I|I'I- Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2008-011 February 25,2008

Learning Grammatical Models for Object Recognition
Meg Aycinena, Leslie Pack Kaelbling, and Tomas Lozano-Perez

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

Learning Grammatical Models for Object Recognition

Meg Aycinena, Leslie Pack Kaelbling, and Tomas Lozano-Perez
MIT CSAIL

February 23, 2008

Abstract

Many object recognition systems are limited by their inability to share common parts or structure
among related object classes. This capability is desirable because it allows information about parts and
relationships in one object class to be generalized to other classes for which it is relevant. With this
goal in mind, we have designed a representation and recognition framework that captures structural
variability and shared part structure within and among object classes. The framework uses probabilistic
geometric grammars (PGGs) to represent object classes recursively in terms of their parts, thereby
exploiting the hierarchical and substitutive structure inherent to many types of objects. To incorporate
geometric and appearance information, we extend traditional probabilistic context-free grammars to
represent distributions over the relative geometric characteristics of object parts as well as the appearance
of primitive parts. We describe an efficient dynamic programming algorithm for object categorization and
localization in images given a PGG model. We also develop an EM algorithm to estimate the parameters
of a grammar structure from training data, and a search-based structure learning approach that finds
a compact grammar to explain the image data while sharing substructure among classes. Finally, we
describe a set of experiments that demonstrate empirically that the system provides a performance
benefit.

1 Introduction

Many current approaches to object recognition are characterized by their representation of an object class
as a collection of parts with some local appearance properties, and a model of the spatial relations among
them. This representation is intuitive and attractive; object classes are often too variable to be described
well using a single shape or appearance model, but they can be naturally modeled as a distribution over a
set of parts and the relationships among them.

Most of these systems, however, cannot share common part models or spatial structure among related
object classes. This capability would allow information about parts and relationships in one object class
to be generalized to other relevant classes. For example, we might like to transfer knowledge about the
relationships among the arms and back of a chair to all chair classes that have arms and backs, regardless
of whether the base is composed of four legs or an axle and wheel-leg. We argue that modeling structural
variability and shared part structure will allow effective parameter learning from fewer examples and better
generalization of the learned models to unseen data.

Additionally, a system which models shared structure can exploit its knowledge to perform more efficient
recognition. For example, we might search for regions of an image which look like four legs and a top without
committing to whether we are looking for a table or chair. Furthermore, a representation which captures
structural variability within object classes offers the potential to be generalized to model variability in scenes
that share objects and arrangements of objects, just as objects share parts and part structures.

With these goals in mind, we present a representation and recognition framework that captures structural
variability within and among object classes. We introduce probabilistic geometric grammars (PGGs), which
represent object classes recursively in terms of their parts, thereby exploiting the hierarchical and substitutive
structure inherent to many types of objects. PGGs extend probabilistic context-free grammars (PCFGs),

Figure 1: Many object classes exhibit structural variability.

which were developed to model natural language. To incorporate geometric and appearance information,
we supplement the traditional PCFG representation with distributions over the geometric and appearance
characteristics of object parts.

The PGG representation is particularly motivated by the characteristics of object classes such as furniture,
tools, and vehicles, whose shape and appearance are often defined only by functional constraints and by
custom. These types of classes often exhibit high variability in shape among members (see Figure 1); this
variability is highly parts-based, and displays modular, hierarchical, and substitutive structure. There is
structure in the type and number of parts that are present: a chair often consists of a back, seat, and four
legs, or a back, seat, two arms, and four legs, but rarely a back, seat, one arm, and three legs. There are
also conditional independences in the presence and shape of the parts: whether a chair has arms or not
is independent of whether its base consists of four legs or an axle and wheel-legs, given the presence and
location of the seat and back.

Context-free grammars capture this type of structural variability by compactly modeling hierarchical
groups and substitution of subparts, and they naturally represent conditional independences between sub-
groups with the context-free assumption. They also allow a compact representation of the combinatorial
variability in complex human-made shapes. Probabilistic grammars further allow the specification of distri-
butions over the combination of subparts.

In this paper, we present the elements of the PGG model and describe an efficient dynamic programming
recognition algorithm. We then develop an EM algorithm to address parameter learning, and a search-based
structure learning approach that finds a compact grammar while sharing substructure among classes. Finally,
we describe a set of experiments that demonstrate the effectiveness of the representation and algorithms.

2 Related Work

This research draws on several lines of work in object recognition and computer vision, both recent and
historical: parts-based object class models, the use of hierarchical part models and part sharing among
object classes, and the use of grammars.

The PGG framework is inspired by recent work on parts-based object class models, particularly those
that represent an object as a collection of parts, an appearance model for each part, and a statistical model of
the geometric relations among the parts. This approach has existed in the literature for decades, beginning
with Fischler and Elschlager (1973), but there has been an increase of activity in this area in the last few

years. Several prominent examples include the constellation (or star) model (Fergus et al., 2003, 2005), and
statistical pictorial structures or k-fans (Felzenszwalb & Huttenlocher, 2005; Crandall et al., 2005; Crandall
& Huttenlocher, 2006, 2007).

In contrast to these approaches, in which each object class consists of an unstructured set of parts, the
PGG model uses a fundamentally hierarchical notion of object and part. The use of part hierarchies to model
object classes, especially to enable part sharing among classes, has become increasingly popular in recent
years. Although they do not explicitly model a hierarchy of parts, Torralba et al. (2004, 2007) have shown
that sharing part appearance models among different object classes improves both the learning rate and the
recognition accuracy of the model. Ullman and Epshtein (2006) have demonstrated that using a hierarchy
of fragment-based parts produces more informative and discriminative object models for classification. A
line of recent work by Sudderth et al. (2005a, 2005b, 2006) has explored modeling variability in the number
and structure of parts in an object, or objects in a scene. Bar Hillel and Weinshall (2006) have shown that
modeling object subclasses with respect to the basic class improves recognition and learning. Finally, recent
work by Felzenszwalb and Schwartz (2007), Fidler and Leonardis (2007), and Ommer and Buhmann (2007)
has investigated the notion that learning hierarchical and compositional representations for classes of objects
might allow learning and recognition to be more efficient.

The PGG model, while similar in spirit to these hierarchical approaches, differs fundamentally in that
it allows choice (“OR”) nodes in additional to the “AND” nodes that exists in simple part hierarchies; this
difference is what makes it a grammar. The use of (deterministic) grammars and syntactic models was quite
popular in early computer vision and pattern recognition research (Rosenfeld, 1973), but until recently,
grammars had largely disappeared from modern object recognition. Most recent uses of grammars in vision
have focused on modeling the segmentation of entire images, rather than object classes, (e.g., Pollak et al.,
2003; Tu et al., 2005; Zhu & Mumford, 2006; Siskind et al., 2007), or on detecting mid-level visual objects,
such as regions, curves, and rectangles (e.g., Han & Zhu, 2005; Tu & Zhu, 2006). The work of Zhu et al.
(2006), in which they develop a grammatical model for object classification and localization, is a notable
exception. Our approach contrasts with theirs in that our model exploits stronger conditional independence
assumptions, allowing simple and robust algorithms for recognition and grammar learning.

Although this research and most of the above related work uses models of both the appearance of
individual object parts and of the geometry among them, there has been a notable vein of recent work that
focuses on modeling part appearance alone, without any geometry. These approaches, originally influenced
by bag of words models in language, which do not take word order into account, have enjoyed surprising
success at the image classification task; prominent examples include work by Csurka et al. (2004), Sivic et al.
(2005), and Grauman and Darrell (2005). It seems clear that, for some object classes, the appearance of large
numbers of visual features associated with the object class can be more characteristic and discriminative
than the spatial relationships among these features.

However, these approaches seems to work best on classes with distinctive textural or pattern-based
features (e.g., motorbikes, cars, and spotted cats), since these are the types of image properties that most
modern feature detectors are best suited to capture and represent. For other classes, particularly those with
strong structural characteristics and very little distinctive pattern or texture, geometry may be a far more
powerful cue. Consider, for example, the classes that Grauman and Darrell’s otherwise successful pyramid
histogram match algorithm have found most difficult: ants, crabs, cranes, and anchors. In these cases, our
current ability to model the appearance of visual features is limited, and models that incorporate geometry
might offer potential for greater success than those that depend on appearance models alone.

Much of the work cited here uses purely generative models to represent object classes. However, there
are significant reasons to consider discriminative approaches. Image data is extremely noisy and high-
dimensional, and it often contains far more information than is actually necessary for the object category
recognition task; as a results, generative approaches can be crippled in their attempt to explain every pixel
in an image, thus wasting effort on modeling possibly unimportant aspects of the imaging process. Recent
research that has successfully taken a purely discriminative approach includes work by Grauman and Darrell
(2006). However, generative models are often an intuitive way to model object classes, particularly when
considering the goals of structural sharing and generalization. With this in mind, our current approach to

chair:
1.0 chair — top (dbooo) base (boo1)
top:
0.55 top — seat (d)]oo) back (db101)
0.45 top — seat (db110) back (p111) arm (Ppr12) arm (pr13)
base:
0.65 base — leg (b200) leg (db201) leg (db202) leg (d203)
0.35 base — axle (d210) wheel-leg ($b211) wheel-leg ($212) wheel-leg (P213)

seat (A3)
back (A4)
arm (As)

leg (As)

axle (A7)
wheel-leg (Ag)

Figure 2: A textual description of a PGG for chairs. The symbols ¢k represent conditional geometry
models, while A, represent appearance models.

modeling part appearance incorporates a discriminative aspect to our otherwise purely generative model.
Recent examples of work that has successfully incorporated both approaches include that by Leibe and
Schiele (2003), Tu et al. (2005), and Bar Hillel and Weinshall (2006).

Finally, our approach to learning PGG models carries on a long tradition of structure and grammar
learning in the graphical models and natural language processing communities. Our search-based structure
learning method has a similar feel to standard Bayesian network learning algorithms (Heckerman, 1999), while
our specific grammar search operators resemble those in many classical approaches to grammar learning for
language; e.g., those of Chen (1995), de Marcken (1996), and Nevill-Manning and Witten (1997).

3 The PGG Model

The probabilistic geometric grammar model augments traditional PCFGs with geometry and appearance
models in order to represent object classes. A PGG is a set of part models, each of which is either primitive
or composite (similar to terminals and nonterminals in PCFGs). A composite part model consists of a set
of rules which define how the part can be broken down into subparts. A primitive part model consists of
an appearance model which describes a distribution over the part’s image appearance. Figure 2 shows an
example of a PGG for chairs. We will describe these components in greater detail in the following sections.

For the purposes of this paper, we exploit the fact that an image I can be broken down into a finite set of
components. These components could be locations, windows, or arbitrarily shaped regions. Then, for each
window w and each part model c in the image, we define a binary random variable X.,, that denotes that
window w contains an object or part of type c. We will define the inference and learning algorithms for the
PGG model in terms of these variables.

3.1 Rules

Each rule r for a composite part model ¢ defines one way that the part can be composed of subparts. A rule
consists of an expansion probability y.. € [0,1], and a set of rule parts. The expansion probabilities y¢r
must all sum to one for a fixed parent part c:

chYcr:1 .

Thus, the set of rules defines a distribution over the choice of ways to expand the part—an “OR” node, while
rule defines an “AND” relationship over its component rule parts.

Each child rule part k in rule r for parent part model ¢ has two components: an index d¢x which refers
to another part model in the grammar, and a conditional geometry model ¢, which defines a distribution

Figure 3: An example of a parse tree for a wrench. Note that only primitive parts (in blue) correspond
to actual pixels, while composite parts (in red and green) essentially serve to define a reference frame for
the spatial relationships of their children. The grammar upon which this parse tree is based is shown in
Figure 11.

on the geometry properties of this subpart given those of its parent part (of type c). Crucially, we assume
that the geometric and image properties of subparts are conditionally independent given the properties of
the parent part c.

We adopt the convention of writing a rule r for part ¢ using the form:

Yer C— ...,dcrk(d)c'rk))"'

Again, see Figure 2 for a concrete example of rules in a PGG model.

One way to interpret a rule is that it expresses a compositional relationship; it states that a part with
class ¢ can be composed of a set of subparts, where the kth subpart in rule r has class dc,x. More generally,
composite part models may be viewed as hidden variables that represent geometric information upon which
their child parts depend. In either of these cases, however, composite parts do not directly model pixels in
the image—only primitive parts do this. This is is a crucial difference between the PGG framework and
other parts-based approaches that also use tree-like structures to represent the relationship among object
parts. In other approaches, all nodes of the tree, including internal ones, are primitive parts of the object.
In a PGG model, primitive parts can only exist at the leaves of a parse tree, and internal nodes represent
composite parts. An example of a parse tree for a wrench is shown overlaid on an image in Figure 3.

We can also think of the expansion probabilities as defining a distribution over Bayes nets. Each internal
node in each Bayes net represents the geometry of a composite object part, while each leaf node represents
the geometry and appearance of a primitive part.

3.2 Conditional Geometry Models

Each rule part k has a geometry model ¢¢rk, which models a conditional distribution over the geometric
attributes of the kth child part, given the attributes of the parent part. The attributes over which the models
are defined may be anything: location, scale, orientation, shape, etc.

In this paper, we model only the relative location of part centroids. We make the simplifying assumption
that the centroid location (x,,y,) of a child part that occupies window v is conditionally related to the
centroid (X, Yyw) of a parent part in window w by simple translation. Then we define a Gaussian distribution
over the position of v relative to w:

P(viw; peri) = N(x, — XwyrYv — Yw; Herk o) -

To avoid overfitting, we use a diagonal covariance. Despite this simple model, multimodal distributions can

be handled naturally using multiple rules with the same symbols but different geometry models, effectively
yielding Gaussian mixtures.

3.3 Appearance Models

Each primitive part model ¢ has an appearance model A. which defines the appearance or material properties
of the part. The appearance model for a part allows the image evidence at a particular location or region in
the image to be incorporated into the evaluation of the overall object.

The PGG formulation is modular with respect to the representation for the appearance model; the only
requirement is that the model enable the calculation of the image likelihood ratio:

P(Iw)

i.e., the ratio of the likelihood of the image pixels I, in window w, given that the window contains a primitive
part of type ¢, to the unconditional image likelihood P(I,,). Using the ratio ensures that every image pixel
that is not assigned to a specific primitive part is evaluated according to the unconditional model. This
allows us to compare object detections occupying different numbers of pixels. Section 7.1.1 describes our
current representation for this quantity in detail.

4 Efficient Recognition with PGGs

In this section, we present a top-down dynamic programming algorithm for object classification and local-
ization in an image. It extends the pictorial structures recognition algorithm (Felzenszwalb & Huttenlocher,
2005) to hierarchical part models and choice nodes. The algorithm depends on a discretization of the image
into a finite set of locations or regions, so it can recursively calculate a score for each region w and part
model ¢ while caching and reusing intermediate results.

4.1 Deriving an Algorithm

Two assumptions will enable our derivation: that primitive parts explain different parts of the image, and that
subparts are conditionally independent given their parent. If the primitive parts overlap, then the derivation
is approximate. There is not, however, any explicit assumption that subparts must form contiguous regions.
Furthermore, we do not assume the union of subparts equals the parent part, since the background model
explaing pixels not assigned to a primitive part. Again, see Figure 3 for an example of a parse tree in an
image, and note that the union of a set of child parts (e.g. the blue parts on the left end of the wrench) in
no way equals their parent part (the green point on the left).

Recall that we defined a binary random variable X, which denotes that window w contains an object
or part of type c. Given an image with pixels or features I, we frame the recognition problem as finding the
root part model ¢ and window w that maximizes P(X¢w|I). First, we apply Bayes rule and observe that the
denominator P(I) is constant for all ¢ and w and so can be removed:

argmax P(X¢w|I) = argmax

c,w c,w P(I)
= argmax P(I|X¢w)P (Xew)
c,w

Next we partition the image features into those inside and outside the candidate window w, and evaluate
the features Isy not in w according to an unconditional “background model” P(Iw):

= argmax P(Ly[Xcw)P(Iw)P(Xcw)

c,w

We make the common assumption that foreground and background pixels are conditionally independent
given the partition, so that P(Is) = P(I)/P(1,,). Again, the term P(I) is constant with respect to ¢ and w,
SO we can remove it:

P(LyXew)

= argma. P(I)P(X
%W X P(IW) (I) (cw)
= max ————P(X
arg‘wax P(Iw) (CW)

For this paper, we assume that P(X¢,,) is uniform so that all object classes and locations are equally likely
a priori, so the term becomes constant and may be removed. (Alternatively, this term could naturally
represent a context model for the where in the image we expect to see objects appear.)

= argmax 7P (IW ‘XCW)
cw P(Iw)

We can recursively decompose the image likelihood ratio according to the grammar. Let (c,w) be the
likelihood ratio for part model ¢ and window w:

P(Iv)

We sum over all rules r that could expand part ¢, and let X¢, denote that window w contains a part of
type c that is expanded by rule 1:

_ Z w»r‘xcw

Z T“>(CVV W‘XCW)T.)
a L)

— ZP W‘XCTW)

P(Ly)

Blc,w) =

By choosing a rule r, we have hypothesized the existence of a set of child parts, so we must consider their
unknown geometry; let v be a vector specifying the regions they occupy:

P(IW) |XCTW)
= 2P)R
= 3 PlrIe) g X Py, Xerw P(v/Xer)

Partition I,, into I, , the pixels in child region vy, and I,,_v, the pixels in w but not in any region vy:

:mec ZP Loy Lo ulv, Xerw)P(VIXer)
T

Assume conditional independence of the geometry of the child parts given the parent geometry (i.e., the
assignment of child parts to image regions), and of child appearance given child geometry. Let d¢,« denote
the part model referred to by the kth rule part, and d¢ be its geometry model:

ZPT‘C ZP w—v HP vk|vk» crw) (Vk‘Xcrw)
:ngc)PI

:)ZP(IWW)HP(Ivk|xdc,.k,vk)P(vk\w;cbcrkJ
w v k

Due to our independence assumptions, we have that P(I,,) = P(I (Hk I,), so we can substitute
and cancel:

:ZPmc) ZH HP Lo, Xa, v) POVIW; eric)
k
=P ZH w‘xwﬂ Plviiw; der)

Finally, the sum over v is actually a set of sums over each vy, and each term is constant from the perspective
of all sums except vy itself. So we can take the sum over regions v for each rule part k separately and then
multiply the results over all k:

= X pie [TX g e

Our end result is a recursive expression for the likelihood ratio:

Z P T‘C HZ B crkyV V‘W d)crk) (1>

This expression has a satisfying structure:
e P(r|c) is the rule probability ycr;
e B(derk,V) is the recursive likelihood ratio for the kth child part; and
o P(viw; ey is the likelihood of the geometry of v conditioned on the attributes of w.

The base case of the 3 function occurs when c is primitive, in which case (c,w) is defined directly by the
appearance model for part c.

4.2 A Dynamic Programming Algorithm

Equation 1 leads to a top-down algorithm that recursively calculates a score for each region and part model,
caching intermediate results. Figure 4 presents the algorithm in detail. The algorithm has complexity
O(|G1]?), where |G| is the number of part models, rules, and rule parts in the grammar, and |I| is the number
of image regions. To see this, we note that we continue past line 1 in the subroutine GET-LIKELITHOOD-
RATTO only once per pair of part model ¢ and image region w. Then, for each time we continue past line 1,
we consider each rule r in c, rule part k in r, and candidate child region v exactly once. Finally, at the top
level we call GET-LIKELTHOOD-RATIO exactly once per root part model ¢ and image region w.

Although the squared term in this analysis may seem a bit daunting at first, we can actually limit the sum
over child regions v to those near its expected location given the current parent region w. In this paper, we
use three standard deviations around the mean location p .. In practice, this heuristic greatly reduces the
effect of the squared term, especially in cases in which the variance of the conditional geometry distributions
is low, without significantly compromising the quality of recognition.

It is crucial that we not approximate the sums over r and v in Equation 1 with maxes, although this
would allow us to use the distance transform as Felzenszwalb and Huttenlocher do. Such an approximation
would result in the scoring of individual parse trees, and we cannot compare the scores of two parse trees
that have different numbers of parts or edges because an unequal number of terms is contributing to the
likelihood function in each case. Thus, to control for the structural difference among trees, we sum them out
entirely. A helpful analogy to keep in mind is that of Bayes net structure learning, in which it is necessary
to integrate out the parameters of the model in order to compare two structures which may have a different
number of edges.

INPUT: A PGG model G with root part models (...,c,...), and an image I.
OUTPUT: The most likely object class ¢* and its location w* in I.
1. Initialize table 3 with an entry for each part model ¢ in G and each region w in I.
Initialize s* = 0.
For each root part model ¢ in G:
For each region w in I:
Let s = GET-LIKELIHOOD-RATIO(c,w, 3).
Ifs>s" let s*=s,c"=c,and w* =w.
Return (c*,w™).

N TU N

subroutine GET-LIKELIHOOD-RATIO

INPUT: A part model ¢ in PGG G, a region w in image I, and a partially-filled table f3.
OUTPUT: The value of the image likelihood ratio for part model ¢ and region w.
1. If B contains an entry for ¢ and w, return B[c, w].

2. Initialize s1 = 0.

3. For each rule r in part model c,

4. Initialize s2 = ycr.

5. For each rule part k in rule r,

6. Initialize s3 = 0.

7. For each window v in I that is close to p. .y,

8. Let g = P(viw; berk)-

9. Let b = GET-LIKELIHOOD-RATIO(dcrk, v, B).

10. Let s3 =583+ (g x b).

11. Let s2 =s2 x s3.

12. Let s1 =s1+ s2.

13. Store and return B[c,w] = s1.

Figure 4: An efficient dynamic programming recognition algorithm.

In summary, we have presented a dynamic programming algorithm for performing recognition with a
PGG model. Three key properties of the model and problem formulation contribute to the efficiency of this
algorithm:

e the representation of an image as a discrete set of locations or regions, which allows us to build a
dynamic programming table;

e the assumption of conditional independence among child parts given a fixed parent, which allows us
to avoid summing over an exponential number of assignments of rule parts to sets of candidate child
regions; and,

e the natural constraints on the search over child regions provided by the conditional geometry models.

5 Parameter Learning in PGGs

We have now presented the PGG framework and described how one might perform recognition using it.
However, we have not yet addressed how we might learn PGG models; that is the topic of the next two
sections. In this section, we assume a fixed grammar structure and develop an EM algorithm to estimate its
parameters from data, extending the standard inside-outside algorithm for PCFGs. In the next section, we
will discuss a search-based approach to the structure learning problem itself.

We have a set of training images {I'i = 1...N} labeled with root bounding boxes u' and root object
classes p'. Let I, be the image pixels in region w of the ith training image. The internal tree structure and
geometry of each object is not labeled. The parameters @ we will estimate are the rule probabilities y., and

the geometry model parameters (.., Xcrk). In this paper, we will not address learning the appearance
models A, assuming a fixed vocabulary of primitive part detectors.

Our EM algorithm extends the standard inside-outside algorithm for parameter learning in PCFGs (see,
for example, the treatment by Manning and Schiitze (2002)). On each iteration, we need to estimate the
parameters @ given the parameters © from the previous iteration. In the E-step, we calculate responsibilities
for each grammar component in each region of each training image. Then, in the M-step, we reestimate the
parameters from the data, weighted by the responsibilities.

5.1 E-step

We need to calculate the likelihood of the hidden variables Xcy,, Xcrw, and Xq.,,v; these responsibilities will
be used to reestimate the parameters. First, however, we need to define the notions of inside and outside
probability ratios.

5.1.1 Inside and Outside Probability Ratios

In the inside-outside algorithm for PCFGs, the inside probability of a substring si; and a nonterminal N
is defined as P(si;/Nij), the likelihood that the substring from position i to j was generated by the nonter-
minal N, summing out all possible parse trees. The analogous quantity in our context is P(I,,|Xcw), the
likelihood that the pixels in window w were generated by part model c. But because the PGG framework
actually models the image likelihood ratio P(I,,|Xcw)/P(Ly), we shall use the notion of the inside probability
ratio B(c,w) instead, which we derived recursively in Equation 1:

Blc,w) = W|XCW Z Yer HZ B(derk, VIP(VIW; deric)

In the inside-outside algorithm for PCFGs, the outside probability of a substring si; and nonterminal N
is defined as P(s1,i—1, Nij, sj+1,m), the total likelihood of seeing the symbols sy ;—1 and sj41 m that are on
either side of the substring and the nonterminal N covering the substring si;. The analogous quantity for us
is P(Is, Xcw), the likelihood of seeing the pixels Iy outside the window w and the part model ¢ occupying
the window w. But, as above, we will work with the outside probability ratio instead:

P“W) ch)
P(L5)

We sum over all parent identities and windows that could contain the part of interest ¢ in window w, and
then partition I into I/, the features outside the parent w’, and I,,_,,, those inside w’ but outside w:

x(c,w) =

_ Z P(IWH IW’*W)XCW)XC/W/)

A Pl L)
_ Z P(IW/)XC/W/)P(IW'—WaXCW|XC’W’)
P P(Ln—w)

Now we sum over all the possible rules r’ that could expand the parent c¢’:

o Z cw’ ZP WlfwaCW‘XC/T/WI)
I*f Pl —w)

c/ w’

Then we consider the rule parts k in r’ that could have produced our part of interest. Only ¢/, v/, and k
such that d./r/x = ¢ are considered as candidate parents:

w’ P(Iw’fwlx w X 4 ’w’)
_ C /. cwy Ne'r
= Y T Y Ple) F Pl i) g

c/ w’ k s.t.
dc/rlk:C

10

Finally we expand the sibling parts:

-y a If, ZP”C D Plwiw'idern) HZMP(W;@W)

c/ w’ k s.t. k’#k v
dc/r’k Cc

Our end result is a recursive expression for the outside probability ratio:

=) e, ZYc/r/ D> Pwwider) [D Blderrc , vIPOVIW berrnr) | (2)

c/w’ k s.t. k’#k v
dc’r’k:C

The base case of the « function occurs when c is the labeled object class and w is the labeled bounding box,
in which case o«(c,w) =1.0.

5.1.2 Calculating the Responsibilities

We need to calculate the likelihood of the hidden variables Xcy,, Xcrw, and Xgq,,,v given the parameters @
from the previous iteration and the observed data. The challenge here is that we have access only to the
ratios defined by the functions « and 3. We cannot isolate the numerator of these ratios by multiplying them
by the denominators P(I%,) or P(IL), because we do not have a direct representation for these quantities in
our model. Thus we need to define the responsibilities while using these ratios as atomic units.

Let o; and f; be the inside and outside probability ratios applied to the ith training image. Let X i+
denote that the labeled object class p* occupies the labeled bounding box u' in image I*. Then these are
the responsibilities we need to normalize the rule probabilities y¢,:

filc,w) = P(XewlT', Xpini)
P(XCW\Ii, Xpiui)

=P(IY 50
P(IY) P(Xew, IHXpiyt)
P(TXiy1) P(IY)

Partition I' based on either the labeled bounding box u! or the window w, and then assume conditional
independence of foreground and background features given the partition:

Lo LX) P(I3,, I%)

P(IE,) (L) P(IE, Xew) PIE, Xcw)
P(IL [Xpiu)P(IL) P(I) P(IE)
ai(c,w)Bi(c,w)

Similarly, these are the responsibilities for the rule probabilities y,:

(I1 L) P, Ik XewlXpiyi)

=T

gilc,r,w) = P(Xcrwlli,Xpaui)
o PXerwlIH Xpigt)

=P
PIY) P(Xerw IHXpiys)
P(Ii|Xpaua) P(I1)

11

Again, partition I' based on either the labeled bounding box u' or the window w, and then assume conditional
independence of foreground and background features given the partition:

P(ILL L) P, T, XermolXpi)

B ul, w) g

P X i) P(I},, Pi)

_ P(IL")P(I%). P(I%,ch)P(r‘C)P(IMXmW)
PLL i Xpuu)PIL) P(IG) P(L,)

Then, exploit conditional independence among the child parts, and simplify:

_ P(L) P(Ii P(IL |xd”kv .
N P(Ihi‘xpiui) P HZ (V|W)¢Crk)
1

= B (p) ilc,w YcrHZ Bilderic, VIP(VW; deri)

Finally, we derive the responsibilities for the geometry parameters p.,, Zcrk, using analogous steps:

hi(C, T, k,W,V) = P(XCTWa Xdcrk,vui) Xp‘u")
P(Xch) XdCTk‘v‘Iiy Xpiui)

=P(I .
(I') P(I
o P(Ii) P(Xcrw>Xdcrk,vyIi‘Xp‘ui)
P(Ii‘xp'ui) P(Il)
— P(IL”II) P(I}/\/)I:’/\)’XCTW|XPiui)
P(unll |Xp u‘) (w)P},\;)
B P(I%)P(IL,) P(I%,XCW)PMC)P(Iiw,xd”wmw)
P(IL Xpi)P(IE) P(IE) P(L},)
P(Iii) P(IL ch) (I |Xd v) |Xd v/)
= W P(rlc) o7 Pviw; —”k P(V'[W; dericr)
P(ILJXpiui) P(Ilw) P(I%) crk kl;[k; crk
1
= Bilotad) ui)(xi(c’w)'\/crﬁi(dcrk» Pw; beri) [T D Bildericr, v/)PV [W; dericr)
1)

k/#k v/

5.2 M-step

Now we can reestimate the parameters © for the next iteration, using the responsibilities as weights:

/ _Zizwgi(cvr)w)
Yer = S>> file,w)
2 i w2 hile, kW v)T(v,w)

u!
Crk Z‘L ZW Z\) h' C)T) kvav)
[Zi Zw Zv hi(C,T, k,W,V)(T(V,W) - Hérk)z
ek Zi Zw Zv hi(C,T,k,W,\))

where T(v,w) transforms the child region v by subtracting the centroid of the parent region w, putting it in
Ww’s coordinate frame.

Given initial parameters @, we iterate the E- and M-steps until the difference in the log likelihood scores
of the data under © and ©’ is no greater than 0.01 of the log likelihood score under ©.

12

g

Figure 5: A very simple cartoon furniture domain. Each primitive part is associated with a single color:
seat (red), back (orange), arm (yellow), leg (green), axle (cyan), foot (blue). From left to right, the ground
object classes include: two-legged chair, two-legged chair with arms, footed chair, footed chair with arms,
two-legged table, and footed table.

5.3 Implementation

When we are parsing a single test image, we can afford to store a dynamic programming table for 3 that
records the quality of each part model ¢ at each region w. However, to precompute the responsibilities during
the E-step of EM, we would have to store a separate table for both the inside and outside probabilities for
every image we are learning from. Furthermore, under a naive implementation, we would need more than
just a value for each ¢ and w; we would also need to store a value for each subregion v of each region w of
each image I' according to each rule part of each rule—the functions hi(c,r,k,w,v). For large numbers of
training images, this would probably require an infeasible amount of memory.

Instead, we take an approach in which we blend the E- and M-steps, computing the responsibilities on
the fly as we compute running sums for the numerator and denominator of each parameter. This lets us
consider the training images one at a time. We also need to take two passes over the training images at each
EM iteration, since the covariance estimation depends on the already-estimated mean values.

6 Structure Learning in PGGs

Structure learning aims to find a compact grammar that explains the training data. By targeting compact-
ness, we encourage sharing of parts and substructure among object classes. In this section, we describe a
search-based optimization approach to structure learning. Throughout the section, we will use the simple
cartoon furniture domain shown in Figure 5 as a running example.

6.1 Search Initialization

In this paper, we assume a pre-specified set of primitive parts, with appearance models. We also assume
the labeled initial locations of a set of primitive parts making up each training object, although these are
free to change during EM. The initial locations need not be terribly precise; we will improve them through
successive rounds of EM. An example of training images labeled with initial primitive part guesses for our
toy domain is shown in Figure 6(a).

Our search operators will focus on building up hierarchy and structure, so a natural way to initialize the
structure learning algorithm is with a flat grammar. For each unique pattern of labeled primitive parts in
the training data, we write down a rule with the labeled object class on the left side of the rule and the
primitive parts on the right side. See an example of an initial grammar for the toy domain in Figure 6(b).

To initialize the geometry models ¢ ¢, we estimate the mean and variance of the primitive part positions
relative to the bounding boxes’ centroids, across training images with the same object class and set of
primitive labels. Geometry models in rules to which only a single training image contributed are assigned a
standard small prior variance.

13

(a) Training images labeled with initial primitive parts.

0.25 chair — arm (booo) axle (poo1) back (Poo2) foot (boos) foot (booa) seat (Poos)
0.25 chair — arm (do10) back (dbo11) leg (bo12) leg (bo13) seat (dbo14)

0.25 chair — axle (po20) back (Po21) foot (Ppo22) foot (Po23) seat (Po24)

0.25 chair — back (bo30) leg (Po31) leg (dbo32) seat (dbo33)

0.5 table — axle ((1)]00) foot ((1)101) foot (d)]oz) seat ((I)]og)
0.5 table — leg (p110) leg (d111) seat (db112)

arm (yellow)
axle (cyan)
back (orange)
foot (blue)
leg (green)
seat (red)

(b) The initial flat grammar.

Figure 6: An initial grammar for the toy furniture domain, with a single flat rule for each object class and
unique pattern of primitive parts.

6.2 Structure Search Operators

As in other approaches to grammar learning, our search operators move the algorithm through the space
of candidate grammars by proposing changes to the current grammar. First, we define the four types of
operators, and then explain in greater detail how we manipulate the geometry models during the search.

Create a new AND composite part. The role of this operator is to recognize common subsets of rule
parts, and create new composite parts to stand for these patterns. A new AND part C,,q9 may be proposed
whenever a pattern of rule parts & with size no greater than n,,q occurs on the right side of at least two
rules. (In this paper, we use Napqa = 3.) Symbolic search on the grammar rules is used to propose and replace
instances of & that meet this criteria; importantly, not all instances of & must be affected. For example:

C1 — X1 X2 X3 X4 Cl — X1 Cuna X4
C2 - X2 X3 X5 N C2 — Cana X5
C3 —» X2X3X6 C3 —» X2X3 X6

Cana = X2 X3

Notice that the rule for C3 was not affected by the operation, despite the fact that an instance of the pattern
X2 X3 occurred within it. This may be because the geometry models of that instance did not match those
of the other two instances well enough (we will describe the matching of geometry models more below). Or
it might be that that pattern will be replaced by C,,q in a later search step.

The initial geometry parameters for C,,q are a weighted average of the transformed parameters of the
instances of the pattern & that contributed to its creation. (We will discuss the transforming and averaging of
geometry models below.) The initial mean for each replaced instance of C,,q in the old rules is the centroid
of the instance of & which was replaced; the initial variance parameter in each dimension is the average of
the variances of the component parts that were replaced. An example of a create-AND operation in the toy
furniture domain is given in Figure 7(a).

Create a new OR composite part. This operator plays the opposite role: it notices differences among
sets of rules, and creates composite parts to more compactly express those differences. A new OR composite

14

chair:
chair: 0.25 chair — arm back seat C0O000
0.25 chair — arm axle back foot foot seat 0.25 chair — arm back leg leg seat
0.25 chair — arm back leg leg seat 0.25 chair — axle back foot foot seat
0.25 chair — axle back foot foot seat 0.25 chair — back leg leg seat
0.25 chair — back leg leg seat = table
table: 0.5 table — CO0000 seat
0.5 table — axle foot foot seat 0.5 table — leg leg seat
0.5 table — leg leg seat C0000:
1.0 C0000 — axle foot foot

(a) A create-AND operation.

chair:
chair: 0.25 chair — arm axle back foot foot seat
0.25 chair — arm axle back foot foot seat 0.25 chair — arm back leg leg seat
0.25 chair — arm back leg leg seat 0.5 chair — back seat C0000
0.25 chair — axle back foot foot seat table:
0.25 chair — back leg leg seat = 0.5 table — axle foot foot seat
table: 0.5 table — leg leg seat
0.5 table — axle foot foot seat C0000:
0.5 table — leg leg seat 0.5 C0000 — axle foot foot
0.5 C0000 — leg leg

(b) A create-OR operation.

Figure 7: Examples of part model creation operations in the toy furniture domain.

part C,, may be proposed whenever at least two rules would become identical were a pair or small subset of
part models (X1,X2,...), to be renamed to C,, in the context of those rules. We search for sets of symbols
that are in common among the rules with size no greater than n.,, or sets that are different among the rules
with size no greater than n,,. (In this paper, we use n,, = 3.) Again, not all instances of the pattern must
be affected.

Cl — X1 X2 X3 Cl - X1 X2C,q
Cl —» X1X2X4 N Cl - X1X2X3
Cl — X1 X2 X3 Cor — X3

Cor = X4

Notice that the third rule for C1 was not affected by the operation, despite the fact that it would have been
symbolically identical had X3 been renamed to C,, within it. Again, this could be because the geometry
models of that rule did not match those of the other two rules well enough, or that replacement might occur
at a later search step. Note that this operator may be used to propose new OR part models in which one
rule is entirely empty, expressing compactly the notion of an optional set of parts, such as the arms on a
chair.

The initial geometry parameters of the merged rule are again an average of those of the contributing rules,
weighted by their rule probabilities. The initial probabilities on the new rules for C,, are a renormalized
version of the contributing rule probabilities. An example of a create-OR operation in the toy furniture
domain is given in Figure 7(b).

Apply an existing AND composite part. As we said, the creation operators we just defined need not
be applied immediately to all applicable rules. Thus, we have operators to apply existing composite part
models rather than creating new ones.

An existing AND part Canq with a single rule C,nq — & may be applied whenever the pattern & occurs
on the right side of at least one other rule.

C1 — X1 X2 X3 C1 — Capa X3
Cana — X1 X2 Cana — X1 X2

The geometry parameters of the rule Capq — & remain unchanged. As above, the initial geometry parameters
for each new instance of C,,4 in the rules should be informed by the bounding box of the instance of & which

15

chair: chair:
0.25 chair — arm back seat C0001 0.25 chair — arm back seat C0001
0.25 chair — arm back seat C0000 0.25 chair — arm back seat C0000
0.25 chair — back seat C0001 0.25 chair — back seat C0001
0.25 chair — back seat C0000 0.25 chair — back seat C0000
table table
0.5 table — axle foot foot seat = 0.5 table — axle foot foot seat
0.5 table — leg leg seat 0.5 table — seat C0000
C0000: C0000:
1.0 C0000 — leg leg 1.0 C0000 — leg leg
C0001: C0001
1.0 C0001 — axle foot foot 1.0 C0001 — axle foot foot

(a) A apply-AND operation.

chair:
0.5 chair — arm back seat C0000
0.25 chair — axle back foot foot seat
0.25 chair — back leg leg seat

table:
0.5 table — axle foot foot seat = 0.5 table - axle foot foot seat
0.5 table — leg leg seat 0.5 table = leg leg seat

N i=1 .

C0000:
0.5 C0000 — axle foot foot
0.5 C0000 — leg leg

0.5 chair — arm back seat C0000
0.5 chair — back seat C0000

0.5 C0000 — axle foot foot
0.5 CO0000 — leg leg

(b) A apply-OR operation.

Figure 8: Examples of part model application operations in the toy furniture domain.

were replaced. This specifies the initial mean; the initial variance parameter in each dimensions should be
the average of the variances of the component parts that were replaced. An example of an apply-AND
operation in the toy furniture domain is given in Figure 8(a).

Apply an existing OR composite part. An existing OR composite part C,, with rule patterns (&1, &2, ...)
may be applied whenever at least two rules would become identical were the instances of the patterns
(&1,&2,...) in those rules renamed to Cg;.

C2 —» X1 X2 X3 C2 — X1 X2 Cg,
C2 — X1 X2 X4 C2 — X1 X2 X3
C2 — X1 X2 X3 = Co — X3

Cor = X3 Cor = X4

Cor o X4

In this example, again notice that the third rule for C2 was not affected by the operation.

The initial geometry parameters of the merged rule are estimated in the same way as when merging rules
in the “create-OR” operation, and the parameters on the rules for C,, remain unchanged. An example of an
apply-OR operation in the toy furniture domain is given in Figure 8(b).

6.2.1 Manipulating Geometry Models

As we foreshadowed above, when rule parts are merged we transform and average their geometry models in
order to initialize the parameters for the new part. We must transform the geometry models to be relative
to a new local parent (we use the centroid of the selected parts), so that the models will be invariant to their
positions in the context of their original rule.

Then, we need to average the geometry models for the set of rule parts, weighted by the probabilities
on their original rules. Formally, we have a set of Gaussians with parameters (uq, O'iz) for the ith Gaussian,
and a weight y; on each such that } ,yi = 1. (Because our covariance matrices are diagonal, we can do
this analysis using univariate Gaussians.) We want the parameters (u, 0?) that would have resulted from
estimating them directly from the datasets D; that produced the contributing Gaussians. But since we do

16

not have access to the original datasets themselves,! we need expressions for the new parameters that are in
terms of the parameters of the component Gaussians.

Writing an expression for the mean is straightforward. Let xi; be the jth data point in the ith dataset
D;i. Each py is the sample mean p; = (Z] Xij) /IDy|, and each weight v; is a simple normalized count

Yi= |Di|/(Zi,|Di/\). We want the sample mean of the combined datasets:
1
- .
R

1 1
" T.Iby] ;Di<|Di|]Z"“>
= ZYiHi (3)

The variance is a bit trickier. Each o7 is the sample variance o7 = (ZJ (xij — 1i)?)//Dil. We want the
sample variance of the combined datasets:

1
of == (xi5 —w)?
Zi/‘Di’| ; ; !

1 1
= Z,D/|ZD1<D Z(Xij - H)2> (4)
i i T i

Now examine just the inner part of this expression. Expand the square, introduce the individual means .,
and then rearrange, distribute, cancel, and simplify:

1 1
D Z(Xij —w?= Dy Z(Xizj — x4 1)
j Y

1
Dy

Z(Xizj — 21+ 1) — 2xi e + 2xa5 A+] — B
j

1
= ﬁ Z(Xizj _inj Hi + H%) - 2Xiju+ Hz +2Xijui — p%
il =
)

1) 1 1 , 1 1)
= xij — i) — [2h=—) x5 | + | =/Ds + 1 2mi=—) xij | — | 55/Dily
<|Di|]Z() “) (“nx? ’) <|Di|' '“) (”Di; J) <|Di| “)

=07 — 2upi + p? 4 2uf — pf

= of + (w — p)?
Finally, substitute this result back into Equation 4:
1
2 2 2
0" ==—5 ID'|<G- + (hi—))
Zi/‘Di’| ; ' ' '

= Zvi(c% + (i — u)z) (5)

11t is important that we reason directly about the geometry model parameters, rather than about the most likely object part
locations in the training images. After the initialization phase, there may not be a one-to-one mapping between the geometry
models and locations in the image, since the parameters will have been estimated during EM by summing, rather than maxing,
over candidate locations in the images. By reasoning about the geometry model parameters directly, we avoid this problem.

17

This expression is satisfying in that it incorporates both the individual variances Giz and the variances among
the means (p; — p)?.

We use the expressions in Equations 3 and 5 to initialize the parameters of the geometry models of new
rule parts in a principled way, based on the parameters of the merging rule parts. Then, we run EM on the
new grammar structure to fit the parameters to the data better. But because EM is notoriously sensitive to
initialization, it is important that we are able to choose reasonable initial values for these parameters.

6.3 Structure Score and Search Control

The structure score evaluates a structure G given image data D = {I'{i = 1...N}. The score we use is a
combination of the quality of the training data under the model and a penalty on the model’s complexity:

score(G:D) = (1= AUD; G) — AN i () (6)
where ‘)
X l G
1 plu
Z Og P(I};G)

is the log likelihood ratio of the training data given the G, dim(G) is the number of parameters in G, and A
trades off between the likelihood and the model complexity.? We use A = 0.25 (determined empirically).

The branching factor for this search problem is quite high. However, we can apply an insight about our
structure score: a grammar’s score before EM has been run is a lower bound on its score after EM. We
can exploit this property to find a proposal that is guaranteed to be an uphill step, rather than searching
exhaustively for the maximal gradient proposal. Specifically, rather than running EM on each candidate
grammar and choosing the operation with the best post-EM score, we can rank the proposals according to
their pre-EM scores, run EM on the grammars in ranked order, and accept the first proposal whose post-EM
score improves on the current score.

Furthermore, we can use the guiding principle of compactness to inspire several greedy search heuristics,
which will bias us towards desirable structures while controlling the branching factor.

6.3.1 Encouraging Compact Structure

Because we want to encourage sharing of parts and structure, we always consider apply-AND and apply-OR
operations before create-AND and create-OR operations. In practice there are often many more ways to
create new parts than to apply existing ones, so this heuristic can greatly speed up the learning process, as
well as encouraging a more compact structure.

To encourage compactness, we collapse unnecessary hierarchy whenever possible. After applying an
operator, we inspect the new grammar for part models that have one rule and are referred to only once in
the rest of the grammar. If such a part model is found, it is “collapsed”: its rule is inlined into the place
where the part model was referenced, and the geometry models of the rule parts are composed by adding
the mean of the geometry model of the rule part that is being replaced to the means of the geometry model
of each rule part that is being inlined. This inspect-and-collapse loop continues until no more can occur.

In addition to simplifying the structure of the grammar, this heuristic plays an important role in mediating
some of the limits imposed by the necessarily small values of n,,q and ng,, by allowing chained operations
that achieve the same end effect without overwhelming the branching factor of any individual search step.
For example, we might take the following set of steps if nynq = 2:

start after step 1 after step 2 after collapsing
C0 — X1 X2X3X4 Co— C2X3X4 Co— C3X4 Co — C3X4
Cl1 —» X1 X2 X3 X5 N Cl1 — C2 X3 X5 N Cl —- C3X5 N Cl — C3X5
C2 — X1 X2 C2 —» X1 X2 C3 - X1 X2 X3
C3 — C2X3

2This formula resembles the BIC score, but we are not using a Bayesian approach to construct our structure score.

18

6.3.2 Encouraging Low Variance Geometry Distributions

Although the number of proposals at each search step is usually large, many proposals will lower the overall
structure score because they will be merging parts and rules that are not geometrically compatible. We want
to avoid considering operations that involve merging symbolically identical but geometrically distinct parts,
so that the OR-nodes of the grammatical structure can do most of the work of expressing uncertainty and
choice (i.e., mixtures) in both geometry and type.

For example, imagine a grammar for a wrench that is closed on both ends (see Figure 10(a), second from
the left), where each circular end is described by two primitive curved parts (round-bot and round-top) and
the handle is described with two identical horizontal bar parts (dedge):

wrench — round-bot round-top dedge dedge round-bot round-top

There are two symbolically-identical instances of the pattern “round-bot round-top dedge”, so they might be
considered good candidates for a new AND part model:

wrench — C0 CO
C0 — round-top round-bot dedge

However, the geometry model for dedge in the new rule for CO will have extremely high variance, because it
must deal with both the case of the left end of the wrench, where the handle is far to the right of the circle,
and the case of the right end, where the handle is far to the left of the circle. We would not expect a model
like this to explain the data as well as, say, this model:

wrench — CO0 dedge dedge CO
C0 — round-top round-bot

in which the geometry models for all parts could be well localized.

With this in mind, we bias the search process towards geometrically plausible proposals by pruning
proposals that result in high variance geometry models (in this paper, any model that has a standard
deviation greater than 0.2 of the corresponding dimension—width or height—of the objects in the training
data). This simple heuristic greatly speeds up the ranking and search process, while at the same time
removing from consideration proposals which probably should never be accepted anyway.

As we described in Section 6.2, at each step there may be multiple lexicographically identical operations.
For example, there are several ways of creating an AND part for a pattern that occurs three or more times,
since not all instances of the pattern must be replaced. So, again to encourage low variance distributions,
we only propose the single operation from the set of identical operations whose geometry models match
best, and for efficiency we only consider pairs of rules or rule part subsets at any given time. In the toy
furniture example, we would only consider creating an AND part for the instance of the “leg leg” pattern
whose geometry models match best, despite the fact that there are four such instances in the initial grammar
in Figure 6(b).

In order to compare the geometry for two sets of rule parts, we can impose a canonical ordering on
parts. There may still be ambiguity about how to match up rule parts if there is more than one part of the
same type in each of the rules (e.g., two chair legs), but because we expect the number of such parts to be
quite small, we can enumerate all the possible ways to assign the rule parts in one rule to the other. Then,
for each fixed assignment, we transform the geometry models to be relative to a new local parent, and use
symmetrized KL divergence:

Dsxr(No,N1) = Dxr(No|[N7) + Dk (N1||No)

1 _ _ _ _
=3 <tr(£1 120) + tr(X, 121) + (g — Uo)TZ1 1(”1 — o) + (Mo — HI)TZO ! (Mo — 14)) —N

as a distance metric to choose the operation that would merge parts with the best matching geometry models.
Figure 9 presents the full structure learning algorithm that we have developed in this section.

19

INPUT: A set of labeled training data D, a set of appearance models A, and a set of initial
primitive parts for each image in D.

OUTPUT: A PGG model G that explains the data in D.

1. Initialize G to a flat grammar with a primitive part for each appearance model in A and
a single rule for each object class and unique pattern of initial primitive parts in D.

2. Let G = RUN-EM(G, D).

3. Let s = STRUCTURE-SCORE(G, D).

4. While true:

5. Let (G',s’) = TAKE-SEARCH-STEP(D, G, s, {apply-and, apply-or}).

6. If (G, ’) == null:

7. Let < "'s’) = TAKE-SEARCH-STEP(D, G, s, {create-and, create-or}).

8. If (G’ s’) == null, break.

9. Let (G,):<G', .

10. Return G.

subroutine TAKE-SEARCH-STEP

INPUT: The training data D, the current grammar Go and score so, and a set of operator types T.
OUTPUT: The next grammar G and score s.

1. Initialize the set of candidate grammars Q = (.

2. For each operator type t, enumerate possible operations of type t € T on Gy, and for each

proposal add candidate grammar G4 to Q. Use distance metric on geometry models to
choose among symbolically-identical proposals.
For each G4 € Q, collapse any unnecessary rules in Gq.
For each G4 € Q, if G4 has high variance geometry models, remove G4 from Q.
For each G4 € Q, let s¢ = STRUCTURE-SCORE(G4, D).
Rank the grammars in Q using their lower-bound scores sgq.
For each G4 € Q, in ranked order:
Let Gq = RUN-EM(Ggq, D).
Let s¢ = STRUCTURE-SCORE(Gg4, D).
If sq > so, return (Gq, Sq)-
Return null.

B2 00N ot kW

= O

Figure 9: A structure learning algorithm for PGGs. The RUN-EM subroutine is defined in detail in Section 5,
and the STRUCTURE-SCORE subroutine is fully defined by Equation 6.

7 Experimental Results

In this section, we describe a set of experiments to evaluate the effectiveness of the PGG framework.

7.1 The Wrench Domain

We have collected a wrench data set to use as a test bed for the framework. It consists of four ground classes
of wrench: open on both ends, closed on both ends, open on the left and closed on the right, and closed on
the left and open on the right (see Figure 10(a)). This domain has inherent “or” structure that makes it a
natural place to start testing the PGG model.

We focus on a localization task: given a large complicated image that contains a single wrench but also
many distractor items, the goal is to correctly localize the wrench. We are not yet modeling or searching
over scale or orientation, so the images have been rotated and scaled so that the wrench is horizontal and of
roughly uniform width, although there is some variation. Figure 10(b) shows example test images.

7.1.1 Edge Intensity Templates

Recall that each primitive part model ¢ has an appearance model A, which must define the image likelihood
ratio P(L,,|Xcw)/P(L). We have a variety of choices of how to represent this quantity. For example, we

20

(c) Hand-chosen edge intensity templates, From top to bottom and left to right: tip3, tip4, side3, side4, open-left, dedge,
open-right, side2, sidel, tip2, tipl, full-circle.

Figure 10: A wrench domain.

could define a generative pixel-wise edge template, following Crandall et al. (2005), or we could model region
shape or curvature. Or we could define a distribution over SIFT descriptors of features extracted using
one of the currently popular feature detectors; e.g., scale-invariant salient regions (Kadir & Brady, 2001) or
maximally stable extremal regions (Matas et al., 2002).

For the experiments in the wrench domain described in this paper, we are controlling for the issue of learn-
ing the appearance models. Instead, we use hand-chosen edge intensity templates (shown in Figure 10(c)),
and define the image likelihood ratio as follows. First, we apply Bayes rule and cancel:

P(Iw|ch) _ P(chuw)

P(ly) P(Xew)
Next, we sum out all pixel values L, that could exist in window w, such that we have P(X ZI, (Xewlll,):

T Y PP (XewlLl,)

Now, we assume that the conditional likelihood P(Xcw|Iw) is proportional to an exponentiated function f of
the (unnormalized) correlation coefficient between the template T, for class ¢ and the pixels I,

1
P(Xewllw) = Z_f(CC(IW)Tc))q)

C

21

where Z. is a class-specific normalizing constant. Substituting again, and then canceling, we have:

P(LyXew) flee(Iw, Te))?

P(I) B ZI\/N P(I(N)f(CC(I(N,TC))q

The function f normalizes the correlation coefficient to be roughly in [0, 1]; in this paper we use f(cc(I,, T¢)) =
max(cc(Ly, Tc),0)/1000. The exponent g serves to strengthen strong responses and suppress weak ones (a
similar approach to that of Torralba et al. (2007)). We use g = 6 for all templates except the full-circle wrench
end; because of its larger area, we found that q = 8 worked better. We can estimate the denominator of this
ratio by sampling over training set patches (from both the foreground and background), and computing the
expected correlation response: % ZIW f(ce(Lw, Te))9. The ratio will be greater than 1 in cases where the
template response is better than “average”, and less than 1 otherwise.

7.1.2 Primitive Part Labeling

As we described above, we assume that we have been given labeled initial locations of a set of primitive
parts making up each training object. Rather than hand-label the parts in the training images, we instead
write down a very simple grammar (and geometry models) for each of the four types of wrenches. Then, for
each training image, we find the maximum-likelihood parse tree that is rooted at the labeled bounding box
centroid, using the appropriate grammar. (To find the max-likelihood parse tree, simply replace the sums in
Equation 1 with maxes.) The locations of the leaves of this max-likelihood parse tree are used to initialize
the learning process.

7.1.3 Bounding Box Prediction

In this paper, the composite parts of the grammars we learn consist of single points, with locations but no
extent. Thus, the recognition algorithm we describe in Section 4.2, if naively applied to the wrench domain,
will predict the best location of the centroid of a wrench in a test image, but not necessarily its width and
height. But because we also want to predict the extent of the object, we have developed a simple approach
to predicting the bounding box of the object, given its object class and most likely location.

As we described in the previous section, it is simple to predict the maximum-likelihood parse tree that
is rooted at a given location and root part model. The leaves of this tree are primitive parts: image patches
with both location and extent. So we learn a simple mapping from these predicted primitive parts to a
bounding box of the object itself.

Specifically, after the PGG model has been learned, we use the learned grammar to calculate the max-
likelihood parse tree for each training image (rooted at its labeled bounding box centroid). We then compute
the bounding box of each set of predicted primitive parts, and estimate the average offset of each predicted
boundary (left, right, top, bottom) from the corresponding boundary of the true labeled bounding box.

At test time, we calculate the max-likelihood parse tree for the test image, rooted at the best predicted
object class and location, compute the bounding box of the leaves, and apply the learned offsets to the result
to produce a final prediction of the bounding box of the object. This bounding box is compared to the true
labeled bounding box for accuracy, using the performance metrics described below.

7.2 Qualitative Results

Figure 11 shows a typical learned grammar in the wrench domain. The structure makes sense: a wrench
cousists of a right end (C0001), a left and (C0002), and two horizontal bars; each end can be closed or open.
However, the rule probabilities for the wrench ends strongly prefer the “open” choice; we have learned that,
given our fixed set of appearance models, all four types of wrenches can be explained well by a model of open-
open wrenches. Despite this surprising result, the model performs impressively. We expect that learning
the primitive appearance models so that they span the representational space and avoid redundancy would
result in even better structures and results.
Figures 12(a) and 12(b) show examples of good and bad detections produced by learned grammars.

22

wrench:
1.0 wrench — C0001 C0002 dedge dedge
C0001:
0.9752 C0001 — open-right sidel side2 tipl tip2
0.0248 C0001 — full-circle
C0002:
0.0174 C0002 — full-circle
0.9826 C0002 — open-left side3 side4 tip3 tip4

Figure 11: A typical learned grammar for wrenches. The primitive parts and their appearance models are
shown in Figure 10(c).

(b) Bad detections.

Figure 12: Examples detections produced by learned grammars.

7.3 Comparison With Simpler Models

To evaluate whether the PGG framework provides a performance benefit, we compared the full PGG model
against simpler versions of the model:

o A set of grammars, one for each wrench type, where each grammar has a single flat rule.? No structure
learning is performed, although EM is used to estimate the parameters. At test time, each grammar
votes for the best location in the image, and the location with the highest likelihood score is returned
as the overall prediction.

e A single grammar with a set of flat rules, one for each wrench type. Again, no structure learning is
performed, but EM is used to estimate the parameters. This baseline is distinct from the first because
it allows the weights on the four wrench classes to be learned rather than fixed, and furthermore for
the most likely location to be chosen according to a weighted combination of the likelihood scores
according to each rule, rather than a simple argmax.

3A flat rule has the object class on the left hand side and the set of primitive parts on the right.

23

Figure 13: An example of 68% overlap. The blue (outer) box is the correct labeled bounding box, while the
green (inner) box is the prediction.

—e— full grammar
0.9 flat structure
==@=-one grammar per class

-
oy

average overlap score
<)
3
T

0 | L I I | | | L I I
0 2 4 6 8 10 12 14 16 18 20

num training examples per class

Figure 14: A comparison of the full PGG model against simpler versions of the model. Because there are four
ground classes, the total training data is four times each x-axis value. Error bars represent 95% confidence
intervals.

The first might be considered the simplest derivative of the PGG model. The second ensures that any benefit
achieved by the full model over the first baseline is not due to tweaking the rule probabilities or geometry
parameters during EM, but rather due to some aspect of the structure learning: the hierarchy introduced
by building up structure, or the sharing of common substructure among different types of wrenches.
Our performance metric is the percentage overlap between the predicted bounding box wq and the labeled
bounding box wy:
(N(wa, w1)|

IUwa, wi)

i.e., the ratio of the area of intersection of the windows to the area of their union. This will be one when the
windows are identical and zero when they do not overlap at all. This metric is nice because it incorporates
not just the accuracy of the predicted location, but also the predicted scale or extent.

We trained each model on training sets of increasing size, and tested the learned models on a set of 40
images (10 of each wrench type). We report the mean percentage overlap score on the test set for each
training set size. We repeated this procedure 10 times for different splits of training and test data, and
averaged the resulting curves together to produce Figure 14.

Reassuringly, the full PGG model enjoys a significant advantage over the two baseline models. Further-
more, the flat structure slightly outperforms the one-grammar-per-class approach, but not significantly so
for most training set sizes. Therefore, we can feel confident that the structure learning process is responsible
for most of the advantage of the full PGG model over the simplest model. These experiments do not allow
us to determine whether the benefit is due to the hierarchy introduced during structure learning, or to the
fact that this hierarchy allows compact sharing of substructure among related classes; we intend to explore
this distinction further in future work.

24

-
1

% 0.9
2 —
1 I
5 T 1 1
So7t -
el
<
[0
§ s)
= | e {
gost % ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ o
s I b T
G o4l s RIS S A <
SO B X g (S SRNC I P il Ll TETE ST e I
8 T I P ———— o
£ 03 1
g —e—PGG
€ 02F 1-fan, single class
8 =-&--JBOD, single class
3 01k =@ JBOD, separate classes
w9 JBOD, separate experiments
1 1 L 1 1 L

1 L Il 1
0 2 4 6 8 10 12 14 16 18 20
num training examples per class

Figure 15: A comparison of the PGG model against other leading object recognition systems (Crandall &
Huttenlocher, 2006; Torralba et al., 2007). Because there are four ground classes, the total training data is
four times each x-axis value. Error bars represent 95% confidence intervals.

However, none of the slopes of the learning curves are particularly steep; the full model does not learn
much faster than the baseline models, because they all learn quite fast. We suspect this is primarily because
we are not yet learning the appearance models. In cases where appearance as well as geometry is being
learned, sharing should provide much greater advantage because so many more parameters need be estimated.

Finally, to put the scores shown in Figure 14 in perspective, Figure 13 shows an example of what 68%
overlap looks like in an image—it is quite a high localization score.

7.4 Comparison With Other Approaches

It is important to validate our overall approach through comparisons with other leading object recognition
systems. Therefore, we also compared the full PGG model against the following systems:

e The 1-fan object detector (Crandall & Huttenlocher, 2006), treating all wrench types as one object
class.

e Three variations of the joint boost object detector (JBOD) (Torralba et al., 2007): treating all wrench
types as one object class; treating each wrench type as its own object class; and running a separate
detection experiment for each wrench type and averaging the results.

In the first case, we used the authors’ published implementation, while in the second we used our own reim-
plementation. We used the same values for all experimental parameters as were reported in the publications.
We also controlled for object scale and orientation.

The methods to which we compare do not predict tight bounding boxes, but rather the location of
primitive parts only (in the case of Crandall and Huttenlocher) or a large square centered on the object but
not tightened around its silhouette (in the case of Torralba et al.). Therefore, we cannot usefully measure
localization performance using the percentage overlap metric. Instead, we measure the percentage of times
that the predicted object centroid falls within the labeled bounding box, across the test set. For the 1-fan
detector, we take the predicted centroid to be the centroid of the predicted primitive parts, and for the joint
boost detector, we take the centroid of the square as the centroid of the object. In general, the percentage
of contained centroids metric is a less demanding metric than the percentage overlap, because it does not
directly account for the predicted object’s scale or extent.

25

The results are shown in Figure 15. To produce the curves, we followed a similar experimental procedure
as described above in Section 7.3.

These experiments demonstrate that the localization task on the wrench data is a challenging one.
Figure 15 shows that the PGG model outperforms the other systems by a significant margin on this dataset.
It seems that, especially for small training set sizes, this task is indeed nontrivial; therefore we may conclude
that the good performance of the PGG model is promising.

Nonetheless, it is important to point out that both of the systems against which we compare learn their
appearance models, while we assume a pre-specified set of models. Although it may seem that our approach
has an advantage due to the extra supervision, several recent authors have shown that choosing primitive
parts automatically based on data outperforms using hand-chosen primitive parts (notably, Crandall and
Huttenlocher (2006)). Thus, it seems possible that learning our appearance models would result in even
better performance, and this is an important area of future work.

8 Discussion and Future Work

There are a number of possible avenues for future work in the PGG framework. First and foremost, the most
pressing task is that of choosing or learning the appearance models automatically from the training data.
The simplest approach to this issue might be to introduce a preprocessing phase to the learning process in
which we learn a fixed set of appearance models from the data. Then, given those appearance models, the
structure learning could occur as described in this paper. However, such an approach would require making
a final decision about the set of primitive parts that would be included in the model prior to making any
decisions about the composite parts. There is no facility in the current structure learning algorithm to add
or delete primitive part models during the structure learning process, so we would be locked into the choice
of primitive parts before doing any reasoning about how they fit together structurally or spatially in the
model.

Instead, a better approach might be to incorporate the appearance model learning into the structure
learning process. For example, we could again begin with a phase that produces an initial set of appearance
models (i.e., primitive part models). But then, we could introduce structure learning operators that add,
merge, or remove primitive parts from the grammar. Finally, depending on the form of the appearance
models, we could extend the EM algorithm to estimate their parameters along with those of the geometry
models.

Another area of future work concerns our choice of type of appearance model. Rather than edge intensity
templates and a likelihood function that is based on cross correlation, we might consider building generative
models over a combination of edge intensity, texture, or color features. Alternatively, we could move towards
a more discriminative approach, in which images are preprocessed using bottom-up interest point, junction,
or region detectors; these features could be described using, for example, histogram techniques such as SIFT
descriptors (Lowe, 2004); and the appearance models could represent some distribution over the properties of
the bottom-up features. The latter approach could even rely on a bottom-up detector of semi-local boundary
features, for example that of Martin, Fowlkes, and Malik (2004).

With respect to the overall PGG model, we have done only preliminary work on how to model and
search over scale. In the experiments described in this paper, small amounts of scale variation are modeled
indirectly through the variance in the spatial models among the parts, but the primitive parts do not vary
in scale at all. Ideally the scale of individual parts (both primitive and composite) in the model would be
allowed to vary independently. Although this would be a natural extension of the current geometry models,
it would lead to slower recognition. Instead, we might achieve a simpler form of scale invariance by modeling
scale at the level of the entire object, and keeping it fixed among the parts for any specific scale. Similarly,
the system described in this paper is not view-invariant, and an important area of future work might be to
address this issue.

We are also interested in improving the recognition process so that we can predict more than a set
of sparse primitive parts or a bounding box. For example, one could imagine using a somewhat sparse
grammatical model to do the initial object detection in a novel image, identifying the most likely objects

26

and their best candidate locations, and then using both the most likely parse trees and the image pixels at
each location as features in a segmentation procedure that predicts the set of local pixels that are contained
by each object. Including reliable local boundary or junction information our appearance models would also
help during a post-processing segmentation step.

Finally, there are a number of improvements that could be made to the structure learning algorithm. For
example, the current structure score does not explicitly take into account the ability of a candidate grammar
to discriminate among the object classes and the background. We could include a term in the score that
reflects the separation among the likelihood scores assigned by each object class to the training objects of
that type (including the background).

References

Bar Hillel, A., & Weinshall, D. (2006). Subordinate class recognition using relational object models. In
NIPS.

Chen, S. F. (1995). Bayesian grammar induction for language modeling. In Proc. Meeting of the Assoc. for
Computational Linguistics (ACL).

Crandall, D., Felzenszwalb, P., & Huttenlocher, D. (2005). Spatial priors for part-based recognition using
statistical models. In CVPR.

Crandall, D. J., & Huttenlocher, D. P. (2006). Weakly supervised learning of part-based spatial models for
visual object recognition. In ECCV.

Crandall, D. J., & Huttenlocher, D. P. (2007). Composite models of objects and scenes for category recog-
nition. In CVPR.

Csurka, G., Dance, C. R., Fan, L., Willamowski, J., & Bray, C. (2004). Visual categorization with bags of
keypoints. In Proc. Workshop on Statistical Learning in Computer Vision, (ECCV).

de Marcken, C. G. (1996). Unsupervised Language Acquisition. Ph.D. thesis, Massachusetts Institute of
Technology.

Felzenszwalb, P., & Schwartz, J. (2007). Hierarchical matching of deformable shapes. In CVPR.
Felzenszwalb, P. F., & Huttenlocher, D. P. (2005). Pictorial structures for object recognition. IJCV, 61(1).

Fergus, R., Perona, P., & Zisserman, A. (2003). Object class recognition by unsupervised scale-invariant
learning. In CVPR.

Fergus, R., Perona, P., & Zisserman, A. (2005). A sparse object category model for efficient learning and
exhaustive recognition. In CVPR.

Fidler, S., & Leonardis, A. (2007). Towards scalable representations of object categories: Learning a hierarchy
of parts. In CVPR.

Fischler, M., & Elschlager, R. (1973). The representation and matching of pictorial structures. I[EEE
Transactions on Computers, C-22.

Grauman, K., & Darrell, T. (2005). The pyramid match kernel: Discriminative classification with sets of
image features. In ICCV.

Grauman, K., & Darrell, T. (2006). Unsupervised learning of categories from sets of partially matching
image features. In CVPR.

Han, F., & Zhu, S.-C. (2005). Bottom-up/top-down image parsing by attribute graph grammar. In ICCYV.

Heckerman, D. (1999). A tutorial on learning with bayesian networks. In Jordan, M. (Ed.), Learning in
Graphical Models. MIT Press.

Kadir, T., & Brady, M. (2001). Saliency, scale and image description. IJCV, 45(2).

Leibe, B., & Schiele, B. (2003). Interleaved object categorization and segmentation. In Proc. British Machine
Vision Conf. (BMVC).

27

Lowe, D. G. (2004). Distinctive image features for scale-invariant keypoints. IJCV, 60(2).
Manning, C. D., & Schiitze, H. (2002). Foundations of Statistical Natural Language Processing. The MIT
Press.

Martin, D. R., Fowlkes, C. C., & Malik, J. (2004). Learning to detect natural image boundaries using local
brightness, color, and texture cues. PAMI, 26(5).

Matas, J., Chum, O., Urban, M., & Pajdla, T. (2002). Robust wide baseline stereo from maximally stable
extremal regions. In Proc. British Machine Vision Conf. (BMVC).

Nevill-Manning, C. G., & Witten, I. H. (1997). Identifying hierarchical structure in sequences: A linear-time
algorithm. JAIR, 7.

Ommer, B., & Buhmann, J. M. (2007). Learning the compositional nature of visual objects. In CVPR.

Pollak, I., Siskind, J. M., Harper, M. P., & Bouman, C. A. (2003). Parameter estimation for spatial random
trees using the EM algorithm. In Proc. IEEE International Conf. on Image Processing (ICIP).

Rosenfeld, A. (1973). Progress in picture processing: 1969-71. ACM Computing Surveys, 5(2).

Siskind, J., Sherman, Jr., J., Pollak, I., Harper, M., & Bouman, C. (2007). Spatial random trees grammars
for modeling hierarchical structure in images with regions of arbitrary shape. PAMI, 29(9).

Sivic, J., Russell, B. C., Efros, A. A., Zisserman, A., & Freeman, W. T. (2005). Discovering objects and
their location in images. In ICCV.

Sudderth, E. B., Torralba, A., Freeman, W. T., & Willsky, A. S. (2005a). Describing visual scenes using
transformed dirichlet processes. In NIPS.

Sudderth, E. B., Torralba, A., Freeman, W. T., & Willsky, A. S. (2005b). Learning hierarchical models of
scenes, objects, and parts. In ICCV.

Sudderth, E. B., Torralba, A., Freeman, W. T., & Willsky, A. S. (2006). Depth from familiar objects: A
hierarchical model for 3d scenes. In CVPR.

Torralba, A., Murphy, K. P., & Freeman, W. T. (2004). Sharing features: efficient boosting procedures for
multiclass object detection. In CVPR.

Torralba, A., Murphy, K. P., & Freeman, W. T. (2007). Sharing visual features for multiclass and multiview
object detection. PAMI, 29(5).

Tu, Z., Chen, X., Yuille, A. L., & Zhu, S.-C. (2005). Image parsing: Unifying segmentation, detection, and
recognition. IJCV, 63(2).

Tu, Z., & Zhu, S.-C. (2006). Parsing images into regions, curves, and curve groups. IJCV, 69(2).

Ullman, S., & Epshtein, B. (2006). Visual classification by a hierarchy of extended fragments. In Towards
Category-Level Object Recognition, Lecture Notes on Computer Science. Springer-Verlag.

Zhu, L. L., Chen, Y., & Yuille, A. (2006). Unsupervised learning of a probabilistic grammar for object
detection and parsing. In NIPS.

Zhu, S.-C., & Mumford, D. (2006). A stochastic grammar of images. Foundations and Trends in Computer
Graphics and Vision, 2(4).

28

