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Abstract

Two physical models of diffusion in absorbing porous media are proposed on two
length scales. One models diffusion in the pore space of a random medium with
absorbing interfaces while the other is a reaction diffusion model where particles are
absorbed in the bulk. Typical particle travelling distances and a bulk absorption
coefficient are described in terms of general geometrical characteristics of a random
medium and the analytical relations are found to compare well with numerical exper-
iments. For the case of geometries consisting of randomly placed cubes, absorption
in the bulk scales with the solid fraction to the two-thirds power. The statistical
distribution of reaction rates in these models is found to be inversely related to the
reaction rate. A quasi-static Monte-Carlo model is also investigated. The more com-
plex problem of microbial extracellular enzyme distributions in marine sediment was
an inspiration for this work.
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Chapter 1

Introduction

Reaction-Diffusion occurs in many engineering and natural processes. The aim of this

thesis is to understand aspects of diffusion when reactions occur at interfaces within a

random porous medium. One-species systems are investigated and we consider only

diffusion limited reactions. We only consider steady systems where concentration

sources are distributed throughout the porous medium. The main goal is ascertaining

the flux at solid fluid interfaces of the porous media and the geometric properties that

govern it.

1.1 Overview

Systems of this type are investigated at two scales, “microscopic” and “macroscopic”.

On the microscopic scale the system is modeled by the steady diffusion PDE in the

pore space and boundary conditions with zero concentration on the porous interfaces.

This is called the microscopic model.

0 = ∇2C in pore space (1.1)

−D∇C = ja on source boundary (1.2)

C = 0 on interface boundary (1.3)

ja is the source flux of concentration. This model is then analyzed numerically

by solving (1.1)- (1.3) with ensembles of random boundary geometries. A 64x64x64

with grid with periodic boundaries was used for numerical simulations. A source
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Figure 1-1: Geometry of 2-D microscopic model. b is the source, the pore space, p, is
white. Random solid particles, c, are gray.

was placed at the center of the grid and the remaining domain inside the grid was

filled with randomly spaced particles. A finite difference method was used to solve

(1.1)- (1.3).

Reactions in the microscopic model were modeled as purely absorbing by setting

the concentration to zero along the walls at the porous interfaces. This is a special

case of the more robust radiative boundary condition [32] D∇C = αC where α is

a constant absorption rate over the specific surface area. It was first introduced by

Collins and Kimball for dilute spheres [32], [35]. Varying α/D from zero to infinity

changes the system from being reaction-controlled to diffusion-controlled (diffusion-

limited). Physically, low concentrations can arise at an interface if there is a high

equilibrium ratio of substrate-sorbed to dissolved chemical species, or if the chemical

species is eliminated very rapidly at the interface (diffusion limitation). This is de-

scribed further in section 2.1. The radiative boundary condition provides a possible

way to tackle the adsorption problem when there is a lower equilibrium ratio or lower

saturation levels.

The macroscopic model on the other hand does not include pore geometry. It

models the system as a continuum “mud” where the concentration adsorption on the

walls of the porous interfaces is a volume averaged process occurring throughout the

continuum. Specifically, the concentration is modeled by the steady reaction diffusion

equation.

12



0 = D̄∇2c − κc in continuum (1.4)

ja = −D̄∇c on source boundaries (1.5)

Note that C in equations (1.1)-(1.3) represents a concentration in pore space while

c represents a macroscopic concentration in the mud. For the same reason, D̄ is an

effective diffusion coefficient.

Analysis for the “macroscopic” model is done analytically for a spherical volume

in the neighborhood of a source.

1.2 Previous Work

There has been much prior work on systems closely related to the microscopic and

macroscopic models described in section 1.1. It is more broadly known as the prob-

lem of diffusion to static traps. Although the roots of this problem can be traced to

Smoluchowsky and the more general studies of diffusion controlled reactions, Bixon

and Zwanzig [3] were the first to use the term static traps, however Felderhof and

Deutch [10] tackled almost the same problem years earlier. General problem of static

traps is to find effective macroscopic properties of the microscopic system described

earlier. Absorbers are large and stationary with respect to the diffusing particles

around them and diffusion limited reactions occur on the surfaces of the traps. Prop-

erties of interest are survival time of a particle, relaxation times, effective reaction

rates, and diffusion coefficients. The general way this problem was originally solved

was to re-write the boundary conditions of the microscopic equations to create a

modified microscopic model where the boundary conditions are incorporated into a

reaction term. This was first done by Fixman [36] for diffusion controlled reactions.

There are many ways to do this but all of them are complex and come from the so-

lutions to other known problems in physics. Then quantities of interest are averaged

in order to get the bulk property desired. Felderhof and Deutch were the first to

propose locally averaging the modified microscopic equation to get the macroscopic

relation (1.4), where κ is a function of geometry only. However, the validity of that

local microscopic averaging is questionable [30]. Effective medium properties were

further studied in this way by many [7],[19],[11],[6] and more.

It wasn’t until later that that the static trap problem was properly addressed
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for higher solid fractions of traps and branched into a problem that can be thought

of as diffusion through a heterogeneous medium with static traps. Before, most

analysis done was for traps not near touching each other with solid fractions of around

0.1 or less. Note that getting to that solid fraction was a huge improvement over

the Smoluchowsky model [32] [35] which is only valid for extremely low absorber

concentrations ≪ 0.1. When higher solid fractions are considered, the problem can

be more thought of as diffusion through a heterogeneous medium consisting of static

traps. Doi [7], Muthukumar [19] and Fixman [11] tastefully worked on the early stages

of this problem, but later Richards and Torquato made much more headway in this

topic. Richards tackled the high solid fraction problem via analysis and computations

of random walks while Torquato utilized his pioneering work regarding the mechanics

of heterogeneous material in conjunction with the methods of Doi and Muthukumar.

A comparison of their results with our cubic system is presented in section 4.3.3.

1.3 Motivations

The problem of carbon burial in the ocean is an important aspect of the carbon cycle

and is not fully understood. Micro-organisms are known to be key players in the

degradation of organic matter in the ocean [1]. Microbial decay on the ocean floor is

the final stage of respiration before organic carbon is buried.

It has been found that the amount of particulate organic carbon (POC) is strongly

correlated with the surface area of minerals(clay) in the sediment [15],[14]. This leads

to the assumption in our models that POC exists as coating on surfaces of clay. Our

work was also inspired by the discussion of extracellular enzyme foraging by Vetter

[34]. To forage, extracellular enzymes are released from microbes in the sediment

compound. The enzymes diffuse through pore spaces and catalyze the hydrolysis of

POC, resulting in the release of dissolved organic carbon(DOC).

This process is modeled via steady reaction diffusion with boundary conditions

mentioned in section 1.1. This process and idealized system geometry is shown in

figure 1-2. Our model assumes that the spacing of bacteria (spacing of sources)

is much greater than the typical pore size of the medium. The model works best

when the characteristic foraging distance of an active extracellular enzyme (diffusing

particle), β−1, is much less than the bacterial spacing ∼ rb. This is discussed further

in section 3.2.
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Figure 1-2: Idealized sediment geometry and enzyme release process

Although the models presented in this thesis were inspired by the detrital degrada-

tion problem in marine sediment, these models are not the physical models mentioned

in our publication [25]. Although the two types of models are related, the model in

the Science publication assumes a characteristic enzyme lifetime while these thesis

models assumes contact with a wall ultimately ends the activity of an enzyme; it is

either irreversibly adsorbed or denatures while adsorbed.

There are numerous assumptions with the thesis reaction diffusion models of the

enzyme foraging process. These models assumes enzyme elimination at walls, but it

is difficult to gauge how unreasonable this assumption is . Typical sizes of extracel-

lular enzymes are in the range of 10-1000 KDa [34]. Large polymers often adsorb

irreversibly to clay minerals [20], and new techniques for measuring adsorption show

that adsorption of polysaccharides in minerals can be high depending on polysaccha-

ride type and mineral type and density [29]. As the equilibrium fraction of adsorbed

to dissolved enzymes increases, our assumption is more reasonable. If enzymes are

significantly less likely to denature while adsorbed rather than dissolved, then this

assumption seems less likely. If enzymes are more likely to denature during adsorp-

tion then the strength of this assumption improves. Secondly, why should steady

flux from the source be assumed if over time, fewer and fewer OC remains in the

environment as food for the microbe? A peculiarity of this specific diffusion model

is that the concentration of enzymes remains in a steady state spatially even though

the OC in the local environment disappears. Therefore, it is easily argued that this

reaction diffusion system does not model the microbial decay of organic carbon in

marine sediment. The model has other shortcomings as well but nevertheless, this
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physical problem was a source of inspiration for the mathematical model discussed

here.

In order to address some of the supposed conflicts with reality associated with the

simple diffusion model, a reaction-diffusion Monte-Carlo model was also analyzed. In

the Monte-Carlo simulations, POC was removed from the system over time. Under

comparison with published experimental data, the results of this model were not as

promising as the fully steady model. This Monte-Carlo model is discussed in chapter

5.

In addition to the problem of enzymatic decomposition, there are other reaction -

diffusion problems in porous media. These range from physical and biological prob-

lems to problems in engineering.

• Enzymatic infection of soft tissue

• Oxygen absorption in lungs

• Heterogeneous catalysis, catalytic converter

• Batteries

• PEM fuel cells

• Hydrogen storage in metals

1.4 Objectives

The main goal of this work is to connect two length scales of diffusion in an absorbing

random medium. Specific tasks are to address fundamental questions about the

system such as determining how the concentration decays from the source as well

as how the flux to interfaces is distributed. Another task is to look at the effect

of geometric parameters such as porosity and surface area on the system behavior.

The macroscopic reaction diffusion PDE must be shown to be an accurate model

of the microscopic diffusion model with random absorbing boundaries. Given that

the microscopic and macroscopic PDEs model the same system, the scales can be

connected by explaining how microscopic geometry affects macroscopic transport and

absorption.
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Chapter 2

Microscopic Model

2.1 Diffusion and Absorbing Boundaries

The backbone of this problem is the molecule. In many biological environments, only

trace concentrations of a chemical species exist. The continuum model presented in

this chapter describes systems with large concentrations(Kn << 1), but also describes

time-averaged concentrations in diluted systems. Although it is useful to think about

this problem on the molecular level, all analysis will be done on the continuum level.

The behavior of a concentration of a species in a in a solution can be described by

the diffusion equation.
∂C

∂t
= ∇2C (2.1)

Assuming that the steady microbe source and the geometry surrounding it moves

on a timescale slower than diffusion, the time derivative can be neglected in (2.1).

The porous geometry of ocean floor sediment is complex. To keep things simple,

the model’s geometry consisted of placing cubes down on a cubic grid at random.

Porosity is the only parameter in this simple cubic model.

Possible physical scenarios with absorbing boundaries

The boundary condition on the surfaces of the cubes is C = 0, implying that there

is no communication between the surface and the surrounding pore space, hence the

term ”absorbing boundaries”. It is shown here that absorbing boundary conditions

are appropriate if contact with the surface results in the particle either becoming

trapped or eliminated.
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Transport involving surfaces is typically modeled with rate constants[4] which

describe the exchange between dissolved concentrations and concentrations which are

adsorbed to the substrate surface. The dissolved concentration in a pore-space volume

element with length δx in the x direction may be described by

dC

dt
= D∇2

2D − j+

δx
+

j−
δx

(2.2)

where ∇2
2D, is the 2-D Laplacian operating in the YZ plane. For a volume element

surrounded by pore space, the fluxes j+, j−, through the surfaces at x + δx/2 and

x − δx/2, are simply fluxes due to diffusive transport and the r.h.s. of (2.2) reduces

to D∇2C. However, if the volume element borders a solid surface, transport to and

from surface is described by rate constants resulting in the relation,

dC(x)

dt
= D∇2

2D − kaC(x) + kd
Cs

δx
+ D∇C(x + δx/2). (2.3)

with ka being the rate constant for adsorption to the surface and kd being the rate

constants for desorption from the surface both having units inverse time. Cs is the

concentration per unit surface area and the 4th term represents the diffusive flux j+.

If adsorption is diffusion limited, the transport to the boundary surface is solely due

to diffusion so ka = D
δx2 . Therefore diffusion limitation results in

dC

dt
= D∇2

2D − D

δx2
C +

kd

δx
Cs + D∇C(x + δx/2). (2.4)

Discretizing equation (2.4) shows that either kd = 0 or Cs = 0 is sufficient for

absorbing boundary conditions to be present. Physically, kd = 0 means what contacts

the boundary is not released, and Cs = 0 means contact with the boundary results

in rapid elimination. To see this consider the equilibrium distribution of surface

molecules governed by the equation

dCs

dt
= kaCδx − kdCs − αCs (2.5)

where α is a death rate of molecules on the surface. Steady state results when

Cs =
kaδx

kd + α
C (2.6)

Since ka is controlled by diffusion, Cs approaches zero when α approaches ∞.

Physically, large α might occur if enzymes are more prone to denaturing during
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hydrolysis, or surface molecules are more prone to denaturing the enzyme.

To be more precise, α/kd ≫ 1 indicates that most adsorbed particles are destroyed

rather than released. This is also sufficient to indicate the significance of absorbtion

relative to our model. It is important to realize that the equillibrium ratio of sorbed

to pore dissolved particles is not alone sufficient to determine the degree to which a

medium is absorbing for our purposes. In this thesis absorbing is used in the first

passage sense. In other words, if the particle is more likely to be released rather than

eliminated while sorbed, then the medium is less absorbing. If it is more likely to

be eliminated at contact with the first boundary, it is more absorbing. There might

be orders of magnitude more particles sorbed than in the pore space, but if they are

all released before they are eliminated, then the absorbing model discussed here does

not apply. In order to estimate real values of α/kd, note that α ∼ 10−3s nominally in

sea water and Cs/C ∼ 10−3cm [34]. If δx in (2.6) is taken to be roughly a pore size l

(questionable assumption), then

Cs

C
=

ka

kd + α
l (2.7)

Cs

C

s

φ
=

ka

kd + α

sl

φ
(2.8)

Cs

C
∼ ka

kd + α
(2.9)

Plugging in values for the equillibrium ratio and known specific surface area s ∼ 105cm

and sl ≈ 1 gives

ka

kd + α
∼ 102. (2.10)

An estimate of the order of magnitude of ka or kd is needed. The dynamics

of adsorption on various minerals of large molecular weight polymers have recently

been studied by Steen and Arnosti [29]. Ranges of adsorption timescales were found.

Noting that the labeling technique was stable, a more simple model can be used to

find ka for large MW polymers. Again utilizing a linear adsorption-desorption model,

Ċ∗ = −C∗ka + C∗

s kd (2.11)

Ċ∗

s = C∗ka − C∗

s kd (2.12)

Where C∗ and C∗

s are total amounts of pore dissolved and sorbed polymers. Since
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C∗+C∗

s = C∗

tot, the dynamics have a first order rate constant of ka+kd. Since ka > kd,

the dynamics of the system can be attributed to ka. Rates inferred from [29] varied

from 10−4 < ka[1/s] < 10−2 for the various polymers and substrates tested. Of course

various enzymes adsorb to various substrates, some more reversible than others, but

using ka as an estimate for similar molecular weight enzymes, results in a conservative

estimate of kd using the equillibrium ratio (2.10) 10−6 < kd[1/s] < 10−4. Therefore

using a simple linear model of adsorption with these values of sorption coefficients

and death rates, this medium is approximately first passage absorbing. However since

the range of α spans over 6 orders of magnitude resulting in α/kd spanning 10−1 to

106 [34] and sorption varies widely depending on enzyme and mineral, no definite

conclusions can be made.

2.2 Numerical Solution of Microscopic Problem

Because solving Laplace’s equation on a random domain is difficult analytically, nu-

merical simulations are used to analyze this problem. A source of constant strength is

placed at the center and the outer boundaries of the numerical domain are set as pe-

riodic. Therefore the numerical simulations are actually models of a porous domain

with regular array of sources separated by a distance the length of the simulation

domain.

2.2.1 Two Dimensional Problem

The problem was first attacked in two dimensions. As in the 3-D problem, the porous

geometry was created by squares placed randomly in a two dimensional rectangular

domain, with periodic boundaries defining the outer edges of the domain. The finite-

element method in Matlab’s PDE toolbox was used. Although very robust, the

stock PDE toolbox was not able to handle repeating boundaries, so the toolbox was

modified to include repeating boundaries. Because the toolbox was easy to use and

simulations were created quickly, there was a tradeoff in performance. A domain of

length 100 grain sizes was the largest simulated.

Results

The information most relevant to the problem of biodegradation is the flux of enzymes

to the particulate carbon. Since reactions are assumed to be diffusion limited and
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Figure 2-1: Geometry of microscopic model with periodic boundary conditions.
Dashed lines indicate the periodic boundaries on the outer boundary of the simu-
lation. Black circles are sources, and gray blocks are grains.

carbon is assumed to be completely covering the walls of the porous surface, the flux

to the wall is a very important quantity. Flux to the walls is defined as

jw(x) = −D∇C(x) · n, x ∈ Γ (2.13)

with Γ being the set of points on the porous boundary and n being the vector normal

to the boundary. Figures 2-2 and 2-3 show a spacial distribution of flux to the walls.

The porosity φ, is defined as the fraction of volume occupied by pore space. The

figures show rapid decay of flux from the source for φ = 60%. The rapid decay is

a consequence of the absorptive boundary conditions. Decreasing porosity reduces

the likelihood of a molecule diffusing far from the source. Note that in figure 2-2,

there are sections untouched by the source due to enclosures by the solid particles.

Also note that there is a region of low flux to the left of the source. This is also due

to enclosures, but the periodic boundary condition allows access to this region from

the source to the left of it. Regions in the domain become more isolated as the solid

fraction, σ defined as σ = 1− φ, approaches the percolation threshold for 2-D square

lattice site percolation, σ = pc = .59. [28]. Porosities lower than pc cutoff the source

from its extended environment. This may or may not be important as the source does

not effect surfaces more than a few grain sizes away from it. In three dimensions,

cutoff happens not when solid percolation occurs, but when pore space percolation
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Figure 2-2: Spacial distribution of flux to the walls. The source is donated by the
letter S. The pore space adjacent to each wall is highlighted with a color indicating
the flux to that wall. Colorbar is log10(jw). The porosity, φ = 60%.

does not occur. This happens when the porosity equals the percolation threshold for

3-D simple cubic site percolation, φ = pc = .31. [28]. Intuitively, the critical porosity

is lower in 3-D because it is much harder to enclose volumes than areas.

By binning all of the wall fluxes in the domain, this two dimensional informa-

tion is reduced to a histogram called the harmonic measure. The fluxes are binned

logarithmically and is shown in figure 2-4.

Important qualitative concepts to take away from figures 2-2- 2-4 is that very

few surfaces see high flux and few surfaces see low flux. The trend in the high flux

portion of figure 2-4 is explained by geometry. The number of surfaces increases with

distance, but the flux decays with distance. The tail of the histogram at low flux is

actually due to the randomness of the model. Although the tail does have to do with

measuring the harmonic measure in a finite volume, the tail is not a typical finite size

effect. One would expect the number of low flux surfaces to fall off as the wall flux

approaches the minimum in the domain, but that is not so obvious when log binning

is used. This is discussed further in the next section.
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Figure 2-4: Histogram of fluxes to walls, jw, binned logarithmically. N is the number
of surfaces with corresponding jw.

2.2.2 Three Dimensional Problem

Equations (1.1)- (1.3) were solved in three dimensions using a finite difference scheme

on a 64x64x64 grid. The grid spacing, h is one half of a grain length1 so each grain has

edges comprised of three nodes. Nodes are located on the exact surface of the grain

has volume 23. Surface nodes have have concentrations set to zero corresponding with

the C = 0 boundary condition. Again periodic boundaries are used at the domain

edges and the source is located at the center of the grid. The relaxation method used

1A discussion of the accuracy of the results for such a coarse discretization is in section B.1
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Figure 2-5: log10(Radially averaged concentration) vs. Distance from the source.

to solve this problem was Gauss-Seidel2

Results

Important results from this model are the concentration decay with distance from

the source and the harmonic measure of flux to walls. In order to draw accurate

conclusions from simulations with stochastic boundary geometries, an ensemble of

numerical experiments was performed. Ten experiments were performed for each

porosity tested.

To measure how the flux decays with distance from the source for a given porosity,

the concentration was radially averaged in each experiment, then the ensemble of con-

centration profiles was averaged resulting in figure 2-5. Note that the concentration

decay seems to be exponential. The solid fraction has a strong effect on the decay of

concentration. Increasing the σ by .1 changes the concentration at a given distance

by a few orders of magnitudes.

A histogram is again used to describe the flux to the walls, jw. Only walls located

at a distance r ≤ L
2

were counted, where L is the length of the simulation domain.

The fluxes were binned logarithmically and the frequency normalized to 1 for each

experiment resulting in the harmonic measure, Hl. Then the ensemble averages of

log 10(jw) and log 10(Hl) were computed resulting in figure 2-6. Hl(log(jw)) is labeled

2Gauss-Seidel was found to converge very quickly for problems of this type, see appendix B.
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Figure 2-6: Probability distribution of flux to walls, log10(jw/ja) for various solid
fractions. Fluxes are binned logarithmically. ja is the source flux.

to emphasize that Hl is the distribution of the log of the flux. A turnover is seen

similar to the one in the 2-D simulation. It is important to note the maxima in the

histogram, figure 2-6, corresponds to the minimum seen in figure 2-5. This is not

to say that the flux to the walls is the concentration at that location, but that the

flux is scales with concentration (since ja = 1 in this simulation, jw/ja is of similar

magnitude as concentration.) Because only walls located distance r ≤ L
2

were binned,

this is a clue explaining why the tail in the figure must be due solely to random low

flux surfaces in the domain.

Another, perhaps more intuitive take on this distribution is to bin the fluxes

linearly as shown in figure 2-7. The log-binned histogram is converted to a linear

binned histogram by the operation,

H(log(jw))

ln(10)jw

= H(jw), (2.14)

where H is the linearly binned probability distribution. This conversion was necessary

since there is not nearly enough data to linearly bin the data on the log scale required.

Note that this figure is more intuitive than the last one as the number of walls

always increases as flux decreases. What appears to be counter-intuitive is the pdf

itself. It does not seem to integrate to one like the log-binned plot. This is because now
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Figure 2-7: Probability distribution of flux to walls, log10(jw/ja) for various solid
fractions. Linear binning.

the width of each bin is orders of magnitude smaller. The portion above log10(H) = 0

accounts for only an extremely small fraction of the flux domain, so it does indeed

integrate to one. Note that the location of the non-linearity in figure 2-7 corresponds

to the location of the maxima in figure 2-6.
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Chapter 3

Macroscopic Model

3.1 Reaction Diffusion in the Bulk

The microscopic model can also be reformulated on the macroscopic scale. Consider

a homogeneous, isotropic mud where the microstructure of the clay is too small to

be noticed. Diffusion and adsorption still take place, but now are considered to be

bulk processes. Again, sources are considered to be distributed throughout the mud.

The macroscopic concentration is c = 〈C〉φ, where 〈C〉, is the average concentration

in the pore space. This system is modeled by the reaction-diffusion equation,

∂tc = D̄∇c − κc, (3.1a)

where D̄ is an effective diffusion coefficient for the porous medium and κc is a bulk

absorption rate per unit volume since on the macroscopic scale particles are being

consumed in the continuum. Utilizing a macroscopic equation where κ and D̄ are a

function of geometry only was first done by Felderhof and Deutch [10].

It was later shown by Tokuyama and Cukier [30] that one cannot re-write the mi-

croscopic model (2.1) with Dirichlet boundary condition (1.3) as the locally averaged

macroscopic form (3.1a) when the characteristic foraging distance, β, of a particle is

on the order of absorber size lg. This arises because fluctuations on the local scale do

not average out at all larger scales. Unfortunately, those length scales are of similar

order for most porous media with σ > 0.1. Tokuyama and Cukier’s result that fluc-

tuations exist on all length scales can be seen by looking at figures 2-2, 2-3, and D-1.

In these figures one can observe that radially averaging only picks out the highest

flux at that radius because fluxes vary over many orders of magnitude. Therefore
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radially averaging will not yield an effective absorption per unit volume, because that

concentration represents only the highest concentration at a point in that volume.

Compare figure D-1 to the line labeled σ = 0.3 in 2-5. Since the concentration at the

source is ∼ 1 in fig. 2-5 and we are normalizing the flux in fig. D-1, the concentration

is roughly the same as the flux and we can compare the two quantities. At r = 30,

the concentration is ∼ 10−17 in figure 2-5. At r = 30, the flux varies from ∼ 10−17 to

∼ 10−23. Because of the averaging, only 10−17 is counted and this is considered the

average for r = 30, when in reality it is fluctuating at all scales over several orders of

magnitudes as seen in figs 2-2, 2-3, and D-1. This is discussed as well in Appendix

D. The implications of this are curious and hardly discussed in the literature. What

this means for us is that β is really estimating is how the ”safest paths” scale with

microstructure. What we have found below is that radially averaging produces a well

behaved concentration from the source, so these paths must be changing in accor-

dance with our model. But if we were to plot the actual macroscopic concentration

in 3D, it would be fluctuating at all scales, look at fig. 2-2. Mapping the 3D con-

centration to 1D brings some order to the chaos of Tokuyama and Cukier’s result.

Since the averaging represents some sort of scaling of safest paths, it is not clear of

the geometry of these paths and whether each maximum concentration is part of one

long path or does the concentration jump among paths. The scaling regarding these

paths and maximum concentrations are not understood. Given these comments, it is

still questionable what exactly the actual absorption is in the bulk volume and what

κc(r) represents.

Regardless of this finding, many continue to find effective medium properties and

most [23], [6], [32] continue to use (3.1a). As shown later in this chapter, analysis

of the macroscopic model seems to be sufficient to describe β for our discretized

microscopic system even for β . lg.

As in the microscopic model, the assumption of a steady source and boundaries

which are changing very slowly allow neglection of the time derivative. Results from

the micro model indicate that the concentration in a given of mud should should

only be effected by the nearest source. This is inferred from the high sensitivity of

concentration with distance from a source. In other words, each source has a sphere

of influence of radius rb, where 2rb + ǫ is the distance to the nearest neighboring

source, ǫ ≪ rb. We will shortly show what conditions are required for high distance

sensitivity.
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The problem can now be restated in spherical co-ordinates.

0 = D̄
1

r2

d

dr

(

r2d(c(r))

dr

)

− κc(r) (3.2a)

c(a) = c0 (3.2b)

c(rb) = cb (3.2c)

a is the radius of the source. Note cb does not need to be coupled to the neighboring

source since the neighboring source has negligible effect at r = rb.

The solution to the steady state system (3.2) is [18]

c(r) = A
e−βr

r
+ B

eβr

r
(3.3)

A =
cbrbe

βa + c0aeβrb

eβ(−rb+a) − e−β(rb+a)
, B =

−cbrbe
−βa + c0ae−βrb

eβ(−rb+a) − e−β(rb+a)
,

where β =
√

κ
D̄

. Note that rb ≫ a for typical source spacing1 and c0 ≫ cb for typical

concentration decay, resulting in A ≫ B. This means that the growing exponential

does not play a role until r ≈ rb but at that distance, c ≈ 0 anyway. In other words,

the growing exponential can be neglected. These assumptions result in

A = c0aeβa (3.4)

c(r) =
c0a

r
e−β(r−a) (3.5)

Profile. (3.5) is also the solution to equation (3.2) with outer boundary condition

c(∞) = 0.

As seen from radial profiles. (3.3)-(3.5), β plays a very important role. Physically,

β−1 represents a characteristic distance traveled from the source before a molecule is

captured. It is dependent on typical pore sizes in the microscopic geometry and sets

the scale for many system characteristics.

3.2 Results of the Reaction Diffusion Model

It must be shown that the reaction diffusion model is an appropriate macroscopic

representation of the microscopic system.

1rb ∼ 10µm [26], a ∼ 0.5µm [34]
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Figure 3-1: Concentration vs. r for various σ. Lines represent macroscopic solution
with fitted boundary condition and β.

3.2.1 Concentration Profile of the Macroscopic Model.

The first thing to show is that solutions from the macroscopic reaction-diffusion model

can indeed give the same volume-averaged results from the microscopic model. This

is done graphically in figure 3-1.

For each value of σ the boundary conditions A,B were set equal to the radially

averaged concentrations at r = a, rb. Note the result is the same if B was set to

zero. The macroscopic parameter β was determined by a best fit. As you can see, the

macroscopic model does indeed seem to give the same results for c(r) as the averaged

microscopic data. Remember that c(r) is not a pure exponential, but c(r) ∝ 1
r
e−βr.

The 1
r

influence is not seen in the plot because it changes too slowly as r departs

from a and the exponential dominates from r > a. A key property of this model is

exponential decay for βr ≫ 1.

Insight from the solution, (3.4), tells us that an appropriate non-dimensionalization

for r − a should be β. In figure 3-2, the microscopically averaged distance from the

source is non-dimensionalized by β and the concentration by 1
c0

. All data sets collapse

nicely onto one line.
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Figure 3-2: Normalized concentration vs. normalized distance from source surface,
r − a

3.2.2 Flux Probability Density

In order to show further equivalence of the two models, the harmonic measure pdf,

h, is calculated on the same spherical domain as the microscopic model. h(jw) is

found analytically by considering p(r)dr, the probability of being located a distance

d ∈ [r, r + dr] from the source.

h(jw) = p(r(jw))

∣

∣

∣

∣

dr

djw

∣

∣

∣

∣

(3.6)

For rb ≫ a,

p(r) =
3r2

r3
b

(3.7)

Knowing the bulk absorption rate κc(r) allows calculation of the flux jw(r).

jw(r) =
κc(r)

s
(3.8)

jw(r) = D̄
β2c(r)

s
(3.9)
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where s [ 1
L
] is the specific surface area.

jw(r) = Ae−βr/r where A =
D̄

D

β2c0aeβa

s
(3.10)

Because jw(r) is analytic, dr/djw is simply djw/dr−1.

djw

dr
= −jw

(

β +
1

r

)

(3.11)

dr

djw
= −j−1

w

(

β +
1

r

)

−1

(3.12)

Again, j−1
w dominates β + 1

r
since βr ≫ 1 so dr

djw
∼ j−1

w β−1.

Analytical inversion of jw(r) requires the use of the Lambert-W function, W (z),

z = WeW .

r(jw) = W (Aβ/jw)/β (3.13)

therefore,

h(jw) = |j−1
w | 3W (Aβ/jw)2

β3r3
b (1 + 1/W (Aβ/jw))

(3.14)

However, h(jw)) can be analyzed without dealing with W . Defining x = r/rb,

Recognize that 98% of the volume of a sphere is located at a distance x > .27, thus

p(r) varies only by roughly one order of magnitude for most of the domain. This is

negligible compared to the domination of jw in |dr/djw|, and

h(jw) ∼ j−1
w β−1 (3.15)

h(jw) is plotted with the microscopic linearly binned harmonic measure p(jw) in

figure 3-3. Note that the macroscopic model cannot capture the low flux stochasticity.

This is of course because the low flux distribution is a random phenomena and cannot

be captured with a macroscopic model. Figure D-1 in the appendix gives insight into

this. The macroscopic ceases to give data for jw < jw(rb).

A prediction of the log-binned histogram can be converted from h(jw) with con-
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Figure 3-3: Probability distribution of fluxes for σ = .2, linear binning. Solid line rep-
resents linear binned probability distribution predicted from the macroscopic model

version (2.14). Since

jw

ja
∼ sκc

sκca
(3.16)

log10(min(jw/ja)) ∼ β(rb − a) (3.17)

∼ βrb (3.18)

the microscopic and macroscopic results in figure 3-4 are rescaled by βrb. Only the

macroscopic result for σ = .2 is shown to reduce clutter.

The macroscopic line is above the microscopic data since it assumes flux is dis-

tributed equally everywhere at distance r from the center and therefore not capturing

low flux stochasticity. Both pdfs integrate to 1 so the macroscopic data is above the

microscopic data.

3.2.3 Discussion

The histogram analysis was performed here to understand how diffusion limited re-

action rates are distributed for the case of an absorbing porous medium.

Because of the fluctuations at all scales, we know that at least part of the medium

at a distance r from the source has flux jw(r), but the scaling of the flux for other

zones the same distance r away should be determined.
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Figure 3-4: Normalized probability distribution of fluxes for various σ, log-binned.
The solid line shows a normalized log-binned histogram predicted from the macro-
scopic model for σ = .2

The microscopic and macroscopic models compliment each other very well. Insight

to the behavior of the microscopic model comes from the parameter β, which sets a

critical length scale. Exactly how β relates to the microscopic geometry is discussed

in the next chapter.

p(r) can also be found when sources are randomly placed with number density n.

The probability, P1, that two microbes are spaced a distance < 2r from each other

can be determined from a Poisson point process and is P1(r) = 1 − e−4πnr3/3. [9]

This of course results in a slightly different density function than h(jw) but variations

away from 1/jw remain negligible. This was not discussed in depth here because the

main purpose here is to compare the microscopic and macroscopic models(fixed rb).

Again, microbial decay implementations of this model are discussed in [25].
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Chapter 4

Connecting the Scales

The importance of the parameter β was shown in chapter 3. There should also be

some physical intuition regarding β at this point as well. For instance, if κ is thought

of as an averaged absorption frequency, κ = 1/τ , then β = 1/τD̄ = 1/δ2, where δ is

an averaged diffusion length traveled over time τ . β−1 should also be directly related

to l and β has been found to increase with σ.

4.1 Finding β

Consider conservation of flux in a small volume of size ∆V ≫ l3, l being a typical

pore size. The total flux to the surfaces in the microscopic model must be the same

as the total absorbed flux in the macroscopic model.

κc∆V =

∫

S

D∇C(x) · ndA (4.1)

Averaging the right hand side of (4.1) over all surfaces in ∆V gives

κc∆V = D〈|∇C|〉∆A (4.2a)

κc = D〈|∇C|〉s (4.2b)

β2c =
D

D̄
〈|∇C|〉s (4.2c)

Where ∆A is the surface area in ∆V and s = ∆A/∆V . ∇C · n = |∇C| at a

surface with constant Dirichlet boundary condition.
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Because C(x) is harmonic, smooth and well behaved in the pore space we can

expect |∇C| ∼ C/ll, ll being the local pore size and l = 〈ll〉 in ∆V . This follows

from the intermediate value theorem. There is a set of points x∗ in a pore where

C(x∗) = C̄, C̄ being the average concentration in the pore. d∗(x∗) is the distance

from x∗ to the nearest wall. A specific wall location is a distance ∈ d∗ from the closest

point in x∗. Thus the gradient at that wall location can be approximated by C̄/d∗ to

O(d∗3) since on walls ∇C · n = |∇C| and |∇C| is flat. Since d∗ ∼ ll/2,

〈|∇C|〉 ∼ 〈2C/ll〉 (4.3)

where the brackets on the left hand side of approximation (4.3) represent surface

averaging and the brackets on the r.h.s. represent volume averaging in the pore

space. Using this analysis,

β2c ∼ D

D̄

〈

C

ll/2

〉

s (4.4)

β2c ∼ D

D̄

( 〈C〉
〈ll/2〉 + Cov(C, l−1

l )

)

s (4.5)

C, l might be correlated since larger pores allow for higher concentrations, but there

are many reasons to expect C, l to be uncorrelated in a random medium. The main

reason is that concentrations in two pores an equal distance from the source may be

order of magnitudes different if one of the paths is slightly more tortuous than the

other as seen in figures 2-2 and D-1.

Incorporating c = 〈C〉φ finally gives the relation between β and the porous geom-

etry.

β2 ∼ D

D̄

2s

φl
(4.6)

The proportionality constant comes from the gradient estimate and is geometry de-

pendent. In most porous media s sets the length l and l ∼ 1/s, so β2 ∼ s2. (4.6) is a

general result that should hold true for many geometries.
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4.2 β Analysis for the Cubic Model

Further analysis can be done for a porous geometry consisting of randomly placed

cubes of fixed size lg. This geometry is very simple as it only contains one parameter,

φ. 1

4.2.1 Specific surface area

The point-point correlation function S2(r) can be used to express the specific surface

area in terms of φ. For a digitized medium,

d

dr
Sr(r)|r=0 = −s/2D (4.7)

where D is the dimension of the system[37]. It is easy to argue that S2(r) should drop

from φ to φ2 over about one grain length, lg. A numerical investigation revealed that

the de-correlation distance in our simple cubic model is actually ≈ lg/2. Thus

s = 6
φ(1 − φ)

lg/2
(4.8)

4.2.2 Pore size

The pore size, l, can also be expressed in terms of φ. There are many ways to

estimate l. One way is to get an exact solution for the distribution of pore sizes

in our exact system. Another way is to utilize the equations describing the pore

sizes for a general heterogeneous medium, eq. 2.84 in [32]. Another way is to use

results from a simpler geometry to approximate our medium. The following sections

discuss various estimates of the pore size using different methods. Note that estimates

L3, L4 all use an overlapping medium as an approximation, L2 uses a low solid fraction

approximation, L1 uses a uniform cubic medium as an approximation and L5 considers

non-overlapping cubes.

Simple geometrical estimate, L1

In order to provide physical insight, first consider a volume containing regularly spaced

cubic grains of length lg and porosity φ, one can easily geometrically argue that a

1The size of the cubes could also be changed in the microscopic mode, but the cubic model was
not able to provide s comparable to marine sediment geometries, s ∼ 1e − 5 cm for sources of size
a ∼ 1µm.
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crude approximation to the pore size is L1, defined as

L1

lg
∼

(

φ

1 − φ

)1/3

(4.9)

This measurement represents the cube root of the pore volume associated with each

grain rather than an actual distance between grains. It may or may not be the

appropriate characteristic length.

Low solid fraction limit, L2

The most basic analytical result is obtained if the pore size is approximated by dis-

tance from center to center of the overlapping grains rather than from surfaces of the

grains. This is the same as finding the pore size in a domain consisting of randomly

placed points and is a good approximation when σ ≪ 1.

Consider a spherical volume with radius l and one places centers at frequency n,

a number density, the probability of finding a center within the test volume is

Ps(l) = 1 − exp{−N ld}, N = cdσ/ldg (4.10)

where d is the dimension of the system and geometrical factor cd = 2, π, and 4π/3 for

one, two and three dimensions respectively [9]. Differentiating Ps with respect to l

results in the probability density function of distances between particles. Taking the

mean of this involves the gamma function. Since l is a radius and in general we think

of it as an effective diameter, the result is

L2 = 2〈l〉 = 2Γ

(

d + 1

d

)

N 1/d (4.11)

and rewriting in terms of solid fraction for overlapping cubes gives

L2

lg
= 2Γ(4/3)(4π/3)−1/3σ−1/3 (4.12a)

= 1.11σ−1/3 (4.12b)

∼ σ−1/3. (4.12c)

The scaling relation, (4.12), can also be found intuitively considering a regular grid

of points, but the pre-factor cannot. Note this characteristic normalized diameter is

38



within the range of possible diameters on a cubic lattice with unity spacing 1 < 1.11 <√
3. The randomness does not seem to affect the mean value much. Remember,

equation (4.12) is a good approximation for pore size, l, in the simple cubic model as

σ → 0. For larger σ, (4.9) is a better approximation, therefore (4.9) should have the

same pre-factor in that limit. Using this pre-factor for spherical voids,

L1

lg
= 1.11

(

φ

σ

)1/3

(4.13)

Comments on pore size approximations

L1 is a strange measure of the pore size for many reasons. For example, assigning a

spherical particle volume to each uncorrelated center will result in overlap. Therefore

the number density is not simply n = σ/vs as used in equation (4.12), but is actually

n = log(φ)/vs [32] where vs is the volume of the spherical particle. Further, if one

assumes these particles are fully penetrable spheres, then the actual pore size can be

found. To do this, pore size means average distance from a randomly chosen point

in the pore space to the nearest point on the solid-pore interface. It is not certain

whether this is the specific measure of pore size that is important for our problem.

That result is found in section 2.6 of Torquato [32] and doesn’t match L1 well at all.

Non-overlapping cubes, L3

A better way of estimating pore size in our system is to consider a ”reverse Poisson”

problem. Here consider a cubic grid of points with spacing h. Lay down a test cube

of size l3. Note that l3 ≥ h3 since volumes less than a cubic unit do not count. You

can also consider laying down a reasonably shaped test volume i.e. no part of the

volume is thinner than h, but in this case, l is the cube root of the test volume. As

in our simple geometry, every point has a probability φ of being empty. Note that

the measure of pore size used here is simply the cube root of the test volume.

The number of points in the test cube is N = l3/h3. Here one must make 2

assumptions. One assumption is that given a volume l3, the number of points per unit

volume is approximated by N although obviously there are locations where a test cube

with side l = 1.5h contains 8 points and there is a slightly shifted location where that

same size test cube contains only one point. This might be a reasonable approximation

for the number of points in that volume averaged over all locations. The other

assumption is that number of points in the volume is a non-integer. This may be
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a reasonable approximation since a pore of size l does not count if a neighboring

point is solid whose center is not contained in l3.

The probability that all N points are voids is,

Pvoid(l) = φN = φl3/h3

(4.14)

In order to get pore information out of this, use Bayes theorem; the probability that

N points are voids given you are in a pore, Pl, multiplied by the probability you are

in the void, φ, is the probability that N points are void anywhere, Pvoid.

Pll = Pvoid(l)/φ (4.15)

Pll = φ(l3/h3
−1) (4.16)

Note that Pl(l) represents the probability that the actual pore size is greater than or

equal to l. Note that this is a true cumulative distribution function, since Pl(h) = 1

and Pl(∞) = 0 for all φ.

Applying standard techniques, the mean pore size is obtained

〈l〉 =

∫

∞

h

3l
l2

h3
e(log(φ)l3/h3)dl (4.17)

L3 = 〈l〉 = h

(

Γ(1/3,− log(φ))

3φ(− log(φ))1/3
+ 1

)

(4.18)

The incomplete Gamma function is used since we only consider l > h. This results

in a very well behaved pore estimate which never drops below h unlike the other

estimates so far.

Note that we could have also considered a perhaps better estimate of our pore

size by laying down a test volume of size l3 composed of blocks of size h. This would

have used a probability mass function where volumes can only be discrete sizes and

resulted in a quantitatively similar answer, however the functional form would be a

series solution. I also considered an even simpler discrete pore estimate where only

cubes with sides having integer multiples of h were considered. This resulted in a

harsh measure of the pore size which quickly dropped to h. This estimate of l poorly

predicted the experimental values of β.
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Comparing sizes

To summarize, L1 is an effective diameter of the mean volume associated with a

randomly placed cubic particle with overlap; L2 is the average spherical pore diameter

for randomly placed cubes with very low solid fraction. Note that all measures drop

below one particle size (or grid spacing) except for L3. L3 is simply the mean size of

empty general test volumes placed on a cubic grid whose nodes have a probability σ

of being solid.
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Figure 4-1: Normalized pore size L/lg vs. σ where lg is the size of the cubic particle
which compose the medium.

Figure 4-1 shows a side by side comparison of the different measures of normalized

pore size. Intuitively, L3 should be the appropriate measure of pore size to predict

β. In the figure, spherical pore sizes, L1, L2, are compared to the cubic pore size, L3,

via multiplication by (π/6)1/3. Remember, L2/lg is only valid for small σ as it does

not account for overlap.
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Figure 4-2: Data points are β2 vs β determined from fitting numerical data for low σ.
Each point represents a different σ, β increasing with σ. .05 ≤ σ ≤ .6. Solid line has
slope=1. Error bars represent one standard deviation of calculations from numerical
ensembles.

4.3 Comparison with Numerical Result

4.3.1 β formulation

Putting together the information about s and l = L2 in conjunction with D̄ = D

from Richards with a lattice correction [22], [23] 2, allows for a rather good estimate

of β for the simple cubic geometry.

β2
2 ∼ D̄

D

24σ4/3

1.18l2g
(4.19)

Equation (4.19) utilizes the version (4.12) formulation of l. The geometry in the

microscopic model uses lg = 2.

β2 ∼ 2.25σ2/3D̄/D (4.20)

Thus β is dependent on the one geometrical parameter σ.

2Although D̄ is D̄(σ), there is not much departure from the trap-free D over the range 0 < σ < .7,
resulting in D̄ ≈ D, so I will use the notation D̄/D rather than D̄(σ)/D. For all figures, β is fitted
with the Richards relation, however this only changes the pre-factors on β by 4% compared with
using D̄ = D and changes in the plots are hardly noticeable.
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To see if this analysis is reasonable, β2 is compared with the β determined from

the numerical fits in figures 4-2, 4-3. Since β2 did not have the exact pre-factor, a

pre-factor of 1.35 was determined by fitting the low solid fraction data in figure 4-2

to a slope=1. Multiplying (4.23) by 1.35 gives

β2 = 3.0σ2/3D̄/D (4.21)

Due to the gradient estimation (4.3), it is likely that a pre-factor of 1.35 is a coin-

cidence. However the cubic geometries combined with the coarse discretization of

the medium resulting in rough estimates of flux and pore space concentrations might

make 〈|∇̂C|〉 ≈ 〈2C/l〉.

Finding β using other pore size estimates

Using L1, L3 instead, one finds similar estimates of β.

For L1,

β1 = 2.25D̄/Dσ2/3 (4.22)

The pre-factor is the same as in eq. (4.23) since (4.9) and (4.12) are equivalent as

σ → 0. The fitted pre-factor was determined in the same way as above. Oddly, the

geometry dependent fitted pre-factor is 1.31 for this better model as opposed to 1.35.

This results in

β1 = 2.95
D̄

D

σ2/3

(1 − σ)1/6
(4.23)

For L3,

β3 =

(

D̄

D

24dσ

lg2

) (

Γ(1/3,− log(φ))

3φ(− log(φ))1/3
+ 1

)

(4.24)

β3 = 6

(

D̄

D
σ

) (

Γ(1/3,− log(φ))

3φ(− log(φ))1/3
+ 1

)

, (4.25)

where we have again used lg = 2 and dimension d = 3. The pre-factor necessary for

this estimate and used in figure 4-3 is 1.18.

Figure 4-3 shows the relation between β1, β2, β3 and solid fraction.
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Figure 4-3: β2 vs σ, 0.05 ≤ σ ≤ 0.6. Points are measured β from microscopic
simulations. Three lines represent β predicted from three different measures of the
pore size. Vertical line at σ = 0.69 represents the percolation threshold, φ = pc = 0.31.
Above this threshold, β cannot be found given our source boundary condition. Error
bars represent one standard deviation.

4.3.2 Discussion

Most striking is that the pore size measurement that is supposed to most closely

reflect an actual pore size yields the estimate β3, which has the most error. Since

β1 matches best with the numerical experiment, perhaps the strange size L1 is the

length which is most appropriate to determine β in this system.

Additionally, one needs to consider the case where φ → pc. In the literature [32],

one typically considers the static trap problem with constant generation in the pore

space. In that case, as percolation is approached, volumes are enclosed but there is

generation in the entire pore space so the surface area and porosity associated with

concentrations continuously approach and surpass the percolation threshold. There-

fore, disconnecting the pore space does not restrict access within it so β does not

exhibit critical behavior. For our case however, one might think disconnecting the

pore space may have an effect, as the effective porosity and effective specific sur-

face area should change more quickly as percolation is approached. Effective specific

surface area is the actual surface area per unit volume exposed to the diffusing con-

centration and also the effective porosity of the medium. Effective porosity is the

void fraction where concentration is non-zero or the fraction of void space which is
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connected to the source. These effects should be important as our scaling model

is based on both the effective porosity and effective specific surface area. Both the

effective specific surface area and the effective porosity should also be smaller than

the actual specific surface area and porosity. However, remember that β represents

a characteristic foraging distance, and cutting off volumes to it most likely should

not effect β since the foraging distance is really related only to the immediate envi-

ronment. If a particle is in a pore or path, then who cares if other volumes aren’t

accessible anymore, its only the local pore/path properties that count.

Remember that many orders of magnitudes of concentration fluctuations are being

radially averaged to get β. Therefore we are really finding the macroscopic properties

of how the ”safest paths” vary with microstructure. Close to percolation, there will be

few paths extending from the source to the boundary. If large ensembles are run, then

eventually a good path will be hit upon and that will dominate the average. Thus

there may be no reason to expect to see critical behavior in κ and β even in our system

with localized sources. For our numerical experiments, pc = 0.69, and max(σ) = 0.6,

so we may not be close enough to percolation to notice critical phenomenon. If it is

noticed, more ensembles should be taken in order to account for the sparse paths in

each geometrical realization before conclusions are made.

To tackle this problem if the critical phenomena do exist, an approach would

measure the effective specific surface area, S, by counting only surfaces with non-

zero gradient. This effective S is analogous to the dynamic length Λ in [27]. The

effective porosity can be defined in the same way. Intuitively however, if we consider

an effective specific surface area per unit active pore space, then is should be the same

as specific surface area per unit pore space (whether the pore is active or not). Further

work in these areas may give better estimates of β for the full range 0 < σ < pc.

Although it is difficult to tell, there should be error in our estimate of β as

σ → 0. This is due to our result in the low solid fraction case, β2 = 9.0σ4/3/R2

where R = lg/2, not matching the Smoluchowsky result β2 = 3σ/R2. The difference

arises because unlike previous work finding β, κ, our model is designed specifically

to work only when trap interactions dominate. Previous work [10], [11] starts from

the Smoluchowsky model and attempt to modify it via inclusion of the effects of trap

interaction. In our model at lower solid fraction, the gradient will no longer scale

with the pore size l, as interactions from neighbors will not affect the flux to a sin-

gle absorber. Also, the flux per wall of a pore space with size l composed of very
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sparse walls is higher than the flux per wall of a pore space completely surrounded by

walls with the same size and average concentration. Therefore one may expect β to

be higher than our prediction as σ → 0 as indicated when comparing our result vs.

Smoluchowsky’s.

4.3.3 Comparison to Previous Results
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Figure 4-4: κ/D vs σ, .05 ≤ σ ≤ .7. Solid line is κ/D = β2
1D̄/D. Line R, is eq. (7) in

[22]. RL is R with a correction from [23] accounting for lattice effects. Both results
R, RL are modified so the actual solid fraction is plotted on the x-axis. Line T comes
from the table in [31] and eq. (3) in [24].

Figure 4-4 compares κ/D for known results for overlapping spheres to our result

for cubes on a grid. The dotted line, denoted R, is a result from Richards [22] and is

considered an upper bound for overlapping spheres. Richards obtained κ by finding

survival probability as a function of time for random walkers amongst traps [23].

Taking the average of that quantity over all time gives his estimate of κ. If the

spheres are placed on a lattice such that the radius of the sphere used in the random

walk analysis is
√

3, then the sphere is actually a cube with side of length 2, just like

in our simulation. The correction for this lattice effect on Richards’ result is shown

by RL. Note that RL matches our result very well for σ < 0.3 which is to be expected

since Richards’ solids are overlapping. The overlap effect is more pronounced at

higher solid fraction, and we notice the deviation occurring for σ > 0.3. However,
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the direction of the discrepancy is slightly counter-intuitive since for a fixed solid

fraction, any smoothening due to overlap should result in lower specific surface area.

On the other hand, the effect of exclusion of voids in my situation effectively makes

for ”bigger solids”, and smaller specific surface area. Although hard to tell on this

plot, zooming in reveals our result is less than the other results as σ → 0 since our

result in that regime is κ ∝ σ4/3 while theirs is the Smoluchowsky κ ∝ σ. The

Torquato result [31] comes from an analysis of the steady microscopic equation with

constant generation in the pore space [7]. Here the c = 0 boundary condition on the

interface is replaced by a term in the equilibrium equation involving delta functions

on the surfaces. Then, after averaging the concentration the bulk absorption can be

found in terms of typical parameters of the porous medium. The closed form result

is complicated and is presented as a table in [31]. It is claimed to be a lower bound.

Note that our non-overlapping cubic result lies between the bounds for overlapping

spheres. Non-overlapping cubes coagulate more similarly to overlapping spheres than

non-overlapping spheres.

My result for κ can also be compared to survival times of lattice diffusion with

traps, where a trap is a single lattice site. This problem in 3D has been well studied

by Anlauf whose results are discussed by Mehra and Grassberger, [16], and Barkema,

Biswas, and van Beijeren [2]. The lattice problem has received attention more recently

than the continuous problem, with the two dimensional problem being fully addressed

in 2001 [12]. The problem with using lattice results for our system is that we actually

have a mix of correlated and random traps since we lay traps down in the form of

cubes with 3 sites per edge. Again, my geometry is laying spheres on a grid with a

radius between 2 and
√

3 grid spacings, and it would make more sense to compare that

to Richard’s result with lattice correction. Ziff [38] found that for a simple cubic (SC)

lattice model, the effective radius of the absorbers is ≈ .31a, where a is a grid spacing.

I visually compared survival times from Anlauf’s lattice result to the Richards result

with lattice correction and found setting the radius to .24a in Richard’s model best

matched Anlauf’s scaling. Therefore, these two problems are related, but when I

place solids of length 2 on the grid, comparison of our result with the SC lattice

result is difficult since for moderate solid fraction, channels in my medium may have

unity width but length 3. Also, the discussion of continuous problem tends to include

physical properties of porous media while discussions of the lattice problem do not

involve concepts like specific surface area.
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Chapter 5

Quasi-Steady Monte Carlo Model

There are certain properties of the models presented in chapters 2 and 3 that are

counterintuitive (but not necessarily unrealistic) when trying to model enzymatic

degradation of organic carbon. One such property is that the distribution of reaction

rates remains in the same initial configuration after long time, even though the carbon

on surfaces with high fluxes is wiped out. This is due to the assumed boundary

conditions and is related to the other perhaps unrealistic properties of the model

mentioned in section 2.1. This Monte-Carlo model tries to address some of those

issues, but in the end it turns out to be of less interest than we originally hoped.

5.1 Description

At the heart of this model is the Gillespie method [13]. The model considers reactions

to be taking place on walls. Walls are considered to be either completely covered with

food, C = 0, or depleted, ∇C · n = 0. At time t = t0, all walls are covered and the

steady state solution to (1.1)- (1.3) is computed. At time ti = ti−1 + ∆ti, one wall

is randomly switched from absorbing to reflecting. This quasi-steady process can be

iterated until a desired amount of carbon has been eaten.

Since reactions on walls are a Poisson process, the time between the ith and ith +1

reaction is the probability distribution

∆ti = −/log(q)/Σjk
i
j, q ∈ U [0, 1] (5.1)

where Σjk
i
j is the sum of all reaction rates at time ti. Diffusion limitation assumption

states the distribution ki ∝ {jw}i. The probability that the jth boundary is chosen
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at time ti is

Pj = kj/Σkj . (5.2)

Because of the weighting on this distribution, the walls closest to the source are picked

first and the depletion moves as a spherical front with radius R(t).

5.2 Results

Due to conservation of flux, Σki = Ia/cc, ∀i, where Ia is the total flux emitted from a

source of radius a and cc is a concentration conversion factor.

∆ti = −/log(q)cc/Ia (5.3)

〈∆ti〉 = 1/(Ia/cc) (5.4)

Thus, the time step is roughly constant with small variation.

Because the system is assumed to be quasi-steady and reactions are diffusion

limited, the depletion front dynamics on the simple cubic geometry are

R3(t) =
3

24π

l3g
σ

Ia

cc

t (5.5)

R(t) ∝ t1/3 (5.6)

Figure 5-1 shows the depletion front does indeed move with t1/3. The reaction rate,

k at distance R is k ∝ R−3. Using the same statistical analysis as in the previous

chapters, the probability density of k is

Pk ∝ k−2 (5.7)

This distribution seems well behaved since there is a finite size of material, R ≤ Rb,

resulting in min(k) > 0. But regardless, constancy of the time step results in reactions

that degrade the enviroment at a constant rate; ġ is constant where g is the amount

of carbon left in the system. To compare to a first order system, the overall reaction
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Figure 5-1: R − a vs. t. Monte-Carlo simulation. R is in grid units. The solid line
has slope = 1/3

rate is K = ġ/g, resulting in (5.4),

g = g0 − αt (5.8a)

K =
α

g0 − αt
, αt ≤ g0. (5.8b)

Since it is immediately seen that overall reactions do not proceed as the geologically

measured rate K ∼ 1/t [17], we decided that this model did not have high priority in

the near future.
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Chapter 6

Concluding Remarks

6.1 Summary

Models for diffusion through porous media have been proposed on two different length

scales. The models have been found to complement each other and provide insight into

the behavior of porous media absorption. Most of the analysis performed requires

that the product of a typical particle foraging distance β be much less than the

distance from source. This results in a concentration which decays exponentially

with distance. Absorption in the bulk is characterized by β2 and has been found

to be a function of geometrical parameters. β for the simple cubic model has been

found to scale with σ2/3. Our result for bulk absorption is much simpler and more

physically intuitive than previously published results. However, our scaling result

is only good for a moderate range of σ which is more appropriate for reactions in

porous media rather than general homogeneous diffusion limited reaction. Another

new contribution is finding that absorption fluxes, jw, vary with distance r from the

source like jw ∼ exp βr and the harmonic measure of jw was found to be ∼ j−1
w . This

model and the results presented here inspired the model and work done in [25].

As discussed in section 3.1, appendix D and [30] fluctuations at all scales may

have implications for the actual absorption per unit volume, and further work should

be done here to determine the acutal implications of this on our bulk properties, flux

results w and how these fluctuations can affect overall reaction rates.
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6.2 Relation to the Physical Decay Problem

This thesis model may not directly apply to the biodegradation problem since it

requires many assumptions.

The first, as mentioned in the introduction, is that enzymes are catalysts and

are not consumed in the reaction or known to stick to clay. The C = 0 interface

boundary condition requires these assumptions or something similar which results

in absorption. As mentioned in section 2.1, large molecular weight polymers, of

similar weight to many enzymes, adsorb to minerals rather readily and it is not clear

whether this boundary condition is appropriate or not. Regarding the possibility of

first contact with a substrate denaturing the enzyme, intuition tells us that frequent

hydrolysis give the enzyme more chances to denature as interacting molecular forces

disturb the enzyme from its equillibrium state. An enzyme working locally on one

section of substrate may denature before it gets to another area. Enzymes may also

have a characteristic ”lifetime” before they denature depending on the environment

[34]. This lifetime may be different while adsorbed to clay or the substrate, or maybe

enzyme denaturation is just as likely in the pore space as anywhere else. In [25],

we use a different microscopic model where interfaces are reflecting and the reaction

diffusion equation governs the concentration in the pore space. The macroscopic

model is the same as presented here, but β is based on effective diffusion and enzyme

lifetime. κ is dependent on geometrical parameters very similar to those discussed in

this thesis.

Another conflict with real systems is we assume all surfaces are the same. In

reality, only a fraction of carbon surfaces are associated with POC and another frac-

tion are exposed minerals. Some of these may be reflecting, absorbing, radiative, or

saturating. To address part of this problem, the effective diffusion coefficient D̄ will

need to be accounted for in addition to effects on the absorption coefficient, κ, if we

assume the mineral surfaces reflect rather than adsorb the enzyme. The same issue

occurs however when the microscopic model has all reflecting interfaces.

Perhaps the most questionable assumption in applying the model to biodegrada-

tion problems is that we assume the flux of enzymes from the microbe is constant

during the burial process. This may be unrealistic from energy balance considerations

since this model also assumes a microbe’s environment is continually degrading [34].

However, it is consistent with the finding that there seems to be a decent amount

of DOC being emitted from the ocean floor [5]. Perhaps microbes need only a small

54



concentration of low molecular weight DOC to survive and are living in a surplus of

DOC. In this case, it may suggest that a bug steadily releasing enzymes in a surplus

may be simply inefficient, or perhaps it wishes to break down the high molecular

weight DOC near to it. The question that now arises is how long (deep) does that

surplus last? Burdige [4] proposes that there is a small generation of DOC even

at deeper depths, and that’s why measured DOC concentrations remain constant at

deeper depths. For many conditions, the DOC concentration horizon is on the order

of the maximum concentration in the profile. Therefore it seems as if this surplus is

somehow sustained, and the validity of the constant source flux assumption is unclear.

6.3 Future Aspirations

Proper expansion of the model may lead to a major step forward to eventually reach

a generic model for organic matter degradation and burial in ocean sediments and

perhaps even soils.

There are many future biological directions this work can take. Some have already

been initially investigated by Vetter et al. [34]. Ideally, one would simply like to

estimate the effect that additional realistic mechanisms would have on the reaction

rates determined from simple model proposed in this thesis and in [25].

• Accounting for microbial flux response to a continually degrading environment.

• Possible extension of these ideas to model degradation in surface soils.

• Model the return process of food to the microbe.

• Couple the return process with microbial response to make a model of bacterial

growth.

• Understand enzyme behavior and enzymatic hydrolysis further and use this

information in our model.

• Expand upon this model to account for boundary conditions which allow for

more realistic chemistry, most likely involving a coupled OC reaction model. It

would be interesting to see how the more ”realistic” chemistry model changes

the rate distribution.
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• Make a model which has two scales of clay geometry resulting in regions with

different D̄. This may address more realistically where POC globules are hiding.

This is more realistic physically.

• Addressing more realistic geometrical boundaries of clay and POC.

Although it is very enticing to attempt to tackle the problem of carbon burial,

there are many purely physical aspects of this model that are also interesting. They

include

• Finding the effect of the concentration fluctuations on bulk properties and fluxes

as well as how this affects the overall reaction rate.

• Figure out how the ”safest paths” are varying smoothly with geometrical changes

and why exactly did our scaling analysis predict β so well if it is really the ”safest

paths” that are governing averaged concentrations.

• Investigate the mapping of the paths to the maximum concentrations, and find

if any interesting dynamics are occuring.

• Finding the effect of partially covered clays on β.

• Determine how approaching the percolation threshold affects β for our case

when generation comes from a local source.

• Find β for other specific geometries, from basic geometries to those of flat

platelets similar to clays in sediment.

– Find β for 2-D systems and compare with our numerical 2-D results.

– Find the implications of connected geometries.

• Do all of the above for the reflecting boundary model with uniform reaction in

the bulk.

• Understand β from a random walker perspective rather than a microscopic

prospective. Develop a model for travel based on hitting a wall in the next

step.

• Further analysis of the histogram turnover and perhaps how it relates to the

work of Duplantier[8].
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• Studying the peculiarities of the decoupling effect in the numerical simulations.

• Analyze how various boundary conditions may affect the reaction rates and

results in general.

• Figure out exactly which geometric properties determine κ for the case of mi-

croscopic reflecting boundaries.

Applying the general model presented here to the other physical problems men-

tioned in the introduction may also be done.

Due to the richness of this problem, the next step should be exciting regardless of

the direction I take. I am very fortunate to be a part of it.

57



58



Appendix A

Table of Parameters

Typical values
Symbol Description Nature 3-D Simulation
a microbe radius 5 × 10−5 cm 1 gu
ja enzyme source flux 10−10 g s−1 cm−2 1 g s−1 gu−2

lg size of single grain 105 cm a 2 gu
D molecular diffusivity 10−7 cm2s−1 1
β typical foraging distance 10−5/2 D̄1/2m b ∼ 2 gu
rb typical microbe spacing 10−2 cm c 32 gu
s specific surface area 106cm−1[14],[34] 3σ gu−1

l typical pore size 10−6cm d varies
σ solid volume fraction .1 < σ < .3, +/ − .1 e .05 ≤ σ ≤ .6
C pore space concentration
c macroscopic concentration f

jw absorptive flux to walls
H pdf of jw, microscopic
Hl pdf of log(jw), microscopic
h pdf of jw, macroscopic
hl pdf of log(jw), macroscopic
κ bulk absorption coefficient

Table A.1: Typical values of parameters, Note that the value for ja is a maximum.
Unit gu stands for grid units. Typical values found in nature are also presented here
just as a reference. The numerical model presented here does not attempt to model
natural processes.

a lg ∼ 1/sg, sg is surface to volume ratio of single grain ∼ 105 cm−1[34]
b β ∼

√

D̄/α, α is characteristic enzyme inactivity rate from [34].
c rb ∼ n−1/3, n is bacterial count per unit volume ∼ 10−6cm−3 [26].
d l ∼ 1/s
e values typical for upper meter of most marine sediment[4].
f c = Cφ
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Appendix B

Comments on Numerical Solution

B.1 Accuracy of Numerical Solution

The 2-D and 3-D microscopic problems have been stated as equations (1.1)- (1.3),

but since they are treated numerically, the problems solved here are actually,

∇̂Ĉ = 0, (B.1)

With the corresponding discrete boundary conditions. Ĉ is a vector whose elements,

Ĉj represent the concentration at node j located at x̂j. ∇̂ is the discrete Laplacian

operator and is defined differently for finite-element and finite-difference methods. In

the 3-D microscopic model used, the discretization was coarse, with the discretization

step, h, being only half a grain size.

One may wonder why we expect good results from a coarse approximation to the

original problem we proposed (1.1)-(1.3). A nice answer to this question is to say, we

are not originally trying to solve Laplace’s equation. We are attempting to solve a

random walk problem, which in the continuum limit is Laplace’s equation. Our coarse

approximation is simply a random walk model which is a very simple approximation

of the physical problem we wish to tackle.

If one is curious about how the solution to our model differs from the solution

to a more realistic random walk model, h → 0, it is addressed in the following way.

The exact solution to (B.1) differs from the solution to equation (1.1) at x̂j by a

discretization error, ej. The discretization error for both the 3-D finite difference 7

point stencil and for the the finite element method used is of order h2. For the finite
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difference method used,

Ae = r (B.2)

where A is the Gauss-Seidel operator and

ri =
h2

12
(Cxxxx(xi + Θh, yi, zi) + Cyyyy(xi, yi + Θh, zi) + Czzzz(xi, yi, zi + Θh)),

(B.3)

where Θ ∈ [−1, 1][33]. Since A−1 is bounded and knowing that the concentration

quickly dissipates for these systems, only order of magnitude knowledge of concen-

trations is necessary. Therefore error due to a coarse discretization is insignificant for

our purposes. Note that the simplest model would have been a node-grain model,

where each node represents a single grain. Future work may consider this model. A

similar argument can be made regarding the accuracy of the 2D results.

B.2 Rapid Convergence of Gauss-Seidel

For an elliptic PDE discretized on an NxNxN grid, the Gauss-Seidel method requires

O(N5) operations (O(N2) iterations) for a solution. Successive Overrelaxation and

Multigrid methods require O(N4) and O(N3) operations respectively [21]. There-

fore Gauss-Seidel is usually not implemented. However, for our problem, we noticed

that the convergence of Gauss-Seidel was much faster than O(N2) iterations. The

random Dirichlet boundary conditions seem to have effectively decoupled the system

into smaller sub-domains requiring very few iterations to reach the desired precision.

When scaling the problem up from a 32x32x32 grid to a 256x256x256 grid, with the

same solid fraction, the number of iterations required went like O(N/2), as informa-

tion only had to travel from the center to the edge. This effect was not as strong for

high porosity, as each sub-domain was rather large.

It appeared to me that the number of iterations required for convergence was

roughly O(max(N, n3)), where n is the size of the largest sub-domain. Most of the

solid fractions in the range .05 < σ < .45 resulted in very small sub-domains compared

to N so the number of iterations required for our model went like O(N4/2), although

more iterations were required for σ = .05, .1. Due to this decoupling effect, SOR

would likely provide no additional advantage other than maybe a factor of 2. The
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extra effort for implementing a multigrid method for this type of problem might be

worth it only if we were going to analyze only 256x256x256 systems or higher, but

the 643 system gave smooth enough results and 2563 is where even O(N3) begins to

beckon for parallel processing.

Gauss-Seidel could be a fast algorithm for any elliptic PDE with the condition

that Dirichlet boundary conditions be distributed frequently throughout the domain.

When geometries with reflecting boundaries are eventually considered, multigrid

methods will be used.
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Appendix C

Effective Diffusion Coefficient in a

Purely Absorptive Environment

Identifying the effective diffusion coefficient, D̄, in porous media is an old problem.

Maxwell’s law of mixtures (1881) states the effective resistivity of a medium composed

of a mixture of two phases with different conductivities. The effective diffusivity has

been found as a function of many characteristic geometrical parameters including the

tortuosity. The thermal conductivity of random media and even fractals has been

studied.

There is one problem with all of this information about D̄. Standard estimates

of D̄ deal with porous media where the solid phase is less penetrable than the pore

space, most of the time acting as impenetrable, reflecting obstacles. D̄ for a purely

absorbing porous medium is a different subject.

A physical interpretation of D̄ in absorbing media can be stated in the follow-

ing manner. Since molecules are absorbed at first contact with a solid surface, any

molecule in the pore space has not encountered a boundary and is not aware of the

boundary’s presence. Intuitively, the particles still alive are diffusing normally. There-

fore boundaries play a role in reaction but do not seem to directly affect diffusion,

so we should expect D̄ ≈ D. Interactions with the solid boundaries are taken into

account macroscopically by the absorbing term rather than the diffusion term.

However many others have found that D̄ 6= D, although it is close. Departures

from D at very low solid fraction are found to first order in [10], [3], but as solid

fraction increases slightly more, it tends to level off, [19], [6]. The perhaps even

better result from Richards, [22], shows a very small monotonic increase in D̄(σ)/D
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from D̄(0)/D = 1 for overlapping spheres, to D̄(.7)/D = 1.1. Curiously, all estimates

of D̄(σ), show an increasing diffusion coefficient as solid fractions increase but overall,

D̄(σ) is rather insensitive to changes in solid fraction.

A physical reason for this accelerated diffusion coefficient is hard to come by.

Part of the problem is that randomly walking particles in the void space are not

encountering traps in a purely poisson process. Randomly walking particles have a

memory of where they’ve been. Therefore after t time steps, active particles which

randomly stay in the same neighborhood have good chance of encountering previously

visited ”safe” sites which aren’t traps. Particles which are more adventurous on the

other hand, encounter many new unknown sites and are more likely to not survive

t time steps. Therefore there is a bias towards particles which stay closer to the

source. Defining Ds as the typical mean-square measure of a diffusion coefficient, it

is found that Ds < D [22] which agrees with this memory bias. Unfortunately, in our

steady state problem D̄ 6= Ds. A physical interperetation of D̄ comes from looking at

diffusion from the absorbing material’s perspective. Since absorption is more likely

if a particle travels further after a given time, the material thinks that slightly more

particles are reaching that area than if it was pure poisson absorption. Therefore, the

absorbing material thinks diffusion is accelerated, when in reality, survival probability

is a function of space and it is more likely that survivors further away will be absorbed

in the next time step.

Alternatively, look at it from a particle point of view; consider a source with a

fixed concentration. There will be a steady state particle distribution in space. Move

one time step forward in steady state. Determine the number of particles absorbed as

a function of distance; of course this decreases with distance simply because number

of particles decreases with distance. Because of memory however, there will be a

higher steady state concentration closer to the source than in the pure poisson case

(no memory, D̄ = Ds). Therefore you would expect more particles to diffuse over to

the next region, and this process continues further out although memory decreases

with distance as well. So not only does this memory effect change the concentration

gradient, but the memory effect is less as you move further away. This is what

changes the diffusion coefficient. A region slightly closer to the source may have more

particles with memory than the next, so this means that transport is favored slightly

more away from the source. Therefore, when the particle moves to the next region, it

is not equally likely to move back as it was to move there. Heres the kicker: in regular
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diffusion, if there is a concentration gradient across a plane, particles randomly walk

across the plane from both sides proportional to the local concentration, but since

there is a gradient in concentration, this gives a net flux. In this case with absorbers,

there is a concentration gradient with a source to the left of the plane, but they

are not as likely to move from right to left as they are left to right. This results in

accelerated diffusion away from the source. See [22] for a more concise reason.

Another way to think of it is through the continuous microscopic system. Because

there are pores, concentrations can build in pore spaces compared to a purely poisson

system where the boundaries are randomly varying with same porosity. The concen-

tration build up in pore spaces is the memory effect, rewarding particles who stay in

one place. Any gradient in concentration represents straying from the neighborhood

and taking more chances to meet an absorber.
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Appendix D

Low Flux Stochasticity
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Figure D-1: Distance from source vs jw/ja. The points shown here are sampled from
a single geometry with σ = 0.3.

The histograms in figures 2-4, 2-6, and 2-7 show a drop-off for the low fluxes. To

find spatially where the tail is located, only locations with flux lower than the turnover

flux were sampled. The distance from the source is compared with the flux in figure

D-1. This figure explains a lot. The macroscopic histogram can be estimated from

this figure by finding the average flux distribution for each r. Since the radial average

used was linear, r = 31 should have an average flux of around 10−18, corresponding

with the location of the turnover for σ = 0.3 in figure 2-6. It was noticed in both the

2D and 3D simulations that the tail did not vanish as the system size increased. To

explain, the distribution holding r constant spreads over many of magnitude. The tail

width is roughly ∆jw = max(jw|rb
)−min(jw|rb

). ∆jw occurs due to the distribution of

possible paths from the source to r = rb. The number of paths most likely increases
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with rD
b , D being system size, and this might have to do with the scaling of the tail.

These fluctuations are the fluctuations discussed by Tokuyama and Cukier in [30].

For each distance from the source, there is a path of least resistance associated with

it. Each distance does not necessarily have the same path. What is measured when

averaging is the concentration at the end of each path. The full implications of this on

the bulk properties of our medium are unclear. Additionally, mapping the locations

of the max concentrations allows the geometries of these safe areas to be seen. This

could provide insight to the problem and answer questions such as what is required

for the safest areas to be connected, what causes the termination/start of safe areas

if they are indeed flucutating with distance, and what can a macroscopic view of this

type medium actually tell us.
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