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ABSTRACT

This thesis focuses on the estimation of the electromagnetic
state variables of the induction machine model from the point of
view of observer theory. The latter viewpoint has not been
sufficiently exploited in the previous work on estimation for
electric machines. Furthermore, nearly all the previously
developed estimation schemes for electric machines that have
taken the approach of observer theory have neglected the use of a
corrective prediction-error term. It is shown here that existing
estimation schemes, for instance those used in field oriented
control, can be better understood in the context of observer
theory, and that observer theory naturally leads to estimators
with improved performance over the existing estimation schemes
through the use of prediction-error.

In particular, a class of observers for the estimation of
rotor flux that uses a prediction-error term, and that can
therefore be made to exhibit an arbitrarily fast rate of
estimation error decay under ideal conditions is developed.
These observers are contrasted with existing estimation schemes.
A second class of observers for the combined estimation of rotor
flux and stator current is also derived. This second class of
observers similarly can attain arbitrary rates of estimation
error decay (under ideal conditions), in contrast to the
dynamical constraints imposed by previously developed estimation
schemes for induction machines. The performance of the proposed
observers is verified with numerical simulations.

Sampled-data realizations for the above observers are
developed to facilitate microprocessor implementation. The
particular sampled-data implementations are shown to have
satisfactory performance (via numerical simulation), and have the
feature that very little new computation is required to update
the observer implementations at each time step.

The effects of measurement disturbances on the performance
of the proposed flux (and current) estimators is analyzed. In



particular, two cases are addressed. The cases where measurement
disturbances are constant biases and where measurement
disturbances can be modelled as zero-mean, white noise processes
are considered.

Two nonlinear estimation problems for induction machines are
also considered. Firstly, the rotor flux (or rotor flux and
stator current) estimation problem is re-examined in the case
where model uncertainties are present. Secondly, the estimation
of the rotor speed (and machine fluxes) from the electrical
terminal measurements is considered. Previous work on these
problems is reviewed, and certain hopefully new approaches are
presented.

Thesis Supervisor: George C. Verghese
Associate Professor of Electrical Engineering
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LIST OF SYIMBLS

I =

transposition (A = transpose of A, for any matrix A)

= estimate of associated variable (x = estimate of x)

Xr = two-component rotor flux vector

As = two-component stator flux vector

A = o[se Xo'rr

ir = two-component rotor current vector

is = two-component stator current vector

9 = angular position of rotor

w = angular velocity of rotor

o = angular position of the defined reference frame

T= angular velocity of the defined reference frame

M = mutual inductance

L, = stator inductance

Lr = rotor inductance

R, = stator resistance

Rr = rotor resistance

Tr= Lr/Rr (rotor time constant)

02= LrLs - M2

Pl = (L, 2 Rs + H2 Rr)/( ( Lr)

P3 =Lr/2

P4 = LrRs/o2

H = moment of inertia associated with rotor



Crapter 1: INTROIDJCTrIO

Background

Modern induction machine control systems demand complete and

accurate state information. Field oriented control has emerged

as an important approach to the control of AC machines, and

continues to be discussed and developed in the literature (see

[1-3] and rererences therein). The field oriented method relies

on knowledge of the rotor flux vector (magnitude and angle) to

regulate this flux, and to control the electromagnetic torque.

Future control schemes may apply sliding mode theory to regulate

the machine flux and mechanical state variables [4]. Again,

accurate and complete state information is a necessity for this

appl ication.

The flux linkage of the rotor of a squirrel cage induction

machine is not directly measurable, and hence, rotor flux

estimation from the terminal variables (stator voltage and

current, and rotor speed) is a key step in the control schemes

mentioned above. In the face of noisy measurement data, and even

if measurements of all state variables are available, a state

estimator can produce smoothed measures of the actual state

variables. Thus, one may be led to construct an estimator for

stator current as well as rotor flux if measurements are

corrupted by noise.

Soope of Thesis

This thesis will focus on the estimation of the electrical



state variables (rotor flux and stator current) from the point of

view of observer theory. The latter viewpoint has not been

sufficiently exploited in this application area. We shall show

that better insight into presently used methods, and ideas for

improved methods, emerge naturally from the perspective of

observer theory. In particular, a class of observers for the

estimation of rotor flux using the terminal measurements (stator

current and voltage, and speed) is derived in Chapter 2. These

observers can be made to exhibit an arbitrarily fast rate of

convergence of the estimate to the underlying state (ie. of

error decay) under ideal conditions; this is in contrast to the

schemes presently used in field oriented control. The principles

applied in the rotor flux estimation problem are extended to an

observer for rotor flux and stator current, also in Chapter 2.

Here again, arbitrary convergence rates can be achieved, in

contrast to the dynamical constraints imposed by nearly all the

previously developed estimation schemes for induction machines.

Sampled-data implementations for the-observers derived in Chapter

2 are presented in Chapter 3, to facilitate microprocessor

implementation. In addition, the effects of errors in the

measurement of current, voltage, and speed on the derived

observers are analyzed in Chapter 4.

Considerable attention in the literature on field oriented

control [1,2,5] has been devoted to the rotor flux estimation

problem in the face of unknown or time-varying machine

parameters. In particular, [1] and [5] have devised effective

schemes to estimate the rotor time constant, which is known to



vary by 40 percent as the temperature varies by 100C. Some

methods to attack this problem are presented in Chapter 5, which

is devoted to nonlinear estimation for induction machines In

particular, the extended Kalman filter algorithm, a method termed

here "bounded nonlinearity", and a model reference adaptive

identifier/observer approach are to be considered.

In speed control applications, the replacement of a

mechanical speed sensor with additional signal processing may

improve system reliability and reduce cost. There are

significant initiatives in the literature [6,7] that deal with

this nonlinear estimation problem. Hillenbrand [6] has cast the

system equations into a form where the extended Kalman filter

algorithm [8] can be effectively applied. We shall consider

various approaches to the construction of a speed estimator in

Chapter 5. This task, although more demanding than the static

parameter estimation problem, will be treated with similar

methods.

The remainder of this chapter- introduces the induction

machine model we shall be dealing with, and then reviews the

fundamentals of observer theory from a standard, systems

view point.

Induction Machine Model

An idealized two-axis model for the squirrel cage induction

machine will be considered in this thesis. For more details, see

[9)-[11]. The v-i relationship for the electrical machine

terminals is given by:



[s= RI+4rJ r] (1.1)

0 0 Rrl ir Xr

where vs, is, Xs, ir, and Ar are two-component vector

representations of stator voltage, stator current, stator flux,

rotor current, and rotor flux, respectively. Here stator

quantities are measured on axes fixed to the stator, and rotor

quantities on rotor-fixed coordinates. Rs and Rr are the stator

and rotor winding resistances in each axis. For the symmetric,

smooth air gap machine, in the absence of saturation, the flux

and current vectors are related by the position-dependent

inductance matrix,

Ls  0 Mcos9 -Msine

0 Ls  Msin. Mcose
L(e) = , (1.2)

Moos9 Msine Lr 0

-Msin9 Mcose 0 Lr

through

= L(8) or = L(O) -1 [ , (1.3a,b)

where 9 is the angle between axis-1 on the rotor and axis-1 on

the stator, and Ls, Lr, and M are the stator, rotor, and mutual

inductances, respectively. Fig. 1.1 shows the orientation of the

induction machine windings.
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Fig. 1.1

Note that if the position 9 is viewed as a parameter, we can

immediately obtain a state-space representation for the flux as

follows:

= -L(8)- 1 L + ,H where = I (1.4)
X 0 Rrl

We shall introduce some more notation and Park's

transformation before discussing the behavior of the mechanical

state variables. The inductance matrix L(Q) can be written as

L(LsI Mexp {J}S

Mexp{-Jg} Lrl

where

I= J = , and



oosS -sine

exp{JG} = I + JO + 1/2 j 2 82 + ... i 9

sine cose

An elegant coordinate transformation, due to Park, can be applied

to represent both stator and rotor variables in coordinates

located at some arbitrary instantaneous angular position 0. For

this, consider the coordinate transformation:

[ = P where P =
x 0

0

exp{J(G-0)]
(1.6)

See the diagram of Fig. 1.2 for an explanation of the new

coordinate representation.

nxic-?

xed
Fixed

Fig. 1.2

The transformed representation is obtained as follows:

xs Xs Xs xs1 siI = p,' +P+ P

L- JL• L %. " - .
(1.7)



x 0 0 J 0 xs  exp{-Jo}vs
= -{.-I + w [ + , (1.8)

xr, 0 0 J xr 0

where w = G' is the angular velocity of the rotor, and '= 0' is

the angular velocity of the reference frame. Note that this

model does not have any position dependence apart from the input

term, and its dynamics is linear and time-invariant if w, the

speed of the rotor, and 4, the speed of the reference frame, are

constant.

This state space model can be augmented to include the

mechanical variable w = 8' by considering the net torque on the

rotor shaft. Newton's law relates the angular acceleration to

the net torque by

Hw' = Tern - TL, (1.9)

where H is the total inertia of the shaft, and Tem and TL are the

electromagnetic and load torques, respectively. An expression

for the electromagnetic torque can be derived by considering the

partial derivative with respect to position of the stored

magnetic energy, L.e.,

O -(M/o2)Jexp{JG I
Tem= L(9)-1X [ A (1.10)

e 8 (M/02)Jexp {-J) 0

where A = hSAr r] and 02 = LrLs - M 2  Note that the

symbol (') indicates transposition. Introducing the change of

coordinates due to Park's transformation to express the torque

in terms of xs and xr, we obtain:



0 -(M/0) J
Tem = x x where x = EXsY xr ] . (1.11)

Note that this torque expression is independent of both the

reference frame position o and the rotor position e. The state

equation for speed w is finally obtained as0 -J
w' = (1/H)(M/a 2) x* 0 x (1/H)TL (1.12)

Note that throughout the remainder of this thesis, we shall use

the symbols As and Xr to represent the stator and rotor flux

vectors in Park-transformed coordinates.

Complex Notation for the Induction Machine Model

The structure of the state space system can be exploited to

yield a simplified representation, if we consider the well known

isomorphism between matrices of the form [aI + bJ] and complex

numbers (a + jb) [12]. The complex number (a + jb) may be viewed

as an operator on a two component vector represented as a complex

number (x + jy), in the same sense that the matrix [al + bJ] is

an operator on a two component vector [x,yl*. The algebraic

properties of these two representations are identical, as

indicated below:

Operation on a Vector

xa Z r-b x ax-by
[aI + bWJ] = b bx+ay (1.13a, b)

(a + jb)(x + jy) = (ax-by) + j(bx+ay)



Inverse

[aI + bJ] - 1 = [aI - bJ]/(a2 + b2 )

(a + jb) - 1 = (a - jb)/(a2 + b2 ) (1.14a,b)

The complex operator/vector notation may be applied to the

induction machine model as follows. If each of the 2x2 matrix

blocks of the system equation (1.8), which is composed of a

linear combination of the elementary matrices I and J, is

represented by the corresponding scalar complex operator, and if

the two-component variables As, rI, is, ir, and vs are taken as

complex numbers instead, significant simplification of algebraic

computations can be achieved. In particular, for constant speed

operation, the eigenvalues of the 4x4 system matrix in (1.8) can

be computed by considering this matrix as a 2x2 matrix with

complex elements. This 2x2 complex matrix is given by

-RsLr/02 RsM/o2

SRrM/02  -RrLs/O 2 + j

Two of the eigenvalues of the system (1.8) may be computed by

finding the roots of the second-order characteristic polynomial,

s 2 + s((RsLr + RrLs)/o 2 - jw) + RsRr/o 2 - jwRsLr/o 2  , (1.16)

of the above 2x2 matrix. The other two eigenvalues of the system

(1.8) are the complex conjugates of those obtained by solving

(1.16).

Another important result of the complex notation is that we



may obtain a closed form complex transfer function T(s) =

I(s)/V(s), where I(s) and V(s) are complex-variable Laplace

transforms of the stator current and voltage (if speed w is

viewed as a constant parameter). This will be of interest when

parameter and speed estimation are discussed in Chapter 5.

We shall find it convenient to use one point of view

sometimes, and the other at other times.

State Estimation with Observers

A well developed approach to estimation of the state of a

dynamical system is based on observer theory [13]. The

discussion in 113] is addressed to linear, time-invariant

systems, but many other results are known for linear, time-

varying and nonlinear systems [14-16]. An observer for a known

linear system takes the form of a real-time simulation of the

system, except that, in addition to being driven by the known

inputs, it is also driven by the error between actual outputs of

the system and the predicted outputs. Thus, consider a linear

system modeled by the state-space description

x'(t) = A(t)x(t) + B(t)u(t) ; x(O) = xo  (1.17a)

(where x is an n-dimensional state vector and u an m-dimensional

vector of known inputs), with outputs modeled by

y(t) = C(t)x(t) . (1.17b)

(where y denotes a p-dimensional vector of measured outputs). An

observer for this system is given by



f'(t) = A(t)^(t) + B(t)u(t) + K(t)[C(t) - y(t)] (1.18)

2(t) = C(t)X(t) .

The term in brackets is called the prediction error, and the

matrix K(t) is the observer .ai. Given u(*) and y(*), the

system (1.18) can be solved by integrating forwards in time from

some specified initial condition (0O). Typically, we shall use

the initial condition UO) = 0 if no information is available on

x(0).

The effectiveness of the observer is assessed by examining

the dynamics of the error between the states of the observer and

the actual system. We denote the estimation error,

e(t) = f(t) - x(t), (1.19)

and subtract (1.17) from (1.18) to obtain the error dynamics:

e'(t) = [A(t) + K(t)C(t)]e(t) (1.20)

The initial condition for (1.20) is the initial estimation error

e(O), which (even if small) is invariably nonzero because of

uncertainties regarding the initial state of (1.17). Lyapunov

theory is called for to establish the stability of the

homogeneous time-varying linear system (1.20). Quadratic

Lyapunov functions of the error e(t) will be devised in Chapter 2

for the flux observers discussed therein. In the case where the

matrices A, C, and K are time-invariant, however, the behavior of

(1.20) is governed by the eigenvalues of [A + KC]. It is

evident from (1.20) that if K=0, .e. if the real-time simulation



is not corrected by a prediction error term, then the error

dynamics is the same as that of the underlying system (1.17), and

is therefore governed by the eigenvalues of A. We shall

sometimes refer to the K=O case of (1.18) as being anQopen-loop

observer, and the K=O case as being a closed-loop observer.

Under a so-called observabilitv condition on the pair of time-

invariant matrices [A,C], the dynamics of (1.20) can in principle

be made arbitrarily fast by appropriate choice of L In

practice, however, the presence of system disturbances, noise in

the sensors, and model uncertainties set limits on how fast one

may reasonably make the observer. The celebrated Kalman filter,

see reterences in [13], in fact results from picking the gain K

that gives minimum mean square estimation error for a specific

noise model.

There are many variants of the above development. For

example, the measured outputs may be given by a more complicated

form than (1.17b), perhaps involving the inputs and the

derivatives of the states. In this case, one may construct the

observer with modified variables to avoid the differentiation of

signals. This will be done for a class of observers derived in

Chapter 2. The details will be provided in that chapter. The

brief review of observer theory given here is only intended to

introduce the concept of "real-time simulation corrected by

prediction error".



Chapter 2: FLUX ESTIMATIDN

Introduction

This chapter deals with the estimation of the

electromagnetic states (i.e. the rotor flux) of the induction

machine model which are not directly measurable at the machine

terminals. The observers for rotor flux discussed herein will

sometimes be referred to as reduced-order observers because they

only attempt to estimate some of the state variables of the

induction machine model. We shall review the "indirect" rotor

flux estimation scheme used in field oriented control, and then,

show how to modify its error dynamics with a prediction-error

term. A second flux estimation scheme used in field oriented

control, termed the "direct" method, will also be discussed, and

it will be shown how a prediction-error term can be used to

improve the dynamics of this estimation scheme.

We shall also consider the possibility of filtering the

measurements of machine states which are directly accessible

(i.e. the stator current), in the case where these measurements

are corrupted by noise. This will lead us to the construction of

an observer for rotor flux and stator current using measurements

of stator current and voltage, and rotor speed. The resulting

observer will be characterized by arbitrary (ie. specified by

design) rates of convergence of the estimates to the underlying

states of the induction machine model. This is in contrast to

the dynamical constraints imposed by nearly all the previously

developed estimation schemes for induction machines.



Pioneering work along the directions pursued in this chapter

can be found in the papers of Bellini et. al. [17] and [18].

However, the development to be presented here was carried out

independently of that work, and although our results are in some

respects similar to those of [17] and [18], our presentation is

perhaps more transparent. (Also, see the 1985 PESC paper of G. C.

Verghese and S R. Sanders [21).) We shall begin this chapter by

giving a more detailed critique of the previous work in the area.

Assessment of Literature on Flux Estimation

The literature on flux estimation for electrical machines

rarely makes a clear distinction between the state of a model of

the system being studied and the state of the estimator itself,

thus obscuring the issue of the behavior of the estimation error.

The most explicit analyses of the flux estimators (including

analysis of the estimation error dynamics) are in [17-20), while

[5] comes close in the course of examining the effects of unknown

parameters.

A further striking fact is that, apart from [17] and [18],

all the existing flux estimation schemes that we know of

correspond essentially to real-time simulations that have no

corrective feedback derived from prediction error. These include

[19) and [20), even though the word "observer" is used in their

titles. Papers such as [6] and [22], which proceed via an

extended Kalman filter or least squares approach, have estimators

that inherently have a corrective prediction error term, and may

therefore be considered exceptions.

22



The discussion of observer theory in Chapter 1 suggests that

the dynamics of the estimation error in all these open-loop

observer realizations is governed by that of the underlying

physical system. For example, the so-called "indirect"

estimation flux estimation scheme used in field oriented control

[1], which is simply an uncorrected real-time simulation of the

rotor flux dynamics, has error behavior that is governed by the

rotor time constant. This scheme will be explored in greater

detail in this chapter, and it will be shown how to obtain faster

error decay with the application of a corrective prediction error

signal.

There are perhaps two main reasons for the neglect of error

dynamics in the literature on flux estimation. Firstly, existing

implementations (in particular, the "indirect" method) of field

oriented control schemes have been found to be satisfactorily

robust and effective in practice. Secondly, existing theoretical

treatments of the error dynamics, such as [17-20], are not easily

penetrated. Undoubtedly, there will -be applications where error

decay at a rate limited by the underlying physical system will

not be sufficient. The lack of estimation error analysis in the

literature and the likelihood of a need in some applications for

improved error decay compel the examination of error dynamics in

this chapter.

Rotor Flux Observer based on the "wndireot" Scheme

An induction machine can be characterized by a fifth order

state-space model. When measurements of rotor velocity and (the



two components of) stator current are available, control

applications that require state feedback demand the

reconstruction of only two state variables, for example (the two

components of) rotor current or rotor flux. The indirect method

in field oriented control is based explicitly or implicitly on an

observer for the two-component rotor flux vector. The works of

Garces [5], Gabriel and Leonhard El], Dote [19], and others

include an observer based on the rotor flux dynamics:

X' = [(-1/Tr)I + wJ]X r + (M/Tr)is ' (2.1)

where Xr and is are two axis representations of rotor flux and

stator current, respectively, w is the rotor speed, Tr (=L /Rd)

is the rotor time constant, M is the mutual inductance, and the

matrices J and I are as follows

J = , I = (2.2a, b)

Note that (2.1) can be obtained from-the second equation of the

state-space model (1.8) of the induction machine, using stator-

fixed coordinates. These reduced-order observers for rotor flux

have been implemented as open-loop simulators:

!r' = [(-/Tr )I + wJ]Xr + (M/T r)i , (2.3)

where X is the estimate of the rotor flux vector. The error
r

system that results from subtracting (2.1) from (2.3) is as

follows:

e' [(-1/Tr) I + wJ]e , (2.4)



where e = Xr " Xr

As previously mentioned, the literature on flux estimation

typically neglects to examine this error system; exceptions are

[17-20] (though [5] does display the error system in the course

of analyzing the effects of uncertainties in Tr).

With the speed w viewed as a known parameter, (2.4) is a

linear system. However, since w is in general a time-varying

quantity, the convergence properties of (2.4) cannot generally be

studied by simply taking the eigenvalues of the matrix in

brackets. When the speed w is constant, (2.4) becomes time-

invariant. Since its eigenvalues are -1/T r ± jw (which is most

easily seen if one considers the isomorphism between matrices of

al + bJ and complex numbers a + jb, see Chapter 1), the two

scalar components of e display an oscillation at the frequency w

(the constant rotor speed) that is damped with a time constant of

Tr (the rotor time constant). Numerical simulations performed

with the simulation language Simnon on the MIT Joint Computation

Facility of the induction machine model (1.8) and this rotor flux

observer are shown in Fig. 2.1. The machine (whose parameters

are given in the figure) was considered to be excited by a 60 Hz

sinusoidal voltage. Fig. 2.1 shows traces of the axis-1 and

axis-2 components of induction machine rotor flux in (i) and

(ii), while traces of the observer estimates of these two

components of rotor flux are shown in (iii) and (iv). Waveforms

representing the two components of the rotor flux estimation

error are shown in (v) and (vi).
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Numerical Simulation of Open-Loop Rotor Flux Observer
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Significant insight into the general case where speed w is

time-varying can be obtained through a Lyapunov analysis. The

stability of the error system can be assessed by considering the

Lyapunov candidate V = e*e. Differentiation of V with respect

to time and using (2.4) yields the following:

V' =2ee' = -2(1/T ) ee = -2(1/T )V . (2.5)

This relationship is easily obtained from (2.4) by noting that J

is skew-symmetric. The function V is positive definite,

decrescent, and radially unbounded. (See [231 for details on

Lyapunov stablility theory.) Clearly, V' is negative

definite since it is equal to -2(1/Tr)V. Hence, the error system

is exponentially stable for any initial condition, and the

magnitude of the error decays with the time constant of the

rotor. This analysis is essentially equivalent to that given in

[191, with e e as the Lyapunov function.

Usin Prediction Error

A method to improve the rate of convergence of an observer

for rotor flux is to introduce a prediction error term based upon

stator voltage measurements. Except in [171, this possibility

has apparently not been considered in the literature on flux

estimation. To modify the convergence rate, we would construct

the following observer system:

S' = [-1/Tr)I + wJJ]r + (M/Tr)i8 + K(s - vs) , (2.6)

where K is a 2x2 observer gain matrix and .s is the estimated



prediction of the stator voltage, given by

0% 2= (M/L)A r' + ((LrLs - M2 )/Lr)is' + Rsis. (2.7)

Equation (2.7) is obtained by rearranging the first equation of

the state-space representation of (1.8), using stator-fixed

coordinates. For the present, we assume the known current

waveform is differentiable, and that we can obtain the derivative

of stator current exactly in implementing (2.6-2.7). Later, it

will be shown that this restriction can be removed. The dynamics

of the obtained error system are described by

e' = [(-1/Tr)I + wJ]e - K(M/Lr)e' , where (2.8)

e =r - X

For purpose of illustration, let K be chosen to have the form

K = kL Then, the error system simplifies to

e'= (1 + kM/L ) 1[(-1/T )I + wJ]e. (2.9)
r r

If the rotor speed w is constant, then (2.9) is a time-

invariant linear system, and the eigenvalues that govern it are

seen (again, using the isomorphism with complex numbers) to be

(1-kM/L )-1(-1/T + jw) . (2.10)

Thus, the eigenvalues of the error dynamics are scaled up by the

-1factor (1-kM/L ) , .e. the time constant that governs the error

decay is scaled down by this factor, while the frequency of

oscillation of oscillation in the error decay waveform is scaled

j& by the same factor.
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The behavior of this observer with the gain k selected to

obtain error decay twice as fast as that of the open-loop

observer has been verified by digital simulation with the

simulation program Simnon on the MIT Joint Computation Facility.

The simulation results shown in Fig. 2.2 were obtained using the

same operating conditions as were used for the simulation of Fig.

2.1. For purpose of comparison, the axis-1 rotor flux waveform

of Fig. 2.1 is repeated in Fig 2.2 (i), the axis-1 open-loop

rotor flux estimate of Fig. 2.1 is repeated in (ii), and the

corresponding axis-1 open-loop estimation error is repeated in

(iii). The trace in (iv) shows the axis-1 estimate produced by

our improved rotor flux observer, while the trace in (v) shows

the axis-1 error produced by the improved observer. We see that

the observer using a prediction error term does indeed have a

faster decay of the estimation error.

For the more general case of time-varying rotor speed w, the

stability of this modified observer can be analyzed, again, with

the Lyapunov candidate V = eve. Differentiation of V yields the

f oll owing:

V' = 2e*e' = -2(1+kM/Lr)-I(1/T )ebe (2.11)

= -2(1+kM/L )-(1/Tr)V

It is clear that the magnitude of the error decays as an

exponential function of time, and the exponential rate is

specified by

-(1+kM/L )-1 ( 1/T r ) (2.12)r lIT
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where k is a free design parameter. In principle, we can

arbitrarily specify the rate of error decay.

To eliminate the differentiation of current waveforms in

implementing (2.6-2.7), we would group together (additively) all

the terms which involve a derivative, and rename this sum as a

new variable. For this purpose, we define the auxiliary variable

z by

z = + k[(M/L )r  + ((L L - 2)/L )i (2.13)

and implement the following system:

z' = [(-1/Tr )I + wJX r + (M/T )i s + k(v - Rsi s ) , where (2.14)

r = (z - k[(LrLs - M)/L ]is)/(1 + kM/L r ) . (2.15)

Equation (2.14) can be integrated forward in time, and the rotor

flux estimate can be recovered from the relationship between Xr

and z in (2.15). Note that no differentiation of signals is

required.

The particular gain in (2.9) was chosen for ease of

illustration. A more general gain, suggested by the results in

[17], is given by

K = k1l + k2J . (2.16)

With this choice of observer gain, the estimation error is

governed by the system equation:

e' = [(gl/Tr + g 2 w)I + (g l w - g2 Tr)J]e, where (2.17)

gl = (1-Mk /Lr)/I[(1-Mk/Lr) 2 + (Mk2/Lrp) 2 , and (2.18)

g2 = (Mk2/Lr)/1(1-Mk 1/Lr) 2 + (Mk2/L) 2 ] . (2.19)



If the rotor speed w is constant, this error system is linear and

time-invariant, and the governing eigenvalues are given by

-gl /Tr + g2 w] + j[g1 w g 2 /T r ] .  (2.20)

It can be seen from (2.18-2.20) that by proper choice of k1 and

k2 , these eigenvalues can be placed at any specified pair of

conjugate locations. It is in principle also possible to vary k1

and k2 as a function of (a slowly varying) operating speed, to

control the variation of error dynamics with operating point in

some desired fashion.

With a general time-varying speed function w, a Lyapunov

analysis similar to that performed for (2.9) can be used to

demonstrate the stability of (2.17). Once again, the Lyapunov

function V = e*e can be used. Differentiation of V yields the

result:

V' = - 2 (gl/Tr + g2w)V . (2.21)

The rate of convergence of the error magnitude is seen to depend

on the speed w for general constants gl and g2. However, as

previously indicated, the gains k1 and k 2 could be selected as

functions of the speed w to obtain an invariant convergence rate.

This possibility remains for future investigation.

Rotor Flux Observer Based on the "Direct" Scheme

There is an alternative flux estimation scheme, sometimes

called the "directu method, that is based on rewriting the first

equation of the state-space representation (1.8) (using stator-
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fixed coordinates) as

I = (L,/M)(v s - Ri s ) - [(LrLs - M )/Mis' , (2.22)

which leads to the real time simulation

r' = (L /M)(v - Rsi ) - [(L L - 1)/M]i ' . (2.23)

The limitation of this scheme that is typically quoted in the

literature is the poor behavior at low speeds. Note the

additional fact, however, that the estimation error remains

constant, because the derivatives of actual and estimated flux

are equall Any initial error in the estimate therefore persists.

One can now attempt to improve this estimator by feeding in a

corrective prediction error term. In this case, it is (2.1) (or

the second equation of the state-space representation (1.8)) that

we turn to for the prediction error term. The resulting observer

then has the form:

X ,= (L /M)(v - Rsis ) - [(Lt s - M2 )/M]i' + K(js - is), (2.24)
r r s s s

where v s and i are measured, and 3s is obtained from (2.1) as

as = Tr/M {)r' - [(-1/Tr)I + wJ dr). (2.25)

For this observer, we obtain the error system:

e' = K(i - 1i ) = KT /M {e' - [(-1/T r)I + wJ]e) , or (2.26)s s r r

e' = -(I - KTr M)- Tr/M)K [(-1/Tr)I + wJ]e . (2.27)

The parallel between this error model and the one in the

previous section is evident. Once again, simple choices of K



such as those in (2.9) or (2.16) will lead to error dynamics that

is substantially different from that of the uncorrected system.

Also, by use of appropriate auxiliary variables, it is again

straight forward to implement the observer without the necessity

of differentiating measured signals.

The question that now arises is how to choose between the

observers based on the "direct" and "indirect" schemes. The two

are closely related, since they actually result from using the

same sets of equations, and the error dynamics obtained by any

particular choice of gain matrix in one scheme can typically be

obtained by some appropriate choice of gain matrix in the other.

However, it is possible that one scheme is more easily

implemented than the other in a given situation. For example, if

an error decay rate of 1/Tr was desired with a gain of the form

K = kI, then k would be zero in the first scheme, but infinite in

the second.



Fourth-Order Observer

The observers discussed in the preceding sections are

actually examples of what are termed reduced-order observers,

because those observers do not create estimates for all the state

variables of the induction machine model. A full order observer

would produce estimates for i and w, in addition to Xr, since

these state variables (or independent combinations of them)

characterize the dynamic behavior of the model. Usually i s and w

are more easily measured than X r , and therefore are often

considered known. The assumption that these variables are known

motivates the construction of a reduced-order observer. However,

there are costs associated with this assumption Firstly, the

unfiltered measurements of i and w contain all the measurement

disturbances. Secondly, the estimate ~ produced by the reduced

order observer may be more sensitive to the measurement noises in

i and w; as an example, (2.15) shows that any noise in i

appears (scaled but) unfiltered in ' . For control applications,

e.g. in current- or speed-control l-oops, the filtered estimates

of i s , w, and Xr may be preferable to the raw or noisy

measurements of these variables.

For the reasons described above, the potential merits of a

full order observer are apparent, even when direct measurements

of is and w are available. A full order observer that estimated

the speed w would necessarily enter the realm of nonlinear

estimation because of the way w enters the state-space model

(1.8). Consideration of the speed estimation problem will be

reserved for the discussion of nonlinear estimation in Chapter 5.



Here, we shall consider a fourth-order observer that produces

filtered estimates of is and Xr using measurements of w, is, and

vs. We could equivalently construct an observer for X, and Xr,

as was done in [20]. A review of the observer in [20] will be

offered for comparative purposes before we develop the fourth

order observer of this section.

The Observer _n 1201

The observer proposed in [20] is an uncorrected fourth-order

real-time simulation that generates estimates of both stator and

rotor fluxes, using measured values of stator voltage and rotor

velocity. The fourth-order system model for flux that is used in

this real-time simulation is given by:

s + {-RL- 1 + w } s (2.28)

r 0 Xr 0

where Xs, Xrt vs are 2-component vectors representing stator

flux, rotor flux, and stator voltage, -respectively. The matrices

R and L which represent the winding resistances and machine

inductances, respectively, have the form:

I 0 LsI MI
R s ,0 L L= (2.29a, b)

0 Rr MI Lr

For the uncorrected fourth-order observer based on (2.28), we

obtain the following error dynamics:

e' =[-RL" + w Je, (2.30)



where e is a four-component vector representing the error in the

flux estimate.

If w is constant, the dynamics of the error system is

governed by its eigenvalues. As discussed in Chapter 1 of this

thesis, the particular structure of (2.30) allows the simplified

calculation of these eigenvalues. These are given by the roots

of the characteristic polynomial

2 2 2s + s((RsL + RrLs)/o - jw) + RsRr/ - jwRsLr/P 2 , (2.31)

along with the their complex conjugates.

Fig. 2.3 shows results of numerical simulations of this

fourth-order observer using the same machine model as was used in

the simulations of Figs. 2.1 and 2.2. In the vicinity of zero

speed (w = 0), the above eigenvalues are approximately -2.77

(twice) and -182.0 (twice). These values are reflected in the

error transient associated with the rotor flux estimate on axis-

1, shown in (i); the response is ultimately dominated by the

larger time constant, which is 0.36 see. At a speed of 377

rad/see, the eigenvalues are computed to be -93.0 & j354.0 and

-91.7 ±. j22.7. Again, these values are reflected in the rotor

flux error waveform for axis-1, shown in (ii); the time constant

of the envelope is now 0.01 sec.

In the general case where the speed w is a time-varying

function of time, Lyapunov analysis is called for to determine

the stability properties of the time-varying system (2.30). We

consider the Lyapunov candidate
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V = 1/2 eTR-le (2.32)

which is an energy type function since R- 1 is positive definite.

Differentiation yields the following:

V' = -eTL-le (2.33)

(The above is derived by noting that R-  is skew-symmetric,

and that x Ax=O for any vector x if A is skew-symmetric.) The

-1matrix L is positive definite, and hence V'<O for e not equal

to zero. The dynamic behavior of this observer is dictated by

the entries of the R and L matrices, or by the physical machine

parameters. The rate of error decay can be bounded by noting

that (2.32) and (2.33) lead to the following inequalities:

V' = -eTL -le < -(min. eigenvalue of L- 1 )e*e (2.34)

V = 1/2 eTR-le .< 1/2 (max. eigenvalue of R-1 )ee (2.35)

These inequalities can be combined to obtain the following:

V < -2 m i n - - e i e n v aldue of L- I V (2.36)

(max. eigenvalue of R- 1)

or, equivalently,

V' mI-2mi. eige _value ofR V (2.37)V'm < g-•r-elge nv(2.37)

This bound guarantees that all components of the estimation error

will decay to zero at a rate at least as fast as an exponential

function of time with a time constant dictated by the induction



machine parameters (0.36s for our example) under any operating

conditions.

Though the above bound is independent of the rotor speed w,

the dynamic behavior of this observer is strongly dependent on w.

Our simulations of this observer indicate the error convergence

is much faster than the bound given above at speeds corresponding

to 60 Hz in electrical frequency; however, at zero speed, the

convergence rate is nearly identical to this bound. See the

simulations in Fig, 2.3.

Usin Prediction rr

It is now possible to consider the use of a corrective

prediction error term based on measurements of stator current, to

modify the estimation error dynamics. For this purpose, it will

be convenient to consider a state-space model with state

variables of stator current and rotor flux. This is also a

practical choice, since many control applications require

accurate estimates of precisely these variables. This system

model is given by:

i -P I{M/(o2T )JI 0-(M/a2)] [ (L /a

where
2
S=LL - 2 ,r s P = (Lr 2 s + MR)/( 2Lr) and

1t rs) r r

is, Ir, v s are 2-component vector representations of stator

current, rotor flux, and stator voltage, respectively.

The proposed observer will have the form:

2I
v s

(2.38)



. {L -pl M/(a +r)1I 0 -(M/2j) j (L L/ 2)
r(M/T )I (-1/T r)1 0 J r 0

rr L

k.I + k..wJ
I + j s is) (2.39)

where ki, kij , kx, and k.j are scalars. The effectiveness of

this choice of corrective feedback structure is apparent when one

considers the resulting error system:

e., (-pl+ki)I {M/( 2 Tr)}I wkiJ (-M/o 2 ) 1 1 e= r ij 1 (2.40)

e L(M/Tr)+k }I (-1/Tr )I k J Ie

where ei =•s - is and eX = x r - r . Note that we can

freely determine the coefficients of the left-hand blocks of

the two matrices in (2.40). If ki and k are selected such

that k = -k i/T + p and k = -k x/Tr - M/T , the error
dynamics become: r 1

dynamics become:

[ej= A Q(w) , where

A = k I (-M/l2)d (-1/T )I +wJ l0

k I (-1/T)I + wJ

The freedom in the selection of kij and k\j allows the

eigenvalues of A (in pairs) to be placed arbitrarily. This can

be seen by considering the characteristic polynomial of A,

(2.41)

(2.42a, b)

(2.43)PA(s ) = ( s2 (1+kij)s + kij + (M/0*2 )k j )2

Clearly, the proper choice of the gains can arbitrarily determine



1/2
the two coefficients of pA ( s ) 1

The stability properties of the error system (2.41) are

dictated by the eigenvalues, ul and u2 , of A. In the case of

constant speed operation, the error dynamics (2.41) is governed

by the eigenvalues of the matrix AQ(w) which can be shown to be

[(-I/T) ± jw]ul (twice) and (2. 4 4a)

[(-1/Tr) t_ jw]u 2 (twice) . (2.44b)

It is therefore clear that in this case the observer error may be

made to decay to zero exponentially fast, with a specified time

constant. Fig. 2.4 shows the results of numerical simulations of

this observer, with ul=2 and u2 =10. Here, again, we have used

the same machine model as in the previous simulations. The

waveforms in (i) and (ii) are obtained for a rotor speed near

zero, and correspond respectively to errors in the axis-1

estimates of stator current and rotor flux. Note that the

envelope of the error decay has time constant 0.09s (=Tr/ul) .

The traces in (iii) and (iv) correspond to these same two

quantities, but are obtained for a speed near 377 rad/s. The

results correlate well with the above analysis, in that the

visible oscillation frequencies are 2x377 rad/s and 10x377 rad/s,

while the envelope ultimately decays with time constant 0.09s, as

before.

If the rotor speed w is time-varying, the eigenvalues do not

directly give information on the dynamics, and it is natural to

attempt a Lyapunov analysis. We shall show that the stability

properties of the error dynamics (2.41) are still controlled by
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the eigenvalues, uI and u2, of A. In particular, exponential

stability with a rate at least as fast as min{ul,u 2 /Tr is

guaranteed if ul and u2 are strictly positive. This can be seen

by noting that A is similar to a Jordan form matrix through a

block diagonal transformation P. We have the following

relationship:

P A P- , where (2.45)

0 u2

P P11 P12]1 (2.46)

i21I 2 2

must commute with Q(w) since P has blocks of 2x2 scaled identity

matrices. Then, we consider the weighted error function

e
V = 1/2[e e ]PP , (2.47)

e,

as a candidate for a Lyapunov function. Differentiation of V

yields the following:

V' = [e. e ]P Q(w)P (2.48)
0 u2 I e

which is negative definite if ul and u2 are positive.

Furthermore, the stability is exponential since

V' • -2 min{ul,u 2}/Tr V (2.49)

Since V is a quadratic function of the error, the magnitude of



the error must decay with time constant Tr/min{ul,u 2) }

The fact that the system matrix AQ(w) is similiar to a

matrix of the form {diagonal (u I, u2 I)}Q(w) for all w will

be of use when sampled-data models are discussed in Chapter 3.



Chapter 3: SAMPLED-DATA IHPLM.lENTTIDN OF FLUX OBSERVERS

Introduction

A favorable approach to the hardware realization of the

observers discussed in Chapter 3 is via a microprocessor

implementation. In this case, state estimation would be one

function of an overall digital control scheme. Critical to this,

however, is some attention to the task of putting the observer

equations in a form that is naturally and efficiently handled by

a microprocessor, and this is our focus here. We shall begin

this chapter by presenting a well known method [24] for

obtaining an exact sampled-data model of a continuous-time,

linear system under the restriction that the inputs and the

underlying system itself are piepewis constant over intervals of

length T. The application to the observers of Chapter 2 will

then be discussed.

Consider a time-varying, linear system of the form

x'(t) = A(t)x(t) + B(t)u(t), (3.1)

where

u(t) = u(nT), A(t) = A(nT), and B(t) = B(nT), (3.2a, b,c)

for nT i t < (n+1)T , n = 0,1,...

It is then well known that the evolution of the sampled state

x(nT) is described by the linear, time-varying, discrete-time

model



x(nT + T) = Fnx(nT) + GnU(nT), (3.3)

where

Fn= exp(AnT) and G = Texp(Ans)Bnds, (3.4a, b)

with

exp(At) = I + At + A2 t2 /21 + ... (3.5)

The latter matrix is called the matrix exponentiaL Note that if

the underlying continuous-time system is time-invariant, the

resulting sampled-data model is also time-invariant, Le. if the

matrices An and Bn are constant, then so are the matrices Fn and
n 

nn

Gn

The observers derived in the preceding sections are, in

general, time-varying (for time-varying speed w). We shall assume

that the time variations in is, vs, and w are slow enough for the

models and their inputs to be considered piecewise constant over

each sampling interval of duration T, so that the development

associated with (3.3) and (3.4) can- be followed. One might,

however, expect a large computational burden associated with

recomputing the matrices in (3.4) at each time step to obtain the

appropriate model for that step. Nevertheless, it turns out that

the observers we are considering have the feature that very

little new computation is required at each step. This will be

demonstrated in the subsequent sections.

Sampled-Data Model for the Rotor Flux Observer

With the assumption that all measurements, v ,, is, and w,



are constant over each sample interval, the elements of the

sampled-data model given in (3.3) and (3.4) corresponding to the

observer (2.6-2.7) are easily obtained. This is because a matrix

exponential of the form expIaI + bJJ is equal to the product of

the two matrix exponentials, exp(aI} and exp{bJ), ie.

exp{aI + bJ} = exp{aI}exp{bJ} , (3.6)

where a and b are arbitrary real scalars. This relationship

holds because the two matrices, I and J, commute (ie. IJ = JI).

The matrix exponential associated with the sampled-data model for

the reduced-order observer (2.6-2.7) is thus seen to be given by

exp{(1-kM/L )-1 [(-1/Tr ) + wJ]t}

oos(dt) -sin(dt)
exp(ct) , (3.7)

sin(dt) cos(dt)

where -(1-kM/L )/Tr and d = (1-kM/L ) l . Because the

matrix exponential is a simple function of the speed w, this

sampled-data model is easily recomputed with each new measurement

of w.

Figure 3.1 compares the performance of the continuous-time

and sampled-data implementations of the rotor flux observer of

Chapter 2. The waveform in (i) is just Figure 2.2(v) repeated,

showing the error in the rotor flux estimate produced by the

continuous-time observer, while (ii) shows the estimation error

produced by the sampled-data observer with a sampling interval of

0.1ms. It is evident that the sampled-data implementation

performs well.
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Numerical simulation of sampled-data implementation of
rotor flux observer

(i) Estimation error in continuous-time estimate of axis-1 rotor
flux with observer gain selected to obtain an error convergence
rate twice that of the open-loop observer

(ii) Estimation error in sampled-data estimate of axis-1 rotor
flux with observer gain as in (i)

(iii) Estimation error in forward Euler discrete-time estimate of
axis-1 rotor flux with observer gain as in (i)



For comparison, the waveform in (iii) shows the error

obtained if one attempts to get away without computing matrix

exponentials at all, but simply uses forward differences to

approximate derivatives (.e. uses the "forward Euler" method).

The result in this instance is a disaster! Note that the

resulting instability could have been predicted (under the

assumption of time-invariance) by computing the eigenvalues of

the matrix [I + AT] where A is the underlying system matrix of

the error dynamics (2.9), since it is this matrix that governs

propagation of the sampled state under the forward difference

scheme. These eigenvalues are given by

u{I + AT = 1 + u.{A}T . (3.8)

For the present case with T=O.1ms, T =.182s, and w=377rad/s, we
r

find

ul,2 = 0.999 ± j0.0754 (3.9)

and

lUll = tu21 = 1.002 > 1

Some Errors Adue I Assumption f Piecewise Consant Variables

It is evident that the sampled-data observer (that uses the

matrix exponential) has an error transient that is not identical

to that of the continuous-time observer. Additional simulations

of the sampled-data observer with the gain selected to obtain

faster error decay display more clearly a steady state

oscillation in the error waveforms. This behavior occurs when
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the machine current and voltage waveforms are in a sinusoidal

steady state and the rotor speed is constant. Figure (3.2) shows

the axis-1 error waveforms in the sampled estimates of rotor flux

for convergence rates of five (i), ten (ii), and twenty (iii)

times that of the open-loop observer. Also shown in Figure (3.2)

is the axis-1 stator current (iv), while the last .03 seconds of

the traces in (i) and (ii) are expanded and shown superimposed in

(v), and the last .03 seconds of the stator current trace in (iv)

are expanded in (vi).

One might speculate from the traces of Fig. 3.2 (v and vi)

that the sinusoidal steady state error waveforms result from a

sinusoid (ie. the stator current) driving a stable LTI error

plant. This can be seen to be true by considering that these

observers use sampled values of the actual current, voltage, and

speed (which is known to be constant in this case), stored in a

zero-order hold over the sample interval. A typical waveform of

the effective input to the sampled-data observer is compared to

the actual continuous-time waveform of the induction machine in

Fig. (3.3).

C ~mr~ 1 ~A ~

,eform

Fig. 3.3
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Simulation study of asymptotic error behavior in sampled-data
implementation of rotor flux observer
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open-loop observer
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(iv) Actual axis-1 stator current
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(vi) Last 0.03 seconds of (iv)
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If we consider the rough average of the sampled waveform (shown

with a dashed line) to be the effective input drive to the

observer, we see that this waveform is essentially the

continuous-time waveform delayed by one-half sample interval

(T/2). The error between the two (sinusoidal) waveforms is given

by

e i = Issin(w t) - Issin(wo(t - T/2))

S(woT/2) Iscos(wot) . (3.10)

It is thus quite plausible that there is a steady sinusoidal

input drive to the LTI error system. Now, we can study the

effect of this input drive on the steady state behavior of the

sampled-data error system, for varying observer convergence

rates, as follows. The implementation of the sampled-data

observer with auxiliary variable z 'can be approximated by

' (1-kM/Lr) [(-1/Tr)I + wJ](z + (ko /Lr)s) + (3.11)

(M/Tr)I + k(R si - 1 ) ,r s 5s s

where i and are the "averages" of the sampled waveforms as
s s

shown in Fig. 3.3. Now, consider an error system in terms of the

variable

ez = z - {(1-kM/Lr) r - (k2/Lr)i s) . (3.12)

This is given by

e = (1-kM/L )- 1 [(-1/T )I + wJ](e + (k~2 /Lr)ei) + (3.13)

(M/Tr)e + k(Rsei - ev) '



where ei and ev are the (approximately sinusoidal) differences
1 V

between the inputs to the sampled-data observer ( , s ) and the

actual continuous-time induction machine variables (is,, s )

We can easily obtain the steady state form for ez in (3.13)

by realizing that we have a stable LTI system driven by steady

sinusoidal inputs. In general, the steady state solution to the

equation

x' = Ax + b[exp(jwot)] (3.14)

for stable A is given by

x = Xo[exp(jwot)] , where (3.15a,b)

X = [JwoI - A]-b .

We shall only consider an approximate steady state solution for

our problem, in the case where the driving frequency is small

compared to the eigenvalues of the matrix A. This will give

valuable insight into the behavior at accelerated convergence

rates. The approximate solution for the generic problem just

considered is

-1X = -A- b . (3.16)
o

For the observer error system under consideration, with a

fast convergence rate, Le with (1-kM/L -1 /T r >> w° where w is

the drive frequency (377 rad/sec), the term in (3.13) multiplying

(1-kM/L)-1 must be approximately zero. This leads to the

relation

2e = -(ke /L )e, (3.17)
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We see that as the convergence rate is increased, ez , the error

in the auxiliary variable becomes approximately constant, since k

must tend toward Lr/M in order that (1-kM/Lr)-1 tend toward

infinity. However, the error in the rotor flux estimate is

related to the error ez by the gain factor (1-kM/L )- , and hence

the rotor flux estimation error will .grow linearly with the

convergence rate for accelerated convergence rates. This is

consistent with what is seen in Fig. 3.2. We conclude that

extreme care must be taken in selecting the observer gain for the

sampled-data realization of this observer.

Sampled-Data Model for Fourth-Order Observer

We would like to obtain a similar sampled-data model for the

fourth-order observer for rotor flux and stator current proposed

in Chapter 2. Fortunately, for constant speed w this observer

has a matrix exponential that is, again, a simple function of the

speed. The fundamental matrix F for this observer can be written

as the product of two simple matrices (as shown in Chapter 2, eq.

(2.41)), i.e.

F = AQ(w) , where

A ki I (-M/o2) Q(w) (-1/Tr)I + wJ 0

k XJ I 0 (- /Tr)I +

To compute the matrix exponential corresponding to F, we recall

the similarity transformation discussed in Chapter 2 (see

eq.(2.45)),

(3.18)

(3.19a, b)



AQ(w) = P-1DQ(w)P , where (3.20)

D = I and P= L11 P1 . (3.21a, b)
0 u2  P2 1 1 P2 2 I

Then, the single step transition matrix for time interval T is

given by the matrix exponential

expfAQ(w)T} = P-lexpfDQ(w)T)P , (3.22)

and the matrix expfDQ(w)} is a simple function of the speed w,

given by

exp(-u T/Tr )
) -sin(u wTT

) cos(ulwTP

0 exp(-u2T/T r )

-sin(u 2 wT)

cos(u 2wTA

Fig. 3.4 compares the axis-1 sampled-data estimation error

in rotor flux (i) and in stator current (ii) with the respective

continuous-time estimation errors in these variables (iii and

iv). The simulations are generated with a sampling interval of

0.1ms, and with the parameters u1 = 2 and u2 = 10. Note the

close correspondence between the estimates produced by the

sampled-data and continuous-time observers; however, it is again

possible to obtain a steady state error residual in the sampled-

data estimate by altering appropriate parameters. The analysis

for this problem will not be carried further, but see the

discussion for the sampled-data model of the rotor flux observer.

(3.23)

-- I
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(2apter 4: EFFECTS OF DISTUIRBANCES

Introduction

The analysis of the observers in Chapter 2 was based on a

deterministic problem formulation. We have demonstrated the

stability of those observers by computing the eigenvalues of the

system equations that govern their estimation error for the time-

invariant case (.Le. constant speed), or by showing that an

appropriate Lyapunov function could be associated with the error

dynamics for the general time-varying case. In the case where

measurements of voltage, current, and speed are corrupted by

additive noise, it is of interest to analyze the behavior of the

proposed state estimators. For the case where the speed w is

measured exactly, but the measurements of stator current and

voltage are corrupted by noise (with known statistics), our

analysis could follow the approach of the Kalman filter [8],

since in this case, the underlying state-space model for flux

dynamics (1.8) is linear. This approach would naturally lead to

a fourth-order estimator that minimizes mean square estimation

error.

We shall not follow this route, but shall restrict attention

to the observers already proposed. We shall show that exact

perturbation models can be obtained for these observers in the

case where rotor speed (and stator current and voltage)

measurements are corrupted by additive noise. In this case, the

observer error dynamics will not be governed by homogeneous

state-space equations, as drive terms associated with the



disturbances will enter the state-space models for error

dynamics. For the case where the measurement disturbances are

constant biases, we shall show that simple steady state solutions

to the observer perturbation models exist. We shall also

consider the case of white, zero-mean disturbances with

stationary and known statistics. To perform a proper analysis,

we would enter the realm of Ito stochastic differential equations

[8]. (Also, see [25] for a treatment of bilinear stochastic

differential equations of this type.) We shall not introduce an

Ito analysis, but instead, we shall present a state-space

equation that approximately governs the propagation of the

covariance of the estimation error. This equation will be shown

to have a simple steady state solution when the underlying

induction machine is also in steady state.

In this chapter, we shall consider measurements of the form:

v = V + dv' , = is + di' w = w + dw. (4.1a, b,c)

For the rotor flux observer, we shall restrict attention to the

case where measurements of voltage and current are exact, and

focus on the nonlinear problem posed by uncertain speed

measurements. A complete analysis including all measurement

uncertainties will be performed for the fourth-order observer

since it is believed to be the preferred implementation when

current measurements are noisy.

Rotor Flux Obeerver

The rotor flux observer based on the "indirect" method (see



Chapter 2) with uncertain speed measurement takes the form:

S= [(-1/Tr)I + r  (/Tr)Mis + kI(9s - V s) (4.2)

where 9 is computed from (2.7). The corresponding error

dynamics becomes:

e' = (-1/Tr)e + r - wJXr + k(M/Lr)e', or

e' = (1 - kM/Lr ) -  {(-1/Tr)e + (WJ •- wJrr) (4.3)

A direct calculation shows that the nonhomogeneous term of (4.3)

can be written as follows:

J'r - wJ) r = wJ;Xr - wJi): + wJr: r - wJXr

= dwJ r + wJe , or equivalently, (4.4a)

= d J r + ;Je. (4.4b)w r

The dynamics for the rotor flux estimation error is then given by

e' = (1 - kM/L)-1 (-/Tr)I + wJ]e + Jr . (4.5)

Now, the disturbance on the speed measurement dw is seen to drive

a stable error plant as a linear input. Of course, the input

gain is dependent upon the flux estimate.

It is possible to compute the steady state error e(ss) for

the case when dw is a constant bias, and the induction machine is

in steady state. The result is as follows:

e(ss) = [(-1/Tr )I + (W-W )J] 1 Jrw , or (4.6a)

eC(s) = [(-1/T )I + C(-Ws)J 1 JArd , (4.6b)



where w is the frequency of the electrical drive. Note that the

sensitivity to a constant bias in the speed measurement is

independent of the gain factor (I - kM/Lr ) - 1

In the case where d is a white zero-mean random disturbance

with stationary and known statistics, we would enter the realm of

Ito stochastic differential equations [8] in carrying out a

proper analysis, since the disturbance on the speed measurement

enters the state-space error model (4.5) multiplicatively with

the rotor flux estimate. See [25] for a treatment of bilinear

stochastic differential equations of this type. Here, we shall

limit ourselves to an approximate analysis of the temporal

evolution of the covariance of the estimation error, based on the

idea that the random component of the flux estimate is small

compared to the magnitude of this estimate. In this case, the

error covariance matrix X = Efee } can be propagated as if Xr in

(4.5) was not random, using the equation

X' = (1 - kM/Lr )  {[(-1/Tr)I + wJ]X + X[(-1/T )I + wJ1]J + (4.7)

(1 - r r r0r - krr- " w.

where E{d w(t)dw ()*} = q 6(t-s). See a discussion of the

behavior of linear systems driven by white noise such as that

given in [81.

If the induction machine is in steady state, the steady

state covariance of the estimate X(ss) may be computed. The

steady state covariance is in general a function of the operating

speed w. We shall not give a solution for this quantity

explicitly, but we shall examine the trace of the steady state



covariance matrix, since the trace of this matrix corresponds to

the variance in the magnitude of the rotor flux estimate. An

interesting observation is that the trace of X(ss) (or the

variance in the magnitude of r(ss)) assumes a speed independent

form. This quantity is given by:

trace{X(ss)) = 1/2 (1 - kM/L )" T ( r ~ )q w (4.8)

Thus, we expect the variance in the magnitude of the estimate to

increase approximately linearly with increasing observer error

convergence rate.

Simulations of the reduced-order observer with a piece-wise

constant disturbance added to the speed measurement are shown in

Fig. 4.1. The disturbance which has standard deviation of ten

percent of the machine base speed (377 rad/s, here) is

constructed by passing a sequence of white zero-mean gaussian

random variables through a zero-order hold. The disturbance is

held constant over intervals of 0.2ms which is short relative to

the observer error dynamics. The traces in (i), (ii), and (iii)

show the actual temporal evolution of the rotor flux estimation

error for observer convergence rates of two, five, and ten times

the convergence rate of the open-loop observer (see (2.4)). The

traces in (iv), (v), and (vi) show the temporal evolution of the

squared magnitude of the estimation error for observer

convergence rates of two, five, and ten times that of the open-

loop observer. It is indeed quite plausible from Fig. 4.1 that

the steady state variance in the magnitude of the flux estimate

increases linearly with the gain factor (1 - kM/Lr 1.
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Numerical simulation of rotor flux observer with "white" , zero-mean
disturbance on the speed measurement

(i) Axis-1 estimation error for observer convergence rate of two times
the open-loop observer

(ii) Axis-i estimation error for observer convergence rate of five
times the open-loop observer

(iii) Axis-1 estimation error for observer convergence rate of ten
times the open-loop observer

(iv) Squared-magnitude of estimation error for observer of (i)

(v) Squared-magnitude of estimation error for observer of (ii)

(vi) Squared-magnitude of estimation error for observer of (iii)
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Fourth-Order Observer

Under conditions where only uncertain measurements Vs, s

and w are available, the fourth order observer can be

constructed as in (2.39), but with the available data as:

S -pl {M/(o2-T )I 0 -(M/10) )Ls r j+ k8 [Lr7
(M/Tr)I (-1/Tr)I 0 J 1 0 s

i ij ( (4.9)
k I + ks - s

The resulting error system for this estimator is obtained by

subtracting (2.38) from (4.9). Using a calculation similiar to

that performed on the bilinear term of the error system of the

rotor flux observer, we find:

ei : { [ 1+ki)I {M/(oT j k iJ 1)J ei
e (M/T)+k I (-1/T )I k

0 (-M/or2)J 1 (L /oc2)I k.I + ikijJ
w+ 0 d - di

Li -! - 0k I + k

And, if k. and k are selected such that ki = p 1 - kij/T and
1 1r

k = -M/Tr - k j/Tr, respectively, we obtain the following error

dynamics:

e

j=X]'
+ bwd + Bvd + Bi(w)di , where (4.11)

A kjI (-Mo2)I I

k

13l

;;J 0

/Tr)I +*
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b (-M/2)j ' (L r/2 and

S( 14.12a, b, c, d, e)

If d ,di., and d are constant offsets, it is straight

forward to compute ei and eX under steady state conditions. The

explicit result will not be shown here. If d , d., and d are
V1 W

uncorrelated, white, zero-mean random variables with

(co)variances q vI, qi, and qw' respectively, and if we assume

the random components of the estimate are relatively small, an

approximate covariance of the estimate can be propagated

according to:

Y' = AQ(w)Y + YQ(w) A + q B B + qiB (w)Bi( ) +

q b b b (4.13)

For steady state conditions and relatively small q it is

possible to compute an approximate steady state covariance Y(ss).

This will not be given here. Further studies are necessary to

address the problem of minimizing Y.

k.
B () = ki

kI



Chapter 5: NONLINEAR ESTI&ATDID

Introduction

This is intended to be an exploratory chapter that discusses

some previous work in the area of nonlinear estimation for

induction machines and suggests certain hopefully new approaches

to the problems at hand. In particular, two problems will be

addressed. Firstly, the flux estimation problem will be re-

examined in the presence of static model parameter uncertainties.

The effects of an unknown (or time-varying) rotor time constant

on the "indirect" rotor flux estimation scheme have been widely

studied in the literature, see for example [1,5,22,26]. We shall

consider other uncertainties as well Secondly, possible methods

for the estimation of the rotor speed from the electrical machine

terminals will be explored. Encouraging work in this area

appears in [6], while other results appear in [7]. In general,

the speed estimation problem is more demanding than the above

parameter estimation problems, because speed can be viewed as a

parameter that can vary more rapidly than, for example, the rotor

time constant.

The observers for rotor flux (or rotor flux and stator

current) discussed in Chapter 2 can all be classified as linear

estimators. These observers reconstruct the state of the

linear time-varying dynamical system model for machine flux when

speed is considered as a known, but time-varying parameter. For

the two estimation problems introduced above, the system models

must be augmented to include as state variables the unknown



parameters and/or the unknown speed. The nonlinearity arises

because these unknown parameters and the speed enter the system

model multiplicatively with the usual state variables, namely

rotor flux and stator flux (or current) vectors, see the state-

space model (1.8) in Chapter 1.

Three approaches, which are in principle applicable to both

estimation problems, will be considered. The first method

involves the application of the extended Kalman filter algorithm

[8], which is based on the method of linearization (small

perturbation analysis). Dote and Anbo [22] have demonstrated the

validity of a variation of this approach to the flux estimation

problem with unknown winding resistances. The speed estimation

problem has been attacked by Hillenbrand [6] and De Foenel et.

al. [7] with this algorithm.

The second approach, to be termed here the "bounded

nonlinearity" method, places a bound on the magnitude of the

nonlinear components of the system , permitting the design of an

observer with a linear prediction error term, based on the linear

components of the system. Our discussion of this approach will

be based on the paper [14] of Derese, Stevens, and Noldus. The

development in [14] was strictly for bilinear systems, but here

it will be extended to other nonlinearities (e.g. the quadratic

terms arising in the induction machine model).

The third approach to be considered applies the Model

Reference Adaptive Observer algorithms for linear, time-invariant

systems with unknown parameters [27-33]. The recent doctoral

thesis of Shih [34] provides a framework for this method, and



suggests the extension to systems with slowly varying parameters.

This will be of use in the speed estimation problem, as well as

in the flux estimation problem with uncertain parameters.

Extended Kalman Filter

A reasonable starting point for this investigation of

nonlinear estimation techniques is with the extended Kalman

filter. A brief description of the algorithm will be given here,

while more details can be found in [8] and [35]. There are

numerous variations of this algorithm, many of which are

discussed in [8] and [35]. The particular application to the

combined parameter and state estimation for linear, time-

invariant systems is addressed in [36]. The algorithm is based

on the application of the usual Kalman filter to a linearization

of the system model and measurement equation about the estimated

value of the state.

If we consider the nonlinear state-space equation

x' = F(x) + Bw ; x(O) = x°  (5.1a)

y = H(x) + v , (5.1b)

where w and v are zero-mearn, independent, white noise processes

with known statistics (E{ww } = Q, E{vv } = R), the

linearization used in the filter algorithm is as follows:

x' = F(X) + [Fx(^ ) ] (x-%) + Bw (5.2a)

y = H(R) + [Hx(i)](x-2) + v , (5.2b)

where [Fx(,)] and [H x()] denote the gradients of F(*) and H(*),



respectively.

For the case where we have a continuous-time system model,

but obtain sampled measurements, we shall implement the

continuous-discrete extended Kalman filter [8,35]. During the

prediction stage, the mean of the state estimate is propagated in

accord with the nonlinear state-space model (5.1a) by

' = F() , (5.3)

and the error covariance of this estimate is propogated in accord

with the approximate, linearized model

P' = [F ())]P + P[F ()] BQB (5.4)
x x

At the measurement incorporation times, the state estimate is

updated using a Kalman gain derived from the gradient of the

measurement equation (ie. (5.2b)) and the approximate error

covariance resulting from (5.4). The state estimate is updated

in accord with the following law:

k = k + Kk ( y k - H(xk-)) , (5.5)

where Kk is given by

K P -[H x(x-)] [Hx(--)]Pk[H x(-)] + R}-1 , (5.6)k k x x k x

where all the quantities denoted with the symbol (-) on the

right-hand sides of (5.5) and (5.6) are evaluated at the instant

before the measurement is aquired. The symbol (+) indicates the

associated quantity is evaluated after the incorporation of the

measurement. The estimation error covariance is updated at the



measurement incorporation time in accord with the following law:

Pk = I - Kk[Hx )]Pk (5.7)

A variation of this algorithm has been applied by Dote and

Anbo [22] to the induction machine flux estimation problem with

unknown stator and rotor winding resistances. The motivation for

this application is that these resistances are temperature

sensitive, and hence the operating values cannot, in general, be

determined before the operation of the machine system. To cast

the problem into the above framework, the state equation is

augmented to include the winding resistances as state variables,

and an appropriate noise model is chosen. The modified state

equation is given by

s 1 0 0] L u (5.8)= -RL + w + +
r1

where ul, u2 , u3' and u4 represent the system drive noise.

The particular algorithm used by Dote and Anbo in [22] is

termed the second-order Gaussian filter [8,35], which is applied

by forming a Taylor expansion for the state equation about the

known state estimate, and truncating after the second term. The

particular algorithm also uses the assumption that measurement

and drive noises have Gaussian distributions, and that the state

itself always has a Gaussian distribution. The computations

involved in the prediction and update stages analagous to (5.3-
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5.7) are performed using both the first- and second-order terms

of the Taylor series representation of the nonlinearities, and

using the assumption that the state has a Gaussian distribution.

Dote and Anbo [221 indicate that this may be a rather effective

algorithm for the induction machine model, since this model has

only linear and quadratic terms.

Encouraging simulation results are presented in [22].

However, there are obviously some critical difficulties.

Firstly, if the estimate differs widely from the actual state,

the Kalman gain computed by the estimator which assumes Gaussian

statistics for the state may lead to divergence. (In the case of

the proper extended Kalman filter, the Kalman gain computed by

linearizing the system model about an inaccurate state estimate

can also lead to divergence.) One may argue that reliable

estimates of initial conditions for the flux state variables and

winding resistances are always available so that the convergence

of the estimator is generally guaranteed. However, this

estimator cannot be guaranteed to be robust in the presence of

large disturbances because, then, the estimate may be driven far

from the true trajectory. A second difficulty lies in the

construction of the noise model. It is not always clear how one

should obtain reasonable statistics for the driving and/or

measurement noise processes.

The extended Kalman filter has also been applied to the

speed estimation problem in [6] and [7]. Hillenbrand [61 uses a

reduced order system model with state variables of stator flux

and rotor speed, considering the measured stator current as



exactly known. This form of the model is particularly effective

for the use of the extended Kalman filter because the system

dynamics are linear and very simple, and nonlinearities appear

only in the output equation. In addition, Hillenbrand augments

the system model to allow estimation of the (unknown) rotor time

constant along with stator flux and rotor speed. With this

model, the output is given as a function of the stator current

and its derivative. The model in [6] is given by

s = Vs- Rsis + U1

w' = (1/H) is JAs - (1/H) TL + u2  (5.9)

Tr' = u3

with a nonlinear measurement equation given in terms of is, i '

and vs by

Y(i i I v CR 2Y + wji (L 2sis' s) = (R/)As s Ji - (L/2)WJs + u4 . (5.10)

If appropriate models are made for the load torque TL, and for

driving and measurement noises (ul, u2 , u3 , and u4), it is

straightforward to apply the extended Kalman filter. With some

algebraic manipulations, Hillenbrand is able to avoid

differentiation of the current waveform, and derives a discrete-

time representation corresponding to (5.9). The simulation

results given in [6] are again encouraging, but we note that the

exact initial condition for the rotor speed is assumed to be

known. Neither global stability nor any particular region of

convergence is established.

Another example of the application of the extended Kalman
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filter algorithm to the speed estimation problem can be found in

[7]. The speed estimator of [7], which is similar in some

respects to that of [6], is integrated into a speed-control loop.

Here again, successful numerical simulation results are presented

to verify this method of speed estimation.

The extended Kalman filter algorithm (and its variations) is

clearly a viable approach to the parameter and speed estimation

problems. Future work to establish the robustness of state

estimators derived with this algorithm will be of value. The

region of convergence (or the set of initial estimation errors

that lead to convergent estimates) might be determined

analytically, or more likely, by simulation and experimentation.

Bounded Nonlinearity

In this section, we shall study a class of observers

developed by Derese, Stevens, and Noldus [14] for bilinear

systems with bounded inputs. The principle for demonstrating

stability of these observers, namely placing an appropriate bound

on the input, can be extended to observers for other nonlinear

systems by placing a bound on the nonlinear components of their

state equations. Though the approach is promising, we have not

yet obtained a successful application to the induction machine

model.

The class of systems considered by Derese et. al. in [14J is

characterized by a bili±ear state-space equation of the form:



m
x' = Ax + u.A x + Bu ; x(O) = x

1 o (5.11)
y = Cx.i=

The observers proposed for these systems are constructed with a

corrective linear-prediction error term, in the fashion described

in Chapter 1:

m
' = Ao + UiAiAi + Bu + H(ý - y) ; 2(0) = 0 (5.12)

= c~. i1

With this structure, the problem is to choose H so that the

observer state 2 always converges to the underlying system state

x.

To study this issue, we must consider the error dynamics

obtained by subtracting (5.11) from (5.12). This is given by

m
e' = (Ao - HC + j uiAi)e , where (5.13)

i=1e = X- X .

This error dynamics may be viewed as a linear, time-invariant

system driven by a state-dependent disturbance, that is, we can

rewrite (5.13) in the form:

e' = (A - HC)e + v , where (5.14)
mo

v= ( uiAi)e

i=1

Asymptotically stable behavior of (5.14) may be obtained if H is

selected to make the homogeneous system

e' = (A - HC)e (5.15)O



converge sufficiently fast, and the driving disturbance v is

sufficiently small.

We recall that the system dynamics (5.15) can be made

arbitrarily fast if the pair [A ,C] satisfies an observability

condition [13]. The requirement that the driving disturbance v

be small is embodied in [14] via the constraint

vv v e Se , (5.16)

where S is symmetric and positive definite.

We shall consider a Lyapunov candidate that is quadratic in

the observer error to establish the stability of the observer.

Let

V = e Ke , (5.17)

where K is symmetric and positive definite. Direct calculation

yields the following:

* *
V' = e' Ke + e Ke'

= e (A - HC) Ke + e K(A - HC)e + (5.18)o om m
e ( u.A.) Ke + e K( u.A.)e

i=1 i=1

Because of the constraint imposed on v (or the ui) , it follows

that
m m

V' i V' + e Se - e( uiAi)( uiAi)e , or (5.19)

i=1 i=1
* * * * *K2

V' K e (A - HC) Ke + e K(A - HC)e + e Se + e K e +
o m mo

- e (K - uiAi) (K - EuiAi)e . (5.20)

i=1 i=1

The last term on the right-hand side of (5.20) is negative semi-

definite, and hence, it follows that
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V' e - (Ao - HC) Ke + e K(Ao - HC)e + e Se + e K2e . (5.21)

It follows that the stability of the observer is guaranteed if an

observer gain matrix H can be found such that the right-hand

side of (5.21) is always less than or equal to zero.

For practical applications where a specified rate of

observer error convergence (say r) is required, we can look for a

matrix H such that

V' _ -2rV (5.22)

is satisfied. This requirement can be summarized for this

problem with the matrix inequality

(Ao - HC)K + K(A o - HC) + S + K2 K -2rK , or equivalently (5.23)

(A + rI - HC)K + K(A + rI - HC) + S + K2 1 0 . (5.24)

The problem remains to find an H that satisfies (5.24). The method

proposed in [14] to solve this inequality is to select an H of the

form

H = (./2p)KIC . (5.25)

It has been shown that if a solution H to (5.24) exists, then a

solution of the form in (5.25) also exists. It suffices, then,

to look for a solution of this form, so that the inequality

(5.24) becomes

(Ao + rI)K + K(Ao + rI) + S + K2 _ (1/2p)C*C I . (5.26)0(5.p0)



The problem has now been transformed so that, if a positive

definite, symmetric solution K to (5.26) can be found, then a

matrix H that satisfies (5.24) is determined. We note that

(5.26) has a positive definite solution K for equality if S = 0

and the pair [(Ao + rI),C] is observable. This corresponds to

the statement that the algebraic Riccati equation arising in the

steady state Kalman filter (with an appropriate noise model) has

a positive definite solution if the underlying system is

observable. In general, (5.26) can be solved for equality with

an iterative technique, just as is possible with the usual

Ricatti equation. See the discussion in [14] for a

characterization of the solution for (5.26).

To extend this method of observer design for bilinear

systems to other nonlinear systems, we are led to impose a bound

on the nonlinear terms of the resulting observer error models in

the same way that a bound was placed on the bilinear components

of the bilinear obsever error model, above. We shall consider

the design of a fifth-order speed -and flux observer for the

induction machine model given in Chapter 1, (1.8) and (1.12). It

will be assumed that the terminal variables, stator voltage and

current, are measured, and that the load torque is known.

Although, the last assumption can be quite unrealistic, it is

convenient to illustrate the technique of observer design; it is

possible to consider a more detailed (higher order) model for the

mechanical load, and to then include additional states in the

derived observer (see [13]). If we define the five-component

state vector x by



x = [* Xr w)] ,

then the system model can be written compactly as

x' = Ax + f(x) + Bu ; x(O) = xo

y= C ,

where

(-R s/2)I -J (M/t2)I 0I

A = (M/o2)I (-RsLr/2)I -J OI

O 0 0

OI I 01

f(x) = wJ I B= 01 01

(2M/Ho2)xr J 0 (1/H)

C = [(Lr/a2)I (-M/o 2 )I 0] , u = [vs L]

(5.27)

(5.28)

(5.29a, b, c, d, e, f)

y = is

and the stator voltage is taken in the rotating reference frame

at instantaneous position 0.

We shall construct an observer for this system with a linear

prediction-error term, and then examine the resulting error

system to select the form of the observer gain. Consider the

observer

' = AS + f(,) + Bu + H(. - y) ; 1(0) = 0

.= C1,

which has its estimation error e = x - x governed by the
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following error dynamics:

e' = (A + HC)e + f(2) - f(x) ; e(O) = - (5.31)-AO

We shall now attempt to place a bound on the nonlinear term

v = f(;Z) - f(x), which is viewed here as a disturbance. We

proceed by performing a simple calculation that shows that v may

be expressed similarly to the form given in the above development

for bilinear observers:

v = f(2) - f(x)

01 - 01 + 01 - OI

2 ^* a a

O 01 rJ JA e . (5.32)
- r

(2M/Ho ) , J -(2M/Ho2))X * 0r s

It should be straightforward to place some bound of the form

a *
v v e Se (5.33)

on v, because the state x trajectories are bounded under the

mildest restrictions [20], and we assume the designed observer

will also be stable, so that the observer state X is also

bounded. The remainder of the development for the specification

of the observer gain H follows by the selection of a quadratic

Lyapunov function in the observer error, and all the steps taken

79



in the previous discussion for the bilinear observer design.

Because the development is parallel to previous one, the details

will be omitted. It is of great interest that this method may be

applied to many other nonlinear systems, especially those with

polynomial-type nonlinear terms.

There are a number of considerations that must be taken into

account for the particular application to the induction machine

observer. We note that the speed cannot be detected from the

electrical machine terminals if the rotor flux is identically

zero. This can be seen by considering the equation relating the

derivative of stator current to stator current, stator voltage,

rotor speed, and rotor flux, given by

2 2
is, -Plis - (M/2 )[(-l/Tr )I+wJXr + (Lr/o )s , where (5.34)

= LL s - 2 and p = (L 2R + M2R )/(r2Lr

Clearly, when the rotor flux is zero, the rotor speed has no

effect on the behavior detectable at the electrical terminals.

Equivalently, we could obtain a perturbation model for the entire

state space system about the operating point Xr = 0, and find

that the rotor speed is unobservable from the inputs and outputs

(stator voltage and current).

This fact places a restriction on the region of state space

inwhich the machine state zand the observer state t are to be

bounded. In particular, we must select a region of the state-

space that does not contain Ar = 0. The bounding regions defined

by the inequality (5.33) are inherently convex, and therefore we

must select a region that is biased away from the origin in the
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rotor flux components of the state vector. In the usual

operation of the induction machine, the flux and current vectors

all rotate (approximately synchronously) with respect to the

fixed stator reference frame. If a rotating reference frame at

instantaneous position 0 is selected such that axis-1 aligns with

the stator current vector, it is possible to place a reasonable

bound on stator and rotor flux vectors defined in this frame. In

many applications, the control algorithm requires essentially

constant magnitude of the rotor flux. Depending on the torque

that is commanded, the rotor flux vector may be situated at a

positive or negative angle with respect to the axis defined by

the stator current vector. This is depicted below in Fig. 5.1.

ax s-7

S-1

is of
)ints

Fig. 5.1

Then, the rotor flux vector Ar might effectively be restricted to

an circular region as shown in Fig. 5.1. Similarly, the stator



flux vector could be bounded.

So far, we have been unable to solve the appropriate

inequality to obtain an observer gain matrix that leads to

convergent estimates when the state vector is bounded as

described above. This technique might well be applied to the

parameter identification problem when speed is considered to be

known. Future work may lead to other valuable results. For

instance, this method may lead to a simple adaptive observer

scheme for LTI systems when bounds on the parameter uncertainties

are known, and some knowledge of the typical state trajectories

is available.
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Model Reference Adaptive Observer

A well known approach to the design of observers for linear,

time-invariant systems with unknown parameters is surveyed and

developed further in the recent doctoral thesis of Shih [34]. We

refer to [34] for a summary of the model reference adaptive

observer algorithm and many extensions (e.g. to systems with

unknown order or with time-varying parameters). As mentioned in

Chapter 1, the state-space model for the stator and rotor flux

vectors (or equivalently, stator current and rotor flux vectors)

is a linear, time-invariant system when the rotor speed is

constant. If some machine parameters or the rotor speed are

unknown, it is then natural to apply the adaptive observer of

[34] to this model. The resulting observer can identify the

unknown parameters of an equivalent (canonical form) realization

of the system, and simultaneously generate estimates of the

states in this particular realization. It is possible to

identify many of the parameters (including the rotor speed) of

the usual induction machine model given in Chapter 1, and to

obtain a scaled estimate of the rotor flux vector.

There is a modification of the usual adaptive observer

algorithm that is developed here: the algorithm in [34] for

single-input, single-output systems is applied to the two-input,

two-output induction machine flux model by collapsing the usual

two-component vector representations to single-component, complex

variables; see Chapter 1 for details on how this may be done.

We shall consider the complex vector representation of the state-

space model for stator current and rotor flux given in the



section on fourth-order observers in Chapter 2. This is

described by

' -P (M/o2) (1/T - jw) i L /0 2S 1 r + v (5.35)
r M/Tr  -1/Tr + jw X 0

where B2 =Lr L M2, P1 = (L2 s + M2Rr)/(2Lr), and is, r , and

vs are complex representations of stator current, rotor flux, and

stator voltage vectors, respectively. The complex transfer

function T(s) = I(s)/V(s) can be computed by taking the Laplace

transform of (5.35). The result is given by

(s + 1/Tr - jw) Lr,/o
s 2+ s(P + 1/T r - j)+1(/T- jw) - (M2 /c 2 T)r ( r- jwM/2)

+1/T r Jw) + P /Tr - jw) T )(1/T rjwM/

or

(s + 1/Tr - jw) L /l2------------------------------------ (5.36)
s2 + s((L R + L R )/2 - jw) - L R (-/T + jw)

rs ar rs r

It is now straightforward to construct an adaptive observer

for a non-minimal state-space realization of the transfer

function T(s), using the procedure described in [ 3 4]. Let the

parameters of T(s) be renamed so that T(s) is given by

Cs + D
T(s) = ------------------- (5.37)

s2 + Bs + W

Then a non-minimal state-space realization for T(s) can be

constructed as follows:



i ' = (A-B)(is - Ay) - Wy + Dz + C(Vs-Az)

y' = -Ay + is (5.38)

zI = -Az + v

where the additonal state variables y and z, and the coefficients

B, W, C, and D are, in general, complex valued. The design

parameter A (which may also be complex) is selected to obtain a

stable realization (iLe. re{A) < 0), and possibly to filter high

frequency noise. The adaptive observer is constructed with the

state variables i , B, W, C, and D, but also uses the known

values of the states is, y, and z of the system (5.38). The

adaptive observer is given by

1 ,= (A--B)(iAy) - WY + Dz + C(v -Az) - Re

B' = q1 e(i -Ay)

W' = q2 e y (5.39)

C' = -q 3 e.(vs-Az)

D' = -q4 e z ,

where e = 3 - is, ( ) now denotes the complex conjugate, and R

is a design parameter that should be selected to be real and

positive.

To analyze the convergence properties of this observer, we

consider the error system that results on subtracting (5.38) from

(5.39):



e' -eB(is-Ay) - eWy + eDz + eC(Vs - Az) - Re

eB ql e (isAy)
i

e W  = 2 e y (5.40)

e C '  3e (v-Az)

eD -q 4 e , where

eB = BB , e = W-W, e C = -C, and eD = D-D .

A Lyapunov function for this error dynamics is given by a

weighted sum of the squared errors, as follows:

V I/2 [e* "* * *
V = 1/2 [ee + eB eB/q 1 + eW ew/q 2 + eC e/q 3 + eD eD/q 4 ]. (5.41)

Differentiation of V with respect to time yields the result,

i
V' = -Re e , (5.42)

which is negative semi-definite with respect to the variables e,

eB, e W eCY and e D.  It has been shown that if the input (v s

here) is sufficiently rich, the error will converge to zero at a

rate bounded by an exponential function of time. The references

contained in [34] specify conditions for sufficient richness in

terms of the spectral content of the input (e.g. a certain number

of independent sinusoids).

Now it is clear that with this method we can identify the

following machine parameters:

B = (L rR + LsR)/e 2 - jw , W = LrR s/2, (1/T

C = Lr/o2 , D = Lr/o (1/Tr - Jw)
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With algebraic combinations of the above quantities, we can

obtain many of the parameters of the state-space system (5.35),

including the speed w, the rotor time constant Tr, Lr/0o, p1, and

R s  We can also deduce the rotor flux vector Xr to within the

multiplicative constant, a 2 /M, This can be done by comparing the

two expressions for the derivative of the stator current given in

the realizations (5.35) and (5.38), as follows:

is= -Plis + (M/o2 )(/Tr - w)r + (Lr/ 2 )Vs , and (5.44)

is' = (a-B)(is-ay) - Wy + dz + c(vs-az) . (5.45)

The parameters and states on the right-hand side of (5.45) are

all known when the adaptive observer has run for a sufficient

period of time, and hence the derivative of stator current is

also known. The expression (5.44) may then be solved for Ar in

terms of is,, is, v s', and various parameters, as shown below:

=r = (o2/M)(1/T - jw)-l is' + Plis - (L/ro2l)s] . (5.46)

Since (o2/M) cannot be identified, we can obtain the direction of

the rotor flux, but not the magnitude using only the electrical

terminal measurements. In nearly all cases, a priori knowledge

of some machine parameters (especially inductances that are not

temperature sensitive) allows a reasonable estimate of both the

magnitude and direction of Ar to be made.

Time-Varying S

The preceding development for speed and parameter

identification may prove successful in the case where the speed w



varies with time, but at a rate of variation characteristically

slower than that of the convergence of the identification

algorithm and the flux dynamics. Simulations in [34] show that

the model reference adaptive observer can track parameter

variations that are slow relative to the modelled dynamics.

However, The situation will certainly arise where the speed

varies at a rate comparable to the flux dynamics; existing

implementations of field oriented control schemes (e.g. the

General Electric AC-200 servo system) allow torque control

bandwidths on the order of a few hundred hertz.

In this section, we shall consider a method to identify the

unknown machine parameters, abandoning any attempt to observe the

rotor speed from measurements at the electrical machine

terminals. In particular, if we allow the direct measurement of

speed and the direct measurement or computation of the

derivatives of speed, stator current, and stator voltage, we can

obtain a nonlinear canonical form realization for the induction

machine dynamics for which we have complete state information.

We shall develop and demonstrate (with digital simulations) the

validity of a variation of the model reference adaptive

identifier algorithm given in [34]. The algorithm introduced

here can identify certain parameters of a nonlinear dynamical

system using complete state information. The particular

realization we shall consider for the induction machine dynamics

will be presented first, and then the modified identification

algorithm will be developed.

We shall consider a realization of the induction machine
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model that uses as state variables the stator current and the

derivative of the stator current. This realization is derived

simply by computing the second derivative of stator current in

terms of the stator current, stator voltage, the rotor speed, and

their derivatives. The model using complex variable notation is

then given by

i s y

Y' =-P 1 y + (-1/Tr + jw)(y- p3 + P4 is) + (5.47)

jw'(-1/Tr + j-1 (-P3v s )+p3 s

where y is the derivative of stator current, w' and v s are the
s

derivatives of rotor speed and stator voltage, respectively, and

the parameters in (5.47) are defined as follows:

pi = (LR + M2R)/(~oL ) , L Lr - M2

P = (L r r r (5.48)
P3 = Lr , , = L r /0

As already pointed out in the preceding section, we can express

the rotor flux in terms of the stator current i s , its derivative

y, and the rotor speed w (see (5.46)).

The model reference adaptive identifier algorithm of [34]

will now be modified for the nonlinear state-space system with

parameter vector p

x' = f(x,u,p) , (5.49)

where x and u are the state and input vectors, respectively. We

are led by the previous development for linear, time-invariant

systems in [34] to consider an adaptive identifier of the form:
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V' = f(x,u,p) + Ke
(5.50)

g' = ,(e,.,x,u)

where K is a stable matrix, A is an estimate of the state x, 1 is

the estimate of the parameter vector p, and e = I - x If we

also define e = P - p, the following error system in e and e

results from subtracting the system dynamics (5.49) from the

adaptive identifier (5.50):

e' = f(x,u,^) - f(x,u,p) + Ke
(5.51)

e ' = g(e,.,x,u)

To determine an appropriate parameter update law (ie. the

function g(e,^,x,u)) that leads to convergent estimates, we

consider the Lyapunov candidate

V = 1/2 {e Re + e Pe } , (5.52)
p p

where P and R are symmetric, positive-definite matrices.

Differentiation of V yields the following:

V= e R{f(x,u, ) - f(x,u,p)} + e Pe + 1/2 e [RK+K *Re . (5.53)

The matrix R should be chosen such that [RK+K R] is negative

definite, which can be done since K is stable. In this case, to

guarantee that V' is negative semi-definite, we would like to

select the update law so that the first two terms in the

expression for V' cancel exactly. However, this is not generally

possible if f(*,*,*) has a nonlinear dependence on p. We shall

proceed to obtain an approximation for f(x,t,) - f(x,up), namely



(5.54)f(x,u, ) - f(x,u,p) = [f p(x,u,p)J]e ,-PP p

where [f (,*l,w)] is the gradient of f(*,*,*) with respect to the

vector p. This will allow the specification of an update law

that makes V' only approximately negative semi-definite.

However, it is intuitive that this is a very good approximation

if this gradient does not vary greatly in the neighborhood of

(x,u,p), and we have a reasonable initial estimate of p. Note

that this expression for the difference f(x,u,^) - f(x,u,p) is

exact if f(*,*) is linear in p. The resulting parameter update

law is given by

P' = e ' =-lf (x,u,^)Re . (5.55)
P p

This algorithm has been applied to the induction machine

model using the particular realization introduced in this

section. Fig. 5.2 shows the results of a numerical simulation

with the estimates of P1 in (i), 1/Tr in (ii), p3 in (iii), P4 in

(iv), the approximate Lyapunov function V in (v), and the axis-1

voltage drive in (vi). The matrices R, P, and K for this

simulation were as follows:

P=10-5 [1 J R = , K = 1. (5.56)

The parameter estimates are seen to converge rapidly to

their true values. Note that we have used a non-sinusoidal input

drive to ensure that the excitation is sufficiently rich.

Although this algorithm is effective without the assumption of



constant speed, it has the costs of requiring the direct

measurement of speed and either the measurement or computation of

the derivatives of speed, stator current, and stator voltage.
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MCapter 6: SUMMARY AND SUGGESTIONS FOR FURTHER WORK

Summary

In this thesis we have focused on the estimation of the

electromagnetic state variables of the induction machine model

from the point of view of observer theory. The latter viewpoint

has not been sufficiently exploited in the previous work in this

area. We have noted the additional fact that nearly all the

previously developed estimation schemes for electric machines

have been implemented as open-loop simulators, neglecting the use

of a corrective prediction-error term. We have shown that

existing estimation schemes, for instance those used in field

oriented control, can be better understood in the context of

observer theory, and that observer theory naturally leads to

estimators with improved performance over the existing estimation

schemes through the use of prediction-error.

In particular, we have developed a class of observers for

the estimation of rotor flux using aprediction-error term in

Chapter 2. These observers can be made to exhibit an arbitrarily

fast rate of estimation error decay under ideal conditions, which

is in contrast to existing estimation schemes. The principles

used in the rotor flux estimation problem have been applied to an

observer for the combined estimation of rotor flux and stator

current. The performance of the proposed observers has been

verified with numerical simulations.

In Chapter 3, we have developed sampled-data realizations

for the observers proposed in Chapter 2 to facilitate



microprocessor implementation. The particular sampled-data

realizations have been shown to have satisfactory performance

(via numerical simulation), and have the feature that very little

new computation is required to update the observer models at each

time step.

We have analyzed the effects of measurement disturbances on

the performance of the proposed flux (and current) estimators in

Chapter 4. In particular, we have addressed the cases where

measurement disturbances are constant biases and where the

disturbances can be modelled as zero-mean, white noise processes,

In Chapter 5, we have considered two nonlinear estimation

problems for induction machines. Firstly, we have re-examined

the rotor flux (and stator current) estimation problem of Chapter

2 in the case where we have model uncertainties. Secondly, the

estimation of rotor speed (and flux) from the electrical terminal

measurements was considered. Previous work on these problems was

reviewed, and certain hopefully new approaches were presented.

Suggestions for Further Work

It will be of great interest to construct experimental

models of the observers proposed in Chapter 2, possibly using a

microprocessor implementation. For this application, we would

propose the sampled-data implementations discussed in Chapter 3.

The resulting state estimators can be integrated into an overall

control algorithm that regulates the rotor flux (or other

electromagnetic state variables) and the mechanical states (e.g.

acceleration, speed, and position). A favorable approach may



invoke sliding mode theory as suggested in [4].

In an experimental setting, the issues dealing with the

effects of measurement uncertainties as discussed in Chapter 4

will become more concrete. One will be able to verify the error

models given in that chapter, and with a more specific

characterization of the measurement noise processes, further

studies in the minimization of estimation error (co)variance may

prove valuable.

The area of nonlinear estimation for electrical machines

remains an interesting area where many problems have yet to be

solved. Although, there are promising initiatives into the

parameter identification and speed estimation problems (for

induction machines) as discussed in Chapter 5, it will be of

interest to experimentally verify the proposed estimation

schemes. Many new schemes will certainly evolve, especially

those that are less computationally intensive. Estimators that

use constant observer gains may prove valuable (see [22]). In

particular, the "bounded nonlinearity" method suggested in

Chapter 5 bears further investigation for the induction machine

speed estimation problem, and for other applications. One

possible application may be for parameter identification in LTI

systems.
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