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Abstract

This thesis is intended to present a specific sub-problem of a larger one we call the
‘Inverse Problem’. We wish to estimate the velocity (speed and direction) of an
edge of light which is moving on the photoreceptor layer of a rabbit retinal patch.
We make these estimates based solely on the electrical response measured from the
retinal ganglion cells (RGCs). We present various algorithms for doing so and present
sensitivity analysis of such algorithms. We test the performance of the algorithms
on data recorded from retina and on data produced by simulation. We find that we
are able to extract enough information about the edge velocity from ON and OFF
RGCs when the edge of light is wide. However, our best algorithm’s performance
decays significantly as the edge of light gets narrower. This leads us to develop
algorithms that use ON-OFF directionally selective (DS) cells in conjunction with
non-directional ON and OFF cells to produce better estimates of the velocity for
narrow edges of light. In addition, we develop a model to simulate the response of a
DS cell to 1-dimensional light motion.
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To Hashem: Thank you for your blessings.

ADAM EISENMAN — May, 2007

4



This Thesis is dedicated to

my grandmother Mary Nevah de Eisenman Z”L and

my beloved aunt Debbie Eisenman Zalzer Z”L

5



Contents

1 Introduction 14

1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Extracting Information From RGC Firing Patterns . . . . . . . . . . 18

1.3.1 Using Non-DS Cell Information to Estimate Speed and Direction 19

1.3.2 Using DS Cell Information to Estimate Speed and Direction . 19

1.4 Estimating Speed and Direction From Simulated Data and Experimen-

tal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Survey of the Current Literature 24

2.1 ON-OFF Directional Selective Cell Modeling . . . . . . . . . . . . . . 24

2.2 The Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Reconstructing Natural Stimuli Using LTI Filters . . . . . . . 25

2.2.2 Estimating the Speed of a Moving Curtain using Parasol Cells

in Macaque Monkey Retina . . . . . . . . . . . . . . . . . . . 27

3 Experimental Procedures 30

3.1 Tissue Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Multi-electrode Recordings . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Visual Stimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Bright and Dark Curtains Moving at Various Speeds and Di-

rections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Finite Length Thin Bars Moving at Various Speeds and Directions 34

6



3.3.3 Visual Stimulation Protocol . . . . . . . . . . . . . . . . . . . 36

3.4 Spike Waveform Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Theoretical Developments 41

4.1 Equations Relating v, θ, (xi, yi)’s, and ti’s . . . . . . . . . . . . . . . 42

4.1.1 Extracting Information by Pairing Cells . . . . . . . . . . . . 42

4.1.2 Extracting Information by Looking at Ensemble Response . . 44

4.2 Variance in v and θ Estimates . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Variances of the Residuals . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Estimating Curtain Motion Parameters . . . . . . . . . . . . . . . . . 55

4.4.1 Estimating Velocity Vector Directly . . . . . . . . . . . . . . . 56

4.4.2 Estimating Velocity Vector Using Global Firing Time Information 60

4.4.3 Estimating Speed and Direction by Extracting Pairwise Infor-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Estimating Thin Bar Motion Parameters . . . . . . . . . . . . . . . . 77

4.5.1 Weighing the Residuals of DS and non-DS cells . . . . . . . . 78

4.6 Algorithms and Sensitivities Summary . . . . . . . . . . . . . . . . . 79

4.6.1 Sensitivities of v and θ as a Function of Noisy Measured Pa-

rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.2 Variance of residuals fk , dk cos(θk − θ)−∆tkv: . . . . . . . . 79

4.6.3 Estimating Velocity Vector Directly in Rectangular Coordi-

nates (Adam’s Method) . . . . . . . . . . . . . . . . . . . . . 80

4.6.4 Adam’s Method Revisited — Weighted Average of Two-Pairing

Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6.5 Estimating Velocity Vector Using Global Firing Time Informa-

tion (Berthold’s Method) . . . . . . . . . . . . . . . . . . . . . 81

4.6.6 CosCos Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6.7 Newton-Raphson Algorithm (John’s Method) . . . . . . . . . 83

5 Simulations 84

7



5.1 Setting Up Simulations of the Responses of ON, OFF, and ON-OFF

Non-DS Cells to Curtain Motion . . . . . . . . . . . . . . . . . . . . . 85

5.2 Setting Up Simulations of the Responses of ON, OFF, and ON-OFF

Non-DS Cells to Bar Motion . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Setting Up Simulations of the Responses of ON-OFF DS Cells to Bar

Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Moving Curtain Simulations . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.1 Estimating Velocity Vector Directly Without Weighing . . . . 88

5.4.2 Estimating Velocity Vector Directly With Weighing . . . . . . 89

5.4.3 Estimating Velocity Vector Using Global Firing Time Information 94

5.4.4 Estimating Speed and Direction by the CosCos Algorithm . . 94

5.4.5 Estimating Speed and Direction by the Newton-Raphson Algo-

rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.6 Comparing Algorithm Performance . . . . . . . . . . . . . . . 102

5.4.7 Comparison of Theoretical Derivations to Simulations . . . . . 104

5.5 Moving Bar Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5.1 Estimating Speed and Direction Without DS Cells . . . . . . . 107

5.5.2 Estimating Speed and Direction With DS Cells . . . . . . . . 109

6 Data Processing Methods 111

6.1 Processing ON, OFF and ON-OFF Non-DS Cell Spike Times . . . . . 112

6.1.1 Selecting Non-DS Cells . . . . . . . . . . . . . . . . . . . . . . 112

6.1.2 Finding the Locations of Non-DS Cell RF Centers . . . . . . . 112

6.1.3 Finding the Time Between Firing for Pairs of Non-DS Cells . 113

6.2 Processing DS Cell Spike Times . . . . . . . . . . . . . . . . . . . . . 114

6.2.1 Classifying Cells as DS . . . . . . . . . . . . . . . . . . . . . . 114

6.2.2 Finding the Positions of DS Cells . . . . . . . . . . . . . . . . 114

6.2.3 Making DS Cell Polar Firing Plots . . . . . . . . . . . . . . . 116

6.2.4 Finding the Number of Spikes Fired by a DS Cell to a Moving

Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8



7 Experimental Results 118

7.1 Cell Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 Estimating Speed and Direction of a Moving Curtain . . . . . . . . . 119

7.3 Estimating Speed and Direction of a Moving Bar . . . . . . . . . . . 123

7.3.1 Estimation Using ON-OFF Non-DS Cells . . . . . . . . . . . . 123

7.3.2 Estimation Using ON-OFF Non-DS Cells and DS Cells . . . . 124

8 Conclusions and Further Work 126

8.1 Estimating Speed and Direction in Simulation and Experiment . . . . 127

8.2 Suggested Further Work . . . . . . . . . . . . . . . . . . . . . . . . . 129

Appendix 136

9



List of Figures

1-1 Boston Retinal Implant Concept . . . . . . . . . . . . . . . . . . . . . 15

1-2 Process of Estimating Stimulus Parameters . . . . . . . . . . . . . . . 16

1-3 Example Response of a Transient OFF Cell to Motion in 4 Directions 20

1-4 Example Response of a Sustained ON Cell to Motion in 4 Directions 21

1-5 Response of an ON-OFF DS Cell For Bar Motion in 8 Directions . . 22

2-1 ON-OFF DS Cell Directionally Selective Mechanism . . . . . . . . . . 26

2-2 Reconstruction of Natural Scenes Using LTI Filters . . . . . . . . . . 28

2-3 Estimating Speed Using Monkey Retinal Parasol Cells . . . . . . . . 29

3-1 MEA Electrode Layout and Image Area . . . . . . . . . . . . . . . . 32

3-2 Visual Stimulation Set-up . . . . . . . . . . . . . . . . . . . . . . . . 33

3-3 ON and OFF curtains in 16 directions . . . . . . . . . . . . . . . . . 35

3-4 Bars Moving Along Horizontal and Vertical Axes Sweeping the Pro-

jection Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3-5 Spike Waveforms Displayed vs. Time and as Points in PC Space . . . 39

4-1 Edge Motion and Motion Parameters . . . . . . . . . . . . . . . . . . 43

4-2 Cells Uniformly Placed on a Circumference . . . . . . . . . . . . . . . 45

4-3 Firing Time Error Picture . . . . . . . . . . . . . . . . . . . . . . . . 61

4-4 Showing Linearity in CosCos equations using data acquired from rabbit

RGCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5-1 Simulating the Response of N Cells Inside a Circle of Radius R, to a

Moving Curtain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

10



5-2 Simulating the Response of N Cells Inside a strip of width R, to a

Moving Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5-3 DS Cell Polar Plot Example . . . . . . . . . . . . . . . . . . . . . . . 88

5-4 Estimating Velocity Vector Directly Without Weighing, v = 714µm/sec 90

5-5 Estimating Velocity Vector Directly Without Weighing, v = 1428µm/sec 91

5-6 Estimating Velocity Vector Directly With Weighing, v = 714µm/sec . 92

5-7 Estimating Velocity Vector Directly With Weighing, v = 1428µm/sec 93

5-8 Estimating Velocity Vector Using Global Firing Time Information, v =

714µm/sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5-9 Estimating Velocity Vector Using Global Firing Time Information, v =

1428µm/sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5-10 Estimating Speed and Direction with CosCos Algorithm, v = 714µm/sec 97

5-11 Estimating Speed and Direction with CosCos Algorithm, v = 1428µm/sec 98

5-12 Estimating Speed and Direction with Newton-Raphson Algorithm, v =

714µm/sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5-13 Estimating Speed and Direction with Newton-Raphson Algorithm, v =

1428µm/sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5-14 Comparing Algorithm Performance in Estimating Speed and Direction 103

5-15 Newton-Raphson Algorithm Simulation Compared to Theoretical Results105

5-16 CosCos Algorithm Simulation Compared to Theoretical Results . . . 106

5-17 Estimating Bar Speed and Direction Using the Newton-Raphson Al-

gorithm, v = 714µm/sec . . . . . . . . . . . . . . . . . . . . . . . . . 108

5-18 Estimating Bar Speed and Direction Using the Newton-Raphson Al-

gorithm to Minimize q(v, θ), i.e., Using DS Cell Information. v =

714µm/sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6-1 ON-OFF Directional Selective Response . . . . . . . . . . . . . . . . 115

7-1 OFF Transient Cell Locations With Respect to Electrode Array . . . 120

7-2 RMS Error in Speed and Direction Estimates vs. Number of Cell Pairs

Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

11



7-3 RMS Error in Speed and Direction Estimates vs. Maximum Distance

Separating Cells Used . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7-4 Average RMS Error in Bar Speed and Direction Estimates When Using

DS Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8-1 Log-Log-Log Plot of MS Error in Speed and Direction When Using the

CosCos Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8-2 Log-Log-Log Plot of MS Error in Speed and Direction When Using the

Newton-Raphson Algorithm . . . . . . . . . . . . . . . . . . . . . . . 135

12



List of Tables

5.1 Dependence of Mean-Square Error on N and R . . . . . . . . . . . . 102

5.2 Quality of Curtain Speed and Direction Estimates of Best Algorithm 102

7.1 Average RMS Error in Estimates of Speed and Direction of Moving Bars124

13



Chapter 1

Introduction

The best scientist is open to experience and begins with romance - the idea

that anything is possible.
—RAY BRADBURY

A few years back I became very curious about how information is communicated

in real neural systems. I became deeply passionate about making an attempt at un-

derstanding the neural code. Through the Boston Retinal Implant Project, Professor

Wyatt offered me the opportunity to pursue my passion. Along the way I also had

the opportunity to build up knowledge which would serve a very interesting goal:

to restore partial vision to blind people. The main purpose of this thesis is to shed

light onto the puzzling field of retinal neural coding. Although we do not establish

any particular truth about the meaning of the cell ensemble spike-time statistics, we

are able to use the cell spike-times to our advantage in the process of decoding the

parameters of a visual stimulus. In addition, we give analytical evidence in favor

of the hypothesis that ON-OFF directionally selective1 (DS) cells provide necessary

local motion information about a visual stimulus.

The Boston Retinal Implant Project (see Figure 1-1) serves as a springboard

to study retinal neural coding. This project’s objective is to restore partial vision

in patients with Retinitis Pigmentosa and Macular Degeneration. These particular

1Directionally selective cells maximally respond to motion in their preferred direction, barely
respond to motion in their null (opposite of preferred) direction, and respond intermediately for
directions in between the preferred and null [13]. DS cell physiology will be treated in more detail
throughout the thesis.
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conditions affect the retinal photoreceptor layer, leaving it dysfunctional in most cases.

However, these degenerative diseases leave the ganglion cell layer almost entirely

functional [7]. The latter layer is responsible for transmitting the visual information

to the brain. Hence, by electrically stimulating the ganglion cell layer, one could

obtain effective visual perceptions in the brain .

Figure 1-1: The Boston Retinal Implant Concept - from
www.bostonretinalimplant.org. Scenical images are recorded by a camera which is
mounted on a pair of glasses. This information is processed and electrical stimulus
information is then transmitted to the implant chip, contained inside the eye. The
chip electrically stimulates the retinal cells using an MEA, and a visual perception
is achieved.

Considering how one would perform the coding of the MEA’s (Multi-Electrode

Array) stimulating signals in a retinal implant, we would like to understand the

structure of the stochastic map from optical signals to retinal ganglion cell firing.

Once this mapping can be modeled accurately, it can be possible to produce a coding

scheme that can be decoded by the brain. More explicitly, we know that retinal

ganglion cells are the only retinal cells that feed signals to the brain and that this

connection is only feed-forward [3]. Theoretically, this implies that if we were able to

replicate the consequential spatio-temporal spiking pattern caused by a light pattern

in every one of the ganglion cells of a healthy retina via electrode stimulation, the

brain would perceive the correct light pattern.

Another interesting problem that leads us to understand the aforementioned one

is what we call the ‘Inverse Problem’. The statement of the Inverse Problem is as

15



follows: Given a set of spatio-temporal retinal ganglion cell (RGC) electrical events

(i.e. action potential sequences), what can we understand about the video that was

shown to the retina? The work contained in this thesis will shed light onto the

understanding of the Inverse Problem. This will be accomplished by suggesting and

studying models that aid in finding estimates for the parameters that describe a

stimulus in a parameterized set. In a sense, this process is the inverse of that carried

out to stimulate RGCs for an implant, hence its well-deserved name. The estimation

process is depicted below in Figure 1-2.

Figure 1-2: Depiction of the process of estimating visual stimulus parameters from
RGC recordings. A) Image is projected onto the photoreceptor layer, passing through
the transparent RGC layer. B) Electrical activity of the RGC ensemble is recorded.
C) Action potentials coming from the cell ensemble are assigned to specific ‘units’;
then the spike times are used to determine input parameters to the estimation algo-
rithm. D) Input parameters coming from C are used to produce output parameters
which are estimates describing the visual stimulus from A.

In this chapter we present a general description of the problem which we address.

Subsequently, we give reasons for using rabbit retina in our experiments and present

an outline of the experimental procedures to gather the necessary data. Lastly, we

16



describe the methodology which is implemented to extract the information from the

data.

1.1 Problem Description

In this thesis we focus on one of the simplest statements of an inverse problem. We

wish to make estimates of the speed and direction of a moving edge of light, which

is focused on the photoreceptor layer of a piece of rabbit retina. These estimates

are made merely by analyzing the occurrence times of action potentials produced by

a subset of the retinal ganglion cell ensemble of the retinal piece. The speed and

direction of the edge is constant throughout the time of motion. The luminance

intensity which we call BRIGHT or ON is held constant, as is the luminous intensity

which we call DARK or OFF. We stimulate the retinal piece with broad and narrow

edges of light. In the case of broad edges, which we call curtains, they are either

bright over a dark background or dark over a bright background. In the case of

narrow edges, which we call bars, they are bright over a dark background. The bars

are finite in length, and thus have a leading and a trailing edge. Due to this property,

a single bar causes an ON effect followed by and OFF effect on the retina.

Throughout the thesis we make claims about how well we are able to estimate

the speed and direction of a moving edge based only on RGC spike times. As action

potentials from the same cell are considered stereotypical [8], all of the visual informa-

tion is encoded in their occurrence times. We show that the information in the spike

times is sufficient to make very good estimates (∼ 5% error) as long as the moving

light edge is broad. We predict and confirm that the estimates get much worse as

the width of the light edge is decremented. Then we proceed to make the estimates

better for narrow edges of light (bars) by taking advantage of the directional infor-

mation which ON-OFF DS cells provide. However, we do not claim that the brain

implements algorithms similar to the ones we propose.
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1.2 Experimental Setup

New Zealand white rabbits were chosen as the experimental subjects for the following

reasons: 1) The rabbit retina has been studied extensively; its anatomy and physiol-

ogy are well understood relative to those of other animals. 2) The structure of the

rabbit’s retina is similar to the human retina in many ways. 3) The physiology of

rabbit ON-OFF DS cells is well understood.

In order to record action potentials from RGCs we use a square (with corner elec-

trodes removed), 60-electrode MEA which is placed on the RGC layer of the rabbit

retinal piece. Given that a single electrode can record action potentials from multiple

RGCs, we are required to assign each action potential waveform to a particular cell.

We make these assignments by projecting all waveforms measured on a given elec-

trode onto the principal components2 that they define as a group. Subsequently, we

perform clustering in the space of their first three principal components. Each cluster

corresponds to a cell proximate to the adjacent electrode.

A further description of the process required to record RGC action potentials in

response to visual stimuli is found in the Experimental Procedures chapter.

1.3 Extracting Information From RGC Firing Pat-

terns

We make estimates of speed and direction by focusing on two different effects caused

on the RGCs by the moving light edge. The first effect type is non-directional, and is

caused on a cell when sudden changes of brightness occur over its receptive field. In

particular, ON cells react to changes from dark to bright, OFF cells react to changes

from bright to dark, and ON-OFF cells react to both types of changes. There are

many cells which are not directionally selective which respond robustly to motion

in any direction. The response types of these cells are many times transient (brief

firing burst), as seen in Figure 1-3. Other cells respond more sustainedly (extended

2Principal component analysis simplifies a dataset for analysis by reducing its dimensionality.
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firing burst), as seen in Figure 1-4. Both of these figures contain Peri Stimulus Time

Histograms (PSTH). A PSTH is an average firing rate computed over several trials

of the same stimulus. The PSTH is computed by binning spikes in time.

The second effect which we use to make the estimates is directional. DS cells

respond robustly to motion in their preferred direction, weakly to motion in their null

direction, and intermediately for directions in between. Based on this phenomenon

we make a plot (displayed in Figure 1-5) of the average number of spikes that an

ON-OFF DS cell fires for motion of a narrow bars over its receptive field in 8 different

directions. For each direction, the average is computed over 3 trials.

1.3.1 Using Non-DS Cell Information to Estimate Speed and

Direction

If one is able to find the positions of the cells’ receptive field centers, it seems plausible

to use ON, OFF and ON-OFF cells which have a transient-type response similar to

the one shown in Figure 1-3 to make estimates of speed and direction. Since these

cells’ responses are very localized in time, they provide much information about where

the curtain was at the time they fired. For example, the cell in the aforementioned

figure responds very early to motion of a down-moving OFF edge, and very late to

motion of an up-moving OFF edge. Given that this cell lies in the upper portion of

the image projection area, these response characteristics make sense. Contrastingly,

cells which respond similarly to the response seen in in Figure 1-4 do not provide us

with localized information.

1.3.2 Using DS Cell Information to Estimate Speed and Di-

rection

Given that ON-OFF DS cells respond directionally to the motion of a bar, as por-

trayed in Figure 1-5, it seems plausible to obtain directional information about a

moving bar based on ON-OFF DS cell responses. For example, if a bar was moved

exactly over the receptive field of an ON-OFF DS Cell and the cell responded very
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Figure 1-3: Example Response of a Transient OFF Cell to Motion in 4 Directions.
A) Peri Stimulus Time Histogram (PSTH) computed over 10 trials of the response of
a transient OFF cell to the motion of an ON curtain in 4 directions and the motion of
an OFF curtain in 4 directions. Yellow arrows represent the motion of an ON curtain.
Black arrows represent the motion of an OFF curtain. The green lines represent the
times at which the curtains begin to move in each corresponding direction, while the
red lines represent the time at which the curtains stop moving. B) The cell’s response
to the same stimulus repeated 10 times. Each spike train that lies within a green and
red line corresponds to a single trial of a moving curtain.
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Figure 1-4: Example Response of a Sustained ON Cell to Motion in 4 Directions. A)
Peri Stimulus Time Histogram (PSTH) computed over 10 trials of the response of a
transient OFF cell to the motion of an ON curtain in 4 directions and the motion of
an OFF curtain in 4 directions. Yellow arrows represent the motion of an ON curtain.
Black arrows represent the motion of an OFF curtain. The green lines represent the
times at which the curtains begin to move in each corresponding direction, while the
red lines represent the time at which the curtains stop moving. B) The cell’s response
to the same stimulus repeated 10 times. Each spike train that lies within a green and
red line corresponds to a single trial of a moving curtain.
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Figure 1-5: Response of an ON-OFF DS cell for motion of a bar in 8 different direc-
tions. A) Each blue line represents the average number of spikes fired for motion of a
narrow bar over the receptive field of this ON-OFF DS cell. The leading and trailing
edges of the bar cause an ON and OFF effect respectively. B) We fit the end points
of the 8 blue lines with an ellipse (shown in red). The ellipse represents the expected
number of spikes for all possible directions.

lightly, it is likely that the bar was moving in a direction close to its null direction.

On the other hand, if the cell responds robustly, it is likely that the bar was moving

in a direction close to its preferred direction. By comparing how many spikes the DS

cell actually fired with the expected number of spikes the cell fires in each direction,

one can obtain information about what direction the bar was moving in.

1.4 Estimating Speed and Direction From Simu-

lated Data and Experimental Data

Throughout the Theoretical Developments chapter, we propose algorithms to make

the estimates of speed and direction of moving curtains and bars. We also carry

through an analysis of the noise sensitivities of the estimates as a function of the

noise in the measured parameters which we input to the algorithms. Based on the

sensitivity analysis and the results of simulating the response of cells to moving edges,

we suggest which algorithms should be used for the experimental data.

In the Data Processing Methods chapter, we explain the methods that were used

to estimate the cells’ receptive field center locations, the times between the moments

when pairs of cells fired, the DS polar firing plots, and the number of spikes each

DS cell fired for motion in each direction. Finally, in the Results chapter, we show
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that on average, as one increases the number of cells used and the maximum distance

separating the cells from one another, the estimates for speed and direction of mov-

ing curtains get better. We also show that the estimates of speed and direction of

moving bars are much worse than for curtain motion when using non-directional cells.

However, when the directional information from ON-OFF DS cells is introduced, the

estimates of bar direction get far better, as we pay a small price in the quality of bar

speed estimates. This small price leads us to suggest a model which extracts speed

information from the response of DS cells. Thus, such a model and algorithm are

outlined in the chapter Conclusions and Further Work.
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Chapter 2

Survey of the Current Literature

Here we present a survey of the current literature about the Inverse Problem and

about ON-OFF DS cell modeling. This served as a guide to outline methods that

had been used in the past and to describe what had already been accomplished. It

was used to provide insight into what can be done differently to advance the field.

We show a method which has traditionally been used to approach the Inverse

Problem. This method makes use of optimal LTI filters to map from ensemble cell

firing rates to image sequence estimates. Lastly, we show a method which has been

used to estimate the speed of a moving curtain. In this thesis it is our intent to

add on to this by estimating angle along with estimating speed. Introducing this

new dimension (estimating angle) adds a lot of complexity to the problem but can

also add a lot of insight into the question of what we are able to extract from the

information that the RGCs grant us.

2.1 ON-OFF Directional Selective Cell Modeling

Based on the paper by Fried et al. 2005 [2], which describes how the excitatory

and inhibitory inputs to DS cells are themselves directionally selective, we are able

to create a 1-dimensional (1D) model that reflects the basic characteristics of the

mechanisms of DS cell firing patterns. This paper shows that directionality in these

cells appears mostly due to three phenomenon: 1) The somas of cells that deliver
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inhibition (Starburst Amacrine cells) are spatially offset in the direction of the DS

cell’s preferred direction whereas the somas of cells that deliver excitation (Bipolar

cells) are located close to the the dendritic field of the DS cell. Therefore, when a bar

is moving in the preferred direction, excitation is delivered before inhibition. When

a bar is moving in the null (opposite to preferred) direction, inhibition is delivered

before excitation. 2) For an object moving in the preferred direction, inhibitory signals

(delivered by starburst amacrine cells) are suppressed by other starburst amacrine

cells that are spatially offset in the null direction. 3) Excitatory signals (delivered

by Bipolar cells) for movement in the null direction are suppressed by cells that are

spatially offset in the preferred direction. This mechanism is depicted in Figure 2-1.

2.2 The Inverse Problem

The problem of decoding the neural code of the retina has been studied multiple times

in the past (Lettvin et al. 1959 [5], Warland et al. 1997 [12], Frechette et al. 2005

[1]). The traditional way of estimating the stimulus that was shown to the retina has

been to first characterize the response properties of each cell in the ensemble using an

optimal (in the mean-square sense) LTI filter and then filter the subsequent response

of these cells using each of their filters to obtain a visual stimulus estimate. This

analysis is done in Stanley et al. 1999 [9], and is used to reconstruct natural scenes.

2.2.1 Reconstructing Natural Stimuli Using LTI Filters

In order to reconstruct natural scenes from the response of neurons in LGN. As shown

in [9], we are given a set of M cells whose responses are being measured. We bin each

neuron’s firing rate in response to a set of m-sequence and natural scene stimuli. This

gives us a discretized firing rate. Let the firing rate of each neuron be of length N and

denote the firing rate of neuron i by ri[n], n = 0, ..., N − 1, where ri[k] = [firing rate

of neuron i at time k]. Moreover, let the number of pixels in the visual space be S

and denote the stimulus value (between -1 and 1) at pixel i by si[n], n = 0, ..., N − 1,

where si[k] = [intensity of pixel i at time k]. The stimulus (i.e. a new stimulus) is
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Figure 2-1: Circuitry underlying the DS response. The processes of starburst cells
(s, blue) that point in the null direction provide inhibition to DS cell dendrites (DS,
grey). Starburst processes respond best to movement away from the cell body, which
makes the inhibitory input delivered to DS cells larger for movement in the null
direction (bottom panel) than for movement in the preferred direction (top panel).
An additional inhibition acts presynaptically to reduce excitation for null direction
movement. Although this presynaptic inhibition is depicted as coming from starburst
cells, the results do not rule out the existence of another type of cell. The excitatory
input to DS cells probably comes from bipolar cells (b, red) and may also have a
cholinergic component from other starburst cells. For movement in the null direction,
the inhibitory input reaches each subregion of the DS cell ahead of the stimulus edge
and therefore before excitation. For movement in the preferred direction, inhibition
lags behind excitation. This figure and caption appeared in Fried et al. [2]
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then reconstructed using

ŝj[n] =
M∑
i=1

L−1∑

m=−(L−1)

hi,j[m]ri[n−m] for j = 0, ..., S − 1 (2.1)

where ŝj[n] is the estimate of the stimulus pixel j at time n, and hi,j[n] is the

optimal1 filter of length 2L− 1 to map the response of cell i to pixel j. If we view the

filter hi,j[n] as a column vector composed of 2L− 1 elements, we can express it as:

hi,j = R−1
i1 p1j + R−1

i2 p2j + . . . + R−1
iMpMj (2.2)

where Rij is a (2L − 1) × (2L − 1) covariance matrix containing the empirical

covariances between the response of cell i and the response of cell j at relative lags

of −(L − 1), ..., (L − 1) and pij is a column vector of length 2L − 1 that contains

the covariances of the response of cell i with stimulus pixel j at relative lags of

−(L− 1), ..., (L− 1).

Figure 2-2 depicts the reconstruction of natural scene videos as done in [9].

2.2.2 Estimating the Speed of a Moving Curtain using Para-

sol Cells in Macaque Monkey Retina

In addition to reconstructing stimuli by using LTI filters, Frechette et al. adopt

another sensible approach [1]. In their paper, estimates of the speed of a moving

edge (which we call moving curtain) are made by looking at the delay between the

responses of pairs of parasol cells. Their purpose is to find estimates of a specific

stimulus parameter (the speed of a moving edge). Their model for finding the time

delay between the times at which each parasol cell responds to a moving edge is

based on a cross-correlation of the smoothed spike trains of each pair of RGCs. They

conclude that given this model, temporal structure in spike trains provided more

precise speed estimates than time-varying firing rates and that correlated activity

1Optimal in the sense that it minimizes the mean-squared error of the reconstruction over the
training set, i.e., over the m-sequence and natural stimuli used to characterize the filters. Note:
these filters incorporate the correlation from cell to cell and from cell to pixel.
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Figure 2-2: Comparison between the actual and the reconstructed images in an area
of 6.4◦ × 6.4◦. Each panel shows four consecutive frames (interframe interval, 31.1
msec) of the actual (top) and the reconstructed (bottom) movies. Top panel, Scenes
in the woods, with two trunks of trees as the most prominent objects. Middle panel,
Scenes in the woods, with smaller tree branches. Bottom panel, A face at slightly
different displacements on the screen. This figure and caption appeared in Stanley et
al. [9]
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between RGCs had little effect on speed estimates. Figure 2-3 depicts the procedure

used to estimate the speed.

Figure 2-3: The algorithm for estimating bar speed from ensemble RGC activity is
depicted schematically, operating on hypothetical spike trains (black ticks) obtained
from 2 cells in response to a bar moving from left to right. Each spike train is low-pass
filtered in time (gray traces). The filtered response from cell A is delayed by a fixed
amount corresponding to the speed tuning and is multiplied pointwise by the filtered
response from cell B. The result is summed over time to yield a rightward motion
signal. A leftward motion signal is obtained by delaying the response from cell B
instead. For multiple cells, all pairwise net motion signals are summed. The speed
tuning that yields the maximum net motion signal is used as an estimate of stimulus
speed. This figure and caption appeared in Frechette et al. [1]
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Chapter 3

Experimental Procedures

The experiments that we found necessary for the completion of this thesis took place

in the Cellular Neurobiology Laboratory (Masland Lab) at Massachusetts General

Hospital (MGH) under the supervision of neurophysiologists Steven Stasheff, MD,

PhD, Shelley Fried, PhD, and Karl Farrow, PhD. More specifically, Dr. Shelley Fried

performed the surgery and dissection of the retinal piece, and Dr. Steven Stasheff

mounted the retinal piece onto his multi-electrode array (MEA) set-up. Dr. Karl

Farrow provided help with the system setup and debugging.

This chapter commences with a description of the procedures that took place in

order to prepare the rabbit retinal tissue on which we ran experiments. Next, we

describe the MEA set-up and its interface with the retinal piece. Subsequently, we

give a description of the visual stimuli that were presented to the retinal piece along

with the optical machinery required to perform the presentation task. Lastly, we

explicate the procedures for assigning spike times to each cell from which the MEA

recorded electrical activity.

With the purpose of having multiple trials on which to test our analysis, we

performed experiments on different days; each day on a retinal patch coming from

a different rabbit. On any given experimental day, we chose to run a subset of the

experiments described in this chapter.

The experimental set-up procedures and spike waveform analysis described in this

chapter are an adaptation of those described in [10], [11].
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3.1 Tissue Preparation

New Zealand white rabbits of either sex (3-5 kg) were anesthetized with xylazine

(5-10 mg/kg) and ketamine (30-100 mg/kg) to the point that the corneal reflex was

abolished. The animal was enucleated, the globe hemisected, and the vitreous re-

moved. The animal was killed with an overdose of ketamine, according to a protocol

approved by the Subcommittee on Research Animal Care of the Massachusetts Gen-

eral Hospital. Under infrared illumination to minimize exposure to visible light, using

a dissecting microscope (Leica Microsystems, Inc., Bannockburn, IL) with infrared

image intensifiers (BE Meyers, Inc., Redmond, WA), the retina was dissected from

the retinal pigmentary epithelium. Next, it was placed ganglion cell layer down onto

a multi-electrode recording array (10 µm in diameter circular contacts spaced 200 µm

apart; Multichannel Systems, Reutlingen, Germany) in a recording chamber attached

to a microscope stage, and superfused at 2.5-3.5 mL/min with warm (33-37◦C) Ames’

medium. Subsequently, the retina was allowed to sit in the dark for approximately

one hour so as to become less hyperactive and “settle down”; once we decided that

the retina was not hyperactive, we proceeded with our experiments.

3.2 Multi-electrode Recordings

A square (1.4mm side-length) MEA (seen in Figure 3-1 with 4 corner electrodes not

present; 10µm electrode diameter, spaced 200µm apart) followed by a 60-channel am-

plifier (Multi-channel Systems, Reutlingen, Germany) mounted on a microscope stage

(Zeiss Axioplan, Göttingen, Germany) interfaced with digital sampling hardware and

software (Bionic Technologies, Inc., Salt Lake City, UT) for recording and analyzing

spike trains from each of the electrodes in the array. Digitized data initially were

streamed onto the computer’s hard drive and further analyzed offline. After transfer

of the retina to the recording chamber, recordings were allowed to stabilize for at

least one hour, as evidenced by stable action potential amplitudes, number of cells

recorded, frequency of spontaneous firing, and consistency of light-evoked responses.
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Figure 3-1: MEA and image projection area drawn to scale. The MEA’s side has
a length of 1.4mm. Each electrode has a 10µm diameter. The shape of the image
Projection Area is rectangular (height 2.038mm, width 2.718mm)

The MEA recording system samples waveforms at 30 kHz. If a digitized waveform

exceeds a user-defined threshold, it is stored in memory along with its occurrence

time. These thresholds (one for each channel/electrode) are set in such a way so as to

minimize the recording of events other than action potentials. In this manner, only

action potentials and their corresponding occurrence times are stored in memory;

faulty waveforms are discarded.

3.3 Visual Stimulation

In experiments with light stimulation, a miniature computer monitor (Lucivid, Micro-

BrightField, Colchester, VT) projected visual stimuli through a 5× objective; these

were focused onto the photoreceptor layer of the retina with the help of a mirror

(depicted in Figure 3-2). Luminance was calibrated via commercial software (Vi-

sionWorks, Vision Research Graphics, Durham, NH), using a photometer (Minolta,

Ramsey, NJ) and photodiode placed in the tissue plane. The refresh rate of the

monitor was 66 Hz. The same software controlled and recorded stimulus parameters,

passing synchronization pulses to the data acquisition computer via a parallel inter-

face with 10 µsec precision. The purpose of these synchronization pulses was to give

us an indication of when the spikes occurred relative to what occurred on the image
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plane.

Figure 3-2: The image, produced by the image projector is deflected off of a flat
mirror which is inclined at 45◦. The image passes through the transparent (the effect
of the 10 µm non-transparent electrodes is very small) MEA, and focuses on the
photoreceptor layer of the retina. The MEA makes contact with the RGCs.

We stimulate the retinal piece with various stimuli which were crafted using com-

mercially available software (VisionWorks, Vision Research Graphics, Durham, NH).

The projected images are pixelated with 800×600 resolution. The following is a

description of the stimuli which we presented.

3.3.1 Bright and Dark Curtains Moving at Various Speeds

and Directions

A curtain is a moving edge of light (bright over a dark background or dark over

a bright background) which progressively covers the projection area. The edge of

light moves at a constant speed and direction. For the sake of clarity we describe

the sequence of events which define an ON curtain: 1) The background is dark, 2)

An edge (which separates dark from bright) comes onto the projection area, 3) The

portion on the bright side of the edge grows bigger and bigger until the projection area

is completely bright. An OFF curtain is defined similarly, except that the background

is initially bright and ends up being dark.

During a given experiment day we ran ON and OFF curtains in 4, 8, or 16 different
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directions. The angles at which we run the curtains are evenly spaced over the range

of 360◦. For example, motion in 16 directions occurs at 0◦, ±22.5◦, ±45◦, ±67.5◦,

±90◦ ±112.5◦, ±135◦, ±157.5◦, and 180◦. The curtains were designed to move along

two axes (horizontal and vertical). However, to obtain more than 4 directions we

rotated the projected image accordingly (seen in 3-3). On a given day we run the

curtains at a subset of the following speeds: 300, 357, 600, 714, 1200, 1428, 2400, and

2856 µm/sec. We repeated motion of each curtain at every contrast (ON or OFF),

speed, and direction 10 times. This is done so that we can do statistical analysis of

the cell firing patterns. We wait at least 2 seconds between the end of one curtain

and the beginning of the next curtain motion. Figure 3-3 depicts motion of ON and

OFF curtains in all 16 directions.

3.3.2 Finite Length Thin Bars Moving at Various Speeds and

Directions

Bright rectangular bars which are narrow compared to the size of the projection

area (height 2.038mm, width 2.718mm) were moved over a darker background. The

contrast between the bright bars and the darker background was the same as the

contrast described for the curtains. The dimensions of the bars were either 300µm ×
900µm, or 357µm × 1071µm, depending on the experiment. A single bar causes ON

and OFF effects due to its leading and trailing edges, respectively. These bars were

moved across the retinal piece at various directions and speeds. The bar stimuli were

prepared in such a way that the whole projection area would be swept by the moving

bars.

Similar to the curtain stimuli, the bar stimuli were designed so that all motion

occurred along two axes (horizontal and vertical). The projected image would be

rotated accordingly (as was seen in the previous section, for curtains) depending on

the angle at which we wanted to move the bars. We ran the bars in 4, 8, or 16

directions depending on the experimental day. For example, motion in 16 directions

occurs at 0◦, ±22.5◦, ±45◦, ±67.5◦, ±90◦ ±112.5◦, ±135◦, ±157.5◦, and 180◦. On a
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Figure 3-3: The MEA is always fixed. The projected image is rotated with respect to
the MEA (by rotating the projection device) to obtain the effect of curtain motion in
various directions. The left half of the figure depicts motion of a bright curtain over a
darker background (ON effect). The right half depicts motion of a dark curtain over a
bright background (OFF effect). The directions of motion are 0◦, 180◦, ±22.5◦, ±45◦,
±67.5◦, ±90◦ ±112.5◦, ±135◦, and ±157.5◦. In addition, these curtains are moved
at various speeds, as described above. The order in which the different directions,
speeds and contrasts (ON or OFF curtain) were shown to the retinal piece vary from
one experimental day to another, but is explained in subsection 3.3.3
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given day we run the bars at a subset of the following speeds: 300, 357, 600, 714,

1200, 1428, 2400, and 2856 µm/sec. We repeated motion of each bar stimulus (given

speed and direction) 5 times.

We ran the bar stimuli with the purpose of estimating the speed and direction

of the moving bars. In addition, as mentioned in Chapter 1, we noticed that DS

cells lose much of their directional selectivity when stimulating them with curtains;

therefore, it was helpful to detect the presence of such cells using moving bars. We

make the bars overlap (by half a bar width) to obtain better resolution when locating

DS cells. Figure 3-4 depicts the bar stimuli for motion along both axes (horizontal

and vertical).

3.3.3 Visual Stimulation Protocol

As soon as the retinal firing had “settled down,” we recorded 10 minutes of spon-

taneous activity. These recordings were used after the experiment to check for any

patterns of recognizable noise in the spontaneous firing patters of the RGCs.

Next, we proceeded with the retinal visual stimulation in one of two possible ways:

1. We ran curtains (at various speeds) and then various speeds of bars (10 and 5

times respectively) in 4 directions. If on the given experimental day we ran more

than 4 directions, we then rotated the projector and ran the curtains and then

the bars at the same speeds, 10 and 5 times respectively, in 4 new directions.

We proceeded with this protocol until we had finished with all the directions

that were run on a given experimental day.

2. We ran a set of curtains (at a single speed) and various speeds of bars in 4

directions, 1 time each. We then rotated the projector and ran the same set

of stimuli in 4 new directions. We then rotated back to the original projector

position, and started over. This was done 5 times to obtain 5 repetitions of

bars moving at various speeds in 8 directions and a set of curtains moving at a

single speed in 8 directions.
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Figure 3-4: Horizontal Motion: The left half of the figure depicts the manner and
the order in which horizontal bars sweep the projection area. In words, the order
of events is as follows: A) First bar comes into the projection area along the top of
the screen, this bar keeps moving to the right at a constant speed until its back edge
reaches the end of the screen (now the screen has no bright elements on it), 3 waiting
seconds pass with no motion, B) The same bar comes back into the projection area
and moves along the same line (in the opposite direction) until what is now its back
edge reaches the end of the screen (the screen has no bright elements on it), 3 waiting
seconds pass with no motion, C) The next bar moves along a line half a bar width
under the line of motion of the first bar, D,E,F) This is repeated until all 10 bars have
moved back and forth. This way the screen is more than swept (the bars overlap by
a half bar width). Vertical Motion: The right half of the figure depicts a scenario
analogous to the one described for horizontal motion. In this picture we see that the
bars move along the vertical axis. Due to the rectangularity of the screen, we need
to move 14 bars instead of 10. The bars overlapped by half a bar width also, and
more than swept the screen. The order in which the different directions, and speeds
were shown to the retinal piece vary from one experimental day to another, but is
explained in subsection 3.3.3
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The purpose of running protocol #1 is to leave as little time as possible between

repetitive runs of each stimulus. However, if protocol #1 is run, there are big gaps

between the time in which a set of bars was run in one direction and some of the other

directions. This is problematic because the state of the retinal tissue is not constant

over time. Therefore, protocol #2 is necessary to make reliable DS polar plots1.

3.4 Spike Waveform Analysis

Action potential (spike) waveforms accepted for further analysis were at least 60 µV

in amplitude and greater than 1.85 times the RMS of the background signal. To

distinguish responses from different cells that might appear on the same electrode,

PowerNap, a component of the data acquisition software (Bionic Technologies, Inc.,

Salt Lake City, UT), was used for supervised automated sorting of action potential

profiles according to a principle components analysis (PCA) paradigm. For each

electrode, the software displays all of the waveforms recorded in a window of length 1

msec. Each of these waveforms is decomposed into its first three principal components

and placed as a point in three-dimensional space. Principal components are the

eigenvectors computed from the correlation matrix of all the action potentials recorded

at each electrode [6]. We are able to view all three two-dimensional projections of

each waveform in the space defined by the first three principle components (Figure

3-5 shows the projection onto their space defined by the first two components).

The individual waveforms were partitioned iteratively into 1-5 clusters according

to an automated K-means paradigm [4], an algorithm used to minimize the total intra-

cluster variance. With the help of the K-means algorithm, followed by further manual

assignment of waveforms to specific clusters, we try to: 1) Maximize the similarity

among waveforms within a cluster; 2) Minimize the degree of overlap between clusters,

and 3) Maximize the distance between cluster centers and edges. In cases where an

optimal solution was not immediately distinguished on this basis, the data initially

1DS polar plots give a measure of how much a DS cell fired for motion over all experimented
directions.
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Figure 3-5: On the left of the figure, we see the samples of action potential waveforms
coming from two different cells recorded on the same electrode. On the right, we see
the projection of each of these transformed vectors onto the 2-D space defined by the
first two principal components of the data on the electrode. It can be seen that the
yellow and white clusters are gracefully separate. In the time domain, it can be seen
that waveforms which were clustered together look very similar.

was segregated into a greater number of clusters than seemed the likely final solution.

This was followed by subsequent analysis of the corresponding spike trains (described

below), to determine which of these signals were generated by the same or distinct

sources. In the cases with broad and overlapping clusters, individual waveforms were

considered outliers and excluded if their projected point in PC space was distant

from the closest cluster’s center by greater than 2.5-4.0 times the standard deviation

of the data within that cluster. Appropriate assignment of individual waveforms to

distinct cells was confirmed further by analysis of the corresponding spike trains.

Inter-spike interval (ISI) histograms were computed for each spike train by measuring

the intervals between spikes in the train for all possible spike pairs within a candidate

cluster, and then distributing these values in bins of 0.2 msec width. ISI histograms

from accepted data demonstrated a refractory period of at least 1 msec (typically

2-5 msec) and did not reflect any of the following patterns of recognizable noise: 60

Hz, very high frequency (> 10 kHz) transients, or waveforms distinct from those of

extracellular action potentials (e.g. sinusoidal oscillations).

Once the spike sorting for a particular experiment (e.g. curtains in a certain

direction, moving at a certain speed) was done, the results were used as a basis to
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sort the rest of the experimental data files. For example, if a cell with a particular

action potential shape on electrode 55 was named unit 1, then it was verified that

for every other data file, unit 1 on electrode 55 had the same action potential shape.

This assures us that when we refer to the firing of a particular cell across two different

experiments (e.g. curtains in a given direction at two different speeds), we know that

we are referring to the same cell.
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Chapter 4

Theoretical Developments

Initially, we are interested in estimating the speed (v) and direction (θ) at which

a curtain of light is moving. The curtain moves at a constant speed and direction

during the time of motion. We wish to make these estimates solely by using the

times at which each cell in the ensemble fires action potentials. To do this, we model

each cell’s location as a point in the plane representing the cell’s receptive field (RF)

center. We imagine these cells as sensors which respond instantaneously to changes

in brightness. ON cells react to dark-then-bright changes, OFF cells react to bright-

then-dark changes and ON-OFF cells react to both types of brightness changes.

Given N such cells in the plane, we number them 1 through N and obtain noisy

measurements of each cell’s RF center location. We denote cell i’s RF center location

by (xi, yi). We also obtain noisy measurements of the time at which each cell fired

relative to the beginning of the recording interval and denote cell i’s firing time by

ti
1.

In what follows, we present mathematical relationships between the parameters

we obtain from neural recordings (cell locations and firing times) and the speed and

direction of the moving edge. Subsequently, we study how the noise in each parameter

affects our beliefs about what the speed and direction are. We do this by restricting

ourselves to a specific cell location set-up which is analytically tractable. Next, we

1A real cell generally fires multiple action potentials when an edge of light passes over its receptive
field. However, for simplicity of analysis, we model the cell as a sensor that fires at a single point in
time (when the edge is crossing over it’s RF center).
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discuss possibilities of how to make the desired estimates by merging the information

that each cell contributes.

We find that when we observe the response of cells to motion of a thin bar (the

thickness of which is on the order of a cell’s receptive field diameter), estimates of

speed and direction become much noisier. Due to this reason, we look for information

coming from DS cell firing, as DS cells have strong opinions about the direction in

which a thin bar is moving. We study the performance of algorithms that estimate

speed and direction of a thin moving bar under two scenarios: 1) The cells used are

all non-DS, 2) The cells used are a mix of DS and non-DS.

4.1 Equations Relating v, θ, (xi, yi)’s, and ti’s

4.1.1 Extracting Information by Pairing Cells

One option is to make estimates of v and θ based on pairwise information. To do

this, we draw a vector that points from cell i to cell j if ti < tj. We do this for all
(

n
2

)
cell pairings. We number the cell pairs using an index k = {i, j}. We denote the

magnitude of such a vector by dk and the angle by θk. In addition, for each cell pair

k, we define:

∆tk , |ti − tj| (4.1)

For clarity, in Figure 4-1, we present a depiction of a bright edge moving to the

right over a dark background. In this picture, we draw the edge velocity vector

(defined to be orthogonal to the line defined by the moving edge, pointing in the

direction of motion) in both polar and rectangular coordinates. In polar coordinates,

the vector is denoted (v, θ), in rectangular coordinates, (u,w).

Now, given perfect measurements, we have that for cell pair k:

v =
dk

∆tk
cos(θ − θk) (4.2)

If the measurements of dk, θk and ∆tk were exact, we could find v and θ exactly

using only three cells by forming two distinct pairs, which give us two equations. Note
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Figure 4-1: Depiction of cell pair, vector from cell i to cell j, time between cell i and
cell j, distance between cell i and cell j, and edge velocity vector.

that if the measurements are noisy and we wish to have two equations that involve

v and θ, where the errors in the measurements in one equation are independent from

the errors in the other equation, we require 4 cells. In general, for this to be the case

(independence in measurement errors between equations), given N cells, we can only

form at most bN
2
c pairs, though there are many ways to do so.

Alternatively, we can rewrite 4.2 in a form which relates the velocity vector v =

(u,w) to the measured parameters. Let cells i and j form cell pair k, and let pk be

the vector which points from cell i to cell j. That is, pk = (xj, yj)− (xi, yi). Then we

have that:

pk ·
(u,w)√
u2 + w2

= ∆tk
√

u2 + w2 (4.3)

We see this because pk · (u,w)√
u2+w2 is the distance which the curtain must traverse

between cell i and cell j, where · represents the dot product operation.
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4.1.2 Extracting Information by Looking at Ensemble Re-

sponse

We now shift our point of view and wish to extract information about the velocity

vector from the response of the cell ensemble as a whole. To do this, we wish to

find an equation which relates the velocity vector to each cell’s measured parameters.

It is not enough to pay attention to one of these equations alone when solving for

v, however by using these equations jointly we will be able to find an estimate of

v. For the moment, we only present the equation, and not the estimation problem.

The ideas and equations which follow in this subsection were presented to us by Prof.

Berthold Horn.

The equation for the set of points (x, y) of a line orthogonal to a vector (u,w) at

a distance ρ (positive in the direction in which (u,w) points) from the origin is:

(x, y) · (u,w)√
u2 + w2

= ρ (4.4)

Further, the perpendicular distance d from an arbitrary point (x′, y′) in the plane

to the line above is:

d = (x′, y′) · (u, w)√
u2 + w2

− ρ (4.5)

where d > 0 if (x′, y′) is displaced from the line by a positive multiple of (u,w)

Now, if the edge moving with velocity (u,w) perpendicular to the edge crosses the

origin at time T , then at time t the distance of the line from the origin is ρ = v(t−T ),

where v =
√

u2 + w2. The perpendicular distance d(t) from a point (x′, y′) in the plane

to the nearest point on the moving edge at time t is:

d(t) = (x′, y′) · (u, w)√
u2 + w2

−
√

u2 + w2(t− T ) (4.6)

where d(t) > 0 until the edge crosses (x′, y′) and negative thereafter.

If we let (xi, yi) be particular points (e.g., receptive field center locations), and ti be

the estimated crossing time, when the edge crosses (xi, yi), then (absent measurement
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errors) d(ti) = 0.

4.2 Variance in v and θ Estimates

We now focus on Equation 4.2 to understand how v and θ change as we vary the

measured parameters from their true values. In other words, we wish to understand

how v and θ vary from their true values as a function of variations in the number

of cell pairs used, the spatial extent in which the cells are located, the amount of

noise in the cell position measurements, and the amount of noise in the firing time

measurements.

The following set-up, suggested by Prof. Wyatt, is a bit artificial, but it captures a

lot of the qualities we wish to understand. We assume that we have 2N cells uniformly

placed on a circumference of radius R. N pairs of cells are formed by pairing each

cell up with the cell exactly opposite to it on the circumference. We wish to find

approximately how the squared error in v and θ vary with these two parameters.

Figure 4-2 depicts our set-up.

Figure 4-2: 2N Cells uniformly placed on a circumference (Here N = 4). Each cell is
paired up with the cell which is a diameter across from it.

From 4.2 we have that:

dk cos(θk − θ) = ∆tkv (4.7)
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for perfect measurements dk, θk, ∆tk and a curtain moving at a speed v and angle

θ. Again, the angle of motion is defined to be the angle of the vector pointing in the

direction of motion.

We define the residual fk to be:

fk , dk cos(θk − θ)−∆tkv (4.8)

We note that fk = 0 for perfect measurements of dk, θk, and ∆tk. We perturb

the measured parameters dk, θk, ∆tk to incorporate small parameter errors δdk
in

d
(noisy)
k = d

(true)
k +δdk

, δθk
in θ

(noisy)
k = θ

(true)
k +δθk

, and δ∆tk in ∆t
(noisy)
k = ∆t

(true)
k +δ∆tk ,

respectively. From now on we do not use the (noisy) label, and assume that we refer

to noisy parameters. For small perturbations (i.e.,
δθk

θk
¿ 1) in these parameters, we

obtain the following linear approximation:

f
(noisy)
k ≈ f

(true)
k +

Dfk

Dλ
(4.9)

where Dfk

Dλ
represents taking the first derivative of fk defined in 4.8 (with respect to

all parameters, organized in a vector λ) evaluated at the true values of the parameters.

Since f
(true)
k = 0 we see that:

f
(noisy)
k ≈ Dfk

Dλ
(4.10)

Our objective is to choose v and θ to minimize the sum of squares of the fk’s. In

the following text we perform this linearization to show how v and θ change as we

vary the measured parameters from their true values. Linearizing 4.7 gives:

cos(θk − θ)δdk
− dk sin(θk − θ)[δθk

− δθ] = ∆tkδv + vδ∆tk (4.11)

where θk, θ, dk, v, and ∆tk are the real (noise-free) values of those parameters,

and the δ’s are small deviations in the corresponding parameters.

We reorganize this equation to obtain:
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dk sin(θk − θ)δθ −∆tkδv = vδ∆tk + dk sin(θk − θ)δθk
− cos(θk − θ)δdk

(4.12)

As we have N cell pairs, we wish to set up a system of equations:




−∆t1 d1 sin(θ1 − θ)
...

...

−∆tN dN sin(θN − θ)





 δv

δθ


 = β ·




δ∆t1

δθ1

δd1

...

δ∆tN

δθN

δdN




(4.13)

where β is a Nx3N matrix composed of N rows. The ith row of β is composed of

3 · (i − 1) zeros followed by the row vector
[

v di sin(θi − θ) − cos(θi − θ)
]
, then

followed by 3 · (N − i) zeros.

Since N is presumed to be greater than 2, this system is overdetermined. We can

find the Least Squares solution for


 δv

δθ


 to be:


 δv

δθ


 = (ATA)−1ATb (4.14)

where A =




−∆t1 d1 sin(θ1 − θ)
...

...

−∆tN dN sin(θN − θ)


, and b = β ·




δt1

δθ1

δd1

...

δtN

δθN

δdN




Now,
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ATA =




N∑
i=1

∆t2i −
N∑

i=1

∆tidi sin(θi − θ)

−
N∑

i=1

∆tidi sin(θi − θ)
N∑

i=1

d2
i sin2(θi − θ)




(4.15)

We can write ∆ti as di cos(θi−θ)
v

and observe that di = 2R, ∀i. We then rewrite

ATA as:

ATA =




4R2

v2

N∑
i=1

cos2(θi − θ) −2R2

v

N∑
i=1

sin(2θi − 2θ)

−2R2

v

N∑
i=1

sin(2θi − 2θ) 4R2

N∑
i=1

sin2(θi − θ)




(4.16)

We now write b as b = βδλ, and then compute AT β below:

A
T

β| {z }
2x3N

=

24 −∆t1v −∆t1d1 sin(θ1 − θ) ∆t1 cos(θ1 − θ) . . . −∆tN v −∆tN dN sin(θN − θ) ∆tN cos(θN − θ)

d1v sin(θ1 − θ) d2
1 sin2(θ1 − θ) − d1

2 sin(2θ1 − 2θ) . . . dN v sin(θN − θ) d2
N sin2(θN − θ) − dN

2 sin(2θN − 2θ)

35
(4.17)

We now compute AT βδλ to be:

AT βδλ︸ ︷︷ ︸
2x1

=




−v

N∑
i=1

∆tiδ∆ti −
N∑

i=1

∆tidi sin(θi − θ)δθi
+

N∑
i=1

∆ti cos(θi − θ)δdi

v

N∑
i=1

di sin(θi − θ)δ∆ti +
N∑

i=1

d2
i sin2(θi − θ)δθi

−
N∑

i=1

di

2
sin(2θi − 2θ)δdi




(4.18)

By replacing ∆ti with di cos(θi−θ)
v

and each di with di = 2R once again, we then

rewrite AT βδλ as:

AT βδλ =




−2R
N∑

i=1

cos(θi − θ)δ∆ti −
2R2

v

N∑
i=1

sin(2θi − 2θ)δθi
+

2R

v

N∑
i=1

cos2(θi − θ)δdi

2Rv

N∑
i=1

sin(θi − θ)δ∆ti + 4R2

N∑
i=1

sin2(θi − θ)δθi
−R

N∑
i=1

sin(2θi − 2θ)δdi




(4.19)
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Now, we would like to rewrite ATA by evaluating the sums it contains. However,

it is unclear what each θi should be. By assumption, the line segments that connect

the cells that form a pair cut the circle into equal pieces. Nonetheless, θi depends on

which cell in pair i the curtain hits first. Because the direction in which the curtain

is moving is a variable, it is not clear what value to assign to each θi. It is worth

noting that each θi can take one of two possible values, each of which are 180◦ away

from each other. It turns out that for all the sums that we will evaluate, it does not

matter which of those two values θi takes. Therefore, we will let θi = 2π
N

i from now

on.

N∑
i=1

sin(2θi − 2θ) =
1

2j

N∑
i=1

ej2(θi−θ) − 1

2j

N∑
i=1

e−j2(θi−θ)

Now,
N∑

i=1

ej2θi =
N∑

i=1

ej2· 2π
N

i =
N∑

i=1

ej 4π
N

i =
1− ej 4π

N
(N+1)

1− ej 4π
N

− 1 = 0

=⇒
N∑

i=1

e−j2θi = 0 =⇒
N∑

i=1

sin(2θi − 2θ) = 0

It is easy to see that
N∑

i=1

cos(2θi − 2θ) = 0

as well, by following very similar steps.

Let’s also evaluate:

N∑
i=1

sin2(θi − θ) =
N∑

i=1

1− cos(2θi − 2θ)

2
=

N

2
− 1

2

N∑
i=1

cos(2θi − 2θ) =
N

2

Similarly, we see that

N∑
i=1

cos2(θi − θ) =
N∑

i=1

1 + cos(2θi − 2θ)

2
=

N

2
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Now we can write:

ATA =




2NR2

v2 0

0 2NR2


 =⇒ (AT A)−1 =




v2

2NR2 0

0 1
2NR2


 (4.20)

We now find that:


 δv

δθ


 = (ATA)−1AT βδλ (4.21)

=

[
v2

2NR2 0

0 1
2NR2

]


−2R

N∑

i=1

cos(θi − θ)δ∆ti −
2R2

v

N∑

i=1

sin(2θi − 2θ)δθi +
2R

v

N∑

i=1

cos2(θi − θ)δdi

2Rv

N∑

i=1

sin(θi − θ)δ∆ti + 4R2
N∑

i=1

sin2(θi − θ)δθi −R

N∑

i=1

sin(2θi − 2θ)δdi




(4.22)

=
1

N




−v2

R

N∑
i=1

cos(θi − θ)δ∆ti − v

N∑
i=1

sin(2θi − 2θ)δθi
+

v

R

N∑
i=1

cos2(θi − θ)δdi

v
R

N∑
i=1

sin(θi − θ)δ∆ti + 2
N∑

i=1

sin2(θi − θ)δθi
− 1

2R

N∑
i=1

sin(2θi − 2θ)δdi




(4.23)

Before we proceed, let’s evaluate the following sums which we will make use of in

calculating the variances of δv and δθ:

N∑
i=1

sin2(2θi − 2θ) =
N∑

i=1

1− cos(4θi − 4θ)

2
=

N

2
− 1

2

N∑
i=1

cos(4θi − 4θ) =
N

2

where the last equality is established because
N∑

i=1

cos(4θi − 4θ) = 0 by a similar

calculation to the one done to find that
N∑

i=1

cos(2θi − 2θ) = 0. By a very similar

calculation it can be shown that
N∑

i=1

cos2(2θi − 2θ) =
N

2
as well.

Furthermore,
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N∑
i=1

cos4(θi − θ) =
N∑

i=1

(
1 + cos(2θi − 2θ)

2

)(
1 + cos(2θi − 2θ)

2

)

=
N∑

i=1

(
1

4
+

1

2
cos(2θi − 2θ) +

1

4
cos2(2θi − 2θ)

)
=

3N

8

And by a very similar argument it can be shown that
N∑

i=1

sin4(θi − θ) =
3N

8
as

well.

Now we wish to find the variance of δv and δθ. To do this, we must first look at the

variances in the measured parameters. We assume that the noise in each coordinate

of each cell position is additive and zero-mean with variance σ2
p. Furthermore, the

noise in each coordinate of a particular cell is independent of the noise in the other

coordinate, and independent of the noise in each of the coordinates of the other cell

in the pair. We also assume that the noise in ∆tk is additive, zero-mean and has

variance σ2
∆t. The noise in each ∆tk, denoted δ∆tk , is independent of the noise in the

position measurements of all the cells.

Before we proceed, let us find an approximation of the variance of the noise in θk,

δθk
, as a function of σ2

p. We have that

θk = tan−1

(
∆y

∆x

)
, gθ (4.24)

where ∆y is the measured vertical distance separating the cells in pair k, and ∆x

is the horizontal distance.

Then, to first order, the error in θk, δθk
, is

δθk
≈ ∂gθ

∂∆y

∣∣∣∣∣
∆y,∆x

δ∆y +
∂gθ

∂∆x

∣∣∣∣∣
∆y,∆x

δ∆x (4.25)

for small errors δ∆y in ∆y and δ∆x in ∆x.

So we have:
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δθk
≈ ∆xδ∆y −∆yδ∆x

∆x2 + ∆y2
(4.26)

Now, since δ∆y and δ∆x are independent by assumption, we find the variance in

δθk
to be:

σ2
θk
≈ 2σ2

p∆x2 + 2σ2
p∆y2

(∆x2 + ∆y2)2
(4.27)

4.27 follows from 4.26 because the variances δ∆y and δ∆x are each twice the vari-

ance of the noise in each cell’s position coordinates2. We see that 4.27 reduces to:

σ2
θk
≈ 2σ2

p

∆x2 + ∆y2
=

2σ2
p

d2
k

(4.28)

Now, let us also find the variance of δdk
as a function of σ2

p. We know that

dk =
√

∆x2 + ∆y2 (4.29)

By proceeding as we did in equation 4.25, to first order:

δdk
≈ 1

2
(∆x2 + ∆y2)−1/2[2∆xδ∆x + 2∆yδ∆y] =

∆xδ∆x + ∆yδ∆y√
∆x2 + ∆y2

(4.30)

By the independence of δ∆y and δ∆x we see that:

σ2
dk
≈ ∆x2

d2
k

· 2σ2
p +

∆y2

d2
k

· 2σ2
p = 2σ2

p ·
∆x2 + ∆y2

d2
k

= 2σ2
p (4.31)

We now find it necessary to calculate any possible non-zero covariance that could

exist between δdk
and δθk

. We will use this in computing V ar(δv) and V ar(δθ).

2This is because δ∆x and δ∆y are each the subtraction of two position coordinates which have
noise of variance σ2

p and are independent.
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Cov(δdk
, δθk

) = E[δdk
δθk

] since δdk
and δθk

are zero-mean (4.32)

≈ E

[(
∆xδ∆x + ∆yδ∆y

dk

)(
∆xδ∆y −∆yδ∆x

∆x2 + ∆y2

)]
(4.33)

= E

[
(∆x2 −∆y2)δ∆xδ∆y + ∆x∆y(δ2

∆y − δ2
∆x)

d3
k

]
= 0 (4.34)

where the last approximate equality follows from equations 4.26 and 4.30. In the

last equality, the δ∆x and δ∆y cross term disappears by independence and because

each of them is zero-mean. The last equality holds because E[δ2
∆x] = E[δ2

∆y].

δθk
and δdk

are therefore, uncorrelated.

Now we have that the δ∆ti ’s, δθi
’s, δdi

’s are all uncorrelated with each other. In

addition, all δ∆ti ’s have a common variance σ2
∆t, δθi

’s have a common variance σ2
θk

,

and δdk
’s have a common variance σ2

d. Now, from 4.21,

V ar(δv) = σ2
v ≈

1

N2

(
v4

R2

N∑
i=1

cos2(θi − θ)σ2
∆t + v2

N∑
i=1

sin2(2θi − 2θ)σ2
θk

+
v2

R2

N∑
i=1

cos4(θi − θ)σ2
d

)

(4.35)

=
v2

N

(
v2

2R2
σ2

∆t +
1

2
σ2

θk
+

3

8R2
σ2

d

)
=

v2

N

(
v2

2R2
σ2

∆t +
σ2

p

4R2
+

3

4R2
σ2

p

)

(4.36)

=
v2

2NR2

(
v2σ2

∆t + 2σ2
p

)
(4.37)

where σ2
p is the variance in the x and y coordinates of each cell’s position. The

penultimate equality follows from 4.27.

In addition, from 4.21 we see that,
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V ar(δθ) = σ2
θ ≈

1

N2

(
v2

R2

N∑
i=1

sin2(θi − θ)σ2
∆t

+ 4
N∑

i=1

sin4(θi − θ)σ2
θk

+
1

4R2

N∑
i=1

sin2(2θi − 2θ)σ2
d

)
(4.38)

=
1

N

(
v2

2R2
σ2

∆t +
3

2
σ2

θk
+

1

8R2
σ2

d

)
(4.39)

=
1

N

(
v2

2R2
σ2

∆t +
3σ2

p

4R2
+

1

4R2
σ2

p

)
(4.40)

=
1

2NR2

(
v2σ2

∆t + 2σ2
p

)
(4.41)

4.3 Variances of the Residuals

We are interested in finding the variance of

fk , dk cos(θk − θ)−∆tkv (4.42)

as a function of the variances of the noise in the position measurements of the cells that

form pair k and the noise in the measurement of the time between the moment the

curtain hits the first cell and the moment it hits the other cell in the pair. Presumably,

finding these variances will be useful towards assigning each equation an optimal

weight when estimating v and θ.

We find that, to first order, the change in fk, denoted δfk
, due to noise in our

measured parameters is

δfk
≈ cos(θk − θ)δdk

− dk sin(θk − θ)δθk
− vδ∆tk (4.43)

Let us first note that, to first order, δfk
is zero-mean, just as δdk

, δθk
, and δ∆tk

are zero-mean. If we are to find the variance in δfk
as a function of v and θ, the

parameters that we are trying to estimate, how can we plug in for v and θ to find the

variances? To do so, we assume that by first weighing the equations equally, we are
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able to find estimates which are close enough to the true values. Then, we can plug

these estimates back in to obtain the approximate variance of each residual.

Since δθk
and δdk

are functions of the noise in each cell position coordinate, each

of which is independent of δ∆tk , to find the variance of δfk
we must consider a possible

non-zero covariance between δdk
and δθk

. We have shown in the previous section that

this covariance is zero.

Then, from 4.43, the variance σ2
fk

becomes:

σ2
fk
≈ cos2(θk − θ) · 2σ2

p + d2
k sin2(θk − θ) · 2σ2

p

d2
k

+ v2σ2
∆t = 2σ2

p + v2σ2
∆t (4.44)

Therefore, we notice that to first order, the variance in δfk
does not depend on

the measured values of dk, θk, or ∆tk.

Note: A similar procedure can be carried out by expanding δfk
to second order

and assuming that the additive noises are Gaussian. Doing so, we obtain:

σ2
fk
≈ 2σ2

p + 2v2σ2
∆t +

cos2(θk − θ) · 8σ4
p

d2
k

(4.45)

4.4 Estimating Curtain Motion Parameters

In this section we present algorithms for estimating the speed and direction of a

moving curtain using ON, OFF, and ON-OFF cells. First, we attempt to estimate

the velocity vector directly by using information from two-pairings (an arrangement

of cells which provides two equations). Next, we attempt to estimate this vector by

using global firing time information. Lastly, we estimate the speed and direction of

the moving curtain by pairing cells up and taking advantage of the many equations

that arise. For each algorithm we provide a sensitivity analysis, i.e., we analyze how

the noise in the measured parameters, speed of the curtain, number of cells, and their

radial extent affect the estimates of the velocity vector.
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4.4.1 Estimating Velocity Vector Directly

Since we are trying to estimate the velocity vector which describes the motion of a cur-

tain, naturally one would like to estimate this vector directly by obtaining equations

that involve the cell position and firing time parameters. As mentioned earlier, two

cells do not provide information to estimate these unknowns. However, a two-pairing

of cells does.

A two-pairing is a selection of a subset (of cardinality 3 or 4) from the set of all

cells, such that if the subset is of size 3, we form two cell pairs within the subset by

picking one cell which will be the only cell (out of the 3) which is a member of both

pairs. If the subset is of size 4, we form two cell pairs within the subset by pairing

each cell in the subset with only one other cell. For completeness, let us count all

possible ways to make different two-pairings given a set of N cells.

Given a set of N cells, we can choose a pair of cells in

0@ N

2

1A distinct ways, i.e.,

there are

0@ N

2

1A distinct pairs that can be formed. Given these

0@ N

2

1A pairs, we

make a two-pairing by choosing two out of all the possible pairs3. This can be done

in

0BBB@
0@ N

2

1A
2

1CCCA ways. Therefore, given a set of N cells, there are TN ,

0BBB@
0@ N

2

1A
2

1CCCA
possible two-pairings.

From each such two-pairing we get a pair of equations:

p1 ·
(u,w)√
u2 + w2

= ∆t1
√

u2 + w2 p2 ·
(u,w)√
u2 + w2

= ∆t2
√

u2 + w2 (4.46)

where each pi is the vector drawn from the cell which fires first to the cell which

fires second, and each ∆ti is the time between the moments when the two cells in the

pair fire. Note that each equation arises because the component of pi in the direction

of (u,w) is equal to the time that it takes the edge to get from one cell to the other,

3That is, out of the set of possible pairs chosen from the set of all cells, we choose two elements.
The two chosen pairs can have either no elements in common or a single element in common. If
they have no element in common, they form a two-pairing of cardinality 4; otherwise, they form a
two-pairing of cardinality 3.
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multiplied by the speed of the edge. We can rewrite this pair of equations as:

p1 ·
(u,w)

u2 + w2
= ∆t1 p2 ·

(u, w)

u2 + w2
= ∆t2 (4.47)

We now invoke Prof. Horn’s reflection trick and let

u′ = u
u2+w2 w′ = v

u2+w2

that is, we reflect (u,w) into the unit circle (if it is outside of it, otherwise we

reflect to the outside) and let (u′, w′) be the new coordinates. By doing so we obtain

two equations which are linear in u′ and w′ which we express as an easily solvable

matrix system:


 a1 b1

a2 b2


 ·


 u′

w′


 =


 ∆t1

∆t2


 ⇒


 u′

w′


 =


 a1 b1

a2 b2



−1 

 ∆t1

∆t2


 (4.48)

where (ai, bi) are the coordinates of pi. Once we find (u′, w′) we can transform

back to (u,w) by reflecting back to outside of the unit circle (or inside, if we had

previously reflected outside).4 That is,

u = u′
u′2+w′2 w = w′

u′2+w′2

We note that each two-pairing gives us estimates of (u′, w′) because the cell loca-

tions and ∆t’s are noisy. We would like to find an overall estimate by putting all the

two-pairing information together. We choose to minimize

TN∑

k=1

∥∥∥∥∥


 û′k

ŵ′
k


−


 û′

ŵ′




∥∥∥∥∥

2

=

TN∑

k=1

(û′k − û′)2 +

TN∑

k=1

(ŵ′
k − ŵ′)2 (4.49)

where û′k and ŵ′
k are the solution of the estimates of u′ and w′ from each of the

TN two-pairings, and û′ and ŵ′ are the overall estimates we obtain by minimizing the

above sum. It is easy to see that this sum is minimized when:

4The matrix can not be inverted if the vector (a1, b1) is a multiple of (a2, b2) (i.e., if the 3 or 4
cells in the two-pairing lie on a line). In this case we don’t have enough information to solve for
(u,w) using this particular two-pairing.
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û′ =
1

TN

TN∑

k=1

û′k ŵ′ =
1

TN

TN∑

k=1

ŵ′
k (4.50)

This approach seems to minimize a quantity that makes natural sense but seems

very prone to be affected by outliers. It seems plausible to reduce the effect of

the outliers but still use the information they provide by weighing the estimates

differently. The weights could be assigned according to how sensitive the estimates

are to noise in the particular positions and firing times of cells in the two-pairing.

Estimates’ Noise Sensitivity

We would like to understand how the estimates in u′ and w′ vary from their true values

as a function of the cell positions, the cell firing times, noise in the cell positions, and

the noise in the cell firing times. Given the variances of the estimates, we have the

option of reweighing the terms that go into the sums in 4.114.

For simplicity, we assume that each two-pairing is made up of 4 cells. Then, by

assumption, the noise in the measured parameters of one pair is independent of the

noise in the measured parameters of the other pair.

Given a particular two-pairing for which the matrix in 4.48 is invertible, we find

u′ and w′:

u′ =
1

a1b2 − a2b1

(b2∆t1 − b1∆t2) w′ =
1

a1b2 − a2b1

(−a2∆t1 + a1∆t2) (4.51)

First we would like to find δu′ , the perturbation in u′, as a function of small

perturbations in a1, a2, b1, b2, ∆t1, and ∆t2. To first order:
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δu′ ≈ (b2∆t1 − b1∆t2)
[ −b2

(a1b2 − a2b1)2
δa1 +

b1

(a1b2 − a2b1)2
δa2

]

+
[ −∆t2
a1b2 − a2b1

+
a2

(a1b2 − a2b1)2
(b2∆t1 − b1∆t2)

]
δb1

+
[ ∆t1
a1b2 − a2b1

− a1

(a1b2 − a2b1)2
(b2∆t1 − b1∆t2)

]
δb2

+
1

a1b2 − a2b1

(b2δ∆t1 − b1δ∆t2) (4.52)

We notice that to first order, δu′ is zero-mean. Next we find the variance of δu′

as a function of the variance of the measurement perturbations. We notice that the

noise in a1, a2, b1, b2, ∆t1, and ∆t2, i.e. the corresponding δ’s, are all independent of

each other (by assuming that the two-pairing consists of 4 distinct cells). Therefore,

we see that the variance of δu′ , σ2
u′ is

V ar(δu′) = σ2
u′ ≈ 2σ2

p

[
(b2∆t1 − b1∆t2)

2
( b2

1 + b2
2

(a1b2 − a2b1)4

)

+
[ −∆t2
a1b2 − a2b1

+
a2

(a1b2 − a2b1)2
(b2∆t1 − b1∆t2)

]2

+
[ ∆t1
a1b2 − a2b1

− a1

(a1b2 − a2b1)2
(b2∆t1 − b1∆t2)

]2
]

+ σ2
∆t

[ b2
1 + b2

2

(a1b2 − a2b1)2

]
(4.53)

It is easily seen that the first order approximation of σ2
w′ will be

σ2
w′ = V ar(δw′) = V ar(δu′)

∣∣∣
a1↔b1,a2↔b2

(4.54)

We choose to reweigh the terms which appear in the sums of 4.114 by 1 over

the variance of each corresponding estimate, and then re-normalize the sums. This

procedure gives more significance to estimates which have less variance. So 4.114

becomes:
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û′ = Ku
1

TN

TN∑

k=1

û′k
σ2

u′k

ŵ′ = Kw
1

TN

TN∑

k=1

ŵ′
k

σ2
w′k

(4.55)

where Ku =

(
TN∑

k=1

1

σ2
u′k

)−1

and Kw =

(
TN∑

k=1

1

σ2
w′k

)−1

.

4.4.2 Estimating Velocity Vector Using Global Firing Time

Information

We now leave the picture of estimating the velocity vector by pairing up cells. Rather,

we look at the errors in the firing times of every cell as an ensemble. More specifically,

given the velocity vector, and all cell positions, we can calculate how erroneous the

firing times are compared to when each cell should have fired according to each of

their positions. In other words, we ignore the fact that the cell positions are noisy as

well, and minimize the sum of squared timing errors for each cell. If we assume that

all cells have comparable noise in their position and firing times, there is no reason

to weigh them differently in this minimization.

The ideas presented in this section follow from Prof. Horn’s analysis. We refer

back to 4.6 and note that the difference in the time when cell i fired and when it

should have fired according to its position is di

v
. This situation is depicted in Figure

4-3.

Now, we wish to minimize:

N∑
i=1

(
di

v

)2

=
N∑

i=1

(
(xi, yi) · (u,w)√

u2 + w2
− (ti − T )

)2

(4.56)

by suitable choice of the unknown parameters u, w, and T (the time at which the

edge crosses the origin). At first, it seems like the division by u2 + w2 forces us into

a non-linear least squares problem. We can, however, rewrite the sum of squares of

errors in the form
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v

Figure 4-3: This is a picture taken at time ti (the moment at which cell i fires). It
can be seen that the edge is not over cell i’s RF center at this moment. The timing
error in this picture is then di

v
.

N∑
i=1

(
(xi, yi) · (u′, w′)− (ti − T )

)2

(4.57)

where

u′ = u
u2+w2 w′ = w

u2+w2

So we are trying to minimize:

N∑
i=1

(
u′xi + w′yi − (ti − T )

)2

(4.58)

by suitable choice of u′, w′, and T . As in the previous subsection, we can later

recover u and w from u′ and w′ using

u = u′
u′2+w′2 w = w′

u′2+w′2

Differentiating the error sum with respect to u′, w′, and T respectively and setting

the results equal to zero leads to:
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N∑
i=1

(
u′xi + w′yi − (ti − T )

)
xi = 0

N∑
i=1

(
u′xi + w′yi − (ti − T )

)
yi = 0 (4.59)

N∑
i=1

(
u′xi + w′yi − (ti − T )

)
= 0

which can be rewritten in the form of three linear equations in three unknown

parameters u′, w′, and T :

u′
N∑

i=1

x2
i + w′

N∑
i=1

xiyi + T

N∑
i=1

xi =
N∑

i=1

tixi

u′
N∑

i=1

xiyi + w′
N∑

i=1

y2
i + T

N∑
i=1

yi =
N∑

i=1

tiyi (4.60)

u′
N∑

i=1

xi + w′
N∑

i=1

yi + T ·N =
N∑

i=1

ti

The symmetric 3×3 coefficient matrix depends only on the positions (xi, yi) of the

cells, while the timing information affects only the right-hand-side vector. Assuming

that the coefficient matrix is non-singular5, we can easily solve for u′, w′, and T by

inverting this matrix and multiplying it by the right-hand-side vector. That is,

5The matrix is singular iff the cells lie on a line.
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


u′

w′

T


 =




N∑
i=1

x2
i

N∑
i=1

xiyi

N∑
i=1

xi

N∑
i=1

xiyi

N∑
i=1

y2
i

N∑
i=1

yi

N∑
i=1

xi

N∑
i=1

yi N




−1 


N∑
i=1

tixi

N∑
i=1

tiyi

N∑
i=1

ti




(4.61)

Estimates’ Noise Sensitivity

We would like to understand how the noise in the estimates of cell position, and cell

firing times affects the estimates of u and w. To do so, we first find the sensitivity

in the u′ and w′ estimates and then proceed from there to find the sensitivity in the

u and w estimates. We denote the variance of a cell’s measured firing time error δtk ,

σ2
tk

. It can easily be shown that σ2
∆tk

= 2σ2
tk

.

Once again, to make the sensitivity calculations analytically tractable, we place

the N cells on a circumference of radius R. Then, from 4.61, we have that for θi = 2π
N

i




u′

w′

T


 =




R2

N∑
i=1

cos2(θi) R2

N∑
i=1

1

2
sin(2θi) R

N∑
i=1

cos(θi)

R2

N∑
i=1

1

2
sin(2θi) R2

N∑
i=1

sin2(θi) R

N∑
i=1

sin(θi)

R

N∑
i=1

cos(θi) R

N∑
i=1

sin(θi) N




−1 


N∑
i=1

tixi

N∑
i=1

tiyi

N∑
i=1

ti




=




R2N
2

0 0

0 R2N
2

0

0 0 N




−1




N∑
i=1

tixi

N∑
i=1

tiyi

N∑
i=1

ti




(4.62)

which gives:
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u′ =
2

R2N

N∑
i=1

tixi w′ =
2

R2N

N∑
i=1

tiyi T =
1

N

N∑
i=1

ti (4.63)

We first find how the estimate of u′ varies as a function of small variations δti and

δxi
from the true values of ti and xi, respectively:

δu′ ≈ 2

R2N

( N∑
i=1

xiδti +
N∑

i=1

tiδxi

)
(4.64)

As δti and δxi
are independent by assumption, we have:

V ar(δu′) = σ2
u′ ≈

4

R4N2

( N∑
i=1

x2
i σ

2
ti

+
N∑

i=1

t2i σ
2
p

)
(4.65)

We now plug in ti = T +u′xi +w′yi, and xi = R cos(θi) into the last equation and

get:

σ2
u′ ≈

4

R4N2

(
R2

N∑
i=1

cos2(θi)σ
2
ti

+
N∑

i=1

(
T 2 + u′2R2 cos2(θi) + w′2R2 sin2(θi) +»»»»»»»»:0

2Tu′R cos(θi)

+
»»»»»»»»:0
2Tw′R sin(θi) +

»»»»»»»»»»:0
2u′w′R2 1

2
sin(2θi)

)
σ2

p

)

=
4

R4N
T 2σ2

p +
2

R2N
(σ2

tk
+

1

v2
σ2

p) (4.66)

The last equality follows from the fact that
N∑

i=1

cos2(θi) =
N∑

i=1

sin2(θi) =
N

2
, and

N∑
i=1

cos(θi) =
N∑

i=1

sin(θi) =
N∑

i=1

sin(2θi) = 0.

In addition, it is easily seen by symmetry that σ2
w′ = σ2

u′ .

Before we proceed, for completeness, let us calculate the variance in δT , σ2
T :

δT =
1

N

N∑
i=1

δti ⇒ V ar(δT ) = σ2
T =

1

N
σ2

tk
(4.67)

We now find the variance in the estimates of u and w as a function of σ2
u′ and
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σ2
w′ . To do so, we express the perturbation in u = u′

u′2+w′2 as a function of small

perturbations in u′ and w′. We get, to first order,

δu ≈ w′2 − u′2

(u′2 + w′2)2
δu′ +

−2u′w′

(u′2 + w′2)2
δw′

= (w2 − u2)δu′ − 2uwδw′ (4.68)

Note that δw = δu

∣∣
u′↔w′ .

Before we proceed, we need to check for a possible non-zero covariance between

δu′ and δw′ . Since they are both zero-mean, we calculate

E[δu′δw′ ] =
4

R4N2
E

[( N∑
i=1

xiδti +
N∑

i=1

tiδxi

)( N∑
i=1

yiδti +
N∑

i=1

tiδyi

)]

= E

[
N∑

i=1

xiyiδ
2
ti

]
= σ2

tk

N∑
i=1

»»»:0xiyi = 0 (4.69)

where the penultimate equality follows from the fact that the only δ’s which have

non-zero correlation are δti , δtj , for j = i.

We are now ready to establish

σ2
u ≈ (w2 − u2)2σ2

u′ + 4u2w2σ2
w′ (4.70)

σ2
w ≈ (u2 − w2)2σ2

w′ + 4u2w2σ2
u′ (4.71)

Variance of Residuals

We are interested in finding the variance of the residuals fk which enter into the sum

we are trying to minimize. If we were to find that the variance of fk depends on each

cell’s position and firing time, we could try weighing each fk in the sum accordingly.

However, there is no intuitive reason why the variance should depend on anything

else than the curtain speed, the variance in position, and the variance in the firing
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times. Therefore, we do not expect that when we minimize this sum any particular

cell should be given more significance than any other. Let us verify this. We have

that

fk , u′xk + w′yk − (tk − T ) (4.72)

Then, for small perturbations δxk
, δyk

, and δtk , we get an expression for the per-

turbation in fk to first order:

δfk
≈ u′δxk

+ w′δyk
− δtk (4.73)

First, we see that δfk
is zero-mean. We find the variance of δfk

to be

V ar(δfk
) ≈ (u′2 +w′2)σ2

p +σ2
tk

=

[(
u

u2 + w2

)2

+

(
w

u2 + w2

)2]
σ2

p +σ2
tk

=
1

v2
σ2

p +σ2
tk

(4.74)

which does not depend on anything else except the speed of the curtain, the

variance in position, and the variance in the firing times; as expected.

4.4.3 Estimating Speed and Direction by Extracting Pair-

wise Information

In this section, we propose and study two algorithms which make use of pairwise

information gathered from the cell ensemble firing times. To commence, we refer

back to 4.2 and write

v∆tk = dk cos(θ − θk) (4.75)

Once again, if the parameters ∆tk, dk, and θk were noise-free, this equation would

be solved by the true values of v and θ. However, these parameters come from physical

measurements which are subject to noise. In addition, ∆tk, dk, and θk are subject to

additional uncertainty because they are each estimated to the best of our knowledge
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from the data that we gather from experiment.

Given N equations of the form of 4.75, obtained by forming N distinct pairs

of cells, we would like to find estimates for v and θ which are very close to their

true values. Each of these equations involves a nonlinear function of dk and θk; and

therefore, it is not immediately apparent how to set-up the least squares problem.

The two following algorithms give a solution to this problem.

CosCos Algorithm

As previously stated, if the measurements of dk, θk, and ∆tk were exact, we could

find v and θ exactly using only three cells (looking at two pairs). Since these mea-

surements are noisy, we reformulate 4.75 to estimate v and θ using linear regression.

When solving a linear regression, it is assumed that the independent variables (dk’s

and θk’s) are noise-free, but this is not the case. However, we do know that our

estimates for them are better than our estimates for ∆tk. Thus, we perform least

squares estimates by first noting that cos(θ− θk) = cos(θ) cos(θk) + sin(θ) sin(θk) and

rewrite 4.75 in the following form:

∆tk =
dk

v
[cos(θ) cos(θk) + sin(θ) sin(θk)] (4.76)

We now rewrite 4.76 in vector form:

∆tk =
[

dk cos(θk) dk sin(θk)
]
.




cos(θ)
v

sin(θ)
v


 (4.77)

We notice that this equation is equivalent to a single equation of the matrix system

in Equation 4.48. However, in this algorithm, instead of estimating v and θ directly

by using every available two-pairing, we propose a solution using a least-squares

approach.

Now, our objective is to find the parameters α = cos(θ)
v

and β = sin(θ)
v

which
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minimize the squared error between the observed ∆tk’s and the real ones. To carry

out the minimization, we have two options: 1) Use all available pairs and form N

equations (assuming there are a total of N pairs), 2) Select a subset of pairs which we

believe will give us better estimates. If we consider option 2, it is not obvious how to

choose these pairs (an active learning approach could be carried through effectively).

Assuming that we have chosen N pairs, we organize the ∆tk’s corresponding to each

pair in a column vector t. We also compose a matrix, X, by making each of its

rows a row vector of the form
[

dk cos(θk) dk sin(θk)
]
, corresponding to each pair.

To show that this linear relationship makes sense, Figure 4-4 depicts a set of points

found from the response of cells to downward motion at 714µm/sec. These points

have coordinates of the form (dk cos(θk), dk sin(θk), ∆tk).

−1000

−500

0

500

1000

−1000−800−600−400−20002004006008001000

0

0.5

1

1.5

∆ x * sin(θi)∆ x * cos(θi)

∆ 
t

Figure 4-4: Location of points in 3D space. It can be seen that the points approxi-
mately lye in a hyperplane, as expected. This would be seen more easily if we were
able to rotate the axes.

Our least squares estimates are then given by


 α

β


 = (XTX)−1XT t (4.78)

The estimates of θ and v are then found by enforcing that cos2(θ) + sin2(θ) = 1,
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which implies that α2 + β2 = 1
v2 .

6 Then v =
√

1
α2+β2 , and θ = cos−1(αv) or θ =

sin−1(βv). We pick the way to solve for θ based on which of α or β is greater in

absolute value. Since the slopes of cos−1(x) and sin−1(x) are shallowest at x = 0, we

use the cos−1(x) equation if |α| < |β| and the sin−1(x) equation otherwise.

CosCos Sensitivity Analysis

We are now interested in finding how sensitive the estimates for v and θ are

when using this algorithm. In particular, we would like to understand how much the

estimates vary as we introduce firing time and position errors.

Using the CosCos algorithm we find v and θ as a function of α = cos(θ)
v

and

β = sin(θ)
v

by:

v =
√

1
α2+β2 θ =





cos−1(αv) if |α| < |β|
sin−1(βv) else

First, we need to understand how the estimates of v and θ vary from the true

values as a function of variations in α and β. For small perturbations δα and δβ in

the true values of α and β respectively, we have (by differentiating) that

δv ≈ −1

2
(α2 + β2)−3/2[2αδα + 2βδβ] (4.79)

δθ ≈




− 1√

1−(αv)2
[vδα + αδv] if |α| < |β|

1√
1−(βv)2

[vδβ + βδv] else
(4.80)

Assuming that δv and δθ are zero-mean (which we show later), we would like to

find V ar(δv) and V ar(δθ). To do this, we need to express δα and δβ as a function of

small perturbations δdk
, δ∆tk , and δθk

in dk, ∆tk, and θk respectively.

We have that

dk cos(θk)α + dk sin(θk)β = ∆tk (4.81)

6If the estimates of α and β are good, this is plausible.

69



We differentiate both sides of this equation with respect to all variables to get an

approximate equation relating small changes in each variable to each other. To first

order, we get

dk cos(θk)δα+dk sin(θk)δβ+[α cos(θk)+β sin(θk)]δdk
+[−dkα sin(θk)+dkβ cos(θk)]δθk

= δ∆tk

(4.82)

Given N cell pairs, we set up the matrix system:

A ·

 δα

δβ


 = Cδλ (4.83)

where

A =




d1 cos(θ1) d1 sin(θ1)
...

...

dN cos(θN) dN sin(θN)


 and δλ =




δd1

δθ1

δt1

...

δdN

δθN

δtN




C is a N×3N matrix composed of N rows. The ith row of C is composed of 3·(i−1) ze-

ros followed by the row vector
[
−α cos(θi)− β sin(θi), diα sin(θi)− diβ cos(θi), 1

]
,

then followed by 3 · (N − i) zeros.

Based on the equation above, with a least squares picture in mind, we make the

following approximation:


 δα

δβ


 ≈ (ATA)−1ATCδλ (4.84)

We proceed by computing
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ATA =




N∑
i=1

d2
i cos2(θi)

N∑
i=1

d2
i

1

2
sin(2θi)

N∑
i=1

d2
i

1

2
sin(2θi)

N∑
i=1

d2
i sin2(θi)




(4.85)

Once again, for simplicity, we assume that all cells are distributed uniformly on a

circumference of radius R. Each cell is paired with the cell which is a diameter across

from it. We have 2N cells, and therefore N cell pairs, as presumed above.

Using the trigonometric equalities established in Section 4.2 we simplify ATA to:

ATA =


 2R2N 0

0 2R2N


 ⇒ (AT A)−1 =

1

2R2N
I2 (4.86)

where I2 represents the 2×2 identity matrix.

Now we see that:

(ATA)−1AT =
1

2R2N


 d1 cos(θ1) . . . dN cos(θN)

d1 sin(θ1) . . . dN sin(θN)


 (4.87)

and

(ATA)−1ATC︸ ︷︷ ︸
2x3N

=
1

2R2N


 −d1(α cos2(θ1) + β 1

2 sin(2θ1)) d2
1(α

1
2 sin(2θ1)− β cos2(θ1)) d1 cos(θ1) . . .

−d1(α1
2 sin(2θ1) + β sin2(θ1)) d2

1(α sin2(θ1)− β 1
2 sin(2θ1)) d1 sin(θ1) . . .




(4.88)

Finally, we have that

24 δα

δβ

35 ≈ (AT A)−1AT Cδλ

=
1

2R2N

266664
−

NX
i=1

di(α cos2(θi) + β
1

2
sin(2θi))δdi

+
NX

i=1

d2
i (α

1

2
sin(2θi)− β cos2(θi))δθi

+
NX

i=1

di cos(θi)δ∆ti

−
NX

i=1

di(α
1

2
sin(2θi) + β sin2(θi))δdi

+
NX

i=1

d2
i (α sin2(θi)− β

1

2
sin(2θi))δθi

+
NX

i=1

di sin(θi)δ∆ti

377775
(4.89)

71



Plugging in di = 2R, ∀i (since we have assumed that the cells are on a circumfer-

ence) we have:


 δα

δβ


 ≈ 1

2RN




−2
N∑

i=1

(α cos2(θi) + β
1
2

sin(2θi))δdi + 4R

N∑

i=1

(α
1
2

sin(2θi)− β cos2(θi))δθi + 2
N∑

i=1

cos(θi)δ∆ti

−2
N∑

i=1

(α
1
2

sin(2θi) + β sin2(θi))δdi + 4R

N∑

i=1

(α sin2(θi)− β
1
2

sin(2θi))δθi + 2
N∑

i=1

sin(θi)δ∆ti




(4.90)

First, note that E[δα] = E[δβ] = 0 because E[δdk
] = E[δθk

] = E[δ∆tk ] = 0. Now,

we use the fact that δdk
, δθk

, and δ∆tk are uncorrelated for all k and find V ar(δα) and

V ar(δβ) to be

24 σ2
α

σ2
β

35 ≈ 1

4R2N2

266664
4

NX
i=1

(α2 cos4(θi) + β2 1

4
sin2(2θi))σ

2
di

+ 16R2
NX

i=1

(α2 1

4
sin2(2θi) + β2 cos4(θi))σ

2
θi

+ 4
NX

i=1

cos2(θi)σ
2
∆ti

4
NX

i=1

(α2 1

4
sin2(2θi) + β2sin4(θi))σ

2
di

+ 16R2
NX

i=1

(α2sin4(θi) + β2 1

4
sin2(2θi))σ

2
θi

+ 4
NX

i=1

sin2(θi)σ
2
∆ti

377775
(4.91)

Note that in the formula above, inside the sums, the cross terms that appear when

squaring the terms which multiply the σ2’s, disappear. This can be seen using simple

calculations similar to the ones done using the trigonometric identities presented in

Section 4.2.

Once again, we take advantage of the the cell location set-up and the pairing we

have enforced. We use the equalities established in Section 4.2 again to conclude:


 σ2

α

σ2
β


 ≈ 1

4R2N2


 (4α2 3N

8 + β2 N
2 )σ2

d + (4R2α2 N
2 + 16R2β2 3N

8 )σ2
θk

+ 4N
2 σ2

∆t

(α2 N
2 + 4β2 3N

8 )σ2
d + (16R2α2 3N

8 + 4R2β2 N
2 )σ2

θk
+ 4N

2 σ2
∆t


 (4.92)

=
1

4R2N


 ( 3

2α2 + 1
2β2)σ2

d + R2(2α2 + 6β2)σ2
θk

+ 2σ2
∆t

( 1
2α2 + 3

2β2)σ2
d + R2(6α2 + 2β2)σ2

θk
+ 2σ2

∆t


 (4.93)

Once gain, we replace σ2
d with 2σ2

p, and σ2
θk

with
σ2

p

2R2 to obtain:
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
 σ2

α

σ2
β


 ≈ 1

R2N


 (α2 + β2)σ2

p + 1
2
σ2

∆t

(α2 + β2)σ2
p + 1

2
σ2

∆t


 (4.94)

=
1

R2N




1
v2 σ

2
p + 1

2
σ2

∆t

1
v2 σ

2
p + 1

2
σ2

∆t


 (4.95)

where the last equality follows from the fact that α2 + β2 = cos2(θ)
v2 + sin2(θ)

v2 = 1
v2 .

Before we finalize the solution of σ2
v and σ2

θ , we need to check for a possible non-

zero covariance between δα and δβ. We have that Cov(δα, δβ) = E[δαδβ] since δα and

δβ are zero-mean. So

Cov(δα, δβ) = E[δαδβ ]

=
1

4R2N2
E

[
4

N∑

i=1

(α cos2(θi) +
β

2
sin(2θi))(

α

2
sin(2θi) + β sin2(θi))δ2

di

+ 16R2
N∑

i=1

(
α

2
sin(2θi)− β cos2(θi))(α sin2(θi)− β

2
sin(2θi))δ2

θi
+ 4

N∑

i=1

cos(θi) sin(θi)δ2
∆ti

]

(4.96)

The expectation of all other cross terms (where i 6= j in the resulting double sums)

go to zero by independence and because the δ’s are zero-mean. Therefore, we don’t

bother to write them.

By using the trigonometric equalities established in Section 4.2 once again, we see

that

Cov(δα, δβ) =
1

R2N2

[
(αβ

N

8
+

αβ

4

N

2
)σ2

d + 4R2(−αβ

4

N

2
− αβ

N

8
)σ2

θk

]
(4.97)

Now, we replace σ2
d with 2σ2

p, and σ2
θk

with
σ2

p

2R2 to see that Cov(δα, δβ) = 0 .

For completeness, let us note that since δα and δβ are zero-mean, it follows that

δv is zero-mean too. Now, based on the above calculation, we easily establish (using
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4.79) that:

σ2
v ≈ (α2 + β2)−3[α2σ2

α + β2σ2
β] = v4σ2

α =
v2

R2N
(σ2

p +
v2

2
σ2

∆t) (4.98)

as σ2
α = σ2

β (shown in 4.95).

To find σ2
θ , the variance in δθ we first need to find Cov(δα, δv) = E[δαδv] and

Cov(δβ, δv) = E[δβδv]. In the case that |α| < |β|, we only need to find the former.

We only find σ2
θ for this case because the calculations for the case when |α| ≥ |β| are

very similar.

Cov(δα, δv) = E[−(α2 + β2)−3/2(αδ2
α + βδβδα)]

= −(α2 + β2)−3/2αE[δ2
α] = −(α2 + β2)−3/2ασ2

α (4.99)

where the penultimate equality is due to the recently established fact that δα and

δβ are uncorrelated.

Now, if |α| < |β|, from 4.80 we have that:

σ2
θ ≈

1

1− (αv)2
[v2σ2

α + α2σ2
v − 2α2v(α2 + β2)−3/2σ2

α]

=
1

1− (αv)2
[(v2 − 2α2v(α2 + β2)−3/2)σ2

α + α2σ2
v ]

=
1

2R2N
(2σ2

p + v2σ2
∆t) (4.100)

where the last equality follows by plugging in α = cos(θ)
v

and β = sin(θ)
v

into the

previous one.

By symmetry, we expect σ2
θ to be equal to the boxed expression in the case that

|α| ≥ |β| as well.
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Newton-Raphson Minimization of Residuals

In this subsection, we present and solve a non-linear minimization problem, which

provides us with estimates of v and θ. This approach and the problem solution was

suggested by Prof. Wyatt. We wish to minimize the sum-of-squares of the residuals

fk:

f(v, θ) ,
N∑

i=1

f 2
i (4.101)

for fk as defined in 4.42, and for N the total number of cell pairs. One would hope

that by assigning the residuals different weights which depend on the measured pa-

rameters, we would get better estimates than by giving them equal weights. However,

as noted in Section 4.3, to first order, the variances in the residuals only depend on the

speed of the curtain, the variance in the position estimates, and the variance in the

firing times. Therefore, we wish to minimize the uniformly weighted sum-of-squares,

shown above.

We can find v∗ and θ∗, the optimal v and θ respectively, which minimize 4.101 by

finding where

fd =


 f

(1)
d

f
(2)
d


 ,




∂f(v,θ)
∂v

∂f(v,θ)
∂θ


 =


 0

0


 (4.102)

We do this by assuming that we have an estimate (v̂, θ̂) which is close enough to

v∗ and θ∗. We use this estimate as an initial value for a Newton-Raphson algorithmic

approach.

The Newton-Raphson algorithm leads to the optimal solution iteratively. The

updates are given by


 v̂n+1

θ̂n+1


 = −




∂f
(1)
d

∂v

∂f
(1)
d

∂θ

∂f
(2)
d

∂v

∂f
(2)
d

∂θ



−1

v̂n,θ̂n

fd(n) +


 v̂n

θ̂n


 (4.103)
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Newton-Raphson Sensitivity Analysis

We choose the estimates of v and θ to be the arguments which minimize f(v, θ),

defined in 4.101. The location of this minimum (in the v − θ plane) depends on

the values of 3N measured parameters (i.e., the vector (d1, θ1, ∆t1, . . . , dN , θN , ∆tN)).

In other words, the minimum (vmin, θmin) is a function of this vector of measured

parameters. Precisely, the estimates of v and θ are the values which solve 4.102. By

the implicit function theorem, we know that if the Jacobian Matrix [Jfd] is invertible,

then a solution exists in a neighborhood of the true values of v and θ for small

perturbations of the vector of measured parameters. In addition, we can find how

v and θ vary as a function of variations in the measured parameter vector in the

following manner:

δv ≈
N∑

i=1

∂v

∂di

δdi
+

N∑
i=1

∂v

∂θi

δθi
+

N∑
i=1

∂v

∂∆ti
δ∆ti (4.104)

δθ ≈
N∑

i=1

∂θ

∂di

δdi
+

N∑
i=1

∂θ

∂θi

δθi
+

N∑
i=1

∂θ

∂∆ti
δ∆ti (4.105)

where




∂v
∂d1

∂v
∂θ1

∂v
∂∆t1

. . .

∂θ
∂d1

∂θ
∂θ1

∂θ
∂∆t1

. . .


 = −[Jfd]

−1




∂f
(1)
d

∂d1

∂f
(1)
d

∂θ1

∂f
(1)
d

∂∆t1
. . .

∂f
(2)
d

∂d1

∂f
(2)
d

∂θ1

∂f
(2)
d

∂∆t1
. . .


 (4.106)

and the matrices on the right hand side are evaluated at the true values of v and

θ and the true values of the parameters.

By making the simplification of evenly distributing the cells on a circumference of

radius R, we see that the variance of δv and δθ (found by using the equations above)

are exactly equal to what was obtained when finding the variance in v and θ (in

Section 4.2), that is,

σ2
v ≈

v2

2R2N
(2σ2

p + v2σ2
∆t) (4.107)
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σ2
θ ≈

1

2R2N
(2σ2

p + v2σ2
∆t) (4.108)

Therefore, we notice that the speed and direction estimate sensitivities for the

CosCos and Newton-Raphson algorithms are equal, to first order, for cells equally

distributed on a circumference and paired as we described.

4.5 Estimating Thin Bar Motion Parameters

We assume that for each DS cell we have a function hk : θ → R+ which approximates

the number of spikes that DS cell k fires for motion of a thin bar (moving exactly

over it’s RF) in the direction θ. For each hk we define a corresponding residual gk:

gk(θ) , hk(θ)− Sk (4.109)

where Sk is the number of spikes that cell k actually fired when a particular bar

was moved over its receptive field.

Now, once again, we wish to minimize the sum-of-squares of the residuals. In

other words, we wish to minimize

g(θ) ,
N∑

i=1

g2
i (θ) (4.110)

where N is the number of DS cells that we use to make the estimates of v and θ.

Given only DS cells, we can use their ON-OFF property alone (ignoring their

directional properties) to make the estimates exactly as described in Section 4.4. We

also have the option of making an estimate of θ merely by using the directionality

property of the DS cells and minimizing 4.110. More interestingly, we can make the

estimates by merging the information from non-DS cells with the non-directional and

directional information from DS cells. We wish to do this by minimizing a weighted

sum-of-squares of residuals of the form
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q(v, θ) , Kg

N∑
i=1

g2
i (θ) +

M∑
i=1

f 2
i (v, θ) (4.111)

where fk is defined as in Section 4.4.3, N is the number of DS cells that reacted

to the particular bar, and M is the number of cell pairs formed when observing the

ON/OFF response to the same bar.

We weigh the residuals differently mainly because of a difference in the units of

fk and gk. To do so, we must provide a manner of selecting Kg, the weight assigned

to the gk residuals.

4.5.1 Weighing the Residuals of DS and non-DS cells

Our goal is to find a value for Kg such that Kg · V ar(gk) is comparable to V ar(fk).

By doing so, we give each term in the minimization coming from the DS directional

properties the same significance as the terms coming from non-directional ON/OFF

responses of DS and non-DS cells. If, for example, we would like to give DS cells more

significance to further refine direction estimates, then Kg would have to be larger than

the value we find in this subsection. It should also be noted that if there are many

terms in the minimization due to non-DS information (i.e. there are many non-DS

cells which fire) then it is also preferable to increase Kg.

We invoke 4.44 which tells us that V ar(fk) ≈ 2σ2
p + v2σ2

∆t. Judging by the

typical amount of noise in the time and positions estimates, it is reasonable to set

σp = 100µm, and σ∆t = 0.1sec. This gives V ar(fk) ≈ 20000(µm)2 + v20.01sec2. Let’s

treat v as a random variable which takes a value in the range 300 − 3000µm/sec

uniformly7. Then E[V ar(fk)] ≈ 20000(µm)2 + 0.01E[v2]. We find:

7This is a reasonable assumption. We do not expect the cells to respond very well to speeds lower
than 300µm/sec, and we do not expect to be able to estimate speeds and directions accurately for
speeds greater than 3000µm/sec.
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E[v2] = V ar(v) + (E[v])2

=
27002

12
+ (1650)2 = 33 · 105(µm/sec)2 (4.112)

We conclude that E[V ar(fk)] ≈ 53 · 103.

Based on experimental data it is reasonable to assume that V ar(gk) ≈ 53. This

suggests that Kg = 103.

4.6 Algorithms and Sensitivities Summary

4.6.1 Sensitivities of v and θ as a Function of Noisy Measured

Parameters

We base the following sensitivity calculations on Equation 4.2.

Assumptions: 2N cells are equally spaced on circumference. Each cell is paired

with the cell which is a diameter across from it; R is radius of circumference.

σ2
v ≈

v2

2R2N
(2σ2

p + v2σ2
∆t)

σ2
θ ≈

1

2R2N
(2σ2

p + v2σ2
∆t)

4.6.2 Variance of residuals fk , dk cos(θk − θ)−∆tkv:

σ2
fk
≈ 2σ2

p + v2σ2
∆t
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4.6.3 Estimating Velocity Vector Directly in Rectangular Co-

ordinates (Adam’s Method)

From each two-pairing of the cells (TN such two-pairings) we get:


 u′

w′


 =


 a1 b1

a2 b2



−1 

 ∆t1

∆t2




where ai and bi are dicos(θi) and disin(θi), respectively.

We choose to minimize

TN∑

k=1

∥∥∥∥∥


 û′k

ŵ′
k


−


 û′

ŵ′




∥∥∥∥∥

2

=

TN∑

k=1

(û′k − û′)2 +

TN∑

k=1

(ŵ′
k − ŵ′)2 (4.113)

where û′k and ŵ′
k are the solution of the estimates of u′ and w′ from each of the

TN two-pairings, and û′ and ŵ′ are the overall estimates we obtain by minimizing the

above sum. Our estimates our then:

û′ =
1

TN

TN∑

k=1

û′k ŵ′ =
1

TN

TN∑

k=1

ŵ′
k (4.114)

Then we express the u and w estimates for this two-pairing, û and ŵ, as:

û =
û′

û′
2
+ ŵ′2

ŵ =
ŵ′

û′
2
+ ŵ′2

Sensitivities
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V ar(δu′) = σ2
u′ ≈ 2σ2

p

[
(b2∆t1 − b1∆t2)

2
( b2

1 + b2
2

(a1b2 − a2b1)4

)

+
[ −∆t2
a1b2 − a2b1

+
a2

(a1b2 − a2b1)2
(b2∆t1 − b1∆t2)

]2

+
[ ∆t1
a1b2 − a2b1

− a1

(a1b2 − a2b1)2
(b2∆t1 − b1∆t2)

]2
]

+ σ2
∆t

[ b2
1 + b2

2

(a1b2 − a2b1)2

]

σ2
w′ = V ar(δw′) = V ar(δu′)

∣∣∣
a1↔b1,a2↔b2

4.6.4 Adam’s Method Revisited — Weighted Average of Two-

Pairing Estimates

û′ = Ku
1

TN

TN∑

k=1

û′k
σ2

u′k

ŵ′ = Kw
1

TN

TN∑

k=1

ŵ′
k

σ2
w′k

where Ku =

(
TN∑

k=1

1

σ2
u′k

)−1

and Kw =

(
TN∑

k=1

1

σ2
w′k

)−1

.

4.6.5 Estimating Velocity Vector Using Global Firing Time

Information (Berthold’s Method)

In this method cells are not paired up. Assuming we have N cells:




u′

w′

T


 =




N∑
i=1

x2
i

N∑
i=1

xiyi

N∑
i=1

xi

N∑
i=1

xiyi

N∑
i=1

y2
i

N∑
i=1

yi

N∑
i=1

xi

N∑
i=1

yi N




−1 


N∑
i=1

tixi

N∑
i=1

tiyi

N∑
i=1

ti



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We transform back to u and w as in Adam’s Method.

Sensitivities

Assuming N cells (not cell pairs) are equally spaced on a circumference of radius R:

σ2
u ≈ (w2 − u2)2σ2

u′ + 4u2w2σ2
w′

σ2
w ≈ (u2 − w2)2σ2

w′ + 4u2w2σ2
u′

Variance of Residuals fk , u′xk + w′yk − (tk − T ):

As expected, the variance of each residual does not depend on anything else except

the speed of the curtain, the variance in position estimates, and the variance in the

firing time estimates.

V ar(δfk
) ≈=

1

v2
σ2

p + σ2
tk

4.6.6 CosCos Algorithm

In this method cells are paired up. N refers to the number of pairs available. We

have equations of the form:

∆tk =
dk

v
[cos(θ) cos(θk) + sin(θ) sin(θk)]

Letting α = cos(θ)
v

and β = sin(θ)
v

.

Assuming that we have chosen N pairs, we organize the ∆tk’s corresponding to

each pair in a column vector t. We also compose a matrix, X, by making each of its

rows a row vector of the form
[

dk cos(θk) dk sin(θk)
]
, corresponding to each pair.

Our least squares estimates are given by:
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
 α

β


 = (XTX)−1XT t

Notice that α = u′ and β = w′, and each equation formed by pairing cells is

equivalent to each of the two equations formed by a two-pairing in Adam’s method.

We transform to v and θ estimates from α and β as we did in Adam’s method.

Sensitivities

σ2
v ≈

v2

2R2N
(2σ2

p + v2σ2
∆t)

σ2
θ ≈

1

2R2N
(2σ2

p + v2σ2
∆t)

4.6.7 Newton-Raphson Algorithm (John’s Method)

In this method cells are paired up. N refers to the number of cell pairs available. We

minimize

f(v, θ) ,
N∑

i=1

f 2
i

where fk , dk cos(θk − θ)−∆tkv. The solution of v and θ which minimize f(v, θ)

is solved by Newton-Raphson minimization.

Sensitivities

σ2
v ≈

v2

2R2N
(2σ2

p + v2σ2
∆t)

σ2
θ ≈

1

2R2N
(2σ2

p + v2σ2
∆t)
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Chapter 5

Simulations

Simulating the response of RGCs to motion of curtains and bars serves us three

purposes: 1) To predict how well the decoding algorithms we propose would do in sit-

uations which were not carried out experimentally, 2) To observe how the algorithms’

performance on simulated data (which involves assumptions about independence and

specific noise distributions) compares to the performance on real data, 3) To verify

that the assumptions we make for the theoretical calculations (such as placing the

cells on a circumference) are close to simulated situations where the cells are not

restricted to lie on a circumference.

In this chapter we describe the assumptions which we made to simulate the be-

havior of ON, OFF, and ON-OFF cells in reaction to the motion of curtains and fixed

length bars of various widths. We also describe the assumptions made to simulate

the response of DS cells due to the motion of bars. Next, we present the results

of estimating the speed and direction of a moving curtain using the various algo-

rithms described in the chapter Theoretical Developments. In addition, we present

the results of estimating the motion of bars of various widths. We first make the

bar motion parameter estimates by using purely ON, OFF, and ON-OFF cells, and

then show that the estimates get better as we include the responses of ON-OFF DS

cells into the estimation procedure. All throughout, we show plots that depict the

RMS (root mean-squared) error in the estimates as a result of using combinations of

various numbers of cells along with various restrictions on the radial extent of the cell
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locations in the plane. We make comparisons of the algorithms’ performance when

they are run assuming various possible noise levels (σ2’s) in the measured parameters

(i.e. cell locations, firing times, number of spikes fired by DS cells in response to a

particular bar).

5.1 Setting Up Simulations of the Responses of

ON, OFF, and ON-OFF Non-DS Cells to Cur-

tain Motion

For a particular simulation, we select a radius value R, which defines a circle in which

we drop the cells. In addition, we select a number of cells N which are dropped into

the circle. For each simulation in the set we drop the cells into the circle at random

(uniformly), as seen in Figure 5-1. By construction, since a particular curtain only

has one effect (either ON or OFF), we assume that all cells inside the circle respond

to a particular curtain type (ON or OFF). Given the curtain speed, direction, and

starting time, we calculate the times at which each cell should fire according to the

position of their receptive field centers. Next, we add zero-mean Gaussian noise of

variance σ2
p and σ2

t to the cell position coordinates and firing times, respectively (all

noise values are selected independently). The noisy position and firing time values of

the cell ensemble are handed to the estimation algorithms.

5.2 Setting Up Simulations of the Responses of

ON, OFF, and ON-OFF Non-DS Cells to Bar

Motion

The responses of ON, OFF, and ON-OFF Non-DS cells to a moving bar are simulated

in exactly the same way as in response to moving curtains. However, only cells which

are in the strip defined by the motion of the bar (see Figure 5-2) respond. Similarly,
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Figure 5-1: Simulating the Response of N Cells Inside a Circle of Radius R, to a
Moving Curtain. In this picture N = 10.

for a particular simulation, the cells are placed at random (uniformly) inside the strip.

As a bar has a leading and a trailing edge, it evokes ON and OFF responses in the

cells along its path. Nonetheless, we always simulate either the response of ON and

ON-OFF cells to the leading edge (ON effect), or the response of OFF and ON-OFF

cells to the trailing edge (OFF effect). We do so because we would like to compare the

fidelity of the estimates of speed and direction of a thin moving bar to the estimates

of speed and direction of a moving curtain.

Figure 5-2: Simulating the Response of N Cells Inside a strip of height D, to a moving
bar. The white strip represents the path traversed by the moving bar. In this picture
N = 8.
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5.3 Setting Up Simulations of the Responses of

ON-OFF DS Cells to Bar Motion

In order to simulate the response of ON-OFF DS Cells to the motion of bars we pro-

duce a single parameter — the total number of spikes fired for motion in a particular

direction due to the ON and OFF effect of the bar. A few assumptions are inherent

in the above decision. We assume that regardless of the speed (assuming the speed is

in the range of speeds we experiment with), the number of spikes fired for motion in a

particular direction is about the same. To decide how many spikes a DS cell fires for

motion in a particular direction we do the following: 1) Choose the major and minor

axis lengths of an ellipse at random (uniformly); the major axis length is restricted

within the range 15 to 30; the minor axis length is restricted within the range 7.5 to

15. 2) Choose the inclination angle of the ellipse defined in 1) at random (uniformly

between 0 and 2π). 3) Calculate the shortest distance from the ellipse focus (of the

two foci, we refer to the one which is on the negative x-axis before the ellipse is ro-

tated, assuming the ellipse center is at (0,0)) to the ellipse contour in the direction at

which the bars is moving. 4) The length found in 3) is the number of spikes that the

DS cell fires for motion in the particular direction. By this procedure, in simulation,

each function hk(θ), defined in the chapter Theoretical Developments, is defined by

an ellipse chosen at random (see Figure 5-3). In simulation, the value Sk (number of

spikes the cell actually fired), also defined in Theoretical Developments, is obtained

by adding noise to hk(θbar), where θbar is the angle at which the bar is moving. The

added noise is zero-mean Gaussian, with standard deviation proportional to hk(θbar).

Each simulated DS cell’s hk(θ) represents its polar firing profile. The simulated values

of the Sk’s (one for each DS cell) along with each DS cell’s hk(θ) are handed to the

estimation algorithms.
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Figure 5-3: DS Cell Polar Plot Example. The DS cell polar firing profile (A) is
represented by the red ellipse. This DS cell’s “preferred direction” of firing is 45◦.
The yellow dot (B) denotes the location of the focus (out of the two foci) which is
used. As an example, we draw a black line (C) which denotes the segment of distance
hk(0) drawn from the ellipse’s focus to the ellipse contour. The length of this segment
represents the number of spikes (absent of noise) fired by the DS cell for motion in
the direction θ = 0.

5.4 Moving Curtain Simulations

In this section we present the results of simulating the motion of a curtain (ON

and OFF effects are simulated equivalently) at fixed speeds of v = 714µm/sec and

v = 1428µm/sec. By construction of the simulation environment the direction in

which the curtain moves is irrelevant. We calculate the RMS (root mean square)

error in the estimates of speed and direction over 300 simulation runs, where the

errors are defined to be (v̂ − vtrue) and (θ̂ − θtrue), respectively. We make plots

of the RMS error in the estimates as R (radial extent of cell locations; also half

the maximum distance between cells) and N (the number of cells used to make the

estimates) are varied. Subsequently, we compare the results of estimating the speed

and direction of a curtain to theory, by simulating the response of cells evenly spaced

on a circumference. At the end of this section, we compare the estimate fidelity of all

treated algorithms.

5.4.1 Estimating Velocity Vector Directly Without Weighing

We present the results of estimating speed and direction based on the algorithm

described in the Theoretical Developments chapter, “Estimating Velocity Vector Di-
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rectly” (i.e., equation 4.114). The results shown in Figures 5-4 and 5-5 are for motion

of a curtain at v = 714µm/sec and v = 1428µm/sec. We do not reweigh the esti-

mates coming from each two-pairing based on their noise sensitivity. The results of

weighing are shown in the next subsection. In the next subsection, we also make a

comparison of the estimate fidelity between both methods.

The plots have been interpolated for ease of view. We do not observe an obvious

trend in the speed error value as N and R increase, but we observe that for both

simulated speeds as R increases, the direction error decays. However, we quickly

notice that even in scenarios under which we would expect good estimates (i.e., large

number of cells, large radial extent), this algorithm’s estimates of speed and direction

give very large errors. In large part, the estimate infidelity is due to the effect of

estimates coming from two-pairings which provide outlying estimates. It should be

noted that this effect could be diminished by picking the median of the estimates

coming from each two-pairing instead of the mean. In the next subsection we present

the results of weighing the terms in the sum of individual estimates coming from each

two-pairing (as seen in Equation 4.55) to notice that the estimates get much better.

5.4.2 Estimating Velocity Vector Directly With Weighing

In this subsection we show the results of estimating the velocity vector directly by

assigning weights to each individual estimate (based on a calculation of the estimate’s

variance), as described in equation 4.55 of the Theoretical Developments chapter. The

results shown in Figures 5-6 and 5-7 are for motion of a curtain at v = 714µm/sec

and v = 1428µm/sec.

It is apparent in the speed estimate plot that as N (number of cells used) and R

(radial extent of cell locations) increase, the RMS error of the estimate decreases. This

trend is also noticeable in the direction estimate plots for both speeds, however the

decrease in RMS error vs. increasing R is not as prevalent as in the speed estimate

plots. Since we did not perform an analysis on the sensitivity of the speed and

direction estimates for this algorithm, we do not compare the simulation results to

any theoretically derived sensitivities. However, we do make this comparison further
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Figure 5-4: A and B show the errors in estimating speed and direction, respectively,
by estimating the velocity vector directly without weighing. The speed of the curtain
is v = 714µm/sec. The errors which are plotted are RMS errors averaged over 100
trials, all independent of each other (i.e., the cells are re-placed inside the circle at
random and the parameter noise is re-picked, independently from all other trials).
The STDs of the noise introduced into the simulation are: σp = 100µm, σ∆t = 0.141
sec, which reflect the STDs of the errors we get from real data. The reason why we
average over 100 trials instead of 300, and why we only simulate up to 19 cells is that
the number of two-pairings grows very rapidly with the number of cells which makes
the simulation time become too long.
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Figure 5-5: A and B show the errors in estimating speed and direction, respectively,
by estimating the velocity vector directly without weighing. The speed of the curtain
is v = 1428µm/sec. The errors which are plotted are RMS errors averaged over 100
trials, all independent of each other (i.e., for each trial the cells are re-placed inside the
circle at random and the parameter noise is re-picked, independently from all other
trials). The STDs of the noise introduced into the simulation are: σp = 100µm, σ∆t =
0.141 sec, which reflect the STDs of the errors we get from real data. The reason
why we average over 100 trials instead of 300, and why we only simulate up to 19 (vs.
25 for other algorithms) cells is that the number of possible two-pairings grows very
rapidly with the number of cells which makes the simulation time become too long.
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Figure 5-6: A and B show the errors in estimating speed and direction, respectively,
by estimating the velocity vector directly with weighing the terms in the sum. The
speed of the curtain is v = 714µm/sec. The errors which are plotted are RMS
errors averaged over 100 trials, all independent of each other (i.e., the cells are re-
placed inside the circle at random and the parameter noise is re-picked, independently
from all other trials). The STDs of the noise introduced into the simulation are:
σp = 100µm, σ∆t = 0.141 sec, which reflect the STDs of the errors we get from real
data. For the same reasons as before we average over 100 trials instead of 300 and
simulate only up to 19 cells, instead of 25.
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Figure 5-7: A and B show the errors in estimating speed and direction, respectively,
by estimating the velocity vector directly with weighing the terms in the sum. The
speed of the curtain is v = 1428µm/sec. The errors which are plotted are RMS
errors averaged over 100 trials, all independent of each other (i.e., for each trial the
cells are re-placed inside the circle at random and the parameter noise is re-picked,
independently from all other trials). The STDs of the noise introduced into the
simulation are: σp = 100µm, σ∆t = 0.141 sec, which reflect the STDs of the errors we
get from real data. For the same reasons as before we average over 100 trials instead
of 300 and simulate only up to 19 cells, instead of 25.
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in this section after we simulate the performance of the CosCos and Newton-Raphson

algorithms.

It is worth noting that at least for the largest values of N and R, the estimates of

speed and direction improve greatly when the weights are introduced. The dimension

of the moving curtains we run during experiments and the number of cells which

we typically get responses from are in the neighborhood of these values of N and

R. Therefore, the simulations suggest that if we were to pick between the no-weight

algorithm and the weighted version to estimate speed and direction, we should pick

the latter.

In addition, we note that doubling the speed of the moving curtain causes the

estimates of speed and direction to get worse in RMS, as we intuitively expected.

5.4.3 Estimating Velocity Vector Using Global Firing Time

Information

In this subsection we show the results of estimating speed and direction by estimating

the rectangular components of the velocity vector. We do so by using global firing

time information, as described in the corresponding algorithm in the Theoretical De-

velopments chapter. The results, shown in Figures 5-8 and 5-9, are for motion of a

curtain at v = 714µm/sec and v = 1428µm/sec.

These plots are qualitatively very similar to the results in the previous subsection.

We notice the same general trends (decrease in RMS error as we increase R and N).

Once again, as the speed is doubled, the RMS errors get worse.

5.4.4 Estimating Speed and Direction by the CosCos Algo-

rithm

In this subsection we show the results of estimating speed and direction by the CosCos

algorithm, presented in the Theoretical Developments chapter. The results, shown in

Figures 5-10 and 5-11, are for motion of a curtain at v = 714µm/sec and v =

1428µm/sec.
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Figure 5-8: A and B show the errors in estimating speed and direction, respectively,
by estimating the velocity vector using global firing time information. The speed of
the curtain is v = 714µm/sec. The errors which are plotted are RMS errors averaged
over 300 trials, all independent of each other (i.e., the cells are re-placed inside the
circle at random and the parameter noise is re-picked, independently from all other
trials). The STDs of the noise introduced into the simulation are: σp = 100µm, σ∆t =
0.141 sec, which reflect the STDs of the errors we get from real data.
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Figure 5-9: A and B show the errors in estimating speed and direction, respectively,
by estimating the velocity vector using global firing time information. The speed of
the curtain is v = 1428µm/sec. The errors which are plotted are RMS errors averaged
over 300 trials, all independent of each other (i.e., for each trial the cells are re-
placed inside the circle at random and the parameter noise is re-picked, independently
from all other trials). The STDs of the noise introduced into the simulation are:
σp = 100µm, σ∆t = 0.141 sec, which reflect the STDs of the errors we get from real
data.
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Figure 5-10: A and B show the errors in estimating speed and direction, respectively,
by using the CosCos algorithm. The speed of the curtain is v = 1428µm/sec. The
errors which are plotted are RMS errors averaged over 300 trials, all independent of
each other (i.e., for each trial the cells are re-placed inside the circle at random and
the parameter noise is re-picked, independently from all other trials). The STDs of
the noise introduced into the simulation are: σp = 100µm, σ∆t = 0.141 sec, which
reflect the STDs of the errors we get from real data.
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Figure 5-11: A and B show the errors in estimating speed and direction, respectively,
by using the CosCos algorithm. The speed of the curtain is v = 1428µm/sec. The
errors which are plotted are RMS errors averaged over 300 trials, all independent of
each other (i.e., for each trial the cells are re-placed inside the circle at random and
the parameter noise is re-picked, independently from all other trials). The STDs of
the noise introduced into the simulation are: σp = 100µm, σ∆t = 0.141 sec, which
reflect the STDs of the errors we get from real data.
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Once again, it is apparent that as N and R increase, the RMS errors in the

estimates of speed and direction decrease. In addition, we see that the estimates of

speed and direction get worse as the speed is doubled.

5.4.5 Estimating Speed and Direction by the Newton-Raphson

Algorithm

In this subsection, we show the results of estimating speed and direction by the

Newton-Raphson algorithm, presented in the Theoretical Developments chapter. The

results, shown in Figures 5-12 and 5-13, are for motion of a curtain at v = 714µm/sec

and v = 1428µm/sec.

It is apparent that as N and R increase, the RMS errors in the estimates of speed

and direction decrease. In contrast to the CosCos algorithm, it appears that the

estimates of direction are more sensitive to the cells being contained in a very small

radius. Also for this algorithm, we see that the estimates of speed and direction get

worse as the speed is doubled.

As was derived in the Theoretical Developments chapter, if N pairs of cells were

evenly spaced on a circumference of radius R, the variance of the speed and direction

estimates, estimated by using the Newton-Raphson and the CosCos algorithms, both

approximately decrease as 1
NR2 . In the case that the cells are not restricted to lie on

the circumference, but can lie inside the circle as well, we would like to understand if

the mean-square error in the speed and direction estimates has a dependence of the

type 1
NpRq , for some p, q > 0, where N is the number of cells (not the number of cell

pairs), R is the radial extent of the cell locations. Given N cells, we can make many

more than N cell pairs. However, since we let the cells be inside the circle as well,

it is reasonable to investigate if the decrease in error will be of the form 1
Np , versus

having a stronger inverse dependence on N .

We investigate into this idea by making log-log-log plots of the RMS error in

speed and direction when using the Newton-Raphson and CosCos algorithms, for

v = 714µm/sec. That is, we plot log(RMS(error)) vs. log(N) and log(R), and hope
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Figure 5-12: A and B show the errors in estimating speed and direction, re-
spectively, by using the Newton-Raphson algorithm. The speed of the curtain is
v = 1428µm/sec. The errors which are plotted are RMS errors averaged over
300 trials, all independent of each other (i.e., for each trial the cells are re-placed
inside the circle at random and the parameter noise is re-picked, independently
from all other trials). The STDs of the noise introduced into the simulation are:
σp = 100µm, σ∆t = 0.141 sec, which reflect the STDs of the errors we get from real
data.
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Figure 5-13: A and B show the errors in estimating speed and direction, re-
spectively, by using the Newton-Raphson algorithm. The speed of the curtain is
v = 1428µm/sec. The errors which are plotted are RMS errors averaged over
300 trials, all independent of each other (i.e., for each trial the cells are re-placed
inside the circle at random and the parameter noise is re-picked, independently
from all other trials). The STDs of the noise introduced into the simulation are:
σp = 100µm, σ∆t = 0.141 sec, which reflect the STDs of the errors we get from real
data.
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that it results in a plane.

We notice that the data does appear to lie on a plane when we make these plots.

To understand the dependence on N and R, we fit a plane to the data using a total

least squares method1. Next, we calculate the slope of the plane along the dimensions

of N and R to find p and q.

Figures 8-1 and 8-2, in the Appendix, show the planes which are fitted to the

data. The values of p and q which we get from these plots are organized in the table

below.

Table 5.1: Dependence of Mean-Square Error on N and R.
CosCos Newton-Raphson

MS error in speed p = 1.86, q = 3.69 p = 2.15, q = 2.98
MS error in direction p = 2.09, q = 2.09 p = 1.73, q = 2.58

5.4.6 Comparing Algorithm Performance

In an effort to understand which of the devised algorithms performs best under each

scenario, we have prepared plots which denote the algorithm with lowest RMS error

in speed and direction estimates for each combination of N and R. The algorithm

“Estimating Velocity Vector Directly Without Weights” was not compared to the

others due to its poor performance. Figure 5-14 depicts this comparison.

In summary, we notice that for R = 1mm and N = 25, we are able to estimate

speed and direction of a moving curtain with very low error. The resulting RMS

errors for the algorithms which do best for these settings of R and N are summarized

in Table 5.2.

Table 5.2: Quality of Curtain Speed and Direction Estimates of Best Algorithm.
v =714µm/sec v =1428µm/sec

speed RMS error 33.4µm/sec (4.6%) 88.3µm/sec (6.18%)
direction RMS error 2.32◦ 2.72◦

1The total least squares algorithm minimizes the sum of squared perpendicular distances from
each of the points being fitted to the fitting plane.

102



Figure 5-14: Comparing Algorithm Performance in Estimating Speed and Direction.
A and B depict the algorithm which performs best in estimating speed and direction,
respectively, for a curtain moving at v = 714µm/sec. C and D depict the same for a
curtain moving at v = 1428µm/sec. It is seen that the CosCos algorithm dominates in
the region of interest (big R and N) in all except speed estimation for v = 714µm/sec
(here Newton-Raphson dominates). This plot is based on the data from simulations
in the previous subsections.
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5.4.7 Comparison of Theoretical Derivations to Simulations

It has been shown in the Theoretical Developments chapter that the sensitivities of

the speed and direction estimates are, to first order:

σ2
v ≈

v2

2R2N
(2σ2

p + v2σ2
∆t)

σ2
θ ≈

1

2R2N
(2σ2

p + v2σ2
∆t)

for both the CosCos algorithm and the Newton-Raphson algorithm, which seem

to be the leading algorithms in the cases of importance to us.

In this subsection, we compare the simulated results of evenly spacing N pairs

of cells on a circumference of radius R to the theoretical results above. We set

v = 714µm/sec, σp = 100µm, σ∆t =
√

2 · 0.1sec, and plot [σtheory - RMS(error)]

of both speed and direction estimates, as a function of R and N , for the Newton-

Raphson algorithm and the CosCos algorithm. The comparison is seen in Figures

5-15 and 5-16.

In these plots, it can be seen that the difference between theory and simulation is

very small for speed and direction sensitivities when using both algorithms as N and

R get big. However, we see that the Newton-Raphson algorithm simulation results

are further from the theoretical results for very small N and R. In addition, we see

that the CosCos algorithm simulation speed sensitivity results get further from the

theoretical results as R gets small.

5.5 Moving Bar Simulations

In this section, we present the results of simulating the motion of a bar at a fixed speed

of v = 714µm/sec. When simulating purely non-DS cells, using the Newton-Raphson

algorithm, we calculate the RMS error in the estimates of the bar’s speed and direction

over 300 simulation runs, where the errors are defined to be (v̂−vtrue) and (θ̂−θtrue),

respectively. We make plots of the RMS error in the estimates as D (thickness of the
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Figure 5-15: Newton-Raphson Algorithm Simulation Compared to Theoretical Re-
sults. A and B, for speed and direction respectively, depict the difference between
the theoretical standard deviation of the estimate (by assuming small errors in the
parameters, and making first order approximations) and the simulated RMS error
in the estimate when using the Newton-Raphson algorithm. The RMS errors were
averaged over 300 trials. Negative values in the difference mean that the error in
simulation is higher than what we expected theoretically.
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Figure 5-16: CosCos Algorithm Simulation Compared to Theoretical Results. A and
B, for speed and direction respectively, depict the difference between the theoretical
standard deviation of the estimate (by assuming small errors in the parameters, and
making first order approximations) and the simulated RMS error in the estimate
when using the CosCos algorithm. The RMS errors were averaged over 300 trials.
Negative values in the difference mean that the error in simulation is higher than
what we expected theoretically.
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bar) and N (the number of cells used to make the estimates) are varied. The STDs

of the noise introduced into the parameters are σp = 100µm, σ∆t =
√

2 · 0.1 sec.

5.5.1 Estimating Speed and Direction Without DS Cells

It is worth noting that the reason why we estimate the bar motion parameters using

only the Newton-Raphson minimization algorithm is that is naturally leads us into the

next step, minimizing 4.111, which was established in the Theoretical Developments

chapter. In addition, the estimate fidelity when using this algorithm is not too far

away from the CosCos algorithm (shown in simulation and theoretically).

Bars which are 357µm wide, as are the ones we used in experiment, have an

effect on cells whose RFs lie (at least partially) in a strip of approximately 500 µm

in width. Therefore, we wish to focus on simulated results for bar widths of 500

µm. Regardless of N , we notice in these simulations, that the estimates of speed and

direction are very poor compared to the quality of the estimates produced for curtain

motion simulations. This was expected because the variety in angles formed by cell

pairs is small, since they all lie in the same strip. The results of this simulation can

be seen in Figure 5-17.

Although it’s interesting to observe how the RMS errors in the speed and direction

estimates vary as D and N grow, we are specifically interested in the results for bars

of width 500 µm. For this bar width, we note that the estimate fidelity does not

depend heavily on the number of cells used. When using 9 cells, a typical scenario we

face with experimental data, the RMS error in speed is 355.7µm/sec (50%) and in

direction 30.6◦. These estimates are clearly not as good as the estimates we are able

to attain for moving curtains. To be more specific, in simulation, the length of the

strip which the bar traverses is 2mm. For a strip width of 0.5mm the total area over

which the bar moves is then 1(mm)2. In the case of moving curtains simulations, a

radius of
√

1
π
≈ 0.56mm gives a circular area of 1(mm)2. In particular, we notice that

in the plots of RMS error in speed and direction when using the Newton-Raphson

algorithm to make the estimates of curtain motion parameters, we obtain errors of

213.1µm/sec and 11.8◦ in speed and direction, respectively.
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Figure 5-17: A and B show the errors in estimating speed and direction of a moving
bar, respectively, by using the Newton-Raphson algorithm. The speed of the bar is
v = 714µm/sec. The errors which are plotted are RMS errors averaged over 300
trials, all independent of each other (i.e., for each trial the cells are re-placed inside
the circle at random and the parameter noise is re-picked, independently from all
other trials). We plot the RMS error as we vary the number of cells used along with
the width of the moving bar. The STDs of the noise introduced into the simulation
are: σp = 100µm, σ∆t = 0.141 sec, which reflect the STDs of the errors we get from
real data.
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5.5.2 Estimating Speed and Direction With DS Cells

Due to the poor quality of the estimates, we search for refuge in DS cell information

and find it necessary to simulate DS cell responses. We do this as described in

Section 5.3 by introducing additive Gaussian noise of STD equal to 30% of the real

number of spikes the cell would have fired according to its elliptical firing profile. The

estimates are made as described in 4.5. Giving the DS cells very high significance in

the minimization (Kg = 109), a trend appears showing that as more DS cells are used

to estimate the speed and direction of the bar, both estimates get better. In particular,

the direction estimate RMS error decreases by almost 50% as the information from 4

and 5 DS cells is introduced. The results can be seen in Figure 5-18.
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Figure 5-18: Estimating Bar Speed and Direction Using the Newton-Raphson Algo-
rithm to Minimize q(v, θ), i.e., Using DS Cell Information. v = 714µm/sec. A and B
show a decreasing trend in RMS error (averaged over 300 simulated trials) of speed
and direction estimates, respectively, as the number of DS cells is increased. The
decrease of the direction estimate RMS error is more apparent, decreasing by almost
50% as 4 and 5 DS cells are introduced into the minimization algorithm. For this
minimization, DS cells are given very high significance, i.e., Kg = 109.

110



Chapter 6

Data Processing Methods

Here we present the methods which were used to transform the data from the post

spike sorting state into numbers which are inputs to the estimation algorithms. In

essence, this chapter is a continuation of the chapter Experimental Procedures. It was

put further back in order for the reader to understand the reasons why the data was

processed in the manner to be described. In the aforementioned chapter, we described

the procedures which were followed to measure the retina’s response to visual stimuli

and to convert the raw measured data into a spike time ensemble (times at which

each cell whose activity we measured fired). The following is a description of the

data analysis required to transform the spike time ensemble, relative to the visual

stimulus, into: 1) A selection of cells which are useful to estimate speed and direction

of a moving curtain and bar, 2) Estimates of the coordinates of each cell’s RF center

location, 3) For each pair, the time between the moments at which each cell in the

pair fired, 4) A classification of cells as DS, 5) Polar firing plots representative of DS

cell firing strengths for multiple directions of motion.
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6.1 Processing ON, OFF and ON-OFF Non-DS

Cell Spike Times

In order to estimate the speed and direction of a moving curtain or moving bar,

we select the cells whose response will be used in the estimation algorithm; we find

estimates of each of their RF center locations; and, for each cell pair, we produce

estimates of the time between the moments at which each cell in the pair fired.

6.1.1 Selecting Non-DS Cells

We select cells that have transient responses to curtain motion, as in Figure 1-3. The

reason for this is that bursts of spikes provide better time resolution of the moment

at which the curtain/bar passed over the receptive field. The second requirement

to select a cell was that it responded robustly to motion on at least two different

axes. This requirement is enforced in order to have enough data to estimate the RF

center location for each selected cell. The cell selection judgement was made on a

case-to-case basis.

6.1.2 Finding the Locations of Non-DS Cell RF Centers

To find a cell’s RF center we study its response to motion of a known set of curtains

moving at v = 714µm/sec in as many directions as were run on the experimental day.

For every axis of motion in which the cell responded robustly, we do the following: 1)

Calculate the mean firing position (over all trials) for one of the directions of motion

on the axis and throw away spikes which are 1.5 standard deviations away from the

mean on the later side of the burst1, 2) Calculate the mean firing position for motion

in the opposite direction, 3) Denote the mean firing position on the axis as the mean

of the positions found in 1) and 2).

By this method, each axis of motion in which the cell responds robustly suggests a

1The reason why we throw away spike which are at the end of the burst is to make up for the
fact that some cells are somewhat less transient and fire even after the edge has left their receptive
fields.
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line on which the cell’s RF center potentially lies2. For this reason, a robust response

to a single axis of motion is not sufficient to produce an estimate of the cell’s RF

center. We then find cell k’s RF center (xk, yk) to be the point which minimizes the

sum of squared perpendicular distances from itself to each line (one for every axis of

motion with a robust response).

Lastly, we substantiate the estimated location of each cell’s RF center by compar-

ing it to the location of the electrode which measured its signals. Because it is rare

for two electrodes to sense activity from the same cell, the electrode location provides

a rough approximation of where the cell is located.

6.1.3 Finding the Time Between Firing for Pairs of Non-DS

Cells

We select a subset (out of the set of cells whose positions we found) of cells which

respond robustly to each curtain/bar (speed and direction unknown). The selected

cells are paired in all possible ways, and the time between the moments at which each

cell in a pair fired is calculated as follows: 1) For every trial of motion of the particular

curtain/bar, we smooth each cell’s spike train by convolving it with a Gaussian kernel

of standard deviation 30msec, 2) The smoothed spike trains are cross-correlated and

the peak of the cross-correlation is found, 3) The firing lag between the cell pair k,

∆tk, is chosen to be the time location of this peak, 4) Each number found in 3) (one

for each trial) is averaged, the result of this represents the average firing lag between

the cells in the pair.

The reasons for finding the average firing lag between cells in each pair, versus

finding the lag for each trial are: 1) Due to spike sorting limitations and imperfect

action potential threshold settings during recording, we can not correctly identify

every spike produced by every cell. For this reason, a cell’s firing during certain trials

is not representative of what actually occurred in response to the stimulus. Therefore,

averaging over trials reduces the noise in the overall lag estimate; 2) We have access to

2The line passes through the point calculated in 3) and is perpendicular to the axis of motion.
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more cells in the estimation process if we use the overall (over all trials) response lag,

as opposed to the individual trial response lags, because for a particular trial a subset

of cells will not respond robustly (to our knowledge, based on threshold settings and

spike sorting).

An analogous individual trial analysis could be carried through, i.e., a firing lag

estimate could be produced based on single trials, rather than averaging over trials.

6.2 Processing DS Cell Spike Times

In order to use the directional information that DS cells provide about a moving

bar, we first identify the cells which have a directional selective response. Next, we

find their positions in the plane and construct directional firing profiles, as in Figure

1-5. Lastly, we select a set of bars (unknown speed and direction) whose speed and

direction will be estimated. For each of these bars, we quantify the response of every

DS cell along its path.

6.2.1 Classifying Cells as DS

As described in the Experimental Procedures chapter, bars are moved back and forth

along every axis of motion at different positions along the visual space, effectively

covering it. ON-OFF DS cells are selected based on the response to this stimulus

type. A cell is classified as ON-OFF DS if for a particular axis of motion it responds

robustly to the leading and trailing edges of the bar in one direction and responds

lightly or does not respond at all for motion in the opposite direction. For example,

the cell in Figure 6-1 is clearly classified as ON-OFF DS.

6.2.2 Finding the Positions of DS Cells

To estimate the position of ON-OFF RF centers, we are not able to use their response

to curtain motion because ON-OFF DS cells do not respond to curtain motion ro-

bustly due to RF surround inhibitory effects. In general we can not use their response
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Figure 6-1: ON-OFF Directional Selective Response. A) PSTH (over 3 trials) of the
response of an ON-OFF DS cell to a bar moving back and forth the visual space.
Each plot, in the set of 10, represents the motion of a bar along a different part of the
visual space (the 10 parts more than cover the visual space). For a given plot, the
response contained between the first pair of blue lines is to motion close to the cell’s
preferred direction. The response (or lack thereof) contained between the second pair
of blue lines is to motion in the opposite direction. The yellow arrows signal the ON
effect caused by the leading edge, whereas the black arrows signal the OFF effect
caused by the trailing edge of the bar. B) Corresponding 3 trial raster plot. Each
trial was run within 15 minutes of the previous one to assure that the retina was
under similar conditions over different trials.
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to bars moving in opposite directions (as done for curtains) because by definition they

have directional selectivity. To estimate the position of their centers we observe each

cell’s responses to the motion of the two bars which make it fire most robustly and

are on different axes of motion. Next, we locate the lines in the visual plane along

which each of the two bars moved3. The intersection point of these two lines is taken

to be the cell’s RF center4.

6.2.3 Making DS Cell Polar Firing Plots

A DS cell’s polar firing plot represents the robustness with which the cell fires for

motion in each possible direction. We construct these plots by representing the cell’s

firing strength by the average number of spikes (including ON and OFF responses)

that the cell fires for motion in each direction. For each particular direction, the

average number of spikes is found by averaging over all trials, and over the response

of the three bars which make the cell fire most5. We can possibly calculate these

firing strengths only for motion in the directions at which we ran the bars during

experimentation. Each strength is plotted as a point which is a distance — average

number of spikes — from the origin in the direction of the particular bar’s motion.

Then, in order to produce a polar plot which represents the cell’s firing strength in

a continuum of all possible directions, we fit the available data with an ellipse. The

expected number of spikes for the motion of a bar in a direction θ is then hk(θ) as

mentioned in section 4.5 and is defined by the shortest distance from the origin to the

ellipse’s trace in the direction θ. All bars which are used to make these plots move at

a speed of v = 714µm/sec.

3These imaginary lines cut the strip defined by the motion of the bar into two equal halves.
4An intersection point will exist because the chosen bars move on different axes.
5Normally, the three bars are contiguous ones. For example, in the case of the cell whose response

is in Figure 6-1, these three bars are # 4, 5, and 6 (counting from top to bottom).
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6.2.4 Finding the Number of Spikes Fired by a DS Cell to a

Moving Bar

For each moving bar, the number of spikes fired by a DS cell to a moving bar is found

by averaging the number of spikes that the cell fired in response to the bar over all

trials. This number, Sk (defined in section 4.5 to be the number of spikes fired by DS

cell k in response to the motion of a particular bar whose speed and direction we are

estimating), is handed to the estimation algorithm.
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Chapter 7

Experimental Results

In this chapter, we present the results of estimating the speed and direction of moving

curtains and bars purely from the response of RGCs of a rabbit retinal patch. Here

we focus on data from a single experimental day.

Initially, we present the details regarding the types of cells we use to make the

curtain estimates, the number of cells with useful transient responses, and the number

of curtains (each one in a different direction) we use to calculate the average RMS

error in curtain speed and direction estimates1. Subsequently, we present the results

regarding the dependence of RMS error on the number of cell pairs used and on the

maximum allowed separation between cells2. We compare the experimental results

to what we found in simulation. Next, we present the results of estimating the speed

and direction of bars moving at v = 714µm/sec and v = 1428µm/sec. Lastly, we

show how the estimates of direction in fact get better as DS cell information is used at

the small price of a decay in speed estimate fidelity (contrary to simulation results).

7.1 Cell Findings

We will present results based on data acquired on the experimental day of 04/06/07.

On the former experimental day we ran 5 trials of curtains moving at a single speed

1The average is over the number of curtain directions.
2The maximum allowed separation is analogous to the diameter of the circle in the Simulations

chapter.
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(714µm/sec) in 8 distinct directions. In addition, we ran 5 trials of bars in 8 directions

and at three distinct speeds (714µm/sec, 1428µm/sec, and 2142µm/sec) as described

in protocol #2 of section 3.3.3, in the Experimental Methods chapter. However, we

present the results of the estimations only for the speed of 714µm/sec for the sake of

brevity and clarity.

As transient OFF responses were more abundant than transient ON responses,

we chose to use the OFF responses of OFF and ON-OFF cells to estimate the speed

and direction of moving curtains. On the experimental date of 04/06/07 we selected

16 cells that had transient OFF responses which appeared to be useful for our pur-

poses. For this experiment, the variance in the cells’ RF center position estimates

and the variance in the ∆tk’s appeared to be a bit smaller than the ones used in

simulation3. Figure 7-1 depicts the RF center location estimates of these cells, which

were estimated as described in the Data Processing Methods chapter.

To facilitate the task of finding the time delays between cell firing times for bar

motion, we chose to use the responses of cells which had ON and OFF bursts in

response to the leading and trailing edges of a bar. A total of 27 such cells were

found. However, a single bar typically made 4-6 of these cells respond.

A total of 18 cells were identified as ON-OFF DS in response to all three speeds

of motion. Each bar whose speed and direction we estimated activated 2-6 DS cells.

7.2 Estimating Speed and Direction of a Moving

Curtain

In this section, we present the results of estimating the speed and direction of a

moving curtain the speed of which is 714µm/sec. The estimates are made using the

CosCos algorithm which proved to be superior to the Newton-Raphson algorithm in

most simulated cases (Newton-Raphson dominated when estimating speed for curtain

motion with v = 714µm/sec). The average RMS errors (averaged over 7 curtains,

3These are variances from the means which were computed over all trials to make the estimates
of position and ∆t.
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Figure 7-1: OFF Transient Cell Locations With Respect to Electrode Array. Elec-
trode positions are seen in red and are numbered XY, where X is the row number
counting from top to bottom, and Y is the column number counting from right to
left. Cell RF center position estimates are denoted by blue asterisks. The electrode
and unit number appear separated by a comma next to each cell’s RF center location
estimate.
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each moving in a distinct direction at v = 714µm/sec) of the speed and direction

estimates are plotted as a function of the number of cell pairs used N , and the

maximum allowed distance (2R) between cells in each pair (analogous to the circle

diameter, in simulation) is used to make the estimates. For each particular N , the

RMS error is calculated over 1000 trials in which the N cell pairs are picked at random

from all possible pairs available. For each particular value of 2R, the RMS error is

calculated over 1000 trials in which 15 cell pairs are picked at random from all cell

pairs whose dk satisfy the condition dk ≤ 2R.

Figure 7-2: A and B depict the RMS error in speed and direction estimates, respec-
tively, vs. number of cell pairs used. Blue dots and red line represent experimental
data. Each blue dot corresponds to a single value of N and a single direction of cur-
tain motion. Each dot represents the RMS error in the estimate, averaged over 1000
trials in which N cell pairs are picked at random from the set of all pairs. The red
line represents the average RMS error (averaged over curtains in 7 distinct directions)
in the estimate as N is varied. The black line represents the RMS error from 300
simulations. In each simulation, cells are redistributed at random inside a circle of
radius 1mm (roughly the size of the 1.4mm × 1.4mm square electrode array), N cell
pairs are chosen at random, new noise values are assigned to cell positions and firing
times, and one least-squares determination of speed and angle is made. The STDs of
the noise used in simulation are σp = 50µm and σ∆t = 0.071sec.

It is apparent in Figure 7-2 that the experimental results follow the simulated

ones very well. Figure 7-3 shows a dissimilarity between experiment and simulation
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Figure 7-3: A and B depict the RMS error in speed and direction estimates, respec-
tively, vs. maximum distance separating cells used. Blue dots and red line represent
experimental data. Each blue dot corresponds to a single value of N and a single
direction of curtain motion. Each dot represents the RMS error in the estimate,
averaged over 1000 trials in which 15 cell pairs are picked at random from the set
of all pairs whose dk satisfy dk ≤ 2R5. The red line represents the average RMS
error (averaged over curtains in 7 distinct directions) in the estimate as 2R is varied.
The black line represents the RMS error from 300 simulations. In each simulation,
cells are redistributed at random inside a circle of radius R, 15 cell pairs are chosen
at random, new noise values are assigned to cell positions and firing times, and one
least-squares determination of speed and angle is made. The STDs of the noise used
in simulation are σp = 50µm and σ∆t = 0.071sec.
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for small values of R, but shows near convergence for larger values of R. However,

the results suggest that direction estimates are good even for small values of R. Most

importantly, we notice that the experimental estimate fidelity is good (∼7% error in

speed, and 4◦ in direction). Therefore, we establish that for this experimental day we

were able to estimate speed and direction of a moving curtain fairly precisely.

7.3 Estimating Speed and Direction of a Moving

Bar

In this section, we present the results of estimating the speed and direction of moving

bars which move at speeds of 714µm/sec and 1428µm/sec. The estimates are made

using the Newton-Raphson algorithm because this algorithm is also used to make

the estimates using DS cell information. In the first subsection we show the results

of making the estimates for each of the speeds above using only non-DS ON-OFF

cells. In the second subsection we show that when ON-OFF DS cells are given very

high significance (i.e., Kg = 109) the RMS error in the direction estimate decreases

as more DS cells are used. However, the RMS error in the speed estimate increases a

bit, contrary to simulation.

7.3.1 Estimation Using ON-OFF Non-DS Cells

The average RMS errors in speed and direction estimates were found by averaging

over the RMS error of estimating the motion of 11 bars (some moving in the same

direction on different parts of the visual plane, in a total of 4 directions) using the

non-directional ON-OFF responses of RGCs. The bars the speed and direction of

which were estimated were chosen based on the condition that ON-OFF DS cells (the

locations of which had been previously found) being along their trajectory. Table

7.1 below summarizes the results of the estimations. It is clear that the estimates’

fidelities are far worse than the estimates achieved for moving curtains.
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Table 7.1: Average RMS Error in Estimates of Speed and Direction of Moving Bars
v =714µm/sec v =1428µm/sec

Av. Speed Estimate RMS Error 339µm/sec (47.5%) 777µm/sec (54.5%)
Av. Direction Estimate RMS Error 73.1◦ 62.3◦

7.3.2 Estimation Using ON-OFF Non-DS Cells and DS Cells

The average RMS errors in speed and direction estimates were found by averaging

over the RMS error of estimating the motion of the same 11 bars mentioned in the

previous subsection, for v = 714µm/sec. We make the estimates using all available

non-directional ON-OFF responses of RGCs (including the non-directional timing

information which is extracted from DS cell firing) and the directional ON-OFF re-

sponses of ON-OFF DS cells. Given a particular number of DS cells to be used, we

choose this number of DS cells which lie along the trajectory of the bar at random,

and use the information they provide as described in Data Processing Methods.

Figure 7-4: A and B depict the RMS error in speed and direction estimates, re-
spectively, vs. number of DS cells used in conjunction with ON-OFF non-directional
information (provided by both non-DS and DS cells). Each plot has a reference level
(turquoise dotted line) which represents the average RMS error in the estimates found
without using directional information from DS cells, i.e., the values in Table 7.1. The
red lines correspond to setting Kg = 106, and the black line corresponds to setting
Kg = 109.

It is apparent in Figure 7-4 that the direction estimate RMS error becomes very

small (∼ 9◦, compared to 73.1◦ when no DS cells are used) as DS cell information
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is granted high significance. However, in the case of high DS cell information sig-

nificance, we notice an increase in speed estimate RMS error from 339µm/sec to

470µm/sec. In the Future Work portion of the Conclusions and Future Work chap-

ter, we suggest a method of extracting speed information from DS cell responses based

on preliminary results suggested by a 1-dimensional motion ON-OFF DS cell model

we constructed. In the case that we extracted speed information by the methods to

be described, we believe that the RMS error in the speed estimate would decrease to

below the RMS error value attained without using DS information at all.

125



Chapter 8

Conclusions and Further Work

In this thesis, we have proposed an instance of a simple Inverse Problem: Estimating

the speed and direction of curtains and bars moving at fixed speeds and directions on

the photoreceptor layer of a rabbit retinal patch. In order to delve into this problem,

using an MEA, we recorded the action potentials of dozens of retinal ganglion cells

extracellularly in response to these moving edges of light. After assigning each action

potential to a specific unit, we were equipped with a spike time ensemble in response

to each stimulus we presented on the particular experimental day.

The solution we propose is based on the intuitive picture that the edge motion

information is likely contained in the relative response times of a subset of the cells in

the ensemble. First, we estimate the location of every cell which we use to make the

estimates of speed and direction. To estimate the speed and direction of a moving

curtain, we focus on the response of cells which have transient responses. Because

these responses are concentrated in time, they provide us with good time resolution of

the moment at which the edge passed over the cell’s RF center. To estimate the speed

of a moving bar we focus on the relative timing between the responses of ON-OFF

cells.

We conclude the chapter with a list of problems which could be addressed as a

continuation of the work in this thesis.
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8.1 Estimating Speed and Direction in Simulation

and Experiment

In order to generate the estimates of speed and direction, we propose five algorithms

each of which estimate speed and direction simultaneously. The first algorithm we

present produces the overall estimate by first generating many estimates from each

available two-pairing of cells, and then averaging. This algorithm is improved to form

a second algorithm; this one computes a weighted average based on the size of the

variance of each single estimate. The third algorithm, suggested by Prof. Berthold

Horn, computes the estimates based on the cell positions and concentrates on the

firing times as a whole. The fourth algorithm, proposed by the author and Stavros

Valavanis, makes use of pairwise relative firing times and positions and solves a linear

least squares problem to produce the estimates. The fifth algorithm, suggested by

Prof. Wyatt minimizes a sum of squared residuals which are also based on pairwise

information.

In the Theoretical Developments chapter, we perform a noise sensitivity analysis

(in regards to a moving curtain scenario) which provides us with a grasp of how the

variances of the estimate errors vary as a function of the variances in position and

firing time estimates, the number of cell pairs used, and the distance separating the

cells in each pair. This analysis, assumes that the parameter errors have a finite

variance without regard to the parameter error distribution form. The sensitivity

analysis was performed for the third, fourth and fifth algorithms. We do not compare

the sensitivity results of the third algorithm to those of the fourth (CosCos) and fifth

(Newton-Raphson). However, we notice after simple manipulations, that the CosCos

and Newton-Raphson algorithms have the same sensitivity for small errors in the

measured parameters, and when the cell pairs are evenly placed on a circumference.

Despite the fact that we don’t compare each algorithms’ noise sensitivities to each

other analytically, we run simulations of the response of a cell ensemble to curtain

and bar motion. With the help of these simulations, we describe the fidelity of the

estimates produced by each algorithm as a function of the number of cells used, and
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the size of the circle (in the case of moving curtains) or the width of the strip contain-

ing them (in the case of moving bars). When we compare the performance of each of

the algorithms in estimating the speed and direction of moving curtains (at speeds

v = 714µm/sec and v = 1428µm/sec, the speeds which were used in experiments), we

conclude that the CosCos algorithm dominates in most cases, followed close behind

by the Newton-Raphson algorithm. We conclude that in simulation, we are able to

estimate the speed and direction of a moving curtain fairly accurately (∼ 5% RMS

error in speed estimates, and 3◦ RMS error in direction estimates) when introducing

noise levels which are very close to those seen in experimental settings.

We also simulated cell responses to moving bars, and noticed that given the same

noise levels mentioned above, we can not estimate speed and direction as accurately,

which we intuitively expected (since cells lie within a strip). However, when the

response of DS cells to moving bars were modeled and simulated, we showed that

the information they provide reduced the direction estimate RMS error by a large

amount, and somewhat reduced the speed estimate RMS error, even subject to large

noise (the standard deviation of the zero-mean Gaussian noise added is 30% of the

real value defined by the elliptical firing profile).

Next, we presented the results of making estimates of speed and direction based

on data acquired from rabbit retinal ganglion cells. Regarding moving curtains, these

results suggest that indeed, on average, we are able to produce estimates which follow

the predictions of the simulations fairly closely. That is, the RMS error in the speed

and direction estimates decrease when using cells which are further apart from each

other and when using more cell pairs. Thus, we are satisfied with the estimates

we attain with the cells which are available. Regarding moving bars, the estimates

produced without using DS cell information are somewhat less accurate than what

we predicted based on simulations. However, heavily weighing DS cell information

increases the fidelity of the bar direction estimates (RMS error of ∼ 9◦), whereas

the speed estimates become somewhat worse than they were when omitting DS cell

information. This is contrary to simulation, in which the speed estimate gets better

when DS information is incorporated.
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In simulation, when we set Kg = 109 we are effectively minimizing g(θ) first,

and then fixing the optimal value of θ in the optimization of q(v, θ), which becomes

a problem of minimizing f(v, θ), where θ is fixed. Since in simulation the speed

estimates get better as we use DS cell information, we can state that fixing θ to a

value close to the true one helps improve the estimate of v when minimizing f(v, θ).

However, we don’t see this effect when performing the estimation on real data.

Once again, we do not make claims that the brain performs estimation of speed

and direction in the ways we propose. The purpose of this thesis is to demonstrate

that we are able to estimate speed and direction very well for curtains moving at

speeds within a reasonable range. In addition, we show that using the same methods

which grant us estimates of high fidelity for curtains, the fidelity decreases when

estimating the speed and direction of moving bars. This opens up a great role for DS

cells which seem to be meant to at least provide directional information to the brain.

In this thesis we show that we are able to extract directional information effectively.

The following section provides a brief outline of what could be done to strengthen

the evidence presented in this thesis even more and to further investigate about what

information is available in the cell spike times.

8.2 Suggested Further Work

The following topics (in no particular order) are left to explore and could provide

significant insight into the questions posed in this thesis:

1. Investigate if the estimate fidelity changes when using individual trials (as op-

posed to averaging over trials) to estimate the ∆t’s and calculate the Sk’s which

are passed as inputs to the estimating algorithms.

2. Devise ways to use the cells’ spike times in a more sophisticated manner than

simply cross-correlating the responses of a pair of cells.

3. Quantify the time lag inherent in each cell’s burst in response to the motion of

a curtain or bar. This time lag could be used to reduce the noise in the ∆t’s.

129



A possible way of doing this is based on the response of the cell to curtains

moving at different speeds.

4. Evidence has been presented which leads us to believe that DS cells which

have similar preferred directions fire synchronously with each other. It would

be interesting to verify that this is true and to find a way to incorporate this

information into refining the direction estimates.

5. Although the work is not included in this thesis, we have quantitatively mod-

eled the firing characteristics of ON-OFF DS cells in response to 1-dimensional

motion of binary images on the cell’s preferred-null axis. The model has been

compared to the results of experiments published in [2] and [11] to learn that the

model agrees closely with real DS cell data. Simulations of this model suggest

that the response of a DS cell to a single edge of a moving bar (of a width similar

to the ones we used in our experiments) has the following property: The slope

of the line segment which connects the beginning of the cell’s smoothed (e.g.

with a Gaussian filter) response to the peak of it, is proportional to the speed

of the bar. This suggests that if the constant of proportionality is established

during a training phase, the response of a DS cell could provide information

about the speed of the moving bar. The information could be incorporated

in a way similar to how the gk residuals were constructed to aid in estimating

direction using DS cells.

6. Simulate the responses of DS cells by including the fact that ON-OFF DS cell

preferred directions lie roughly in one of 4 possible directions. Changing this

in the simulation environment could make our simulated results more close to

what is seen experimentally. Does making these changes cause the direction

estimates for motion in some directions to be better than others?

7. Once one is able to accurately estimate speed and direction of moving curtains

and bars, the next natural step is to estimate these parameters for two objects

moving simultaneously in the image plane. Another interesting problem is to
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track the motion of an object which changes its direction of motion at random

but maintains a constant speed.

8. Compare the sensitivities of the v and θ estimates when using the algorithm

suggested by Prof. Horn with the sensitivities of the Newton-Raphson and

CosCos algorithms. Note that the sensitivities of the latter two algorithms are

equal, to first order.

9. To improve the estimates of moving bar direction it seems plausible to notice

which cells in the ensemble fired and which did not when the bar was moved.

10. In Figures 7-2 and 7-3 we notice that the blue circles follow a trajectory as N

and R are increased. This is most likely because in experiment the estimates

for curtains moving in some directions are better than for curtains moving

in others. It might be worthwhile to plot the estimate errors for each curtain

direction separately. It would be interesting to show that these discrepancies are

due to the particular positions of the cells which we use to make the estimates.

11. Explore more carefully why the speed error (and not the direction error) is

bigger using real data than in simulations.

12. Compare the distribution of cell pair distances in simulation and in real data.

This could be the reason for the discrepancy mentioned in 11. Another option

is to perform the simulations using actual cell locations from experiment.

13. Find an intuitive way to understand the sensitivities of v and θ given in Equa-

tions 4.37 and 4.41.

14. Minimize the sum of squared errors which the Newton-Raphson minimization

solves by using Lagrange multipliers to perform a constrained minimization.

15. There are big velocity errors with bars. Should we weigh the data in such a way

that two quite distant cells stimulated by a bar get a high weight? The best

method is not clear, e.g. should we give more significance to pairs with high

dk

∆tk
?

131



16. Determine if we obtain better θ estimates with the CosCos algorithm if we

estimate θ by finding the least squares solution of sin(θ) = β√
α2+β2

and cos(θ) =

α√
α2+β2

.

17. Determine for what purposes we should estimate (u,w) versus v and θ.

18. Does Berthold’s method outperform others when it is handed the exact value

of T , so that it only solves for two unknowns, as the others do?

19. Extend the variance of v and θ to a disc consisting of concentric circumferences,

at a spacing in R, and with a number of cells at each R that approximate a

uniform distribution. In this case, should we form pairs of cells from different

circumferences?
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Figure 8-1: Log-Log-Log Plot of MS Error in Speed and Direction When Using the
CosCos Algorithm for v = 714µm/sec. We see in A and B that log(MS error) in
speed and direction, respectively, approximately lies on a plane when plotted vs.
log(N) and log(R). This implies that the Mean-square error in speed and direction
estimates decrease approximately as 1

NpRq for some p, q > 0. The p and q which were
found appear in Table 5.1 in the Simulations chapter.
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Figure 8-2: Log-Log-Log Plot of MS Error in Speed and Direction When Using the
Newton-Raphson Algorithm for v = 714µm/sec. We see in A and B that log(MS
error) in speed and direction, respectively, approximately lies on a plane when plotted
vs. log(N) and log(R). This implies that the Mean-square error in speed and direction
estimates decrease approximately as 1

NpRq for some p, q > 0. The p and q we found
appear in Table 5.1 in the Simulations chapter.
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