Troy, OH) on

SS pipe, type 304/304L (Stainless Pipe and Fittings, Randolph, MA).

2. Mild steel (MS) electrode, 0.045 inches diameter, type ER70S-3 (Hobart, Troy, OH)

on SS pipe.

3. MS electrode on MS pipe, type A500 (Novel Iron Works, Greenland, NH).

4. SS electrode on MS pipe.

The evolved fun1e was collected for each weld for elemental analysis on Nuclepore filters

with a pore size of 0.2 lnicrons. A low pore size was chosen so as to capture most fume,

where the average respirable particle size ranges from 0.1 Jlm to 5 Jlm (ref. 20). These

filters were analyzed by the Trace Metals Lab at the Harvard School of Public Health,

Boston, MA. Elen1ents of interest were Fe, Cr, Ni, Mn, Cu, Co, and Mo. For this set of
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experiments the shielding gas Inixture remained unchanged at 98 % argon, 2 % oxygen,

which is a con1n10n GMA W con1position.

5.3.2 Metals and Chrome Studies

A key motivation for this research has been the desire to conduct a study of

chrome evolution under the influence of different shielding gas conditions. In the

previous section, the theoretical approach to solve this problem was presented. Now the

experimental details are provided.

For this set of experiments, GMA W was performed on SS pipes, type 304/304L

(Stainless Pipe and Fittings, Randolph, MA) using type 308 SS electrodes (McKay, Troy,

OH), 0.045 inches in dian1eter. Welding was done under different shielding gas

compositions, fron1 totally inert to highly oxidizing. Five C0111positionswere used: 100 %

argon, 98 % argon and 2 % oxygen, 95 % argon and 5 % oxygen, 95 % argon and 5 %

carbon-dioxide, 100 % carbon-dioxide. For each shielding gas cOlnposition, experiments

were conducted under two chmnber conditions. First, house air was allowed to flow

through the chan1ber. This situation is similar to actual shop conditions and the fun1e

collected on the filters is expected to be identical to the fUlne inhaled by workers.

Subsequently, the chan1ber was flushed with argon, and a constant flow of the inert gas

was maintained without creating any positive pressures in the chan1ber. Under this

condition, the fun1e is not expected to undergo any further reactions after it exits the arc

column, so the fUlne that is collected is silnilar in con1position when forn1ed.
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Fmne was collected, for each run, on 3 different filters - Nuclepore membrane for

elemental analysis, PVC n1en1brane for chrome analysis, and MCE membrane for XPS

analysis.

5.4 Analysis

Fume was collected on appropriate filters for analysis for three different purposes

-- elemental analysis, chrome analysis, and XPS. The electrodes were also analyzed for

elemental cOll1position.

5.4.1 Elelnental Analysis

A. Electrode

The electrodes used for the experiments were analyzed for their compositions.

Analysis was performed by Luvak Inc. of Boylston, MA, where oxygen content was

detern1ined by inert gas fusion, carbon was analyzed by con1bustion / infrared detection,

and the remaining elelnents were analyzed by direct current plasma emission. Details of

the tests are given in Appendix B.

B. Fun1e

Fume for elelnental analysis was collected on Nuclepore filters, as described

earlier. These samples were analyzed, using chemical and spectroscopic techniques, by

the Trace Metals Lab at the Harvard School of Public Health, Boston, MA. The

procedure involved was as follows: Gravimetric analysis was perfonned on the filters
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prior to digestion by the sediment microwave digestion technique. Sample extracts and

digestates were analyzed for metals using Inductively Coupled Plasma - Mass

Spectroscopy (ICP-MS). More details on this analysis can be found in Appendix C.

5.4.2 Chrome Analysis

Welding funle was collected on rvc menlbrane filters for analysis of the

chrolllium content, specifically hexavalent chrome. These filters were shipped to

DataChem Laboratories in Salt Lake City, UT, a NIOSH- (National Institute for

Occupational Safety and Health) certified facility, where they were analyzed using

NIOSH nlethod 7600, a chenlical / spectroscopic procedure for deternlining Cr VI

content. This method involves digestion of the filters, followed by spectroscopic analysis

of the digestate. Appendix D outlines the steps involved in this test.

5.4.3 X-Ray Photo-electron Spectroscopy

X-ray photo-electron spectroscopy (XPS) was conducted to obtain information

about the surface con1position of welding fUl11e.XPS was performed at the Gordol1-

McKay Labs at Harvard University, Can1bridge, MA, using a SSX-IOO ESCA

Spectrometer (Surface Science Laboratories, Mountain View, CA). XPS, also known as

ESCA, is based on the interaction between the substances in funle and electromagnetic

irradiation. Any particular substance absorbs a quantum of electron1agnetic irradiation

where the quantunl of energy is equal to change in energy of a Inolecular or atonlic

process. XPS was used to obtain the relationship between the energetic position of
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electron spectrun1lines and types of chemical bonds and con1pounds. Specific attention

was paid to the spectral lines corresponding to Cr and Cr oxides in an effort to distinguish

between different species and their relevant amounts in welding fun1e.
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6. Experimental Results and Discussion

6.1 Source of fume

GMA W was performed on SS pipes using SS and MS electrodes, and

subsequently on MS pipes using MS and SS electrodes. Table 6.1 lists the compositions

of the electrodes and base-n1etal used. The electrodes were analyzed for their content, as

also the fume that was collected from these welds. Table 6.2 con1pares the bulk fun1e

compositions for the different welds - these results are from the chemical analysis of

fume. Table 6.3 lists the results fron1 surface analysis by XPS. As seen ti"om tables 6.2

and 6.3, the composition of fume was quite similar when the san1e electrode was used,

even though the base Inetals were different. The MS pipe contained no Cr, yet the

GMA W of the MS pipe with a SS electrode produced fun1e with a high Cr content. This

suggests that most fUlne evolved from the electrode, with aln10st no contribution from the

base metal.

6.2 Metals and Chrome Analysis

GMA W fun1e san1ples were collected for elen1ental analysis and chrome analysis.

The first part of the elen1ental analysis was carried out for metal content at the Trace

Metal Lab at the Harvard School of Public Health. Table 6.4 lists the results of this

analysis. Subsequently, surface analysis was perfonned using XPS at the Gordon-McKay

Labs. Table 6.5 shows these results.
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From table 6.4, one can see that the metal content in fume is reduced as compared

to theoretical predictions. This is because of oxygen pickup. The surface analysis results

in table 6.5 show high oxygen contents confirming that the metals have been oxidized

following forn1ation.

Fun1e samples were also analyzed for hexavalent chrOlne in addition to the total

chromiun1 content. NIOSH n1ethod 7600 was used for this purpose, though there is son1e

uncertainty about this procedure (ref. 1). During the steps following digestion of the

filters, one of the reagents could potentially oxidize the chrome species, thus all the Cr

could be converted to Cr VI.

The results fron1 this analysis are presented in figure 6.6. Cr VI was present in the

fume in amounts ranging from 0.02 to 0.25 percent by weight of total fUlne, which

correspond to 0.29 to 2.05 percent of the chrome content in fume. There is a difference

in Cr VI content versus Cr (g) by three orders of magnitude between theoretical

predictions during fOflnation and experin1ental results. This suggests that other forll1s of

chromiun1 have indeed been oxidized to Cr VI following fOflnation. The an10unt of Cr

VI, however is still sn1all when compared to total fun1e, or even total Cr in fume.

These experin1ental results are cOll1pared to literature values. Moreton, et. aI,

conducted fume en1issions tests when welding stainless steels (ref. 34). The data for

electrode type E316L from their report, which is most sin1ilar in composition to the

electrode in this study, are compared to our numbers. This cOll1parison is given in Table

4.7. For most Inetals, especially total Cr and Cr VI, there is substantial agreement with

their numbers.
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6.3 Other Discussion

Experimental results cannot be expressed in terms of /-lg/nT~since a sampling tin1e

of 3 minutes is insufficient to correlate these numbers to meaningful time weighted

averages that form the basis of OSHA and other mandates. There is no clear way of

doing this.

The experin1ents perforn1ed under the inert gas conditions were not supposed to

undergo any further reactions outside the arc-column (or electrode tip or weld-pool). The

fume collected on the filter was expected to be the fume formed. However, as seen in

tables 6.4 through 6.6, these smnples were sin1ilar to those collected under regular

conditions. This is because of leaks in the systen1 that caused further oxidation of the

particles after formation. In the future, the chamber will have to be Inade air-tight for

these experin1ents.
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7. Conclusions

1. Given the welding electrode and shielding gas compositions, it is possible to

predict the welding fume composition during formation as generated by

vaporization from the GMA W droplets of stainless steel, through thermodynamic

calculations.

2. These calculations were applied to the study of chromium in welding fume

generated by GMAW of SS.

3. The chromium content was found to vary with the shielding gas composition.

4. Cr (g) was the dominant form of the chromium in fume for all the shielding gas

compositions.

5. Calculations showed the presence of Cr VI in the form of CrG3 (g) in welding

fume, although its vapor pressure was 2 to 4 orders of magnitude below Cr (g).

6. CrG] in the gas is n1uch less than Cr (g), but Cr (g) may later oxidize in air.

7. The amount of CrG] (g) was also shown to vary with the oxidizing potential of the

shielding gas, but by less than 1% for a 900% increase in oxygen content.

8. The study proved that the CrG] (g) that evolves from the droplet by vaporization is

very sl11all,but in the future it n1ust be understood if it is later converted to a

harn1ful form.

9. More tests need to be performed to con1plete the study of chromium in welding

fun1e - its nature (soluble vs. insoluble) and interaction with biological pathways

require n10re understanding.
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10. Studies are currently underway at the Harvard School of Public Health, Boston,

MA, to study the effect of GMA W of SS on the lungs of rats. These studies are

concerned with the role of chronlium and Cr VI.

11. The experinlents also showed that the electrode is the nlain source of fume, with

insignificant contributions from the base metal.

12. The theoretical method established in this work can be applied to study of other

metal vapors, including manganese, in fume generated by GMA W of SS.

13. These concepts can be extended to FCA Wand other joining processes that

generate a considerable amount of fume.

14. A 1110delneeds to be established that will correlate predicted values during fume

fornlation to those found by experimentation.
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Equilibriull1 over Cr (sJ)

Cr (s,l) ~==> Cr (g)

Cr (s,l) + 0.5 O2 (g) ~==> CrO (g)

Cr (s,l) + O2 (g) ~==> Cr02 (g)

Cr (s,l) + 1.5 O2 (g) {::=:==> Cr03 (s)

Cr (s,l) + 1.5 O2 (g) ~==> Cr03 (g)

2 Cr (s,l) + 1.5 O2 (g) ~==> Cr203 (s,l)

Equilibrium over Cr')03~

2 Cr (g) + 1.5 O2 (g) ~==> Cr203 (s,l)

2 CrO (g) + 0.5 O2 (g) ~==> Cr203 (s,l)

2 Cr02 (g) ~==> Cr203 (s,l) + 0.5 O2 (g)

2 Cr03 (g) ~==> Cr203 (s,l) + 1.5 O2 (g)

Cr02 (g) and Cr03 (s) are unstable over 800 K

Table 4.2 Chemical Equilibrium in the Cr-Q systelTI
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Shielding Gas Cr Cu Fe Mn Ni

99 Ar 1 02 24.52 0.0216 52.51 14.89 5.99

98 Ar 202 24.33 0.0245 52.75 14.74 6.09

95 Ar 5 02 23.77 0.0257 53.45 14.29 6.41

90 Ar 1002 22.80 0.0281 54.56 13.52 7.04

95 Ar 5 CO2 26.88 0.0578 58.73 6.26 5.99

(Weight Percentage of Total Vapor)

Total Vapor = Gases in Appendix A - (Ar (g), 0 (g), O2 (g), 03 (g), CO (g), CO2 (g))

GMA W using 308 SS electrodes, droplet temperature = 2400° C

Table 4.4 Theoretical Predictions of Metal Content in Vapor
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Shielding Gas Cr (g) CrO (g) Cr02 (g) Cr03 (g)

99 AI' 1 O2 19.86 5.76 4.14E-l 1.29E-4

98 AI' 2 O2 19.69 5.73 4.13E-l 1.29E-4

95 AI' 5 O2 19.19 5.65 4.11E-l 1.30E-4

90 AI' 10 O2 18.35 5.50 4.07E-l 1.31E-4

95 AI' 5 CO2 22.05 5.99 4.02E-l 1.17E-4

(Weight Percentage of Total Vapor)

Total Vapor = Gases in Appendix A - (AI' (g), 0 (g), O2(g), 0) (g), CO (g), CO2 (g))

Shielding Gas Cr (g) CrO (g) Cr02 (g) CrO) (g)

99 Ar 1 O2 76.27 22.14 1.59 4.96E-4

98 AI' 2 O2 76.21 22.19 1.60 5.00E-4

95 AI' 5 O2 76.01 22.36 1.63 5.14E-4

90 Ar 10 O2 75.66 22.66 1.68 5.40E-4

95 AI' 5 CO2 77.54 21.05 1.42 4.12E-4

(Weight Percentage of Total Chroll1e Vapor)

Total Chrome vapor = Colull1n 2 in table 4.4

GMA W using 308 SS electrodes, droplet tell1perature = 2400° C

Table 4.5 Theoretical Calculations for Chrome Species in Vapor
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Shielding Gas Chamber CrVI CrVI CrVI CrVI
Percent of Percent of Percent of Percent of
totalfume totalfume totalchrome totalfUTIle
Experiment* Theory** Experiment* Theory**

AI' Room air 0.252 2.05

AI' Inertgas 0.101 0.0 1.13 0.0

98 AI',2 O2 Room air 0.199 1.53

98 AI',2 O2 Inertgas 0.236 1.29E-4 1.89 5.00E-4

95 AI',5 O2 Room air 0.219 2.00

95 AI',5 O2 Inertgas 0.155 1.30E-4 1.52 5.14E-4

95 AI',5 CO2 Room air 0.196 1.62

95 AI',5 CO2 Inertgas 0.144 1.17E-4 1.30 4.12E-4

100 CO2 Room air 0.020 0.29

100 CO2 Inertgas 0.152 - 1.05 -

Cr VI content reported as weight percentages

*Analysis of funle by NIOSH 7600 at DataChem Labs, Salt Lake City, UT
**From table 4.5

Table 6.6 Chrome Analysis Results
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Figure 2.1 Fume Formation Model for GMA W
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Appendix A Reactants and Products in GMAW using 308 SS and
Argon-based shielding gases

Following is a list of substances found in the molten metal - shielding gas system
used in our thermodynamic model of GMA W using a 308 stainless steel electrode and
argon-based shielding gases. HSC Chemistry by Outokumpu lists 261 total species, of
which the 126 selected below are the stable ones:

Ar(g) Ni(g) Cr2Ni04 MnO*Si02 C(D)
C(g) NiO(g) Cr02 *2MnO*Si02 Cr(l)
CO (g) NiS(g) Cr03 Mo02 Cr
CO2(g) O(g) Cr203 MOO2.75 CrSi
COS(g) Oig) CuFe02 MOO2.87 Cu
CP(g) 03(g) CuO MOO2.88 Fe
CS(g) P(g) CU20 Mo03 Fe3Mo2
Cr(g) P2(g) CUO*Cr203 NiO FeSi
CrO(g) P3(g) Fe2Mn04 NiO*Cr203 Fe3Si
Cr02(g) PO(g) Fe2Ni04 NiO*F~03 Mn
Cr03(g) P02(g) Feo.9450 P203 MnSi
CrS(g) P203(g) FeO.9470 Si02 Mo
Cu(g) PS(g) FeO Si02(l) Ni
CU2(g) P4S4(g) FeO(W) Si02(C) Nio.3SSiO.6S
CuO(g) P4SS(g) F~03 Si02(CR) NiSi
CuS(g) S(g) Fe304 Si02(G) P
Fe(g) S2(g) FeO*Cr203 Si02(H) P(B)
FeO(g) SO(g) FeO*Mo03 Si02(Q) P(P)

FeS(g) S02(g) FeO*SiO Si02(S) P(R)

Mn(g) S03(g) *2FeO*Si02 Si02(T) P(W)

MnO(g) S20(g) MnO Cr4C S
MnS(g) Si(g) Mn02 Fe3C Si

Mo(g) Sb(g) Mn203 MnC2
MoO(g) SiO(g) Mn304 MoC

Mo02(g) Si02(g) MnO*Fe203 NbC
Mo03(g) Cr2Fe04 MnO*Mo03 C

80



AppendixB Elemental Analysis of Welding Electrodes

The electrodes used in this study were analyzed by an outside lab for their
respective compositions. The analysis was only performed for the elements listed in table
6.1. The details of the analysis can be found in the attached sheet from Luvak. Inc., the
facility that conducted these tests.
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Luvak Inc., 722 Main Street, P.O. Box 597, Boylston, MA 01505

Analytical No.: 0-16528

Method Summaries

Massachusetts Institute of Technology

Oxygen is determined by inert gas fusions using a Leco model TC-136 oxygen / nitrogen
analyzer. In this technique the material is fused in a graphite crucible in an inert
atmosphere. Any oxygen present in the sample combines with the carbon from the
crucible to form carbon monoxide. This gas is then passed through a copper oxide
catalyst to convert it to carbon dioxide. The amount of carbon dioxide present is then
measured by infrared detection.

Carbon is analyzed by combustion / infrared detection using a Leco model EC-12 carbon
analyzer. In this technique the sample is combusted in a stream of oxygen. Any carbon
present in the sample combines with the oxygen to form a mixture of carbon monoxide
and carbon dioxide. This mixture is then passed through a platinized silica catalyst to
insure complete conversion to carbon dioxide. The amount of carbon dioxide present is
then measured by infrared detection.

All remaining elements are analyzed by direct plasma emission (DCP) using a Beckman
SpectraSpan VI DCP spectrometer. This technique measures the intensity of the energy
produced as an element undergoes transformation from excited to ground state. Because
each element emits at a characteristic wavelength, this energy is separated and measured
with the aid of a monochromator system and photomultiplier tubes. The source of the
excitation is the direct current plasma. Excitation occurs as the sample is pumped as an
aerosol into this plasma. Prior to DCP analysis, the sample is dissolved in an acid
mixture and diluted to a specified volume. Standard solutions are prepared and run to
establish calibration curves. The sample solutions is then run and compared with these
calibration curves. All results are expressed as weight percent.

Joseph P. Flanagan
5/7/97
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Appendix C Analysis for Welding Fume Composition

Welding fume was collected for elemental analysis of the metal content on
Nuclepore filters. A chemical analysis of these samples was performed by the Trace
Metals Lab at the Harvard School of Public Health. The procedure involved weighing of
the filters (before and after collection), followed by digestion by the Parr Bomb technique
and then analysis by inductively coupled plasma - mass spectroscopy (ICP-MS). The
details of these subsequent steps are given in the following pages.
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Sediment Microwave Digestion Technique
Method for: PARR BOMB MICROWAVE SEDIMENT DIGESTION
Developed by: UMASS/Boston, Env. Sci. Trace Metal Lab

Introduction

Read the Parr instruction manual and bulletin before beginning.
The procedure described was developed for the specific sample weights, acid

volumes, and heating times given. Any modification should be made gradually by
changing one parameter at a time.

The acid combination given below works best for fine grain sediment samples
(100 mesh = 150 f.1m)with low organic content. Digestion of a 500 Ilm fraction sample
with high organic content has been done but leaves a noticeable organic residue. In any
case.total sample weight should not greatly exceed 0.2 grams (0.18 - 0.21 grams) to
insure complete digestion. * Smaller sample weights will result in increased pressure
during heating. Organic samples or samples with a high organic content should be
predigested or an alternate procedure should be developed due to the fact that gasses
released during digestion of organic material may contribute to excessive pressure build-
up.

* We have successfully weighed up to 0.35 grams of sediment without problems and with
excellent reproducibility of results. Each sediment type should be considered
individually.

Procedure
You will need the following to carry out the procedure:
- Parr bombs
- 45 ml teflon bomb liners with lids and O-rings
- acid cleaned spatula for weighing out sediment
- kimwipes, gloves
- HN03 (reagent grade)
- HF (reagent grade)
- 1.5% Boric acid (30.456 grams to 2000 ml DI HOH)
"7 125 ml plastic bottles for sample (cleaned in 10% HCI bath)
- pipettes, graduated cylinders
- appropriate sediment reference standard (from NIST or NRCC)
- Microwave oven wI carousel
- Plastic bucket with lid to hold 4 bombs
- Shallow tub for cooling bombs
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1. Assemble clean 45 ml. teflon bomb liners with o-rings and lids. Make sure the lids fit
securely into the liner (trying different o-rings with different liners is sometimes useful).
Place in a plastic bag to keep clean.

2. Collect liners, spatula, kimwipes, gloves, sediment, notebook, and pen together and
proceed to the Mettler analytical balance.

3. Turn balance on and calibrate it according to the procedures described in the
instruction manual. Take the lid off one liner and place it on a kimwipe. Place liner on
the balance and tare. Carefully add sediment with the spatula to the liner by tipping the
liner with one hand and carefully introducing the sediment to the bottom of the liner.
This is important because static electricity will attract the sediment to the walls of the
liner and you do not want particles around the top of the liners. Weigh out approximately
0.20 - 0.35 grams of sediment (to 4 decimal places), depending on the specifics of your
sediment. Write down sample ill, weight, and liner number in the notebook.

4. Remove liner from balance and cap it. Wipe spatula clean with a kimwipe. Repeat
procedure until all sediment samples are weighed.

SRM's - Carry at least 10% of appropriate matrix reference material (NIST
sediment reference material for trace metal analysis) in the same procedure
explained 1 through 4.

5. Proceed to the Class 100 fume hood (in which plastic wrap has been put down), and
carefully open the liners. If the o-rings come off the lids and remain in the liner, carefully
replace the o-ring on the lid. Add 5 ml HN03 and 2 ml concentrated HF.

BLANKS - Carry at least 10% procedure blanks (not less than 2 in number) by
adding 5 ml superpure HN03 and 2 ml superpure concentrated HF to empty to the
teflon liner.

6. Place caps on liner and place liners in bomb casings. Screw on the lid of the casing
until snug. Do not over tighten. Place bombs in the plastic container and snap on the lid.
Four casings should fit at once. Four bombs should always be run together. If you do not
have 4 samples to digest, fill enough liners with about 10 ml of water to bring the total
number of bombs up to 4. This is necessary so that the heat is evenly distributed and an
explosion is avoided.

7. Place the plastic container on the microwave carousel and heat at approx. 750 Watts
(80% power on a 900 Woven) for 3 minutes (this may have to be adjusted for different
sediments or different microwaves). Stand back from the microwave oven in case of
'explosion' due to excessive pressure build-up inside the bombs.
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Note: If bomb failure occurs during heating, a popping sound or other type of
sound may be heard. In such cases the lid of the plastic container may be blown
off from leaking acid fumes. Open the microwave door cautiously.

8. Remove the plastic container from the microwave and place it in the hood. Carefully
remove the lid. Acid fumes may be seen collected in the bottom of the container. Fan the
container lid if necessary.

9. Remove the bombs and place them in a shallow tub in the sink with running cold
water. Water should not be above the screw threads of the casing cover. Allow to cool in
the water bath for a minimum of 1 hour.

10. Remove the bombs from the water bath. Carefully unscrew the lids in case of
residual pressure. Remove the lids from the liners, being careful not to spill or
contaminate the sample. Add 10 ml of 1.5% boric acid. Replace caps on the liners, place
the liners in the bombs, screw on bomb lids, place into plastic container, snap on lid, and
place in the microwave oven. Heat at 750 Watts for 2 minutes.

11. Cool bombs in water bath for 30 minutes - 1 hour.

12. Dilute samples to 50 or 100 ml final sample volume with 1.5% boric acid. Place
sample in 125 ml plastic bottle by consecutive rinses and transfers of the sample and acid.

13. For analysis of metals other that As, Se, and Hg, run samples directly on the ICP-MS
with external standard calibration corrected with internal standards (See ICP- MS SOP for
details).

14. For Mercury analysis, refer to the Mercury Analysis SOP.
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Sample extracts and digestates are analyzed for metals on a Perkin-Elmer ELAN

5000 Inductively Couple Plasma - Mass Spectrometer (ICP-MS). The detection limit of

an ICP-MS are generally 10 times lower than GFAAS and 100-1000 times lower than

ICP-Emission. A calibration curve of external standards is prepared for each analytical

run, and Iridium and Indium are used as internal standards to correct for drift in the

instrument response. A reference solution provided by the National Institute for

Standards and Technology (NIST #1643d) is run after every 10 samples to check for drift

in the calibration of the instrument. For each element, the calibration is based on the

most abundant isotope of that element free from analytical interferences. The exception

is lead, which is determined as the sum of each isotope of the element ~Pb, 206Pb,207Pb,

and 208Pb)to allow for possible differences in the isotopic composition between the

samples and standards. The concentration of metals in each digestate is determined in

triplicate.
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AppendixD NIOSH method 7600

The NIOSH 7600 is a method for determining the Cr VI content in samples
collected on PVC membrane filters. This method was used to evaluate the Cr VI
percentage in welding fume samples. The sample were analyzed at DataChem Labs in
Salt Lake City, UT. The following pages give the details of this test, as published by
NIOSH. Attention is drawn to step 5a on page 87, which might be a possible source of
oxidation of Cr III and other species to Cr VI, whereby all the Cr is recorded as Cr VI.
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ANAL YTE: CrO.2- -diphenylcarbazide
complex

EXTRACTION SOLUTION: 0.5 ~ H2SO. or 2% NaOH-
3% Na2C03 (see steps 4 and 5)

.FIELD.BlANKS: 2 to 10 field blanks per set

SHIPMENT~

SAMPLE
STABILITY:.

1 to 4 L/min

8 L @ 0:025 mg/m3

400L

routine

analyze within 2 weeks (1)

TECHNIQUE:

WAVELENGTH:

CALIBRATION:

RANGE:

7600

RTECS: GB6262000

Issue 1: 15 May 1989
Issue 2: 15 August 1994

oxidizing agent

MEASUREMENT

VISIBLE ABSORPTION
SPECTROPHOTOMETRY

540 nm; 5-cm path length

standard 'SOlutions of K2CrO.
In 0.5 N H2SO •

0.2 to 7 )Jg per sample

ACCURACY

RANGE STUDIED:

BIAS:

OVERALL PRECISION (arT):

ACCURACY:

0.05 to 0.2 mg/m1 [2)
(~.L samples)

- 5.48%

0.084 (2]

:t 18.58%

ESTIMATED LOD:

PRECISION (~r):

0.05 JJ9 per sample

0.029 @ 0.3 to 1.2 JJ9
per sample (3)

. APPLICABILITY: The working range is 0.001 to 5 mg/mJ for a 200-L air sample. This method may be used for the
determination of soluble Cr(Vl) (using 0.5 tl HlSO. as extraction solution or Insoluble Cr(V1) (using 2% NaOH - 3% Na2COJ [3).

INTERFERENCES: Possible Interferences are Iron, copper, nickel, and vanadium; 10 pg of any of these causes an absorbance
equivalent to about 0.02)Jg Cr(V1) due to formation of colored complexes. Interference due to reducing agents (e.g., Fe, Fe + +)
Is minimized by alkaline extraction (step 5).

OTHER METHODS: This method combines and replaces P&CAM 169 [1], 5317 [2) and P&CAM 319 [3]; the Cr(VI) criteria
document [4] contains a method similar to P&CAM 169. Method 7604 Is also specific for hexavalent chromium. using ion
chromatography for measurement.
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SAMPUNG:

with

** .C1eanall glassware with 1:1 HN03 and rinse
thoroughly before use.

All samp!e

. "

1. " Caljbrate the samp~ing pump with a representative sampler in line.
2. Sample at an accurately known flow rate in the range 1 to 4 Ljmln for a sample size of 8 to

400 L Do not exceed 1 mg total dust loading on the filter.
,'.' 3. Remove the filter from the cassette within 1 h of ~ompletlon of sampling and place it In a vial to

be shipped to the laboratory. Handle the filter only with forceps. Discard the backup pad.

SAMPLE PREPARATION:

,NOTE: There are two sample preparation techniques outlined below. For soluble chromates or
chromic acid, follow step 4; for insOluble chromate or Cr(Vl) in the presence of Fe, Fe2~
or other reducing agents, fOllow step 5.

4. Sample preparation for soluble chromates and chromic acid.
a. Remove the blank and sample filters from the vials, then fold and place them into centrifuge

tubes.
b. Add 6 to 7 mL 0.5.tf H2SO. to each tube, cap, and shake to wash all surfaces of the filter.

Allow filter to remain in tube 5 to 10 min [6].
c. Remove the filter from the tube with plastic forceps, carefully washing all surfaces with an
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Set wav~length on the spectrophotometer to 540 nm.
Setto zero using a 0.5 N H2S04 reagent blank.
Transfer sample s()ll.1ion to a cuvette and record the absorbance.
NOTE 1: A sample containing 1.5 pg Cr(VI)/25 mL gives ca. 0.2 absorbance.
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METHOD REVISED BY:

, MartlnT. Abell, NIOSH/DPSE; Method S317 validated under NIOSH Contract CDC-99-74-45.
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