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Abstract

This thesis presents the development and implementation of approximate dynamic
programming methods used to manage multi-agent systems. The purpose of this
thesis is to develop an architectural framework and theoretical methods that enable
an autonomous mission system to manage real-time multi-agent operations. To meet
this goal, we begin by discussing aspects of the real-time multi-agent mission problem.
Next, we formulate this problem as a Markov Decision Process (MDP) and present
a system architecture designed to improve mission-level functional reliability through
system self-awareness and adaptive mission planning. Since most multi-agent mission
problems are computationally difficult to solve in real-time, approximation techniques
are needed to find policies for these large-scale problems. Thus, we have developed
theoretical methods used to find feasible solutions to large-scale optimization prob-
lems. More specifically, we investigate methods designed to automatically generate
an approximation to the cost-to-go function using basis functions for a given MDP.
Next, these these techniques are used by an autonomous mission system to manage
multi-agent mission scenarios. Simulation results using these methods are provided
for a large-scale mission problem. In addition, this thesis presents the implemen-
tation of techniques used to manage autonomous unmanned aerial vehicles (UAVs)
performing persistent surveillance operations. We present an indoor multi-vehicle
testbed called RAVEN (Real-time indoor Autonomous Vehicle test ENvironment)
that was developed to study long-duration missions in a controlled environment. The
RAVEN’s design allows researchers to focus on high-level tasks by autonomously man-
aging the platform’s realistic air and ground vehicles during multi-vehicle operations,
thus promoting the rapid prototyping of UAV technologies by flight testing new ve-
hicle configurations and algorithms without redesigning vehicle hardware. Finally,
using the RAVEN, we present flight test results from autonomous, extended mission
tests using the technologies developed in this thesis. Flight results from a 24 hr,
fully-autonomous air vehicle flight-recharge test and an autonomous, multi-vehicle
extended mission test using small, electric-powered air vehicles are provided.
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Chapter 1

Introduction

Unmanned vehicles have been in use for many years. For example, some of the first

unmanned (or pilotless) aircraft were developed after World War I to be used as

“aerial torpedoes” (which are now called cruise missiles) [35]. This work later led to

the development of the remotely-piloted target “drones” to train anti-aircraft gunnery

operators in Great Britain and the United States in the 1930s [35]. Today, unmanned

aerial vehicles (UAVs) are becoming vital warfare and homeland security platforms

because they significantly reduce costs and the risk to human life while amplifying

warfighter and first-responder capabilities. These vehicles have been used in Iraq and

during Hurricane Katrina rescue efforts with success. In fact, the U. S. Department of

Defense has increased UAV development funding from about $3 billion in the 1990s to

over $12 billion for 2004 through 2009 as they continue to find new roles and missions

for UAVs in combat and surveillance operations [72]. However, achieving the vision

of multiple UAVs operating cooperatively with other manned and unmanned vehicles

in the national airspace and beyond remains a formidable barrier. Indeed, many

unmanned vehicles do not exhibit the level of performance and flexibility needed to

complete an entire mission autonomously. For example, most UAV guidance and

mission planning systems do not possess the capability to recognize and react to

unexpected changes in the operating conditions. The complexity of this problem

increases as multiple agents are introduced. For example, if another autonomous

agent is added to the mission scenario, then both vehicles must resolve information

regarding the impending actions of the other vehicle. Similarly, if a manned agent is

added to the original scenario, the autonomous vehicle must also possess the capability

to effectively communicate and coordinate its actions with the manned vehicle.

Despite the aforementioned challenges, these multi-agent teams can provide valu-
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able information that can be used to make mission critical decisions in real-time.

Multi-agent teams offer a promising alternative to a number of high-risk manned

mission scenarios. These vehicle groups can be used to perform round-the-clock mis-

sions in dangerous and unknown environments without considerable risk to the human

operators. However, operational costs remain a key concern for mission planners. For

example, although the procurement costs for UAVs are much lower than that of

many manned aircraft, UAVs – thought at one time to be low-cost tactical solutions

for high-risk situations – have become increasingly expensive. In 2003, the estimated

procurement costs for 22 MQ-1 Predators was $154.1 million [71]. As a result, UAVs

are no longer thought of as “disposable” aircraft because of their cost [93].

Numerous researchers are investigating future systems that use autonomous agents

to cooperatively execute these missions [16, 31, 73, 74]. However, little has been said

to date about how to perform multi-day autonomous system operations. Autonomous

mission systems must balance issues related to vehicle capability, reliability, and ro-

bustness with task and mission goals when creating an effective strategy. In addition,

these systems have the added responsibility of interacting with numerous human oper-

ators while managing both high-level mission goals and agents conducting individual

tasks. As a result, multi-agent health management techniques are being developed to

increase the reliability of autonomous systems during mission operation.

In prior work, the term health management is used to define systems that actively

monitor and manage vehicle components (for example actuators, flight control, engine,

avionics and fuel management hardware) in the event of failures [30]. Prognostic and

health management techniques are being developed for new military aircraft systems

to reduce future operating, maintenance, and repair costs [5]. In the context of

multiple vehicle operations, this definition can be extended to autonomous multi-

agent teams. In this case, teams involved in a mission serve as a vehicle system. Each

multi-agent team involved in the mission is a subsystem of the larger mission team,

and each vehicle is a subsystem of each multi-agent team.

As with mission-critical systems for a single agent, multi-agent task allocation

and mission management systems must account for vehicle- and system-level health-

related issues to ensure that these systems are cost effective to operate. For example,

despite the on-going development of health management techniques for flight-critical

systems, most UAVs are controlled by a team of operators from a remote location [78].

Here, we define an operator as a human being that monitors or issues commands to a

UAV during a mission. Although recent advances in mission systems have reduced the

number of operators per vehicle, the vehicle to operator ratio for most UAV mission

18



platforms remain less than or equal to one. This ratio is small for many reasons. First,

most UAVs are piloted by humans during take-off, landing and other complex flight

tasks [29, 32, 33]. This means that for every UAV, there is at least one UAV “pilot”

operator. In addition, most UAVs have remote ground stations to monitor their

flight critical systems (e.g., communications link, flight control, guidance/navigation

systems) and mission data. Since it is difficult for a “pilot” operator to monitor

all mission critical information, most UAVs have more than one operator during a

mission [68]. Therefore, in a rapidly changing environment an operator may find

themselves “overloaded” with information from multiple task teams.

As a result, there are major problems – which are not solely vehicle allocation

issues – that need to be addressed in the current autonomous multi-agent problem.

For example, questions related to decision making and the division of work between

man and machine are not well-defined. This problem leaves us with the following

question:

During a mission, how should teams of autonomous agents be managed to meet

scenario objectives while minimizing the total cost of the operation?

This question directly relates to the health of the mission system. Since each multi-

agent team may perform mission tasks over an extended period of time, issues relating

to task coordination, maintenance, operator support, and asset (both operator and

vehicle) shift changes will arise. In fact, in citing recent reports on UAV activities, [45]

notes that “... system reliability may be emerging as a greater threat to UAVs than it

currently is to conventional aircraft. This trend may serve to increase the criticality

of maintenance....” in UAV systems [45]. As a result, a mission system and its

operators must collaboratively manage the health of several multi-agent teams in

order to meet mission requirements. This problem may be formulated as a very

large mathematical programming problem; however, this approach is likely to be

computationally intractable for any computer or human operator to solve in real-

time (even for a problem of reasonable size).

1.1 Literature Review

In principle, many of these questions are very similar to questions arising in manu-

facturing. For example, the problem of scheduling machine maintenance in between

production runs is a common scheduling problem found in the manufacturing world.

A simple machine repair example problem can be found in [7] where using Dynamic
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Programming an optimal solution could be found. In [42], the authors examine the

multiple machine replacement problem for parallel and serial production lines. Each

problem is formulated using an integer programming approach to yield a policy for

how each asset will be utilized over a finite horizon.

Likewise, scheduling and maintenance problems have been explored with respect

to air transportation [3, 4, 10, 13, 18, 36, 43, 80]. For example, in [10] the authors

use an integer programming formulation of the problem to address the deterministic,

multi-airport Air Traffic Flow Management Problem with route capacity constraints.

The solution to this problem provides the departure times and speed adjustments of

each aircraft flying between a network of airports in capacitated airspace to ensure

that the vehicles arrive and depart from each destination in a timely fashion, thus

reducing the operating costs of the overall system. In addition, they show that the

Traffic Flow Management Problem (TFMP) with capacity equal to one is an NP-

Hard problem. They also show that their problem formulation can handle variations

on the TFMP such as dependencies between arrival and departure times, groups of

multiple aircraft from a carrier arriving and departing from a location, and aircraft

re-routing. Papers, such as [3], have used a similar method to generate sequences

of arrival times for incoming aircraft to reduce operating costs. Other papers, such

as [13, 80], have also addressed airline scheduling problems to reduce delay time and

operating costs due to external disruptions in flight plans (i.e., weather conditions,

mechanical failures).

On the other hand, [4, 18, 36, 43] incorporate maintenance considerations into the

vehicle routing problem to lower routing and operating costs while meeting scheduled

maintenance constraints. For example, in [18] the authors use asymmetric travelling

salesman model with side constraints and solve the problem using Lagrangian relax-

ation techniques and subgradient optimization. In [36], the authors start with sets of

Lines of Flights (LOFs) which aircraft fly regularly and form a graph that is adjusted

to meet three-day maintenance routing constraints.

Though many of the issues presented in these papers apply to problems related to

scheduling concerns, some of the challenges specific to persistent operations include

(but are not limited to): several multi-agent teams may be operating simultaneously

that may or may not coordinate tasks and information about the current task, vehicle

assets may be lost during the course of a mission, and little or no information about

the vehicles may be directly available to the operator during the mission. For example,

a vehicle failure may become known only after the vehicle has failed to show up for

refuelling past a given deadline.
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A number or researchers have explored persistent UAV operations [28, 29, 84]. For

example, in [29], researchers demonstrated video surveillance over an area using two

fixed-wing UAVs, while [84] describes techniques for using multiple UAVs to explore

regions for ground objects of interest. Similar missions have been studied as part of

the DARPA Sponsored MICA (Mixed Initiative Control of Automa-Teams) project

which focused on the use of multiple vehicle teams to accomplish discrete mission

tasks [6, 51, 105]. These papers focus on asset allocation and mission management

during flight operations. More recently, researchers are beginning to examine fuel

constraints in UAV tasking operations [14, 15, 86]. However, in each case these papers

do not address the fuel / health monitoring problem explicitly as part of the tasking

problem (in terms of flight time limitations, etc). In [86], the authors assume that the

vehicles can reach all of the targets and / or complete the tasks given to the vehicles

as specified. In [14, 15], although the authors say that their decentralized multiple-

UAV approach for monitoring the perimeter of a forest fires includes a feature to

“...systematically add and remove UAVs from the team (important for refueling)” the

authors later say in the conclusion of [14] that “... numerous technical issues remain

to be resolved including determination of the initial rendezvous time, dealing with fuel

contingencies and refueling, implementation with irregular and growing fire shapes,

and determining factors that allow the perimeter length to be updated frequently

enough.” Refs. [98, 99] specifically include health and fuel models in the mission and

tasking architecture. These models were used to monitor vehicle capabilities during

flight tests with real hardware in real-time. These models are described in detail as

part of this thesis work.

Once the problem is defined, the next step is formulating the problem in a matter

by which it can be solved. One of the major obstacles faced when an approximate

dynamic programming method is used to solve a large-scale problem is the calcula-

tion or generation of the cost-to-go structure for the problem. For example, using

an Approximate Linear Programming (ALP) formulation of the original problem re-

quires the selection of appropriate basis vectors and state relevance weights. In many

cases, selecting the appropriate parameters used to find basis functions is based on

experience.

A variety of methods for value function approximation have been proposed in the

literature and are summarized in [9]. The history of parametric function approx-

imations dates back to Samuel in 1959 when he used a parametric approximation

to allow a computer to automatically generate policies for playing checkers [65, 81].

Currently, there are some papers in the literature on procedures for selecting param-
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eters for basis functions, however there is a need for more research in this area. First,

Refs. [75, 76] propose a scheme for generating a set of basis functions from an initial

basis, its current domain, and weight vector. In this formulation, they use the dual

problem to determine the best candidate for the new basis function. Similarly, [60]

generates future basis functions by optimizing a class of parametric basis function

models. [61] proposes a scheme called “Least Square Policy Iteration” that uses a

linear architecture where the basis functions are given by φ(x) = [1 s ... sK ] where

s represents the state number. [95] proposes a scheme that approximates the value

functions using low-dimensional cubic-spline. [34, 87] model the state space using a

manifolds representation based on reachable sets used to partition the state space in

to regions (which, as the author describes, is much like partitioning an “atlas” in to

overlapping “charts”).

At the University of Massachusetts-Amherst, Mahadevan et al. are developing

model-free methods to generate basis functions from the underlying problem formu-

lation. In [65, 66], the authors propose a method to build proto-value functions

by developing basis functions using the underlying state space geometry using the

low-order eigenfunctions of the graph Laplacian. Refs. [64, 67] propose using a meth-

ods based on diffusion wavelets to generate basis functions. Refs. [106, 107] propose

multi-grid methods to approximate the cost-to-go function for an MDP, where the

basis functions are calculated recursively using a set of inter-level operators that are

computed prior to starting the optimization for different resolution. However, the

authors noted in their conclusion that finding a method for computing the inter-level

operators remained an issue for the algorithm’s application.

Ref. [69] proposes a method that adapts the (non-linear) basis function param-

eters, while optimizing the basis function weights. This paper assumes that these

basis functions have some pre-determined parametric form (in this case, radial basis

functions) and uses a gradient-based approach and a cross entropy method to perform

the adaptation, while using a weighted 2-norm scoring function of the approximate

Bellman error as an optimization criterion. Finally, [55] proposes a method that

uses neighborhood component analysis (NCA) to select new features to be added to

the feature matrix. In this research sampled trajectories are used to generate the

approximate Bellman error for each state. Using neighborhood component analysis,

a transformation is learned that maps states with similar Bellman errors together,

which is then used to select features for the new basis functions to be used in the

next iteration.

Although many of these techniques have promising results, many of these algo-
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rithms cannot be employed efficiently for large-scale problems. The main difference

between the research presented in this thesis and previous work is that the basis func-

tion generation algorithm presented here is designed to be implemented for large-scale

problems. In addition, the methods presented in this thesis use a simple closed-form

approximation structure for computing basis functions implicitly using sampled tra-

jectories. Also, to the best of our knowledge, this basis function generation method

is the only method in the literature that has been used to manage an hardware-based

autonomous system in real-time.

For testing these research ideas, a variety of test platforms have been developed

to study advanced theories and approaches in the development of innovative multi-

vehicle and UAV concepts [2, 19, 26, 27, 33, 46, 47, 49, 52, 50, 53, 54, 56, 58, 70,

85, 90, 103, 104]. For example, the BErkeley AeRobot (BEAR) project features

a fleet of commercially available rotary-wing and fixed-wing UAVs that have been

retrofitted with special electronics. These vehicles have been used in applications

such as autonomous exploration in unknown urban environments and probabilistic

pursuit-evasion games [85, 103]. In the Aerospace Controls Laboratory at MIT, an

outdoor testbed consisting of a fleet of eight fixed-wing autonomous unmanned UAVs

was designed as a platform for evaluating coordination and control algorithms [49, 56].

Similarly, researchers in the Multiple AGent Intelligent Coordination and Control

(MAGICC) Lab at Brigham Young University have built and flown a group of small

fixed-wing UAVs to perform multi-vehicle experiments outdoors [70]. These planes

are launched by hand and track waypoints autonomously.

Likewise, the DragonFly project at Stanford University’s Hybrid Systems Labo-

ratory uses a heavily-modified fixed-wing model aircraft with a 10-foot wingspan for

experiments, and two additional aircraft are under development [26, 90]. The ob-

jective of this platform is to provide an inexpensive capability for conducting UAV

experimental research, ranging from low-level flight control to high-level multiple air-

craft coordination. Similarly, to demonstrate new concepts in multi-agent control

on a real world platform, the Hybrid Systems Lab developed the Stanford Testbed

of Autonomous Rotorcraft for Multi-Agent Control (STARMAC). STARMAC is a

multi-vehicle testbed consisting of two quadrotor UAVs that autonomously track a

given waypoint trajectory [46]. Quadrotors are used in this platform based on their

convenient handling characteristics, low cost, and simplicity.

In addition, indoor multi-vehicle testbeds have been constructed to study multi-

agent activities. For example, the HOvercraft Testbed for DEcentralized Control

(HOTDEC) Platform at the University of Illinois Urbana-Champagne is a ground
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vehicle testbed used for multi-vehicle control and networking research [104]. The

ground-based vehicles in this test platform have a simple battery monitor built into

the vehicles to denote when they are low on power, require recharging, and can dock

with a power station to fully recharge the batteries in 2.5 hours. Researchers at

Vanderbilt University have built the Vanderbilt Embedded Computing Platform for

Autonomous Vehicles, which has been used to fly two vehicles in an indoor environ-

ment [58]. Also, the UltraSwarm Project at the University of Essex is designed to

use indoor aerial vehicles to examine questions related to flocking and wireless cluster

computing [47]. Likewise, researchers that Oklahoma State University use a ground

vehicle testbed called COMET (COoperative MultivehiclE Testbed) to implement

and test cooperative control techniques both indoors and outdoors [19].

As mentioned earlier, most of these testbeds do not focus on vehicle health and

maintenance monitoring in regard to UAV technologies. Past research into battery

monitoring and state estimation has focused on using direct, invasive measurements of

current flow and voltage level to calculate a battery’s state of charge (SOC). Most of

this research focuses on calculating SOC using complex analytical models of internal

battery dynamics [77, 79]. However, these approaches require significant knowledge of

battery properties and internal dynamics. Some recent research has sought to simplify

the construction of battery SOC models by using machine learning techniques using

voltage and current measurements from the battery [41]. A learning approach can

be advantageous because it does not require knowledge of internal battery chemistry

and can be easily extended to multiple battery chemistries.

Even as electric-powered autonomous vehicles and their support systems become

smarter, they are fundamentally limited by the capacity of the batteries that power

these vehicles. As described in the section above, autonomous health management

hardware and software allow vehicles to determine the battery’s current status and

decide when a vehicle must land to replace or recharge itself before continuing its

mission. Ground platforms have been developed to allow robots to recharge during

operations. For example, at the University of Tsukuba, researchers constructed an

autonomous ground vehicle and recharge system in order to facilitate autonomous

ground vehicle navigation and control experiments [40]. The system was tested by

running an autonomous vehicle nonstop for one week. During the week-long experi-

ment, over one thousand recharge dockings were successfully accomplished. However,

to the best of our knowledge, Ref. [97] reported the first instance (in the literature)

of an autonomous docking and recharge using an electric-powered air vehicle.
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1.2 Thesis Outline

The main goal of this thesis is to develop, implement, and test methodologies that

can be used in real-world applications to manage autonomous multi-agent systems in

extended mission operations. To meet this goal, this thesis focuses on two primary

objectives:

• Explore and develop methods to find feasible solutions for large-scale optimiza-

tion problems relating to multi-agent tasking problems

• Design and implement a system architecture which incorporates these methods

to manage multi-agent teams in a real-time environment

To meet these objectives, this thesis begins by presenting the real-time, multi-agent

mission problem. As part of this problem, different aspects (e.g., mission lengths,

agent reliability, communication and control issues, computational concerns) of this

problem are discussed to understand how each component plays a role in the perfor-

mance of the mission system. Next, this thesis presents a mission system architecture

used to manage long-duration autonomous missions. A key component of this ar-

chitecture (which distinguishes it from previous mission system architectures) is the

inclusion of system and component health information.

Following this discussion on the mission system, we focus on a method that allows

an automated vehicle tasking system to formulate and solve an multi-agent tasking

problem with health management considerations in real-time. This method is de-

signed to automatically generate an approximate cost structure that can be used to

find policies for a given Markov Decision Process (MDP) automatically. Using this

method, an autonomous system can automatically compute a set of basis functions

for a given MDP, so that the problem can be formulated and solved in real-time.

This is a fundamental question related to use of approximate dynamic programming

in real-time systems.

Next, we return our attention to the real-time, multi-agent mission problem. Using

the basis function generation algorithm formulated in the previous chapter, we ad-

dress the multi-agent mission management problem for long-duration missions. This

discussion focuses on the practical implementation of this technique for the centralized

multi-agent mission problem using a real-time simulation.

Next, to fully investigate questions related to the implementation of such al-

gorithms in real-time, an indoor multi-vehicle testbed was created to study long-

duration mission and to develop health management systems for autonomous multi-
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agent mission platforms. A description of this indoor multi-vehicle testbed called

RAVEN (Real-time indoor Autonomous Vehicle test ENvironment) is provided. Nor-

mally, demonstrations of multi-vehicle coordination and control technologies require

that multiple human operators simultaneously manage flight hardware, navigation,

control, and vehicle tasking. However, RAVEN simplifies all of these issues. Since

the system autonomously manages the navigation, control, and tasking of realistic

air vehicles during multi-vehicle operations, researchers can focus on high-level tasks.

This characteristic promotes the rapid prototyping of UAV technologies by means of

flight testing new vehicle configurations and algorithms without redesigning vehicle

hardware. This discussion includes a description of the components and architecture

of RAVEN and presents recent flight test results. In addition, this section discusses

how a mission manager can be integrated with other tasking systems to effectively

manage long-duration, multi-vehicle operations.

Finally, using RAVEN we present the development and implementation of all of

the above techniques to manage autonomous unmanned aerial vehicles (UAVs) per-

forming persistent surveillance operations. This section presents mission health mon-

itors aimed at identifying and improving mission system performance to avoid down

time, increase mission system efficiency and reduce operator loading. In addition, we

discuss the additional hardware infrastructure needed to execute an autonomous per-

sistent surveillance operation. Finally, we present results from a fully-autonomous,

extended mission test using the technology and monitors developed in this thesis to

improve system performance in real-time.

1.3 Thesis Contributions

Through this work, this thesis makes contributions in the four major research areas:

• First, this thesis presents a method designed to generate a set of basis functions

used to form the approximate cost-to-go function. This method enables an au-

tonomous system to take an Markov Decision Process (MDP), formulate it as

an approximate linear program (ALP), and solve it in real-time automatically.

Our approach uses sampled trajectories generated via simulation to estimate fu-

ture cost-to-go can improve cost-to-go estimates and provide results in policies.

In addition, by using a trajectory-based approximation method in calculating

the future cost-to-go for each state, we have developed a simple closed-form

approximation structure for computing basis functions implicitly using sampled

trajectories by storing only multipliers r0, r1, ... rN . Therefore, our approach
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does not require that large amounts of information be saved to generate the

basis functions. As a result, this basis function generation method is designed

to allow users to distribute computations over networked resources, thereby re-

sulting is a viable algorithm for use in real-time. A numerical complexity result,

a proof showing the convergence of the algorithm without trajectory sampling,

and an error bound comparing the optimal solution to the approximate solution

using the basis function generation algorithm for a single update using sampled

trajectories are given.

• Second, this thesis presents a formulation of the mission management problem

that accounts for vehicle failures and system health concerns. In this problem,

mission assets are commanded by to carry out tasks (e.g., search an area, clas-

sify objects, locate and attack targets) issued via from sophisticated operator

stations miles from their areas of operations. The problem formulation devel-

oped in this thesis enables an autonomous system to implement and solve this

multi-agent mission planning problem in real-time using real hardware. Since

this problem can be formulated as a MDP with many states, we demonstrate

how policies can be generated for this problem using approximate dynamic pro-

gramming methods. More specifically, by using the basis function generation

algorithm to generate the cost-to-go function in real-time, we demonstrate how

this mission management problem formulation allows an autonomous system to

make adjustments on-the-fly based on system health feedback information and

manage mission operations in real-time.

• Third, this thesis presents the architecture and setup of an indoor multi-vehicle

testbed called the RAVEN (Real-time indoor Autonomous Vehicle test ENvi-

ronment) to study long-duration missions in a controlled environment. The

RAVEN is designed to allow researchers to rapidly prototype UAV technologies

by means of flight testing new vehicle configurations and algorithms without

redesigning vehicle hardware. The RAVEN’s mission system autonomously

manages the navigation, control, and tasking of realistic air vehicles during

multi-vehicle operations, researchers can focus on high-level tasks. In addition,

RAVEN enables users to examine and develop health management techniques

to improve the mission system’s operational capabilities. For example, by ad-

justing parameters in the testbed’s setup, the RAVEN allows researchers to

examine a mission planning algorithm’s response to a variety of failure cases,

environmental conditions, and other real-world scenarios. Using information

27



from these tests, researchers have been able to create and improve techniques

that promote proactive mission planning strategies (while reducing operational

costs) using system health feedback. Through this research, the RAVEN is be-

ing used to enable many first-time tests for UAV and other unmanned system

technologies implemented in real-time.

• Finally, this thesis presents the development and implementation of techniques

used to manage autonomous unmanned aerial vehicles (UAVs) performing per-

sistent surveillance operations. Although few papers have suggested the means

by which such a test could be performed, this thesis is the first to develop and

implement the technologies necessary to achieve this capability. These results

represent a large step in the development and implementation of autonomous

UAV mission technologies for long-duration missions. These technologies in-

clude, but are not limited to, battery monitoring of electric vehicles, automatic

recharging of UAVs, precision landing and takeoff, mission- and vehicle-level

health monitoring, and an integrated communication protocol allowing all com-

ponents to communicate and make decisions cooperatively.

As a result, this thesis presents the development, implementation, and testing of

methodologies that can be used in real-world applications to manage teams of au-

tonomous vehicle systems in extended mission operations.
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Chapter 2

The Real-Time Multi-Agent

Mission System Problem

To begin this thesis discussion, we will start by presenting the issues surrounding the

real-time multi-agent mission problem. In real-life, mission activities can be defined in

many ways. For example, an urban combat mission may involve both ground and air

facilities; however, the needs and activities of these resources in a surveillance mission

may greatly differ from that of a rescue activity. Therefore, the requirements from

one mission may vastly differ from another. As shown in Figure 2-1, a single mission

system may be required to coordinate the actions of multi-agent mission teams in

a variety of scenarios. Note that these scenarios and their requirements will change

over time.

Designing a flexible, yet robust architecture framework is a large obstacle for

autonomous mission system designers. Since different aspects (e.g., mission lengths,

agent reliability, communication and control issues, computational concerns) of the

multi-agent mission problem pose different demands on the system, it is difficult to

find a unifying framework that works for every mission scenario. However, there are

commonalities in all mission types. In fact, a simplified description for a wide variety

of mission scenarios can be made as follows:

M Mission Assets A

A mission system has a set of mission assets (for example vehicles, groups of

agents, swarm teams, etc.) that can be allocated to a variety of mission tasks.

These assets can be represented by a unique description (location, orientation,

velocity, capability, etc.) that identifies it from its counterparts. These mission
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Figure 2-1: Multi-Agent Mission System Problem Scenario

assets each may have capabilities (tools, weaponry, sensors, skills, etc.) that

can be used in a variety of mission scenarios. In addition, as each vehicle is

used, the condition and capability of each asset can change over time.

N Designated Mission Sites with K Possible Scenarios A

A mission system will also be provided with a series of mission sites and sce-

narios with different requirements. Note that most mission tasks are specific

to their location, duration, and mission success criteria. In addition, many

scenarios have task-specific requirements (e.g., vehicle coordination, persistent

presence of mission assets, time constraints) and relevant information (that may

change over time) that impact and govern the approach mission assets must use

when approaching the problem.

Here, the main objective of the mission system is to coordinate the actions of its

mission assets to achieve the system’s mission goals while meeting task requirements.

Note that even though this description abstracts away most of the mission-specific

details, this problem remains difficult to solve in a real-time framework as a single

optimization for large M , N , and K.

However, using this simplified description as a guide, this problem can be broken

down into a series of steps that help to reduce (but not completely eliminate) the

complexity of this problem. In trying to decide what mission assets are allocated to

each mission site and scenario, there are three fundamental questions that arise as

part of this allocation process:

30



Figure 2-2:
Multi-Agent Mission System Architecture using Hierarchical De-
composition

1. How many assets should be assigned to a mission scenario?

2. What tasks will each member of a mission group perform? (Here, a mission

group is defined as a conglomerate of mission assets assigned to a mission task)

3. How will each mission asset carry out the activities it has been assigned?

Note that even if we assume that no mission asset can be a member of two mission

groups, these three questions invoke the following actions:

1. Based on the number of incoming mission scenarios, the system must decide

how many assets need to be assigned to each mission task. For the purpose of

this thesis, this problem will be defined as the multi-agent mission management

problem.

2. For each mission scenario, the system must decide how to assign tasks to each

mission asset and decide how and when each task request must be performed.

For this purpose of the thesis, this problem will be defined as the multi-agent

task assignment problem.

3. As task requests are issued, each mission asset must formulate and implement

a strategy that will ensure the completion of each task, while meeting task

requirements. For the purpose of this thesis, these problems will be defined as

the task scheduling and trajectory planning problems.

Using this multi-tiered decomposition, each aspect of the multi-agent mission

problem can be addressed using different computational resources, which leads to

a computationally tractable problem formulation that can be implemented in real-

time. Figure 2-2 shows a representation of a multi-agent system architecture that uses
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this decomposition to address the multi-agent mission problem for real-time mission

scenarios. Here, each mission asset is a vehicle that performs a specified operation, as

defined by a task request. Similar architectures have been proposed and implemented

in the past with success [56, 82, 100].

2.1 Health Management in Real-Time Mission Sys-

tems

In using the hierarchical architecture as shown in Figure 2-2, a number of implemen-

tation concerns arise that can reduce performance and possibly jeopardize the success

of a mission in a real-time environment. Some of these real-time challenges include:

• Communication Issues (Bandwidth and range constraints, dropped packets, in-

complete messages)

• Computational Concerns (Memory and resource allocation, distributed process-

ing, “hard” deadlines)

• Control Issues (Centralized/decentralized, multi-agent operations, autonomous

capabilities)

• Human/Operator Interaction

• Safety Concerns (SWARM and individual vehicle)

• Software Integration Issues

• System Health Concerns (failures, loss of system assets, low mission efficiency)

In addition to these issues, external and environmental conditions will affect system

performance. In most real-life situations these conditions are not controlled and the

operational environment is only partially known. Therefore, as explained in [100],

real-time implementations of mission system technology must be designed to be robust

to external and unexpected conditions. For example, a vehicle’s trajectory planning

system must plan paths that are robust to environmental conditions (i.e., pop-up

obstacles, no-fly zones, changes to the mission plan, wind conditions). Likewise, if

information between two mission system components is not received, either system

should re-transmit its data. Without feedback on vehicle and system component

performance, many times architecture components become reactionary to problems
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Figure 2-3:
Multi-Agent Mission System Architecture using Hierarchical De-
composition with System Health Management Information

that occur in a mission system, which in many cases causes a reduction in system

performance. However, most systems do not possess health monitoring components

to evaluate subsystem performance.

For this reason, health management feedback and monitoring in a mission system

is essential in maintaining a proactive approach to mission planning. Adding system

health monitors and feedback to a simple hierarchical design (as shown in Figure 2-3)

can improve a system’s run-time capabilities by ensuring that it maintains a basic,

functional capability during a mission in accordance with system goals.

As shown in Figure 2-4, health management systems are tailored to aid each level

in the architecture. At the vehicle level, many aspects related to a vehicle’s current

performance and capabilities can be considered as part of this state. For example,

battery charge, sensor capabilities, and motor/engine wear play a large role in an

electric vehicle’s capability to perform a mission. Since vehicle-level failures may

impact high-level decision making and performance, mission- and task-level systems

must also incorporate vehicle and task group health information into their decision

making processes to ensure that these systems are cost effective to operate over the

duration of a mission. Thus, this health feedback loop ensures that high-level systems

in the architecture account for vehicle health management issues (e.g., refuelling,

vehicle failures) in mission planning.
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Figure 2-4: Multi-Agent Mission System Architecture

2.2 The UAV SWARM Mission Management Prob-

lem

Using these architecture ideas, we can now focus on the real-time UAV SWARM

Mission Management Problem. In this problem, UAVs are commanded to perform

tasks from sophisticated operator stations miles from their areas of operations. Since

each multi-agent team may perform mission tasks over an extended period of time,

issues relating to task coordination, maintenance, and asset shift changes will arise.

As such, an autonomous mission planning system must manage the health of sev-

eral multi-agent teams to meet mission requirements. Once again, this problem may

be formulated as a very large mathematical programming problem; however, this ap-

proach is likely to be computationally intractable for any computer or human operator

to solve in real-time (even for a problem of reasonable size).

In principle, though similar questions arise in manufacturing [7, 42] and air trans-

portation [3, 4, 10, 13, 18, 36, 43, 80] systems, some of the challenges specific to the

multi-agent tasking problem include several multi-agent teams are operating simulta-

neously (which may or may not coordinate tasks), team scope and composition of a

task team may change throughout a mission, and little or no information about the
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vehicles may be directly available to the mission system (e.g., a vehicle failure may

become known only after the vehicle has failed to show up for refuelling past a given

deadline).

2.3 Problem Formulation

Therefore, we consider a formulation similar to that applied in the web server farm

management problem, considered in [21, 62]. Consider a collection of M agents of the

same capability and N designated mission sites. Distributed amongst these mission

sites, consider K distinct types of agent task requests. To simplify this discussion,

let Lk(t) represent the aggregate arrival rates of task requests (mainly because task

requests are handled by a task allocation schemes at a lower level in the mission

system architecture) [97]. As shown in the web server farm management problem

formulation [21, 62], using aggregate arrival rates provides with a simplified resource

management problem for which we can find a tractable solution for the problems

of task assignment and agent task scheduling problems under some simplified as-

sumptions. Next, assume that tasks are assigned according to costs based on their

importance (assume that there is a metric for defining such costs for now) and that

these costs may differ between different mission tasks.

Now, there are three types of decisions we must make as part of this process: the

number of agents assigned to a mission task, the agent’s task assignment as a member

of a mission group, and the agent task scheduling required to complete this task. For

now, we will assume that no agent can be a member of two mission groups.

Because of the problem’s size, a sub-optimal approach is used to separate the agent

allocation problem from the agent task assignment / scheduling problems (which are

normally managed by sub-systems in the mission architecture). In this formulation,

a simplified task assignment and scheduling problem is introduced and formulated for

the multi-agent mission allocation problem. This model is adapted from web server

farm example found in [21], which is an adaptation of the model found in [62]. For

this reason, we state the problem and the main points of the approach in this section,

referring the reader to [21] and [62] for details. In addition, we use the notation

provided in [21] for continuity in this discussion.

In the task allocation and scheduling problems, we will assume that agent mission

allocation and task requests rates remain fixed during the interval of observation

(which are length T
2

for now). In each interval, we will use the symbol I to indicate

the allocation of each agent in the task space, and the symbol L denote a vector of
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aggregated task requests Lk. Therefore, the solution to this Task Assignment and

Scheduling Problem will be a function of the pair (I, L). Now, using the fluid model

approach as shown in [21] and [62], the task assignment and scheduling decision

variables reduce to λi,k, which describes the arrival of a class k task request to agent

i, and ψi,k, which describes the fraction of time agent i will be assigned to task request

k in each mission group. Note that the task requests across any mission group for

any series of task requests must be less than or equal to the aggregate task arrival

rate Lk for the mission group. To compute Lk for a given class of task requests, we

can assume based on prior experience / observations that tasks of different types will

require at minimum a certain number of agents to be actively completed. Therefore,

we can derive an appropriate value for Lk for any given task.

Next, since we assume that each task will provide a benefit Bk, and that the

expected time agent i spends completing a task request of type k over each time

interval T
2

is given by
λi,k

µk
, then the expected profit guaranteed by completing a task

request of type k using agent i is

Bk
λi,k
µk

From this we can generate the following optimization problem:

maxλi,k,ψi,k

∑M
i=1

∑K
k=1Bk

λi,k

µk

subj. to
∑M

i=1 λi,k ≤ Lk k ∈ K
λi,k = 0, if I(i, k) = 0, i ∈ V , k ∈ K
λi,k ≥ 0, if I(i, k) = 1, i ∈ V , k ∈ K∑K
k=1 ψi,k ≤ 1 i ∈ V
ψi,k = 0, if I(i, k) = 0, i ∈ V , k ∈ K
ψi,k ≥ 0, if I(i, k) = 1, i ∈ V , k ∈ K

(2.1)

where V = {1, ...,M} and K = {1, ..., K}. In this problem note that I(i, k) indicates

whether an agent is allocated to a mission task group associated with task request

of class k. Now, the reason this formulation is valid for this application is that each

agent in a task group may provide assistance on a variety of tasks – depending on the

needs of the mission group. In addition, multiple agents may be required to perform

a task, and as a result the formulation accounts for the fact that an agent may be

required to switch its duties if a task is completed in this interval.

As shown in [21] and [62], Eq. (2.1) can be solved analytically, and the optimal

policy is greedy. In other words, the policy must seek to serve all requests where the
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most benefit to the system is derived first before serving other classes (which provide

a lower benefit to the system). In addition, we know that we will have a near-optimal

policy to the task assignment / scheduling problem by assigning agents (according to

the greedy policy) to maximize the ratio Bk

µk
under the assumptions above. Therefore,

we can use the optimal value for any pair (I, L) and calculate the single-stage cost

using the above, which we will denote as g(I, L).

2.4 MDP Model for the UAV SWARM Resource

Management Problem

Given the above information, we can extend this problem formulation to account

for vehicle- and system-level health-related issues at the mission planning level and

defined the MDP model for the UAV SWARM Resource Management Problem. First,

define the state as the vector (I,H, L) where I indicates the allocation of each agent

in the task space, H indicates the maintenance / health state of each agent in the

task space, and the symbol L denote a vector of aggregated task requests. Next,

define the actions A on the same space as I, where A indicates the new agent-mission

group configuration. Note that only agents which have been “deallocated” from a

task group can be re-allocated to a new task group. Here, de-allocated means that an

agent is either (i) waiting at a ready location, (ii) available after maintenance, or (iii)

removed from a task group which no longer needs its services or is not beneficial to

the system. Next, a state (I,H, L) will transition under action A to state (Ā, H̄, L̄)

with probability PA((I,H, L), (Ā, H̄, L̄)). Finally, as stated above, consider the single-

stage cost for being in state (I,H, L) by using g(I, L). Here, we are assuming that L

remains constant over each time step.

With the MDP model defined, the problem must be formulated and solved in a

manor that promotes a feasible real-time implementation. As a result, the next four

chapters of this thesis will explain our approach to formulating and solving large-scale

problems (such as this) for real-time use. In Chapter 3, we consider the general prob-

lem of large-scale MDPs. Leveraging the approximate linear programming method,

we propose an algorithm for automatic selection of approximation architectures. Next,

in Chapter 4 the methods provided in Chapter 3 are used to implement and manage

multi-vehicle mission problems. Finally, in Chapters 5 and 6 an indoor multi-vehicle

test environment is used to implement and test these methods over extended periods

time using a fully-autonomous system with little operator interaction.
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Chapter 3

Basis Function Generation for

Approximate Dynamic

Programming Methods

Dynamic Programming can be used to find decision-making policies for problems

where the goal is to minimize the total cost of decisions made over a sequence of

stages [9]. From each state, the dynamic programming algorithm can be used to

determine the best action that will minimize the cost-to-go function [7]. For a Markov

Decision Process (MDP) with state space S, action space A, probability transition

matrix Pu ∈ R|S|×|S| for policy u : S 7→ A, local cost g : S × A 7→ R and discount

factor α ∈ (0, 1), the cost-to-go function Ju : S 7→ R associated with policy u can be

expressed by

Ju(x) = E

[
∞∑
k=0

αkg(xk, u(xk))|x0 = x

]

and the optimal cost-to-go J∗ from each state x ∈ S is defined by

J∗(x) = min
u
Ju(x)

Here, the main goal in solving this optimization problem is to find the optimal policy

u∗ such that

J∗(x) = Ju∗(x)
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for all x ∈ S. Here, using the Principle of Optimality [7], we can write Bellman’s

Equation as

J(x) = min
a∈A(x)

E

[
ga(x) + α

∑
y∈S

Pa(x, y)J(y)

]
.

Note that Pa(x, y) defines the probability that the system transitions from state x ∈ S
to state y ∈ S when using action a ∈ Ax. Also, we will define ga(x) which is the

local cost applied at state x ∈ S when using action a ∈ A(x). In addition, Bellmans

Equation can be re-written as

(TJ)(x) = min
a∈Ax

[
ga(x) + α

∑
y∈S

Pa(x, y)J(y)

]
∀ x ∈ S

where T is the dynamic programming operator, such that for finite |S|,

TJ = min
u

[gu + αPuJ ]

where the optimal control policy u at each state can be found using:

u∗(x) = arg min
a∈A(x)

E

[
ga(x) + α

∑
y∈S

Pa(x, y)J
∗(y)

]

As stated in [9], the state and action space for most real-world problems of interest

are too large for the problem to be solved in real-time using modest computational re-

sources. Therefore, approximation methods that require less computational resources

and can be solved in shorter periods of time are being used to find a near-optimal

action to use from a given state. In this thesis, we consider methods that approxi-

mate the optimal cost-to-go-function J∗ by a linear combination of basis functions:

J∗ ≈ Φr.

The purpose of this chapter is to present a method designed to automatically find

a set of basis functions for a given MDP so that the problem can be formulated and

solved in real-time. This is a fundamental question related to use of approximate

dynamic programming in real-time systems. In this chapter, we formulate the basis

function function generation problem. Next, we present an algorithm designed to

iteratively generate basis functions in real-time. Then, an error bound comparing the

optimal solution to the original dynamic program to the approximate solution using

the basis functions is presented. Experimental results using the algorithm for the
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UAV mission management problem are presented in Chapter 4.

3.1 Approximate Linear Programming Problem For-

mulation

As mentioned above, most real world problems of interest may be formulated as a

very large dynamic programming problem; however, these problems are likely to be

computationally intractable for most computer systems to solve in real-time (even

for a problem of reasonable size). One such option is to formulate and solve the

problem using an Approximate Linear Programming [21, 83]. To use this approach,

the original Dynamic Programming problem of interest must be reformulated into a

Linear Programming problem. Since

J ≤ TJ ≤ T 2J ≤ ... ≤ T nJ

the dynamic programming problem can be rewritten in the following form:

max cTJ

subject to TJ ≥ J
(3.1)

where c is the state relevance weights for the problem. To ensure that there is a

unique optimal solution to this problem, we must ensure that c > 0. Problem (3.1)

is equivalent to:

max cTJ

subject to g(x, a) + α
∑

y∈S Pa(x, y)J(y) ≥ J(x) ∀x ∈ S, a ∈ Ax

This is called the exact Linear Programming problem. Next, using the basis functions

φ1, ...φK , we can restrict J to be of the form Φr. Here, φi ∈ R|S|×1 for i ∈ {1, ..., K}
represents a column of the matrix Φ ∈ R|S|×K and Φ(x) ∈ R1×K represents the row

of the matrix Φ associated with state x ∈ S. In addition, r ∈ RK×1 is the column

right multiplying the matrix Φ so that J ≈ Φr. Using this notation, we can re-write

Eq. (3.1) as:

max cTΦr

subject to TΦr ≥ Φr
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or in other words:

max cTΦr

subject to g(x, a) + α
∑

y∈S Pa(x, y)Φ(y)r ≥ Φ(x)r ∀x ∈ S, a ∈ Ax
(3.2)

This is the Approximate Linear Programming (ALP) formulation of the original Dy-

namic Programming problem.

3.2 Issue: Selecting Basis Functions

One of the major obstacles faced when using Approximate Linear Programming

(ALP) is the selection of appropriate basis vectors and state relevance weights. In

many cases, selecting the appropriate parameters used to find Φ is based on expe-

rience. A variety of methods for value function approximation have been proposed

in the literature (as discussed in Chapter 1) and many are summarized in [9]. The

history of parametric function approximations dates back to Samuel in 1959 when he

used a parametric approximation to allow a computer to automatically generate poli-

cies for playing checkers [65, 81]. Currently, there are some papers in the literature

on procedures for selecting parameters for basis functions, however there is a need

for more research in this area. As stated earlier, although many of these techniques

in the current literature have promising results, many of these algorithms cannot be

employed efficiently for large-scale problems.

Our goal is to improve the cost-to-go approximation by automatically generating

basis functions. Our approach uses the Bellman update to determine the best di-

rection for cost improvement. Using a weighted 1-norm, our goal is to select a basis

vector which minimizes

‖TΦr − Φr‖1,c

where we define u : S 7→ A as a stationary policy and

‖J‖1,c =
∑
x∈S

c(x)|J(x)|∑
x∈S

c(x) = 1
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From the proof of Theorem 1 in [22] we know that for an arbitrary J ≤ J∗

‖JuJ
− J∗‖1,c ≤ 1

1− α
µTuJ ,c

(TJ − J)

= ‖TJ − J‖1,µuJ ,c

where uJ is the greedy policy with respect to J and

µu,c = (1− α)cT (I − αPu)
−1

where µu,c is a measure of the relative importance of each state under policy u [21].

If we let J = Φr, then

‖JuJ
− J∗‖1,c ≤ 1

1− α
‖TΦr − Φr‖1,µuJ ,c

Therefore, by using ‖TΦr − Φr‖1,µu,c to generate our basis functions, we take into

account their impact on the performance of the policy that is generated. In addition,

by using this weighted norm, the basis function which is selected will also place

more emphasis on the weighted states (based on their relevance weights) – thereby

emphasizing states of importance to the problem setup.

Using this relationship, our goal is to select the best vector d to improve the

cost-to-go approximation at each iteration. By starting with a pre-generated set of

basis functions, an LP can be formulated which selects the vector d that best reduces

the Bellman Error using an online approach that does not assume a preselected form

each basis function. One way that we could do this is to use a technique like Singular

Value Decomposition, however this technique requires O(n3) multiplications for a

square matrix. Another possibility is to use the properties of Pu and gu (generated

from the vector r found by solving the ALP) to decide what d should be.

Using such an approach, we have the following result:

Lemma 3.1. Given r, the vector d = Ju−Φr minimizes ‖Tu(Φr+ d)− (Φr+ d)‖1,µ.

Proof:

First, note that if x = 0, then ‖x‖1,µ = 0. Let ∆ = Tu(Φr + d)− (Φr + d). So, if

Tu(Φr + d)− (Φr + d) = 0

gu + αPu(Φr + d)− (Φr + d) = 0

gu − (I − αPu)Φr = (I − αPu)d
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So,

d = (I − αPu)
−1gu − Φr

=
∞∑
j=0

(αPu)
jgu − Φr

= Ju − Φr

�

The main implementation issue with this result is that since n = |S| may be large,

it may be difficult to calculate Ju = (I − αPu)
−1 gu, which requires at least O(n3)

operations, in a reasonable period of time. Notice that we can make an approximation

of d by using d =
∑M

j=0(αPu)
jgu−Φkrk which is O(Mn2). Also note that we could use

the second eigenvalue of the matrix Pu to decide on what M should be, however the

number of calculations to make this determination for each policy is at least O(n2).

3.3 Basis Function Generation Algorithm

Given an MDP (S,A, P, g) with policies of the form u : S 7→ A, discount factor α,

state relevance weights c, and basis functions Φ, we can find an approximation of the

cost-to-go function J∗ =
∑∞

j=0(αPu∗)
jgu∗ under policy u∗ of the form Φr using:

maxr cTΦr

subj. to ga(x) + α
∑

y∈S Pa(x, y)Φ(y)r ≥ Φ(x)r ∀(x, a) ∈ D
(3.3)

where D ⊆ S×A. Here, let Φr̃ represent the approximate cost found using Eq. (3.3).

To reduce the number of calculations needed to make a “good” approximation of J∗

with guarantees on the error, one can sample both the constraints and the future

states considered in the ALP. In doing so, we do not have to evaluate Φ(y) every

future state y ∈ S to have a “good” approximation of the future cost-to-go from state

x ∈ S. As a result, the revised problem statement from Eq. (3.3) becomes:

maxr cTΦr

subj. to ga(x) + α
M

∑M
i=1 Φ(yi)r ≥ Φ(x)r ∀(x, a) ∈ C

(3.4)
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where C ⊂ D defines the set of constraints being used and for each state x ∈ S, a set

of M future states {y1, y2, ..., yM} are used to approximate the quantity

∑
y∈S

Pa(x, y)Φ(y) ≈ 1

M

M∑
i=1

Φ(yi) (3.5)

Let Φr̂ represent the approximate cost found using Eq. (3.4). This solution gives us

a computationally efficient approximation of J∗ using Φr̂.

By solving the above ALP problem iteratively, the following process can be used

to generate new basis functions:

1. Start with Φ0 = Φ

2. Calculate the best rk, according to

max
rk

cTΦkrk

subj. to ga(x) + α
M

∑M
i=1 Φ(yi)r ≥ Φ(x)r ∀(x, a) ∈ C

3. Using updated rk, determine the new basis function φk+1 and augment the

matrix Φk so that Φk+1 = [Φk φk+1]

4. Repeat steps 2 and 3 until ‖TΦkrk − Φkrk‖1,c ≤ SC where SC is the prede-

termined stopping constant

The main part of this process of interest here is Step 3. First, to gain intuition into

this method, we will start by assuming that using Eq. (3.4), rk is calculated given

Φk. Using the policy u : S 7→ A, we can calculate each additional basis function using

the update provided by Bellman’s equation where

φk+1 = gu + αPuΦkrk

or in other words, for each state x ∈ S where a = u(x)

φk+1(x) = ga(x) + α
∑
y∈S

Pa(x, y)Φk(y)rk

As mentioned above, the main problem encountered with the above is the compu-

tational complexity of this process. Since |S| may be very large, an approximation

must be used to generate α
∑

y∈S Pa(x, y)Φk(y)rk for each state. Here, we will use

the approximation similar to the one shown in Eq. (3.5), such that the approximate
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cost-to-go for the sampled set of next states xk+1 from the current state xk = x

will be generated using sampled trajectories {x0, x1, x2, ..., xk+1}. As shown in [8],

using sampled trajectories generated via simulation to estimate future cost-to-go can

improve cost-to-go estimates and provide results in policies.

Using this trajectory-based approximation method for the future cost-to-go from

each state allows us to develop a simple closed-form approximation structure for com-

puting basis functions implicitly using sampled trajectories by storing only multipliers

r0, r1, ... rN . For example, φ1 is approximated by:

φ1(x) ≈ 1

M

M∑
k=1

(
ga0(x

k
0) + αΦ0(x

k
1)r0

)
In this case, we are averaging the basis functions computed usingM trajectories of the

form {xk0, xk1} for k ∈ {1, ...,M}. Likewise, the (N + 1)th basis function is generated

using M trajectories of the form {xk0, xk1, xk2, ..., xkN+1} for k ∈ {1, ...,M} such that:

φ(N+1)(x0) ≈ 1

M

M∑
k=0

N∑
i=0

[
gak

i
(xki ) Φ0(x

k
i+1)
]
mNi

where:

mNi =

{
α
∑N−1

j=(i−1)mj(i−1)rN(j+1) when i > 0

[1 αrN0]
T when i = 0

and r00 = r0 ∈ R1×K , rN = [rN0 rN1 ... rNN ]T such that rN0 ∈ R1×K and rNi ∈ R for

i ∈ {1, ..., N}.
As a result, to generate the (N +1)th basis function, only

∑N
i=1 i = N(N+1)

2
values

of mij must be saved. Since |mij| = |r00| + 1, we must store N(N+1)
2

(|r00| + 1) values

to generate each φ1(x0),...,φN+1(x0) given ga0(x0),...,gaN
(xN) and φ0(x1),...,φ0(xN+1).

A description expanding on the development of this formulation can be found in the

appendix.

Based on this derivation, the basis function generation algorithm can be defined

as shown in Table (3.1). There are many computational advantages to this approach.

First, due to the fact that a set of multipliers are used to generate each basis function

at a given state, the basis functions are implicitly defined by the multipliers, resulting

in an algorithm that does not require a large amount of memory to generate future

basis functions and that scales well with problem size. Thus, the algorithm offers

users the opportunity to distribute the problem formulation across many different
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computation resources so that it can be solved faster (making it ideal for real-time

use). Finally, since the algorithm is providing basis function updates designed to

decrease the Bellman error, the approximated cost-to-go function will improve as

basis functions are added to the problem.

In summary, using this algorithm one does not have to have prior experience

with the problem to be solved since the basis function generation algorithm will

automatically calculate basis functions that improves the approximated cost-to-go

function based on the MDP provided.

3.3.1 Numerical Complexity of the Basis Function Genera-

tion Algorithm

Now, before we can calculate the values of the basis functions, we must calculate each

mNi in the (N + 1)th step. Here, we have:

if i = 0 ⇒ |r00| multiplications (by α)

if i 6= 0 ⇒ α
N−1∑

j=(i−1)

mj(i−1)rN(j+1)

⇒ (N − i+ 1)(|r00|+ 1) multiplications (by each rN(j+1))

(N − i)(|r00|+ 1) additions (adding up all of the mj(i−1)rN(j+1))

(|r00|+ 1) multiplications (by α)

Therefore, at the (N + 1)th step, the number of calculations needed to find all of the

mNi’s are:

|r00|+
N∑
i=1

(N − i+ 2)(|r00|+ 1) = (|r00|+ 1)
N∑
i=1

(N − i+ 2)

= (|r00|+ 1)

(
N2 − N(N + 1)

2
+ 2N

)
+ |r00|

= (|r00|+ 1)
N(N + 3)

2
+ |r00| multiplications

and
N∑
i=1

(N − i)(|r00|+ 1) = (|r00|+ 1)

(
N2 − N(N + 1)

2

)
= (|r00|+ 1)

N(N − 1)

2
additions
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Step 0: Start with Φ0 = 1̄ and calculate r0 using

max
r0

cTΦ0r0

subj. to ga(x) + α
M

∑M
i=1 Φ0(yi)r ≥ Φ0(x)r0 ∀(x, a) ∈ C

Using this r0, find m00 = [1 αr0]
T and let k = 1.

Step 1: Generate the constraints for the ALP in the following way:
For each state-action pair (x, a) ∈ C, generate M trajectories of the form
{xj0, x

j
1, x

j
2, ..., x

j
k+1} where xj0 = x for j ∈ {1, ...,M}. Using these trajectories,

generate each constraint in the ALP by generating the basis functions online
using:

1

M

M∑
j=1

(
Φk(x

j
0)− αΦk(x

j
1)
)
r ≥ ga(x) ∀(x, a) ∈ C

where Φk(x) = [Φ0(x) φ1(x) ... φk(x)] such that each basis function φi+1(x
j
0)

for i ∈ {0, ..., k − 1} is calculated using

φi+1(x
j
0) =

i∑
l=0

[
gaj

l
(xjl ) Φ0(x

j
l+1)
]
mil

Step 2: Calculate the best rk, according to

max
rk

cTΦkrk

subj. to 1
M

∑M
j=1

(
Φk(x

j
0)− αΦk(x

j
1)
)
rk ≥ ga(x) ∀(x, a) ∈ C

Step 3: Using updated rk, determine the multipliers

mki =

{
α
∑k−1

j=(i−1)mj(i−1)rk(j+1) when i > 0

[1 αrk0]
T when i = 0

where r00 = r0 ∈ R1×K , rk = [rk0 rk1 ... rkk]
T such that rk0 ∈ R1×K and

rki ∈ R for i ∈ {1, ..., k}.

Table 3.1: The Basis Function Generation Algorithm
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Step 4: Repeat Steps 1 through 3 (letting k = k + 1) until
‖T̂Φkrk − Φkrk‖1,c ≤ SC where SC is the predetermined stopping

constant and T̂Φkrk = gu +αP̂uΦkrk or k = N̄ where N̄ is the pre-determined
number of basis functions to be calculated for the problem.

Therefore, using the multipliers generated in Step 3, each basis function φk+1

can be computed by using M trajectories of the form {xj0, x
j
1, x

j
2, ..., x

j
k+1} for

j ∈ {1, ...,M} such that:

φ(k+1)(x0) =
1

M

M∑
j=0

k∑
i=0

[
gaj

i
(xji ) Φ0(x

j
i+1)
]
mki

Table 3.2: The Basis Function Generation Algorithm (continued)

This means that the computational complexity of calculating the multipliersmN1,...,mNN

at the (N + 1)th step assuming you have all of the mij where i < N is

(|r00|+ 1)(N2 +N) + |r00| total operations

Now, given that we have all of the mij’s calculated for all i ≤ N , then the computa-

tional complexity in calculating φi(x0) is:

i(|r00|+ 1) multiplications

(i− 1)(|r00|+ 1) additions

Therefore, to generate all of the basis functions φ1(x0),...,φN+1(x0) using the mij’s,

we must perform:

N+1∑
i=1

i(|r00|+ 1) = (|r00|+ 1)
(N + 1)(N + 2)

2
multiplications

N+1∑
i=1

(i− 1)(|r00|+ 1) = (|r00|+ 1)
N(N + 1)

2
additions

⇒ (|r00|+ 1)(N + 1)2 operations for each trajectory
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Therefore, if we sample M trajectories to generate our basis functions and perform

this operation for K states, we must perform

MK(N + 1)2(|r00|+ 1) + (N2 +N)(|r00|+ 1) + |r00|

total operations at each iteration of the algorithm to calculate all of the basis functions

needed for the constraints in the LP at each stage. Note that this number does not

include the calculations needed to generate each of the trajectories at each stage.

3.4 Error Bound for a Single Policy, Single Itera-

tion Update

Before we discuss an error bound for a single policy, it is useful to discuss the structure

of the basis functions. Since each basis function is calculated using the equation

φk+1 = g + αPΦkrk, there is a relationship between the convergence of the basis

function generation algorithm and value iteration.

Lemma 3.2. Given an MDP (S,A, P, g) with a single policy u : S 7→ A, discount

factor α, state relevance weights c, and basis functions Φ0. Let Φk = [Φ0 φ1 ... φk]

such that φj = g + αPΦj−1rj−1 for j ∈ {1, ..., k}. Then, as k → ∞, the cost-to-go

function Jk = Φkrk will converge to the optimal cost-to-go function J∗ at least as fast

as value iteration.

Proof:

Recall that φk = TΦk−1rk−1. Since TΦk−1rk−1 ≥ Φk−1rk−1, by monotonicity of T we

have Tφk ≥ φk and φk is a feasible solution to the ALP with basis function [Φk−1φk].

This means that the value iteration update is a special case of the basis function

generation update, which means that as k → ∞, the cost-to-go function Jk = Φkrk

will converge to the optimal cost-to-go function J∗ at least as fast as value iteration.

�

Next, it is very important to understand how the cost-to-go approximation evolves

as for the single policy case. The main reason for studying the single policy case

is that a base policy is used to generated the trajectories used to approximate the

future cost-to-go. Therefore, an error bound for the single policy case is very relevant

in understanding how the sampled trajectories from this policy affect the cost-to-go
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approximations. As described earlier, given an MDP (S,A, P, g) with a single policy

u : S 7→ A, discount factor α, state relevance weights c, and basis functions Φ, we

can find an approximation of the optimal cost J∗ =
∑∞

j=0(αP )jg under this policy of

the form Φr using:

maxr cTΦr

subj. to g + αPΦr ≥ Φr
(3.6)

which yields r̃. Next, if we just sample the states used to find the future cost at each

state x ∈ S, the revised problem statement from Eq. (3.6) becomes:

maxr cTΦr

subj. to g(x) + α
M

∑M
i=1 Φ(yi)r ≥ Φ(x)r ∀x ∈ S

(3.7)

which we can write as:

maxr cTΦr (3.8)

subj. to g + αP̂Φr ≥ Φr

which yields r̂ where P̂ is an approximation to P induced by sampling.

Similarly, we can bound the error resulting from the sampling approximation for

a single policy using a method called cost shaping. Here, we have a similar problem

formulation as above, except for the addition of η > 0 and ρ : S 7→ [1,∞). Therefore,

we can find an approximation of the optimal cost J∗ =
∑∞

j=0(αP )jg of the form Φr

using:

maxs≥0,r cTΦr − ηs

subj. to g + αPΦr + ρs ≥ Φr
(3.9)

which yields (r̃, s̃) where η > 0 and ρ : S 7→ [1,∞). Next, if we just sample the states

used to find the future cost at each state x ∈ S, the revised problem statement from

Eq. (3.9) becomes:

maxs≥0,r cTΦr − ηs

subj. to g(x) + α
M

∑M
i=1 φ

T (yi)r − ρs ≥ φT (x)r ∀x ∈ S
(3.10)
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which we can write as:

maxs≥0,r cTΦr − ηs (3.11)

subj. to g + αP̂Φr − ρs ≥ Φr

which yields (r̂, ŝ) where P̂ is an approximation to P induced by sampling.

In addition, we can generate a new basis function using:

φ1 = g + αPΦr̃0 (3.12)

which can be approximated using the basis function generation algorithm by:

φ̂1 = g + αP̄Φr̂0 (3.13)

where P̄ is an approximation to P induced by sampling. Then, to understand how

our approximation affects the solution, we can relate the solutions to Equations (3.9)

and (3.11) when using Φ1 = [Φ0 φ1] in Equation (3.9) and Φ̂1 = [Φ0 φ̂1] in Equa-

tion (3.11).

Therefore, let:

maxr cTΦ1r

subj. to g + αPΦ1r ≥ Φ1r
(3.14)

which yields r̃ and let:

maxs≥0,r cT Φ̂1r − ηs

subj. to g + αP̂ Φ̂1r − ρs ≥ Φ̂1r
(3.15)

which yields (r̂, ŝ).

Before stating the lemma, we will define the following terms:

J∗ = (I − αP )−1g (3.16)

µ̂ = (1− α)cT (I − αP̂ )−1 (3.17)

Define the jth column Φj
0 in Φ0 where j ∈ {1, ..., K}, we have that Φj

0(x) ∈ [aj(x), bj(x)].
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Next, let

Φ1 = [Φ0 φ1] (3.18)

Φ̂1 = [Φ0 φ̂1] (3.19)

Then, we have the following lemma:

Lemma 3.3. Given an MDP (S,A, P, g) with a single policy u : S 7→ A, discount

factor α, state relevance weights c, and basis functions Φ1 and Φ̂1, define the approx-

imations of P induced by sampling to be P̂ and P̄ . Then, Eq. (3.15) can be used to

approximate Eq. (3.14) where

‖J∗ − Φ̂1r̂‖1,c = ‖J∗ − Φ1r̃‖1,c +
2α

1− α
‖(P − P̂ )J∗‖1,µ̂ + ‖

[
0 | (P − P̄ )Φ δr0

]
r̃‖1,c + ηs̄

for ρ : S 7→ [1,∞) where η = 2cT (I − αP̂ )−1ρ, δr0 = 1̄‖r̂0 − r̃0‖∞ ∈ RK, and

s̄ = max
x∈S

[
1

ρ(x)

(
α(P̂ − P )Φ1r̃ + ε̂(r̃)

)
(x), 0

]
where ε̂(r̃) = (αP̂ − I)

[
(P̄ − P )Φ(r̂0 − r̃0)

]
r̃.

Proof:

First, assume Eq. (3.14) yields r̃ and Eq. (3.15) yields (r̂, ŝ). Using the constraint in

Eq. (3.15):

g + αP̂ Φ̂1r + ρs ≥ Φ̂1r

(I − αP̂ )−1g + (I − αP̂ )−1ρs ≥ Φ̂1r

Jε + (I − αP̂ )−1ρŝ ≥ Φ̂1r̂

cTJε + cT (I − αP̂ )−1ρŝ ≥ cT Φ̂1r̂

which means that if η ≥ cT (I − αP̂ )−1ρ, then cT Φ̂1r̂ − ηŝ will be upper bounded by

cTJε.

Next,

g + αP̂ Φ̂1r̃ − Φ̂1r̃ = g + αP̂Φ1r̃ + ε̂(r̃)− Φ1r̃ (3.20)
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such that

ε̂(r̃) = (αP̂ − I)(Φ̂1 − Φ1)r̃

= (αP̂ − I)
[
0 | (P̄ − P )Φ(r̂0 − r̃0)

]
r̃

where r̃0 and r̂0 are from the solutions to Eq. (3.6) and Eq. (3.8) respectively and

P̄ is an approximation to P induced by sampling in Eq. (3.13). Therefore, we can

re-write Eq. (3.20) as

g + αP̂Φ1r̃ + ε̂(r̃)− Φ1r̃ = g + αPΦ1r̃ − Φ1r̃ + ε̂(r̃) + α(P̂ − P )Φ1r̃ (3.21)

Then, if we let

s̄ = max
x∈S

[
1

ρ(x)

(
α(P̂ − P )Φ1r̃ + ε̂(r̃)

)
(x), 0

]
then ρs̄ ≥ ε̂(r̃) + α(P̂ − P )Φ1r̃, which means that

g + αP̂ Φ̂1r̃ + ρs̄ ≥ Φ̂1r̃

where (r̃, s̄) is a feasible solution Eq. (3.15). Therefore,

cT Φ̂1r̂ − ηŝ ≥ cT Φ̂1r̃ − ηs̄ (3.22)

Therefore:

‖J∗ − Φ̂1r̂‖1,c = cT |J∗ − Φ̂1r̂|

= cT |J∗ − Jε + Jε + (I − αP̂ )−1ρŝ− (I − αP̂ )−1ρŝ− Φ̂1r̂|

Since Jε + (I − αP̂ )−1ρŝ− Φ̂1r̂ ≥ 0 and ŝ ≥ 0 , then

‖J∗ − Φ̂1r̂‖1,c ≤ cT |J∗ − Jε|+ cT (Jε + (I − αP̂ )−1ρŝ− Φ̂1r̂) + cT (I − αP̂ )−1ρŝ

Next, let η = 2cT (I − αP̂ )−1ρ, then

‖J∗ − Φ̂1r̂‖1,c ≤ cT |J∗ − Jε|+ cT (Jε − Φ̂1r̂) + ηŝ

= cT |J∗ − Jε|+ cT (Jε − J∗ + J∗ − Φ̂1r̂) + ηŝ

≤ 2cT |J∗ − Jε|+ cT (J∗ − Φ̂1r̂) + ηŝ
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Then, using Eq. (3.22), we have

‖J∗ − Φ̂1r̂‖1,c ≤ 2‖J∗ − Jε‖1,c + cT (J∗ − Φ̂1r̃) + ηs̄

Note that since (I − αP̂ )−1 =
∑∞

i=0 α
iP̂ i, then every element aij ∈ (I − αP̂ )−1 will

satisfy aij ≥ 0 since α ∈ [0, 1] and p̂ij ∈ P̂ such that p̂ij ∈ [0, 1]. Therefore, since

µ̂ = (1− α)cT (I − αP̂ )−1, then

‖J∗ − Jε‖1,c =
α

1− α
‖(P − P̂ )J∗‖1,µ̂ (3.23)

This means that

‖J∗ − Φ̂1r̂‖1,c ≤ 2α

1− α
‖(P − P̂ )J∗‖1,µ̂ + cT (J∗ − Φ̂1r̃) + ηs̄

Next, since

Φ̂1r̃ =
[
0 | (P̄ − P )Φ(r̂0 − r̃0)

]
r̃ + Φ1r̃

then

‖J∗ − Φ̂1r̂‖1,c =
2α

1− α
‖(P − P̂ )J∗‖1,µ̂ + cT (J∗ − Φ1r̃) + cT

[
0 | (P − P̄ )Φ(r̂0 − r̃0)

]
r̃ + ηs̄

Therefore, if we let δr0 = 1̄‖r̂0 − r̃0‖∞ ∈ RK , then

‖J∗ − Φ̂1r̂‖1,c = ‖J∗ − Φ1r̃‖1,c +
2α

1− α
‖(P − P̂ )J∗‖1,µ̂ + ‖

[
0 | (P − P̄ )Φ δr0

]
r̃‖1,c + ηs̄

�
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Chapter 4

The Multi-Vehicle Mission / Task

Management Problem

From our discussion in Chapter 2, we showed that the UAV SWARM Resource Man-

agement Problem can be posed as an Markov Decision Process (MDP). Here, the

state is defined as the vector (I,H, L) where I indicates the allocation of each agent

in the task space, H indicates the maintenance / health state of each agent in the

task space, and the symbol L denote a vector of aggregated task requests. The ac-

tions A are defined on the same space as I, where A indicates the new agent-mission

group configuration. Note that only agents which have been “deallocated” from a

task group can be re-allocated to a new task group. Here, de-allocated means that an

agent is either (i) waiting at a ready location, (ii) available after maintenance, or (iii)

removed from a task group which no longer needs its services or is not beneficial to the

system. Next, a state (I,H, L) will transition under action A to state (Ā, H̄, L̄) with

probability PA((I,H, L), (Ā, H̄, L̄)). Finally, as stated above, the single-stage cost for

being in state (I,H, L) is defined as g(I, L) where we assume L remains constant over

each time step.

In this chapter, we use the methods provided in Chapter 3 to implement and

manage multi-vehicle mission problems. We present simulation results for a small-

scale mission problem and compare the approximate cost-to-go function generated

using these methods with the optimal cost-to-go for this problem. In addition, these

techniques are used to find vehicle allocation policies for a large-scale mission problem

and simulation results are provided for a variety of scenarios.
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4.1 Implementation: Mission Management for a

Simplified Persistent Surveillance Operation

As mentioned in Chapter 2, health monitors can be used by mission systems to

improve their effectiveness over the duration of an operation. Monitors that evaluate

mission performance, task group efficiency, team service rates and capability can be

used to tune system parameters online, thereby providing a real-time evaluation of

system capabilities. As shown in Figure 4-1, system health feedback combined with

environmental data can be used to revise mission system strategies.

For example, health monitors are very important to systems managing persistent

surveillance missions. Since a mission asset must be on-site for an extended period of

time, cycling this asset with other system assets (for maintenance, fuel and other rea-

sons) is critical to ensure that adequate coverage is provided over the area requested.

Note that the simplified persistent surveillance mission (PSM) resource management

problem can be posed as a Markov Decision Process (MDP) and formulated as an

Approximate Linear Programming (ALP) problem that can be solved in real-time. In

fact, the simplified PSM is a subproblem of the UAV SWARM Resource Management

Problem where there is only one task location and one task type.

Here, we provide a simplified three vehicle PSM example. For this problem, the

state x ∈ S is defined as the vector x = (z1, z2, z3, h1, h2, h3), where zi indicates the

task to which each agent is allocated, hi indicates each agent’s maintenance/health

state, and S is the state space for the problem. Next, each action a ∈ Ax is defined

as the vector a = (a1, a2, a3) where ai indicates the system’s desired allocation for

agent in the task space and Ax is the action space associated with the state x ∈ S.

Each state x will transition under action a to the future state y ∈ S with probability

Pa(x, y). Note that the agents in this problem can experience failures that cause them

to be unavailable. In addition, agents are available for flight operations for a limited

period of time (because of fuel, failure and maintenance concerns). Finally, a local

cost for being in state x under action a is defined by the function ga(x) ∈ R.

Since this problem is posed as an MDP, an Approximate Linear Programming

problem formulation can be used to find a feasible policy. The ALP formulation of

the original Dynamic Programming problem is of the form

max
r
cTΦr (4.1)

s.t. ga(x) + α
∑
y∈S

Pa(x, y)Φ(y)r ≥ Φ(x)r, ∀x ∈ S, a ∈ Ax
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Figure 4-1:
Updates to the mission planning subsystem in Figure 2-3 via
health and performance data

such that a set of M basis functions φ1, ...φM where M � |S| are used to approximate

the cost-to-go function J∗ ≈ Φr∗. Here, the approximate solution to the original

problem can be used to generate a policy that directs the vehicles to meet the overall

system goals, while maintaining the overall health of the mission system.

However, as discussed in the previous chapter, one of the major obstacles faced

when using an ALP formulation of the original problem is the selection of appropriate

basis vectors and state relevance weights. In many cases, selecting the appropriate

parameters to find Φ is based on experience. Therefore, by using the basis function

generation algorithm shown in Table (3.1), the cost-to-go structure for this problem

can be generated automatically for the underlying problem.

4.1.1 Results using Exact Probability Transition Matrices

As mentioned in the previous chapter, for small sized problems (problems by which the

matrices can be stored) it is possible to use the exact probability transition matrices

in determining the future cost-to-go for a state rather than simulated trajectories. For

these problems, each successive basis function can be calculated and saved exactly

using the method provided in Table (4.1). Note that in the formulation presented

in Table (4.1) we are considering the entire problem, thereby not sampling future

states nor sampling future trajectories, since the entire problem can be formulated

and saved in system memory. Note that this method is not practical for use with

problems where the size of the state space is large.

The goal of this first simulation is to compare the convergence rate of the cost-to-

go approximation Φr using the basis function generation algorithm without sampling
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Step 0: Start with Φ0 = 1̄, k = 0

Step 1: Calculate the best rk, according to

max
rk

cTΦkrk

subj. to ga(x) + α
∑

y∈S Pa(x, y)Φ(y)r ≥ Φ(x)r ∀x ∈ S, a ∈ Ax

Step 2: Using the rk, generate and save the basis function φk+1 such that:

φ(k+1)(x) = min
a∈Ax

[
ga(x) + α

∑
y∈S

Pa(x, y)Φk(y)rk

]

Step 3: After determining the new basis function φk+1 and augment the
matrix Φk so that Φk+1 = [Φk φk+1] and then let k = k + 1.

Step 4: Repeat Steps 1 through 4 until ‖TΦkrk−Φkrk‖1,c ≤ SC where SC is
the predetermined stopping constant or k = N̄ where N̄ is the pre-determined
number of basis functions to be calculated for the problem.

Table 4.1:
Modification on the Basis Function Generation Algorithm using
Exact Probability Transition Matrices (for small problems)

(shown in Table (4.1)) versus optimal cost-to-go function J∗ found using policy iter-

ation in MATLAB [91]. Figure 4-2 shows the convergence rate of the cost-to-go func-

tion to the optimal cost J∗ as basis functions are generated. This problem has 1000

states and 3375 state-action pairs. Figure 4-2 (a) and (b) show the difference between

the optimal cost-to-go J∗ and Φkrk as a basis function is computed and added at each

iteration. For this test, the basis functions multipliers rk were calculated using the

Common Optimization INterface for Operations Research (COIN-OR) Open-Source

Software package [63], which can be downloaded from http://www.coin-or.org/.

Notice that the cost-to-go approximation Φkrk approaches J∗ very quickly after 7

basis functions are computed for this problem. In addition, the difference between

J∗ and the cost-to-go function Jk generated using value iteration is also shown in

Figure (4-2). Even though the basis function generation algorithm uses the Bellman

update to find the next basis function, value iteration takes over 100 iterations (start-

ing from J0 = Φ0r0 for comparison purposes) to reach the same cost as the method

shown in Table (4.1) accomplishes in 13 iterations for the same problem. Therefore,
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for small problems, the basis function generation algorithm without sampling (as

shown in Table (4.1)) can be used to generate an approximation structure for the

original problem that provides a good approximation of the optimal cost-to-go J∗.

4.1.2 Results using Basis Function Generation Algorithm

In most practical problems, however, it is not possible to use the exact probability

transition matrices in determining the future cost-to-go for a state. For such prob-

lems, each successive basis function can be calculated using the method provided in

Table (3.1). However, to analyze and compare the results of this method, a number

of tests were generated to analyze the performance of the basis function generation

algorithm shown in Table (3.1). Once again, the purpose of these simulations is to

compare the convergence rate of the cost-to-go approximation Φr using the basis func-

tion generation algorithm (shown in Table (3.1)) versus optimal cost-to-go function

J∗ found using policy iteration in MATLAB [91]. Again, all of the basis functions

multipliers rk generated in this section for these simulation were calculated using the

Common Optimization INterface for Operations Research (COIN-OR) Open-Source

Software package [63], which can be downloaded from http://www.coin-or.org/.

Figure 4-3 shows the convergence rate of the cost-to-go function to the optimal

cost J∗ as basis functions are generated. Figure 4-3 (a) and (b) show the difference

between the optimal cost-to-go J∗ and Φkrk as each basis function is computed and

added at each iteration. Notice that the cost-to-go approximation Φkrk improves

quickly after after 10 basis functions are computed for this problem. However, after

approximately 15 iterations, the cost-to-go approximation Φkrk improvement begins

to slow. This error between J∗ and Φkrk is a result of the sampling approximations

used to estimate the future cost-to-go. Note that as more trajectories are sampled,

the cost-to-go approximation improves. Finally, note that the “ripples” seen in the

cost-to-go comparison are also a result of deviations in the sampled trajectories at

each iteration. Since the basis functions are calculated using trajectories that are re-

generated at each iteration, slight variations in the cost-to-go approximation structure

result due to sampling differences from iteration to iteration.

In addition, note that the difference between J∗ and the cost-to-go function Jk

generated using value iteration (starting from J0 = Φ0r0 for comparison purposes) is

also provided in Figure 4-3 for comparison purposes. Therefore, the basis function

generation algorithm (as shown in Table (3.1)) can be used to generate an approxi-

mation structure for the original problem that provides a good approximation of the
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(a)

(b)

Figure 4-2:
Cost-to-go Comparison for modified Basis Function Generation
Algorithm (with no sampling) for 13 Basis Functions generated
using the procedure shown in Table (4.1). (a) and (b) show the
difference between the optimal cost-to-go J∗ and Φkrk as a basis
function is computed and added at each iteration.
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optimal cost-to-go J∗.

4.2 Implementation: Large-Scale Multi-Vehicle Mis-

sion Management Problem

Next, we consider a much larger problem mission management problem were the

number of vehicles is large. To implement the UAV SWARM Resource Management

problem formulation using the ALP-based approach (as described above), we must

address a variety of issues related to the size of the state and action space. For

example, since we have defined the state as the vector x = (I,H, L) ∈ I × H × L
where I ∈ I indicates the allocation of each agent in the task space, H ∈ H indicates

the maintenance / health state of each agent in the task space, and the symbol L ∈ L
denote a vector of aggregated task requests, this means that this vector has 2M+NK

elements. Here, I = (I1, ..., IM) where Ij ∈ {−1, 0, ..., N} such that “−1” represents

the condition where the vehicle is either “en-route” to a task location or “waiting” at

a forward operating location for assignment, “0” represents the maintenance or base

location, and {1, ..., N} represent the task locations each vehicle can be assigned to.

Once again note that before a vehicle can be allocated to a task, it must transition

through the “en-route to a task location” state. Next, H = (H1, ..., HM) where

Hj ∈ {0, ..., TF} is the current fuel condition of the vehicle and TF represents the

maximum period of time each vehicle can participate in the mission before returning

to the maintenance location. Finally, L = (L1, ..., LNK) where Lj ∈ {0, 1, ..., Lmax}
and represents the number of tasks that need to be completed by a task group in the

mission system (where Lmax is a large positive integer). Therefore, the size of the

state space in this problem is very large, such that we will be unable to generate the

probability transition matrix for each state in the problem exactly. In addition, since

each action A ∈ A ≡ I, the action space is also very large, such that for given state

we will be unable to examine and generate every possible action for evaluation in a

period of time that would allow us to implement this for real-time use.

As a result, to be able to formulate and solve this problem we must use a technique

called constraint sampling, as discussed in [23]. The main idea behind constraint

sampling is that we can select a subset of the constraints from the original problem

that will generate a good approximation of the cost-to-go function when all of the

constraints are present. However, although constraint sampling reduces the number

of state-action pairs that are considered in the problem formulation, calculating the
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(a)

(b)

Figure 4-3:
Cost-to-go Comparison for Basis Function Generation Algorithm
for 50 Basis Functions generated using the procedure shown in
Table (3.1). (a) and (b) show the difference between the optimal
cost-to-go J∗ and Φkrk as a basis function is computed and added
at each iteration.
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future cost-to-go remains a formidable problem. As used in Step 1 of the basis function

generation algorithm in Table (3.1), we use sampling to generate an estimate of the

cost-to-go from a given state for a given action of the form

∑
y∈S

Pa(x, y)Φ
T (y)r ≈ 1

W

W∑
i=1

ΦT (yi)r (4.2)

where {y1, ..., yW} are the set of sampled future states from x ∈ S.

4.2.1 Action Space Complexity

Although we now have a method to approximate the cost-to-go from each state,

we still must address the fact that the problem’s state and action space are both very

large. As such, for a large problem, we may not be able to evaluate or find the best

action to be used from this particular state (since the complexity of the action space

is on the order of O(MN+1). Therefore, we must find a way to reduce the number of

actions that are considered at each iteration so that a solution can be calculated in

real-time. [23] provides many suggestions on how to deal with a system that has a

large action space.

One such method that can be used is to determine the task group / maintenance

allocation of each vehicle in turn. Note that at each time step, either each vehicle

is allocated to a particular task (N mission tasks, the “waiting” or “enroute to a

location” task and one maintenance task), or the vehicle has yet to be allocated to a

task. A similar method was used with success to manage the web server farm system

in [21]. For the UAV SWARM Resource Management problem, the action space could

be pruned to consider following actions:

• For vehicles that are already allocated, there are three decisions: determine

whether the vehicle will remain allocated to the same task, become re-allocated

to another task, or return to the base for maintenance

• For vehicles that are not allocated, there are N + 1 possible allocations – each

associated with a possible mission task group and the “waiting” or “enroute to

a location” allocation

The main problem with this approach is that it will not reduce the complexity of

the action space in states where many of the vehicles are not specifically allocated to
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mission task groups. In this case, the action space complexity remains approximately

O(MN+1
Deallocated) where MDeallocated is the number of vehicles that are deallocated.

Therefore, to reduce the size of the action space we are considering, we have

selected an alternative approach that takes advantage of the problem structure and

the information above to reduce the number of actions considered at any time step.

First, we estimate how many vehicles will be required at each task location and order

these needs based on the ratio Bk

µk
. Next, we determine if there are any vehicles

that must be sent back to the base for maintenance due to flight time constraints,

and preset the action associated with this vehicle to the maintenance task. Here, the

number of vehicles being sent back for maintenance is defined as MMaintaintance. Then,

we use the scoring function Φr generated using basis function generation algorithm

in Table (3.1) to decide on the total number of vehicles to be allocated (ranging

from 0 to MDeallocated) and deallocated (ranging from 0 to max(M −MDeallocated −
MMaintaintance, 0). Note that vehicles are allocated in each task following the task-

based ordering (as mentioned above). This method dramatically reduces the number

of actions that are considered from each state, allowing us to find an approximate

solution and vehicle-mission task group allocation to the UAV SWARM Resource

Management problem in a real-time.

4.2.2 Approximate Linear Programming-Based Mission Prob-

lem Implementation

Note that a key component of this formulation is the calculation / generation

of basis functions. Since the entire UAV SWARM Resource Management problem

cannot be solved in a short period of time where the size of the state space is large,

we developed an approximation procedure to generate the constraints for this problem

using the following method. First, we define the base policy for the UAV SWARM

Resource Management problem as discussed in Table (4.2).

Using this base policy, we use the following approximation procedure to generate

the constraints for this problem in order to generate the ALP used in Step 1 of the

basis function generation algorithm:

1. Select Q possible future states from the system’s current state x0

2. For each future state xq ∈ S where q ∈ {1, ..., Q}, find the local cost for each

state ga(x
q) = g(Iq, Lq). Note in this formulation, the local cost is calculated by
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Step 1: Determine if there are any vehicles that must be sent back to the base
for maintenance due to flight time constraints. If so, re-allocate these vehicle
to the base location.

Step 2: Count the remaining number of vehicles assigned to each task
location, and count the number of tasks that exist at each task location.

• If there are exactly enough vehicles to handle the current task load, then
allocate the same vehicles to the current task.

• If there are more than enough vehicle to handle the task load, make the
extra vehicles (with the most flying hours) available to be re-allocated
to either assist other task groups (in need of additional resources)

• If there are not enough vehicles to handle the current task load, then
allocate the same vehicles to the current task and request any available
flying vehicles to handle the remaining task needs. Note that vehicles
are allocated to requesting tasks based on the ratio Bk

µk
to minimize the

overall operation’s local cost at any given stage.

Step 3: If there is still a need for additional vehicles (since the number of
allocated vehicles cannot be used to meet current task goals), request more
vehicles from the base location.

Step 4: If there are more enough vehicles available to cover the current task
needs, deallocate the remaining extra vehicles and send them to base.

Table 4.2: Base Policy for the Large-Scale Mission Management problem)

assessing a small fuel penalty for each flying vehicle and assessing a penalty for

each task that is not being served by a vehicle (where the vehicles are allocated

in each task location based on the ratio B·
µ·

)

3. Generate W trajectories using the base policy defined in Table (4.2) to generate

the cost-to-go structure Φk

4. Using the basis function generation algorithm in Table (3.1), find the multipliers

used to generate basis functions online.

Note that this formulation can be used off-line and on-line to calculate new basis

functions for this problem. However, once the basis function multipliers are generated,

a very simple online procedure can be used to implement and evaluate the best policy

on-line:
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1. From the current state xt = (It, Ht, Lt), find the local cost for each state g(It, Lt)

2. For each possible action a ∈ Axt (using the guidelines outlined in Section 4.2.1),

estimate the future cost-to-go using the relationship in Equation (4.2). To do so,

each action is used in selecting W future states yi ∈ S for i ∈ {1, ...,W}, from

which W trajectories are generated using the base policy defined in Table (4.2)

to generate the cost-to-go structure Φ(yi)r (where r is the N̄th multiplier vector

from the basis function generation algorithm).

3. Finally, the best possible action is used as determined by:

ā = arg min
a∈Axt

[
ga(xt) +

α

W

W∑
i=1

Φ(yi)r

]

This method provides a computationally efficient method for evaluating the best

policy at each state in real-time.

4.2.3 Simulation Results

To evaluate this approach, we developed a mission simulator to examine the poli-

cies developed using this approach in real-time. For these simulation, we assumed

that there were 40 vehicles, 5 task locations and 3 task types: classification tasks,

search tasks, and surveillance tasks. These three task types were selected since the

represent short-, medium- and long-duration tasks (respectively). During each oper-

ation, search and classification tasks may produce a follow-on surveillance task upon

their completion. In addition, each vehicle has flight time limitations due to fuel and

maintenance concerns. Likewise, vehicles can experience failures that cause them to

return-to-base during the middle of a mission.

For these tests, we assumed that new search task requests occur with probability

0.33 per time step and have an average completion time of 3 time steps, new classi-

fication task requests occur with probability 0.25 per time step and have an average

completion time of 1 time step, and new surveillance task requests occur with prob-

ability 0.16 per time step and have a maximum completion time of 10 time steps. In

addition, search tasks produce a follow-on surveillance tasks with probability 0.5 and

classification tasks produce a follow-on surveillance tasks with probability 0.25. Next,

the costs were setup such that the ratio of cost benefit to average time of completion

favored resolving search tasks first, classification tasks second, and surveillance tasks
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Figure 4-4:
Approx. Bellman Error improvement Basis Function Generation
Algorithm for Large Scale Problem for 20 Basis Functions gener-
ated using the procedure shown in Table (3.1) for the large-scale
mission problem

third at all task locations. In addition, each vehicle has flight time limitations of 10

time steps. Finally, two different vehicle failure rates were tested in these simulations:

vehicles could experience a failure with probability 0.1 in half the simulations, and in

the second set of simulations, the vehicle failure rate was set to 0.

The basis function generation algorithm is used to generate the cost approxima-

tion structure for each problem. In Figure 4-4, shows the convergence rate of the

approximate Bellman error function ‖T̂Φkrk − Φkrk‖1,c at each iteration for the case

when the vehicle failure probability is 0.1 at each iteration. This plot shows that the

approximate Bellman error decreases for sampled constraints. Once again, sampled

trajectories are generated at each iteration to generate each basis functions at each

iteration using their implicit representation (via the multipliers).

In the simulation tests, the base policy was compared against the policies gen-

erated using the method described at the end of Section 4.2.2. In Figure 4-5 shows

simulation results for the base policy where the vehicle failure probability is 0.0 (a)

and 0.1 (b) at each iteration. Note that the plots in the left column compare the num-

ber of vehicles allocated to tasks versus the number of task requests in the system
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at each iteration. The plots in the right column show the number of each task type

request for each iteration. First, note that the base policy allocates only the number

of vehicles needed to perform the tasks in the system at each iteration. Therefore,

this policy does not take into account future requests or task request loads on the

system. In the case where the vehicle failure probability is set to 0 at each iteration,

the base policy is able to maintain a number of vehicles in the system to complete

the task requests filed by the system.

However, notice that in Figure 4-5(b) when the vehicle failure probability is set

to 0.1 at each iteration, the system has trouble allocating enough vehicles to meet

task demands. More specifically, note that surveillance tasks require vehicles to be

on station much longer than other tasks and surveillance tasks are follow-on tasks to

search and classification tasks. Therefore, the problem was setup so that surveillance

tasks provided a smaller cost benefit to average time of completion ratio, which meant

that surveillance tasks were the last tasks assigned in the system. Therefore, since the

base policy allocated all of its vehicles to search and classification tasks to minimize

the local cost and does not take into account vehicle failures or future task allocations,

the mission system seldom had enough vehicles allocated to manage all of the tasks

due to vehicle failures. In fact, at one point, the number of surveillance task requests

in the system became extremely large because the base policy did not allocate enough

vehicle resources to meet these task requests.

In contrast, Figure 4-6 shows simulation results for policies generated using 20

basis functions based on the method discussed at the end of Section 4.2.2 where the

vehicle failure probability is 0.0 (a) and 0.1 (b) at each iteration. Again, the plots in

the left column compare the number of vehicles allocated to tasks versus the number

of task requests in the system at each iteration and the plots in the right column

show the number of each task type request for each iteration.

While base policy allocates only the number of vehicles needed to perform the

tasks in the system at each iteration, the cost function-based policies to seek keep

more vehicles allocated on-station to account for future task requests and vehicle

failures. Also notice that the policy calibrated for the vehicle failure probability of

0.1 appears to keep a more constant presence of vehicles allocated in the system than

the policy associated with the system calibrated for the vehicle failure probability of 0.

The main reason for this phenomenon is that since vehicles are failing and being sent

back to base in the case where the vehicle failure probability of 0.1, the mission system

attempts to ensure that vehicles are constantly being cycled to meet task demands

while ensuring that there are enough resources available to service these tasks. This
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(a)

(b)

Figure 4-5:
Simulation Results for the Base Policy where the vehicle failure
probability is 0.0 (a) and 0.1 (b) at each iteration. The plots in
the left column compare the number of vehicles allocated to tasks
versus the number of task requests in the system at each iteration.
The plots in the right column show the number of each task type
request for each iteration.
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(a)

(b)

Figure 4-6:
Simulation Results for BFGA Policies Generated using 20 Basis
Functions where the vehicle failure probability is 0.0 (a) and 0.1
(b) at each iteration. The plots in the left column compare the
number of vehicles allocated to tasks versus the number of task
requests in the system at each iteration. The plots in the right
column show the number of each task type request for each iter-
ation.
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also allows the mission system to allocated new vehicles directly to task areas that

require more vehicle assets, thus reducing the number of vehicles switching between

task areas. On the other hand, in the case where the vehicle failure probability is 0,

the mission system’s main concern is to balance the vehicle’s fuel constraints against

system needs. Therefore, vehicles remain in the task area as long as they are needed

before getting sent back to base. This means that vehicles may be allocated to task

regions that do not require vehicles at that moment in order to ensure that there are

enough vehicles to serve future task requests. Regardless, both policies successfully

keep the number of task requests down and perform better than the base policy.

The next question one may ask is how does the policy change if the same basis

functions are used when changes are made to the underlying problem. For example,

assume that the vehicle’s fuel window is limited by 10% because of fuel shortages

or due to the distance a vehicle is traveling. In Figure 4-7 shows simulation results

for policies generated using 20 basis functions based on the method discussed at

the end of Section 4.2.2 where the vehicle failure probability is 0.1 at each iteration

and the vehicle’s fuel window in the simulation is reduced by 10%. Note that basis

function parameters were calculated based on a fuel window of 10 time steps, while

the simulation reduces the vehicle fuel window to 9 time steps. Despite this change,

the mission manager is able to manage the number of tasks in the system. Note that

although there are more task requests in the system, the mission system is still able

ensure that there are enough vehicles allocated to meet the task requests.

Finally, Figure 4-8 shows simulation results for policies generated using 20 basis

functions based on the method discussed at the end of Section 4.2.2 where the vehicle

failure probability is 0.0 (a) and 0.1 (b) at each iteration, except the fuel cost per

vehicle is increased by 250%. Each plot on this page compares the number of vehicles

allocated to tasks versus the number of task requests in the system at each iteration.

The plots in the left column are for the original fuel cost used in the other experiments

(as shown in Figure 4-6) and the plots in the right column show the results where the

fuel cost is increased by 250%.

Once again, the cost function-based policies seek keep more vehicles allocated

on-station to account for future task requests and vehicle failures; however, notice

that as the fuel cost per flying vehicle is increased, the gap between the number of

vehicles allocated and the number of tasks in the system is smaller (as shown by

comparing the plots in the left column with the original fuel cost and the plots in

the right column with the increased fuel cost). In addition, these plots also show

that there is a balance between the performance of the policy and the fuel cost of the
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(a)

(b)

Figure 4-7:
Simulation Results for BFGA Policies Generated using 20 Basis
Functions where the vehicle failure probability is 0.1 at each iter-
ation and the fuel window in the simulation is reduced by 10%.
(a) compares the number of vehicles allocated to tasks versus the
number of task requests in the system at each iteration, while (b)
shows the number of each task type request for each iteration.
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(a)

(b)

Figure 4-8:
Simulation Results for BFGA Policies Generated using 20 Basis
Functions where the vehicle failure probability is 0.0 (a) and 0.1
(b) at each iteration and the fuel cost per flying vehicle is increased
by 250% in the simulation. Each plot on this page compares the
number of vehicles allocated to tasks versus the number of task
requests in the system at each iteration. The plots in the left
column are the original fuel cost used in the other experiments
(as shown in Figure 4-6) and the plots in the right column show
the results where the fuel cost is increased by 250%.
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vehicles. Note that when there is a rapid increase in the number task requests, the

policy associated with the basis functions calibrated for the vehicle failure probability

of 0.1 has less vehicles allocated to account for the task requests in the system (see

the lower right plot in Figure 4-8 near the 60th time step). As mentioned before,

though vehicles are failing and being sent back to base in the case where the vehicle

failure probability of 0.1, the mission system attempts to ensure that vehicles are

constantly being cycled to meet task demands while ensuring that there are enough

resources available to service these tasks. However, due to the raised fuel cost, the

mission system is slow to allocate vehicle assets to the task area to ensure that there

are an adequate number of resources to serve the tasks requests while balancing fuel

costs by limiting the number of allocated vehicles. Regardless, even when there is a

rapid increase in task requests, over time the system is able to reduce these task loads

by allocating more vehicles to account for these periods of large demand. Therefore,

both policies successfully keep the number of task requests down and perform better

than the base policy even with the increase in the fuel cost.

4.3 Summary

In summary, the basis function generation methods posed in Chapter 3 can be used

to find effective policies for both small- and large-scale problems. These tests also

demonstrate this method can be used in real-time to manage mission system tasks

autonomously. As we will see in Chapter 6, the basis function generation method is

the only method in the literature that has been used a real-time mission management

system. The flight tests in Section 6.5.1 and the simulation results presented in this

chapter mark a large step in the development of on-line cost approximation structures

used to manage autonomous systems in real-time.
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Chapter 5

Multi-Agent Mission System

Testbed and Health Management

As mentioned in Chapter 1, unmanned aerial vehicles (UAVs) are becoming vital

warfare and homeland security platforms because they significantly reduce costs and

the risk to human life while amplifying warfighter and first-responder capabilities.

These vehicles have been used a number of military and civilian applications with

success, but there remains a formidable barrier to achieving the future vision of mul-

tiple UAVs operating cooperatively with other manned and unmanned vehicles in the

national airspace and beyond. In addition, there is very little in the literature to date

about how to perform multi-day autonomous system operations. In extended mission

operations, autonomous mission systems must use health management techniques to

evaluate and assess the capability of system components when creating an effective

strategy to meet task and mission goals. In prior work, the term health management

is used to define systems that actively monitor and manage vehicle components (for

example actuators, flight control, engine, avionics and fuel management hardware) in

the event of failures [5, 30].

To investigate and develop health management techniques for autonomous multi-

agent mission platforms, an indoor multi-vehicle testbed called RAVEN (Real-time

indoor Autonomous Vehicle test ENvironment) was developed to study long-duration

missions in a controlled environment. Normally, multiple human operators are needed

to manage flight hardware, navigation, control, and vehicle tasking during multi-

vehicle coordination and control demonstrations. However, the RAVEN allows re-

searchers to focus on high-level tasks by autonomously managing the navigation,

control, and tasking operations of the platform’s realistic air and ground vehicles
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during multi-vehicle operations. This characteristic promotes the rapid prototyping

of UAV technologies by means of flight testing new vehicle configurations and algo-

rithms without redesigning vehicle hardware.

As a result, RAVEN is being used to implement and analyze techniques for em-

bedding the fleet and vehicle health state into UAV mission planning. In particular,

using RAVEN we are examining key research questions related to vehicle and multi-

agent health management such as vehicle failures, refueling, and maintenance using

real hardware. RAVEN is comprised of both aerial and ground vehicles, allowing

researchers to conduct tests for a wide variety of mission scenarios. This chapter

describes the components and architecture of RAVEN and presents recent flight test

results.

5.1 Background

As mentioned in Chapter 1, a variety of research platforms have been developed to

study advanced theories and approaches in the development of innovative UAV con-

cepts [2, 19, 26, 27, 33, 46, 47, 49, 52, 50, 53, 54, 56, 58, 70, 85, 90, 103, 104]. However,

these testbeds have several limitations that inhibit their utility for investigating health

management questions related to multi-day, multi-agent mission operations. For ex-

ample, outdoor platforms can be tested only during good weather and environmental

conditions. Since most outdoor UAV test platforms can be flown safely only during

daylight operations, these systems cannot be used to examine research questions re-

lated to long-duration missions, which may need to run overnight. In addition, many

of these vehicles are modified to carry additional vehicle hardware for flight opera-

tions. As a result, these vehicles have to be redesigned to meet payload, onboard

sensing, power plant, and other requirements. Thus, these vehicles must be flown

in specific environmental conditions, unrelated to flight hour constraints, to avoid

damage to the vehicle hardware. These external UAVs also typically require a large

support team, which makes long-term testing logistically difficult and expensive.

In contrast, RAVEN is designed to test and examine a wide variety of multi-

vehicle missions using both autonomous ground and air vehicles. Since the platform

uses small, essentially unmodified electric helicopters and airplanes, we can fly more

than five air vehicles in a typical-sized room at the same time. In fact, one operator

can set up the platform for flight testing multiple UAVs in under 20 minutes. As a

result, researchers can perform a large number of test flights in a short period of time

with little logistical overhead.
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At the heart of the testbed is a global metrology system that yields accurate,

high bandwidth position and attitude data for all vehicles in the entire room. Since

the position markers are lightweight, the position system is able to sense vehicle

position and attitude without adding any significant payload to the vehicles. As a

result, RAVEN’s configuration does not require significant modifications to off-the-

shelf radio-controlled (R/C) vehicle hardware. This configuration enables researchers

to avoid being overly conservative in flight testing. Thus, this platform is ideal for the

rapid prototyping of multi-vehicle mission management algorithms since one person

can operate the system over long periods of time at a fraction of the cost needed to

support multi-day external flight demonstrations.

5.2 System Architecture and Components

One objective of RAVEN is to enable researchers to test a variety of algorithms and

technologies applicable to multi-UAV mission problems in real time. Therefore, the

architecture must allow users the flexibility to add and remove both hardware and

software components as needed. Another design objective is to provide one opera-

tor with the capability to command several autonomous vehicles at the same time.

Consequently, the architecture must include components that provide the mission

operator with sufficient situational awareness to verify or issue changes to a vehicle’s

plan in real time.

To meet these requirements, RAVEN’s architecture has the hierarchical design

shown in Figure 5-1(a). This architecture is used since it separates the mission and

task components of the architecture from the testbed’s vehicle infrastructure. Thus,

changes in the mission and task components of the system do not require changes to

the testbed’s core software infrastructure and can be made in real time. This approach

builds on an earlier version of the system architecture used in the DARPA-sponsored

Software Enabled Control capstone flight demonstration by the MIT team [82, 100].

As discussed in [100], this architecture was used to enable the Weapons Systems Of-

ficer on-board an F-15E fighter aircraft to successfully command a UAV during a

mission in real-time using a Natural Language interpreter. During flight testing, mul-

tiple successful F-15/T-33 sorties were flown successfully using this mission software

on three separate flights. It was the first time a manned aircraft controlled a UAV

via natural language in real-time in flight.

The planning part of the RAVEN’s architecture has four major components,

namely, a mission planning level designed to set the system goals and monitor system
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(a)

(b)

Figure 5-1:
(a) Multi-vehicle command and control architecture block dia-
gram and (b) the integrated vehicle system block diagram. This
system architecture is designed to separate the mission- and task-
related components of the architecture from RAVEN’s vehicle in-
frastructure. Therefore, adjustments in the mission, task, and tra-
jectory planning components of the system do not require changes
to the testbed’s core software infrastructure and can be made in
real time.
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progress, a task assignment level that is designed to issue and assign specific tasks

to a vehicle or vehicle group to support the overall mission goals, a trajectory design

level that directs each vehicle and its subsystems on how to best perform the actual

tasks provided by the task processing level, and a control processing level designed

to carry out the activities set by higher levels in the system. In addition, health

information about each component in the system is used by each component in the

architecture to make informed decisions on the capabilities of each subsystem in the

architecture. As a result, each component is designed to support the decisions made

in each level to ensure that vehicles make an informed decision that is in the team’s

best interest for any given task.

The architecture used in RAVEN allows researchers to rapidly interchange differ-

ent mission system components for the purpose of testing a variety of algorithms in

a real-time environment. For example, in order to allow users to rapidly prototype

mission, task, and other vehicle planning algorithms with RAVEN’s vehicle hardware,

the vehicles must be able to accept command inputs, such as waypoints, from any

high level planning system. Although low-level commands like “fly at a set speed” can

be issued to the vehicles in the platform, a waypoint interface to the vehicles allows

users to easily substitute mission, task, and path planning components into the archi-

tecture without changing the vehicle’s base capabilities. This interface allows users

to add, remove, and test algorithms and other related components as needed. In fact,

the waypoint interface to the vehicles has already allowed users to develop and imple-

ment code on the platform in real time using programs like Matlab to test centralized

and distributed planning algorithms using computers from other locations on campus.

As a result, researchers can implement various control, navigation, vehicle tasking,

health, and mission management algorithms on the system [11, 20, 59, 94, 96, 97].

Likewise, users can easily incorporate new vehicles into the testbed architecture. New

vehicle controllers and base capabilities can be added, removed, and tested in the ar-

chitecture without affecting the rest of the system components.

5.3 Main Testbed Hardware

In order to test and demonstrate the real-time capabilities of health management

algorithms in a realistic real-time environment, we sought to develop a testbed that

uses simple, robust vehicles in an indoor test environment that can be flown for

extended periods of time. As a result, RAVEN’s hardware architecture is designed

to allow researchers to use a variety of R/C vehicles without requiring significant
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modifications. Figure 5-1(b) shows a diagram of the components and setup of the

integrated control system. Since the platform’s primary computing, data collection,

and sensing resources are offboard the vehicles, users can examine research questions

related to autonomous multi-vehicle operations using simple, inexpensive vehicles.

Currently, the control processing and command data for each vehicle is processed

by a dedicated computer and sent over a USB connection from the vehicle’s control

computer to the trainer port interface on the vehicle’s R/C transmitter. All comput-

ing for this system is performed on ground-based computers, which have two AMD

64-bit Opteron processors, 2 Gb of memory, and run Gentoo Linux.

A Vicon MX camera system measure the position and attitude for each vehicle in

the testbed [102]. This system yields accurate, high bandwidth position and attitude

data in real time for all vehicles in the testing area. By attaching lightweight reflective

markers to the vehicle’s structure, the Vicon MX camera system and Tarsus software

can track and compute the vehicle’s position and attitude for each vehicle in the flight

space at rates up to 120 Hz. This sensing data is processed by a central computer,

and then broadcast over a high-speed network for any system component to use as

needed. This motion capture system provides a simple, baseline capability for sensing

and controlling the vehicle motion, which enables researchers to explore research

topics, such as multi-vehicle coordination, vision-based navigation and control, or new

propulsion mechanisms such as flapping flight. Just as GPS spurred the development

of large-scale UAVs, we expect this new sensing capability to have a significant impact

on indoor flight, which has historically been restricted to constrained 3D regions.

The accuracy of the Vicon MX camera systems’s position and attitude measure-

ments are difficult to confirm during flight operations since the vehicles are prone

to external disturbances. However, Figure 5-2 shows a scatter plot of the measured

(x,y) position (in meters) of a quadrotor sitting on the floor at position (0,0). Note

the scale on the plot – with the rotors not turning, the maximum x-position error

measured by the system in this test is 0.325 mm and the maximum y-position error

measured by the system in this test is 0.199 mm. Tracking multiple reflectors in a

unique orientation on each vehicle enables the Vicon camera system to determine

the position of the center of mass and the attitude of each air/ground vehicle that is

within range. For example, an eighteen camera configuration can easily track five air

vehicles and multiple ground vehicles in a 8-m by 5-m by 3-m flight volume.

Currently, RAVEN is comprised of a variety of rotary-wing, fixed-wing, and

ground-based R/C vehicles types. However, most testbed flight experiments are per-

formed using the Draganflyer V Ti Pro quadrotor [24]. This quadrotor model is a
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(a)

(b) (c)

Figure 5-2:
Scatter plot of (x, y) vehicle position. (a) shows a scatter plot
of the measured (x,y) position (in meters) of a quadrotor sitting
on the floor at position (0,0). (b) and (c) show histograms of
the measured percentage of time of the vehicle’s measured x- (b),
and y-positions (c). Note that the scale in these plots is meters
x 10−4 – with the rotors not turning, the maximum x-position
error measured by the system in this test is 0.325 mm and the
maximum y-position error measured by the system in this test is
0.199 mm.
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small (≈ 0.7 m from blade tip to blade tip), lightweight (under 500 g) air vehicle with

a payload capacity of about 100 g that can fly between 13–17 minutes on one battery

charge (using a 2000 mAh battery) while carrying a small camera. The four-propeller

design simplifies the dynamics and control, and the vehicle’s airframe is robust and

easy to repair in the event of a crash. The rotor blades are designed to fracture or

bend when they hit a solid object. These qualities make the Draganflyer V Ti Pro

quadrotor durable and safe for indoor flight.

A separate landing and ground maintenance system are used to support the

quadrotor vehicle hardware in an around-the-clock environment. More specifically,

the landing hardware and its associated real-time processing aids the vehicle’s guid-

ance and control logic during the takeoff and landing tasks. In addition, a mainte-

nance module has been developed to evaluate whether the actual vehicles are due for

maintenance and monitor the recharging of the batteries prior to flight. This concept

has been successfully demonstrated several times. Currently, a new version of the

quadrotor recharge platform is being tested prior to its integration into the testbed.

Likewise, R/C cars and trucks are being used as ground vehicles in the plat-

form. Most of these ground vehicles are modified R/C trucks made by DuraTrax [44].

These modifications consist of replacing the stock onboard motor controller and R/C

receiver with a custom motor driver circuit, Robostix microcontroller [37], and RF

communication module with 802.15.4 wireless connectivity. These modifications are

made to improve the vehicle’s precision driving capabilities while making it possible to

autonomously command and control multiple ground vehicles by means of one ground

computer in mission scenarios, such as airborne search and track missions, search and

recovery operations, networking experiments, and air and ground cooperative mission

scenarios.

In addition to the quadrotors, RAVEN offers a unique indoor environment for

conducting dynamic flight control experiments. For example, foam R/C aircraft are

being used to explore the properties of an aircraft flying in a prop-hang (that is, nose-

up) for the purposes of landing vertically and performing other complex maneuvers.

5.3.1 Task Processing and Operator Interface Components

The control system for each vehicle in the testbed can process and implement tasks

defined by a system component or user. For example, each vehicle has a vehicle man-

ager module designed to handle task processing, trajectory generation, and control

processing for the vehicle. This module is designed to allow an external system or
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(a)

(b)

Figure 5-3:
Multi-vehicle search and track experiment (a) and operator in-
terface visualization (b). The sensing system records the ground
vehicle locations in real time. When the vehicles are being tracked
by the UAVs, then the location is displayed to the operator
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user to communicate with the vehicle using task-level commands, such as, “fly to way-

point A”, “hover/loiter over area B”, “search region C”, “classify/assess Object D”,

“track/follow object E”, and “takeoff/land at location F”. These commands can be

sent to the vehicle at any time during vehicle operations. Each agent’s vehicle man-

ager processes these tasks as they arrive and responds to the sender acknowledging

the task request.

RAVEN is also designed with an automated system task manager. Since each

air vehicle in the system can takeoff and land autonomously, this task manager can

autonomously manage any air and ground vehicle controlled by the system using task-

level commands. As a result, multi-vehicle mission scenarios (for instance, search,

persistent surveillance, area denial, and others) can be organized and implemented

by the task manager autonomously. Likewise, coordinated multi-vehicle flight tasks

can also be managed by the task advisor with little operator interaction with the

system, thus allowing one operator to command and control multiple vehicles at the

same time.

Although this system reduces the operator load by handling many tasks au-

tonomously, the system has an operator interface with vehicle tasking capability.

The task manager system is designed to allow an operator to issue a command to any

vehicle at any time. Currently, the operator interface includes a 3D display of the

objects in the testing area, as shown in Figure 5-3, and a command and control user

interface, which displays vehicle health and state data, task information, and other

mission-relevant data.

The vehicle trajectory is specified by the planner as a sequence of waypoints

consisting of a location x̄i = (x, y, z), vehicle heading ψi, and speed vi. Given these

waypoints, several options are available for selecting the actual reference inputs to the

vehicle, with perhaps the simplest smooth path being to follow a linear interpolation

of the points defined by

x̄ref (t) =
(x̄i+1 − x̄i)

|x̄i+1 − x̄i|
vit, (5.1)

where the choice of vi can be used to move between waypoints at varying speeds.

This same approach is used to automate the takeoff and landing procedure for the

quadrotor vehicles. As a result, the quadrotor vehicles are fully autonomous from

takeoff to landing during all flight operations.
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Figure 5-4: Quadrotor model axis definition

5.4 Quadrotor Control Design Model

A model of the quadrotor vehicle dynamics is needed to design a hover controller.

Figure 5-4 shows the definition of the inertial frame (xE, yE, zE), which is used to

specify the vehicle’s position, and the Euler angles φ, θ, and ψ, which are used to

specify the vehicle orientation (the roll, pitch, and yaw, respectively). The body frame

is specified by the xB-, yB-, and zB-axes, the body moment of inertias are Ix, Iy, and

Iz, and p, q, and r denote the angular rates in the body frame. Additional parameters

include the distance from the vehicle center-of-mass and a motor L, the mass of the

vehicle m, the moment of inertia of a rotor blade JR, and a disturbance generated

by differences in rotor speed d. The inputs to the system are δcollective, δroll, δpitch,

and δyaw, which are the collective, roll, pitch and yaw input commands, respectively.

Starting with the flat earth, body axis six-degree-of-freedom (6DOF) equations [89],

the kinematic and moment equations for the nonlinear quadrotor model can be written

as

ṗ = q r

(
Iy − Iz
Ix

)
− JR

Ix
q d +

L

Ix
δroll, (5.2)

q̇ = p r

(
Iz − Ix

Iy

)
+

JR
Iy

r d +
L

Iy
δpitch, (5.3)

ṙ = p q

(
Ix − Iy

Iz

)
+

1

Iz
δyaw, (5.4)
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φ̇ = p + tan θ ( q sinφ + r cosφ ) , (5.5)

θ̇ = q cosφ − r sinφ, (5.6)

ψ̇ = ( q sinφ + r cosφ ) sec θ, (5.7)

where the terms −JR

Ix
q d and −JR

Iy
p d are included here to represent the disturbances

caused by changing rotor speeds (as discussed in [12]), although the gyroscopic effects

for the Draganflyer [24] model are small. Also, the cross-coupled inertia terms in this

description have been excluded since Ixz is considerably smaller than the Ix, Iy, Iz

due to the shape of the quadrotor, while Ixy = Iyz = 0 due to the vehicle symmetry.

Since the force applied to the vehicle as a result of the collective command can

be represented as a thrust vector along the negative zB-body axis, the nonlinear

navigation equations for the quadrotor in the reference frame are defined in Figure 5-

4 as

ẍE = ( sinφ cosψ − cosφ sin θ sinψ )
1

m
u, (5.8)

ÿE = ( − sinφ sinψ − cosφ sin θ cosψ)
1

m
u, (5.9)

z̈E = −g + ( cosφ cos θ )
1

m
u, (5.10)

where in this case, u = δcollective. After linearizing this model, setting δcollective =

m g + δ̂collective, and dropping small terms in the xE and yE dynamics, yields

ẍE = gφ, (5.11)

ÿE = −gθ, (5.12)

z̈E =
1

m
δ̂collective, (5.13)

φ̇ = p, (5.14)

θ̇ = q, (5.15)

ψ̇ = r, (5.16)
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ṗ =
L

Ix
δroll, (5.17)

q̇ =
L

Iy
δpitch, (5.18)

ṙ =
1

Iz
δyaw, (5.19)

which is the simplified linearized vehicle model around the hover flight condition

where ψ ≈ 0. Here, Ix, Iy, Iz, L, m, and JR have been measured or determined

experimentally for this model.

An integrator of the position and heading error is added to the model of each loop

so that the controller can remove steady state position and heading errors in hover.

The Vicon sensing system accurately and directly measures the system’s state, so

four simple linear quadratic regulators (LQR) are used to stabilize and control the

quadrotor. The controllers use four combinations of vehicle states: φ and xE, θ and

yE, ψ, and zE. The regulators are designed to optimize the vehicle’s capabilities in

the hover flight condition, while ensuring that the vehicle can respond quickly to

position errors without over-tilting the vehicle. To achieve this behavior, a large cost

term is used on the angular position of the vehicle in proportion to the cost terms

on position and velocity terms. Likewise, to encourage a faster response, a small

cost term is applied to the angular rate. This design is used because the platform is

currently optimized for surveillance experiments. In these experiments, a camera is

mounted on the quadrotor vehicles facing toward the ground. Thus, large changes in

pitch, roll, and yaw affect the vehicle’s ability to focus on an item on the ground during

surveillance activities. In addition, an anti-windup bumpless transfer scheme (similar

to those described in [25]) with adjustable saturation bounds is used to prevent the

integrators from winding up while the vehicle is on the ground before, during, and

after takeoff and landing. Detailed flight results for this vehicle can be found in the

results section.

5.5 Hovering Airplane Control Design Model

In addition to quadrotors, RAVEN can be used to rapidly prototype and test other

air and ground systems. For example, a foam R/C aircraft is being used to explore

the properties of an aircraft flying in a prop-hang (that is, nose-up) for the purposes

of landing vertically and performing other complex maneuvers, such as perching.

When hovering an airplane autonomously as shown in Figure 5-5(a), special attention
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(a)

(b)

Figure 5-5:
Airplane model in a autonomous hover (a) and the airplane axis
setup for hover experiments (b)
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must be paid when describing its attitude using Euler angles as to avoid angular

singularities around θ = ±90◦ [89]. As shown in Figure 5-5(b), the airplane’s body

axis reference frame is defined such that the positive x-axis points down from the

airplane’s undercarriage, the positive y-axis points out along the right wing, and the

positive z-axis points out the tail of the aircraft. Using this reference frame, the

vehicle’s nominal attitude reference in hover corresponds to φ = θ = ψ = 0◦.

Using the assumptions of the earth being an inertial reference frame, the aircraft

being a rigid body, and the body frame being fixed to the aircraft, the basic equations

of aircraft motion [48, 89] can be written as (5.5)-(5.7), (5.8)-(5.10) with u = δthrottle,

and

ṗ = qr

(
Iy − Iz
Ix

)
+
ArudderLrudder

Ix
δrudder, (5.20)

q̇ = pr

(
Iz − Ix
Iy

)
+
AelevatorLelevator

Iy
δelevator, (5.21)

ṙ = pq

(
Ix − Iy
Iz

)
+
ω̇propIprop

Iz
+ Cl,propρ

(
ωprop

2π

)2d5
prop

Iz
+
AaileronLaileron

Iz
δaileron.(5.22)

In this description, the cross-coupled inertia terms have been excluded since Ixz is

considerably smaller than the Ix, Iy, Iz due to the shape of the aircraft, while Ixy =

Iyz = 0 due to symmetry of the airframe.

Since the flight condition of interest is hover, the influence of external forces and

moments on the aircraft, other than gravity, are assumed to be negligible. In addi-

tion, since velocities and rotational velocities will be small, multiples thereof can be

disregarded. Using small angle approximations, these equations can be considerably

simplified. Since Iprop � Iz, the torque due to a change in the rotational speed of the

motor can also be disregarded. Next, define δthrottle = mg + δ̂throttle and

δaileron = −Cl,propρ

(
ωprop,0

2π

)2d5
prop

Iz
+ δ̂aileron, (5.23)

where ωprop,0 is the average rotational speed of the motor to keep the airplane in

hover [57]. Next, since the vehicle’s reflective markers are mounted on top of the

both wings, the sensors are visible to cameras only facing the top side of the vehicle

when the vehicle is in hover. Therefore, ψreference = −π
2

for safety reasons to ensure

that there are at least three or more cameras facing the sensors on the wing for this

testing. Therefore, by linearizing the equations of motion the simplified equations for
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the airplane in hover become

ẍE = gθ, (5.24)

ÿE = gφ, (5.25)

z̈E =
1

m
δ̂throttle, (5.26)

θ̇ = q, (5.27)

φ̇ = p, (5.28)

ψ̇ = r, (5.29)

ṗ =
ArudderLrudder

Ix
δrudder, (5.30)

q̇ =
AelevatorLelevator

Iy
δelevator, (5.31)

ṙ =
AaileronLaileron

Iz
δ̂aileron. (5.32)

Here, Ix, Iy, and Iz correspond to the body moment of inertia terms and Aelevator,

Arudder, and Aaileron correspond to the deflected area of each control surface that is

subject to propeller flow while the airplane is in hover. In addition, Lelevator, Lrudder,

and Laileron are the lengths of the control surface moment arms. These terms are

measured or determined experimentally for this model.

Four control schemes of types proportional plus derivative (PD) and proportional

plus integrator plus derivative (PID) are used to stabilize and control the airplane in

hover. These controller schemes are applied to combinations of vehicle states φ and

xE, θ and yE, ψ, and zE and are designed to optimize the vehicle’s capabilities in

hover. In particular, to prevent the vehicle from moving too quickly around the hover

condition, the controllers use large gains on state derivative errors. Position gains

are small in comparison to angular gains in order to maintain stability in hover when

correcting position. This design ensures that a disturbance (for instance, wind) does

not cause the vehicle to oscillate when trying to reachieve its original position.

Several issues are involved in trying to control an airplane in hover. Firstly,

as motor speed changes, so does propeller drag torque. This issue is resolved by

adding an aileron deflection proportional to motor speed error around the equilibrium

speed. The varying speed of the propeller also affects the speed of airflow over control
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surfaces, hence affecting control surface actuation. This issue is most prominent in

roll control. To resolve this issue, the ailerons are deflected additionally at low throttle

settings.

Unfortunately, adding additional deflection to the ailerons does not solve all prob-

lems. As aileron deflection is increased, the ailerons block part of the propeller wash

that would otherwise have reached the elevator. To resolve this issue, a gain propor-

tional to aileron deflection is added in the elevator control path to compensate for

reduced airflow over the elevator and improve the vehicle’s pitch response when the

ailerons are deflected.

Finally, since the airframe of the vehicle lacks rigidity, fast control surface motions

cause the vehicle’s airframe to twist. This twist causes the reflective markers used

by the offboard positioning system to shift in position, thereby giving an incorrect

estimate of the airplane’s momentary location. Although part of this issue is resolved

by the servos being unable to track large amplitude inputs at high frequencies, the

controller gains are sized to minimize rapid changes in control surface position. Flight

results for the airplane in hover are given in the next section.

5.6 Results

Various components of RAVEN have been under development since May 2005. The

goal of the testbed is to study long-duration missions in a controlled environment, so

the recent focus of our lab has been to ensure that RAVEN can reliably fly multiple

mission sorties. As shown in Figure 5-6, a variety of multi-vehicle tests and mission

scenarios have been flown using the testbed. Since January 2006, over 2000 vehicle

experiments have been performed, including approximately 60 flight demonstrations

(around 30 per day) during a 16-hour period at the Boeing Technology Exposition at

Hanscom Air Force Base near Lexington, Massachusetts, on May 3rd and 4th, 2006.

Each of the tests performed at the event involved two vehicles. One test involved two

air vehicles flying a 3D coordinated pattern (as shown in Figure 5-9), and the other

involved an air vehicle following a ground vehicle. These demonstrations show that

the platform can perform multiple UAV missions repeatedly, on demand, and with

minimal setup.
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(a)

(b)

Figure 5-6:
Fully autonomous flight test with five UAVs (a), and a close-up
of five UAVs in flight (b). In this flight, the autonomous tasking
system commanded all five vehicles to takeoff and hover 0.5 m
above the ground for two minutes. In (b) the five vehicles are
shown as they hover during the test. In (a) the five transmitters
for each vehicle are shown. Each transmitter is connected directly
to a ground computer that monitors and commands one vehicle
during flight.
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5.6.1 Quadrotor

Typical results from a 10-min hover test are shown in Figure 5-7. In this test a

single quadrotor is commanded to hold its position at (x, y, z) = (0, 0, 0.7) m for a

10-min period of time. Figure 5-7 shows four plots, including a plot of the vehicle’s x-

and y-positions during this test. The dashed red box in the picture is ±10 cm from

the center point. As shown in Figure 5-7, the vehicle maintains its position inside

this 20-cm box during the entire flight. The remaining plots in the figure are the

histograms of the vehicle’s x-, y-, and z-positions during these tests. This test shows

that a quadrotor can maintain both its altitude (staying between 0.65 to 0.75 m) and

position (staying mostly within 0.05 m from center) in hover over full charge cycle of

a battery.

The results of a single-vehicle waypoint tracking experiment are shown in Figure 5-

8. In this test the vehicle is commanded to hold its altitude at one meter while flying

at a velocity of 0.05 m/s to and hovering for ten seconds at each of the following

waypoints: (-1.5,0,1) m, (-1.5,-0.5,1) m, (1.5,-0.5,1) m, (1.5,5.5,1) m, (-1.5,5.5,1) m

and back to (-1.5,0,1) m. The purpose of this test is to observe the vehicle as it

tries to follow a set trajectory around the indoor laboratory flight space. The plots

show that the vehicle follows the trajectory around a 3-m by 6-m rectangular box as

specified. The cross-track error is less than 15 cm from the specified trajectory at

any given time during the flight.

In addition to these single-vehicle experiments, several multi-vehicle experiments

and test scenarios have been conducted. These tests include, but are not limited

to, formation flight tests, coordinated vehicle tests involving three air vehicles, and

multi-vehicle search and track scenarios.

Figure 5-9 shows the results from a two-vehicle coordinated flight experiment. In

this experiment, the vehicles are commanded by the system’s task advisor to takeoff

and fly a circular trajectory maintaining a constant speed of 0.25 m/s and 180 degrees

of angular separation. In particular, the vehicles are flying in a circle (as projected

in the x–y coordinate frame) while they change altitude (flying from an altitude of

0.5 m to 1.5 m) as they move around the flight pattern. The upper left plot of

Figure 5-9 shows the x–y projection of one of the five circle test flights that were

completed as part of this experiment. Notice that the vehicle trajectories in the lower

right corner of the plot appear to be more noisy. This disruption is partially caused

by the quadrotors flying through the rotor downwash from another vehicle. Flight

testing has shown that the downwash from these quadrotor vehicles is substantial,

thus making it difficult to fly one quadrotor underneath a second quadrotor without
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 5-7:
Single vehicle hover experiment. In this test flight, a quadro-
tor UAV is commanded to hover at (x, y, z) = (0, 0, 0.7) m for
10 min. (a) shows the x–y plot of vehicle position (a), (b)-(d)
show histograms with percentage of time at location for x, y, and
z positions, and (e)-(g) show histograms with percentage of time
at each flight condition for x, y, and z velocities.
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Figure 5-8:
Single vehicle waypoint tracking experiments. In this test, a
quadrotor vehicle is commanded to fly from points (-1.5,0,1),
(-1.5,-0.5,1), (1.5,-0.5,1), (1.5,5.5,1), (-1.5,5.5,1) and back to (-
1.5,0,1) m

significant altitude separation. The lower plot shows a 3D view of the trajectory,

making it clear that the vehicles are also changing altitude during the flight. The

upper right plot shows the results of five consecutive two-vehicle circle test flights.

These test flights were performed over a 20-min time span. These results demonstrate

that experiments run on RAVEN are repeatable and that the platform can be used

to perform multiple test flights over a short period of time.

5.6.2 Hovering Airplane

Just as with the quadrotor, numerous hover tests were performed with the foam

airplane. Typical results are shown in Figure 5-10 in which the vehicle is commanded

to hold its position at (xE, yE, zE) = (0, 0, 0.7) m for five minutes. Figure 5-10 shows

four plots, including a plot of the vehicle x–y location while it maintained its position

and attitude. The dashed red box in the picture is ±0.5 m from the center point. As
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(a) (b)

(c)

Figure 5-9:
Multi-vehicle coordinated flight experiment. In the test, two ve-
hicles are commanded to fly at a constant speed in a circular
pattern with changes in altitude. In this experiment, the vehicles
are commanded by the system’s task advisor to takeoff and fly a
circular trajectory maintaining a constant speed of 0.25 m/s and
180 degrees of angular separation. In particular, the vehicles are
flying in a circle (as projected in the x–y coordinate frame shown
in (a) and (b)), while they are changing altitude (flying from an
altitude of 0.5 m to 1.5 m) as they move around the flight pat-
tern as shown in (c). This test is repeated multiple times and the
vehicles fly similar flight paths in five consecutive tests as shown
in (b).
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shown in Figure 5-10, the vehicle maintains its position inside this 1-m box for most

of the 5-min test period. The remaining plots give histograms of the vehicle’s x, y,

and z positions. These plots confirm that the vehicle is within a 20-cm box around

the target point over 63% of the time. These plots also show that the vehicle precisely

maintains its altitude (staying between 0.65 to 0.75 m) during the entire hover test.

Figure 5-11 shows two waypoint tracking tests for the airplane starting from hover

and then moving at a horizontal rate of 0.3 m/s between a set of waypoints while

remaining nose-up. In the top figure the vehicle started from (1.5, 5.5, 1) m. The

vehicle started from (−1.5, 0, 1) m in the bottom figure. In both tests, the airplane

flies along the desired flight path as it hovers between each waypoint despite the

fact that the vehicle had less control authority in its yaw axis, making it difficult to

maintain the vehicle’s heading during flight. The reduced control authority of the

vehicle’s yaw axis in hover is due to the fact that propeller wash covers less than

10% of the ailerons in the hover flight condition, thus reducing the vehicle’s ability

to counteract disturbances in propeller torque while maintain vehicle heading. As a

result, external disturbances cause the vehicle to deviate from a straight flight path

between waypoints. However, the vehicle stays within 0.5 m of the intended flight

path throughout most of the tests.

Finally, the development and incorporation of this aircraft into the testbed in this

flight condition was accomplished less than three weeks after acquiring the aircraft.

This time period includes a week to construct the airplane. In fact, three days after the

airplane made its first human-controlled flight, the airplane made its first autonomous

hover flight. This activity was performed starting at the end of September 2006 to

the middle of October 2006, validating the platform’s rapid prototyping capability

for new vehicle hardware. A video of the aircraft in the hover flight condition can be

found online at [1].

5.6.3 Multi-Vehicle Testing using Mission and Tasking Sys-

tem Components

A number of multi-vehicle tests have been flown using the RAVEN at MIT to demon-

strate the mission, task assignment and control level health management algorithms

and capabilities. In this test suite, three UAVs equipped with cameras and 2000 mAh

batteries were used to search for ground vehicles in the test area. A number of multi-

vehicle tests were flown as part of this test suite to demonstrate the mission, task

assignment and control level health management algorithms.
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(a)

(b) (c) (d)

Figure 5-10:
Airplane hover experiment. In this flight test, the airplane is
commanded to hover at (x, y, z) = (0, 0, 0.7) m for 5 min. (a)
shows the x–y plot of vehicle position, while (b)-(d) show his-
tograms with percentage of time at location for x, y, and z po-
sitions. These results demonstrate that the vehicle can hold its
position reliably during flight. In this test, the vehicle remains
inside the 20-cm box over 63% of the time during the 5-min hover
test flight.
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(b)

Figure 5-11:
Hovering airplane waypoint tracking experiments. In these flight
tests, the vehicle flies between points (-1.5,0,1), (1.5,0,1), and
(1.5,5.5,1) m. These results show that the hovering airplane can
fly between waypoints in hover.
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Figure 5-12: Multi-vehicle mission flight test setup

Each vehicle-battery combination had measured flight times of 11 to 12 mins under

normal operating conditions prior to these tests. The initial vehicle layout for each

test is shown in Figure 5-12. Each UAV was placed 3 m north of the search area behind

a concrete column. Therefore, these UAVs had to avoid the pole during transitions

between the search and maintenance areas. In addition, two ground vehicles were used

in these tests. The ground vehicle in the western end of the search area could moved

via remote control. Therefore, the actions of the UAVs tracking this vehicle using

vision had to be coordinated via the task advisor (running the modified version of the

Receding-Horizon Task Assignment (RHTA) algorithm described in [98]) to estimate

the ground object’s position and velocity. Likewise, the second ground object was

placed on top of a box. To accurately detect its position, UAVs had to make multiple

observations of this object (from different orientations) since the terrain of the search

area was not known to the mission system a priori.

Flight test data from one of these test flights is shown in Figures 5-13 to 5-16.

In this 12 min test flight, the camera from UAV #3 was removed to demonstrate a

complete camera failure. At the beginning of this flight demonstration, the mission

system commanded one vehicle to search test area for ground objects. Once airborne,

the system’s task advisor used the UAV’s camera images to locate ground objects.

Each time a ground vehicle was detected by the UAV’s vision system, information of

the object’s location was sent to the task advisor for future reference.
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Figure 5-13: Single vehicle searching the test area

Figure 5-14: Two UAVs observing a ground vehicle on box
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Figure 5-15: UAV #1 estimated vs actual flight time

To verify the reported ground vehicle locations, the system’s task advisor re-

quested a second UAV from the mission manager. After the second vehicle reaches

the search area, the task advisor commands both vehicles to monitor the ground vehi-

cles. Figure 5-14 shows UAVs #1 and #2 tracking the ground objects during the flight

test. These images were generated using the RAVEN 3D operator interface playback

utility. In Figure 5-14 both vehicles are commanded by the task advisor to remain

about 90◦ from one another to identify the ground vehicle’s location and orientation

on the box. In this figure, the yellow car-like object is the actual location of the car

(as determined by the RAVEN’s positioning system) and the bobbin-like spherical

object is the task advisor’s estimate of the ground vehicle location (as generated us-

ing the processed images by the camera). More information on the vision-based task

assignment portion of this demonstration can be found in [11].

During the test the system’s health monitors were used to manage UAVs in the

flight space. As shown in Figure 5-15, the estimated flight time of UAV #1 was

monitored by the mission system to determine when it needed maintenance during

the mission. Here, the data shows that about 2.5 mins into its flight, the vehicle’s

battery started to degrade faster than expected. This degradation can be attributed
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Figure 5-16: Mission system commands during flight

Figure 5-17: UAVs over the search area during test
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Figure 5-18:
Two UAVs tracking a ground vehicle during vehicle cycling for
maintenance

to the fact that this vehicle was flown many times and had been involved in collision

prior to this experiment. Since the motors on the vehicle were warn, UAV #1 had

trouble flying with UAV #2 while tracking the moving ground vehicle (due to the fact

that it got caught in UAV #2’s propeller wash). Hence, 6 mins into the experiment,

UAV #1 required more power to maintain its position while observing the ground

vehicles.

As shown in Figure 5-16, the mission system automatically commands each vehicle

to participate in the mission based on the task advisor’s needs and the vehicle’s health.

After receiving the take off command by the mission manager, vehicles required about

1 min to reach the search area. In this case, the mission system proactively commands

UAV #3 to take-off (as shown in Figure 5-18) and replace UAV #1 since the mission

system recognized that UAV #1 was using a abnormal level of collective to maintain

its position during the experiment.

Normally, after the “Fuel Low” message is sent, it takes 1.5 mins for the “Fuel

Warning” message to be generated for a vehicle in normal condition. However, Fig-

ure 5-15 shows a similar time plot of the vehicles on location in the task area. UAV #1

was commanded back to base early to ensure that it safely arrived at base to receive
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Figure 5-19: Fully autonomous flight test with 10 UAVs and 1 operator

maintenance. To prevent a collision, the task manager reactively modified UAV #3’s

flight path so that UAV #1 could safely exit the flight area, thus delaying UAV #3’s

entry into the search area (as shown in Figure 5-17).

Finally, since UAV #3 did not have a camera, the system operator manually

commanded UAV #3 back to base. Since the operator was able to replace the battery

on UAV #1 before failing UAV #3, the mission system recognized that a second

vehicle was available. As shown in Figure 5-16, as soon as UAV #3 is registered as

unavailable, the mission system reactively commands UAV #1 back to the search

area for the rest of the test. A video of a similar multi-vehicle search test flight using

vision, as well as other flights, can be found online at http://vertol.mit.edu.

5.7 Summary

This chapter describes a new indoor multi-vehicle testbed developed at MIT to study

long-duration missions in a controlled environment. RAVEN has enabled an increase

in the unmanned vehicle to operator ratio for multi-vehicle missions to 10:1 (shown

in Figure 5-19), which is an important achievement in the overall goal of reducing the

cost and logistic support needed to operate these systems.
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Furthermore, while other testbeds have been developed to investigate the com-

mand and control of multiple UAVs, RAVEN is designed to explore long-duration

autonomous air operations using multiple UAVs with virtually no flight-time restric-

tions. RAVEN represents a significant technological step forward for UAV develop-

ment by enabling the rapid prototyping of coordination and control algorithms in a

controlled environment. In fact, over the last year, RAVEN has allowed researchers to

demonstrate multi-vehicle obstacle avoidance, coordination, formation flight, search,

autonomous recharge, vision-based landing, and object tracking scenarios using the

quadrotors in real time. Videos showing most of these demonstrations can be found

online at [1].
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Chapter 6

Multi-Agent Health Management

and Extended Mission Testing

Today, unmanned aerial vehicles (UAVs) are used to aid in search and rescue,

surveillance, and other missions over a variety of locations throughout the world.

Teams of multiple UAVs can provide valuable information to operators for making

mission critical decisions in real-time. These multi-agent teams offer a promising al-

ternative to a number of high-risk manned mission scenarios by performing missions

in dangerous and unknown environments without considerable risk to the human

operators. However, one of the main problems with any air operation is the coordi-

nation of resources when operations require a persistent capability over the desired

operational area. Although the actual timing of the replacement of vehicle assets

plays an important role in regard to the continuity of coverage in such missions, the

maintenance systems and operators supporting these vehicles also have an equal role

in supporting these systems by ensuring assets are readily available if needed in an

emergency situation.

As mentioned earlier, many questions related to the timing and upkeep of such

systems are very similar to many questions arising in manufacturing and the air-

line industry. Though many of the issues presented in previous research apply to

problems related to scheduling concerns, some of the challenges specific to persistent

operations include (but are not limited to): several multi-agent teams may be oper-

ating simultaneously that may or may not coordinate tasks and information about

the current task, vehicle assets may be lost during the course of a mission, and little

or no information about the vehicles may be directly available to the operator during

the mission. For example, a vehicle failure may become known only after the vehicle
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has failed to show up for refueling past a given deadline.

Though many papers discuss how to perform the operations using aerial platforms,

the purpose of this chapter is to discuss the development and implementation of

techniques used to manage autonomous unmanned aerial vehicles (UAVs) performing

long-term (24/7) persistent surveillance operations. This chapter presents mission

health monitors aimed at identifying and improving mission system performance to

avoid down time, increase mission system efficiency and reduce operator loading.

Using an indoor multi-vehicle testbed presented in Chapter 5, this chapter will present

the infrastructure used to execute an autonomous persistent surveillance operation

over a 24-hr period and show flight test results from recent automated persistent

surveillance missions and UAV recharging experiments.

6.1 Simplified Persistent Surveillance Mission

To understand the issues related to a long-term persistent surveillance mission,

we begin by investigating questions related to a smaller group of vehicles with a

centralized task manager and a single surveillance task requiring a vehicle on-site for

an extended period of time. In this problem, the major underlying assumption is that

all vehicles are not expendable. As a result, the main goal of the mission system is

to ensure that not only is a persistent presence maintained over the target area, but

also that each vehicle is returned to the base location safely.

As discussed in Chapter 4, consider a collection of M agents of the same capability

and a single surveillance location. This problem setup provides a simplified resource

management problem for which we can find a tractable solution for the task assign-

ment and agent task scheduling problem under simplified assumptions. Assume that

a vehicle’s availability is based on its current health state. At the vehicle level, many

aspects related to a vehicle’s current performance and capabilities can be considered

as part of this state. For example, battery charge, sensor capabilities, and motor

wear play a large role in an electric vehicle’s capability to perform a mission. To

simplify this problem, assume that the vehicle’s remaining flight time will denote the

vehicle’s health state. In addition, assume that the all of the vehicles have the same

task capabilities (e.g., all vehicles can only be used for surveillance) and leave from

the same general location.

Earlier, we showed that the simplified persistent surveillance mission resource

management problem can be posed as a Markov Decision Process (MDP). Once again
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note that as the number of vehicles added to the mission increases, the size of the state

and action space increases quickly. Therefore, we can used the methods described in

Chapter 4 to find policies for this problem. Using Approximate Linear Programming

(ALP), we can generate an approximate cost-to-go structure for this problem using

the basis function generation algorithm in Table (3.1). As shown in Chapter 4, this

approach can be used to find an approximate solution to the original problem that

will provide us with a “good” policy in real-time. Note that we define a “good” policy

as a policy that allocates enough vehicles to each task location to meet mission goals,

while managing the health situation of each vehicle.

Another approach is to use a heuristic policy based on experience. For example,

one heuristic policy that can be used is that for every state use the following rule:

• Let TD represent the traveling time from the base location the surveillance

location and C be a safety factor time constant. If there is a vehicle at the

surveillance location with enough fuel to continue at the surveillance location,

then continue with the same action from the previous state

• Else if the vehicle at the surveillance location needs to be replaced, then send

the vehicle that has the least number of flights that is at the base location fully

refueled. If there are more than one vehicle in this condition, choose the vehicle

with the lowest index i ∈ {1, ...,M}

• Else the vehicle at the surveillance location needs to be replaced and there are no

vehicles at the base location then command the vehicle with the least number of

flights to go to the surveillance location when ready. If there are more than one

vehicle in this condition, choose the vehicle with the lowest index i ∈ {1, ...,M}

This heuristic approach has been used to manage mission flight tests during RAVEN

multi-vehicle testing with success.

6.2 Mission Planning and Vehicle Health Monitor-

ing

In planning and monitoring the persistent surveillance mission, the automated task

manager must be able to assess the status of the vehicles to determine whether a

failure has occurred during the flight. Most persistent surveillance mission models

make the assumption that the remaining flight time for a vehicle is known or decays
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in a well-defined way. However, this assumption does not hold in many cases. For

example, small electric-powered UAVs are powered by batteries. Since these batter-

ies are charged and discharged over time, they decay at different rates. This rate of

battery decay can change based on the type of vehicle that is used, how the battery is

stressed during vehicle use, the charger used to re-charge the battery, the temperature

of the environment, and many other characteristics. Therefore, one cannot assume

that every electric-powered vehicle with a fully-charged battery will be able to sus-

tain a specific flight time without considering at least some of the other information

provided.

For this reason, knowing the current health state of the vehicle can improve the

performance of the overall mission system. Therefore, in order to automate persistent

surveillance missions, two additional components are required: 1) vehicle health mon-

itoring – and more specifically, a fuel or battery health monitor, and 2) an automatic

vehicle maintenance and refueling / recharging station. In the next two sections, this

chapter will describe the methods used to implement these features to automate a

persistent surveillance mission.

6.3 Battery Health Monitoring

As mentioned earlier, the RAVEN was constructed to study, implement and ana-

lyze the performance of techniques for embedding the fleet and vehicle health state

into UAV mission planning [97]. In order for higher-level mission systems to ade-

quately assess and diagnose potential issues with a mission plan, each vehicle must

inform other system components of its current status (e.g., location, health, mission-

related information). For example, air vehicles have flight time limitations based on

fuel and maintenance constraints. To determine the current capabilities of these ve-

hicles, sensors can be added to measure the vehicle’s nominal health state. Using

this information, health monitors can be developed to evaluate the vehicle’s current

capabilities. In some cases, non-invasive health monitors can also be used to evalu-

ate a system’s health without adding sensors or making changes to existing vehicle

hardware. Since our multi-vehicle testbed uses commercially available off-the-shelf

(COTS) R/C hardware, sensors cannot be easily added without making intrusive

modifications to the vehicle hardware, causing it to under perform. For this reason, a

portion of our research effort is focused on developing and testing non-invasive health

monitors with the COTS hardware used in the RAVEN.

Since the RAVEN is an indoor test environment, to date only electric-powered
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vehicles have been used during autonomous testing as active vehicle components.

One of the main issues in using electric-powered vehicles is that an electric-powered

vehicle’s endurance scales with motor power consumption and battery size, and thus

battery weight (which has a negative effect on vehicle endurance). Although battery

technology has improved in recent years (for example, a 3-cell, 11.1 V 1320 mAh

Li-Poly battery from Thunder Power Batteries [92] is approximately 100 grams),

an electric-powered air vehicle’s flight time is largely impacted by the vehicle’s lift

capabilities. In addition, the average flight time of electric-powered helicopters and

quadrotors (such as the Draganflyer V Ti Pro [24]) are limited by the types of motors

used and desired payload capacity. Note that for all of the recharge test flights, two

different versions of quadrotors were used: the Draganflyer V Ti Pro [24] and the

X-UFO Quadrotor [39]. The Draganflyer quadrotors are COTS vehicles that use

motors with brushes, while as of the writing of this thesis the X-UFO Quadrotor

has just begun to enter into production for commercial use (April 2007) and uses

brushless motors with an onboard gyro stabilization package for improved attitude

control. All of the initial recharge testing results were performed with the Draganflyer

quadrotors starting in June 2006, until recently when the X-UFO Quadrotor was

incorporated into the test setup. The X-UFO design has proven to be more energy

efficient, resulting in longer flights on one battery charge than a COTS Draganflyer

quadrotor. Results for both vehicle types are provided in this chapter.

Past research into battery monitoring and state estimation has focused on using

direct, invasive measurements of current flow and voltage level to calculate a bat-

tery’s state of charge (SOC). Most of this research focuses on calculating SOC using

complex analytical models of internal battery dynamics [77, 79]. However, these ap-

proaches require significant knowledge of battery properties and internal dynamics.

Recent research has sought to simplify the construction of battery SOC models by

using machine learning techniques using voltage and current measurements from the

battery [41]. A learning approach can be advantageous because it does not require

knowledge of internal battery chemistry and can be easily extended to multiple bat-

tery chemistries.

As part of our on-going research, the relationships between a vehicle’s flight ca-

pabilities, power system health, propeller wear, battery charge and other parameters

are being examined using the electric-powered quadrotor vehicles in the testbed [97].

Flight testing has demonstrated that many of these parameters can be evaluated

while observing the vehicle in a simple hover. For example, data from these flight

tests has shown there is a strong correlation between the battery voltage and the R/C

113



Figure 6-1:
Comparison Between Battery Voltage and Collective Stick Posi-
tion during a Hover Test: X-UFO using a 2000mAh Battery (left)
and Draganflyer Quadrotor for a 1320mAh Batteries (right)

controller’s collective stick position value. As the voltage of the battery decreases over

time (due to battery use), the collective stick command increases. Typical results for

the X-UFO and a Draganflyer with both the white plastic and black nylon blades

and are shown in Figure 6-1. Note that the Draganflyer’s new stock black nylon

blades using a 2000 mAh battery produce slightly higher collective commands than

the older white plastic blades (which were very brittle and cracked easily), but yield

similar shaped collective command curves over the vehicle’s flight time (as shown in

Figure 6-1). Figure 6-2 shows that as the battery’s charge level decreases, the average

collective command must increase over time for the vehicle to maintain its current

position. Note that for each quadrotor, the collective command increases rapidly ini-

tially during take-off and steadily increases almost linearly until the vehicle’s battery

begins to lose charge rapidly near the end of the flight.

Since our goal is to command and control multiple air vehicles over extended time

periods, a reliable monitor that estimates a vehicle’s flight time is a critical part of this

research. Therefore, one of our main goals was to generate an estimate of the vehicle’s

remaining flight time non-invasively using the vehicle’s altitude and collective input

position. In other words, this battery monitor does not use sensors on the vehicle to

generate this estimate of the vehicle’s remaining flight time.

For this task, a support vector regression (SVR) model (based on real flight data)

was generated using the vehicle’s current altitude and collective position to estimate

the vehicle’s remaining flight time. The main idea behind using an SVR model is

that a model is created (using experimental data) from input-output pairs that can
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(a)

(b)

Figure 6-2:
Collective Stick Position vs Time (in mins): (a) X-UFO and Dra-
ganflyer (with black nylon blades) using a 2000mAh Battery and
(b) for Five Consecutive Hover Tests using a Draganflyer (with
white plastic blades) and Different 1320mAh Batteries
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be used to predict the output to a system given an input without explicitly knowing

the model of the system [38, 88, 101]. This model of the form

f(x) =
∑
i∈SV

(ᾱi − ᾱ∗i )K(x, xi) + b̄ (6.1)

is used to generate a non-linear mapping into a higher-dimensional feature space

of the form used to perform a regression on any data point x ∈ Rn [38]. Here,

K(x, xi) is defined as the kernel function which generates the inner product in the

high-dimensional feature space and b̄ is a constant [101]. In addition, the weighting

parameters ᾱ∗i , ᾱi for all i ∈ SV for the ε-insensitive SVR problem are determined

by solving the optimization problem [38]:

max
α, α∗

r∑
i=1

α∗i (yi − ε)− αi(yi + ε)− 1

2

r∑
i,j

(α∗i − αi)(α
∗
j − αj)K(xi, xj)

subject to
r∑
i=1

(αi − α∗i ) = 0, 0 ≥ αi, α
∗
i ≥ C ∀i ∈ {1, . . . , r}

(6.2)

where {(x1, y1), (x2, y2), ..., (xr, yr)} is the set of training pairs introduced into the

optimization problem. Note that this model can be improved by regenerating the

SVR model based on new data, thus ensuring that the model is up-to-date and

representative of the current situation.

The battery model uses input vectors x that contain two pieces of information:

the collective input to the quadrotor and the altitude difference between the vehicle’s

current and desired location. The output y generated by this model is the vehicle’s

predicted flight time remaining. Over 10,000 data points were used to generate the

SVR battery model using the LibSVM software package [17]. Here, we used the

epsilon state vector regression (epsilon-SVR) setting with the radial basis functions

kernel-type. In addition, we changed the standard settings in the software so that the

cost of constraints violation (C) is 200, enlarged the kernel cache size to 200 Mb, and

set the epsilon parameter to 0.0005. This battery model was tested against actual

vehicle hover flights as shown in Figure 6-3. Here, the predicted flight time generated

from the model provides a reasonable estimate of the vehicle’s remaining flight time.

In fact, by filtering the vehicle’s collective stick position, a better estimate of the

vehicle’s remaining flight time is generated. This model is currently being used by

the mission manager to estimate the remaining flight time for airborne quadrotor

vehicles during test flights.
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Figure 6-3: Predicted vs Actual Remaining Flight for a Hover Test

6.4 Battery Charging Station

Even as electric-powered autonomous vehicles and their support systems become

smarter, they are fundamentally limited by the capacity of onboard batteries that

power the vehicles. As described in the section above, autonomous health manage-

ment hardware and software allow vehicles to determine the battery’s current status

and decided when a vehicle must land to replace or recharge itself before continu-

ing its mission. Ground platforms have been developed to allow ground robots to

recharge during operations. For example, at the University of Tsukuba, researchers

constructed an autonomous ground vehicle and recharge system in order to facilitate

autonomous ground vehicle navigation and control experiments [40]. The system

was tested by running an autonomous vehicle nonstop for one week. During the

week-long experiment, over one thousand recharge dockings were successfully accom-

plished. However, as of the writing of this thesis, we have not found an instance of

an autonomous aerial docking and recharge before reporting it in [97].

Therefore, to conduct research into autonomous, multi-vehicle, persistent surveil-
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(a)

(b)

Figure 6-4: Recharge Landing Pad Setups: (a) X-UFO and (b) Draganflyer

lance mission applications, an integrated autonomous recharge landing platform and

system was designed. Shown in Figure 6-4, the goal of this system is to allow our

aerial vehicles to autonomously recharge their batteries during extended flight oper-

ations. This recharge platform provides real-time information on the charge progress

of the battery. This information can be used by the mission manager to monitor and

estimate the vehicle’s current health state during the charge process. The real-time

battery data gathered during the recharge process and flight operations can be used

to estimate the vehicle’s projected flight time. This data provides a second estimate

that can be used to predict when a vehicle should be cycled back to base during

mission operations.

The recharge system consists of several components: battery isolation electronics,

vehicle electrical contacts, landing pad, and ground recharge electronics. While this

system is designed to recharge quadrotor vehicles, the electronics and software in
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Figure 6-5:
Vehicle’s Electrical Landing Contacts: X-UFO (left) and Dragan-
flyer (right). Note that in this figure the Draganflyer has a board
attached to it between the pins and the recharger. This electronic
setup allows the Draganflyer to be reactivated (i.e., toggle the
Draganflyer’s safety push button) after vehicle power has been
turned on.
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Figure 6-6: Li-Poly Battery Voltage Rebound before a Battery Recharge Cycle

the system can be adapted to other vehicle types, such as ground rovers and other

R/C vehicles. In addition, the battery isolation electronics are used to prevent power-

related issues during vehicle arrival to or departure from the recharge station. Finally,

contact pads on the body of the quadrotor provide the necessary electrical contact to

recharge the battery on board the vehicles. As shown in Figure 6-5, each leg (labeled

1 to 4 in the figure) of the quadrotor is outfitted with copper contacts. Electrical tape

is used to insulate all contact pads from the carbon fiber quadrotor body. Note that

in this figure the Draganflyer has a board attached to it between the pins and the

recharger. This electronic setup allows the Draganflyer to be reactivated (i.e., toggle

the Draganflyer’s safety push button) after vehicle power has been turned on.

Once the vehicle lands in the charger, the vehicle’s battery is usually warm from

use during flight. As the battery cools, our testing has shown that the battery’s

voltage will rebound from its “motor’s off” state. As shown in Figure 6-7, once the

vehicle’s motors are turned off, the battery’s voltage recovers. Initial experiments

have demonstrated that this recovery voltage varies from one vehicle to another due

to the differing demands placed on each vehicle during flight. In the test show in

Figure 6-7, we flew a vehicle past the flight time limit calculated by the battery

monitor to determine if the system could still automatically charge the battery in the

event of a flight time emergency. The results from this test show the battery’s voltage

rebounded considerably after the motors are turned off, thus the voltage measurement

on the battery should be taken after the batteries are given a chance to cool down.

Therefore, before we start recharging the batteries, we allow the battery to cool down

for 5 mins to allow the batteries to reach a steady state before charging. Additional

long-term testing is needed to better quantify battery life and the effect of starting a
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Figure 6-7: Example of Battery Voltage Rebound during Battery Cool Down

charge cycle early.

As with the vehicle when it is flying, we can use the battery’s current and voltage

measurements on the charger to both estimate the vehicle’s remaining charge time

and estimated flight time. Figure 6-6 show the voltage and current measurements take

from the recharge platform during an automated flight test and recharge sequence.

These plots are based on the charge’s applied voltage and current to a 2000 mAh

battery during a vehicle recharge cycle. Notice that the charger applies a set current

(of 2.1 A in this case) until the battery approach 12.6 V. Once the voltage reaches

12.6 V, the charger begins to reduce the current applied to the battery in logarithmic

fashion. From experimental testing, we have found that for short term uses of the

battery (a single 24-hr test), we are able to end the charge cycle earlier to reduce

the flight-maintenance cycle of the battery. However, additional long-term testing is

needed to better quantify battery life and the effect of ending a charge cycle early

using the current vehicle recharge system.

Using information from the recharger, we have developed a recharge model to
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estimate when the vehicle’s charging cycle will end. The battery model uses input

vectors x that the charger’s voltage and current inputs to the battery, and the output

y generated by this model is an estimate on the number of minutes left in the vehicle’s

recharge cycle. Once again, the SVR recharge model was generated using the LibSVM

software package [17] and the same parameters used to generate the battery model

were used to generate the recharge model. This model provides an estimate of the

length of time until the vehicle’s charge cycle is completed.

Using this setup, the system has autonomously commanded a vehicle to take-

off, fly a small mission, and then land in the recharge platform. Then, the system

autonomously commands recharge platform to charge vehicle’s battery, while moni-

toring its progress throughout the charge cycle. After the charging sequence has been

completed, the system re-initializes the vehicle and begins the flight-maintenance se-

quence once again. Pictures of the vehicle system’s first landing attempt performed

by the system at the end of July 2006 are shown in Figure 6-8. Results from a

January 2007 test where an Draganflyer quadrotor was commanded to land into the

recharge platform are shown in Figure 6-9. In this test, the landing pad was placed

at (0,5,0) m in the room and the vehicle was commanded to land after flying to and

hovering above the landing location for five seconds. This waiting time is designed to

allow transients in the x- and y-position controller to settle out before continuing with

the landing decent. Note that once the vehicle begins its decent, the vehicle corrects

its position as necessary to ensure that it can land on the recharging location.

After performing multiple single vehicle flight-recharge sequences, the mission

management system was setup to fly a 24-hr, single vehicle flight-recharge test. Using

the battery monitor and recharge system described above, the fully-autonomous 24-

hr test single vehicle test was successfully performed (and video recorded) on March

31st, 2007. In this test, a single X-UFO quadrotor vehicle flew above its recharge

platform between 10 and 13 mins before landing to recharge its batteries. This flight-

recharge sequence occurred 21 times during the 24-hr period. This test was performed

without any operator interaction and marks the first time in the literature where an

air vehicle was able to fully-autonomously perform a routine maintenance activity

(such as refueling) multiple times over a 24-hr period. In addition, this test validated

the mission system’s hardware setup for an extended vehicle mission by showing

that mission system could autonomously manage the recharging and flight command

operations without human input or interaction. As of the writing of this thesis, the

shortened 2 min video version of the test is available at http://vertol.mit.edu.

As shown in Figure 6-10, the red line represents the recorded flight time of the
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Figure 6-8:
Automated Landing and Recharge using the MIT Indoor Flight
Test Platform in July 2006
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Figure 6-9:
Landing in the Recharging Platform – the x-y (top), x-z (bottom
left) and y-z (bottom right) plots for landing at (0,5,0) m. Note
that as the vehicle descends into the landing platform, the vehicle
translates in the x-y plane. This translation is mainly caused
by the vehicle’s propwash and ground effect as it approaches the
landing pad.
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(a)

(b)

Figure 6-10:
Fully-Autonomous Single Vehicle 24 hr Flight-Recharge Test us-
ing an X-UFO: (a) A Single Flight-Recharge Cycle and (b) 24 hr
Flight-Recharge Test Cycle
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(a)

(b) (c)

Figure 6-11:
Fully-Autonomous Single Vehicle 24 hr Flight-Recharge Test us-
ing an X-UFO – Position Plots: (a) (X,Y) Position, (b) (X,Z)
Position, and (c) (X,Z) Position. This data was saved by
the mission manager at 2 second intervals over the 24-hr pe-
riod. A time-lapse video of this flight can be found at http:

//vertol.mit.edu
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Figure 6-12:
Automated 1.5 Hour Persistent Surveillance Mission (PSM) with
Three Autonomous Vehicles

vehicle and the blue line represents the recorded recharge time of the vehicle during

each flight-recharge cycle. Note that there is a 5 min wait period between the time

the vehicle lands and when the recharge sequence begins to allow the battery to cool

down before charging. In addition, Figure 6-11 shows the (x,y)-, (x,z)-, and (y,z)-

position graphs for the 24-hr test. During the flight portion of the test, the vehicle

was commanded to hover at (0,0,0.7) m above the floor. Notice that the vehicle’s

(x,y) position stays well within 5 cm of center during the flight portion of the test. In

addition, notice that during landing, the vehicle uses the sloped sides of the landing

platform to ease it into center when it is landing. Overall, the test demonstrated that

this vehicle and maintenance system configuration could be used as a component of

a larger mission system for an extended multi-vehicle test.
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Figure 6-13:
Automated 1.5 mission vehicle coverage plot showing the vehicles
flying the mission (top), Lack of Coverage Time History during
Test (bottom)
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6.5 Mission Flight Test Results

Before attempting an autonomous mission system test using the automatic recharging

stations, an maintenance operator-in-the-loop test was performed. Here, the mainte-

nance operator was in charge of changing out the batteries of vehicles after a flight.

Using the battery monitors described above, a 1.5 hour persistent surveillance mis-

sion with three vehicles was setup in the laboratory as shown in Figure 6-12. In this

test, the tasking system was responsible for tasking the vehicles to take-off fly to the

surveillance location and replace vehicles their batteries were depleted. In addition, in

this test the operator was responsible for changing out the vehicle’s batteries. There-

fore, the tasking system was also responsible for directing the operator to change the

batteries of vehicles that had just landed and acknowledging the operator was not in

the flight area before taking off a vehicle. This acknowledgement was a safety fea-

ture to ensure that the tasking system would not take-off any vehicle in the battery

maintenance area while the operator was in the space.

Data from this test is shown in Figure 6-13. During the 93 min test, there were

two vehicle failures, both occurring with Vehicle #1. Approximately 45 mins into

the test, the tasking system commanded Vehicle #1 to take-off, however the vehi-

cle was unresponsive. As a result, since the tasking system did not see a response

from Vehicle #1, it then commanded Vehicle #2 to take Vehicle #3’s place. This

delay resulted in approximately 25 secs lack of coverage over the surveillance site.

In addition, after the next round of rotations, approximately 73 mins into the test

Vehicle #1’s low-battery alarm went off as Vehicle #2 approached the surveillance

location, resulting in a 3 sec lack of coverage.

Overall, over the 93 min period using the heuristic described in Section 6.1, over

99.5% of the overall test a vehicle was over the surveillance area. This test showed

that the mission manager could command and control the vehicles effectively during

an extended mission. However, since each vehicle was deployed with a 1320 mAh

battery, the vehicles averaged about 9.5 mins of flight time. As a result, the operator

activity per vehicle cycle time was about 1.8 mins on average. In this test, operator

was responsible for replacing batteries, charging batteries, resolved vehicle failures

and acknowledging the mission manager for vehicle take-off commands (to prevent

the vehicles from taking off while operator manually changed batteries).

129



Figure 6-14:
Automated 1.5 Hour Persistent Surveillance Mission (PSM) us-
ing Mission Manager with Basis Function Generation Algorithm
with Five Autonomous Vehicles

6.5.1 Mission Flight Test Results using the Basis Function

Generation Algorithm

Following this test, the system was setup to perform a second autonomous multi-

vehicle mission test. In this test, the mission manager calculated the best policy using

basis functions generated by the Basis Function Generation Algorithm in Table (3.1).

Figure 6-14 shows the test setup where there were five vehicles: two Draganflyer

vehicles and three X-UFOs. Note that in this picture, one of the X-UFOs is flying

in the surveillance area, while the other four vehicles are either in recharge mode

or waiting to be commanded. The two Draganflyers in this test had a maximum

flight time of 13 mins on a new battery, and the X-UFOs had a maximum flight

time of approximately 20 mins on a fresh battery. In this test, the mission manager

commanded each vehicle to take-off from their base location (in the northern half of

the room) and hover in the center of the southern portion of the room.

In this test, each X-UFO was outfitted with a recharging station, and each Dra-
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ganflyer was setup for the operator to change the batteries manually. The main reason

for this test setup is as follows. Each battery using the automatic recharging platform

takes approximately 70-90 mins to complete a recharge cycle (the five minute cool

down period plus battery charging time due to flight use). Since only five vehicles

(two Draganflyers and three X-UFOs) were available for the test, each vehicle had no

more than 60-70 mins to complete its recharge before having to take-off again to per-

form surveillance – assuming that there are no vehicle failures or problems during the

flight. Therefore, it was decided that the batteries for the two Draganflyer vehicles

would be manually changed during the test, while the three X-UFOs would use the

automatic recharging stations to recharge their batteries. In addition, the flight times

for both Draganflyer vehicles varied based on the condition of the vehicle system. For

example, since these vehicles had been flown many times before this test, the number

of flight hours on each vehicle varied between 7 and 13 mins with different batteries.

Likewise, each X-UFO during testing also showed variations in flight time for new

batteries. Therefore, different battery monitors were used for each vehicle and vehicle

type.

In this test, the mission manager’s primary goal was to maintain one vehicle in

the southern end of the room for surveillance purposes at all times. Since the vehicles

had varying recharging and flight times, the problem formulation was adjusted to

place a lower cost on using Draganflyers when they were available (since the batteries

could be changed by the operator) and to always ensure that at least one vehicle was

commanded to the surveillance area. For this problem, the state x ∈ S is defined as

the vector x = (z1, z2, z3, z4, z5, h1, h2, h3, h4, h5), where zi indicates the task to which

each agent is allocated, hi indicates each agent’s maintenance/health state, and S

is the state space for the problem. In addition to these states, a “demonstration

end” state O ∈ S was added to this particular mission management problem setup

to ensure that when the flight demonstration was over, the mission manager would

command all of the vehicles back to base with probability one. Next, each action

a ∈ Ax is defined as the vector a = (a1, a2, a3, a4, a5) where ai indicates the system’s

desired allocation for agent in the task space and Ax is the action space associated

with the state x ∈ S. Each state x will transition under action a to the future state

y ∈ S with probability Pa(x, y). Note that the agents in this problem can experience

failures that cause them to be unavailable. In addition, agents are available for flight

operations for a limited period of time (because of fuel, failure and maintenance

concerns).

Finally, a local cost for being in state x under action a is defined by the function
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ga(x) ∈ R. The cost for this problem was setup to penalize the system for not having

a vehicle airborne and for having more than one vehicle airborne in the surveillance

area at any given time. The idea behind this cost is that when the vehicles are cycling

in and out, one vehicle is waiting on the other. Therefore, once the other vehicle is in

the surveillance area, the second vehicle will be leaving – and hence, not performing

surveillance. In addition, to promote a pro-active health strategy, the system was

penalized for having vehicles in the surveillance area in a warning health state. In

this problem, there were four health states: good, fair, warning, and maintenance. A

good health state was associated with a good battery with at least 3 mins of flight

time remaining. A fair health state was associated with a battery with between 3

and 1.5 mins of flight time remaining. A warning health state was associated with

under 1.5 mins of battery life and the the maintenance state represented the vehicle

in recharge / maintenance. Finally, a cost penalty was added to actions where the

system selects a “good” X-UFO over “good” Draganflyer from the base location to

fly to the surveillance area. The reason for this penalty was to encourage the system

to cycle Draganflyers more often, thereby giving the X-UFOs enough recharge time

on the recharge pads in between flights. Using this problem formulation, the basis

function generation algorithm in Table (3.1) was used to generate the multipliers that

were used by the mission manager to generate the approximation of the cost-to-go

function for this problem in real-time.

Using this cost structure with the battery monitors described above, a 1.5 hour

persistent surveillance mission with five vehicles was setup in the laboratory. Just

as in the previous 1.5 hour test, the mission system was responsible for commanding

the vehicles to take-off fly to the surveillance location and back. However, in this

test, three of the vehicles were designed to autonomously recharge, while two of the

vehicles needed an operator maintenance action upon landing in the same manner as

the previous test. The three X-UFO vehicles were fully-autonomous throughout the

demonstration, and the Draganflyer vehicles used in the demonstration were fully-

autonomous with the exception of the operator action to change out their batteries

after landing. Note that in Figure 6-17, a Draganflyer (right) returning from the

surveillance area and an X-UFO (left) flying to the surveillance area use their collision

avoidance algorithms to avoid one another on their way between the surveillance base

areas. The collision avoidance based on a potential function-based method that is

briefly described in Ref. [11].

Data from this test is shown in Figures 6-15 and 6-16. During the 90 min test, there

were multiple vehicle failures. As shown in Figure 6-15, Vehicle 1x was commanded to
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Figure 6-15:
Automated 1.5 Hour Persistent Surveillance Mission (PSM) Mis-
sion Manager Commands using Mission Manager with Basis
Function Generation Algorithm with Five Autonomous Vehicles

take-off twice over the 90 min test, but the vehicle had trouble leaving the recharging

station and never was able to take-off during the entire test. The first time Vehicle 1x

was commanded to take-off occurred at 55 mins when Vehicle 1x was commanded to

take over for Vehicle 2d because it was unresponsive to the mission manager command.

Since Vehicle 2d was not re-activated (due to operator error after the vehicle’s battery

was replaced), the vehicle never left the base area when commanded. After Vehicle 1x

failed the first time, , the mission manager commanded Vehicle 2x to take Vehicle 1d’s

place. However, since the mission manager was proactively commanding vehicles to

replace flying vehicles based on their estimated remaining flight time, ut commanded

vehicles to take-off early enough such that the vehicle failures at the base station and

air vehicle problems due to unexpected flight-related issues only resulted in a 10 sec

gap in coverage. At approximately 63 mins into the test, Vehicle 2d was reactivated
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Figure 6-16:
Automated 1.5 Hour mission vehicle coverage plot using Mis-
sion Manager with Basis Function Generation Algorithm with
Five Autonomous Vehicles showing the vehicles flying the mis-
sion (top), Lack of Coverage Time History during Test (bottom)
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Figure 6-17:
Two vehicles (Draganflyer on the right, X-UFO on the left) using
collision avoidance detection via Vicon system measurements to
ensure that vehicles can move between surveillance region and
base region safely
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by the operator and tested to make sure that it could take-off using the operator’s

manual override. Next, at approximately 68 mins into the test, Vehicle 2x’s battery

alarm detected a low-battery condition causing the vehicle to come back to base earlier

than expected. Since this failure was not expected and due to an unexpected vehicle

issue, the mission manager reactively caused Vehicle 1d to take-off and replace it in

the surveillance area – resulting in a 30 sec gap in surveillance coverage. Finally, at

approximately 90 mins Vehicle 1x was commanded a second time to take-off in order

to replace Vehicle 2d, however once again, it was unable to clear the ground recharge

platform. Hence, the mission manager commanded Vehicle 1d to fly in its place (since

its battery was replaced by the operator less than a minute earlier). Since the mission

manager was able to command Vehicle 1d before Vehicle 2d’s battery alarm reached

the warning state, there was no loss in coverage due to this failure.

Overall, even with all of the vehicle issues that occurred during the test, there was

approximately a 40 sec gap in coverage after the first vehicle reached the surveillance

area, resulting in over 99% coverage during the test. As seen in Figure 6-16, the

policy generated using the basis function algorithm’s cost-to-go function performed

well despite all of the ensuing failures. This test marked the first time in the literature

that a basis function generation method has been used to manage resources in a real-

time, hardware-based autonomous system.

After performing this 1.5 hr test, the same mission manager was used to manage a

6 hour persistent surveillance mission with same five vehicles in the laboratory. Just

as in the 1.5 hour test above, the mission system was responsible for commanding the

vehicles to take-off fly to the surveillance location and back. Once again, three of the

vehicles were designed to autonomously recharge, while two of the vehicles needed an

operator maintenance action upon landing in the same manner as the previous test.

Data from this test is shown in Figures 6-18 and 6-19. Once again, there were

multiple vehicle failures during the 375 min test. As shown in Figure 6-18, at ap-

proximately 25 mins into the test, Vehicle 3x was commanded to take-off, but the

vehicle failed and did not leave the recharging station. In fact, this failure resulted in

the loss of the vehicle for the entire test. Therefore, the system commanded vehicle

Vehicle 1x to fly in its place. In addition, at about 40 mins into the test, the Vicon

positioning system’s Tarsus software froze unexpectedly. This caused the hovering

Vehicle 2d to fall out of the air and crash. It took the operator approximately 2.6 mins

to re-initialize the Vicon system and retrieve the crashed air vehicle. After the system

came back up, the mission system tried to command vehicle Vehicle 2d back to the

air, but instead commanded Vehicle 1d after Vehicle 2d was deemed unresponsive
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Figure 6-18:
Automated 6 Hour Persistent Surveillance Mission (PSM) Mis-
sion Manager Commands using Mission Manager with Basis
Function Generation Algorithm with Five Autonomous Vehicles

(since the operator was repairing it from the crash). In addition, small gaps in cov-

erage occurred due to battery alarms, other vehicle failures, and air vehicle’s taking

alternate flight paths to avoid an incoming vehicle to base.

Overall, even with all of the vehicle issues that occurred during this span of time,

there was approximately a 5.83 min gap in coverage after the first vehicle reached the

surveillance area, resulting in over 98.4% coverage during the 6 hr test. As seen in

Figure 6-19, the policy generated using the basis function algorithm’s cost-to-go func-

tion performed well despite all of the ensuing failures. This test once again showed

that the basis function generation method was capable of being used to generate poli-

cies that could manage resources in a real-time, hardware-based autonomous system.
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Figure 6-19:
Automated 6 Hour mission vehicle coverage plot using Mission
Manager with Basis Function Generation Algorithm with Five
Autonomous Vehicles showing the vehicles flying the mission
(top), Lack of Coverage Time History during Test (bottom)
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In addition, to the best of our knowledge this is the longest autonomous multi-vehicle

air vehicle mission where an autonomous aerial docking and recharge was used to

maintenance vehicles autonomously in the literature. The flight tests in this section

along with the large-scale simulation results presented in Section 4.2.3 mark a large

step in the development of on-line cost approximation structures used to manage

autonomous systems in real-time.

6.6 Summary

In summary, health management techniques can be used to improve mission-level

functional reliability through better system self-awareness and adaptive mission plan-

ning. The section presents results and examples that demonstrate how health man-

agement information is being used to improve the mission system’s self-awareness

and adapt vehicle, guidance, task and mission plans so that an autonomous mission

manager can command and control multiple autonomous UAVs over extended time

periods. These algorithms, which determine the health of each mission component

in real-time, have been successfully implemented and tested. In addition, these algo-

rithms were used in part with vehicle maintenance hardware to enable the first fully-

autonomous flight-recharge 24 hr test by a single vehicle. These, and other health

management algorithms for each component, have been shown to improve strategic

and tactical level decision making in autonomous mission systems while observing the

impact of likely failures and maintenance needs for extended mission scenarios.
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Chapter 7

Conclusions and Future Work

In conclusion, this thesis presents the development and implementation of approxi-

mate dynamic programming methods used to manage multi-agent systems. The main

goal of this thesis is to develop, implement, and test methodologies that can be used in

real-world applications to manage teams of autonomous vehicle systems in extended

mission operations. To meet these goals, this thesis begins by presenting the real-

time, multi-agent mission problem formulation and a system architecture designed

to allow an autonomous mission system to manage multi-agent teams in a real-time

environment in Chapter 2.

In Chapter 3, this thesis presents a method designed to enable an automated

system to generate polices for large-scale problems in real-time. This method is de-

signed to automatically generate an approximate cost structure that can be used

to find policies for a given Markov Decision Process (MDP). This is a fundamental

question related to use of approximate dynamic programming in real-time systems.

As stated in Chapter 3, users normally select basis function parameters for a given

MDP based on experience. However, the basis function generation algorithm posed

in Table (3.1) implicitly generates basis functions for an approximate linear program

by storing only multipliers r0, r1, ... rN . As a result, the algorithm does not require a

systems to save large amounts of information to generate the basis functions implic-

itly. In addition, since new basis functions are generated using sampled trajectories,

the algorithm is designed to allow users to distribute computations over networked

resources, thereby resulting is a viable algorithm for real-time use. A numerical com-

plexity result, a proof showing the convergence of the algorithm without trajectory

sampling, and an error bound comparing the optimal solution to the approximate

solution using the basis function generation algorithm for a single update were also

presented.
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In Chapter 4, this thesis presents an mission management problem formulation

that accounts for vehicle failures and system health concerns. This problem formu-

lation allows an autonomous system to implement and solve the multi-agent mission

planning problem in real-time using real hardware. In fact, flight test results using

the cost structure calculated using the basis function generation algorithm are pro-

vided in Section 6.5.1 showing that the algorithm’s cost function can be generated

and used in real-time with success. Likewise, test results comparing the basis function

generation algorithm’s cost structure to the optimal cost for a small-scale problem

are also provided. In addition, a revised version of the basis function generation al-

gorithm is provided to show the results of the methodology for small-sized problems.

These results showed that the method converged faster to the optimal solution than

value iteration. Finally, the basis function generation algorithm was used to generate

the approximate cost-to-go structure for the centralized multi-agent mission prob-

lem that was used to manage long-duration operations in simulation. A large-scale

mission management problem formulation with 40 vehicles, 5 task locations and 3

task types was simulated. The results show that the cost function developed by the

basis function generation algorithm provides a noticeable improvement in managing

resources by making adjustments in the vehicle allocation strategy based on system

health feedback information.

Next, to fully investigate questions related to the implementation of such algo-

rithms in real-time, Chapter 5 presents an indoor multi-vehicle testbed that was

created to study long-duration mission and to develop health management systems

for autonomous multi-agent mission platforms. This thesis presents the architecture

and setup of the RAVEN (Real-time indoor Autonomous Vehicle test ENvironment)

designed to study long-duration missions in a controlled environment. The RAVEN

is designed to allow researchers to rapidly prototype UAV technologies by means of

flight testing new vehicle configurations and algorithms without redesigning vehicle

hardware. The RAVEN’s mission system autonomously manages the navigation, con-

trol, and tasking of realistic air vehicles during multi-vehicle operations, researchers

can focus on high-level tasks. Results are provided showing Draganflyer quadrotor

vehicles and an foam airplane performing experiments in the test setup. Using the

RAVEN, many other researchers have been able to perform a variety of first-time

tests for UAV and other unmanned system technologies implemented in real-time.

Finally, Chapter 6 presents the development and implementation of techniques

used to manage autonomous unmanned aerial vehicles (UAVs) performing long-term

persistent surveillance operations. Although few papers have suggested the means by
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which such a test could be performed, this thesis examines, develops and implements

the technologies necessary to achieve this capability. This test represents a large step

in the development and implementation of autonomous UAV mission technologies for

long-duration missions. This section presents a non-invasive battery health monitor-

ing technique that allows an autonomous system to estimate an electric-powered air

vehicle’s battery health state in real-time. In addition, a ground maintenance sys-

tem for recharging the electric-powered quadrotor vehicles is presented and results

showing a 24 hr fully-autonomous air vehicle flight-recharge test with no operator in-

teraction was shown. This test marked the first time in the literature that a test such

as this had been presented for an air vehicle. In addition, we discuss the additional

hardware infrastructure needed to execute an autonomous persistent surveillance op-

eration. Finally, we present results from a fully-autonomous, extended mission test

using the technology and monitors developed in this thesis to improve system perfor-

mance in real-time.

7.1 Future Work

Based on the work presented in this thesis, there are a variety of topics that can

be explored for future work. First, based on the system architecture presented in

Chapter 2, more research is needed in deciding the best methods to present different

types of low-level health information to allow the mission system to interact with

human operators during the decision making process. This thesis has explored and

presented methods that allow an autonomous mission system to account for vehicle

fuel constraints and general failure information from low-levels in the mission system

architecture. However, more research is needed to understand how this information

can be presented to an operator who is part of the decision making process during

an operation. In [82, 100] we presented a natural language interface that allowed

a human operator to communicate directly with a vehicle system. More research is

needed on how to expand this type of interface to the mission system level, such

that an operator can interact with any mission system component while allowing the

mission system (and its subcomponents) to carry on with the current mission oper-

ations. Currently, research studying the relationship between autonomous systems

and operator interfaces is in progress. In addition, we have used open-source voice

software to communicate with a vehicle in the RAVEN at a very basic level, however

more research is needed to make the human interface components to autonomous

mission systems more user-friendly and reliable using the RAVEN and similar test
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environments.

In addition, more work is needed to provide error bounds for the basis function

generation algorithm in Chapter 3. Currently, research is being done to add sample

complexity results to the current error bound provided in this thesis. In addition

to the current error bounds, an error bound for multiple iterations of the algorithm

is needed to expand on the current results. Likewise, a multi-policy version of this

error bound for both a single and multiple iterations is also needed, and more work

is needed in examining cases where the initial basis function set are defined by the

user. In addition, more research is needed into the best methods for choosing the

state relevance weights for a given problem. This research is another fundamental

question related to the application of ALP. Currently, the multi-threaded version of

this algorithm is currently being developed (to allow multi-processor resources to take

advantage of the algorithm’s structure). However, another interesting application of

the algorithm is in distributed systems. For example, since the multipliers generated

by one resource can be sent to other resources in a system, distributed vehicle and

mission systems can use the multipliers generated by other mission systems in their

decision making processes. More research can be done to better understand how to

use this capability in a real-time system framework.

Third, a variety of mission-level swarm-related techniques and ideas have been

provided in the literature. Using this research as a basis, there are many open ques-

tions related to task- and mission-level health management architectures and how

to apply them to general problems that can be addressed in the RAVEN architec-

ture. Specific questions such as how to detect and compensate for sensor failures (e.g,

camera failures based on vision stream or packet dropouts due to an obstruction)

without compromising mission level goals and how to demonstrate distribute mission

processing tasks between resources. In addition, new and innovative health monitors

can be developed and used in the RAVEN for monitoring motor and other failure

types in real-time. More research must be done in the area of non-invasive health

monitoring of electric air vehicles. Since UAVs continue to get smaller, simple yet

non-invasive monitoring techniques can help autonomous systems evaluate a vehicle’s

future performance without modifying hardware designs. For example, monitors can

be used to detect changes in actuator performance by observing the flight capabilities

of a vehicle in set flight conditions, thereby providing a vehicle’s hardware monitors

with more information in detecting future failures.

Finally, more work is needed in developing an active landing and recharge systems

that enable the fast recharge of battery technology. Currently, battery balancers
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exist that allow a charger to interface with a battery to syphon off extra voltage

on individual battery cells, insuring a safer method for charging batteries above 1C.

Since most R/C batteries designs use plastic connectors to fasten batteries to the

vehicles and chargers, a revised charging station must offer a “good” battery-charger

connection that provides a reliable connection with very little resistance. In general,

it is difficult to land a hovering air vehicle precisely. Therefore, active maintenance

systems are necessary to provide method that either moves the vehicle to a desired

location or moves the maintenance system to the vehicle, thus ensuring the proper

connections are adequate for fast charging purposes. In addition, more work is needed

in performing longer missions to truly be able to investigate and discover the limits

of persistent surveillance missions using vehicle hardware. The RAVEN offers an

excellent environment for such testing and more testing should be done to better

define relationships between battery charging practices, flight activities and battery

life over extended (i.e., 100+ consecutive flights over a week) periods of time.
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Appendix A

Basis Function Generation

Algorithm Formulation

Given an MDP (S,A, P, g) with multi-policies of the form u : S 7→ A, discount factor

α, state relevance weights c, and basis functions Φ, we can find an approximation of

the optimal cost J∗ =
∑∞

j=0(αPu∗)
jgu∗ under the optimal policy u∗ of the form Φr

using:

maxr cTΦr

subj. to ga(x) + α
∑

y∈S Pa(x, y)Φ(y)r ≥ Φ(x)r ∀(x, a) ∈ D
(A.1)

where D ⊆ S×A. Here, let Φr̃ represent the approximate cost found using Eq. (A.1).

To reduce the number of calculations needed to make a “good” approximation of J∗

with guarantees on the error, one can sample both the constraints and the future states

considered in the ALP. In doing so, the revised problem statement from Eq. (A.1)

becomes:

maxr cTΦr

subj. to ga(x) + α
M

∑M
i=1 Φ(yi)r ≥ Φ(x)r ∀(x, a) ∈ C

(A.2)

where C ⊂ D defines the set of constraints being used and for each state x ∈ S, a set

of M future state {y1, y2, ..., yM} are used to approximate the quantity

∑
y∈S

Pa(x, y)Φ(y) ≈ 1

M

M∑
i=1

Φ(yi) (A.3)
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Let Φr̂ represent the approximate cost found using Eq. (A.2). This solution gives us

a computationally efficient approximation of the cost J using Φr̂. Next, after finding

rk, given Φk and a policy u : S 7→ A, we can calculate each additional basis function

at each state x ∈ S using the Bellman update via

φk+1(x) = ga(x) + α
∑
y∈S

Pa(x, y)Φk(y)rk

where a = u(x). However, we can approximate φ1 using:

φ1(x) ≈ 1

M

M∑
k=1

(
ga0(x

k
0) + αΦ0(x

k
1)r0

)
by sampling future states {xk1} for k ∈ {1, ...,M}. Likewise, using trajectories

using M trajectories of the form {xk0, xk1, xk2, ..., xkN+1} for k ∈ {1, ...,M}, we can

also generate an approximate the future cost-to-go. Let r00 = r0 ∈ R1×K , rN =

[rN0 rN1 ... rNN ]T such that rN0 ∈ R1×K and rNi ∈ R for i ∈ {1, ..., N}. Notice that

for each trajectory, we can calculate each basic function in the following way:

φ1(x0) = ga0(x0) + αΦ0(x1)r00

φ2(x0) = ga0(x0) + α [Φ0(x1)r10 + φ1(x1)r11]

= ga0(x0) + αΦ0(x1)r10 + α (ga1(x1) + αΦ0(x2)r00) r11

= ga0(x0) + αΦ0(x1)r10 + αga1(x1)r11 + α2Φ0(x2)r00r11

φ3(x0) = ga0(x0) + α [Φ0(x1)r20 + φ1(x1)r21 + φ2(x1)r22]

= ga0(x0) + αΦ0(x1)r20 + αga1(x1)r21 + α2Φ0(x2)r00r21

+ αga1(x1)r22 + α2Φ0(x2)r10r22 + α2ga2(x2)r11r22 + α3Φ0(x3)r00r11r22

so on. Notice that for the (N+1)th basis function, the terms are organized as follows:

φN+1(x0) = ga0(x0) + αΦ0(x1)rN0

+ αga1(x1)
∑N

i=1 rNi + α2Φ0(x2)
∑N

i=1 r(i−1)0rNi

+ α2ga2(x2)
∑N−1

i=1

∑i
j=1 rijrN(i+1) + α3Φ0(x3)

∑N−1
i=1

∑i
j=1 r(j−1)0rijrN(i+1)

+
... +

...

+ αNgaN
(xN)r11r22 · · · rNN + αN+1Φ0(xN+1)r00r11r22 · · · rNN
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Here, the mth row can be written as:

+ αmgam(xm)
N−m+1∑
i1=1

· · ·
im−1∑
im=1

rim−1imr(im−2+1)(im−1+1) · · · r(i1+m−2)(i2+m−2)rN(i1+m−1)

+ αm+1Φ0(xm+1)
N−m+1∑
i1=1

· · ·
im−1∑
im=1

r(im−1)0rim−1imr(im−2+1)(im−1+1) · · · r(i1+m−2)(i2+m−2)rN(i1+m−1)

Here, we have a pattern. Essentially, if we can compute the multipliers, they can be

used for the computation for any trajectory. However, notice the following:

φ1(x0) = ga0(x0) + αΦ0(x1)r00

φ2(x0) = ga0(x0) + αΦ0(x1)r10

+ αga1(x1)r11 + α2Φ0(x2)r00r11

φ3(x0) = ga0(x0) + αΦ0(x1)r20

+ αga1(x1)[r21 + r22] + α2Φ0(x2)[r00r21 + r10r22]

+ α2ga2(x2)[r11r22] + α3Φ0(x3)[r00r11r22]

φ4(x0) = ga0(x0) + αΦ0(x1)r30

+ αga1(x1)[r31 + r32 + r33] + α2Φ0(x2)[r00r31 + r10r32 + r20r33]

+ α2ga2(x2)[r11r32 + (r21 + r22)r33] + α3Φ0(x3)[r00r11r32 + (r00r21 + r10r22)r33]

+ α3ga3(x3)[r11r22r33] + α4Φ0(x4)[r00r11r22r33]

and so on. By looking at the above, one will notice that there is a pattern with the

multipliers from one iteration to the next. Therefore, if we save these multipliers

they can be used to calculate the subsequent stages of multipliers and speed up

the calculation of the basis functions for on-line computations. Again, notice the

following:

φ1(x0) = ga0(x0) + αΦ0(x1)r00

= [ga0(x0) Φ0(x1)]

[
1

αr00

]
= [ga0(x0) Φ0(x1)]m00
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where m00 = [1 αr00]
T . Likewise, we can write:

φ2(x0) = ga0(x0) + αΦ0(x1)r10 + αga1(x1)r11 + α2Φ0(x2)r00r11

= [ga0(x0) Φ0(x1)]

[
1

αr10

]
+ [ga1(x1) Φ0(x2)]

[
1

αr00

]
αr11

= [ga0(x0) Φ0(x1)]m10 + [ga1(x1) Φ0(x2)]m11

where m10 = [1 αr10]
T and m11 = αm00r11. Then:

φ3(x0) = ga0(x0) + αΦ0(x1)r20 + αga1(x1)[r21 + r22] + α2Φ0(x2)[r00r21 + r10r22]

+ α2ga2(x2)[r11r22] + α3Φ0(x3)[r00r11r22]

= [ga0(x0) Φ0(x1)]

[
1

αr20

]
+ [ga1(x1) Φ0(x2)]

(
α

[
1

αr00

]
r21 + α

[
1

αr10

]
r22

)

+[ga2(x2) Φ0(x3)]α

[
αr11

α2r00r11

]
r22

=
2∑
i=0

[gai
(xi) Φ0(xi+1)]m2i

where m20 = [1 αr20]
T , m21 = α

∑1
i=0mi0r2(i+1) and m22 = αm11r22.

Therefore, the (N + 1)th basis function is generated using M trajectories of the

form {xk0, xk1, xk2, ..., xkN+1} for k ∈ {1, ...,M} such that:

φ(N+1)(x0) ≈ 1

M

M∑
k=0

N∑
i=0

[
gak

i
(xki ) Φ0(x

k
i+1)
]
mNi

where:

mNi =

{
α
∑N−1

j=(i−1)mj(i−1)rN(j+1) when i > 0

[1 αrN0]
T when i = 0

and r00 = r0 ∈ R1×K , rN = [rN0 rN1 ... rNN ]T such that rN0 ∈ R1×K and rNi ∈ R
for i ∈ {1, ..., N}.

This means that to generate the (N + 1)th basis function, we must save
∑N

i=1 i =
N(N+1)

2
values of mij. Since |mij| = |r00| + 1, we must store N(N+1)

2
(|r00| + 1) values

to generate each φ1(x0),...,φN+1(x0) given ga0(x0),...,gaN
(xN) and φ0(x1),...,φ0(xN+1).
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