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Abstract

Automated assembly of mechanical devices is studied by researching methods of
operating assembly equipment in a variable manner; that is, systems which may be
configured to perform many different assembly operations are studied. The general
parts assembly operation involves the removal of alignment errors within some
tolerance and without damaging the parts. Two methods for eliminating alignment
errors are discussed: a priori suppression and measurement and removal. Both
methods are studied with the more novel measurement and removal technique being
studied in greater detail. During the study of this technique, a fast and accurate
six degree-of-freedom position sensor based on a light-stripe vision technique was
developed. Specifications for the sensor were derived from an assembly-system
error analysis. Studies on extracting accurate information from the sensor by
optimally reducing redundant information, filtering quantization noise, and careful
calibration procedures were performed.

Prototype assembly systems for both error elimination techniques were imple-
mented and used to assemble several products. The assembly system based on the
a priori suppression technique uses a number of mechanical assembly tools and
software systems which extend the capabilities of industrial robots. The need for
the tools was determined through an assembly task analysis of several consumer
and automotive products. The assembly system based on the measurement and
removal technique used the six degree-of-freedom position sensor to measure part
misalignments. Robot commands for aligning the parts were automatically calcu-
lated based on the sensor data and executed.

Thesis Supervisor: Warren P. Seering
Title: Associate Professor of Mechanical Engineering
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Introduction

Chapter 1

1.1 Background and Motivation

The current capabilities of mechanical manipulators are inadequate to solve many

industrial assembly problems. Although there has been some success with force

and compliance controlled assembly machines (see i202] for an overview) and much

success with passive compliant devices, notably the RCC or Remote Center of

Compliance [104,133,204j, most industrial systems depend upon precision assembly

techniques (assembly is performed with no feedback other than precise position-

ing) to accomplish assembly operations. "Hard" automated assembly machines,

machines specially designed for a single function, have been used very success-

fully, but they are capable of assembling only a single product and are inflexible

to changes in product or part style. Because the flexible assembly problem is not

well understood, the approach used in automating the problem has been to emulate

humans by using some vision and force feedback. The approach taken in this thesis

has been to solve the assembly problem by analyzing the task directly. Many of

the techniques developed are fundamentally different from those used by humans.

1.1.1 Purpose of the Research

In order to develop technologically and economically viable flexible assembly sys-

tems the capabilities of present day systems must be extended so that they are able

to handle a wide variety of part shapes, sizes, tolerances, and assembly operations

without using excessively costly means. We address this need through theoretical
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and experimental investigations of programmable tools and sensors, and investigate

feasibility through the development of a number of prototypes.

1.1.2 Flexible Assembly Systems and Batch Manufacturing

Flexibility is defined to be the ability to handle different parts and perform different

assembly operations. It is one of the key issues in increasing productivity through

automation in certain industries (see Section 2.1). FlexiJle assembly systems are

electronically controlled mechanical systems which are capable of the production

(primarily assembly) of morphologically different products. Theoretically, such a

system is capable of producing sequential runs of many different products with

relatively short setup times between runs. The size of the subset of products which

a system can handle depends upon the size and weight of the elements as well as

the operations necessary for the products' assembly.

Many of the process and mass production industries have been highly auto-

mated for some time. In contrast, processes used in batch manufacturing are al-

most entirely manual. The batch manufacturing system (a limited set of resources

which is reconfigured to produce a number of different products) presents a num-

ber of unique problems to automation. Productive operation of the system requires

sophisticated scheduling with almost all aspects of the system having some degree

of flexibility.

1.1.3 The Rigid-Parts Assembly Process

An assembly task may be defined as follows

Two or more parts are moved to a desired relative position within some

tolerance. The process which juxtaposes the parts should not physically

alter them unless it is a requirement of the task.

Thus, assembly is a positioning problem. According to Simunovid [176`

The assembly process is strictly a positioning problem. Complete knowledge

of the parts and ideal positioning devices would, at least in principle, make

the assembly task a trivial matter. The imperfections of the real world are

materialized as position errors in the physical assembly systems; these errors

translate into an error in the relative position between the parts at mating;
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the resulting error in the relative positions between the parts at mating will

cause interference between the geometry of the parts, and therefore not allow

the parts to be assembled.

In general, parts comprising an assembly are manufactured in batches of identi-

cal parts and are delivered to the assembly system in groups. In order to eliminate

the relative positioning errors, the parts must be separated, grossly positioned.

then mated.

The Three Phases of Rigid-Parts Assembly

Rigid-parts assembly may be broken down into three main phases independent of

the type of system which performs the assembly.

1. Part acquisition

2. Part alignment

3. Part mating

The part acquisition phase entails part identification and gross orientation through

conventional feeding mechanisms, machine vision or other sensing systems. or

through manual techniques. The part alignment phase is typically performed by a

manipulator and might also involve fixtures, sensors and search procedures. Part

mating is the first phase where parts may touch one another. In this phase. ei-

ther force or compliance control, passive compliance, or sufficient precision to allow

non-contact mating is required. The performance of an assembly system in each of

the latter phases is affected by the system performance in previous phases. This

research attempts to increase the system performance in the part alignment phase

and relax the requirements for the part mating phase.

Relationship Between Part Alignment and Part Mating

During the part mating phase, a direct position measurement of one part relative

to the other is not generally available. Any necessary repositioning is driven by

the forces generated between the mating parts. Techniques which have been used

to eliminate positioning errors from force information include force and compli-

ance control, logic branching, and passive compliance (see Reference 12021 for an



overview of these techniques). Passive compliance techniques are generally the

simplest to implement for error correction during the mating phase. Relaxation of

requirements for the passive compliance system is possible if the parts are aligned
precisely enough during the part alignment phase.

Relaxation of the passive compliance requirements means that the assembly

can successfully occur with a larger tolerance on the location of the center of

rotational compliance and a larger tolerance on the magnitudes of the translational

and rotational compliances. A successful assembly is one in which the parts are

completely assembled without damage.

1.1.4 Methods for Eliminating Positioning Errors

Errors in part positions may be eliminated by one of two ways j176j

A Priori Suppression: Eliminate errors at their sources.

Measurement and Removal: Eliminate errors during or just before the mating

process.

Hard automated assembly systems and some robotic assembly systems (such as

the one described in Chapter 5) take the a priori suppression approach. These

systems rely on accurate jigs and fixtures and precise actuator positioning. Humans

and some advanced robotic assembly systems rely heavily on the measurement

and removal approach to assembly. These systems use tactile (force) and visual

(position) information to sufficiently align the parts. The sensor-driven assembly

system described in Chapter 6 takes this approach.

A Priori Error Suppression

Elimination of errors by the a priori suppression method entails controlling error

propagation. In general, when components are originally manufactured, their po-

sition is well known. For example, the location of features of parts machined in

a milling machine are referenced to the cutting tool up until the point where the

vice is released. If the location of a part were precisely maintained from the point

of manufacture to the point of assembly, only small errors would need to be elimi-

nated for the mating phase. The a priori suppression method also includes systems
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which do not constrain the location of parts from their point of manufacture, but

which orient parts at some later time then fixture them in pallets or jigs prior to

their assembly.

Sources of position errors include

* Loss of location information after machining or molding operations.

* Loss of location information after finishing operations such as plating, polishing,

tumbling and cleaning.

* Finite precision orienting techniques (e.g. bowl feeding).

* Finite precision pallet, assembly jig, or gripper fixturing.

* Finite precision manipulator positioning.

* Significant part tolerances.

In order for the a priori suppression method to be successful, errors from all

pertinent sources must be controlled.

Error Measurement and Removal

In the measurement and removal method for eliminating errors, the relative position

of mating part features are measured either directly from position measurements

or indirectly from force measurements. After the measurements are made. the

manipulator reorients the parts nullifying measured misalignments. In an ideal

system using this approach, sensor accuracy and manipulator motion resolution

are precise enough to mate the parts without interference between surfaces. A

more practical system would rely on the f-rces generated between mating surfaces

to correct any remaining errors with the aid of the passive compliance of the system.

1.1.5 Comparison of the Two Methods of Error Removal

Advantages and Disadvantages of Each Method

A system which uses the measurement and removal method of eliminating position

errors is more flexible than a system based on the a priori suppression method;

that is, less specialized tooling is required to perform a large variety of tasks. The
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system which uses the measurement and removal method is relatively insensitive to

the accuracy and wear of jigs, grippers, and pallets which locate the parts and the

assembly. Since measurements of the mating features are made. the system is also

relatively insensitive to large non-mating feature part tolerances and imperfections

(such as burrs). The jigs which locate the parts need to locate them to within the

acceptable range of the sensor. This may be as large as an order of magnitude bigger

than the range allowable in the a priori suppression method (see Section 6.6.1). In

some cases it may be desirable for the part jigs (including grippers and pallets) to

only firmly hold the parts and not accurately locate them. Thus the measurement

and removal method supports the use of universal grippers and pallets.

Using the measuring method allows assembly operations to be performed more

reliably. Because the part features are sensed, there is additional assurance that

the part is in the proper position prior to mating. It may also be possible to

more accurately align parts. In addition, successful assembly operations may be

performed without calibrating the robot to all of the pallets and jigs in the cell.

The system operates somewhat uncoupled from the absolute positioning of the

manipulator; that is, all commanded motions are relative to sensed positions with

respect to the world frame. Because of this, offline programming of assembly tasks

is easier and requires less absolute position references and online teaching and

calibration.

There are, however, a number of disadvantages to the measurement and removal

method. First, a finite time is required to perform the sensing. Depending on the

type of sensor and the stage of the assembly process in which the measurement

is made, the assembly procedure might be slowed. For a vision sensor with the

camera mounted offboard of the manipulator, the system must allow sufficient

time for the manipulator to come to rest (let all vibrations settle). Time is also

required to grab a frame (- sec.) and process the image. The system also has

finite measurement accuracy which might not be appropriate for all tasks. A vision

based system is also sensitive to the surface reflectance properties of objects and

surface orientations with respect to the sensor.

A limiting consideration in using a vision based measurement and removal

method is that not all features are easily sensed. It is likely that features com-

prised of relatively simple primitives (e.g. quadric surfaces) may be sensed with a

technique similar to the one presented in Chapter 4, but more complicated features
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may create problems. One study has showed that about 85 percent of "all man-

ufactured parts" may be accurately modeled by planar, cylindrical, and spherical

patches f81]. Although the accuracy of this estimate is questionable, the estimate

is at least promising. Even if features of any shape could be located with the sen-

sor, it is likely that the system would not be able to locate features with large size

differences. It might, however, be possible to design a system with an adjustable

field of view to accurately locate different sized features.

Which Method is Better?

Both the a priori error suppression and the measurement and removal methods of

error elimination may be successfully used for robotic assembly tasks. The best

method to use depends upon the requirements of the task. The a priori error

suppression method is relatively insensitive to the shape of the parts being mated;

however, it is relatively inflexible. A particular set of hardware must be used to

accurately fixture to parts. The measurement and removal is highly flexible since

almost no specialized mechanical fixtures are used, but the types of part shapes

which may be sensed and assembled is limited.

With further development of the sensing system proposed in this thesis (or

other sensing techniques), the sensor-driven assembly technique will be capable of

handling a larger number of part shapes. As compared to the a priori suppression

method it will be much more flexible and cost effective for industrial assembly

systems operating in a batch production mode.

1.2 Overview of the Thesis

This thesis discusses issues in programmable mechanical assembly systems. In this
chapter we have introduces the problem and suggested approaches to its solution.

Two methods were proposed to eliminate the errors in part alignment: a priori

elimination, and measurement and removal.

Chapter 2 gives the background on the assembly problem and an elaboration

of the two solution techniques. A literature review of research in programmable

assembly systems is followed by a survey of operations involved in certain mechani-

cal assemblies. Assembly operations are classified with respect to the magnitude of

difficulty for a single chain manipulator. A review of failure modes for the canonical



peg-in-hole assembly operation is presented. Errors in robotic assembly systems

are analyzed and applied to both the a priori suppression and the measurement and

removal methods. Accuracy specifications for a part position sensor are calculated.

Requirements for an industrial sensing system for measuring part alignment

errors are discussed in Chapter 3. A literature review of ranging techniques is

given and two techniques are analytically t.xplored. Arguments for using a light-

stripe vision system for the part-position-sensing function are presented.

Chapter 4 discusses the details of the development of a light-stripe based part

position sensor. First literature dealing with research in extracting accurate infor-

mation from noisy images is reviewed. Both optical and geometric fundamentals of

the light-stripe technique are then presented. Methods for extracting and quantify-

ing the accuracy of information from light-stripe images are then explored. These

include an error analysis of finding straight line features corrupted by quantization

noise, methods for determining the accuracy in finding the center of a light-stripe

using three different techniques, and a technique to combine redundant informa-

tion from multiple light plane illumination of a part feature. The hardware and

algorithms necessary to extract six degree-of-freedom measurements from a single

light-stripe image are also presented.

Chapters 5 and 6 describe prototype assembly systems using the two methods

of error elimination presented in this chapter. The system in Chapter 5 uses a

number of flexibly designed tools and an industrial robot to control the propagation

of position errors during the assembly process. The assembly system in Chapter 6

is vision sensor based. The accuracy of a prototype light-stripe vision system used

for part position measurements is investigated in a specially constructed test bed.

Details of the sensor calibration are also given.

Chapter 7 contains a discussion of what additional research is necessary to

develop the prototype systems into industrial systems which may be used in man-

ufacturing facilities. Uses for the sensing technology in addition to part position

sensing for assembly operations are also presented. Finally conclusions and tech-

nical contributions of the work are enumerated.
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Programmable Assembly Systems
Chapter 2

2.1 Literature Review of Research in Programmable

Assembly

Worker productivity has increased steadily throughout recent history. Within the

last decade, application of automated manufacturing technology has resulted in

dramatic changes in rates of productivity growth within those industrialized nations

choosing to invest the necessary capital and human resources. Tesar rated a number

of elements which produce increased productivity 1921. He found that technology

produces 38.1 percent, capital - 25.4 percent, labor quality - 14.3 percent, economics

of scale - 12.7 percent and resource allocation - 9.5 percent. He also notes that all

western trading partners had higher productivity growths than the United States.

The Labor Force

The work force in the United States has recently undergone a major shift in worker

qualifications which could result in a growing demand for manually skilled labor.

According to Merchant [126], 60 percent of the current U.S. workforce hold degrees

from a secondary school, while 50 percent of those entering the workforce have a

college or university education. According to Catalano '421 there will be a shortage

of manual labor by the year 1990 assuming a moderate GNP growth and limited

productivity increases from automation. Merchant and Catalano suggest that since

there are fewer people who will be entering into the manual labor force, manufac-

turing industries must either automate a number of their operations or drastically



improve the efficiency of the operations. Catalano gives estimates of manual labor

shortages in the US. but these are probably not accurate since an increased foreign

labor market is not taken into account and the sources of the GNP will shift other
industries.

Manufacturing's Economic Contribution

Merchant notes that although manufacturing industries account for 33 percent of

the international gross national product (24 percent of the U.S. GNP) while ser-

vice industries make up 50 percent (63 percent in U.S.), it produces 66 percent

of the wealth (65 percent in the U.S.). Many of the process and mass production

manufacturing industries have been highly automated for some time. In contrast,

processes used in batch manufacturing are almost entirely manual. The batch man-

ufacturing environment presents a number of unique problems to automation. A

single system (a set of tools and resources) is frequently reconfigured to produce

a number of different products. Productive operation of the system requires so-

phisticated scheduling with almost all aspects of the system having some degree of

flexibility. Anderson [10] notes that since 75 percent (by value) of all U.S. discreet

engineered products are produced in the batch mode, national productivity can be

significantly increased by making the batch manufacturing process more efficient.

Automation in Manufacturing

One method of improving batch production efficiency is to automate with comput-

ers and computer controlled machinery. Anderson j10] demonstrates that machine

shops have reduced both direct labor cost and manufacturing time by 75 per-

cent with the use of numerically controlled and computer numerically controlled

machines. Increased computerization in the batch production industry will likely

increase the utilization of capital equipment as well as increase the quality and uni-

formity of the products produced. Presently, parts being processed in the job shop

environment are idle about 90 percent of the time [10); whereas, in an automated

job shop environment, in-process inventory is substantially reduced. In addition

to the economic benefits of automation, the worker will be relieved from boring

trivial tasks which may be readily accomplished by machines and is more likely to

have more interesting skilled work. Yonemoto of the Japanese Industrial Robot As-
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sociation (JIRA) [207,208] shows that some improvements associated with robots

are increased productivity, humanization of working life, increased labor safety,

improved product quality and early return on investment. Many US managers

would probably disagree with Yonemoto's last "improvement" since low return on

investment has been one of the major factors retarding factory automation through

robot installations.

Economics of Assembly

Anderson estimates that assembly accounts for about 35 percent of the production

cost for discreetly engineered products. Nevins and Whitney of the Charles Stark

Draper Labs [132,133] have studied the science of assembly and have classified

the 3 modes of assembly. Manual assembly is appropriate for products with low

production volume. Low fixed costs are also associated with this mode so there

is no economy of scale. The manual assembler has the characteristics of being
very flexible and easy to train. He has excellent sensory capabilities, but may

tend to lack reproducibility and get bored. Assembly via fixed automation is

appropriate for products with high volume constraints. Fixed automation typically

has high fixed costs and high efficiencies. These systems are not very flexible

and tend to fail due to part jams while there is usually little sensory capability.

Programmable automatic assembly has medium fixed costs and is appropriate for

medium production volumes. It has medium efficiency and is capable of responding

to sensory inputs and learning new tasks. Nevins and Whitney have also studied

the amount which is invested in assembly in a number of different industries. Motor

vehicle and radio and television industries have about 30 percent of direct labor

attributable to assembly. They note that a better indication of savings which

comes from automating the assembly process is percent value of shipments due to

assembler's pay. These figures are 4.7 percent for the motor vehicle industry and

3.8 percent for the radio and TV industries. Nevins and Whitney fail to take into

account additional savings from automation due to increased organization, lower

in-process inventory, lower personnel and paper work overhead costs, and higher

efficiency. Boothroyd [33] has also studied the amount of labor and manufacturing

costs attributable to assembly based on a 1967 census of manufacturers. He found

that motor vehicle and telephone industries have about 50 percent of all production

workers involved with assembly. Other industries such as motorcycle, aircraft, farm



machinery, and refrigerator and freezer have from 20 to 40 percent of labor involved

in assembly. Boothroyd postulates that assembly accounts for about 50 percent

of the total manufacturing cost for a product. The apparent large discrepancies

between costs estimates of Boothroyd, Anderson. and Nevins and Whitney are

most likely due to inaccuracies in estimation. comparison of just wages to all costs

and other factors previously stated.

The Assembly Process

The most frequent assembly operations and part orientations during assembly were

studied by Nevins and Whitney by examining ten products. They found that 33

percent of the assembly operations are peg in hole insertions, 27 percent are screw

insertions and 12 percent are push and twist operations. Most other operations

include multiple peg in hole, force fits, insert peg and retainer (all less than 10

percent), flip part, provide temporary support, remove temporary support, remove

locating pin, weld or solder, and crimp sheet metal (all less than 3 percent). Most

of the operations were unidirectional (e.g. 80 percent of all peg in hole insertions

were from the same direction). Nevins and Whitney also cite surveys from General

Motors and John Deere which deal with the average mass of a part which is handled

during vehicle assembly. General Motors found that 90 percent of the parts in

an average automobile are less than 2 kilograms (4.4 pounds) while John Deere

reported that 80 percent of the parts in their farm equipment weighed less than 4

kilograms (8.8 pounds).

The Canonical Assembly Operation: Peg-in-Hole

Since it was found that peg in hole insertion dominated assembly tasks, researchers

at the Draper Labs extensively researched the subject (104,132.1331 They studied

clearance ratios (clearance/diameter) of close fits and found that similar types of

parts had similar clearance ratios. Bearings had the smallest clearance ratios of the

parts which were considered. Contact forces were analyzed and criterion for wedg-

ing and jamming of parts were formulated. The forces during the three stages of

insertion namely chamfer crossing, one point contact and two point contact could

be calculated as a function of offset of centers and insertion depth. Whitney and

Nevins made a major breakthrough in the science of assembly with the develop-

30 Chapter 2: Programmable Assembly Systems



§2.1: Literature Review of Research in Programmable Assembly 31

ment of the remote center of compliance (RCC) t'204]. This is a passive device

which is capable of providing a large degree of translational and rotational com-

pliance in directions orthogonal to the direction of insertion while remaining stiff

in the direction of insertion. In addition, the device locates the system's center

of compliance at the bottom center of the peg being inserted. Thus the RCC is

capable of apparently "pulling" the peg into the hole from the bottom. An instru-

mented RCC has been developed which can be used as a teaching aid for a robot

by automatically finding the exact location of a hole or as a sensor for an active

control system for the robot. Whitney and Nevins have also done a number of

studies on chamferless and compliant part insertion. Takeyasu, Goto and Inoyama

[187] report on the Hitachi Hi-T-Hand which is also able to do close tolerance peg

in hole insertions using active feedback. However, this manipulator performs the

task somewhat slower than the RCC.

Design and Classification of Robots

Because of their intrinsic flexibility, robots are often envisioned or utilized in pro-
grammable automatic assembly stations. The literature contains a large range of
opinions as to the optimal design for an assembly robot U66,131,159,187,194]. Since
Japan possessed 69 percent of the industrial robots in operation in 1979 while the
United States possessed only 16 percent (using similar definitions of robots) r66j.
many of the studies on robots were done in Japan. McPherson [124]] discusses the
history of robots in Japan as well as some current data on robots. He reports on
JIRA's survey on reasons for the introduction of robots which showed labor sav-
ings as being the most frequenly given response (44.5 percent). Other responses
included improvement of working conditions (24.9 percent), versatility of produc-
tion systems (13.5 percent), facilitation of management (8 percent), and 9.1 percent
due to other reasons. JIRA also predicts that assembly robots will move from 10
percent of the robot market in 1980 to 17 percent in 1985 and 22 percent in 1990.
JIRA's identifies 6 classifications of robots:

Manual Manipulator - A machine directly operated by a human.

Fixed Sequence - A machine which may be programmed for a particular task but whose repro-

gramming ability is minimal.

Variable Sequence - Same as the fixed sequence robot but the machine's program is easily

changed.

Playback Robot - This machine is only able to memorize sequences directly taught by a human.
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Numerical Control - A machine which performs according to digital information oil sequence,

position, etc.

Intelligent Robot - This machine uses vision, sensors, etc. to determine position, action, rate,

etc.

Gevarter reviewed a number of other Japanese studies of robots in his report
to NBS and NASA [66]. A 1981 survey of the uses of robots in Japan showed
unloading and loading the most frequent at 40 percent. 21 percent of the robots
in Japan were used for transfer and sorting, 9 percent for palletizing, 6 percent
for welding, 4 percent for work maintenance, 3 percent for assembly, 2 percent
for spraying, and other uses such as pouring, screwing, and riveting comprised 15
percent of the robots. The distribution of types of robots produced in Japan are:
manual manipulators - 10 percent, fixed sequence - 67 percent, variable sequence
- 7 percent, playback robots - 10 percent, NC robots - 5 percent and intelligent -
1 percent. The results of a 1980 JIRA users survey of necessary research areas (in
order of preference) is:

1. More degrees of freedom

2. More compact robots

3. Higher speed robots

4. A larger assortment of attachments

5. Easier reprogramming

6. Greater reliability

7. Increased working volume

8. Increased payload

9. Increased accuracy

10. Tactile sensing

11. Vision

12. Pattern recognition

13. Increased memory

14. Higher mobility

15. Coordinated control of multiple robots

A 1980 JIRA survey of current research areas of Japanese robot manufacturers
shows .1 percent involved with increasing robot speed, .7 percent involved with
making robots more compact, 8.6 percent with computer control, 8 percent with
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lighter weight robots, .7 percent with modular interchangeability. 5 percent with

object recognition, 4.6 percent with increased payload, 3.8 percent with improved
actuators. 3.8 percent with self diagnosis, and 3.8 involved with adaptive control.
Still another JIRA study as reported by Yonemoto 207 of the distribution of

robot sales to different industries reveals electric machine industry - 36 percent.

automobile industry - 30 percent. plastics molding - 10 percent. metal working

industries - 5 percent, and metal working machinery industries - 4 percent.
Seering [168] contends that robots are presently designed to emulate humans

and not designed to perform important assembly tasks. Mechanical manipulators

should not be constrained to move at human speeds, carry human compatable

payloads, work with the same precision, and have the same sensing capabilities of

humans. This philosophy was adhered to in many aspects of this thesis.

Costs in Assembly Systems

In order for programmable assembly systems to be implemented in the industrial

environment, they must prove to be more economic than conventional modes of

assembly. According to Elbracht and Schaler !57 , the economics of programmable

assembly may be compared to the economics of manual assembly by comparing

the costs of necessary capital equipment versus the cost of labor. They note that

an acceptable cost for automated equipment depends on both the number of shifts

being considered as well as the country where the installation will occur. A num-
ber of authors discuss methods for predicting the economic feasibility of flexible

assembly systems. Boothroyd '31,33i and Dewhurst and Boothroyd [501 calculate

per part costs versus volume per shift-year for a number of assembly systems.

Systems which were considered are totally manual systems, manual systems with

feeders, indexing type fixed automatic machines (all workpieces indexed simulta-

neously), free transfer machines (buffers between each workhead), programmable

workheads (robots), two arm programmable stations, and a universal assembly

station consisting of two or more arms with programmable end effectors and pro-

grammable feeders. He found that manual types of assembly are economic below

about 35,000 units/shift-year, fixed automation assembly is economic above about

850,000 units/shift-year, and programmable assembly is economic between these

production volumes. Boothroyd demonstrates that the volumes where the various

modes of assembly become economic vary strongly as a function of number of prod-

33



uct design changes per year, number of product styles to be produced, and number

of different products to be produced. Nevins and Whitney predicted similar levels

of production volume where the various modes of assembly become economic using

somewhat different models 1132.133!. Their models for cost per assembly (finished

unit) were based on payback period methods and are as follows:

Manual:

Cost/Assy = AssyTime/Part x LaborCo.st , Parts/Assy

Fixed automation:

Parts/Assy x MachCostl/Part
PaybackPeriod x Volume

Programmable assembly:

Parts/Assy x StationPrice x Time' Part ToolingCost / Part
PaybackPeriod Seconds/Year Volume

Depending on the payback period and labor costs, the results of analysis on 10

part units are: manual assembly is economic up to 100,000 units, programmable

assembly is economic from 100,000 units to 2 million units and fixed automation

is economic above 2 million units.

Benedetti discusses another method of calculating the most economic mode of

assembly by optimizing a profitability condition with respect to some volume of

production [211. This condition compares the costs involved with the purely manual

operations to the costs of automated machine operation, automation machinery

capital costs and the costs of manual intervention. Benedetti notes that this method

is not based on discounted cash flow techniques and performs other analyses which

are. From these models, he calculates the best method of assembly based on both

cycle time and annual production volume assuming some rate of return and some

utilization period. He also determines the amount of investments available for

automation as a function of operator reduction.

To accurately predict the actual costs involved with the implementation of

a flexible manufacturing system, any model used should be based on discounted

cash flow techniques. The Boothroyd, and Nevins and Whitney models could be

made more precise by taking into account the time value of money. None of the

above economic models take into account the loss of business if automation is not
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pursued. In other words, companies which do decide to automate may attract

a larger market share due to their increased flexibility and shorter delivery time.

Companies which do not automate may find their share of business taken over

by a more productive company using flexible automation. Another concern when

considering the economic feasibility for a newly automated system as cited by

Elbracht and Schaler i57; is the fact that automated equipment costs are presently

rising at a slower rate than labor costs.

Design for Assembly

Assembly research involving the programmable automatic assembly of parts which

were designed to be manually assembled without redesign have shown that system

implementation is both uneconomic and difficult [84,119,132,181'. These findings

imply that design or redesign of parts for programmable assembly is extremely

important if a newly designed system is to succeed economically. Boothroyd has

documented methods to improve designs for ease of assembly 131.33'. He suggests:

1. Reduce number of parts. 2. Unidirectional assembly.

3. Chanifer insertion interfaces. 4. Make parts locatable.

5. Use a base part. 6. Layered assembly.

7. Simple fastening operations.

Other authors [51,109,123] suggest additional methods for improving designs for

assembly such as good interfacing between base part and fixtures, logical assembly

order, designing for facilitation of inspection, keeping tight part tolerances or using

a passive remote center of compliance, designing parts with a low center of gravity

for stability, protecting fragile surfaces, providing a suitable gripper and feed track

surface, and avoiding or not using separate fasteners.

Boothroyd et al. [32,331 and others [11,51,109] also suggest improvements of de-

signs to facilitate automatic feeding including designs which decrease the likelihood

of part tangling and hooking, maximize part symmetry or exaggerate asymmetry,

have smooth surface finishes for feeding, use special orienting faces, use high qual-

ity components, have part geometries which fit into magazines, and designs which

use preoriented parts on tapes. Lewis also suggests a clean assembly environment

to avoid feeder jams [109].
A number of authors make a point of looking at each part and making sure that

it is necessary in the total product [11,31,331. Boothroyd rates the efficiency of a



given design with respect to the minimum number of parts and minimum handling

and assembly time. Design efficiency is defined as:

Theor. .Ilin - Parts x (Nom.HandleTime V- Nom.AssembleTime)
ActualAssembleTime

Boothroyd has designed a system which will help the designer increase the

efficiency of a design and predict the costs and the amount of time necessary

for assembly. The system classifies each part in an assembly with two digits the

first of which quantifies the amount of symmetry and ease of grasp. The second

digit is based on the mode of insertion or fastening. The technique was designed

with manual assembly in mind but may also be used for programmable automated

assembly.

Andreasen [11] classifies the different types of assembly structures as being

frame, staked (some components hold others), composite product (different mate-

rials), base component (base for transport and assembly), modules, and building

block. Djupmark [51] rates a number of fastening techniques with respect to ease

of implementation in an automatic assembly workhead (from simplest to most dif-

ficult):

1. Pressing 2. Snap joints

3. Lap joints 4. Baking in

5. Welding 6. Riveting

7. Screws 8. Pins and Rings

9. Crimping 10. Soldering

11. Gluing

The above list is machine dependent and is most likely not accurate for new machine

designs.

Techniques which may reduce the cost of programmable assembly automation

as cited by Redford [159] include increasing the speed of robots (although it is

likely that less than an order of magnitude increase is possible), use of limited

capability and inexpensive robots, versatile, inexpensive grippers (using more than

one gripper on a robot arm, designing a programmable gripper, designing parts

to minimize gripper change or assembling a number of assemblies at a time to

minimize gripper changes), identification of assembly families, and lower feeding
costs.
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Parts Feeding

Redford analyzes a number of different types of feeders with respect to cost of
implementation in a programmable assembly center A159,160). The types of feeders
considered were:

1. Dedicated (bowl feeders).

2. Multi-part (5 parts, 1 drive, different orienting tracks).

3. Programmable.

4. Dedicated feeders serving more than 1 robot.

5. Feeders with vision.

6. Magazine systems (better utilization of feeders, secondary inspection before assy).

(a). Manually Loaded. (b). dedicated feeders.

(c). Multi-part feeders. (d). programmable feeders.
(e). Loaded by prior manufacturing operation.

7. Manually loaded feed tracks.

Feeding costs depend oni:

1. Material handling cost. 2. System tending cost.
3. Fault correction cost. 4. Change over cost.

5. Equipment depreciation cost. 6. Tooling depreciation cost.

The results of Redford's feeder cost analysis were based on a study of two
product families with volumes of 200,000 units per year. One family consisted of
66 product types and the other consisted of 20 part types. Variable batch sizes
were considered from 50 to 4350 units. Results showed that all systems except
magazines loaded from prior manufacturing operations exhibited dramatic cost
increases at batch sizes below 450 units. All cost versus batch size curves were
parallel at higher volumes (independent of batch size). Multi-part feeders, feeders
with vision, and magazines loaded at prior manufacturing operations were the most
economic feeding techniques. Manual loading of robots was more economic than
programmable or dedicated feeding. It was suggested that a mix of different feeder
types is probably best.

Conventional bowl feeders were examined by Boothroyd 132,331 who determined

the variables responsible for feed rate. Feed rate is a function of orienting efficiency

(dependent upon the number of natural resting states of a part) and track conveying



velocity. Conveying velocity is a function of ramp angle. vibration angle, frequency

of vibration, coefficient of friction, and load sensitivity (change of part velocity due

to the amount of material in the bowl). A number of non-conventional feeders are
also discussed by Boothroyd such as non-vibratory feeders for parts with simple

geometries such as discs and cylinders. Out of phase feeders are also described

whose main attribute is an increase in feeding efficiency due to a decoupling of the

two principal directions of vibration. Boothroyd is also involved with the design of

belt feeders some of which are programmable with simple optical sensing capability.

In addition, he has derived a part feeding and orienting coding system which can

help designers to design parts for ease of feeding. The code is based on the shape

of the part (relative dimensions), the amount of part symmetry, and protruding or

other orientable features. The system points out difficult to feed parts as well as

serving as a guide for the designer.

A number of researchers have developed "smart" feeders to increase the flexi-

bility of automated assembly systems. Hill and Sword [89] use vision to check part

orientation. If reorientation is necessary, parts are turned over by being pushed

off a ledge and rotated on a rotary table. The cycle time including visual pro-

cessing time is 15 seconds. Suzuki and Kohno of Hitachi 185: report the use of

a multi-level bowl feeder with no orientation tracks which uses adjustable wipers

and dish-outs to partially orient parts. After being partially oriented, the part is

pressed up against datum planes and visually scanned. The part's orientation is

then determined and either the feeder flips it into the proper position or the robot

reorients it before insertion in the assembly. This type of feeder is very flexible

and can accommodate a wide variety of part shapes and sizes. The Swedish In-

stitute for Production Engineering uses a simple linear array camera with a belt

conveyer equipped with wiper blades to flexibly feed parts [511. Another flexible

feeder which uses vision is reported by Heginbotham [85]. The system consists of a

bowl feeder feeding onto a belt. From the belt, the part is pushed past fiberoptics

along two perpendicular walls. The fiberoptics terminate at a linear scan camera

which send the visual data to a computer. The robot which reorients the part

before it is assembled is also capable of rejecting parts which do not pass the visual

inspection.
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Selective Assembly

A system with fairly sophisticated inspection facilities is discussed by Camera and

Migliardi [391. It uses the DEA PRAGMA robot and automatic inspection equip-

ment to dimensionally and functionally inspect precision parts such as automobile

crankshafts or injectors. They note that instrumented grippers may also be used

for some gross dimensional inspection. After being inspected, the parts are placed

in tolerance groups for later insertion into other parts belonging to appropriately

matched groups.

Time Motion Studies

A major concern when considering the costs of a manual system versus a robotic

system is the reduction of thoughput time. Rogers of Unimation demonstrates

how robot time and motion studies may be used to compare robotic manufac-

turing with other modes of manufacturing [161j. These studies are similar to
manual Methods-Time Measurement studies (MTM) and may be used to help find

optimal manufacturing sequences, balance a prodution line and compare robots

from different manufacturers on an individual task basis. He notes, as do oth-

ers t21,33,50,57,66,85,112,137,138,139,140,141,148,1591, that asembly costs are very

sensitive to the speed of a robot (much more than to the price of the robot). Since

robots are very consistent, robot time motion standard times can be much more

accurate than MTM standard times. Rogers discusses three techniques for deter-

mining a standard time for robot tasks. The first and simplest technique is just

to calculate the average time needed to perform a number of typical tasks with a

typical number of tool changes. The second technique takes into account the type

of task being performed and the third technique takes the robot control scheme

into account (accounting for ramped and different maximum velocities). Nof et al

[137,138,139,140,141,1481 take a similar approach to arrive at standard times for

robot tasks. They compare Robot Time Motion (RTM) times directly to MTM

times for a number of tasks. They find that humans are not capable of performing

all of the tasks that robots can perform. Of course the converse is also true. A

comparison of times necessary for the assembly of a fuel pump for both manual and

robotic systems demonstrated that the human was capable of doing the task about

8 times faster than the robot. Other studies such as the Draper Lab alternator
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assembly have yielded similar assembly time ratios 132.133>.

Integrated Factory Control

Anderson has suggested that maximum impact of computers on manufacturing
systems will be the complete, real-time computer cognizance and control of all

processes and resources allowing precise scheduling and allocation [101. He also

states that a system like IBM's COPICS system (Communications Oriented Pro-

duction Information and Control System) which is a factory data collection system

is necessary for such computer control. Fisher et al (62] cite authors who attempt

to model the facility and planning of a computer controlled manufacturing system

using a number of different techniques many of which are based on closed queuing

networks. A number of simulation models are also cited. Fisher et al.construct a

model based on probabilistic analysis of part recirculation where a part is circu-

lated through inspection and rework until it is within specification. Gershwin [651
and Kimemia and Gershwin '1011 consider the control of a computerized manufac-

turing system with buffer storages between each work station. They calculate line

efficiencies based on mean time between failure and mean time to repair for each

machine. The analysis, which is based on optimal stochastic control models, be-

comes extremely complex for more than 2 or 3 work stations and thus has practical
limitations.

Schr6der [167] discusses how machines and humans may be optimally inte-

grated in an assembly environment. System configurations are discussed which

make manual assembly independent of machine cycle time. It is suggested that

lines be put together in a modular fashion so that they may be easily changed.

Grouping manual stations close to one another yet separate from automatic sta-

tions will promote worker communication and avoid worker dislocation. He gives

configurations for grouping manual stations together even when automatic oper-

ations are interspersed. Schr6der notes that if manual and automatic operations

are not mixed in this manner, even work distribution is not always possible.

Worker Acceptance of Automation

The implementation and employee acceptance of a computer controlled planning

system is presented in a case study by Shaiken [1701. TOPS (Total Operation
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and Plarnning System) was implemented in a large tool and die shop of a large

automobile manufacturer. Its function was to control the complex scheduling of

operations involved with producing a die. The system was despised by the workers

after it was implemented. They thought that the system took the skill out of their

job and that the time they spent working was constantly being monitored. Part of

the problem with the computerized planning system was that it tried to quantify

a highly skilled job which takes over a decade for a good toolmaker to master.

The computer was not able to make "seat of the pants" type decisions which are

sometimes essential in die manufacture.

Although labor unions are concerned with the short term consequences of in-

creased automation, they know that robots will benefit society by increasing pro-

ductivity and relieving people from dangerous and undesirable jobs [83]. According

to the UAW, after a new piece of automation has been installed, it is still important

that the worker have a sense of security and obligation.

Programmable Assembly System Implementations

To date, just more than a handful of flexible manufacturing systems are in operation

with only a few involving assembly. Many of the systems are experimental with the

exception of some Japanese systems which are involved in a significant part of the

manufacturing process. Over 5 years ago Westinghouse undertook its Adaptable

Programmable Assembly System (APAS) project with the intent of developing a

state of the art system 1,119,181j. One of the firsts tasks Westinghouse studied was

choice of a product line which was suitable for programmable assembly. Abraham

[1] points out that over 60 product lines were considered and after an intricate

process of elimination, 3 were chosen as possible APAS candidates. Each line was

rated on (In order of importance):

1. Use of APAS technology 2. Degree of transfer

3. Social desirability 4. Inspection and recognition

5. Fixturing tooling 6. Economics

7. Product redesign

Four system configurations were considered and evaluated separatel.% for each

product line. The first configuration involved separate subassembly and final as-

sembly stations. Another configuration used a single arm robot with off-line parts
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feeding. The third system utilized lower degree of freedom arms in a line with off-

line parts feeding and the fourth configuration used many assembly stations with

off line parts feeding. It was found that the system configuration utilizing lower

degree of freedom manipulators is best for short cycle time products with limited

style variations. The most significant costs were equipment and cycle time with

cycle time being the most significant. The use of 1 to 2 second cycle times was

suggested for cost reduction. From the initial study, fractional horsepower elec-

tric motors were chosen for system implementation. To date, the system has been

implemented for the end bell assembly of the motors. The system incorporates a

number of fairly new technologies such as programmable belt feeders, multi-part

handling end effectors, and visual inspection. Although one of the original goals of

the system was that it should be capable of assembling existing parts, it was found

that these resrictions on part redesign made implementation extremely difficult

and expensive.

Nippondenso Corporation in Japan uses flexible assembly lines for manufac-

turing automobile instruments [131]. They have developed their own simple non-

sensing robots to do the assembly because fast, inexpensive, limited degree of

freedom robots were unavailable. They made the following evaluations of humans

and a number of robots:

TECHNIQUE CYCLE TIME (SEC) TEACH TIME (MIN)
Humans 1.4 1

Nippondenso

robot 1.9 100

SCARA
robot 2.7 120

PUMA
robot 3.1 40

Nippondenso is capable of producing a number of different automobile instru-
ments on short notice with almost no inventory due to their highly flexible lines.
Another Japanese manufacturer which has developed its own robots for production
is Yamaha Motor Corporation [131]. They have developed the CAME (Computer-
Aided Manufacturing Equipment for assembly operation) robot with the following
specifications:

* Capable of handling material

* Capable of feeding parts

* Capable of assembling parts
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* Has set up times less than 1 cycle long (20 - 60 sec)

* Operates at speeds as fast as humans

* Positional accuracy of < .1 mm

* Weighs about the same as a man

* Same cost as yearly salary of an operator

Yamaha has used these robots with multi-level vibratory bowl feeders predom-

inantly for motorcycle engine assembly.

Ranky describes a project which is sponsored for the most part by the Hungarian

government and is implemented at the Cspel Machine Tool company [158]. The

system uses a direct access part handling robot versus an in line system. The robot

can choose from a number of different process sequences and has direct access to

any machining, or inspection station. A fairly sophisticated flexible manufacturing

system is curren:ly being operated at the Fujitsu-Fanuc plant in Japan [131]. The

plant produces robotb and small machine tools using unmanned machining. Robots

load the machine tools and machined parts and raw materials are carried from

station to station by wire guided carts. Presently, all assembly at the plant is

being done manually.

Sony has developed the FX-1 assembly system which assembles 50 percent of

the parts in the drive mechanism for the Walkman II [131]. The system consists

of X-Y tables which position pallets containing parts and assembly areas for four

Walkman II assemblies. Unidirectional insertion is performed by single degree of

freedom actuators which may be fitted with any number of end effectors. The pal-

lets which are molded plastic trays are manually loaded before entering the system.

Conveyers move pallets in and out of the assembly stations. The system can easily

tolerate changes in both model design (by remolding the part trays) and produc-

tion quantity. Other attributes of the system are 2 second cycle time, 0.015mm

accuracy, an average reprogramming time of one minute, and a production rate of

500 sets an hour (48 pieces / set). The Daini Seikosha Co., Ltd. (manufacturer of

Seiko watches) have been producing watches with almost no manual intervention

for about 10 years [1311. They use rotary and in line machining and assembly

centers for the production of mechanical and IC quartz watches. There are 6 lines

utilized for the production of 10 models. 5 people fix jams during the second shift,

which is the production shift, and 80 people maintain 300 machines during the first
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shift. There is no central monitoring or diagnostics and the machines are capa-

ble of positional accuracies smaller than .0004 inches (10 microns) and production

quantities of 200,000 watch baseplates per month.

Automated Factories of the Future

Continuing investment in automated manufacturing equipment will result in con-

tinuing improvements in productivity. There will be a corresponding change in the

nature of many existing jobs on the manufacturing floor. Possibly more signifi-

cantly, as more tasks are automated, manufacturing plants will run in more struc-

tured ways. This will result in a reduction in the need for support personel. As

a factory's performance more closely resembles performance of a computer model

of the factory, more of the jobs involving flow of information will be performed

by computer. The long term result will be a restructuring of the manufacturing

environment.

2.2 Classification of Assembly Operations

Successful flexible assembly systems will come about through new developments

in robots, versatile peripheral hardware, and more efficient cell programming tech-

niques. In order to design useful systems, it is first instructive to study common

mechanical assembly operations. A study at the Charles Stark Draper Laboratory

4104,133] lists the twelve most common assembly operations in ten products. Re-

searchers at the Draper Labs found that about 33 percent of the operations studied

are peg-in-hole operations, 27 percent are screw insertions, and 12 percent are push

and twist operations. It was also found that most of the operations occurred from

the same direction of the assembly (e.g. 80 percent of all peg in hole operations

were from the same direction).

When considering the set of capabilities which automatic assembly machines

should exhibit, one needs to consider that the operations cited in the Draper study

as well as the present study were from products which were designed for human

assembly. Integration of the process and product design may produce products with

a relatively small set of required assembly operations which are capable of being

assembled with present state of the art machines. Extension of the capability of

these machines will generate more permissible assembly operations for the product
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designer's consideration. Thus, the compatibility between product and flexible

assembly system is dynamic and is extendable through an iterative design process

between the two elements.

2.2.1 Assembly Task Analysis

The operations necessary to perform the assembly of 7 consumer and automotive

products were studied. The investigation was carried out to

* investigate which mechanical assembly operations are prevalent in certain

types of products,

* determine which operations can and cannot be accomplished by an unaided

six degree-of-freedom manipulator,

* investigate the difficulty of the different operations.

None of the products were machine assembled, nor was their design optimized for

ease of assembly (i.e. they were not designed for automated assembly [31,33]). Ten

of the most prevalent mechanical assembly operations were identified:

1 - Unstable Assembly: Any operation where a part will not maintain its proper position

under just the force of gravity. A plate without fasteners covering a long, thin

compression spring is an example.

2 - Required Orientation of Another Part Prior to Assembly: Stabilizing (fixing the posi-

tion) of an already assembled part prior to insertion of a new part.

3 - Retaining Clip Insertion: includes assembly of internal and external snap rings and

" E" clips.

4 - Spring Insertion/Compression: Operations which require insertion of parts which must

be mechanically stressed prior to their installation.

5 - Plastic Heading: Heading of rivets and other fastening techniques requiring plastic de-

formation of material.

6 - Unstable Inversion: Requires that a part or assembly of parts be reoriented prior to

assembly such that without constraint, they would become unstable and fall apart.

7 - Non-screw Twisting: Includes all helical insertions which are not performed with stan-

dard screws.
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1) Unstable Assembly

4) Compress Spring

7) Non-Standard Screwing

Orient Another Part

Plastically Deform
Press Fit

Clip Insertion
Unstable Inversion

Standard Screwing

Unidirectional Insertion

Figure 2.1: Summary of frequency of assembly operations for products studied.

8 - Press Fit: Similar to unidirectional insertions except there is an interference fit rather

than a clearance.

9 - Screw Insertion: Driving of standard shaped screws only. Specially designed parts

which are screwed into an assembly are not included in this classification.

10 - Unidirectional Insertion: Any unidirectional insertion with a clearance fit. There is

no restriction on the geometric form of the parts so long as the parts are rigid and

the insertion direction is a straight line.

The frequency of occurrence of these operations for a number of automotive

parts and consumer electromechanical products is summarized in Figure 2.1. No

electrical component assembly operations (wiring, switch connection, printer cir-

cuit board component assembly, etc.) were included in this classification. The

operations are listed along the abscissa in order of increasing ease of task com-

pletion for a single armed robot using only very simple tools. A subjective rating

system was used for comparisons.

The simplest operation for a single manipulator is the unidirectional insertion.

operation where parts may be assembled in a straight line fashion and no sensing

other than manipulator position feedback is required. This operation is the most
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prevalent comprising about 36 percent of all assembly operations in the assemblies

studied. The unidirectional insertion operation is similar but slightly more com-

prehensive than the Draper peg-in-hole classification. The 36 percent frequency of

occurrence seems to be in agreement with the 33 percent frequency reported for

peg-in-hole operation in the Draper study. Screwing and Non-standard Screwing

operations comprised about 18 percent of the operations studied. This is a bit less

than the 27 percent reported by the Draper Labs. A significance test showed that

not enough data was taken and too few assemblies were analyzed in either of the

studies to allow meaningful comparisons to be made.

Operations 7 and 10 in Figure 2.1 may usually be accomplished with an unaided

six degree of freedom manipulator. Fewer degrees of freedom may often be sufficient

(e.g. a SCARA robot successfully performs many assembly operations with three

or four degrees of freedom). A robot with a limited rotation wrist can usually

perform screwing operations successfully, but laboriously [153]. Operations 3, 4,

5, 8, and 9 are best performed by a manipulator with the assistance of a special

tool. Although operations 1, 2, and 6 may be accomplished with two or more

manipulators, in many cases they may be performed with less complexity using a

single manipulator and a relatively simple auxiliary device.

2.3 Peg-in-Hole Assembly Failure Modes

The most frequent assembly operation according to the Draper Lab study is the

peg in hole insertion. Both two-dimensional [201] and three-dimensional [38,801

peg-in-hole tasks have been studied in detail. The results from some of the two

dimensional studies are included here. The two-dimensional results approximate

the results for the three-dimensional cylindrical peg-in-hole with small clearances.

The two-dimensional analysis is also accurate for the rectangular peg-in-hole case

when the rotation errors are about one of the bottom edges of the peg. More

complicated interactions between rectangular peg and hole occur with arbitrary

misalignments [38].
Three modes of failure for a peg-in-hole assembly are considered (see Figure 2.2).

Chamfer crossing failure: Initial translational alignment of parts is not within

the range defined by the chamfers.
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\ \

a. b. c.
Chamfer Crossing Jamming Wedging

Failure Failure Failure

Figure 2.2: Failure modes for the peg in hole assembly. a. Initial translational
alignment is not within chamfer limits. b. Jamming occurs. c. Wedging occurs.

Jamming failure: The insertion force is not in the proper direction to overcome
the friction during two point contact.

Wedging failure: The initial misalignments and/or coefficient of friction are large
enough such that the forces generated during two point contact will always
equal the applied insertion force. When wedging occurs, often the only way
to proceed with the assembly without damaging the parts is to reverse the
direction of the insertion.

Failure modes involving jamming during one point contact and friction induced
reaction forces during chamfer crossing are not considered here.

The chamfer crossing failure mode may be overcome by increasing the accu-
racy of the part alignment or by increasing the chamfer size of the parts, although

such a part design change may not always be possible. The jamming failure mode
may be overcome by applying a larger insertion force along the hole axis without
proportionally increasing forces in the perpendicular directions. Many mechani-
cal manipulators can apply forces which are much greater than those needed to
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chamfer

Figure 2.3: Parameters for the two-dimensional peg in hole assembly (from [201]).

overcome jamming. The chamfer crossing and wedging failure modes are often the
most constraining and will be used to quantitatively evaluate the performance of
assembly systems.

The criterion for avoiding the above failure modes are derived in [201]. The

criterion for chamfer crossing and wedging are included here (refer to Figure 2.3).

e To cross the chamfer we need

fEol < Lchjamfv e (2.1)

* To avoid wedging we must have

Ioo + scol < -

where
L,

L + Ko/lK,'

(2.2)
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1 is the coefficient of friction and c is the clearance ratio

R-rc= RR
Equations (2.1) and (2.2) give an analytical technique for determining the limits

of the assembly tasks which can be performed by an assembly system based upon

the translational and orientation errors of the system.

2.4 Manipulator Repeatability, Accuracy and Local

Accuracy

In this section, definitions of terms related to the accuracy of a manipulator are

reviewed.

What Should be Measured?

Repeatability and accuracy are each often specified by a single number in the

literature; presumably the maximum value. Since the location of the manipulator

near some specified position can be described as a random vector (see Section 2.7.3),
the specification for these errors should be given as moments (actually sample

statistics) of the probability density of the components of the vector. Since it is

often reasonable to assume that the distribution is approximately Gaussian shaped

and that it is symmetric in all directions, it is sufficient to give just the second

moment to describe the stochastic behavior about the mean. The sample standard

deviation [53] is the metric used in this thesis.

Repeatability and accuracy should be specified for all degrees of freedom. Often

robot specifications from the manufacturer only include translational repeatability.

Robot Repeatability

Robot repeatability is defined to be the capability of the robot to return to a pre-

viously visited location; that is, a particular location where the joint angles were

recorded. The robot may return to this position using any path in the workspace.

Some other definitions of repeatability assume that the manipulator always ap-

proaches from the same direction.
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Repeatability is usually measured by making a number of readings the location

of the manipulator after it has moved to a particular position. An accurate measur-

ing device such as a theodolite [117,203], a set of dial gages [186) or a part position
sensor such as the one described in Chapter 4 is used to take the measurement.

In between measurements, the manipulator should move each of its joints through

a significant fraction of their full range. During an assembly procedure, the robot

might approach a previously specified position using a different path from that

used during the teaching process. It might also execute a different path to contend

with certain part misalignments. Thus, for an accurate repeatability measure, the

test should entail approaches through different paths.

Robot Accuracy

Accuracy is the ability of a manipulator to move to a specified position in its

world coordinate frame. This is a difficult quantity to measure because the actual

location of the world coordinate frame with respect to observable robot frames is

usually not known precisely. A good approximation to the accuracy measurement

may be obtained using a sensing system which can measure the position of the

end effector of the robot with respect to an arbitrary coordinate frame throughout

the workspace. A "best fit" world frame may then be found from data taken over

the entire workspace [182]. An absolute error may then be calculated from this

approximate world frame.

Local Accuracy

Local accuracy is the accuracy of the manipulator within a limited volume with

respect to an arbitrary base coordinate frame. This base frame is often the center of

the specified volume of interest. This specification is more appropriate in a position-

sensor-based assembly system since measurements and corrections are always made

within a small volume about a nominal position. Relatively large inaccuracies

which might occur near the bounds of the workspace do not affect a measurement

of the local accuracy near the center of the workspace.
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Step Task

0. Teach task, calibrate system.

1. Feed and precisely orient part.

2. Acquire part.

3. Move to mating approach position.

4. Mate part.

Table 2.1: Assembly procedure for the a priori suppression method of error elimi-

nation.

2.5 Assembly Procedure Using the A Priori Error

Suppression Method

As an assembly system which relies solely on the precise location of the parts and

the precise motion of the manipulator, the assembly procedure for the a priori

suppression method is deterministic; that is, it is not altered by the state of the

system. Since all of the part locations are precisely known, the job of the manipula-

tor is to go to one of these positions, grasp the part, reposition it over the assembly

and mate it. Table 2.1 gives the assembly procedure for the a priori suppression

technique. The method used to teach the task to the manipulator is usually the

"teach by showing" method. In this teaching method, the operator digitizes robot

positions by positioning the manipulator with a teach box.

Alternatively, an offline programming technique may be used to teach the task

to the robot (see References [29,114] for overviews). In this teaching method,

a model of the workspace is stored in the computer. The assembly sequence is

input by the user and the task is either automatically or manually generated.

A manually generated task usually involves a user interacting with a computer

aided design and graphics system, planning manipulator motions and checking for

interference. Present offline programming systems do not model certain physical

phenomena and do not offer the programmer much assistance with some of the more

important issues in planning the assembly. Since forces between parts, friction, and

dimensional tolerances are not usually modeled, assembly failure modes cannot be

predicted.

Some experimental offline programming systems attempt to model some impor-
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tant physical interactions. Part clearances and tolerances are taken into account

in [34,189] and planning of fine motion with friction is dealt with in [36,115]. Some

authors have dealt with the grasp planning issue [142,164).

In order that the actual assembly environment conform closely to the model,

the elements of the assembly system must be referenced to the world coordinate

frame. This may either be done by accurately jigging the components or by having

the manipulator calibrate their location.

2.6 Assembly Procedure Using the Measurement and
Removal Method

A sensor-driven assembly system relies on a sensing device to determine the location

of certain part features with a precision sufficient for required assembly tasks. A

sketch of such a system is shown in Figure 2.4. The feature sensing occurs just prior

to the part being mated to the assembly. In order to avoid specialized fixturing,

reduce the amount of uncertainty in the position of the mating part, and reduce

user introduced teaching errors, it may be desirable to equip a system with two

part position sensors; one sensor to measure the location of the part in the assembly

and one to measure to position of the part in the robot end effector (in some cases

it may be possible to use a single sensor for both functions).

Manipulator mounted vision sensors have previously been used in an attempt

to locate parts prior to grasping them [4,23]. Because significant part positioning

errors may occur during part grasping, part sensing should occur after the part has

been firmly grasped. A stationary sensor mounting was chosen over a manipulator

mounting for the following reasons.

* The best features to sense are the mating features of parts. If the sensor

were mounted on the manipulator, the mating feature may be difficult to

sense since it will most likely face away from the upper part of the robot

arm.

* With a manipulator mounted sensor there is limited flexibility in part orien-

tation during sensing. Only the joints between the sensor mount and the end

effector are available for reorientation prior to sensing. Additional degrees
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Figure 2.4: Sensor-driven assembly system.

Chapter 2:



§2.6: Assembly Procedure Using the Measurement and Removal Method

of freedom would be required for arbitrary part positioning relative to the

sensor.

* If the measurement is made relative to the world frame rather than to the

robot frame, the positioning of the part in the assembly is less dependent on

the calibration between the sensor and the manipulator. This means that the

manipulator may be moved slightly or substituted with an entirely different

manipulator without having to reteach the assembly task.

2.6.1 Assembly Procedures for Systems Using One and Two

Sensors

The basic assembly system consists of one or two part position sensors, a six degree-

of-freedom mechanical manipulator, an end effector which can firmly grasp all

required parts, and a part orientation and delivery system. It is not required that

the end effector fixture the position of a part, merely secure it so there is no relative

motion between it and the last link of the manipulator. Only approximate part

orientation is required at the feeder. The precision of the feeding-orientation device

depends upon the size of the sensing volume of the part position sensor. If only a

single part position sensor is used, an assembly jig which locates the base part of

the device being assembled is also required.

Table 2.2a lists the steps involved in a typical sensor-driven assembly task with a

single sensor and Table 2.2b describes the procedure for a system with two sensors.

A calibration procedure must first be performed to find the transformation between

each sensor coordinate system and the robot coordinate system.

For the single sensor system, the actual assembly procedure is also preceded

by a teaching session where the user digitizes two nominal manipulator positions:

a position which aligns the part with the assembly and a position in the vicinity

of the active sensor volume. Alignment to the assembly is performed by either
"eyeballing," using gaging instruments, or by guiding the manipulator through

trial-and-error insertions. During teaching, the sensor system records a nominal

feature location with the part positioned at a sensing location. This sensor reading

is used as a baseline reading for subsequent measurements. The baseline reading is

the "correct" sensor reading for the system to assemble the part using the nominal

prograri learned during teaching. During an assembly task, commanded robot
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Step Task

0. Teach task, calibrate system.
1. Feed and grossly orient part.
2. Acquire part.
3. Position to nominal sensor position.
4. Sense part feature.
5. Move to corrected approach position.
6. Mate part using corrected path.

Table 2.2: Assembly procedures for a
Procedure for a single sensor system, b.

Step Task

0. Calibrate both sensors to robot.

ri Sense part feature in assembly.

2. Feed and grossly orient part.

3. Acquire part.

4. Position to nominal sensor position.

5. Sense part feature in end effector.

6. Move to corrected approach position.

7. Mate part using corrected path.

typical sensor-driven assembly tasks.

Procedure for a dual sensor system,

positions are calculated based on differences between a current reading and the

baseline reading. The calculated robot positions create small alterations to the

nominal robot program which cause part misalignments to be nullified.

In the dual sensor system, the task need never be directly taught to the manip-
ulator. When the mating features are sensed by the two sensors, the necessary part
reorientation may be directly calculated from the sensor data and the sensor-robot

calibration.

For a system with a single part position sensor, the assembly procedure starts

with the robot acquiring the part and bringing it to the sensing position. The sensor
takes a reading and while the computer is processing the image, the manipulator is

free to transfer the part to the vicinity of the assembly. After processing the sensed

information, the computer calculates the transformation from the sensed feature

position to the previously recorded feature position. The robot is then instructed

to execute the transformation which reorients the part for assembly.

In a system with two part position sensors, the part in the assembly is sensed

in the first step. Depending upon the cycle time and the processing time, it may

be possible to use a single set of image processing hardware for both images.

2.6.2 Coordinate Frame Definitions

The following are abbreviations used to specify the location of a particular coor-

dinate frame of the assembly system (Figure 2.4 shows the approximate location
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of these frames). The convention for representing rigid transformations is given in

Section 2.7.2.

W: The world frame. This is the worid coordinate frame of the robot.

WA: This is the apparent world frame as defined by the robot's axes near the assembly position.

R: The robot coordinate framen. This is the frame associated with the robot grippers.

A: The assembly frame. This is the frame associated with the mating part in the assembly. It is

assumed to be fixed with resp to the world frame.

AA: The assembly approach frame. This is the frame associated with the position just above the

mating part. It is typically associated with the position of the robot when it is holding the

part just over the assembly.

S: The sensor frame. This frame is associated with the image plane of the sensor camera. It is

fixed with respect to the world frame. It also refers to the robot location in the vicinity of

the active sensor volume.

P: The part frame. This is fixed to the part and is located at the feature to be sensed.

2.6.3 Correcting Sensed Misalignments

The system's knowledge of the required task is derived from the teaching phase.

Deviations in part position from those defined during the teaching phase must be

compensated by altering the robot's path. In this section, the transformation which

aligns the part to the mating part is calculated.

The position of the sensed part feature with respect to the gripper frame is (see

Figure 2.5)
RTp = TR ST lib -1 STp, (2.3)

where STaLib is the calibrated transformation from the sensor frame to the world

frame, STp, is the part feature position with respect to the sensor and TR, is the

robot position while sensing is taking place. The robot position which will move

the part back to the nominal sensing position, STytach is

T-1 _ STcaib -1 STteach RT-1
R = ,corr W P S P

STc clib -,,1 ST libTR, (2.4)
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Figure 2.5: Calculation of the robot to part transformation.

where

TPa .tearh = STLh S T

and sTeCh is the nominal feature position with respect to the sensor during teach--Ps
ing.

When the robot "shows" the part to the sensor during the execution of a task,

it moves to the same sensing position ais the one during the teaching phase (Tas -=

Ttach). Thus, the corrected robot position near the assembly approach position is
Rs J

TnAA TtIach T, 1RiS.A A I.-,'t~

- tac T 'jv1 Tr""b 'STPG, 'qCS~TrcILib T tech (2.5)

where Teh is the comnunand transform from the sensing position to the assembly

approach position during the teaching session. Equation (2.5) gives the corrected

assembly approach position as a function of the deviation of the location of the

part from the taught position.



2.7 Classification and Analysis of Errors

In this section methods for predicting the errors in an assembly system are pre-

sented in order to determine the specifications for a part position sensor. First a

calculus for manipulating position errors is discussed, then errors from propagation

of uncertainties in initial part positioning, robot motion commands, internal kine-

matic models, sensor readings, and sensor-frame to manipulator-frame calibration

are explored.

2.7.1 Assumptions

In order to simplify the analysis we make the following assumptions.

* Robot position is specified to (not read from) joint encoders whenever possi-

ble. This avoids doubling the robot repeatability error.

* All errors are small and Gaussian (where applicable).

* Inaccuracies in the robot's internal kinematic model (differences between

commanded and actual motion) may be accurately modeled by a transfor-

mation error (small rigid rotation and displacement) in its world coordinate

frame and a finite robot repeatability.

A robot independent representation is used and exact kinematics are not modeled;

thus, only approximate dependencies may be examined with this error model. The

magnitudes of position errors as a function of the position of the three joints of a

spherical wrist are analyzed in Appendix D.

2.7.2 Representation of Rigid Transformations

Homogeneous transformation matrices (4 x 4 matrices - see [1471) are used to

represent rigid transformations and are denoted by the boldface letter T. The

subscript denotes the object that the transform refers to. The second level of

subscript signifies the start and end region specified by the transform. The optional

left superscript denotes the reference frame in which the transform is defined. This

superscript defaults to the world frame (W). For example, the transformation of a
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Figure 2.6: Graphical representation of a rigid transformation. The transformation

shown, TA,B, is from frame A (six coordinates) to frame B. The extra line from

the world frame to the transformation indicates that the transformation is specified

with respect to this frame.

part from the sensing position to the assembly approach position with respect to

the sensor frame is STpsA.-

A rigid transformation may also be thought of as a vector in six space start-

ing at a set of initial coordinates (3 translations and 3 rotations) and ending at a

set of final coordinates. We may graphically represent a rigid transformation in a

three-dimensional subspace (say the space defined by the translation coordinates

z, y, and z) projected into two-dimensions. This is a transformation graph. In

order to differentiate between a transformation and a 3-vector, the transformation

is drawn as a double arrow (see Figtire 2.6). An extra line extends from some point

in the subspace to the transformation which indicates the frame from which the

transformation is specified. If the transformation is defined in the frame associ-

ated with the starting coordinates, the extra line need not be drawn. A certain

transformation may be found from a transformation graph by tracing through the

graph. Tracing backwards over a transformation means that the inverse of the

transformation should be used; thus, the transformation from B to A in the graph

in Figure 2.6 is T-1D.
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2.7.3 Representation of Errors

Errors in a transformation are composed of a displacement error and a rotation

error, each having a magnitude and a direction: thus. we can represent each of

them them as a random vector1

An element of the displacement error vector, i, is just the cartesian error (distance

from the origin) times the appropriate direction cosine of the unit vector pointing

in the direction of the error. An element of the rotation error vrector, &, is the

total rotation error angle times the appropriate direction cosine of the unit vector

pointing in the direction of the axis of rotation.

We now define a random transformation matrix, AT, as the homogeneous trans-

formation matrix which is associated with a random displacement error, Z, and a

random rotation error, &. This transformation is a function of a vector of six

variables

The statistics of the random transformation matrix are governed by the six dimen-

sional joint probability density function (PDF) p6.(bTo). This density function

gives the distribution of probability for the components of the rotation and dis-

placement error vectors. A sample joint three-dimensional PDF is sketched in

Figure 2.7. The density of the "cloud" represents the probability density. In gen-

eral the joint PDF's for transformation errors have a zero mean (the expected value

for the error vector is E[bT = [0 0 0 0 0 0 ]T).

2.7.4 Combining Errors From Independent Sources

The PDF of a random transformation error which is the sum of N independent

random transformation errors

6Y = +Yi + .. .+ b TN
'A random vector is a one dimensional matrix of random variables. It is denoted by a ' over a

symbol.
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a-* - I

I
Figure 2.7: Three dimensional probability density function.

may be found by convolving the component PDF's [53]

P6r (6To) = P,&, (6T1,o) 0 p.2T(6T2, 0) ®.. ® Pp, (6TN,o) (2.6)
where ® is the convolution operator. Figure 2.8 shows a sketch of the result of

convolving two independent planar displacement error PDF's.

Simplifications for Axisymetric Probability Density Functions

If the component PDF's are symmetric in ec, E,, and e, and also symmetric in

ax, ac and a,, then rigidly transformed PDF's are identical to the untransformed

PDF's (see Section 2.7.7).

Transformation of Errors in Different Reference Frames

In order to combine their PDF's, all transformation errors must be specified in the

same coordinate system. If the errors are specified in different coordinate systems,

the PDF's must undergo a coordinate transformation to bring them to a base

coordinate system. For the case of N error transformations each specified in a

different frame, 71,.. , N

'6Th1, 6T 2, *..., * N6TN

we must first transform them to the same frame to obtain

6T- = 7 I6T1 + •6T 2 +--.. + 6'tTN (2.7)

__ __ __
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Figure 2.8: Result of convolving two two-dimensional probability density functions.

before convolving their PDF's. If, however, the PDF's are symmetric, the errors
may be combined without transforming to the same coordinate system

6- 7 ',6T +Y76T 2+ + N6Tnr. (2.8)

Gaussian Distributed Errors

If the PDF's of components of a sum of transformation error matrices are Gaussian;

that is, of the form

1 1 -T
pA&(b To)= exp[-- 6To P-'6Toj,

(27r) 3 P12 2

where P is the covariance matrix (diagonal for symmetric PDF's) defined by

E[bTo6TTo,

where E is the expectation operator, then the result of the convolution of N PDF's

is a PDF which is also Gaussian. The width (standard.deviation) of each dimen-

sion of the resulting Gaussian is the square root of the corresponding diagonal

63Class IQSification and Analysis of Errors
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component of P or
N

j=1

where the index i is taken over the six dimensions of 6/T and ai,- is the width in

the ith dimension of the PDF of the jth transform error.

2.7.5 Random Transformations

A random transformation, AT, is a homogeneous 4 x 4 matrix whose rotation

and translation components are random variables (Section 4.1). It describes the

difference between a coordinate frame with uncertainty, TA, and its mean, TA,

TA = ATA (2.9)

Aside from having random variable components, this description is slightly

different from the differential transformation, A, described in Paul [147]. The

relationship between a random transformation, AT, and Paul's differential trans-

formation, A, is

A= AT-I

where I is the identity transform. The two representations have similar proper-
ties and many of the relationships derived in [147] are used here. The random
transformation representation was chosen over the differential transformation rep-
resentation because random transformations are homogeneous matrices and may
be manipulated in the same manner as deterministic transformations.

2.7.6 Relative Random Transformations

A random transformation may describe the difference between a transformation

and its mean in the global coordinate system as well as in a local coordinate system

TA = TA AAT (2.10)

where AAT is relative to frame TiA.

The relationship between the relative random transformation and the global
random transformation may be found by equating Equations (2.9) and (2.10)

AAT = T-I(AT)T A (2.11)
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This is a coordinate transformation of the random transformation from the world

frame to the frame A. If we assume the mean transformation is of the form

TA 0 0 0 1

where h, b, and & are unit vectors in the respective local x, y, and z directions and

d is the vector from the origin of the world frame to the origin of the frame TA,

then the vector components of the relative random transformation with respect to

the global components are (follows from Paul's derivation [147])

A .& (2.12)

a-&

n ((x d) )
o x ((&d)±+) (2.13)

Alternatively, if we describe the transformation, TA, as a rotation by an angle,

O, about an axis, k, then a translation by a vector d then the rotation vector

corresponding to the relative random matrix, AAT is

A& = k(k- &) + sin(0)(k x &) + cos(0)[& - k(k. )] (2.14)

Thus the magnitude of the rotation error is the same but the direction of the

original rotation error axis, , has been rotated about the k axis by an angle 0.

The displacement component of AT in vector form is

A = k(k ) + sin(0)[kx ] + cos()[ - k(k -)J + (2.15)

(a -k)(d x k) + sin(0)[k(d -a) - &(d. k)) + cos(0)[d x (a - (A . k)k)i.
The first line of the above expression is the contribution of displacement error

vector, i, after being rotated. The second line is the displacement due to the

rotational uncertainty, &, of the commanded coordinate frame.

Unlike the rotation error, the magnitude of the displacement error is a function

of the direction of the frame TA. The contribution from Aj is a displacement of the

same magnitude as Z but rotated about axis k by the angle -0. The contribution

from & depends upon the relative directions between &, k, and d. Thus, the

magnitude of the displacement error of the relative transformation is function of

the location of the original frame, TA.
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2.7.7 Identification of Sources of Error

Position errors in assembly systems are usually generated from sources in differ-

ent locations in the workspace. The following sections analyze some manipulator

dependent errors.

Errors due to Transformations of Frames with Uncertainty

Assume that a coordinate frame, TA has an error associated with it

TA = TAATA, (2.16)

where TkA is the mean (deterministic) frame and AATA is the homogeneous trans-

formation matrix (probabilistic) describing the transformation of the actual with

respect to the mean frame. AATA has a zero rotation and displacement mean (the

expected value of the associated vector is [0 0 0 0 0 0 ]T). Post multiplication

implies that the transformation is carried out with respect to the mean frame, TA.

We are interested in investigating the positional error after the frame TA has

undergone the commanded transformation Ti (deterministic). The final position

is

TF = TCTA

= TCTAAATA. (2.17)

The final mean position is

TF = TCTA. (2.18)

The error in the final position with respect to the mean final position is [from

Equations (2.17) and (2.18)]

FATF = TF1TF

= ATA (2.19)

Thus, the magnitude of the relative error is insensitive to rigid transformations;

however, the direction of the error vectors change with respect to the world frame

(since each of the probabilistic error matrices are relative to the nominal transfor-

mation). Symmetric PDF's remain invariant through rigid transformations.
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Errors Due to Moving Through Transformations with Uncertainty

Here we assume that the commanded transformation, Tc, is in error

T- -- Tc .cATr. (2.20)

where Tc· is the mean (deterministic) transformation and CATc is the relative
homogeneous transformation matrix (probabilistic) describing the transformation

of the actual with respect to the mean commanded transformation. The final
position of frame TA after undergoing transformation Tc is

TF TcTA

= ticCATcTA. (2.21)

The error in the final position with respect to the mean final position is

FATF = TF1TF

= T'CATcA. (2.22)

This is just a coordinate transformation through the transformation TA. This

makes sense since Equation (2.20) may be thought of as an error defined in the
world frame, ATA = CATc, which is associated with the initial frame TA.

Errors Due to Moving in a World Frame with Uncertainty

In this case we assume the world coordinate frame is in error. Errors in robot

motion due to the robot's internal kinematic model may be modeled by errors in
the world frame (see Figure 2.9).

Tw, = twWATw,

or

WATw = "TwTw,  (2.23)

where Tw is base world frame and Tw, is frame about which commands are exe-

cuted and WATw is the relative transformation between the two. We have assumed

that errors in the robot's internal kinematic model may be modeled as errors in

the world frame. The desired final position, T"F, of a frame, TA, after undergoing

transformation T.c is

tF = TCTA (2.24)
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Figure 2.9: Errors in part positions due to manipulator errors may be equivalently

represented by errors in the location of the world frame.

We are interested in errors due to the commanded transformation, Tc, being exe-

cuted in frame Tw, rather than in frame Tw. First we find the location of frame

TA with respect to the W' coordinate frame as

W'TA = WAT-,IT. A  (2.25)

The final position after undergoing transformation Tc in the W' coordinate frame

is

W'Tp = iCW'TA

= Tc TCWTWA

(2.26)
The final position in the W coordinate frame is

T = WATw cAT•l A* (2.27)

The error in the final position with respect to the W frame is

ATP r = 'Tp

__ __ __

I
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This equation is essentially a nested form of Equation (2.22). The expression in the

square brackets is of the same form of Equation (2.22) and generates a relatively

small' transformation matrix when WATw is small. Postmultiplying this matrix

by WATw, gives another small transformation matrix

WAT-w = [T' WATwc LAT' .

The equation then takes the form TLlWAT'WtA which is of the same form as

Equation (2.22).

We now investigate errors which are deviations of a final position from a taught

position rather than from an absolute position. In a position-sensor-driven as-

sembly system, TA might be the position of the manipulator during the sensing

phase and Tc might be the commanded transformation which brings the parts into

alignment. Thus, Tc would vary depending on the part position in the grippers.

Still assuming a world coordinate frame with uncertainty, the final position

during the teaching phase is [from Equation (2.27)]

te °ach = WATW • teach •• T A•* (2.29)

The final position during an assembly operation after sensing and calculating the

corrected command transform is identically Equation (2.27) where Tc is now the

commanded transformation based on the sensed data. The difference between the

taught final position and the actual final position is

ATF = ATeaCh-ITF
= AWATwTcWATw'I A, (2.30)

where
Tcdh = Tt ac -IT -1rc.

The deviations from the taught positions are a function of errors in the world

frame only if the commanded transformation, Tc, is different from the commanded

2A small transformation matrix is the identity transformation rotated by a small angle and

shifted by a small displacement.
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transformation during teaching, Tac"h. The effect of Equation (2.30) is to rotate

the errors in W•ATw by the correction angle contained in Tc,.ff, and depending

upon the magnitude of the correction, the resulting error may be quite small.

In other words, if the part misalignments between the teaching phase and the

measurement phase is relatively small, the accuracy in part positioning is insensitive

to errors in the robot kinematic model.

If we assume that both the world frame uncertainty, WATw, and the difference

on commands, Tc,,ff, are random transformation matrices, we may obtain a PDF

for the vector associated with the resulting final position error, ATF.

The difference in the commanded transformation, Tcdif , in an assembly system

(such as the one described in Section 6.6) is due to the part being in a different

position in the gripper than the original position during teaching. We assume that

this change in position is small (small angle approximations are valid) and the

rotation associated with Tc,,,, is described by a vector b; that is, the angle of

rotation is u10 and the axis of rotation is !. For 101 small, the difference between

a vector £ and the rotation of z by 0 is approximately 0 x X. We assume the

displacement errors in WATw are described by a random vector, Z, the rotation by

a random vector, &, and the displacement component of TA is d (deterministic).

We also assume that the PDF's for 6, &, and Z are symmetric Gaussians with

characteristic widths oq, a, and a, respectively. It is helpful to note that the

one dimensional marginal PDF for any component of a multi-variate Gaussian is

Gaussian as well.

We are presently interested only in the errors from the uncertainty in the world

frame, WATw. In Equation (2.30), the start frame, TA, is rotated by the negative

(the inverse rotation) of the rotation error vector, -&, then by the difference in

part orientation, 0, then by the rotation error, &. When all rotations are small,

the resultant rotation error is

&F = 0 x & (2.31)

or
20a3 - 03a2

&F = O3a- 01 a3  (2.32)

1 01a2 - 02a0

where Oi, i and ai correspond to the i'h component of 0, and & respectively. The

total displacement from the last two matrices in Equation (2.30) is Z + d+ (& x d).
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The final displacement error in Equation (2.30) due to the contributions of WATw

(terms with & and i only) is

ZF = B [i + ( x d) . (2.33)

or
02 (E3 + aid2 - a2 di) - 03 (E2  au3 dI - aid3 )

F = 03 (Ef + a 2d3 - a 3 d2) - 01(e3 + aid2 - aZdI) (2.34)

01(EZ 2 + a3 dI - aids) - 02(f1 + a2d3 - C3 d2)a

The PDF's of the components of 0, & and Z are the marginal PDF's of uncoupled

multivariate Gaussians which are independent Gaussian distributions. A number

of terms in Equations (2.32) and (2.34) are products of two random variables. The

PDF of the product of two Gaussian distributed independent random variables is a

modified Bessel function of the second kind, order 0 (see Appendix E). Convolving

a number of these Bessel functions gives a distribution which may be approximated

by a Gaussian (central limit theorem [53]). We make the assumption that the re-

sulting distributions of Equations (2.32) and (2.34) are Gaussians with covariance

matrices E(&Fp T ) and E(F TF) respectively. Since we have assumed all of the orig-

inal distributions are symmetric and independent, the vectors of diagonal elements

of the covariance matrices are

2a0 o

= 2a 2 (2.35)

and
of ref2u + (2dl + d + d3j)]
ao[2ao + (di + 2d 2 + dJoa] . (2.36)

lo [2oF + (d + d 2 + 2d )o] J

2.8 Errors in the A Priori Error Suppression Method

The sources of error which contribute to the misalignment of the parts include

* Positioning accuracy of the assembly jig.

* Inaccuracies in gripper constraint. These may be due to clearances between

the gripper interface and the part, slop in the gripper mechanism, etc.
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* Tolerance and clearance buildup in the parts already assembled.

* Robot repeatability.

* Teaching errors.

In an assembly system based on the a priori suppression method of error re-

moval, parts are initially constrained in jigs. The locations of the jigs, and therefore

the parts themselves, are referenced to some global frame in the assembly system.

The positional uncertainty for parts constrained in jigs depends on the geometry

of the parts and the method of constraint used by the jigs. To properly constrain

parts with varying dimensions, the clearance between the parts and the jigs must

be greater than the tolerances between the interfacing surfaces of the part. The

clearances must also be large enough so that the parts do not jam during removal.

Whether or not a part jams depends on the manner in which it is gripped as well

as the jig clearances.

The function of the manipulator is to reposition the parts to an assembled

position. In so doing it must retain the accurate position information provided

by the part constraint system while altering the part positions. Part grasping

is a critical phase where relatively large uncertainties in part location may be

introduced. Uncertainties may be minimized by either fixturing parts in specially

formed grippers or by maintaining the positional accuracy provided by the part

jigs.

Experiments with the system described in Chapter 5 showed that it is difficult

to maintain the accurate location of certain parts without using grippers which

constrain the part's position. The act of grasping a part tends to displace the part

slightly and cause it to apply a force to the constraining jig. Due to finite system

compliance, once the part is free from the jig, this force may sometimes displace the

part significantly. The displacement was found to be above the acceptable bounds

for some of the assembly operations. A gripper which conforms to the shape of

parts (self-conforming gripper) would maintain the position of the part without

imparting unnecessary forces.

The part positioning accuracy of a system which constrains the location of a

part in the grippers is somewhat decoupled from the accuracy of part fixturing

provided by the part jigs. As long as the part jigs deliver the parts within a certain
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range, the parts will be reoriented by the grippers, although the constraint might

not be in all degrees of freedom.

Other contributing errors are not discussed here. Errors from tolerance stackup
and clearance buildup are presented in References [34,1891 and robot repeatability

and teaching errors are discussed in Section 2.10.

2.9 Errors in the Measurement and Removal Method

This section discusses errors which are generated in a system using a single part

position sensor. All references to an assembly procedure refer to the task described

in Table 2.2a.

2.9.1 Error Sources

We model the errors in aligning a part with its mating part as being from five

major sources.

teaching robot positioning robot kinematics robot-sensor align. calculated transform
S- Tteach -+
PATPA.A PAA.A TTRAA +•6 Tfr. shift robot+ b fr. shift sensor - 6 Tcommand

(2.37)

Errors not being considered in this analysis are those associated with the part

model inaccuracies and out of tolerance parts, non-orthogonal coordinate systems,

stackup of part tolerances and clearances and certain robot positioning errors.

Table 2.3 shows the errors which occur during the calibration and teaching

phase (step 0). and Table 2.4 shows the pertinent errors which occur during the

task execution phase (steps 1 through 6).

2.10 Errors in a Typical Assembly Task

This section describes a hypothetical peg-in-hole assembly task which is performed

using the measurement and removal method. Requirements for a part position

sensor which can reliably perform the task in conjunction with a PUMA manipu-

lator are calculated. Because of the relative sparsity of robot accuracy data in the

literature, some of the values of the errors may not accurately correspond to actual
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Step Variable Description

0 "Tw Error due to the calibrated alignment of the sensor

frame and the motion of the robot (world frame).

S6TAA Error in the robot position at the assembly

approach.
- Ttf'Lch.&trRsr~· Error in the robot position at the sensor.

T'6 ' Error in the location of the object by the sensor

in the sensor coord. frame.
- teach

CTtAA Error due to initial alignment of the part and the

assembly. It is due predominantly to user errors.

Table 2.3: Vectors corresponding to transformation errors which occur

calibration and teaching phase.

during the

Step Variable Description

3 6T., Error due to positioning of the robot at the nom-

inal sensing position.

4 -S4p' Error in the location of the object by the sensor

in the sensor coord. frame.

5 bT&AA Error due to positioning of the robot at the nom-

inal assembly position.
6TRwWA Vector corresponding to transformation of the ap-

parent robot world coordinate system as the robot

moves from a position near the sensor to a posi-

tion near the assembly. This is due primarily to

inaccuracies of the robot's internal model of its

kinematics.

Table 2.4: Vectors corresponding to transformation errors which occur during the
task execution phase.

_ _
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values for certain tasks or particular robots. Most of the numbers mentioned in

the following sections are standard deviations not maximum values.

The task consists of the insertion of a 1.75 inch (44.5 mm) square cross-section

aluminum peg into a steel hole with .004 inches (.1 mm) clearance on each side

(clearance ratio is c , .0025). The hypothetical peg has small chamfers (about .02

inches or about .5 mmrn) and the hole is chamferless. The task corresponds to one

of the demonstration tasks in Section 6.6.1.

Analysis of the Task

In order to successfully complete the task, both the non-wedging criterion, Equa-

tion (2.2), and the chamfer bound criterion, Equation (2.1), have to be satisfied.

We assume that the center of rotational compliance is 10 inches (254 mm) from

the tip of the peg (Lg = 10 inches) and that the displacements from the trans-

lational and rotational compliances are about the same. ( -- L2). With these

assumptions, the criterion for successful task completion is

00 + < - (2.38)
2L9 t

and

E0 I < Lchamfer. (2.39)

where E0 is the initial translational misalignment perpendicular to the insertion

direction, 0o is the initial angular misalignment, and Lehamfle is the size of the

chamfer.

The coefficient of friction between an aluminum peg and a steel hole is about

0.3 [19]. The wedging constraint becomes

Eo .00250o + co<02
20 .3

Thus for reasonable misalignment errors the wedging criterion is dominated by the

rotational offsets (100o >» ' I) and the chamfer crossing failure criterion depends
on the displacement offsets; thus, the errors decouple and may be investigated

separately.

The maximum allowable displacement error is [from Equation (2.1)] co = ±Lchamfer =

±.02 inches (± .5 mm). The maximum allowable rotational error is [from Equa-

tion (2.2)] Oo = i = ±8.5 milliradians (.5 degrees). If 98.8 percent of the assemblyMa



trials (5 standard deviations) are to be successful, the allowable standard deviations

in errors are
2(.02)

,, 2(.02) = .008 inches (.2 mm)
5

2(8.5)
a 2(, 8- 3.4 milliradians (.2 degrees)

5

Teaching Errors

Teaching errors discussed here are those that the user is directly accountable for.

With a single sensor system, the alignment of the part with its mating part in the
~ teach

assembly, 6TPA.A, is the sole error source. All other errors during teaching are

accounted for in the commanded transform error. It is assumed that the human

operator can specify a position for a low clearance ratio mating operation to within

a standard deviation of .002 inches (.05 mm) in translation and .1 degrees (.0017

radians) in rotation. The values of these numbers will vary depending on what, if

any, measuring tools are used to aid the alignment.

Robot Positioning Error

Only the error in positioning at the assembly approach position is included here;

the robot positioning errors at other locations in the workcell are accounted for in

subsequent sections.

We assume that this error is equal to the robot repeatability (other local in-

accuracies of the manipulator are taken into account in the kinematics error).

Repeatability is the error associated with the robot moving to a position associ-

ated with a certain set of joint angles. It is usually measured by having the robot

move to random positions in between measurements at the position of interest.

Repeatability of the PUMA robot was investigated by Lozinski (117] and Whit-

ney, Lozinski and Rourke [203]. Maximum values rather than statistical data was

presented; therefore, the repeatability standard deviation is estimated to be i of
the reported value, .. 004 = .001 inches (.025 mm). No information was found on

orientation repeatability in the literature.

The repeatability of a PUMA robot was measured with the prototype sensor.

The errors were of the same order as the sensitivity of the sensor so accurate

readings could not be made. The readings obtained may, however, be used as a
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maximum bound for the standard deviation repeatability of the manipulator; they

were .001 inches (.025 mm) translation and .06 degrees (.001 radians) in rotation

(see Section 6.5).

Robot Kinematics Error

A robot does not move precisely in its workspace because of an imprecise model of

its link and joint parameters, finite position encoder accuracies, structural defor-

mations, transmission errors, etc (see [117,203] for a discussion). We assume that

errors from all of these sources may be modeled by an error in the location of the

world frame. A manipulator will execute a given transformation with respect to a

slightly different world frame as certain conditions change. If it were to execute the

transformation with respect to a single world frame, it would have infinite accuracy.

This error taken over a small region and combined with the robot repeatability is

a measure of the local accuracy of the robot.

Here we consider errors which are generated from inaccuracies in the location

of the world frame and deviations from a nominal taught path. The orientation

error is given by Equation (2.35) and the translation error by Equation (2.36). We

assume that the location of the part (measured location) from the nominal location

(taught location) is described by a symmetric Gaussian of width 1.5 degrees (.024

radians) in rotation, and the PDF for the error in the robot's world coordinate

frame has width .05 inches (1.3 mm) in translation and .5 degrees (.008 radians)

in rotation. In addition, we assume that the starting coordinate of the robot is at

position d = [12 12 - 12 ]T inches ([305 305 - 305 ]T mm). From Equations (2.35)

and (2.36) the standard deviation of the final error in each direction is

ac,...,,,,..• /2(.024)2(.008)2 = .0005 radians (.015 degrees)

in rotation and

Ekiaats,.... .0242[2(.05)2 + 4(12)2(.008)2] = .005 inches (.12 mm)

in displacement.

Sensor-Robot Coordinate Alignment Error

Errors in robot motion due to a coordinate frame misalignment with the sensor

may be modeled with the same equations as the robot kinematics error. In this
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case, the error in the world frame is due to the misalignment between the sensor

and the robot frames with the error specified near the sensed part feature (d ; 0).

The error is assumed to be .05 inches (1.3 mm) in displacement and 2 degrees (.032

radians) rotation.

mrl .,.... ,,-,,l, 2 2(.024)2(.032)2 = .001 radians (.06 degrees)

ae..,.... ,,,,, a V2(.024)2(.05)2 = .0017 inches (.043 mm)

Thus, the total error is fairly small even with a relatively large sensor-robot mis-

alignment.

Errors in the Commanded Transformation

The errors not yet accounted for include: the sensor measurement error (SSTp.),
STteach

the sensor measurement error during teaching (s6T ), the robot repeatability in

positioning the part at the sensor (bTR,), and the robot repeatability in positioning
- teach

the part at the sensor during teaching (bTR." ). The errors which occur during

teaching become embedded in the nominal transform which moves the part from

the sensor position to the assembly approach position. After a number of executions

of the assembly procedure, the commanded transform may be manually corrected

until most of these embedded repeatable errors are nullified; thus, they were not

included in the error budget. The only remaining errors are S•~Tp and 6TR.. The

robot repeatability is assumed to be .001 inches (.003 mm) in translation and .06

degrees (.001 radians) in rotation; thus, the error due to the calculated command

transformation is
o, =/sO2 + .0012

•"mmnanr d P.

a n - /s2 + .062
1tommand atp.

Total Errors in an Example Assembly System

Quantitative values for the five error sources in Equation (2.37) are

o•, = .008 = .0022 + .0012 + .0052 + .00172 + .0012 + s inches (2.40)

in translation and

ap, = .2 = V.12 + .062 + .0152 + .062 + .062 + Sao2 degrees.
• r• aPsq

78

(2.41)
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in rotation. Thus, the allowable standard deviations in measurement accuracy for

the sensor for the hypothetical peg-in-hole task are

",,, = .0055 inches (.14 mm)

sa,,, = .14 degrees (.0025 radians)
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Part Position Sensing for

Assembly
Chapter 3

3.1 Literature Review on Vision Based Part Sensing

3.1.1 Ranging Systems

Identification and three-dimensional position measurement of objects require a

sensing system which can detect points or features on the object's surface. Contact

or non-contact sensing techniques may be used to acquire surface position data.

Non-contact systems are generally faster, more versatile and higher resolution than

contact systems. Vision based systems are usually highly flexible and have high

resolution, but are sometimes slow. Jarvis [99] presents an overview of various

ranging techniques including light stripe systems, texture gradients, range from

focusing, stereo disparity, range from motion, moire fringe contours, single spot

triangulation, and time of flight measurements. Joseph and Hansel [23] also give

an overview, but it is predominantly a concise version of Jarvis's article. Benton

and Scarborogh [23] describe some commercially available systems. Techniques for

obtaining depth information not cited in the aforementioned literature include an

optical proximity sensor [100], projection of regular patterns [184], focusing a ring

pattern [102), and a technique which servos the light source on a positionable sen-

sor [12]. A discussion of some systems which use the light stripe ranging technique
follows.

The "light stripe" technique for obtaining three dimensional measurements of
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points on surfaces of objects uses a planar light source projected across the scene.

The light source is usually either a white light projected through a slit or a thin laser
dispersed in one direction through a cylindrical lens. The scene is usually sensed
with a video camera. Three-dimensional coordinates may be calculated for each

illuminated point in the image (see Section 4.2.2 for a more detailed description).
Shirai and Suwa [175] scanned a light stripe across a scene containing polyhedral

objects. They segmented the planar surfaces by detecting discontinuities in image

stripe slope and spacing. Planes were then fitted to the points from lines in a

group. Agin and Binford [51 fit data generated from multiple images of a scanned

light stripe to generalized cylinders. Their technique only worked well on parts of

objects which were close in structure to a generalized cylinder. Popplestone, Brown,

Ambler and Crawford [154] were able to construct models of objects composed of

planar and cylindrical surfaces from light stripe data. They clustered segments of

the light stripes and attempted to fit planes or cylinders to each cluster.

A sensor system developed at the National Bureau of Standards [71 used two

parallel light planes and a point source of light. Two images are taken. The first,

using the planar sources, is used to get range, pitch and yaw information. The

second, using just the point source, obtains position information perpendicular to

the optical axis and roll information. Because only two planes were used in the

NBS sensor, there was usually no confusion about which source a line in the image

corresponded to. In general, however, multiple planar sources can create stripe

to source correspondence problems [162]. By using multiple cameras, Echigo and

Yachida [56] solved the multiple stripe identification problem.

Cain [37] uses curve matching to inspect a motor end bell and a plastic bottle

from light stripe data. He is able to filter out spurious reflections by checking that

the direction of the ray from the source to the illuminated points in adjacent line

segments are consistent. Other references which use a light stripe ranging system

for object recognition or inspection include "4,23,129,130,155,156,183,195,198,209).

This type of ranging system has also been extensively used for robotic welding (see

[3] for a reference list).

Accuracies in locating three dimensional features using these light stripe sys-

tems were usually not presented. Since little attention appeared to be given to

precise calibration, it is likely that the accuracies of these techniques were poor

with respect to the requirements for a vision-driven precision-assembly task (Sec-
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tion 3.4 discusses these requirements).

3.1.2 Model Based Object Recognition and Position Determination

Overviews of model based vision systems for identification and location of two and

three dimensional parts in a scene are given in 24.44,45L. A model based system

assumes a priori models of objects potentially in a scene. The goal is usually

to identify the objects and determine their position through matching with the
models.

Ikeuchi et al. [951 used a photometric stereo technique [206,931 to determine

the orientation of objects of known shapes and known surface properties stacked

in a pile. A needle map (surface normals plotted over the image) of the scene

was formed and used to segment the scene into regions corresponding to different

objects. The Extended Gaussian Image (EGI) [17,93,1771 was then used to deter-

mine the orientation of a selected object. An EGI is essentially a mapping of all

the surface normals of an object onto the surface of a sphere. After determining

the object's orientation, a grasp point for the object was chosen and a manipulator

was instructed to pick the object out of the pile. Brou [35] also used the EGI to

determine the pose of objects whose surface normals were calculated from data

points generated from a laser ranging system.

Oshima and Shirai [145,173,174] use a region growing algorithm on range data

to construct planar and quadric surface patches corresponding to surfaces of objects

in the scene. A kernel region from the scene is used to search possible models for a

correspondence (data driven search). Once found, regions surrounding the kernel

region in the candidate models are used to search through the scene for additional

matches (model driven search) until enough regions of a particular object are found.

This procedure is repeated for each object in the scene. Oshima et al. also report

using two other techniques: a photometric stereo-EGI technique for certain shaped

parts , and a polarimetric technique f106] for somewhat specular objects.

Faugeras et al. at INRIA 158,59,601 have developed a system which represents,

recognizes, and finds the position of three-dimensional objects from range data.

Objects are modeled by points, lines, planes. and quadric surfaces. They use a

hypothesize-and-test algorithm for determining the relative position of a sensed

object to a model. A rigidity constraint is used to help determine an initial hy-

pothesis. They have developed techniques for finding the best-fit rotation and
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translation which, although computationally efficient, fail to take into account the
relative measurement accuracy of each of the scene normal vectors.

Horaud and Bolles [91,281 have developed a three-dimensional ature based

system to recognize parts within a jumbled pile. The parts are modeled with

cylindrical and planar surfaces and a list of features is associated with each part

type. Light stripe range data is used to obtain points on the surfaces of the parts.

Edges between surfaces are found and classified as lines or arcs. An edge is matched

to possible model features then additional features in the image are used to guide

a tree search to converge to the proper interpretation. Tomita and Kanade [193)
have developed a similar feature based approach to the matching problem. They
find circular and straight surface bounding edges which are used as the matching

features. An initial match is found by essentially an exhaustive search. They

suggest that after a number of feature matches have been found, the hypothesized

transformation may be more accurately determined by performing a least squares

minimization of the errors between all the matched features.

Lozano-Perez and Grimson [76,77,78,791 use local constraints on geometric fea-

tures to prune an interpretation tree of possible three-dimensional object config-

urations. Earlier work described a similar technique for determining the position

of an object in a plane from sparse tactile data [63]. These techniques need only

sparse scene data; thus, the time needed to acquire three dimensional data from a

ranging system, which can sometimes take tens of minutes, may be substantially

reduced. Their technique is robust to partial occultation and is a possible solution

to the bin picking problem. This technique is very good at finding gross object

positions, but like most of the other systems described in the literature, does not

always produce accurate location information. This sparse range technique may,

however, be used to determine the pose of an object before it is grasped by a ma-

nipulator. Once grasped, the part may be repositioned so that a precise position

measurement may be taken by a sensor such as the one described in this thesis.

The following is a brief description of some other techniques which have been

used to determine the three-dimensional position of objects in a scene. Goad [67]

describes a technique which matches discontinuities in two-dimensional image in-

tensity to features in a part model. A matching hypothesis is formulated and

checked with multiple images from cameras positioned around the part. When a

certain number of edges agree in all views, the hypothesis is assumed to be valid.
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Herman [86] generates three dimensional models from light stripe range data by

finding discontinuities in the data (edges) using Hough transforms, then identifies
vertices and faces along with the edges to complete the model. Hebert and Kanade

[821 also model a part by its edges (they call this representation a 3-D profile). They

discretize the space of possible orientations of the object and precompute occluding

boundaries of a hypothesized image of the object in each of the orientations. In the

recognition phase, they attempt to match the precomputed occluding boundaries

to those in the actual image. The accuracy of the technique is highly dependent

on the fineness of the tessellation of the orientation space. Hough transforms have

been used in a non-feature based approach [18,111,1271. Edge curves, and planar

and quadric faces of objects in a scene may be found directly from the data.

3.1.3 Vision-Sensor-Driven Assembly

Sensor based assembly literature deals almost exclusively with force control and

active and passive compliance techniques (see [202] for an overview); very little

attention has been given to sensing in the alignment phase of an assembly task.

Shirai and Inoue [172] used a video camera mounted on the manipulator to monitor

a peg-in-hole insertion. Part alignment corrections were made as the assembly

progressed. Only two dimensional data was used and the bandwidth of the system

was very slow due to the image processing step. Inoue and Inaba [97] describe

a "hand-eye" system based on binocular stereo which can perform manipulations

with a length of rope. A commercial automated electronic component assembly

system (Automatix Multisert system) uses vision-driven assembly for both surface

mount and through hole components. Benton proposed using a light stripe system

to monitor and correct for errors in the the assembly of microswitch parts [23]. Park

[23] discusses this technique and some problems encountered, including sensing

positions of specular parts. Rutkowski and Benton [23] report on the algorithm

used to determine the pose. They use an iterative algorithm which transforms

imaginary data points in a part model until they align with the sensed data in the

laser stripe scene. Theoretical accuracy of part alignment for their system was .007

inches (.2 mm) and experimental accuracy under ideal conditions was .015 inches

(.4 mm). Experiments on real parts showed errors as much as .033 inches (.8 mm).

Test procedures and statistical results were not given.
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In this section, the question of which type of model fitting algorithm should be

used on raw range data is addressed. One method tries to fit the range data to one

of a number of previous observations of the part while another method tries to fit

an a priori mathematical model to the data.

3.2.1 Introduction

The precision of two techniques for finding the orientation of objects using range

data is investigated. The first method, a fitted boundary interpolation technique,

uses range sensor data recorded during a learning phase from many sensor scans of

a sample part at various precisely controlled positions about a nominal position.

This data is later used as the source for an interpolation routine which estimates

the exact position of a similar part based on data from a single scan. In the second

method, a feature locating technique, an accurate geometric model of the part fea-

tures of interest is used in conjunction with sensed data to calculate the orientation

and position of the part. Results from two-dimensional studies using these tech-

niques produce insight on the performance of the two algorithms in locating actual

three dimensional parts. Performance is evaluated as a function of the number of

data points, and the shape and the orientation of the object producing the data.

3.2.2 Method of Evaluation

The Sensor Model

A generalized three-dimensional range sensor is modeled in two dimensions by a one

dimensional camera array sensing contours (x, y coordinates of "visible" bound-

aries) of a two dimensional object (see Figure 3.1). The effect of discretization due

to the geometry of the sensing array and the finite resolution in range information

is studied. The width of the image and the precision of the range data are both

assumed to be represented by eight bit numbers (256 x 256 array).
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Y

L X I --- Sensor Array

Sensed Boundary - Camera Optics

Quantization i:i:

G ri.d -L-# A:. .l.,Grid+44+- + +i - - 2-D Object
(256 X 256 Pixels) 4i

Figure 3.1: Two diumensional model of a ranging sensor and object

The Fitted Boundary Interpolation Technique

In this method, an interpolation table is created based on data from scans of the

part in a series of known orientations. A curve or surface is fit to the data for each

orientation and parameters describing each curve or surface are stored in a table.

The orientation of a sensed object is found by using newly fitted curve parameters

,as an index into the table and interpolating the object's orientation from the coef-

ficients. For the present study, a straight line is fitted to the surface contour data

and the two element lagrangian interpolation technique (linear two point interpo-

lation) is used to calculate the orientation of the object (usually different from the

orientation of the fitted line) fromi values stored in the table. The dependency of

the algorithm on the density of the entries in the table is shov n in Figure 3.2. As

the density of the table entries increases, the algorithm becomes more accurate.

When the spacing between orientation entries is less than about 10 minutes, (this

corresponds to the outer edge of the image moving about 0.18 pixels from one entry

to the next), the algorithm does not become significantly more accurate. At this

"saturation" point, fitted slopes of almost all permissible pan images have one or

more corresponding entries in the table. When the fitted boundary parameters

correspond to multiple entries in the interpolation table, the mean of the table

values for the identical entries is utilized.
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Figure 3.2: Dependency of the fitted boundary interpolation technique on table

density for the pan image oriented between 5 and 10 degrees.

The Feature Locating Technique

in two-dimensions, relatively straight-line features are identified and used to per-

form matching between a model and the sensed data. For example, for the simu-

lated image of a pan shown in Figure 3.3a, the straight section of the handle may

be used to determine the orientation of the entire image. We will use the results

of Section 4.3 which present the errors in least squares line fitting to evaluate this

technique in the two dimensional case.

3.2.9 Studies

The magnitude of the errors from a sensor with discrete elements is sensitive to

the exact position and orientation of an object's image within the pixel array.

Small changes in image position can have a large effect on the error. Errors were

estimated by calculating samnple standard deviations of randomly oriented images

within sonie orientation range (either a 2.5 or 5 degree range). Sample statistics

fromn 30 trials in each range were calculated and used as bases for conmparisons.

Maximum
Standard Deviation

O
4 8 16 32 64 128 256 512 1024

Number of Tabulated Positions in a 5 Degree Rangs
Fitted Boundary Interpolation

- - - - -
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Figure 3.3: Two dimensional images used to test the accuracy of the part locating
algorithms, a) Pan image. b) Rectangle image. c) Ellipse image

Sensitivity to Image Size

In evaluating the fitted boundary technique, measurements were interpolated from

a table consisting of 6 equally spaced entries from 5 to 10 degrees (1 degree in-

crements). The pan image was used in the evaluation. After the interpolation

table was constructed, the image was oriented precisely in the range from 5 to 10

degrees. Contour data was generated from the sensor model and the resulting dis-

crete image was evaluated to get an estimate of part position. This estimate was

then compared to the actual part position and the difference was recorded. The

length was varied (the aspect ratio is kept constant) and the errors in measured
orientation recorded. Errors in orientation as a function of image length are shown
in Figure 3.4.

The feature locating technique was evaluated as follows. A randomly oriented
image (within a range of 5 to 10 degrees) of a straight line portion of an object
was located by least squares line fitting data from the sensor model. Differences in
orientation between the measured and actual orientation were recorded for different
length edge images. Results are shown in Figure 4.13 in Section 4.3.

Although the results (standard deviations of errors in orientation) from the
fitted boundary interpolation technique appear to be quite inferior to the results
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Figure 3.4: Dependence of the fitted boundary interpolation algorithm on the
length of an image of a pan whose orientation is between 5 and 10 degrees

of the feature locating technique, they are extremely sensitive to the interpolation
table density (see Figure 3.2). In the limit of a fully saturated table, the fitted
boundary interpolation table has explicit values for all feasible disccete images and

gives results of equal or greater accurate thbn the feature locating approach. Vari-
ables which determine the accuracy of the fitted boundary interpolation technique
with sub-saturation table densities are discussed in subsequent sections.

Image Orientation

The accuracy of the fitted boundary interpolation algorithm as a function of image
orientation was investigated. In this test statistics fi'om 30 trials in each 5 degree
range from 0 to 65 degrees were collected. Orientation tables with one degree
increments for both the pan image and the rectangle image were used. Images
of the pan and subsequently of the rectangle were presented to the sensor within
the working range of the table. The results are shown in Figures 3.5, and 3.6.
Errors in orientation for the pan image are larger and -vary more than those for
the rectangle image. The decrease in accuracy with increasing angle as seen in the

I I nn' I
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Figure 3.5:
orientation

Dependency of the fitted boundary interpolation

for an image of a pan

technique with image
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Figure 3.6: Dependency of the fitted boundary interpolation technique with image

orientation for an image of a rectangle
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rectangle is due to the decrease in projected length of the image of the rectangle
and to an increase in the number of discontinuities in the interpolation table as

described later.

The accuracy of the feature locating technique as a function of feature orienta-

tion is the same as the accuracy of the linear least squares technique (see Figure 4.10

in Section 4.3).

The rectangle interpolation table with 1 degree increments was sufficiently fine

to produce errors which were comparable to those of the feature locating (least

squares line fitting) technique while the pan table with 1 degree increments pro-

duced errors 5 to 10 times greater than the feature locating technique.

Image Shapes

The errors in locating an image using the fitted boundary interpolation technique

can change more than an order of magnitude depending upon the shape of the

object. The closer the shape of the object is to a straight line, the better the

performance of the algorithm. This conclusion is supported by the fact that the

method more accurately locates the rectangle than it does the pan (Figures 3.5 and

3.6 and Section 3.2.3). Rectangles and ellipses with large aspect ratios are more

accurately located than similarly shaped images with aspect ratios approaching 1

(Figures 3.7 and 3.8). This shape dependence is due to the number and magnitude

of the discontinuities in the orientation tables. Comparing the number of discon-

tinuities in the table generated for the pan image (aspect ratio , 2 - Figure 3.9)

to the tables for ellipses and rectangles of various aspect ratios (Figures 3.10 and

3.11), we may conclude that the longer and straighter the object, the higher the

accuracy of the fitted boundary technique. Only the first part of the interpo-

lation table (where the table was single valued) was used. Table interpolation of

orientations above about 65 degrees were not performed.

The discontinuities in the interpolation table are an artifact of the discretization

of the image. At certain positions, small rotations of an object may change only

a few pixels states; alternatively, a large number of pixels may change state. If

subsequent small rotations of the object (in the same direction) during the learning

phase of the fitted boundary technique generate very few pixel state changes then

a large number of pixel state changes, a discontinuity in the interpolation table

will result. Since the pixel state changes may happen simultaneously, a very fine
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Figure 3.7: Dependence of the fitted boundary interpolation technique on the as-
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Figure 3.8: Dependence of the fitted boundary interpolation technique on the as-

pect ratio of an elliptical image
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Figure 3.9: Pan image table entries for the fitted boundary interpolation technique
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Figure 3.11: Tables for ellipses of various aspect ratios

interpolation table may also exhibit many discontinuities. Figure 3.12 shows the

quantized outline of an ellipse. A small rotation, 6a, of the ellipse can bring about a

relatively large rotation in the line fitted to the upper boundary of the ellipse due to

the change of state of a number of the pixels on the right and left boundaries. This

change in the fitted line orientation results in a discontinuity in the interpolation
table.

Since the feature locating technique studied herein is only capable of locating

straight line features, it will not be discussed in this section.

3.2.4 Conclusions

* Accuracies of the fitted boundary interpolation technique approach those

of the feature locating technique if the table density approaches saturation.

Some shapes may be located accurately without using a fully saturated ta-

ble. These shapes have relatively smooth (few discontinuities) interpolation

tables.

* Both techniques perform best when the "longest" side of the object is fac-
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A-

Figure 3.12: A small rotation, 6a, in the discretized ellipse can bring about a

relatively large rotation of a line fitted to the upper boundary of the ellipse.

ing the sensor so as to reduce image foreshortening. The feature locating

technique requires objects to have certain features while the fitted boundary
interpolation technique works best with relatively thin, straight objects.

* Extending the number of required elements in an interpolation table for a six

degree of freedom boundary interpolation technique suggests an extremely

large interpolation table and lengthy searching algorithms which may not be

appropriate for a real time industrial environment.

* Although we have assumed no a priori model for the fitted boundary interpo-

lation technique, the location of the example part in the learning phase must

be positionally referenced to a base coordinate frame. This requires defining

some local coordinate frame on the part from which the sensed boundary is

referenced. Thus, the technique cannot be used without constructing some

sort of a priori model; although, the model can be quite simple. The model

needed for the feature locating technique can also be simple since only the

features which are to be sensed need to be modeled.

* Both object locating techniques have limitations. The fitted boundary in-

terpolation technique cannot handle objects with aspect ratios near one and
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§3.3: Assembly Systems Which Use a Part Position Sensor

the feature locating technique requires an object to have easy to sense and

easy to model features. As implemented the fitted boundary interpolation

technique will only work about a nominal orientation where the coefficients

of the fitted contour curves are single valued.

* The two-dimensional feature locating approach may be applied to objects in

three dimensions and still reilxain relatively fast (perhaps a few tenths of a

second) and relatively accurat?,; however, it is currently limited to finding

only fairly simple geometric features.

3.3 Assembly Systems Whic'`. Use a Part Position Sensor

Programmable assembly systems such as the one described in Chapter 5 often

require special tooling. Trading jigs, fixture.s, end effectors, and special part pallets

into and out of the assembly environment produces a less flexible (less able to

handle different products, part shapes, and assembly operations) and less efficient

system. Instead of precisely fixturing parts, a -ensing technique may be used to

localize features of a part. In addition to making the assembly cell more flexible, a

part position sensor can make the assembly operations more reliable. Factors such

as out-of-tolerance parts, slightly out-of-position parts, burrs, and worn fixtures

contribute to the "error budget" for an assembly operation. Most of these error

sources can be eliminated if a part position sensor is used to sense the mating

features of parts just prior to their assembly.

An assembly system which uses part position sensing in lieu of precise fixtures is

shown in Figure 3.13. The system consists of a feeding station which separates and

roughly orients the parts, two part position sensors, a mechanical manipulator,

a series of assembly nests to hold the base parts of assemblies, and "universal"

grippers which can firmly fixture parts of many shapes and sizes. One of the

sensors is positioned under a transparent stage at the end of the feed track. In an

assembly operation, a part is fed to the stage in an approximate orientation and

the manipulator grasps it. As the manipulator lifts the part off the stage, the part

position sensor takes a reading. It need not fully process the reading at this time.

The manipulator then approaches the assembly. By the time the robot is ready

to insert the part, the sensor has processed the measurement and the manipulator

is instructed to reorient the part so that it is aligned with the mating part in the
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Manipulator

Part to be Assembled

Sensor

Figure 3.13: An assembly system which uses part position sensing needs no spe-

cialized fixtures. Parts are taken from a feed track by the manipulator, sensed,

repositioned, then assembled. A part position sensor upline of the assembly sta-

tion determines and records the position of the base parts of the assembly.

98

I



§3.3: Assembly Systems Which Use a Part Position Sensor

assembly nest. A second part position sensor is located upstream of the assembly

station and locates the position of the mating parts in the assembly nest before

they enter the assembly station.

Universal Assembly Jigs

With a part position sensor, there is no requirement that the end effector and

assembly jig geometrically constrain the parts. These elements of the system need

only stably (no slipping) grasp the parts. Clamping mechanisms with resilient,

high friction surfaces can adequately constrain a large variety of parts.

The elimination of gripper and fixture changing during an assembly operation

saves time and costs in assembly operations. An automobile alternator assembly

system developed at the Draper Laboratory spent about 1/3 of its cycle time

performing tool changing operations [43]. Time spent performing any non-assembly

tasks means a lower throughput and, thus, a more expensive system.

Uses for a Part Position Sensor in an Automated Factory

Some uses for a part-feature-based sensing system operating in an automated man-

ufacturing environment are

* Measure and feedback surface positions during machining operations.

* Determine manipulator endpoint positions for a servo position controller.

* Measure part positions during assembly operations.

* Inspect part features.

* Verify proper part positions after assembly operations.

* Provide part orientation information for feeding systems.

* Sense absolute end effector positions for robot calibration.

This thesis will deal mostly with the part position sensor as used in an assembly

environment.
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3.4 Sensor Design Requirements

In an assembly environment, a part position sensor is used to accurately locate

mating part features. The sensor design goals were split into two groups; desirable

attributes for the prototype sensor, and additional attributes for a commercial

sensor.

Prototype Sensor Goals

* Measure to within .0055 inches (.14 mm) in translation and .14 degrees (.0025 radi-

ans) in orientation (see Section 2.10).

* Measure polyhedral part features.

* Complete measurements in less than 5 sec.

* Measure mating features if possible.

* Have a large enough sensing area to allow for initial misalignments of about ±.12

inches (±3 mm) and ±5 degrees (±.01 radians).

Commercial Sensor Design Goals

* Measure commonly found part features.

* Extendable to non-standard features.

* Complete measurements in less than 1 sec.

* Requires little or no manual intervention for sensing different parts.

* Inexpensive.

* Relatively small and light.

* Easy to calibrate.

* Safe.

* Reliable.

* Works well in an industrial environment.
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3.5 Choosing a Part Position Sensing Technique

A good design for a part position sensing system will be a system which can

precisely digitize and represent geometric information from the three dimensional

world in a digital computer. Vision based technologies currently used to extract

three dimensional information about objects include photometric stereo, binocu-

lar stereo, time of flight measurements, depth cues from two dimensional images,

depth from motion and triangulation techniques (see Section 3.1 for an overview).

Our interest is in locating the position and orientation of objects for automated

industrial assembly tasks; thus, high accuracies and short computation times are

essential. Initially a high precision stereo system which used two cameras viewing

an object onto which a random texture has been projected [1351 was considered;

however, the processing speed for such a system was too long.

A light stripe ranging system uses a plane of light projected across a ,,cene as

the sole illumination source. Only a few points in the visual field of the camera

are illuminated and consequently only a potentially small amount of data need be

processed to obtain three dimensional data. Since there is an isomorphic mapping

between points in the image and points on three-space, geometric computations

are relatively fast. The technique used to locate objects from sparse light stripe

data is presented in Chapter 4. Some ot'er techniques use sparse range data for

locating objects [76,77,78,79], but these generally need more information than the

proposed light stripe system, are still too slow for most industrial tasks, and are

not designed to locate objects with the required precision.

The literature review, Section 3.1, produced insufficient accuracy data to de-

termine whether or not a light-stripe-based vision system could be used as a high

precision part position sensor. A simulation study was undertaken to determine

whether a carefully calibrated system could locate objects to a high enough accu-

racy to be used in an automated assembly environment.

3.5.1 Predicted Sensor Performance

Prior to deciding to built a prototype based on the light stripe technique, a number

of computer simulations were performed to predict the accuracy available with

off-the-shelf hardware. The simulations modeled a light plane source intersecting

a right corner feature. The line segments generated from the intersection were
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/

/1

Figure 3.14: Degree of rotational freedom for simulated block tests.

perspectively t:ransf'rmed, sampled in a two-dimensional grid then used to locate
the feature using the technique described in Section 4.7.2. The discrete grid models

the piecture elements of a PULNIX model TM-34K camera (384 x 491 pixels). The
plane was assu:med to be two-dimensional and generated zero width lines.

T'he simnulation was run with the corner feature at different orientation angles

p., Figure 3.14. The total length of the simulated intersection lines was 250 to 300

pixels.. At a particular value of p, the location of the corner was slightly perturbed

then measured. A number of simulated measurements of the corner position near

a particu•ar value of / were calculated and statistics of the measurements were

generaLted. The difference between the actual corner orientation and the measured

corner orientation is shown in Figure 3.15a. The cartesian displacement between

the actual position and measurements are shown in Figure 3.15b. The standard

deviations in orientation are below about .15 degrees (3 milliradians) and a stan-

dard, deviations in displacement less than .004 inches (.1 mm). This preliminary
study showed that the accuracies expected from the sensor were on the same order
as the specifications in Section 3.4.
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a b

Figure 3.15: Results of the simulated corner localization tests. a. Rotational
Accuracy. b. Translational Accuracy.
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Feature Localization Using a

Light Stripe Vision System
Chapter 4

In this chapter a high-accuracy light-stripe vision system is presented and some

mechanisms which generate errors in measuring part positions are analyzed. Errors

may be generated from the discrete nature of sensors, inaccuracies in part models,

errors in the calibration procedures, inaccurate sensor system model, and system

parameter variations due to changing environmental conditions. Quantizatior er-

rors are analyzed and some techniques for improving measurement accuracy are

developed as a result of the analysis.

4.1 Literature Review of Feature Extraction Techniques

Accuracy in Feature Detection

Little attention has been given in the literature to extracting accurate information
from visual images. Most vision research deals with qualitative scene analysis
(trying to get machine vision systems to do what human vision systems are capable
of doing) rather than making accurate measurements. Typical methods used to
identify features in an image are Hough transforms and edge detection techniques.
Hough transforms were originally developed as a computationally efficient method
for detecting lines in an image [17,54,94]. Their use has been extended to non-
linear features as well [18,111,127]. The accuracy of the Hough transform depends
upon the resolution of the tessellation of the parameter space; thus, relatively
large storage requirements are needed for high precision measurements. For images
containing only a few well defined lines, such as a light stripe illuminated scene,
Hough transforms are usually not necessary for identifying lines. A large volume
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of literature which sometimes concerns itself with accuracy issues is the edge and
feature detection literature [40,41,49,92,118,121J. MacVicar and Binford [118ý claim
subpixel edge detection accuracy for a modified Binford-Horn detector although no
data is presented. Canny (40,41] derives an edge detector operator which is optimal
with respect to three performance criterion:

Good detection. There should be a low probability of both failing to mark real edge points and

a low probability of falsely marking non-edge points.

Good localization. Points marked as edge points should be close to the actual edge.

Only one response per edge.

Canny defines a localization metric for a feature detector which is used in Sec-

tion 4.4 for investigating the accuracy in locating the center of a light stripe.

The accuracy of dimensional measurements from visual images has been studied

by groups at General Electric [128,155,156] and SRI International (881. Mundy

and Porter at G.E. determine the accuracy in measuring surfaces with reflectance

variations. The technique has been applied to turbine blade inspection. Hill at

SRI determines the accuracy of locating binary "blobs" in images based on the

,-;umber of pixels illuminated by the blob. The accuracy of area calculations are

also considered. A probabilistic approach was taken and results were verified with

Monte Carlo simulations and laboratory experiments. A similar approach is used

to determine the standard deviation in fitted line parameters in Section 4.3.

Using Multiple Measurements

The error in estimating variables from noisy measurements may be decreased by

using multiple independent or partially dependent measurements. Additional mea-

surements may come from the same sensor or a completely different source.

Bajcsy and Allen 18,9,15] integrate vision and touch to make measurements of

points on the surfaces of objects. First, the outline of the object is determined by

a vision system. This information is then used to drive a manipulator fitted with

a touch sensor. A model of the object is constructed from the tactile data. Visual

information is never directly integrated with tactile information so conflicting data

from disparate sources is not dealt with.

Accumulation and propagation of errors in mechanical assemblies was studied

by Taylor [1891 and Brooks (341. Taylor propagates geometric errors through a

physical model of an assembly. Brooks addresses a similar problem, but uses a
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symbolic rather than numerical representation. By assuming maximum bounds on
the errors, Brooks is able to propagate certain geometric constraints to determine
final errors from a number of sources. Both of these geometric error propagation
systems assume a maximum error at each source (non-probabilistic) and will give
gross over estimates of errors if a significant number of sources are involved.

Optimal estimation theory .641 may be applied to the best fit orientation and
displacement estimation problem. The maximum likelihood estimator gives an
estimate from overconstraining data weighted by the covariance between the com-
ponents of the measurement. No prior knowledge about the position of the object
being measured is assumed. A Kalman filter technique [64] may be used to op-
timally update a current estimate from subsequent independent measurements.
Durrant-Whyte [55] combines information from independent observations to get a
minimum-risk best estimate of the state of the environment. A Bayesian approach
is used to combine errors and a non-recursive estimate is presented. Differential
transformations, as developed in [147], are used to represent small errors in ori-
entation and translation. The possibility of spurious measurements is taken into
account and when it is likely that such a measurement occurred, it is rejected.
A significant number of measurements must be taken in order to do this reliably.
New estimates are propagated through a world model to maintain consistency of
the model.

Shekhar, Khatib, and Shimojo '171' use a non-probabilistic method to com-
bine a number of rotation and translation measurements into a single estimate.
They use a quaternion representation for rotations and assume a diagonal weight-
ing matrix for the set of measurements; thus, dependence between components of a
measurement are ignored. Their results are similar to the maximum likelihood re-
sults from optimal estimation theory with diagonal covariance matrices. Smith and
Cheeseman [179,180] develop two ways of combining what they call "fuzzy transfor-
mations." Compounding two fuzzy transformations increases the uncertainty and
merging them decreases the uncertainty. Compounding uses the Jacobian of the
resultant transformation (derivatives are with respect to the components of the un-
compounded transformations) and the covariance matrices of the uncompounded
transformations. Merging uses an extended Kalman filtering result. An example
covariance matrix calculation for measurements of the planar position of a mobile
robot is given.
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Light Plane

Camera

Figure 4.1: Three line segments generated by the intersection of a plane of light

and the surfaces of a polyhedral feature may be sensed by a video camera and used

to locate a part.

4.2 Light Stripe Part Position Sensor Fundamentals

The part position sensor developed in this thesis uses the light stripe technique

to locate parts in six degrees of freedom with respect to a global reference frame.

A plane of light is projected across one or more features (such as a corner of a

polyhedron or an end of a truncated circular cylinder) of a part (see Figure 4.1).
Data from an image taken by a video camera positioned at some disparate angle

with respect to the light plane is processed to locate the feature.

The ranging system consists of a line illumination source and a two-dimensional

light sensing element whose optical axis is positioned at some finite disparity angle

from the plane of the source, Figure 4.2. Triangulation is used to obtain three-

dimensional data from the two-dimensional sensing element data. A common light

source for light stripe systems is a laser beam which has been passed through a

cylindrical lens. The lens diverges the beam in a direction perpendicular to the

lens' cylindrical axis. The light sensitive element is often a Vidicon, CCD (charged

coupled device) or CID camera (Reference 117] gives a description of each of these

cameras).

The light plane is the sole functional illumination source in the scene as viewed

by the camera. Light from the line source reflects off surfaces in the scene and
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Figure 4.2: Light stripe sensor configuration.
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Chapter 4: Feature Localization Using a Light Stripe Vision System

appears on the two-dimensional image plane of the camera. An isomorphism exists
between all points in the image and points lying in the light plane in three-space. In
order to determine the transformation from the two-dimensional image coordinates
to accurate three-dimensional space coordinates, the system must be precisely cal-
ibrated (see Section 6.3). During the calibration, the values of three parameters
must be determined which locate the light plane with respect to a coordinate frame
defined by the camera image plane. A disparity angle. OLp, a tilt angle, LP, and
an offset, YLP, are the parameters used for defining the light plane location (these
are not unique), Figure 4.2.

Light rays from illuminated points on the part's surfaces undergo a perspective

projection into the camera; thus, illuminated lines in space remain lines in the
image plane, but most other shapes are distorted. Most of our discussion will be
limited to objects whose surfaces are planar (actually only those surfaces being
sensed need be planar); thus, the intersection curves between the light plane and
part surfaces are lines.

4.2.1 Review of Elementary Optics

Only optical relationships needed for the subsequent analysis are included in this

section. The reader is referred to an introductory optics text such as [17,93,103,1781

for more detailed explanations.

We model the camera lens using a thick lens model 17,93,103,178]. The image

plane is positioned behind the rear principle plane and the object before the front

principle plane. Light rays which go through the front principle plane at the optical

axis, pass through the rear principle plane at the optical axis, then onto the image

plane. For a lens with no distortion, the angle of a light ray with respect to the

optical axis is of the same magnitude as the angle of the ray as it leaves the rear

principle plane. Spherical or other abberations [178j may change the direction of

the ray as it leaves the rear nodal point. From Figure 4.3 we may determine the
relationship between the object size, zo, and the image sizes, z1. For a lens with

no distortions, al = as
Zo zi

tan a1 = tana2 =-- - -
-zX f,

so

z ofo(4.1)
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Figure 4.3: Parameters for imodeling a thick lens.

The minus signs are due to the orientation of the z axis.

4.2.2 Determining World Coordinates from Sensor Data

Here we derive the coordinates of a point in space as a function of the image plane

coordinates and the light plane and camera calibration parameters. Some authors

have used a matrix description for the geometry of a light stripe system i3,136].
Separate equations are maintained here. An equation similar to Equation (4.1)

describes the size of the image in the y direction

= ofo (4.2)
We obtain the z coordinate frem the geometric relationshipp, shown in Figure 4.2

S= Xzo + tan OLpr - i z -

where xz is the position along the optical axis where the light plane crosses,

Xo = -YLP tan O LP.

In general zO < 0. Combining Equations (4.1) (4.2), and (4.3), we obtain

(4.3)

(4.4)
1 + :5iiOL. L + tan 0 LP Ram 01.1. fo fo
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txo
y = _ f(4.5)

t+ 1a3nel +z. tanOLp YLcos OLp fA, f.

axo
z= -f, 2o (4.6)

1 a+ e anl I + tan OLp IM
cos OLP fi, f

These equations describe the position of a point in space (x, y, z) as a function of

the coordinates of the corresponding point in the image plane (yi, zj).

Calculation of Three-Dimensional Vectors from the Light Stripe Im-

age

The measurements obtained from the image of the intersection of a light plane and

a polyhedral feature is a set of line parameters, [mti,, br,i1, which are defined by the

equation of the line (refer to Figure 4.4)

yr = mi.iz1 + b1,i. (4.7)

Using Equations (4.4), (4.5), (4.6), and (4.7) we may obtain expressions for the

vectors along the light stripes in real space, Ti, and vectors from the origin to the

intersection of the light stripes and che z = 0 plane, bi.

mi tan OL
i = mi (4.8)

and
zLptanOLrp

1+ tan Otr

1+ 1' tan OLP
0

where
bi., tan otp

mi ,, coseLr (4.10)

1 + tan 0Lp
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Figure 4.4: Parameters for a line in the image plane and vectors specifying the
light stripe.
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4.3 Locating Straight Line Features in Quantized Images

4.3.1 Introduction

The precision of a least squares technique in locating the orientation and position

of thin line segments in the presence of quantization noise is investigated. A similar

technique to Hill's [88] is used to determine the accuracy in finding these param-

eters. Accuracy in locating two dimensional images, edges, thin lines, and curve

segments are important for precise manipulation with endpoint sensing [1901, robot

calibration [153], integration of vision with precise mechanical and electronic as-
sembly tasks (see examples in Chapter 5 and [22,172]), surface inspection [130,1561,

and vision feedback servo control [199].

We are interested in quantifying the apparent positional shift in measurements

of the location of objects due to the discrete nature of data from many optical sens-

ing systems. Straight line segments are of primary interest because they are surface

bounding curves for polyhedra and are frequently generated from data from light

stripe ranging sensors. Aside from sparse range data techniques '63,76,77,78,791,

systems in the literature capable of determining part pose from light stripe data

construct a depth map of the entire object [28,60,91,174). If geometric parameters

of the light plane are used in conjunction with an accurate part model, only a

single scan of a non-occluded polyhedron is necessary to determining its location

and orientation. This is possible if the a priori orientation of the object is known

within a certain range. If the light plane intersects the polyhedron across three in-

dependent surfaces, the object may be accurately located in six degrees of freedom

(see Section 4.7). The accuracy with which a polyhedron may be located in three

dimensions can be derived from the results for the two degree of freedom line.

4.3.2 Errors in Fitting Linear Parameters to Discretized Data

Data generated by straight-line features appear as discrete points of various inten-

sities located within some width of a central axis in the image plane of a discrete

array sensor. These points can be processed to find the best fit line through them

using a least squares technique [2,201. This section explores the accuracy with

which straight line features may be found. The variables used in the subsequent

analysis are listed in Table 4.1.
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Variable - Description

£ Line target

Sma',.:( Image of £ in the camera's image plane
N Number of illuminated pixels.

(:,, gi) Coordinates of the center of the it ' illuminated pixel

(xi, y,) Coordinates (probabilistic) of points lying on l,,,,,,,,
byi Probabilistic distance in the y direction from the

center of the i'h illuminated pixel to £,,,,,,,
9 Orientation angle of £ measured counterclockwise

from the x axis
yo y axis intercept of £

0, y Least squares estimators for 0 and y(,

0, y~ Estimators for 0 and y,. from discrete data (ýi, z,)

AO, AA, Difference between estimated line parameters (0, y,)

and actual parameters (0, y',)
Lp,ix,l Length of each square pixel

a• Variance of by, for all i = 1,... N

z,,,,M Distance from the center of ,,,,,,, to the y axis

measured parallel to the x axis

Table 4.1: Nomenclature for line parameter error analysis.
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Figure 4.5: Parameters for the image of a line (infinitely thin).

Theoretical Errors from Ltnear Least Squares Approximations

For the following analysis it is assumed that an image is generated from a single
line (infinitely thin), £, which lies in a plane parallel to the image plane. An
approximation to an infinitely thin line might be a bounding edge of a surface or
the intersection curve of a thin plane of light and a planar surface. The line is
located at orientation 0 from the horizontal (x) axis and passes over the y axis at
intercept yo. For simplification, the projection of £ into the image plane produces
an image, £image identical to C (that is, the angle and intercept remain 0 and yo
respectively - see Figure 4.5). A typical output from a CCD (charge coupled device)
video camera (the only type being considered here) is an analog signal constructed
from a number of intensity readings from discrete pixels in a rectangular grid. For
this analysis, we assume that the image has been thresholded and transformed into
a binary array of square elements with length Lpizet.

For geometric reasons, when 0 E [, Itr], one pixel per row is illuminated and
when 0 E [-, ], only one pixel for every column is illuminated. We define an

illuminated pixel as the one in a particular row (or column) whose border circum-
scribes the longest segment of Limage. Although this definition loses some positional
information from the array, it simplifies the subsequent analysis. Later in this
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section corrections are suggested which preserve more of the available positional

information.

The sensor data used for curve fitting is a list of pixel center coordinates for

the illuminated elements (ti,yi) i = 1,....N. A "best fit" orientation and intercept

(0 and y0 respectively) may be found in the least squares sense by minimizing the

sum of the squares of the distances from the best fit line to data points (t,, y,)
with distance measured one of three ways:

A: Minimize distances parallel to the y axis.

B: Minimize distances parallel to the x axis.

C: Minimize distances perpendicular to the line.

Each of these gives a slightly different result for 0 and ' and the best choice is not

immediately apparent.

Selection of the most appropriate metric to minimize depends upon the gross

orientation of Z. As a result of our definition of an illuminated pixel, (one pixel

for every y coordinate is illuminated when 0 E [C , ir], and one pixel for every x

coordinate is illuminated when 0 E I-i, 4]), we can choose an x coordinate in the

first case which is deterministic (±i will always correspond to a point on the line

within that pixel - see Figure 4.6a), and a y coordinate in the second case which

is deterministic. With these choices of coordinates, we should minimize errors in

probabilistic coordinates yi in the first case (metric A) and xi in the second case

(metric B).
In the subsequent analysis 0 is assumed to lie in the interval [-4, 4]. The least

squares estimates for orientation 0 and intercept yo are found by minimizing errors

parallel to the y axis [2,20]

NN NZI:l~i

9 = arctan - ' ix= -IN , (4.11)

Li=1 i N

NtIN=, y, - tan 0 rIxiYO°= .- N (4.12)
where (xe, y:) are the coordinates of points lying on £imjg,. If (x,, yi) were know pre-

cisely, the least squares estimates would be identical to the actual line parameters;

however, in the interval 0 E [- , ], only precise x values are available.
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Figure 4.6: Probabilistic location of points on a line. a. Intersection of a column of

pixels with a line in the range 0 E [-4, 4J. b. Probability density function for the
location of the y coordinate of Li,,,.,, measured from the center of the illuminated
pixel.

We are considering the case where xi is deterministic and yi is probabilistic and
we desire a metric for the confidence of the estimated line parameters 0 and yo
calculated from the measurements (Fi, 9). We shall derive the variance of 0 and Yo
(0g and o~ respectively) as a function of all (fii, )'s and the variance of yi (o01).

Each random variable yi may be written as

yS = =i + 6 yi (4.13)

where :7, is deterministic and b6y is a random variable with zero mean. At first it

might appear that the 6yi's are highly correlated since they all lie on the same line;

however, some authors [88,144] have suggested that independence between 6yi's is

a good assumption for certain cases. In the case of the straight line, the degree

of correlation depends upon the orientation of the line. At some orientations, the

values of 6yi may change in an unrelated fashion (slightly correlated) while at other

orientations, the values of 6yi may exhibit a periodic pattern (highly correlated).

We make the initial assumption that the byi's are independent and a supposition

that this might not be valid for lines at certain orientations.

If the maximum absolute value of the 6by's are small, Equations (4.11) and (4.12)

can be linearized about the points (ifi, i) by taking the Taylor series expansion,

£ivnogq
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and keeping the first two terms

S + N by, k (4.14)

N ay by, 
(4.15)

where )(y, is the partial derivative with respect to y, evaluated at (i, !i) and

=arctan N (4.16)
f, 2 2

SN -tafn f (4.17)=N

For all 6yi independent of one another [531

2 2E o2, (4.18)
i=1 •,yib,

a2, -i .Yo 2 (4.19)

Substituting Equations (4.11) and (4.12) into Equations (4.18) and (4.19) respec-

tively then making the assumption that all b6y have the same variance a,2, and

setting xi to X, we obtain

2 1 OV2

0"2 (4.20)

2 N1
or, 1N+ N2 (4.21)

N

where

f- __ S-=1gif t N

1 - N

Equations (4.20) and (4.21) give the variances of the fitted line parameters as

a function of the data points (Fi, gi) and the variance of the location of the y
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coordinate of the line in any column containing an illuminated pixel (similar results

are obtained in [20]).
If columns p, have an illuminated pixel for all i = 1,...N then the expressions

for the variance of 0 and y become

1 12a21212a (4.22)a' (1 + i2)2 N3 - N

a 1 12X2 c (4.23)
", -N YN - N "

where X, = is the center of the line segment in the x direction.

These results describe the accuracy with which a line may be found from a least

squares technique as a function of the approximate slope (rh), the orthographic

projection of the length of the line (in pixels) onto the x axis (N), the center of the

line in the x direction (xcm), and the variance of the location of the y coordinate

for any one column of the image (a ). a2 does not depend on the position of the

line segment in the pixel grid, while oa depends on the distance of the center of

the line segment from the y axis. For a line (zero width), the probability density

function for mutually independent 6yi is a uniform distribution one pixel in width

with a 62, = o2 = 2 (see Figure 4.6b). The standard deviations oa and a, arew Y 12
plotted in Figure 4.7 as a function of the number of points N for a line positioned

near 0 = 0 and with xcm = N

The above analysis is valid for a grey scale images of finite width lines as well

as binary images of thin lines. If 9i is permitted to take on subpixel values, and

grey scale levels are used in an intensity weighted "center-of-mass" calculation,

gi becomes a better estimate of the actual value yi (a would be smaller). The
reduction in c2 is a function of the width of the line and the resolution (in intensity

measurements) of the camera.

We now consider a bound for the line parameters assuming that all yi are

perfectly correlated. Because we have very little knowledge as to where a line is

located on the pixel array, we assume that the a priori joint probability density

function, pe,Y(Oa, Ya), for orientation 0 and position of the line center y is uniform,

Figure 4.8a. We take the a priori bounds on the orientation and location to be

such that all lines must be within an envelope one pixel wide by N pixels long

(0 E [-, - ] and y E [- , ]). The marginal density functions p(Oa) and

120
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Figure 4.7:
function of

Standard deviations for orientation and y intercept estimates as a

the number of illuminated pixels.
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Figure 4.8: Probability distributions of line parameters. a. Joint probability den-

sity function for the orientation and y location of a line. b. y location marginal

density function. c. Orientation marginal density function.
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Py(ya) may be calculated from p8,Y(Oa, ya) (see Figure 4.8b-c)

P (Oa) =fPp, (Oaya)dYa, Py (Y) = po, (Oa,ya)ddO.

The variances of the resulting triangular distributions are

1
o' = 6N2  (4.24)

L"
2 pixel (4.25)
1 24

Errors for Linear Least Squares Approximations from Simulation and

Experimental Tests

A study investigating the accuracy of the linear least squares fitting technique

as a function of the orientation and location of a line target was performed by

way of computer simulation and an experimental test using a CCD video camera.

The target used for the tests was a straight-line step discontinuity in intensity,

Figure 4.9. Line £ defines the location and orientation of the edge.

Errors as a Function of Image Orientation from Simulation Tests

The least squares estimator from the discrete data, 0, is compared to the actual

orientation of the line, 0. Measurements of the errors in the estimator, A0 = 0 - 0,

are made at various orientations of the line. For a selected orientation, AO is

locally studied by generating lines at random orientations within a small range.

Sample statistics from 30 trials are calculated and used as a basis for comparisons.

Figure 4.10 shows the results of the study with statistics generated in each of

eighteen equally spaced orientations from zero to forty-five degrees. The sample

standard deviations for each set of thirty trials (each trial is at a different random

orientation within a 2.5 degree range) with a line 128 pixels long are plotted for

each interval along with the theoretical result [Equation (4.22)]. A mirror-image

plot is generated above forty-five degrees for fitted parameters calculated using

metric B. Singularities in AO occur at slopes near 0, , ,, 1, and 1. In these

areas, measurements of the location and orientation of i,.,ag are not as accurate

because there is more space for £ to translate and rotate before pixels are caused to

122



§4.3: Locating Straight Line Features in Quantized Images 123

4I
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Figure 4.9: Target and camera arrangement for computer simulation and experi-

mental tests.

Figure 4.10: Accuracy of the least squares fitting routine for discretized lines as a

function of their orientation. Theoretical, computer simulation and experimental

results are shown.
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0 near 0
N4

0 near 32
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Figure 4.11: Range of motions of lines before change in state of sensor occurs.

change state. (see Figure 4.11). Statistics were collected over a finite orientation
range to identify the areas most prone to errors. The theoretical result is an
accurate bound except at the singularities near pixel ratios (slopes) of 0, 1 and
1. The theoretical result does not predict these singularities because the mutual

independence assumption is not valid there. The experimental sample standard

deviations at all orientations are, however, bounded by the theoretical result for
the perfectly correlated case [Equation (4.24)].

Errors as a Function of Image Orientation from Experimental Tests

The theoretical and simulation results were verified by tests performed with a CCD
camera (Hitachi model KP-120). The camera was externally synced (horizontal
and vertical) to a frame grabber which was interfaced to a Symbolics 3600 Lisp

Machine. A machinist's rotary table and the bed of a vertical milling machine

were used as accurate positioning stages for the edge target (see Figure 4.12).
Tests were performed at various target orientations by analyzing binary arrays

generated from thresholded 8 bit frame gTabber arrays. At each orientation, thirty

trials were performed. The target was translated about -I- of a pixel for each12
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Figure 4.12: Experimental test rig for line fitting tests. A high contrast straight-

line edge is positioned by rotary and translational stages. A CCD camera located

over the target is used to make measurements.
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trial. Results are shown in Figure 4.10. The experimental results are close to the

computer simulation results except for an apparent absence of singularities. This

is due to the difference in test procedures. In the computer simulations, the target

was randomly oriented within a 2.5 deg'ree range and had a larger probability of

being near a singularity orientation than the target in the experimental test.

Error Sources

Careful camera calibration was important for accurate line parameter fitting. In

addition to finding the affine transformation between the camera and target co-

ordinate frames, it was necessary to accurately determine a height to width ratio

of the frame-grabbed image. The ratio may differ from 1 if the pixel rate clocks

in the camera (not externally synced) and the frame grabber differ. Most video

cameras do not have an external pixel clock syncing facility and are subject to

error. These errors were found to be temperature sensitive.. Table 4.2 gives sources

of errors in measuring line parameters found during the test bed tests. The size of

the check mark corresponds to the estimated contribution of each error source. All

errors were small, but the most significant were due to pixel aspect ratio inaccu-

racies, changes in camera aperature light source position, and significant variation

in camera temperature which was brought about by moving the light source near

the camera. Lens abberations also affected the measurements, but these were not

investigated.

Errors as a Function of Image Length from Simulation Tests

Sample statistics from a number of trials performed for lines of various lengths

randomly oriented within a range 5 to 10 degrees from the horizontal are plotted

along with the theoretical bound for the standard deviation in orientation [Equa-

tion (4.22)] in Figure 4.13. The sample standard deviation of the angular error

as a function of the number of illuminated points in the image is bounded by the

theoretical result. At this orientation, the sample standard deviation is an average

of 62 percent of the theoretical result.
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ContributionError Source

Pixel Aspect Ratio
Pixel Location
Camera Focus

Camera Aperature

Light Source Position
Light Source Intensity
Light Source Position
Linearity of Camera .R -ceptors
Table Positioning Errors
Table-Camera Alignment

Variation in Camera Temperature
Non-Linearities in Lens
Reflectance of Target
Camera Blossoming
Uniform Light Source

Table 4.2: Experimental error sources for measuring straight-line features.

Figure 4.13: Dependence of the least squares algorithm on the length of an image

of a line segment at orientations is between 5 and 10 degrees.
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4.3.3 Conclusions

For a discretized image of a thin line, least squares estimators which minimize

distances parallel to the pixel axis most nearly perpendicular to the line image

should be employed. This minimizes errors in the direction of greatest uncertainty

since the line always passes through the center of the pixels along the axis most

nearly parallel to the line.

Standard deviations in least squares fitted line parameter errors are bounded by

curves proportional to 1 in orientation and _N + N2zN in translation

where rh is the approximate slope of the line, N is the number of data points along

the line and x,, is the x coordinate of the center of the line. Certain singularity

configurations of the line produce relatively large errors in fitted parameters which

are not modeled by these expressions. These singularities occur at orientations and

locations where the inter-column (row) correlation of the distances being minimized

in the least squares algorithm are fairly high. For most orientations, however, these

distances may be considered mutually independent.

4.4 Single Row Subpixel Localization of Light Stripe
Features

The accuracy in estimating line parameters may be improved by using the addi-

tional information contained in a finite width line generated by a stripe source. Bet-

ter accuracy may be attained by decreasing the errors in locating points used in the

least squares line fitting. Three techniques for locating points along a light stripe

are explored: thresholding, center of area, and match-filtering/peak-detection.

4.4.1 Intensity Profile of the Light Stripe

In a plane perpendicular to the projector axis, the intensity of the light sheet is a

function of the distance from the center of the stripe, Figure 4.14a. The shape of

the intensity is the square of the Fourier transform of the source. This is due to

diffraction at the source. We assume that the light source is finite in one direction

and infinite in the other two orthogonal directions. The Fourier transform of the

source is a one-dimensional Fourier transform across the finite width, since the

Fourier transform along the infinite direction of the source is a pulse at the origin.
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Fouricr Transform
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Figure 4.14: Intensity profile of a light stripe.

The one-dimensional Fourier transform of a uniform source is a

[178],' Figure 4.14b; thus, the intensity profile is (Figure 4.14c)

sinc(x) function

sin2 (ax)
I(x) = Aasinc2 (ax) = A sa (ax)(ax)2 (4.26)

When a discrete sensing system like a CCD camera observes the sin 2(x)/x'
profile, each sensor element integrates the intensity over a finite area. If the sensor

elements are rectangular and the light stripe is nearly aligned with one of the edges

of the rectangles, then the image produced on the sensor is a sampled smoothed

sinc(zx); that is, a sinc2 (X) convolved with a square pulse then multiplied by a

pulse train, Figure 4.15. Figure 4.16 shows the intensity profile of a light stripe

from one row of an image from a CCD camera.
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intensity Profile
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Figure 4.15: Fourier transform of a sampled, smoothed sin 2(X)/z 2 function.
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'I,

0 10 20 30 40
Pixel Position in Row

Figure 4.16: Intensity profile of a light stripe as measured by

Gaussian Approximation of the Intensity Profile

For simplicity in some of the subsequent analyses, we assume

sinc2 (ax) function may be accurately modeled as a Gaussian.

G(x) = AoN(x,J., a)

where N(x, ±, a) is the unit normal function

of Image

a CCD camera.

that a smoothed

N (,-re)2

g(x,,a) ae 2,2 (4.27)

and Ao is an arbitrary constant. By equating the areas under the curves, I(x) and

G(x), and equating the values at x = 0, the width of the approximating Gaussian

In
'approxz = 2

and the constant Ao is

Ao = Amax-
a

A better approximation (empirically determined) of only the center portion of the

sinc2(x) function is a Gaussian of width 0.9.-• This approximation is shown in

Figure 4.17.
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Smoothed sinc-(x)
.ussian

Figure 4.17: Gaussian approximation of a smoothed sinc2 (x) function.

4.4.2 Minimum Sampling Frequency

We determine the Nyquist 2 frequency for the intensity profile by considering its

Fourier transform, Figure 4.15. The Fourier transform of a sinc(ax) function is a

rectangular pulse of width 1. The Fourier transform of the sinc2(ax) function is the

convolution of two rectangular pulses or a triangular pulse of width 21. Multiplying

this by the Fourier transform of the thin sampling rectangular pulse (a very wide

sinc(x) function) then convolving the result with a pulse train (the transform of a

pulse train is another pulse train), we get the desired Fourier transform; a series of

nearly triangular pulses of width 24. For no distortion, the corners of the triangles

must not touch. The sample spacing of the original waveform must be less than (

in order to retain all information after sampling.

A similar analysis may be performed for the Gaussian approximation of the

intensity profile. To retain all information in the Gaussian, an infinite sampling

frequency must be used (the Fourier transform of a Gaussian contains all fre-

quencies); however, since the Fourier transform of a Gaussian (also a Gaussian)

approaches 0 amplitude fairly rapidly, we may select a finite sampling frequency

which preserves most of the information of the Gaussian. The Fourier transform

of a Gaussian of width a is a Gaussian of width 1. Figure 4.18 shows the Fourier

transform of a sampled Gaussian. Figure 4.19 is a plot of the amount of energy

'The Nyquist frequency of a waveform is the minimum frequency at which the waveform may
be sampled such that no information is lost due to the sampling process.
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Figure 4.18: Fourier transform of a sampled Gaussian.
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Figure 4.19: Fraction of energy lost in the frequency domain due to undersampling
a Gaussian.

lost in the frequency domain due to the overlapping of the Gaussian "tails." For
an error of 0.1 percent or less, the Gaussian must be sampled at an intervals closer
than one standard deviation.

4.4.3 Adjusting the Width of the Light Stripe

Accurate location of light stripe features are studied to determine what stripe
width will produce the smallest errors. In adjusting the width of the light stripe

(smoothed sinc2 (x) function), we assume that the power of the light source is also
adjustable and in order to obtain the best signal to noise ratio we always wish to
raise the power such that the maximum intensity in the image, Amaz, is a constant
and is near the upper intensity limit for the sensor. The equation for a Gaussian
with peak value Amaz is

G(x) = AmazVo oN(zx, 2, a) (4.28)

where N(x,t2,oa) is defined in Equation (4.27).

The following sections discuss the accuracy with which some feature of the
intensity profile (such as the peak or the center of area) may be located in the
presence of quantization and intensity noise, These results are compared to the
results for the case of the line (infinitely thin).

inl
Sampling Rate (Multiple of Stan. Dev.)

Error in Spectral Energy from Undersampling
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Figure 4.20: Determining the location of an image of a light stripe by thresholding.

4.4.4 Thresholding Technique

One of the simplest and most frequently used image processing techniques is thresh-

olding an imnage (creating a binary image). Given an intensity profile which extends

over a significant number of sensing elements, but whose precise width is unknown,

and a reasonable threshold level (say about half of the value of the m.aximum inten-

sity minus the base noise intensity) then the binary image will have a central "on"

region flanked by two "off" regions, Figure 4.20. The only information available

in the binary image to locate the light stripe are the two transitions between the

off-on-off regions. Since we have assumed that the precise width of the light stripe

is unknown, the location of the two edges of the binary image are independent.

The location of each of these edges in a particular pixel row may be described by

a random variable, z3. If we assume no knowledge about the shape or location

of the original profile, then the probability density functnion for each of these ran-

dom variables is a uniform distribution with a width of one pixel. The standard

deviation of a one pixel wide uniform distribution is

a = 
(4.29)
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where Lpi,.i is the width of the pixel. If we use the average position of the two
edges

xi + X2
cm =

2

as a metric to locate the light stripe, the variance of this metric (since they are

independent) is

X2 X1 F
= orf + _ pe=l (4.30).4 % /2 12

which is I times the standard deviation in locating the thin line.

4.4.5 Center of Area Technique

In this technique we take advantage of the grey level information in the image. The

metric for locating the light stripe is the center of area of the intensity profile

zcm i (4.31)

where xzi is the location of the ith pixel in a particular row and y1 is the intensity of

the ith pixel. We will investigate deviations of this metric from the actual center of

a profile due to two sources. The first error source is associated with the noise in the

intensity information, and the second source deals with non-symmetric sampling

with respect to the peak of the profile.

Errors From Noise in Intensity Levels

If we assume that errors in yi are small (that is, intensity signal-to-noise is relatively

large), we may linearize Equation (4.31).

em Xcm + G 19y (4.32)

where 6yi is a random variable with zero mean which is the difference between the

actual intensity, yi, and the measured intensity, yi and

Fi zigi
Cm - 'i Y-
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For 6by independent, the variance of the metric is

S2 X 2  (4.33)

S (- ± (4.34)
(XX yi)2 '

We now assume that the samples are precisely centered about the origin (c,, = 0)

and they are bounded by ±Aa; that is,

Xi = -Ao, -Aoa + 1,...,0,... , A - 1,Aa

Using this assumption and the fact that the sum of sequential samples along unit

spacings of a zero-mean unit Gaussian may be approximated by [53]

YIf Xf + j-

yj  erf (z 2) erf (X - (4.35)

where xi is the x coordinate which corresponds to yi, we obtain

° 2(A+)3 4 3(Ao) 2 + (Ar) C
or.2 = .- (4.36),6ra2[erf (Li+) - erf ( 1_i 2 A(3

Figure 4.21 shows Equation (4.36) plotted for a from .5 to 5 samples and for A

from .5 to 4 and noise ratio ( ~ ) set to .05.

From Figure 4.21 we see that we want the Gaussian as thin as possible (small

a) and we want to minimize the number of samples (small A). Note that errors

from asymmetric location of the samples relative to the actual peak are considered

in the following section.

Errors from Sample Positioning Relative to the Actual Peak

When the center of area metric is used on an intensity profile, the position of the

samples relative to the profile may generate errors in the center estimate. In the

previous section it was assumed that the samples were centered about the center of

mass; whereas, when the location of the profile is unknown a priori (this is always

the case since the point of making the measurement is to locate the profile), the

probability density for the location of the samples is uniformly distributed across
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Width of Line (a in pixels)

Figure 4.21: Errors in center of area estimate due to noise in intensity levels for a

Gaussian intensity profile.
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Figure 4.22: Offsets in sample position from the position of the peak of the intensity

profile produces errors in center of area estimates.
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Figure 4.23: Errors in center of area estimate as a function of relative sampling
position. Curve A is the numerically calculated error for 10 samples under the
main part of the profile and curve B is a sinusoidal approximation to the error.

one pixel width. Figure 4.22 shows the parameters used for the analysis. Assuming
a profile of shape sinc2x, the error in center of area estimate [Equation (4.31)] as
a function of sampling offset esample, is shown in Figure 4.23 for the case of 10

samples. Center estimation errors (curve A) from offsets in sample positions from
L- to +L, from the peak are shown. Curve B is a sinusoidal approximation

to the errors

.z ,.,, c Emaz xSi

lpizel
where bx is the offset from the peak of the profile to one of the sample positions
and Ema, is the maximum amplitude of the error from the center of area estimate.
For computational simplicity, this approximation is used to obtain an expression
for the standard deviation of errors. By definition

a.. = sin2 ( L )4 pe7(6xo) d6xo (4.37)
-'.5Lys: 1 pizel

where p6e(6xo) is the probability density function for the offset Sx. This PDF is
uniform over the range x E [-L + ]and has a height of Using the

relationship

2sin(a) d=X sin(2az)
f x 2 4a
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Figure 4.24: Standard deviation of errors due to sample offsets of a sinc2 (x) shaped

intensity profile as a function of the number of samples.

Equation (4.37) becomes

Emaz
az,.,,- a .70 7 ,maz.

Figure 4.24 shows the standard deviations in errors of center of area estimates for

intensity profiles with 5 to 21 samples under the main "hump" (that is x E [-7r, r]

for the sinc2(x) function).

The relatively small magnitude of the errors from non-symmetric sampling

about the peak is due to the truncation of the samples; that is, the samples com-

pletely span the main hump but do not go past it. If samples are allowed to extend

from the main hump, significant center of area errors may result.

Total Errors From the Center of Area Estimation.

Errors from the three sources (noise in intensity levels, finite sampling width, and

sample offsets) are slightly statistically correlated. The coupling is due to the small

chanlge in the denominator of Equation (4.36) as the samples are shifted relative

to the peak. For simplicity we assume the errors are independent. Thus the total

errors from the center of area technique may be found by reading the appropriate
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standard deviation values from Figures 4.21 and 4.24 and taking the square root

of the sum of their squares.

The error due to intensity noise increases as the number of samples increases

while the error due to sampling offset decreases as the number of samples increases;
thus, there is a tradeoff of errors from the two sources. Because the error due to

intensity noise will usually be much larger than the errors from sampling offsets,

Equation 4.36 and Figure 4.21 should be used for determining errors from the

center of area technique.

4.4.6 Match Filtering and Peak Detection

In this approach, the image is smoothed to reduce noise errors then the peak of

the intensity profile is found. This approach is similar to edge and feature finding

techniques [41,40,121,92,49,1181. It differs from the center of area calculation in

that after the smoothing, the center finding is done locally and is not very sensitive

to the intensities near the "tails" of profiles.

The subsequent analysis follows Canny's feature detection results [41,40]. We

assume the waveform containing the feature is F(x) and the impulse response of the

filter (the feature detection function) is f(x). The response of the feature detector

at the "center" of the waveform is defined by

O(x) = f F(-z)f(z)dz (4.38)-OO
which is the convolution integral evaluated at the origin. Peak detection of O(x)

will give an approximation to the location of the feature xo (the peak of the profile

with the noise removed). Canny defines the localization, A, as the inverse of the

approximation of the standard deviation in finding the peak

1 ff. F(-x)f"(x)dx (4.39)
oz,, no f•,f' 2(x)d z

where no is the variance of the noise (assumed Gaussian). Assuming that the

waveform is symmetric [F(-x) = F(x)] we may integrate the numerator of Equa-

tion (4.39) by parts to obtain

A = ff% F'(x)f'(x)dx (4.40)
no0 ff'P 2 (x) dx
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We would like to maximize A (as well as maximize signal to noise ratio). Using the

Cauchy-Schwartz inequality 1105] we know that

f 0F'(x) f '(x)dx < 0 F" (x) dxzf J, (X)dx2 .

Thus to maximize A (as well as the signal-to-noise ratio [41,40]), we want f'(x) =
F'(x) (the "match" filter). Using the match filter in Equation (4.39), the standard
deviation in locating the feature is

no
On,, =(4.41)

- f PIf'2(z)dz

Assuming the intensity profile is approximately Gaussian [Equation (4.28)], the
standard deviation in locating the stripe is

r, v/. (4.42)

Equation (4.42) gives the standard deviation in locating the peak of the light stripe
as a function of the ratio of the noise standard deviation to the maximum intensity

amplitude and the square root of the width of the stripe intensity. Thus, the noise

may be minimized by minimizing the width of the light stripe; however, sampling
too thin a stripe will give rise to undersampling problems (see Section 4.4.2). For

a noise-to-maximum-intensity ratio of five percent, match filtering the finite width

stripe gives a result is about four times more accurate (I of the standard deviation)
than the results for the thin line.

In summary, the match-filter/peak-detection technique filters the noisy inten-
sity profile with a similarly shaped filter, Figure 4.25. The filtered profile is then
scanned for the peak whose location is an approximation to the location of the
peak of the profile with the noise removed.

4.5 Using Redundant Sensed Information

Techniques for combining similar information from a number of sources are now
considered. The techniques discussed are applicable to many types of sensed in-

formation; in fact, fusion of information from fundamentally different sources is

possible as long as a measure of the expected accuracy (covariance matrix) of the

information is available. The analysis in this section closely follows the derivation
in [64].
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Figure 4.25: The match-filter and peak detection procedure for determining the
location of the peak of an intensity profile entails filtering the image with a match
filter then performing a peak detection in the filtered profile.

4.5.1 Optimal Estimation Theory

Optimal estimation theory may be used to find the best estimate for the orienta-
tion of a feature from redundant sensed information. Measurements, Z, may be

expressed as a function of the actual states, x, and measurement noise, -, [64)

z= H " `+ V (4.43)

where H is the matrix which relates the states to the measurements. To find an

estimate, ^, for the states, 7, we may use a maximum likelihood philosophy or

a Bayesian approach. In the maximum likelihood approach, no a priori knowl-

edge about the actual states, X, is assumed and the probability of obtaining the

measurements, Z, from some state, ^ is maximized. That is, we wish to find the

x which maximizes p(zij). In the Bayesian approach a prior distribution on X is
assumed. This will be altered by new measurements Z. Depending on the criterion

for optimality, we may compute an estimate of the states from Bayes' theorem

were =seo lp(zioewpVhe (4.44)

where p(z) is the probability density function of the measurements.
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Optimal Estimates using a Maximum Likelihood Philosophy

The conditional probability density function for . conditioned on i has the identical
shape as the probability density function for iT, but has a mean of Hi. With

the assumption that V is a zero mean, gaussian distributed random variable with
covariance matrix C, we may obtain an expression for p(i•i)

p() = (2r) exp [- (i- Hi)Tc -'( - HY)] (4.45)
(27r) C I C 2

where n is the order of i. To maximize Equation (4.45) we must minimize the

exponent. Differentiating the exponent with respect to i and setting this equal to

zero, we obtain a value for i which is the maximum likelihood estimate

= (HTC-1H)-'HTC- Z (4.46)

Optimal Estimates Using a Bayesian Philosophy

A Bayesian approach to the optimal estimation problem assumes that there is some

prior knowledge about the states i represented by the prior density function p(i);
that is, we assume a prior mean, X- and a prior covariance matrix P-. If we choose

a minimum variance optimality criterion, the i which minimizes the criterion is

the conditional mean of i

We may calculate the posterior state estimate, +̂ by assuming gaussian distri-

butions for i and i-

I+ = x- + K[i- Hi-j (4.47)

where K is the Kalman gain matrix defined as

K = P-HT[HP-HT + C]- 1  (4.48)

and C is the covariance matrix for the measurement vector i. The covariance

matrix for the new estimate X+ is

P+ = [I - K HP- (4.49)

where I is the identity matrix.
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Sensor

Graphics Display

Figure 4.26: Sensing and image processing system components.

Equation(4.47) gives a recursive estimation technique for determining the esti-

mate of a number of parameters from sensed data. The noise from the consecutive

measurements must be independent (W's are independent). The measurements, Z,

need not be from the same source. For instance, measurement estimates of a part's

orientation may come from gripper positions, prior knowledge, and part position

sensor output. Each of these sources provide some additional information to the

estimate and are weighted according to their expected accuracy.

4.6 Processing Light Stripe Images

4.6.1 Sensing and Image Processing Hardware

The sensing and image processing system is shown schematically in Figure 4.26.

It consists of a laser and cylindrical lens assembly, a video camera, a controlling

computer, a frame grabber, a hardware convolver, and an optional color graphics

display.
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4.6.2 Image Processing Steps

An object is initially located in the sensor area. The sensor area is defined to be

the area of the light plane which would be visible to the camera were the plane

an opaque solid sheet. The camera, which is externally synced by the computer,

is constantly sending video information to the frame grabber. When so instructed

by the controlling computer, the frame grabber records a frame from the camera.

The information in the frame grabber array, which is essentially an extension of

the computer's memory, is then analyzed by the computer. The computer crops

a smaller array which contains the features of interest (the curve generated by

the visible intersection of the light plane and part surfaces) out of the image ar-

ray. The cropped array is then passed through the hardware convolver where it

is smoothed with a Gaussian filter. The filtered image of the intersection curve

is then segmented into separate regions to which curve fitting algorithms may be

applied. Each row is then scanned to determine the location of the peak intensity

of the light stripe (approximately the center of the profile), then the curve fitting

algorithms are applied to each segment of the intersection curve. The fitted curve

parameters along with the calibrated sensor model parameters are then used to

determine the location of the feature in space.

In the following description of details of the image processing system, we assume

that each segment of the intersection curve is nearly a straight line. That is, all

surfaces of interest of the part are planar. This constraint limits the types of parts

which may be sensed to ones with polyhedral features.

Filtering

A two-dimensional convolution operation is used to smooth the noise in the image

of the intersection curve. This operation improves the accuracy with which the
"center" of the light stripe may be found. Metrics for determining the location of

light stripe features are discussed in Section 4.4. Because a design specification for

the sensor is real time operation, it is necessary to use a hardware convolver for

this image processing step.

If the line segments in the image are nearly vertical (this would be the case

for many segments generated from a laser plane which is nearly vertical) filtering

in one dimension along the rows of the image would be sufficient.. This type of
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filtering may be performed by a filter operating on the video signal directly and

would appreciably speed this processing step.

Segmentation

The intersection curve of a light plane and a polyhedral object consists of a number

of straight line segments linked end to end. In order to determine the parameters of

each of the segments it is necessary to determine where one segment ends and the

other starts. In addition, not all real parts have surface bounding edges with high

curvature (sharp corners) and not all lines in the image correspond to light plane

intersections with faces of interest; thus, the segmentation algorithm must be ro-

bust enough to ignore unwanted information. Curve segmentation algorithms have

been extensively reported in the pattern recognition, computer graphics, and signal

processing literature (for example see [150,1571 or Reference [31 for an overview).

A few of these algorithms were implemented. A merging algorithm was initially

used. It essentially walks along the original curve from one end to the other and

checks whether a new data point is out-of-line with a line fitted to the previous

data points. If the distance to the new point is above a certain threshold, the

algorithm splits the data and starts checking along a new line.

A recursive split-and-merge algorithm similar to the one reported by Ramer

[157] was also used. For simplification, we assume that none of the line segments

are nearly horizontal (this is not a bad assumption for a system with a near vertical

light plane source). The splitting phase uses the following steps (see Figure 4.27).

1. Construct a straight line between the endpoints of the curve to be segmented.

Call these end points P1 and P2.

2. Find the point on the light stripe along the same row as the midpoint of the

constructed line. Call this the test point, PT.

3. Calculate the perpendicular distance from the constructed line to PT.

4. If the distance is within some threshold level, exit returning the constructed

line.

5. Otherwise, split the line and recursively apply step 1 to two sets of new

end-points: (P1, PT) and (PT, P2).
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Figure 4.27: Recursive split-and-merge segmentation algorithm. The center of a

line drawn between the two end points in an image of line segments is tested for

being near the line segments. If it is not, the proposed line is split and the algorithm

is applied to the two new lines.

1481
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Figure 4.28: Coordinates used for the line fitting algorithm.

Generally, after the splitting is complete, a number of groups of points lie along

the same line, Figure 4.27d. A merging algorithm is then used to consolidate the

point groups.

1. The slope of a group of points is determined from the positions of the end

points. The relative angle between adjacent groups is also calculated.

2. If the angle between adjacent groups is above some threshold, the breakpoint

between the groups is maintained.

3. Otherwise, the groups are merged in to one group.

4. The algorithm starting with step 1 is iterated until no further merging occurs.

The split-and-merge procedure was found to be more robust than the merge

algorithm when dealing with images with smooth transitions between line segments.

The computation times required for the two algorithms were similar.

Peak Detection

The coordinates used in the line fitting procedure are shown in Figure 4.28. One

data point is taken for each fow of the image (z coordinate). The y coordinate is

taken to be the peak of the filtered image along that row. The location of the peak

is found to a subpixel level by finding the maximum of a quadratic fitted to the

points near the peak intensity along that row. The maximum intensity in the first

row is found by scanning the entire row. The maximum intensities in remaining

rows are found by locally scanning each row near the y coordinate of the maximum
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Figure 4.29: Some features which may be located in five or six degrees of freedom

from data generated by the intersection of a single light plane.

from the previous row. Thus, only a small percentage of the pixels in the image

are actually scanned.

Linear Least Squares Line Fitting

After segmentation, filtering, and peak detection, the best fit line parameters must

be determined for the sets of data points. In the least squares technique, the sum of

the squares of distances from the best-fit line to the data points are minimized. Er-

rors parallel to the pixel coordinates are minimized (see Section 4.3 for a discussion

of the technique and choice of metric to minimize).

4.7 Measuring the Location of Features with a Single

Light Stripe

With the right geometric relationship, the intersection of a light plane and certain

geometric features will generate curves of intersection which contain enough infor-

mation to locate the features in six degrees of freedom (or five degrees of freedom

for rotationally symmetric parts), Figure 4.29. The following analysis deals mostly

with polyhedral features. Also, we assume a known correspondence between the

_ _~_I____ _ ~I__ _____ __
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Figure 4.30: Light plane intersecting a polyhedral feature and a corresponding

model of the feature.

groups of data from the sensor and the faces of the model (for instance, we know

which surface on the part generated data comprising a particular line segment).

4.7.1 Locating General Polyhedral Features

This section discusses the calculations involved in determining the orientation and

displacement of a polyhedral feature of an object. The position is referenced relative

to a model of the feature in a base coordinate system, Figure 4.30. The orientation

of the feature may be determined by the slopes of three line segments in the image.

The displacement may be determined from the results of the orientation calculation

and the intercepts of the three lines; thus, the orientation calculation may be

decoupled from the displacement calculation.

_ __ _I_151

I



Chapter 4: Feature Localization Using a Light Stripe Vision System

Sufficient Conditions for Position Constraint

The sufficient conditions for three lines lying on three faces of a polyhedron to
constrain the polyhedron in six degrees of freedom may be determined using screw
theory 416,143,1641. Each line segment provides constraint in two freedoms; trans-
lation perpendicular to the surface and rotation about an axis perpendicular to
both the normal of the surface and the line. With the proper geometric conditions,
three line segments will provide six freedoms of constraint. According to Salisbury
[164], these conditions are

* Pairs of lines must not be parallel.

* Pairs of faces in which lines lie must not be parallel.

* The common normal of any pair of lines must not be parallel to the line of intersection
of any two faces in which the lines lie.

Determining the Orientation

Assume that the three normal vectors for faces A, B, and C of the model in

Figure 4.30 are known to be hA, iB, and hec respectively. The normal vectors of

the object are unknown, but vectors along the intersection line segments are known

from the sensed data. Assuming that the correspondence between faces is known,

the unit vectors along the intersection line segments for faces A, B, and C are

lA, 'B, and ic respectively. The rotation matrix R from the model to the object
is found using quaternion notation [93,151,163]. We denote a quaternion by the

bold face letter, q. Every quaternion has a corresponding four vector, ', whose

components are the four elements of the quaternion. A quaternion with a zero

scalar element represents a three vector; thus a quaternion multiplied by a vector

is defined. A rigid rotation of a vector i- is

qivq

where q is a upit quaternion and q- is the quaternion complement of q.

If the proper rotation is found, the line vectors, ii, will be perpendicular to the

rotated model normal vectors, qhiq'; that is, the dot product will be zero

li - qiq = 0, i = A, B, C.
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Each of these equations are quadratic in components of q. Rewriting this in matrix

form

TrAiq- = 0, i = A, B, C,

1I" = 1 (4.51)

which is a coupled set of four quadratic equations. We can solve for the components

of q using a numerical technique. The rotation matrix, R, may be calculated from

the components of q [163]

q02 + q12 - - q32 2(-qoq3 + qlq2) 2(qoq2 + qlq3)

R = 2(qoq3 + qlq 2) q02 - q + q2 - q3  2(-qoql + q2q3)

2(-qoq2 + qlq3) 2(qo0q + qzq3) q 02- q - q22 + q32

Determining the Displacement

Once the rotation from the model to the object is known, the normal vectors of

the object, robj,i, may be calculated

=obj,i Rui, i = A, B, C. (4.52)

The locations of a line on the ith face is defined by the intercept with the plane

z = 0, We denote the intercept vector bi. The equation of the plane which lies on

the ith face is [61]

(Vx- bi) oby,i = 0. (4.53)

where X = [x y z]T is the location of a point in space. Solving these three equations

simultaneously for the planes on faces A, B, and C, we obtain the location of the

corner [611

PA(f"obj,B X ^ obj,C) + PB ( obj,C X flobj,A) + PC (fobj,A X obj,B)
Xcorner =-(4.54)

orr bj,A (obj,B X ^ obj,C)

where pi is the perpendicular distance from the origin to the ith plane

PA = (bA hobj,A)

PB = (b. flobj,B)

Pc = (bc - hobj,C).

(4.55)
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Righl Corner Feature
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I .V Camera Light Plane

Figure 4.31: A right corner feature and reference frames used to determine its

orientation.

4.7.2 Locating Right Corner Features

In this section, the solution for the rotation of the right polyhedral corner feature

is solved in closed form (in contrast to using a numerical technique for general

polyhedra) using a direct method of calculation.

We define a right corner feature as the intersection of three half spaces (see

Figure 4.31) whose bounding planes are mutually orthogonal. A right-hand co-

ordinate system, Af, with axes SF, YF, ,F perpendicular to the bounding planes

of the half spaces and origin located at the point of intersection of the bounding

planes defines the position of the feature in six degrees of freedom. We wish to

determine the orientation and position of this feature reference frame with respect

Ac
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to the world frame, 7w, located at the camera image plane.

Determining the Orientation

The orientation of the feature reference frame, F, with respect to the world refer-

ence frame, ýv, is determined by locating an intermediate reference frame associ-

ated with the laser plane, .Ap. For the present analysis, we assume that the light

plane has no width (two-dimensional). We also assume that three line segments (no

width) are generated when the light plane intersects the feature. The orientation

of the three line segments are defined by the three vectors 'A, iB, and ic as shown

in Figure 4.31.

We assume the ranging sensor has been accurately calibrated and the unit vector

normal to the light plane, ^iLP, is known. The intermediate coordinate system, Lp,
has axes XLP in direction of one of the lines of intersection (IA), LP in direction

hLP, and iLP in direction ALP X iA where x is the vector product.

The rotational transformation (in matrix form) from Yw to YrLp is

RW,LP = [IA, LP X IA, iLP] (4.56)

7Lp may be located with respect to YF by realizing that the cross product of any

two of the three vectors 'A, 'B, or Ic is normal to the light plane (in the direction

of zLP) and IA lies on the YF, ZF plane. The transformation from Yw to jLP is3

R,LP = A, (FIB A X IA) X 'IA, iB X FIA (4.57)

0 sin sin A cos8n 1
Vcos 2 !A sin2" 

D+Sin2 A C/cos
- 9 A sin2 D+sin2• A

csin2 0A cos0n - sin pnsinOA
-cos 2 

A sin +S +sin2 A /cos2 A sin3 B +sin2 BA

- sin A - cos On cos pB sin 9A sin Bo cos #A
cos29 OA sin2 OD+sin" OA VCOs$A si O +sin2 OA

where OA is the angle between 'A and ZF and OB is the angle between IB and YF.

The angles OA and OB may be calculated from the angle between IA and lc (OAC)
and the angle between IA and nB (OAB) (these angles are both easily obtainable

from the processed image).

tan OAB
OA  = arctan a

tan eOM

3 The left superscripts "i denotes that the vector is expressed with respect to the FY reference
frame.
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cos OAB
OB = arccos-

COS OA

Multiple values of the rotation matrix, RF,LP, which correspond to different light

stripe image interpretations result from these equations. The proper rotation ma-

trix is the one closest to the expected nominal rotation matrix. The orientation of

the feature reference frame, F7, with respect to the world coordinate frame, Yw, is

RW,F = Ro,LpR-,1P. (4.58)

Determining the Displacement

Once the rotation is known, the displacement of the corner from the base coordinate

system is given by Equation 4.54.

4.7.3 Locating Other Features

In order to extend the range of parts which may be handled by the sensor, features

other than just polyhedral ones should be measurable. Locating parts with quadric

surfaces (cylinders, cones, spheres, etc.) was considered, but not implemented in

detail. The intersection of the light plane and a quadric surface generates conic

sections. In general, the perspective projection of a conic changes its parameters;

thus, curve fitting should be done in the light plane (that is, points recorded in

image plane coordinates should be projected back to the light plane). Algorithms

which fit conic sections are given in [6,30,166]. A number of the algorithms were

tried on synthetic quantized data of the intersection curve between a light plane and

a cylindrical feature. As noted in 1166] the Bookstein algorithm [30) was the most

accurate of the conic fitting routines; although, it was significantly less accurate

in locating a feature than the right corner algorithm. Troubles in using ellipse

fitting routines on light stripe data were reported by Bolles and Fischler 126]. In

their RANSAC approach, they chose a set of five points, constructed an ellipse and

tested to see if it was a reasonable estimate. If it is not reasonable, the procedure

is tried again.
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4.8 Using Multiple Light Planes to Locate Polyhedral
Features

With the sufficient conditions outliined in Section 4.7, three lines locate a polyhe-

dron in six degrees of freedom; thus, more than three lines can overconstrain the

calculation. In this section, a least squares approach is used to solve the over-

constrained problem. A technique which performs a least squares estimate can

more precisely determine a feature's position than a technique which just uses the

minimum number of line segments.

The equivalent of four or more line segments may be generated on a polyhedral

feature either by using two or more images with the part or light plane displaced

slightly, or by using multiple light planes and a single image. In addition to allowing

a more accurate calculation of the location of a part feature, a system of multiple

light planes has the advantage of having illumination sources which are not in a

single plane; thus, it may be possible to generate longer line segments or have line

segments in more desirable locations with respect to the part feature. In fact, some

features may be localized with a number of light planes but not with a single light

plane.

4.8.1 Non-Optimal Orientation Estimation for Polyhedral Features

This technique is non-optimal because it doesn't take the quality of different mea-

surements into account. It is, however, somewhat simpler than the optimal estimate

and is similar to approaches taken in the literature [59,60,58]. A least squares tech-

nique is used to determine the best fit rotation for the general polyhedral object.

Because no surface normal information is directly available in the sensed data, we

cannot use the technique developed by Faugeras et al. [59,60,58). The approach

and the notation used here is similar to that in Section 4.7.1. The sum of the

squares of the dot products are minimized

min E(li . qhiq )2. (4.59)
i

A value for q which minimizes this expression may be found using a numerical

technique.
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Figure 4.32:
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feature.

in the least squares estimate for the orientation of

4.8.2 Optimal Estimation of Orientation for a Polyhedral Feature

Representation of Rotations

Three independent rotations and three independent displacements are sufficient to

describe the position of an object in three-space. A number of different descriptions

are available to model the three rotational degrees of freedom.4 For the subsequent

analysis we use the euler angle description because the number of variables needed

to describe the rotation is equal to the number of degrees of freedom. The euler

angle convention is shown in Figure 4.32. A coordinate frame located at euler

angles

is first rotated about the base system z axis by angle 0 then about its own z axis

by angle 0, then about its own z axis by angle 1 .

We assume that orientation estimates expressed in euler angle notation, {c~i},

4Frequently used( dcscription.s for rotations are the 3 x 3 orthonorinal rotation matrix [93,147),
culer angles [93,471, and qiutcermions [93,151,163].
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are available. In general, these may be obtained from three appropriately chosen

line segments.
ai = fi(Si,1, Si,2, Si,3), i = 1,...i,N (4.60)

where fi is a vector function, SiO, Si, 2, andSi,3 are the slopes of the three line seg-

ments from the sensor, and N is the number of different estimates. We wish to

combine these estimates to arrive at the most accurate estimate possible, &, given

the expected errors of the measurements.

The functions ,f are functions of the calibration variables and part model pa-

rameters as well as the slopes of the line segments. For simplicity, only the errors

in slope are considered in the following Kalman filter design. If the magnitude of

the unmodeled uncertainties are large enough, imprecise results may be generated.

In general the functions fi in Equation (4.60) are non-linear and we cannot

directly apply linear optimal estimation theory with the state vector, 4, being

the euler angles and the measurement vector, Z, being the line slopes. We can,

however, assume that errors in slope measurements, 6 Si,,, are small and linearize

Equation (4.60). Taking the Taylor series expansion and keeping terms of first
order or less

6Si ; ,C + Si,, (4.61)

where 1 takes on the appropriate values for the lines used in the estimates and. 6 Si,t

is a random variable which is the difference between the actual slope for line I and

the measured slope. In matrix form, Equation (4.61) is

i di + Ks,i6Si (4.62)

where

[fi afi6Sfi
Ks., = ' ,' nd 6b = 6 Si, . (4.63)

[9SiI'SSi,29SI, 3

The partial derivatives may be calculated directly if an analytical expression is

available for fi. If fi involves a numerical technique, the partial derivatives may be

approximated by
4A , s,, .... , (S,,, + C.)..., SSO)

where e is a small number whose addition to Si will produce a result in the

numerical calculation significantly larger than the numerical error.
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Rearranging terms, Equation (4.62) becomes

K, =- Ki, - 6bi. (4.64)

All N equations in (4.64) may be combined into a single equation by adding the

rows of each vector term corresponding to the same line segment

zis = Hsd + v's (4.65)

where

is K,&'x H5 =s KS,i,-

= - 6 s,.

Equation (4.65) has the same number of rows as independent line slopes in the

image.

Equation (4.65) is in the same form as the linear optimal estimation equation

(4.43); thus, the maximum likelihood estimate, Equation (4.46), of the euler angles

is

& = (H 'CS Hs)- 'H TC' s  (4.66)

where Cs is the covariance matrix of the noise vector V's. The minimum variance

Bayesian estimate of the euler angles given an a priori estimate i- and initial

covariance matrix P- is [641

:= £-([P-]- + HCS1Hs)-lH Csl(s - Hsi-). (4.67)



Assembly Using the A Priori

Error Suppression Technique

Chapter 5

5.1 Introduction

In order to perform assembly operations without position sensing, it is necessary to

control the propagation of part position errors. Fixtures, pallets, and grippers must
be designed to geometrically constrain the parts. The design of these items becomes
difficult if many different shaped parts must be handled and fixture interchange is
undesirable. This chapter discusses some tools which were developed to address
some of the more difficu!t assembly operations cited in the assembly task analysis

in Section 2.2.1. The tools are designed so as to minimize the number of fixture
changes during an assembly process. Excessive interchange of fixtures leads to
inefficient use of the assembly machine. In the Draper Labs automobile alternator
assembly system, about a third of the cycle time was spend interchanging robot

end effectors 143].
The assembly tools are integrated with an industrial robot and a manipulator

path generation system in a prototype assembly cell. The path generation system
automatically calculates via points to relieve the user from manually digitizing an
excessive number of robot positions. The manipulator is able to set up the cell
by changing grippers and fixtures and is able to assemble and test consumer hand
drills.
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5.2 Versatile Tools for Programmable Assembly Systems

A number of the more "difficult" assembly operations discussed in Section 2.2.1
may be accomplished using precision assembly techniques and programmable me-
chanical tooling. Precision assembly entails the mating of parts using only position

controlled moves (no sensing or force control). This section describes the ele-

ments of a prototype flexible assembly cell which was developed to demonstrate

the feasibility of precision assembly techniques and to extend the types of assembly

operations possible with a single six degree of freedom mechanical manipulator.

5.2.1 Prototype Assembly Cell Hardware

The prototype assembly cell is a collection of assembly tools which augments the

capabilities of a six degree of freedom robot in performing a variety of assembly

tasks. A reference base plate with an accurately machined array of locating holes

covers the base of the cell. Flexible fixtures are used to assist the robot in the

performance of several assembly operations. An assembly vise is used to fixture

the base part of an assembly. Since the simple, parallel-jaw gripper of the chosen

manipulator is not capable of sufficiently grasping some parts, a special gripper

interface and auxiliary fingers were developed which allow the robot to more firmly

grasp a larger number of parts.

Assembly Robot

For a system of automated machines being used to their maximum capability (con-

stantly working), the cost of performing the required tasks is a strong function of

the process cycle time and, therefore, of manipulator speed. The speed at which

robots perform assembly tasks depends upon robot acceleration, deceleration, top

speed, servo loop bandwidth, manipulator vibration settling time, firmness of end

effector grip, and limiting speeds when mating parts.

At the time the cell was developed, the choice robot was the IBM 7565. This

hydraulically driven manipulator has relatively high speed operation, force and

optical sensing capabilities, good repeatability (about 0.1 mm.), and is controlled

by the powerful AML language [191]. Because the 7565 has six degrees of freedom,
it is facile enough to perform most of the necessary tasks in the study; although, a
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Figure 5.1: Reference base plates

less expensive. lower degree-of-freedom robot may be sufficient for some assembly

tasks.

Reference Base Plate

The base of the prototype workcell is made up of a set of steel plates that are

attached to the robot frame (see Figure 5.1). The plates include a set of accurately

machined reference holes. The holes provide a tangible, absolute coordinate frame

in the workcell. They are located in a grid pattern on 2 inch (50 mm) centers. with

each hole having a 0.375 inch (9.5 mm) counterbore to a depth of half the plate

thickness and a 5•-18 UNC thread through to the bottom. The bores are used

to precisely locate the various items in the workspace, including posts and other

fixtures for calibration and are located to a precision of ±.0004 inches (-10itm).
The threaded holes are used for securing the hardware to the base. The plates are

aligned such that much of the Z direction workspace waviness is eliminated (see

Appendix B).

Although the 7565 has the capability of using sensors to locate each of the

fixtures in its workspace, the process is a relatively slow one and may make set

163



Chapter 5: Assembly Using the A Priori Error Suppression Technique

Figure 5.2: Assembly vise.

up times excessive. The use of the baseplates eliminates tolerance build-ups which

would occur with robot positioned fixtures. This absolute reference frame will

become particularly useful in the off-line programming of the robot.

Assembly Vise

Most mechanical assemblies and sub-assemblies have a base part onto which many

of the other parts are attached or stacked. In the prototype assembly cell, the base

part of an assembly is held in a specially-designed assembly vise. If it is necessary

to access different segments of the base part, the vise could be mounted on a one or

two degree of freedom rotary table. In the prototype assembly cell, it is mounted

directly to the reference base plate. A photograph of the flexible vise is shown in

Figure 5.2. Different parts may be held in the vise by changing the configuration

of the fixturing systems on board, Figure 5.3.

A jig plate, installed by the robot during the setup procedure, is centrally lo-

cated in the vise. Jig plates are specific to each assembly task and usually include

the features necessary to fixture base parts. Under the jig plate, there is a second

interchangeable positioning plate, the pin plate. This plate includes a set of fix-

turing pins which can be retracted if their presence interferes with the assembly.

This feature allows many base parts which include precisely positioned holes to be
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Figure 5.3: Different combinations of vise fixturing systems which may be used to

constrain the base part in an assembly.

165



Chapter 5: Assembly Using the A Priori Error Suppression Technique

fixtured without relying on the location of (inaccurate) external surfaces. After

the part has been located and properly secured by a set of clamps, the entire pin

plate can be moved down and then laterally out of the way. These motions are
provided by pneumatic cylinders, and are actuated by the 7565 controller. This

feature allows another part to be inserted through the locating hole in the base

part.

Two jaws close about the base part from the sides. The jaws are kinematically

constrained to remain equidistant from the center of the jig plate as they close.

These jaws are also specific to the assembly task and may b, changed by the

robot as part of the vise setup procedure. The jaw carriages are DC-motor driven,

and can be locked in position by an electronically actuated brake. Jaw motion is

terminated in one of two ways: in the first mode, the jaws run into the base part

until the motor stalls, and then the brake is applied; the second manner employs

a software timer to provide open-loop position commands. These relatively simple

jaw positioning schemes eliminate the need for more expensive and complex servo

controls.

The final moving elements of the vise are a pair of hold-down clamps used to

secure the base part. The clamps are mounted on the jaw carriages so that they

also move about the vise center. A set of clamps forms a turret of tools which can

be positioned by the robot over the part to be secured. The clamps are actuated

vertically by pneumatic cylinders which are also controlled by the computer.

Flexible Fixtures

The assembly task analysis in Section 2.2.1 demonstrated that a set of actuatable

fixtures, positioned around the assembly jig, could greatly increase the capability of

a single manipulator arm. Many of the tasks which cannot be performed by a single

manipulator require only one or two additional active degrees of freedom; thus,

a second fully-programmable six degree of freedom manipulator is unnecessary.

The success of the flexible fixture design depends greatly upon the accuracy and

programmability of the robot. Each fixture is essentially a passive manipulator

with a single active degree of freedom at its end effector. The passive joints may

be locked and unlocked on computer command. The active degree of freedom,

also triggered by the robot controller, is used to reposition the fixture end effector

during the assembly operation.
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Figure 5.4: Flexible fixture.

During the assembly cell setup phase, the arm first grasps the flexible fixture.

The computer then actuates an air cylinder which frees the fixture so that it may be

moved around the cell. Next the gripper moves the endpoint of the flexible fixture

to the required location and, finally, the controller actuates the cylinder to lock the

fixture into position. In general, the fixtures remain in position until the task is

completed. The active degrees of freedom allow the fixtures to be far enough away

from the assembly jig so as not to interfere with other operations in the assembly

process. When the assistance of a fixture is required, the active degree of freedom

positions the end effector near the assembly. In general, the robot is never used

to move a fixture around the workcell during the assembly process since this can

significantly increase assembly cycle time and make the process more expensive.

Instead, several fixtures, each performing single degree of freedom tasks, are used

in the cell and positioned during set up; thus, no overhead (non-assembly related

time) is associated with moving the fixture about the workcell during an assembly

task.

Figure 5.4 shows a flexible fixture used in the prototype assembly cell. The

main structure of the fixture is a multi degree of freedom steel "spine." The spine
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consists of alternating cylinders and spheres, each with a hole bored through its

center. These elements are strung onto a steel cable which when placed under

high tension makes the structure rigid. The tension in the cable is controlled by

a computer-actuated air cylinder; thus, the fixture may be made rigid or slack

as directed by the computer. The end effectors of the fixtures are mounted with

special quick-release adapters which are necessary if the robot is to interchange the

special tooling.

The fixtures are intended to be used for a number of different tasks. With

the appropriate end effectors in place, they assist the robot in performing assembly

operations on workpieces which would otherwise be unstable (see Section 2.2.1 for a

definition of unstable assemblies). After the robot positions the potentially unstable

part onto the assembly, the fixture is actuated and its "finger" momentarily secures

the part while the robot performs the stabilizing operation, such as driving a screw,
or inserting a shaft. The fixture may also be used as a reference surface for the

assembly. For example, as more parts are stacked onto a base part, the uncertainty

in absolute position of the last inserted part increases. A flexible fixture may be

used to locate an assembly so the robot can proceed with the task. It may also be

used to hold a sub-assembly in a certain orientation pending the assembly of the

next part. Additionally, when provided with more sophisticated end effectors, the

simple flexible fixtures could be used to perform an auxiliary assembly tasks, such

as testing or inspection.

A force of about 3 lbs. (1.5 kg.) could be withstood at the end of the fixture's

arm before the frictional forces within the arm were overcome. This upper-bound

on the force is a limitation of the device in performing many tasks. Since proof-of-

concept and short development time were goals in building the prototype system,

suboptimal arm strength using off-the-shelf hardware was acceptable. An analy-

sis of arm component size versus arm strength is presented in Appendix C. An

appropriate arm for a certain set of tasks may be determined from this analysis.

Prototype Pallets

Extension of part feeding cost research by Redford [159,1601 shows that off-line

feeding can reduce the cost of programmable feeding if the cost of pallets can

be kept relatively low. Off-line feeders are decoupled from the assembly process

and are not assembly-machine paced. In order to transfer single parts and sub-
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Figure 5.5: Flexible pallets used to locate different shaped parts.

assemblies, a set of flexible pallets has been designed. The parts must be transferred

to the assembly station with their accurate orientation preserved so that the robot

may reliably grasp and assemble them. Although pallets specially-designed for

each part can accurately transfer the parts around the system, the initial tooling

and design cost for such pallets may be prohibitively high. Pallets which are easily

reconfigured to accurately hold a number of different parts have a much smaller

tooling and design cost associated with them and may be appropriate for economic

off-line feeding.

A prototype flexible pallet is shown in Figure 5.5. The pallet is a set of steel bars

with pins inserted at accurately spaced locations along the bar. The bars may be

shifted with respect to one another and locked in the desired position. The spacing

between the bars is adjustable by interchanging precision spacers. Any number of

bars may be used to surround the part. The pallets are designed to locate holes,

pins, or other features on parts. In general, these types of features are the most

important to locate accurately since they usually interface with other parts of an

assembly. Bars with different size pins are used to locate various holes in parts.

Outside surfaces may also be located by appropriately positioned surrounding pins.
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Figure 5.6: Flexible pallets fixturing drill parts.

In general, three or fewer bars are required to accurately locate most parts.

Two pins from separate bars can be used to locate features of the part. A third

rubber-cushioned pin from another bar can be used to reference the part against

the pins as shown in Figure 5.6. Parts with shafts may be located in holes in bars

of the same design without the pins. Axisymetric parts with central holes or shafts

(su.-h as washers and simple shafts) require only a single bar for fixturing. The

pallets are attached to the reference base plate with accurately-located holes at

the ends of the bars; thus, each part is located with respect to the robot frame

and may be accurately grasped. The accurate spacing between the holes in the

bars is required so that the location of only a single part "station" on the pallet

must be found or taught. The other part locations are calculated using a suitable

description of the pallet configuration.

The average cost of the prototype pallets is about $100 (about $33 per bar).

For a large-scale assembly system where many such pallets would be necessary, the
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Figure 5.7: IBM 7565 gripper finger interface.

price of each could be brought down to about $75. The cost of the pallets is almost

entirely an initial investment since retooling of pallets for new or redesigned parts

is very simple and inexpensive.

Gripper Finger Changing System

A set of interchangeable "fingers" were designed for the 7565. A pair of interface

plates is attached to the existing robot gripper pads. The interfaces include a set

of precision dovetails and a spring-loaded pin, Figure 5.7.

Each pair of fingers also has dovetails which mate with those on the interfaces.

The finger plates include holes which allow the spring-loaded pins of the interfaces

to lock the fingers into position along the dovetail slides. The finger plates also

have a grid of holes for attaching the necessary tooling. Pairs of finger plates are

stored in a magazine allowing the interchanges to take place as follows: the robot

positions the gripper over the desired pair of fingers; the gripper slides into the

dovetails of the finger set; when the finger is in position, the locking pin engages;

finally, the gripper is opened, and the fingers are attached. A pair of fingers is

removed from the gripper by reversing the above procedure.

Two sets of gripper finger tooling are used in the prototype assembly cell. One

pair of fingers is a general shaft/bore grasping gripper, Figure 5.8. The tool includes
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Interface

Figure 5.8: Shaft/hole and setup grippers.

a V-groove on one finger and a tab on the matching one. This combination forces

a shaft to sit against the V-groove regardless of the deflection between the gripper

jaws. The same finger tooling grips the inside diameter of bores since the finger

corners are rounded. The fingers extend at a 45 degree angle off the edge of the

7565 grippers. With this arrangement, a shaft held with its axis in the global

Z direction can be moved in all 6 degrees of freedom without passing through a

kinematic singularity. In addition, with the pitch axis tipped at 45 degrees, the

effective X-Y reach area is extended.

The second pair of gripper fingers is used exclusively in the setup phase of the

assembly process. Sets of holes are used to interface with pins on all the parts

of the workcell which need to be accurately positioned during setup. A strip of

elastomeric material runs down the center of each of these fingers and serves as the

contact surface for some of the fixture components.
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Figure 5.9: Position definition system.

5.3 A Hybrid On/Off-Line Programming System

In order to simplify the current practice of generating robot trajectories using the

"teach by showing" technique, a system was developed which allows the program-

mer to generate a trajectory off-line. Although a number of authors report off-line

programming systems [52,107,110,113,116,152,1891, the state-of-the-art program-

ming method in the factory is still teach by showing. The technique described here

utilizes a relatively small set of general paths or trajectory shapes and path trans-

forms to perform most of the robotic operations necessary in assembly tasks. With

this technique, a number of robot configurations must still be manually taught by

showing; however, this number is relatively small (usually one position per task). A

user friendly Position Definition System (PODS program) was developed to provide

an easy method of storing and altering a sequential set of robot configurations.

5.3.1 Position Definition System

A menu driven AML program has been created to help the programmer record and

edit robot configurations for use in subsequent assembly programs. This Position

Definition System (PODS program) performs a number of functions related to the

creation and debugging of position files (see Figure 5.9). A position file is a file
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containing a list (set of records) of sets of robot joint angles (AML aggregates of

7 real numbers). In addition to the sets of joint angles, a set of reference post

locations corresponding the positions of 1 to 4 posts in the workspace are stored as

the first record of the file. These posts are used as a reference frame for subsequent

playbacks of the positions in the file.

The main menu in PODS allows the user to choose one of the following sub-

menus:

* Choose or Create Position File

* Recalibrate

* Assemble (playback positions)

* Change Speed

* Edit positions

* Create a path

* Execute a path

The user responds to the menu by typing the first two letters of the chosen submenu

or ST to stop the program.

The Choose or Create Position Files option prompts the user for the name of

a position file. PODS then checks to see if a file with such a name exists and if so

reads in the reference post locations and the positions. If no file exists with that

name, a new file is allocated and the user is automatically shown the calibration

menu.

The Calibration submenu gives the user a number of choices in the selection of an

appropriate set of reference post locations. The user may read in the post locations

from another previously defined position file, execute the full calibration procedure

thus changing the stored reference post locations, calibrate only the rotary joints,

or find a new set of reference posts and use these locations to reference any newly

defined points without changing the stored set of post locations (see Section 5.4.2

for a more detailed description of the calibration procedure).

The Assemble submenu prompts the user for starting and ending position num-

bers and then moves the robot through the commanded set of positions. A position
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number is an index within a sequence of positions listed in a file. The robot speed

may be changed using the change speed submenu.

The Position Editing submenu allows the user to perform the following editing

operations on a set of positions:

* Insert positions using guide box

* Manually insert positions from the keyboard

* Change positions using guide box

* Manually change positions from the keyboard

* Copy positions

* Delete positions

* Display positions

* Print positions

* Choose or create position file

The Insert commands allow the user to define new positions in between two

existing positions or at the beginning or end of a set of existing positions. These

commands are also used for the initial definition of positions in a new file. The

Change commands allow the user to change a subset of previously defined positions.

The Copy command prompts the user for a subset of existing positions to be copied

to a new location in the list of positions. Any existing positions in the list are moved

down the list to make way for the new positions. The Delete command will erase a

specified subset of positions. The Display command will display a specified subset

of positions on the terminal screen, while the Print command will print the specified

positions on the printer.

The last two commands in PODS' main menu deal with the creation and exe-

cution of a path. A path is a general shape or template which is useful in assembly

operations (see Section 5.3.3). A set of positions may be made into a path by

translating and rotating the set so that the robot box frame becomes the path

coordinate frame (see Appendix A.1 for a definition of the path coordinate frame).

After a path has been defined, it may be executed between two points defined in

the workspace using the Execute Path option.
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Figure 5.10: Task execution system.

5.3.2 Generation of Robot Paths in an Assembly Cell

A path definition system has been developed to simplify the teaching of robot

assembly tasks. The system allows the robot controller to generate most of the

details involved in the execution of an assembly task. Such a system allows much

of the programming for a complete assembly task to be done off-line at a fairly high

level. With this technique, the majority of robot action commands in an assembly

task programmed by the user would be conveyed as tasks (such as getting or

putting a part) instead of as point to point moves. By so doing, the controlling

computer will automatically perform operations such as simple obstacle avoidance,

part presence checking, gripper opening, speed control, a.nd some error correction.

The basic elements used in generating tasks are shown in Figure 5.10. A path

is a set of robot positions in the workspace which are used as a shape template for

the task. The path transform performs a geometric and in some cases functional

transformation of a path. A geometric transform translates, rotates, scales and

sometimes skews the path such that the resulting curve is shaped similar to the

original path, but connects two newly specified starting and ending positions. A

functional transformation allows the path to be used as a template for an assembly

task (i.e. getting a part from a fixtured position).
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A path is defined as a set of two or more robot configurations in the workspace.

Only the X, Y, and Z coordinates (this is the 7565 BOX frame '981) are used as the

template for subsequent transformations. Rotary axes are handled separately. The

path is most easily defined using PODS (see Section 5.3.1). Paths are used as gen-

eral shape templates for subsequent moves through trajectories in the workspace.

Since only the shape of the path is used, the first location is arbitrary and is de-

fined to be robot coordinates <0,0,0>. For many assembly applications it is useful

to have a path library from which to select the appropriate path. Different path

shapes may be selected for simple obstacle avoidance and minimal trajectory exe-

cution times. A more rigorous definition of a path may be found in Appendix A.1.

5.3.4 Path Transforms

Before a path becomes useful in an assembly environment, it must be operated upon

by a path transform. The inputs to a path transform are shown in Figure 5.10.

The path transform translates, rotates, scales and sometimes skews a path so that

the first and last points of the path correspond to the start and end positions of

the desired trajectory (see Figure 5.11). Since the two end points do not uniquely

define a reference frame into which the path should be transformed, the path is

constrained not to rotate along the line through the start and end points. With

this constraint, the location of the two end points is sufficient to scale translate

and rotate the path into the proper trajectory. For the cylindrical transformation,

it is also necessary to specify an approach vector at each end point.

To date, four path transforms have been defined and found to be- useful in

an assembly environment. A fifth more general path transform, the cylindrical

transform, has been developed but not implemented.

Spatial Path Transform

The spatial path transform rotates the selected path (X, Y, and Z coordinates

only) into the reference frame defined by the start and end trajectory positions

and equally scales the X, Y, and Z local coordinates of the path so as to make the

first and last points of the path coincide with the start and end points of the desired
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Figure 5.11: path transforms. a. Spatial path transform. b. Planar path trans-

form. c. Cylindrical path transform.
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trajectory (see Appendix A.2.1 for a more rigorous definition). An example of a

spatially transformed path in two dimensions is shown in Figure 5.11a. In many

assembly tasks, the robot wrist configuration is not dependent upon the X, Y, Z

trajectory of the manipulator. If the wrist angles were rotated with the direction of

the trajectory, parts fixed in the workspace would be gripped at different locations

as a function of the trajectory. This is clearly undesirable. A fairly simple technique

is used to address the requirement of retaining wrist angles with different X, Y, Z.

trajectories. The wrist angles for the trajectory are taken from the desired start

and end manually taught trajectory points and have no relation to the path or the

spatial transformation of the path. The rotary joint angles from the start position

are used for the first half of the trajectory positions and those from the end position

are used for the second half of the trajectory.

Planar Path Transform

The planar path transform performs the same function as the spatial path trans-

form except that the final trajectory shape is skewed from the original path shape

such that all Z direction motions between path points remain Z direction motions

in the trajectory. (See Figure 5.11b.) In addition, the local Z coordinates of the

path (the local Z distance from a path point to the line through the starting and

ending path points) remain unchanged after transforming. Thus, large excursions

across the workspace do not cause increases in local Z motions. The wrist joints

during a trajectory are configured as in the spatial path transform. The planar

path transform is useful in assemblies with Z direction insertions. Since the Z co-

ordinates of the path remain unchanged, the Z insertion phase of a task remains

independent of the location of the end poinfs. The planar path transform is a

degenerate case of the cylindrical path transform with Z direction unit approach

vectors.

Cylindrical Path Transform

The cylindrical path transform is very similar to the planar path transform but

somewhat more general. Two approach vectors in addition to the two end points

must be specified to cylindrically transform a path to a trajectory (see Figure 5.11c.).
The starting approach vector specifies the departure direction from the starting tra-
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jectory point and the ending approach vector specifies the direction from which the
trajectory is to approach the ending trajectory point. The second point of the path
is positioned along the starting approach vector at a distance equal to the local Z

distance of the path. The next to last trajectory point is similarly spaced from the

ending trajectory point. The intermediate path points are helically positioned so

as to join the second and next to last trajectory points (see Appendix A.2.2 for a

more rigorous definition).

Get Path Transform

The get path transform is a functional as well as geometric path transform. It calls

the planar path transform for the necessary geometric path transformation and

adds the gripper motions necessary for grasping a part at the end of the trajectory.

In addition to the two end trajectory points, the get path transform must be passed

a flag which signifies an external or internal grip on the part. This path transform

also limits the speed at which the robot grasps the part so that the dynamics of

the part do not significantly affect the grasping process.

Put Path Transform

The put path transform is similar to the get path transform except the gripper

is configured to grasp the part during the planar path transformed trajectory and

release the part at the completion of the trajectory. The speed of withdrawal of

the part (the section between the first and second trajectory points) is limited by

the put path transform so that the robot dynamic forces are insignificant and don't

jam the part during its removal from a pallet. During the grasping phase of the

trajectory, the put path transform checks the strain gages in the grippers for the

proper gripping force. If an unexpected force is found, an error recovery subroutine

is automatically called by the put path transform (see Section 5.3.6).

5.3.5 Automatic Pallet Indexing

For assembly tasks where pallets are used to hold parts, the robot will need to

access similar parts from different locations in a pallet. It is assumed that the

parts are very accurately spaced in their pallets. The location of each pallet in the
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workspace is recorded by storing a single set of robot joint configurations which

position the robot at a known reference point on the pallet. The location of the

robot with its gripper positioned at the first part position of a pallet is stored in a

pallet file. This configuration (the part grasping configuration) defines the location

of the local pallet frame. The other parts in the pallet are accessed by adding an

X, Y, Z offset to the origin of the frame. The information in a pallet file contains

* The name of the part being held

* The robot configuration at the first part position

* The X, Y, Z, offset between part locations

* The maximum number of parts in the pallet

In an assembly program, the position of the next available part in each pallet is

stored in a globally defined aggregate. The pallet indexing subroutine uses the

current pallet location for the goal of the next move and then indexes the current

pallet location variable for that pallet. When the final pallet location is reached, the

current pallet location is reset to the first location. In a real assembly environment

an instruction would also be issued for the pallet changer to exchange the empty

pallet for a full one.

5.3.6 Error Recovery

During the portion of an assembly task when the robot is in contact with its

environment (i.e. holding parts), force sensing may be used to assure proper task

completion. A number of error recovery algorithms have been designed which

use the path definition system described in Section 5.3.2. Four different types of

assembly procedure errors are handled by this system.

* Part missing at pallet

* Part slips during withdrawal from pallet

* Part dropped during trajectory from pallet to assembly

* Part dropped prematurely over assembly
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If after an error correction procedure has been initiated another error occurs, the
new error is handled before the first in a nested (recursive) fashion. The error
recovery subrputine described in the present section is only called during a trajec-
tory using the put path transform (a put task) which occurs only after a trajectory
using a get path transform (a get task).

Part missing at pallet. If the error recovery subroutine is called before the first
move of a l-ut path transformed trajectory, it is assumed that no part is present
in the current pallet location and a get task is issued to the next position of the
current pallet. Upon the completion of the get task, the put task in which the error
occurred is reissued.

Part slips from gripper during withdrawal from pallet. If the error recovery
subroutine is called during a move from the first to second trajectory point during
a put task, the subroutine infers that the part is stuck on the pallet. The subroutine
reissues a get task to the same pallet location to try and regrab the part. If the
part is not found or if it slips from the gripper for a second time during the reissued
put task, a Part missing at pallet error recovery procedure is issued.

Part dropped during trajectory from pallet to assembly. This procedure is fol-
lowed if the error recovery subroutine is called during a trajectory move between
the second and second to last trajectory points. It is assumed that the part has
dropped in an out of the way place and the Part missing at pallet procedure is
followed.

Part dropped prematurely over assembly. If the error recovery subroutine is
called during the final move of a put path transformed trajectory, it is assumed that
the part has been dropped into or near the assembly. Since the computer cannot
be sure where the part has been dropped and whether or not it might interfere with
the operation of the final assembly, the error recovery subroutine halts execution
and calls for human help before proceeding. The operator is instructed to either
clear the part and restart the operation or to allow the robot to continue normally.

5.4 Assembly System Implementation

In a factory flexible-assembly environment, a number of the multifunctional assem-
bly modules or cells could be used to perform the assembly or subassembly of one
or more products. Prior to the start of a new assembly task, a cell would be put
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through a setup procedure designed for that particular assembly or subassembly.

This setup phase may consist of the manipulator changing the end effectors on

fixtures and jigs, moving fixtures around the cell. recalibration, and changing its

fingers to accommodap'e the new parts. Following the setup phase, a new assembly

procedure would be ioaded into the cell controller for the next subassembly to be

assembled. The assembly system described in Sections 5.2.1 and 5.3 are used to

demonstrate such a factory assembly environment. In the setup phase the 7565

installs the proper fixturing in the assembly vise, positions the flexible fixtures

around the workcell, and performs the calibration. The calibration procedure in-

volves calibrating the rotary and linear joints of the robot to the workspace (see

Section 5.4.2). The assembly procedure utilizes the hardware and the path defini-

tion software described previously to assemble and final test a number of consumer
hand drills.

The software system for the cell was designed such that there is an integration

between off-line and on-line task programming. The majority of the assembly

procedure for the cell is programmed off-line using the AML subroutine modules

described in Section 5.3. Selecting the robot grasp points and debugging the final

program are performed on-line.

5.4.1 Assembly Cell Setup Procedure

The initial state of the assembly cell prior to the setup phase of the drill assembly

consists of a disassembled assembly vise (plates and jaws removed) with the vise

components fixtured in their storage magazines, flexible fixtures with end effectors

retracted and the robot arm positioned far from obstacles.

A flowchart for the setup procedure of the prototype assembly cell for the

assembly of a hand drill is shown in Figure 5.12. When the robot moves from one

procedure to the next, the moves are buffered from one another so that the robot

will not collide with its environment. The buffering operation involves the robot

moving into a "freeway" area which is defined as the space above the assembly

hardware (positive Z direction). The setup procedures in Figure 5.12 are defined

as follows:

Check Gripper Status. After entering the freeway, the robot moves to an empty

area of the finger magazine and checks to see which fingers are currently attached.
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Figure 5.12: Assembly cell setup procedure.
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Each set of fingers is a different length and the checking operation is performed by

initiating a pinching motion at various heights above a bar. When the presence of

the bar is sensed (fingers make contact), the robot can determine which fingers are

mounted by checking its Z coordinate.

Check Flexible Fixture Status. The Series-1 computer prints an inquiry message to

the user as to the initial location of the flexible fixtures (they are either positioned,

retracted, or lost). The user is instructed to type in the proper response to the

inquiry. If the fixture is lost, a flexible fixture positioning subroutine must be

called. This subroutine sets the proper fixture to the slack condition and allows

the user to insert the flexible fixture gripper interface into the setup fingers of the

robot. The robot then positions and locks the fixture in the proper location.

Initialize Vise Positions. In this procedure, the computer instructs the user to

make sure that all components are removed from the assembly vise and properly

positioned in their respective magazines. The computer then actuates the vise so

that it is in the proper configuration for the rest of the setup procedure.

Calibrate. The user is asked if the system needs calibration (see Section 5.4.2). If

not, the next setup procedure is performed. If the system needs to be calibrated,

the computer will first determine if the fixtures need moving in order for the robot

to access the calibration posts. If the fixtures need moving the robot will first don

the setup fingers then proceed to move the fixtures to their retracted positions.

The calibration procedure described in Section 5.4.2 is then performed.

Put On Setup Gripper Fingers. If the setup fingers are not on the robot grippers,

the robot will take off any fingers it is wearing and put on the setup grippers using

the technique described in Section 5.2.1.

Retract Flexible Fixtures. If the flexible fixture which is near the assembly vise is

not in its retracted position, the robot will perform a fixture approach, positioning

and deproach subroutine to place the fixture into its retracted configuration.

The next few operations involve the robot grasping an assembly vise component

and inserting it into the vise.

Assemble Pin Plate. The pin plate is grasped in the center portion of the grippers

where there is a section of elastomeric material. The robot is then moved through a

set of previously taught points which extract the pin plate from its fixture, move it
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to the assembly vise and assemble it into its proper location. The pin plate, as well

as all of the other plates and jaws for the vise, are designed to be extremely easy for

the robot to assemble (large bevels and chamfers are on mating features). Because

of this, the assembly of these components has proven to be extremely reliable and
no force sensing is necessary to verify task completion.

Assemble Jig Plate. The jig plate assembly proceeds much like the pin plate assem-

bly except that the jig plate itself has elastomeric material mounted on its gripper

mating surface to enhance grasp stability.

Assemble Drill Jaws. Each of the jaws used in the assembly vise to clamp the base

part of the drill assembly has two accurately positioned pins which plug into the

setup gripper fingers. Thus, each jaw is accurately located in the robot's grippers

prior to insertion into the assembly vise. Each jaw has an accurately machined

dovetail on its rear surface which slides into a mating dovetail on the vise carriage.

The dovetail on the vise carriage has a chamfered-dovetailed lead-in section as well

as a cam actuated gib to lock the jaw in place. After the robot places the jaw

in position it actuates a lever which pushes the gib against the jaw's dovetail to

accurately lock it in place.

Position Hold Clamps. The robot uses the tips of its setup fingers to rotate the

proper hold-down clamp into position.

Position Flexible Fixtures. Here the controller runs a program which reverses the

actions used in the Retract Flexible Fixtures procedure.

Exchange Fingers. The robot executes its finger changing moves to replace the

drill assembly fingers for the setup fingers.

5.4.2 Workspace Calibration Procedure

While performing experiments on close tolerance assembly operations, a time de-

pendency of robot repeatability was found. It was proposed that a calibration

of the robot joints would improve the performance of close tolerance tasks. If the

workspace happened to be displaced with respect to the robot BOX frame, it would

still be possible to perform tasks after a recalibration. In the workspace calibra-

tion procedure, all six axes of the robot are calibrated. The calibration procedures

for the yaw and pitch axes use two straight edges fixed in the workspace. The
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Figure 5.13: Yaw and pitch calibration fixtures.

roll calibration is performed at a single post location. The X, Y, and Z axes are

calibrated using 3 posts in the workspace. After generating a rigorous calibration

procedure, it was found that the robot is not capable of calibrating its workspace

to an accurate enough degree to perform close tolerance (requiring accuracy of at

least .02 inch or .5 mm) operations.

Rotary Joint Calibration

The AML subroutines CALYP and CALROLL [98] are used to perform the yaw,

pitch and roll calibration. The yaw calibration fixture consists of a straight edged

plate positioned parallel to the base plate and with its long dimension aligned with

the Y axis of the robot (see Figure 5.13). The alignment was performed by placing

a mechanical indicator in the robot's grippers with the measuring element against

the calibration fixture. Readings were then taken as the robot was moved along
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its Y axis. The fixture was moved until it aligned with the axis within .002 inches.

The pitch axis is calibrated at a 60 degree angle with respect to the reference base

plates. An accurate 60 degree triangle was used as a straight edge at the proper

angle. The roll axis is calibrated with a single post in the workspace using the

CALROLL subroutine. Before the CALROLL procedure is performed, the yaw

and pitch axes are set to their calibrated values.

Linear Joint Calibration

The location of the workspace in robot X, Y, Z coordinates is found through the

location of 3 posts in the workspace. Any changes between the robot linear axes and

the workspace location are assumed to be rigid body displacements and rotations.

The robot locates the workspace by using the AML FINDPOST subroutine 1981 to

locate 3 posts numbered 0 through 2. The vector from post 0 to 1 defines the Y

workspace axis and the vector from post 0 to 2 defines the X workspace axis. Before

the linear axes are calibrated, the yaw and pitch axes are set to their calibrated

values.

Assembly Environment Calibration Procedure

Each time a set of positions are stored, a set of post locations are associated with

it (see Section 5.3.1). In an assembly procedure, the transformation in BOX frame

coordinates from the location of 3 stored posts to newly measured locations of the

same 3 posts is used to calculate a correcting transformation when playing back the

points. Another technique of storing the transformation data was considered. This

second technique involves finding the transformation from the workspace frame as

defined by the 3 posts to the BOX frame and then performing an inverse trans-

formation of the location of the robot joints prior to storing them. When playing

them back, the forward transformation from the newly found workspace frame to

the BOX frame is used. Because the second technique transforms the positions

so they no longer appear as robot joint coordinates in the file, it becomes more

difficult to edit the points and was therefore not used.

The rotary joint calibrations are used in a slightly different fashion than the X,

Y, Z calibrations when making joint position corrections. The values returned from

the rotary calibration procedures are the rotation angles which will position the



joints to the measured 0 location relative to the calibration fixtures. In general, all

values returned are relatively small. The calibration angles measured at the time

the positions are stored are subtracted from the positions before they are recorded

in a file. When the positions are played back, a new set of rotary offsets are added

to the roll, pitch and yaw joint angles before executing a robot action.

Variation of Calibration Measurements

7565 repeatability tests were performed to determine how robot repeatability varied

over time. At the time the test was performed, only the linear calibration fixtures

were in place, so no rotary calibration was done prior to measuring the location

of the posts in the workspace. The test consisted of exercising the robot and then

instructing it to perform a FINDPOST procedure on three posts. The entire cycle

lasted about 6 minutes and was repeated for 2 hours. The test results showing the

measured X, Y, and Z locations of the 3 posts relative to their nominal positions

measured during 2 hours of operation for two separate runs is shown in Figure 5.14a

through 5.14c. Each run was started with the robot hydraulics at room temperature

and the computer and I/O electronics warmed up for at least 24 hours. The smallest

variations were in the Y axis direction - about .006 inches maximum. The largest

excursions in positions were seen in the Z axis direction which varied .016 to .020

inches in the first 45 minutes of the test and then varied less than .003 inches for

the duration of the test.

The results of the test show that there appears to be a warm up period before

the robot can be considered repeatable to less than .015 inches. A warm up time

of about 45 minutes conforms to the suggested time in the AML manuals [98].

The source of the time dependent errors has not been investigated to date, but is

likely to be temperature sensitivity of the tempo-sonic linear position transducers,

potentiometers, the servo electronics and mechanical structures or some combina-

tion of these elements. A temperature sensitivity of the tempo-sonic transducers

may explain the large variations seen in the Z axis and the smaller variations in

the X and Y axes because the Z axis transducer is the only one positioned next to

incoming hot hydraulic oil. The larger variation in the X axis compared to the Y

axis may be due to the temperature sensitivity of the pitch potentiometer since the

pitch axis is aligned with the Y axis during the entire test calibration procedure.

After numerous calibrations were performed prior to high tolerance assembly
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tasks, it became apparent that the robot was incapable of locating its workspace

to a sufficient accuracy for the successful completion of the tasks. It was also noted

that when the robot was warmed up for more than about 45 minutes, many of

the high tolerance assembly tasks could be performed as long as no calibration

procedure preceded the task. Thus, the robot could not locate its workspace to the

same accuracy as its steady state (warmed up) repeatability. At times it was as

much as .030 inches (.75 mm) out of calibration. Position errors often appeared to

be larger than the calibration offsets as the robot changed its joint configurations

for different phases of the assembly tasks.

5.4.3 Power Drill Assembly Procedure

The assembly of Black and Decker I inch hand drills was used to demonstrate some

of the assembly hardware and software concepts in Sections 5.2.1 and 5.3. The drill

assembly task consists of the mechanical insertion of 13 of the 19 parts of the drill,

Figure 5.15. Electrical wiring, switch, brush and handle assembly operations are

not addressed. The layout of the drill assembly cell is shown in Figure 5.16. The

assembly procedure is coded in AML and uses the path definition system described

in Section 5.3.2. The majority of the assembly procedure is programmed off-line.

Only the gripper grasp point for the parts need be programmed on-line.

The top level cell control program is generated off-line by a programmer. An

example of part of a drill assembly program is shown in Figure 5.17. Each MOVE_-

PATH instruction is essentially a task level instruction for the robot. The argu-

ments to this instruction contain information about the type of task to be per-

formed, the shape of the path through which the robot should move, the type of

grip to be used on the part and the part with which the task should be performed.

MOVE PATH instructions with alternating calls to GET PXF and PUT PXF (get

and put path transforms) comprise the skeleton of the assembly program. Addi-

tional commands for calling subroutines which control peripheral hardware (devices

other than the robot) make up the majority of the remainder of the assembly pro-

cedure.

The assembly procedure is shown in flowchart form in Figure 5.18. Most of

the operations involve the acquisition and the insertion of the appropriate part

in the assembly. Robot motions corresponding to the get then put instructions

in Figure 5.18 consist of the robot moving through the desired path to the proper
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Figure 5.15: Consumer hand drill parts. 13 of the parts were automatically assem-

bled by the prototype system.
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Reference Baseplates 1

Figure 5.16: Hand drill assembly cell.

pallet position of the appropriate part. The robot then grasps the part and proceeds

to assemble it in its proper location at the appropriate assembly jig. The "tap"

moves for a part. are extra robot motions to assure the proper seating of a part or to

perform a robot move which is not simply accomplished using the path definition

system. Such a move was found to be necessary for only a few of the drill parts

(see Table 5.1).

All of the parts are assembled at the main assembly jig (the assembly vise) with

the exception of the shroud and the chuck. Since the flexible pallets accurately

fixture the parts, the pallets may be used as assembly jigs as well. The shroud is

assembled into the appropriate stator in its pallet. This subassembly operation is

necessary because the stator must be inverted prior to its assembly into the final

drill assembly.

The first and last operations of the drill assembly perform the fixturing and

assembly of the drill chuck. In the first operation the robot places a chuck into

the chuck jig for subsequent assembly. The final drill assembly operation entails

threading the chuck onto the bottom of the drill assembly. It is accomplished by

applying power to the drill motor, thus spinning the first-gear shaft and threading
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DRILL: SUBR;

EXAMPLE AML PROGRAM

- FIRST PROMPT USER FOR INITAL INPUT
NIT.INOUIRE

CAUBRATE.WORKSPACE;

START THE DRILL ASSEMBLY HERE

PREPARE.VISE;

MOVEPATH(SHRT.P,'GETPXFP,STARTPT,NEXTPT('BELLI•
MOVE.PATH(TALL.P,'PUT.PXF',,NEXTPT('VISE'));

WAITMOVE;
SECURVISE

MOVE.PATH(SHRT.P,GET.PXP,STARTPTNEXTPT('GRI'•
MOVLEPATH(TALL.P,'PUT.PXF',NEXTPT(•'VISE

MOVE.PATH(SHRTT.P'GET.PXF'STARTPTNEXTPT('ThWIS
MOVE..PATH(TALL.P,'PUT.PXrNEXTPT('VISE'

MOVE.PATH(SHRTS.P'GET.PXFP,STARTPTNEX.'T('THB');
MOVEk,THI(TALL.P,'P UT.PXP,,NEXTPT('VISE'3

MOVE.PATH(SHRT.P,'GET.PXFSTARTPT,NEXTPT('TW'
MOV.PATH(TALLU..P,'PUT.PXP,,NEXTPT("ISE* .

MOVE.PATH(SHRT.P,'GT.P XFSTARTPT,NEXTPT('GOR';
MOVE.PATH(TALL.P,'PUT, PXP,NEXTPT('VISE

Figure 5.17: Example top level assembly program.
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Figure 5.18: Drill assembly procedure.
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Drill Assembly Operations

Part Name Assembly Fixture Type of Tap Required

Bell Housing Vise

Gear 1 Vise Seating

Thrust Washer Vise

Thrust Bearing Vise

Thrust Washer Vise

Gear 2 Vise Meshing

Bushing Plate Vise

Soft Washer Flexible Fixture

Rotor Vise Meshing

Soft Washer Vise Low Tolerance Mating

Shroud Stator Pallet Seating
Stator Vise

Chuck Chuck Jig

Table 5.1: Hand drill parts in order of assembly.

the chuck to the bottom of the drill (see Figure 5.19). In this operation, the flexible

fixture is used to locate and actuate the end effector which applies power to the

drill. This device has a standard flexible fixture end effector interface. It also

has contacts which plug into the stator windings and brushes which are actuated

by solenoids to contact the commutator of the rotor. A micro-switch sensor is

mounted under the chuck in the chuck jig and senses when the chuck has been fully

threaded onto the shaft. This sensor also acts as a final test to check the proper

operation of the drill motor.

The intermediate part fixturing function of the flexible fixtures is demonstrated

in the assembly of the first soft washer. Just after the acquisition of the soft
washer, the flexible fixture is extended to a position over the assembly to provide

an intermediate fixturing location. The washer is then inserted into the flexible

fixture. Next, the rotor is acquired and inserted through the fixtured washer.

The flexible fixture is then retracted and the rotor is positioned to its proper

position in the assembly. This procedure was necessary for the reliable assembly

of the soft washer. If the washer were directly assembled onto the previous part

(the bushing plate), it would be unstable (see Section 2.2.1 for a definition of an

unstable assembly).

Aspects of the assembly procedure which are taught on-line include gripper

196



§5.4: Assembly System Implementation 197

Figure 5.19: Chuck threading operation.
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Figure, 5.20: \\asher assembly operat ion.

grasping positi ons for eachit part . a,,,n(,blI cell lax out . and (cIhanuge, in pa th iIi nlp late

selection for obstacle, avoidanlce. After the mi ain skeleton of tli(e assemblylv program

has been xrittlen off-line. 1()o robt)o con(ufi grations for each piar in Ithe assetmlbl\

must be taught using otie "'tea(Ich b b hoxinug" tlIechnlique. The r)ob)ot configurationl

for the proper graspillg g,,oitiIon for each Ipart located at thhe first pallet station

and the robot conrfiguration for eac(li properlk positiolne(d part in the assembly are

taught on-lie, andl tored iln files for use (uring Ilihe execution phase of the nain

asserimbly program.I. T•(e rob)ot configuration during grasping has a significant effect

oin the layout of tIhl assei•blv (cell. Often the grippers or other parts of the robot

interfere with parts in the ad;jacent ptall(ets: ithus. pallet layout inl the c'ell is best
performed on-line. A geonmetric simulatlion (such as 52.67.107.152) of the parts

and the robot would talalox tI(e ceil layout to be I)erfornTmTId off-liiie.

Mlost of lhe d(ebiuging, of Iie assemIblx pro(edture must also we perforIiied oil-

linte. Running lhe asse,-•itl) )INprocedur( \\ 1it 11 a iofi-lile t)rograrlTll( td procedure and

on-line iaught ploints will • ot guara•tl ce execiltable rob' mlolil olions. Sinice a tiiod(el

of Hile Norkspacc is , riot ise"( (1inilg off-line •progralmlling. coiIionf s betheein •lie

robot and its eenvironment are poSsible. If the ininial selection of a path connecting
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two trajectory points is not appropriate for obstacle avoidance, another path should

be selected or defined on-line. It was found that most of the on-line programming

effort was in teaching reliable grasping geometries between the robot and the parts

and modifying the pallets to accurately fixture the parts without over constraint

which may cause jamming upon part removal. The basic assembly procedure (top

level program) remained relatively unchanged during the debugging phase with the

exception of the addition of some "tap" operations for a few parts.

5.5 Conclusions and Discussion

After studying this and past prototype programmable assembly cells, a number

of conclusions have been drawn and a list of issues which have yet to be fully

addressed has been formulated.

1. Only a small subset of assembly tasks are possible with most single armed

robots. Special assembly tools and end effectors are required for many tasks.

2. High precision assembly (clearances between mating parts from 0.25 to 1.0

mm) is possible at moderate to fast speeds (1 meter per second) using position

feedback only and the following stipulations

(a) Joint stiffness must be high enough for fast mechanical settling, but

low enough to allow adjustments for part misalignments with negligible

interpart forces. The location of the rotational compliances strongly

affects which operations may be performed as well as the speed at which

the operations may be performed.

(b) Adequate manipulator repeatability. This quantity depends upon the

size of the part chamfers, the manipulator's compliance, and the sta-

bility of the manipulator's grasp on the part. For parts which are held

relatively firmly (not easily displaced from the gripper) and have rela-

tively large chamfers (about 1 mm), assembly with clearances as low as

0.01 inches (0.25 mm) is possible with the 7565 (robot repeatability :

0.1 mm). Smaller clearance insertions such as the .002 inch (.05 mm)

clearance first-gear shaft insertion was possible if the parts were allowed

to fall together then tapped into place. The compliance of the 7565
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is difficult to accurately measure due to the robot's integral position

controller.

(c) Certain operations which involve the interaction of the manipulator or

part being held by the manipulator with a "stiff" environment must

be performed at reduced speeds for reliable operation. Also because the

grippers were often tipped 45 degrees form their rest position, Z direction

accelerations produced appreciable X and Y direction dynamics induced

deflections and had to be limited.

(d) Part grasping and extraction is difficult for accurately fixtured parts

and must be performed so that the point of application of the with-

drawing force is in a location which minimizes the possibility of wedging

or jamming [201]. For a part with a cylindrical hole fixtured on a close

tolerance pin, the center of compliance 1104,1331 of the manipulator-part

system should be just above the top of the fixturing pin. If such a grasp

location cannot be found, an offset moment may be applied to the part

to facilitate its extraction.

3. Force feedback controlled assembly and force monitored assembly (guarded

moves [113 ) cannot be performed with many commercial robots at speeds

which are appropriate for high speed industrial assembly. A very high band-

width system is required (see reference "2021 for an overview of force control).

4. The cost of performing operations inside a robotic assembly cell is extremely

expensive; therefore, time inside the cell needed to perform operations other

than assembly (such as gripper changing) should be minimized.

5. A significant amount of time in an assembly task is spent waiting for the

manipulator or other mechanical devices to come to rest.

6. Development time needed to automate an assembly may be reduced by per-

forming most of the assembly cell programming tasks off-line.

7. Tasks such as teaching adequate manipulator grasp points for parts is ex-

tremely difficult to perform off-line due to unforeseen gripper deflections and

part-fixture jams during part removal.



8. Robot fixture tooling may be readily changed by a robot such as the 7565,

but should be specially designed for ease of assembly (and disassembly).

Issues which were cited as requiring much additional research include

1. The use of sensors to eliminate much of the required accuracy in fixtures,

pallets, grippers and other hardware upstream of the assembly cell.

2. Investigation of the effect of manipulator impedance on the speed and ease

of performing assembly operations.

3. Systems that will allow more complete off-line programming of an assembly

task including geometric and other physical models.

4. Modeling of dynamic interaction of parts, manipulator, and environment and

efficient modes of control for these interactions.

5. Systems which are capable of sufficiently accurate and reliable programmable

part feeding.

6. The development of assembly tools to accomplish the operations not yet

addressed.

§5.5: Conclusions and Discussion 201
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Prototype Position-Sensor-Driven

Assembly System

Chapter 6

A prototype part position sensor was designed based on analysis in Chapters 3

and 4. It measures the location of certain part features in six degrees of freedom

based on triangulation of points illuminated by a light plane source.

The prototype was constructed and then calibrated on a test bed. The calibra-

tion procedure entailed quantifying relevant parameters for both the camera and

the light source. Accuracy in measuring the location of a right corner feature was

then determined through a battery of tests. Finally, the sensor was removed from

the test bed and used with a mechanical manipulator to perform assembly tasks

with real parts.

6.1 Components of the Prototype Sensor

The sensor consists of a helium-neon laser (Mells Griot model 05-LHR-151) and

cylindrical lens (Mells Griot model LM-60), an MOS-type camera with 320 x 244

pixels (Hitachi model KP-120) and a 50mm lens (see Figure 6.1), a Symbolics 3600

Lisp machine and bit-graph terminal, a 454 x 576 x 8 bit frame-grabber (built at

the MIT AI lab by Noble Larson), a hardware convolver (also built at the MIT AI

lab by Noble Larson [134]) and a color graphics display. Both the camera and the

frame-grabber are synced by the same clock. The camera constantly sends a video

signal to the frame-grabber. When so instructed by the Lisp Machine, the frame-

grabber fills its memory with the output from the camera. The pixel clock internal

to the camera is not synced with the frame-grabber pixel clock; thus, the pixels in
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'z:,

Figure 6.1: The prototype sensor system. A helium-neon laser and an MOS-type

camera are mounted on an aluminum structure.

the frame-grabber do not necessarily correspond to the pixels in the camera. The

set of instructions which the Lisp Machine issues when taking a reading from the

sensor is summarized below.

Grab Frame: The frame-grabber is inistructed to start filling its Imemory at the iiext vertical sync

pulse.

Display Image: Send the array stored iii the frame grabber to the graphics display.

Process Image: Crop, filter, segment, and fit lines (see Section 4.6.2).

Calculate Orientation: The rotation matrix from the camera frame to the feature frame is cal-

culated (see Section 4.7.2).

Calculate Displacement: The displacement vector from the camera frame to the feature frame

is calculated (see Section 4.7.2)

Display Results: Draw the fitted lie seglllents, the edges o,f the right corner feature anid the

feature coordinate frame on the graphics display aiid returii the rotation matrix aniid dis-

placement vector to the terminal.
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Figure 6.2: Test bed used for sensor accuracy studies.

6.2 Construction of the Test Bed

A test bed was designed to test the accuracy of the sensor in locating right corner

features in six degrees of freedom. The table of a Bridgeport milling machine

was used in conjunction with a machinist's rotary table and a two axis manual

positioner, Figure 6.2. The milling machine table provided three degrees of freedom

in translation and the rotary stages provided three degrees of freedom in rotation.

The camera and two lasers with cylindrical lenses were firmly mounted to the

milling machine head above the table. The position and orientation of the lasers

was adjustable. The approximate laser positions used for the sensor tests were

determined empirically through experiments with the corner finding algorithms.
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The disparity angles (OLP) of the two lasers (only one laser is shown in Figure 6.2)

were 64 and 68.5 degrees.

6.3 Calibration of the Camera-Light Stripe System

Both the camera optical and laser geometric parameters were calibrated on the

test bed. The camera magnification factor was independently calculated along the

two directions of the image plane. The apparent difference in the magnification

factor was due to non-synchronized sampling along the horizontal direction (see

Section 4.3). Magnification is defined as the length from the rear nodal plane to

the image plane divided by the width of a pixel (see Section 4.2.1 for lens parameter

definitions). The following camera parameters were calibrated

rpixet: Apparent aspect ratio of the pixels in the frame-grabber.

ztarget: Distance from the front nodal plane to the base position of the target.

(YCOE, zCOE): Sensor frame coordinates of the center of expansion.

l: Magnification along the sensor y coordinate.

. Magnification along the sensor z coordinate.

It was necessary to calculate the base distance from the camera to the target,

Xtarget, for accurate modeling of perspective projections.

The calibrated laser parameters (described in detail in Section 6.3.2) were (refer

to Figure 4.2)

O6 p: Disparity angle of the laser plane from the optical axis.

OLP: Tilt angle of the laser plane from the vertical.

YLP: Distance from the center-of-expansion in the image plane to the laser plane along the
camera y axis.

6.3.1 Camera Calibration Procedure

A single step procedure was designed for the camera calibration. A series of images

of an optical target were recorded at different distances from the camera (along

the approximate optical axis). A second set of images were taken at the same

distances, but with the target rotated 90 degrees.
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Figure 6.3: Sketch of target used for camera calibration. Lines are accurately

spaced 1 inch (6.35 mm) apart.

Camera Calibration Target

The target used to calibrate the camera parameters consist3 of a flat surface with

a number of thin parallel lines drawn at a .25 inch (6.35 mm) spacings, Figure 6.3.

The lines are purposely positioned so that they are not oriented along the axes of

the pixel array of the camera. This avoids measurements at singularity positions

identified in Section 4.3.

Pixel Aspect Ratio

The apparent aspect ratio of the pixels in the frame-grabber may be different

from unity if the camera is not synced on the pixel level with the frame grabber.

Most video cameras do not have an external pixel clock sync input, thus a slight

distortion in image shape occurs after digitization in the frame grabber. Because

of the asynchronous clocking of the frame grabber and the camera, this distortion

is sensitive to environmental (temperature) changes.

The frame grabber aspect ratio may be calculated from two images of the target

(call them image I and image 2). Both images are taken with the target at the

same distance from the camera, but one target image is rotated 90 from the other.
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The distance between the lines in the ith image, DI,, is a function of the distance

between the lines on the target. Dtarget

Dr: = \ (Dpz,, LT,, ., sin ,)2 - (DP,,,, LT,,', cos 0,)" Dt (6.1)
It

where 0, is the angle of the target line. D,,, is the distance between target lines

in the image measured in pixels and x, is the distance from the front nodal plane

to the target. Taking the ratio L equal to unity, and after some rearrangement,

we obtain an expression for the pixel aspect ratio

r piz =S=SD i.2,1(1 S) - S2
2D"2 2(1+ (62),f s.)- s p?)' (6.2)

-D- D2 (1 , (1. S- )

where we have used the relationships

tan 0, = S

sins0 = (6.3)

cos0 =$

Center-of-Expansion Calibration

The center-of-expansion is a point in the image plane of a camera which is defined

by a certain straight line motion of a target (see Figure 6.4):

Given an object plane (more specifically, a set of points which lie in a

plane and are visible to a camera) which is not parallel to the optical

axis of a camera and a motion of the object plane which is not parallel

with the plane, the center-of-expansion is the point in the image plane

which corresponds to a single point in the object plane throughout the

motion.

As the target in Figure 6.3 moves away from the camera (motion should be

roughly parallel to the optical axis), the lines in the image appear to separate from

one another. An imaginary line parallel to the target lines which passes through

the center-of-expansion will be the only line which appears not to move (this line

will most likely be located in between a pair of actual lines on the target). This
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C.O.E. y

I I
Motion ofobject plane ,

Points appear to move towards
the center of expansion

Figure 6.4: Camera and object plane used to define the center-of-expansion. Images

are stored as the object plane is moved along the camera's x axis.

line is denoted as the stationary line. The intersection of stationary lines from two

image sequences (the target for each sequence is rotated 90 degrees) defines the

center-of-expansion.

The parameters of the stationary lines are calculated from pairs of images within

each sequence. Results from the calculations from the image pairings are combined

to obtain a sequence result. Two stationary line calculation sequence results are

then used for the center-of-expansion estimate. The contribution from each line

in the image is apprc priately weighted (line parameter weights are where oa

is the parameter variance) based upon its length. Equations (4.22) and (4.23) in

Section 4.3 gives the relationships between segment length and parameter variances.

The ratio of perpendicular distances of a pair of lines in the image to the center-

of-expansion is the same as the ratio of distances between lines in the corresponding

images.
LI ,actual DrLct(6.4)
L2,actuta D2

where Ll,actua, is the distance from the center-of-expansion to a certain line in the

first image and L2,actuai is the distance from the center-of-expansion to the image of

the same line in the second image (the target has been moved to a different depth

for the second image), and Di is the weighted average distance between adjacent

lines in the i'h image of the target. Measurements of distances to the lines are

initially made from a point which is not the center-of-expansion since its location
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is not known a priori. Thus, the distance to the center of expansion from a certain

line is

Li,actual = L,,me., -I AL, (6.5)

where L,,mea, is the perpendicular distance from the initial reference point to the

line and AL is the perpendicular distance from the stationary line to the initial

reference point. Thus, once AL is known, the location of the stationary line is

known. Substituting Equation (6.5) into Equation (6.4) and solving for AL

D1 L2 - D2 L 1aL = (6.6)D2 - D 1

The slope of the stationary line in a sequence of images is the weighted mean slope

of all of the lines in all of the images and the intercept is the weighted average

intercept calculated from the intercept of each line and Equation (6.6).

An iterative procedure is used to find the center-of-expansion. An initial guess

is made and the calculation described above is performed. Using a good first guess,

the procedure converges after one iteration.

Calculation of the Base Position of the Target

Accurate direct measurement of the distance from the camera lens front nodal

plane to the target is difficult to make since physical access to the lens is limited.

The following is a technique for making this measurement from a set of images of

a target of precisely spaced lines. The target (Figure 6.3) is positioned at precisely

incremented distances from the camera. Because the incremental target positioning

and line spacing is precise, an accurate range estimate may be obtained without

knowledge of the lens parameters.

An arbitrary position of the target from the front nodal plane of the lens, Xtarget,

is correlated to x settings on the test bed in order to obtain absolute distance mea-

surements of the target. The distance between lines in the image plane (measured

in pixels) for the ith image as a function of the distance from the lens is given in

Equation (6.1). We will consider calculations made from two images, say j and

k, which correspond to test bed x position readings z, and zk respectively. A

certain distance from the lens to the target, Xtarget, may be selected such that the

actual distance from the lens to the target at positions x, and Xk is Xtarget + X
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and Xtarget + Xk respectively. Taking the ratio of the distance between lines in two
images (from Equation (6.1) and the appropriate choice of Ztarget)

Dpiz,k Xtarget 4-(
(6.7)

Dprz,j starget + Z k

Solving for Ztarget

X1  
D Xk- .... j " (6.8)Xtarget= D~l, • k - 1
D Xkl

Pairs of images are used to generate estimates for Ztarget. These estimates are
then combined using appropriate weightings. The weightings are based on the
fitted line parameter errors for lines in the image of the target. Errors in manual
positioning of the test bed were fairly small and an order of magnitude calculation
showed they had little effect on the total error.

Magnification Calibration

The camera magnification calculation uses the same set of images as the center-

of-expansion calculation. A separate magnification calculation was performed for

each image and the weighted mean was used as the final value. The quantity used

for the magnification includes the conversion from inches (mm's) to pixels. The

apparent magnifications in the y and z directions are different if the pixel aspect

ratio is not unity.

Using Equations (6.1) and (6.4) we may solve for the magnifications in the y
and z image plane directions

fo = - iDpiz,i r,,,,t

pi Dtarget 1 + S2(6.10)

( 0 iDpizi 1 + (rpize1Si) (6.10)
L,1Dtarget 1 2 S

For good resolution, Equation (6.9) should be used on images of lines with large

slopes (Si > 1) and Equation (6.10) should be used on images of lines with small

slopes (Si < 1).
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6.3.2 Calibration of Laser Parameters

The light plane calibration procedures are similar to those used for the camera

calibration. Instead of a target with lines, a geometrically flat. white calibration

surface is employed. A series of images is taken of the laser plane intersecting the

calibration surface with the surface located at incrementally decreasing x positions.

Tilt Angle Calibration

The tilt angle, qLp, defined in Figure 4.2, may be determined by fitting a straight

line to the image of the stripe generated from the intersection of the light plane

and the calibration surface. A number of images of a sequence of target positions

are used for this calibration and the appropriately weighted mean of the slopes of

the lines is used (see Figure 6.5). Because the pixel aspect ratio may be different

than unity, the slope of the stripe in the image (measured from the pixels) may be

slightly different from the slope of the line generated by the light plane

tan LP = rpizeIS (6.11)

where S is the slope of the stripe measured from the pixels in the image.

Disparity Angle Calibration

The disparity angle, OLP, is determined by locating the intercept of the stripe in

a sequence of images. For convenience, the stripe intercept is taken along the y

direction on the z = ZCOE axis. The intercept information is combined with the test

bed x distance settings (this calibration is described in Section 6.3.1) and a least

squares slope fitting procedure is used to determine the tangent of the disparity

angle (see Figure 6.5).

Light Plane to Camera Distance

This distance, YLP is measured along the y direction of the image plane and is

from the center-of-expansion to the light plane. It is obtained from a least squares

intercept estimate of the data from the disparity angle calibration (see Figure 6.5).
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C.O.E.

Points used to calculate
disparity angle and

light plane to
camera distance

I line

Angles used to
calculate tilt angle

Figure 6.5: Method for determining the disparity angle, tilt angle, and light plane

to camera distance.

6.4 Performance Evaluation of the Prototype Sensor

The measurement accuracy of the test-bed-mounted sensor was studied by mea-

suring the corner feature of a cube, Figure 6.6. Corner location measurements

were compared to the settings on the six stages of the test apparatus. These mea-

surements were relative to an arbitrary reference location. It was not necessary to

obtain absolute measurements since relative accuracy is the specification required

to determine sensor performance in an assembly environment where all measure-

ments are relative to the robot frame.

The relative accuracy in locating the corner of the cube using information from

two light planes was also studied. The maximum likelihood technique developed

in Section 4.8 was used to obtain estimates of the orientation of the cube.

6.4.1 Test Procedure

The test procedure for determining the accuracy of the sensor entailed locating

the cube at a home position then moving one of the six positioning stages (call
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Figure 6.6: Test cube mounted on rotational stages.
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this the test direction) a small amount. An image of the cube was recorded and

the same stage was moved the same amount once again. This was repeated a

number of times. The positions of the cube corner from a series of images were

compared to the apparatus positions and sample statistics were calculated from

differences between stage motion and sensed corner position. The test procedure

was repeated for all six stages. The rotational degrees of freedom in stage motion,

Xrot, Orot, and Vkrot are defined in Figure 6.6. Measurements were made in the 0,

0, and V degrees of freedom, which are the Euler angles of the cube. Figure 4.32

shows the convention used. Since the cube was fairly accurately aligned to the axes

of the positioner, rot corresponds closely to 4 and krot corresponds closely to 1b.

The range of motions for the tests were 0.5 inches (12.7 mm) in each transla-

tional degree of freedom and 8.5 degrees (.15 radians) for the ,,rot rotation and 0krot

rotation and 20 degrees (.35 radians) for the Xrot rotation. In general, measure-

ments near the center of the ranges of motion were more accurate than those near

the ends. This was because line segments on some cube faces were smaller as the

cube was moved from a central position under the laser stripe.

Because the cube is not absolutely referenced to the stationary camera frame,

accurate measurements in some degrees of freedom were difficult to obtain. Most

measurements were made in degrees of freedom which were stationary during test

direction motions. For example, rotation about the x axis slightly changes the y

and z positions of the corner of the cube since the rotation is not exactly through

the corner, however, the x position remains unchanged. Thus, only estimates of

the x coordinate of the corner would be computed.

6.4.2 Single Light Plane Test Results

Figure 6.7 shows a typical plot of the measured location of the cube in the z

direction due to motions in the y direction. The larger errors at the ends of the

range are due to smaller line segments on some of the cube faces. Similar plots

were generated for measurements and motions in all pairs of degrees of freedom.

Table 6.1 shows the results of the tests for motions of each of the six degrees of

freedom. The blank spaces in the table correspond to degrees of freedom which

were non-stationary or were not linearly related to the test direction motion. The

mean of the sample standard deviations are .002 inches (.05 mm) in translation

and 0.095 degrees (0.0015 radians) in rotation. Assuming the distribution of errors
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Figure 6.7: Errors
the z direction for

in locating the corner of a cube. Measurements were made in
.5 inches (12 mm) of motion in the y direction.

Direction of Laser X error Y error Z error 0 crror o error c error
Motion Number (inches) (inches) (inches) (degs.) (degs.) (degs.)

Trius. X 1 .0030 .0010 .0010 .05 .03 .08
Trans. X 2 .0025 .0015 .13 .04 .11
Tranms. Y 1 .0035 .0025 .0015 .12 .09 .14

Trais. Y 2 .0080 .0025 .0025 .12 .05 .13
Trans. Z 1 .0010 .0020 .0025 .11 .07 .13
Trans. Z 2 .0025 .0005 .0015 .15 .06 .14

Rot. krot 1 .0015 .05 .08
Rot. rot 2 .0015 .09 .08
Rot. rot 1 .0020 .09 .12

Rot. 'rot 2 .0020 .14 .08
Rot. Xrot 1 .0015
Rot. zot 2 .005

Table 6.1: Results of the part position sensor accuracy tests. Each number is the

sample standard deviation from 21 images. Mean sample standard deviations are:

translation - .002 inches (.055 mm), rotation - .095 degrees (.0015 radians).

Oa..

5

Test Y4L 1-Z. St. Dev. = 0.0016 inches
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/

Figure 6.8: The intersection of two independent light planes with a cube.

are Gaussian, 98.8 percent of the measurements (5 standard deviations) will be
within an accuracy of .010 inches (.25 mm) and .5 degrees (.007 radians). These
are within the design goals presented in Section 3.4.

The repeatability of the sensor was extremely high (about .0001 inches or .0025
mm per standard deviation) when multiple readings were taken without moving the
target in between readings. If the target position is perturbed slightly, the readings
change more appreciably (about .001 inches or .025 mm per standard deviation).

6.4.3 Multiple Light Plane Test Results

The accuracy in locating the cube's corner using two light stripes was investigated.
Six line segments (three from each laser) were generated for each position of the
cube (see Figure 6.8). Two independent orientation estimates (Euler angle vectors)
were obtained from the line segments. These were combined using a maximum like-
lihood technique [Equation (4.65)]. Two sets of results were obtained: one with
all six estimates being used in a single maximum likelihood calculation, and one
with only pairs of corresponding Euler angles being used. When pairs of single

nl~ rr r
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Euler angles are used in the estimate, correlations with other Euler angles are ig-

nored. Figure 6.9 shows the Euler angle estimates for lines from laser number 1,

laser number 2, and the maximum likelihood estimate using all six angles. The

calculated angles from each of the lasers have different means due to calibration

errors. The maximum likelihood estimate does not always fall between the two

calculated angles and for some angles seems to be an imprecise estimate. This is

most likely due to the coupling between the Euler angles and the unmodeled cali-

bration uncertainties. The maximum likelihood estimates from pairs of angles are

shown in Figure 6.10. Here the maximum likelihood estimate is between the two

independent laser estimates. The estimate nears one of the single laser estimates

when that one is more reliable (longer line segments) than the other. The esti-

mate always uses the combination of the measurements which reduces the overall

error. Since calibration errors were not taken into account, the estimate weighs

the two calculations equally for equal length line segments. Because the maximum

likelihood estimate performs a weighted average of the two estimates, and the two

estimates have different means, the sample standard deviation of the maximum

likelihood estimate is not always less than the smaller sample standard deviation

of the single laser estimates; although, the tests showed that it was usually very

close to the lower standard deviation of the two.

6.5 Repeatability and Accuracy of the Unimation PUMA

Robot

A study was performed to determine the repeatability and local accuracy of a Uni-

mation PUMA robot using the prototype part position sensor. A right rectangular

prism, which was held in the PUMA's grippers, was used as the target for the

sensor, Figure 6.11.

6.5.1 Repeatability Test

The test procedure for the robot repeatability test is as follows. Define an arbitrary

home position within the active sensing volume for the sensor. Move the arm to

various locations around the workspace. After each motion away from the home

position return the PUMA to the home position and make a measurement using
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Laser 1 Meas.

Laser 2 Meas.
Max. Likelihood
Estimate

0.0

Figure 6.9: Maximum likelihood estimates of rotation angles of the test cube.
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Figure 6.10: Maximum likelihood estimates of rotation angles of test cube from
pairs of angles. Plots are for Euler angles 0, 0 and Vt.
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Figure 6.11: P'1IA rnlalniplulator and prisnlatic target used for repeatability and

accuracy studies.

the sensor.

The repealability v as found to be somewhat less than the accuracy of the sensor

reported in Section 6.-.'2. It1 was possible to newasure below the apparent accuracy

of the sensor because the deviations in robot posit ions from the home position

were very small: whereas, the accuracy tests for the sensor produced relatively

large position changes (about .5 inches or 13 rnrm). The measured deviations were

about .001 inches (.025 mmn). It was not det ermined whether the measured errors

were due primarily to the sensor or the repleatability of the manipulator: thus. the

measurerent is an upper bound for the repeatability of the PUMA.

6(..3.,2 Local ArccarTl!j 7(,Ts/

The local acc urac of the IPNIA ma n i an t or was s ludied by conrman ding the mIia-

nipulator to mnove a cerlain amroumi . then using the sensor to mneasure the amiount

act ually moved. Ilecause ofi •ni rec'ise align•lenI between the manipulator and cani-

era coordinate frames, only measu reientl s iln ti e direction of robot mot ion could

b)e accuratelly made. In each test. the robot was commnanded to imnove along a di-

221



Chapter 6: Prototype Position-Sensor-Driven Assembly System

Figure 6.12: Results from the PUMA local accuracy tests. Robot motion in the
x, y, and z directions are along the abscissas and measured position deviations are

along the ordinates. The standard deviations listed correspond to errors over the

full range of motion indicated.

rection parallel to one of its coordinate axes and the sensor was used to measure
the total displacement of the prismatic target. Figure 6.12 shows the deviations

in PUMA motions as measured by the sensor. As might be expected the local ac-

curacy decreased with larger motions. For instance, the x direction local accuracy
over a 1.8 inch (46 mm) range was .0067 inches (.17 mm), whereas, over a .5 inch

range in the x direction, the local accuracy was about .003 inches (.08 mm).

6.6 Prototype Sensor-Driven Assembly System

A prototype position-sensor-driven assembly system was developed and its capa-

bilities in performing assembly tasks were studied. The prototype system consists

of a Unimation PUMA robot, a part position sensor (described in Section 6.1), a

Symbolics Lisp machine model 3600, some image processing hardware, and a color

graphics display system (see Figure 6.13). The sensor is mounted on the work table

0.003

-0.000

-0.006

--.
l

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.4
Setting (inches)

Test Accuracy in X, St. Dev. * 0.0067 inches
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Plane

Figure 6.13: The prototype position-sensor-based assembly system. The compo-
nents include a Unimation PUMA robot, a part position sensor based on a laser-
stripe ranging technique, a Symbolics Lisp machine model 3600 and a color graphics
display system.
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· I

Figure 6.14: Connector assembly and vice fixture.

for the robot and measures the location of a part as it is being held in the robot

grippers.

6.6.1 ,Se.sor-Drirveti A s.semrbly Dermnonlstration Tasks

Three assembly tasks were selected as benchmark tests for the sensor-robot svst em.

The first task consists of mating the two halves of a 36 pin connector, Figure 6.1-1.

In order to assemble the connector. two guide pins are mated. The pins are ap-

proximately .1 inches (2.5 mm) in diameter with a clearance of about .01 inches

(.025 mm) and chamfers of about .03 inches (.075 mm). The nearly orthogonal

corner feat ure on the rear end of the part is sensed during the assembly procedure.

The connector is assembled into its mating piece which is fixtlured in a vice.

The second benchmark test is ile die-cast box assembly, Figure 6.15. The

box is somewhat specular and had rounded edges and corners. There are very

small chamfers (about .01 inches (.25 inrin)) on the mating parts of the box and

the total side to side clearance is about .008 inches (.2 mrm). The sensor systeml
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Figure 6.15: Die-cast box assembly.

has to deal with a low signal input due to the specular nature of the box. The

rounded edges provide a test for the robustness of the line segmentation and fitting

algorithms (Section 4.6.2). The bottom of the box is fixtured to the work table

and the manipulator picks up the approximately positioned top (larger piece) from

a pickup area on the work table.

The third task is the insertion of a 1.75 inch (44.5 mm) square cross-section peg

into a hole with .004 inches (.1 mm) clearance on each side, Figure 6.16. The peg

has small chamfers (about .02 inches or about .5 mm) and the hole is chamferless

and may be adjusted in size. The adjustment allows assembly trials with different

clearances to be performed. This task requires the most precision of the three and

is discussed in greater detail in Section 6.6.2.

The acceptable range of initial positions of the parts depends on the size of the

parts and the active sensing volume of the sensor. The size of the sensing volume

depends upon the magnification of the camera, the angle of the light plane and the

size of the feature being sensed. The acceptable translations in the center portion

of the sensing volume for the different parts are shown in Table 6.2. The acceptable

orientation range is about 10 degrees in each direction for all of the parts although

it is somewhat less for the box due to its specular surface reflectance.
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Figure 6.16: Square peg and hole assembly. The clearance between the 1.75 inch

(44.5 mm) square peg and hole is .004 inches (.1 mm).

Assembly x inches (mnm)xy inches (mm),)xz inches (immi)

Connector .4 (10) x .35 (9) x 2.5 (63)

Box .5 (13) x .35 (9) x 1.25 (32)

Peg 1.5 (38) x .75 (19) x 2.0 (51)

Table 6.2: Acceptable volumes to obtain accurate sensor readings for three test

parts.
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Demonstration Task Procedure

Each of the three demonstration tasks followed essentially the same sensing and

assembly procedure, although, the manipulator configurations were often quite dif-

ferent for corresponding phases of the tasks. The manipulator first acquires an

approximately positioned part from a prespecified location on the worktable, Fig-

ure 6.17a. The part is then held in a sensing location, Figure 6.17b, while the

camera grabs a frame, Figure 6.18. After the frame has been grabbed, the manipu-

lator repositions the part to the assembly approach and part realignment position,

Figure 6.17c. At this point the manipulator remains idle until the computer has

calculated the position of the part from the video frame. After the computer com-

pletes the sensing calculation, it displays the results (the location of the corner

feature) on the graphics terminal, Figure 6.19. When the part position infor-

mation is available (sometimes immediately after the robot reaches the assembly

approach position), the robot reorients the part and proceeds with the assembly,

Figure 6.17d.

Results of the Test Part Assembly

The sensor-driven assembly system was able to reliably assemble all three of the

test parts. The processing of the sensed information takes about 2.5 to 3 seconds.

This is somewhat dependent on the size of the laser stripes in the image. The

sensing volume is located about 24 inches (70 cm) from the assembly jigs; thus,

the robot has to make gross motions between sensing and assembly. The results of

these test are available on a video tape which accompanies this thesis.

6.6.2 Square Peg-in-hole Analysis and Tests

A three-dimensional square peg-in-hole task was performed using a PUMA robot

and the part position sensor. The task was also attempted without the use of the

sensor. The rectangular shape is used so that the clearance between the peg and the

hole is easily adjusted. The non-axisymetric shape presents some geometric com-

plications [38], but for small misalignments the two dimensional peg-hole-analysis

provides a good approximation to the actual physics of the task. The adjustable

clearance peg-in-hole apparatus used in the tests in this section is described in
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Figure 6.17: Procedure for the sensor-driven assembly demonstration. a) Part

acquisition from starting area. b) Positioning at sensing location.
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Figure 6.17 continued. c) Positioning at the assembly approach and realignment

location. d) Mating of parts.
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Figure 6.18: Camera frame of peg and light stripe intersection.

Figure 6.19: Sensed peg location superimposed on the frame from which the posi-

tional information was calculated.
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Section 6.6.1.

Theoretical Analysis of the Task

In order to successfully complete the task, both the non-wedging criterion and

the chamfer bound criterion, (Equations (2.2) and (2.1) respectively), have to be

satisfied. We make the same assumptions and use many of the same quantities

as those discussed in Section 2.10. Using Equations (2.40) and (2.41), and the

sensor accuracy values given in Section 6.4.2 for Sar,, and s•o,,, we may solve for

the standard deviations for the total misalignments at the assembly, a,, and a,,.

This results in a translational error of a,, = .006 inches (.17 mm) and a rotational

error of a,, = .18 degrees (.003 radians). For 98.8 percent reliability (5 standard

deviations), the chamfers must be

Lchamfer > 5(.006) .015 inches (.4 mm)
- 2

and the clearance ratio must be [from Equation (2.38)j

c > 5(.3)(.003) = .0022.
2

For a 1.75 inch (44.5 mm) square peg this implies a minimum clearance of .0039

inches (.1 mm).

Experimental Limits of the Task Without Sensing

The peg and hole were carefully aligned then displaced by controlled increments

in either rotation or translation. Translation of the peg relative to the hole more

than .02 inches (.5 mm) caused the edge of the hole to interfere with the bottom of

the peg which caused the insertion to fail. Wedging was initiated by rotating the

peg about one of its bottom edges prior to insertion. The depth of insertion before

wedging occurred depended on the magnitude of the initial rotation. W'th the peg

misaligned by 2 degrees (no translation error) wedging occurred at a depth of .32

inches (8 mm). With a misalignment of 1 degree, wedging occurred at a depth

of .6 inches. Small displacement misalignments did not significantly affect these

results. Thus, for the successful assembly of the peg in the hole, the orientation

of the peg had to be aligned with the hole's orientation to within about .7 degrees

and aligned translationally to within .02 inches (.5 mm).
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Experimental Limits of the Task with Sensing

The acceptable initial position of the peg was significantly larger for the system

which used the sensor than for the one which did not. At the pickup station the

peg could be displaced as much as ±.25 inches (±6.35 mm) in the y direction, ±.75

inches (±19 mm) in the x direction and ±.2 inches (=5 mm) in the z direction. The

larger acceptable displacement in the x direction was due to the grippers closing

and centering the peg in that direction. The limit in that direction was due to the

maximum gripper opening. The volume limitations in the other directions were

due to the limited sensing volume of the sensor. Rotational misalignments up to

about ±4 degrees (±.07 radians) could be tolerated.

Comparison of Results and Discussion

The error analysis predicted a minimum clearance of .0039 inches (.1 mm). and

a minimum chamfer size of .015 inches (.4 mm). The tightest tolerance peg-in-

hole assembly which could be reliably performed was with a clearance of .004

inches (.1 mm) and a chamfer of .02 inches (.5 mm). The analysis agrees with the

experimental bounds fairly closely. Because the chamfer size on the peg and hole

were not easily adjusted, it was difficult to determine if the system could reliably

assemble a peg with only .015 inches (.4 mm) of chamfer. Also, not enough data

was collected to verify the assumed 98.8 percent reliability.

The system using the part position sensor could assemble parts with initial

uncertainties about 10 times greater than the uncertainties in a system without

the sensor.
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Discussion, Applications, and

Conclusions

Chapter 7

7.1 Discussion

Assembly of rigid parts involves the removal of misalignments between them. In

order to accomplish this with different shaped parts, a versatile error elimination

technique is required. Two methods for eliminating position errors and performing

mechanical assembly tasks are presented in this thesis: the a priori suppression

technique and the measurement and elimination technique. The a priori sup-

pression technique uses primarily passive methods to control the propagation of

position errors; whereas, the measurement and elimination technique uses sensing

and manipulation to reduce interpart alignment errors. Technical issues for both

techniques were dealt with, but the majority of the work concentrated on develop-

ing the less traditional error measurement and removal technique. In this section,

further developments which are required for flexible assembly systems so that they

may be used in the factory are discussed.

7.1.1 Development of Computer Integrated Manufacturing Systems

This thesis addresses only a small part of the computer integrated manufacturing

problem. Many unresolved problems in areas such as product design for automated

assembly, material handling, flexible parts feeding, workcell design, plant layout,

and production scheduling have yet to be resolved before an efficient and workable
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flexible automated factory may be built.

In order for flexible assembly systems to handle larger classes of operations, new
tools in addition to those described in Chapter 5 must be developed. In conjunction
with the development of tools, new assembly techniques should be developed. For

example, there is a need for fasteners which may be easily inserted by a mechanical

manipulator and would take the place of machine screws. nuts, and rivets.

Parts feeding and orienting operations are not directly addressed in either of

the prototype systems presented in Chapters 5 and 6. There is a need for feeding

systems that are flexible and reliable; that is, systems which may be easily recon-

figured (preferably automatically) to feed and orient many different parts. Because

standard parts feeding equipment is customized for particular parts and, therefore,
fairly expensive, it is often not economic to purchase separate feeding devices for

each part unless they will be fully utilized (constantly feeding parts for two or

three shifts). Programmable feeders which may be reconfigured to feed different

shaped parts would be useful in an industrial assembly system. Such feeding sys-

tems would be more highly utilized since many different parts could be run through

them. Feeding similarly shaped parts with a certain feeder would facilitate the de-

velopment of flexible feeding systems. It is easier to develop separate systems to

feed disc, rod and prismatic shaped parts than a single system which can feed all
of them.

One problem with many present-day robot systems is that they perform tasks

slow relative to the speed with which humans perform similar tasks. Since man-

made mechanical devices are not biologically bound in either speed or force, there

is no a priori reason that they should run so slow. Insufficient speed is often

the factor which makes these systems uneconomic in many industrial applications.

Sensing and control systems which are used in an industrial environment must

not contribute significantly to the time required to assemble a product. The only

factors which should limit a manipulator's speed are inertial, actuator power, and

part frailty.

7.1.2 Development of the Sensor

Although the part-position sensing system presented in Chapter 4 takes a few

seconds to make a measurement, slight changes will enable it to make measurements

in about .5 seconds. The required changes entail a faster hardware convolver and
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possibly other electronic hardware which can scan through the image and extract

the intensity values of the pixels of interest. Both of these hardware implemented

features have recently become commercially available 148,961.
More accurate information may be obtained from the sensor if multiple mea-

surements are taken. Because of quantization effects, it is necessary to slightly

shift the object with respect to the imaging device in order to take advantage of

the multiple measurements. If the object is not shifted with respect to the dis-

crete array, the same errors in position measurements are obtained and the noise

cannot be filtered. A lower resolution camera or a larger field of view may be

used if the measurement environment allows multiple readings to be taken. Sec-

tion 4.5 gives the technique for combining multiple measurements. If the images

used for the measurements are almost the same, the technique degenerates to a

simple averaging technique.

Multiple images or single images with multiple light source planes may be used

to sense features which are difficult to locate from an image of the intersection

between the object and a single light plane. Objects such as circuit boards, and

conical and cylindrical features may be accurately located by intersecting them with

multiple light planes positioned in very different locations in space. Alternatively,

the objects may be moved in between subsequent images of intersections with a

single light plane in order to obtain different "cuts" through the surfaces of the

object.

The technique for optimal scaling of each measurement of a feature was devel-

oped for straight line image features. Non-polyhedral features generate non-linear

curves of intersection and a method of determining the covariance matrix for the

parameters of more general curves is required.

More work is required in sensing non-polyhedral features and analyzing non-

linear curves in light stripe images. Some researchers have reported difficulty in

fitting conic sections to data [26]. Multiple light plane intersection of cylindrical

features produce additional constraints which could be used in the fitting procedure

to produce better results.

7.1.3 Development of Position-Sensor-Based Assembly Systems

In the sensor-based assembly system described in Chapter 6, it is necessary to let

the manipulator come to rest before sensing the position of the part. The overall
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cycle time of the system may be reduced by sensing the part while the robot is

moving. If the sensor is mounted off board the moving robot, a frame grabbed
with a video camera produces a blurred image. The part location can be "frozen"
if the light source is strobed at a high power and short pulse width. Either a pulsed

laser or a fast mechanical shutter may be used. In addition, the light pulse must

be timed such that it occurs during the time that the pixels are integrating the

impinging radiation and not while they are shifting out their accumulated output.

In order for the system to know the location of the part when the robot finally

comes to rest, the location of the manipulator must be known at the same moment

that the light pulse occurs (the instant the measurement is taken). Immediate
joint encoder data access (manipulator position) is required. Even if the position
of the robot is known at the time of measurement, dynamic forces and torques may

produce an offset in the predicted absolute position of the part; although, it may be

possible to take the deflections due to dynamic loads into account when calculating
the part's position. If the sensor is mounted on board the moving robot, it might

be possible to freeze all degrees of freedom between the sensor and the part and

make an accurate measurement with a moving robot. The manipulator joints are

available for either gross motion or positioning of the part in the sensor field of

view and with only six joints, it might be difficult to both move the part and the

sensor in unison and have enough degrees of freedom in part positioning to obtain

a good view for measurement.

Using position sensing data to calculate manipulator position commands allows

certain components of the system to be somewhat positionally sloppy. The pallets,

or feeding-orienting devices need not locate the parts precisely. A system which

constrains the general orientation of a part is much less expensive and more flexible

than a system which must constrain the part in some absolute location. The robot

grippers also do not need to precisely locate the part, although, they must firmly

hold the part with respect to the last link of the manipulator. In this case "firmly"

means some compliance is acceptable, but slip is not.

7.2 Applications of the Sensing Technology

The light stripe sensor presented in this thesis has many applications in addition

to supplying part position information to a mechanical assembly system. Light



stripe systems in the literature (Section 3.1) independently use each of the points

along the light stripe and usually no curve is fit through sets of points. Fitting a

curve through the points in the image, then calculating the location of the feature

of interest in three-space is faster than projecting each point into three-space then

fitting them to the feature. The resulting higher speed sensing system has uses in

locating part surfaces during closed-loop machining operations, and inspecting part
surfaces after being machined. The system is also useful in determining whether
parts are in the proper orientation in a flexible feeding system. Either the feeder
could recirculate parts which are not in the proper orientation, or the information

could be passed to the manipulator which would compensate for the displaced part

by altering the grasp position.

Since the sensor system makes accurate six degree-of-freedom measurements it

may be used as a robot calibration system. Robot accuracy errors occur because

the position of the manipulator does not correspond to the commanded position.

Using a sensing system to measure the position of the manipulator, correction

factors may be calculated such that for a given position command, the repeatable

errors are eliminated and the robot moves very near the commanded position.

The sensing system described in this thesis does not have sufficient resolution to

make accurate measurements in the large field of view corresponding to an entire

robot workspace. Multiple sensors or a single sensor whose field of view may be

aimed at different sections of the workspace could be used or a higher resolution

camera could be used. Section 3.3 lists other uses for the sensor in an industrial

environment.

The sensing system presented in this thesis gives useful information about the

location of objects only if they are very near where the system expects them to

be. The system cannot deal with randomly oriented objects. In order to determine

an object's location without a priori orientation information, a system such as the

sparse data system described in [76,77,78,791 could be used as a preprocessor. The

part could then be grasped and realigned so that the light stripe sensor could make
an accurate measurement.

Instead of measuring the location of the part remote from its final destination,

the sensor could be used to measure the location of the part very near its final

position. A position loop could then be closed around the manipulator which

would allow the part to be positioned more accurately. Errors due to uncertainties
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in robot motion and sensor-robot calibration discussed in Section 2.7.7 would be

virtually eliminated.

7.3 Technical Contributions and Conclusions

This thesis has addressed many areas related to flexible assembly systems and pre-

cision measuring techniques; however, the major contribution of the work is the

analysis, development and demonstration of a position-sensor-driven assembly sys-

tem. The success of the system was due to the task requirement and error analysis

studies for mechanical assembly operations, the development of the laser stripe

vision system, and the algorithms associated with extracting accurate position

information from noisy images. The position error measurement and removal tech-

nique employed by the sensor-based assembly system provides high flexibility for

handling many different parts without custom fixture designs. Because the system

eliminates alignment errors before the mating phase of an assembly and does not

attempt to monitor the assembly operation during the mating phase, parts mating

progresses faster than it would otherwise if limited-bandwidth force feedback were

used. Mating occurs open loop and relies on the passive compliance of the system

to eliminate any alignment errors remaining after the measurement and removal

phase. Because the sensor-robot system can eliminate most of the alignment errors,

mating is less sensitive to the passive compliance parameters. The system was able

to accomplish assembly operations with initial part misalignments 5 to 10 times

greater than allowable misalignments in a system which does not use a sensor.

The prototype sensing system used to make the part position measurements

was relatively inexpensive and operated with sufficiently high accuracy and speed.

Theoretical and experimental studies showed that the prototype sensor coupled

with a commercial six degree of freedom manipulator could perform peg-in-hole

type assembly operations on parts with clearance ratios (clearance/diameter) as low

as about .0025. This clearance ratio corresponds to many high precision industrial

assembly tasks.

In addition to the development of the technology for position-sensor-based as-

sembly this thesis presents a technique for analyzing the potential success of this

type of system. Chapter 2 enumerated the various error sources which occur in

assembly systems and presented a methodology for combining the errors and de-
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termining the feasibility of an assembly task given a certain set of resources. The
example error calculation for the square peg-in-hole task gave results which were
verified through experiments in Chapter 6.

In order to make accurate measurements with a discrete element sensor, it is
necessary to apply certain filtering techniques to the image. A number of techniques
for finding the location of a light stripe on a row by row basis were presented in
Chapter 4. It was found that the light stripe feature could be located to subpixel
resolution along each row of the image. The light stripe location on each row was
combined to find the parameters of a least squares fitted line. The accuracy of
finding the parameters of fitted lines was also discussed and found to be highly
dependent of the length of the image of the light stripe.

In addition to using certain image processing techniques, careful sensor system
calibration was important for making accurate position measurements. A relatively
fast and simple procedure was developed for performing accurate camera and laser-
stripe calibration.

Techniques for locating objects from sparse light stripe data were central to the
success of the real-time-part-position sensor. Because a closed-form solution to the
right-corner-feature location problem was used, the computation time for locating
these features was very short.

The selection of the ranging technique was based on a literature review of rang-
ing technologies and a study of the accuracy of two feature locating techniques
(Chapter 3). The light stripe ranging technique was selected because of its po-
tential for high resolution, fast operation, and relative simplicity in making three-
dimensional measurements. The feature locating technique was chosen over the
fitted boundary interpolation technique because of its potential for high accuracy
and relative simplicity.

A technique for increasing the accuracy of position measurements by combin-
ing multiple measurements was presented in Chapter 4. The technique optimally
combined object position estimates based on the expected accuracy of each mea-
surement. The technique can be used on position estimates obtained from different
sources so long as an estimate for the quality (covariance matrix) of the measure-
ment is available.

In addition to being used as an assembly system tool, the sensor was used as a
robot position measuring device. Repeatability and local accuracy measurements
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of a Unimation PUMA 600 manipulator were made. The measured specifications

were then used in error calculations in Chapter 2.

Other contributions in this thesis include the development of mechanically pro-

grammable tools to address certain difficult assembly operations. The need for

some of the tools were determined from an assembly task analysis. The tools were

designed so that a robot could easily reconfigure them to fit its needs for a partic-

ular assembly task. The tools were integrated into a prototype flexible assembly

cell and used to assemble consumer hand drills.

Experiments showed that the position-sensor-based assembly system can make

more accurate non-contact part misalignment measurements and corrections than

unaided humans. With more accurately aligned parts, failure modes such as wedg-

ing, jamming and missed chamfer crossing are less likely to occur. This means

that the process requires less real-time monitoring and can proceed relatively fast.

Thus, position-sensor-based machine assembly can be more efficient than manual

assembly.
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Path System Definitions

Appendix A

A.1 Paths

A path is defined as an ordered set of N points (Pi, i = 1,...., N) in 3-space (see

Figure A.1). The path coordinate system, with axes Xp, Yp, Zp and corresponding
unit vectors ip, jp, Zp are defined by the first, and last points of the path in
the following manner. The Xp axis of the path coordinate system is along the
vector from the first point of the path to the last point. The Zp axis of the path
coordinate frame is positioned such that the global Zo component of the unit ip
vector is maximized (or the Xp, Zp plane is made orthogonal to the Xo, Yo plane).
If the Xp axis of the path coordinate system is parallel to the global Zo axis, the
Zp axis of the path coordinate system is made parallel to the global Yo axis. The
two approach points of the path (the second and second to last points) must always
have the same Xp and Yp coordinates as their respective end points.

The path may equivalently be described by a set of vectors r,, whose Xp. Yp,
Zp components are the Xp, Yp, Zp coordinates of the corresponding set of points.
The vector notation F',i describes a vector from the origin of the A coordinate
system to the ith point in the B coordinate system.

241



Appendix A: Path System Definitions

*tP4

xp

x0

Figure A.I: Path coordinate system.

A.2 Path Transforms

A.2.1 Spatial Path Transforms

The spatial path transform translates, rotates and scales a predefined path to the

first and last trajectory points defined in the global Xo, Yo, Zo coordinate system.

The trajectory coordinate system is defined by the XT, YT, ZT axes and the ^T, !/,

and rT unit vectors which are located by the position of the start and end points

using the same technique described for the path coordinate system (see Figure A.2).

The intermediate points of the trajectory are located in the trajectory frame by

the scaled path vectors. The scaling factor for the vectors of a path is the ratio of

distances from the first to last trajectory points and the first to last path points.

For a path and a corresponding trajectory with N points, the scale factor is:

-TT
S.F. = (A.1)

where the P and T super- and subscripts denote references to the path and tra-

jectory coordinate frames respectively. To scale the path, each ri (the ith path
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Zp

Xp

Figure A.2: The spatial path transform.

position vector) may be multiplied by a scaling matrix.

S = I S.F. (A.2)

where I is the 3 X 3 identity matrix. Since the first point of the path is at the

origin, the path scaling creates no offset from the path coordinate system.

The path and trajectory coordinate frames were defined in similar fashions

(from the two end points); thus, the scaled path vectors, Sr-i, may be used as the

XT, YT, ZT coordinate system vectors for the trajectory. Since the robot controller

uses joint angles (global coordinates) to move the robot, the trajectory vectors

must be expressed in the global frame. The set of transformed vectors from the

path coordinate frame to the global frame with end points at the specified start

and end trajectory points is:

r,- r• RTO S P, i= 1,...,N (A.3)

where r is the vector from the origin of the Xo, Yo, Zo frame to the origin of

the XT, YT, ZT frame, and RT,O is the 3 X 3 rotation matrix from the XT, YT, ZT

frame to the Xo, Yo, Zo frame:

RT,O = [iT TT i4

I

(A.4)
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Figure A.3: The cylindrical path transform.

A.2.2 Cylindrical Path Transforms

The cylindrical path transform warps the original path space to a specified tra-

jectory space. The path coordinate system and the trajectory coordinate system

are defined as above. In addition to the two end points, a trajectory specification

includes starting and ending approach unit vectors. These approach vectors specify

the direction of the robot departure from the start point and the direction from

which the robot should approach the end point. In a cylindrical transformation,

each of the vectors to the path points in the path coordinate frame are scaled and

rotated as a function of their Xp path coordinate. The cylindrical path scaling is

similar to the spatial path transform scaling except that it is performed only on

the path Xp coordinate of each path vector. For a cylindrical path transform, it

is necessary to split each path vector, rFi, into two components, Fr,i and FxN,,rP,,i.
The r-x,i vector lies along the Xp axis and the FXN,,1ZA,i vector is orthogonal to the

Xp axis and terminates at Pi (see Figure A.3).

Exn -i 4 = r - rPrXN)rA, = -rp 1 - TX,i (A.5)
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The action of the cylindrical path transform scales the FX,i vectors and rotates the

rxN,,Ron,i vectors. The scale factor is the same as that in Equation A.1. The r-xN,,RA,,
vectors are rotated about an axis parallel to a vector, kA, which is orthogonal to

the start and end approach unit vectors (Astart and Aend - defined in the trajectory

frame)

kA = -4tart X Aend (A.6)

where x is the vector product operator. The angle of rotation for the r-XN,,fM,i

vectors is a fraction of the total rotation angle, 0, between the two approach vectors.

0 may be found by satisfying the following two equations (from the definition of

the vector scalar product and the magnitude of the cross product) in the interval

[0o, 7r]:

o = cos-1(A4strt • At d) (A.7)

0 = sin-I(lIkAi) (A.8)

In the cylindrical transformation, each Fx,,-,,,i vector is first rotated via a

rotation matrix, RT,A, which rotates the iT vector into the A4,tart vector and then
by a rotation matrix RK,i which rotates the Astart vector by an angle 0i towards
the -end vector. The expression for a rotation matrix R which rotates a vector
about a rotation vector K = [kxkykzj T and through an angle 0 is

[k,kvers( ) + cos(4) k,k,vers(q) - k sin(4) k.k,vers(4) + kysin() ]
R= k.,kvers(O) + k.sin('k) kk,vers(•) + cos(4) kkc.vers(•) - k,sin(O) (A.9)

[k,kkvers(O) - ksin(O) k.,kvers(4) + k,sin(o) kIk.vers(o) + cos(k)

where vers(k) = 1 - cos(4) (from [147]).

Thus, the expression for the RT,A matrix is Equation A.9 with K and 0 set to

kT,A

IkT,AI

kT,A = zTX start

C = cos-l( Tr start) = sin-(IkT,AI), E [0, r]

For the RA,, matrix, K and 0 are

kCA

IkAI

§A.2: Path Transforms



Appendix A: Path System Definitions

irPP, N

The cylindrically transformed trajectory vectors with respect to the global frame

are

S= T+ RTO (Sri, -FRAiRTA FXNf,P, i), (A.10)
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7565 Workspace Waviness

Appendix B

Prior to positioning the reference baseplates (Section 5.2.1) onto the 7565's work
surface, the variation of the 7565 surface plate height was measured. For assembly
task programming, the surface height variation with respect to the manipulator
reference frame (as an observer in the gripper reference frame would measure the
surface) is more critical than absolute height variation. The changes in height
with respect to the manipulator frame was measured using a mechanical indicator.
The indicator was placed in the grippers and Z direction measurements were taken
every 2 inches over the entire X-Y workspace, Figure B.1. The resulting indicator

readings are shown in two perspectives in Figure B.2. The low point of the surface
is 4 inches forward and 2 inches right of the left rear corner in the first view of

Figure B.2. The highest deviation measured occurs at the near right corner of the

same view and is .012 inches above the lowest point.
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Figure B.1: Technique used for measuring the height of the robot base.
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Figure B.2: Two views of 7565 surface plate height variation.
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Flexible Fixture Design

Calculations

Appendix C

The flexible fixtures in the prototype assembly cell are locked into place by tight-

ening a cable in the arm of the device, Figure C.1. The arm consists of alternating

spheres and cylinders with holes through the center and a steel cable running

through the holes. In this section, the relationship between cable tension and the

maximum allowable force applied to the end of the device without ball/cylinder

slip is determined.

A free body diagram of one of the balls of the arm is shown in Figure C.2. We

assume that the slip is brought about by the "bending" moment applied to the ball

from an applied force at the end of the arm

MB = FappX

where MB is the moment applied to the ball, F~pp is the force applied to the end of

the flexible fixture and x is the distance form the end of the fixture to the center of

the ball. We assume that the shear force across the arm does not make a significant

contribution to the forces at the ball/cylinder interface. The cylinder radius at the

point of contact with the sphere is Re, and the sphere radius is Rs. The angle of

contact, 0, is defined by the equation

Re
cos0 = .

Rs

4 is the angle about the contact circle with q = 0 pointing towards the applied

force Fapp.
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Ipp

Figure C.: Structure opp

Figure C.1: Structure of the flexible fixture arm.

Figure C.2: Free body diagram of a single ball in the fixture arm.
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The normal force per unit length along the contact circle is

FT FT
aN (C.1)

S27rRc sin 0 27rRs sin 8 cos 0(

where FT is the force pushing the ball and cylinder together along the cylinder

axis. If the sphere slips in the cylinder, points on the cylinder edge would trace

out circles (lines of latitude about a horizontal axis) on the surface of the sphere.

The frictional force per unit length of contact is directed tangent to these circles

and has magnitude

oF = PLN (C.2)

where p is the coefficient of friction. The distance from a point of contact to the

sphere center perpendicular to the axis of potential rotation is

RsM = R2s + R2 cos - R = Rc 1 - sin' €. (C.3)
cos2 9

The torque contribution along a differential segment of the contact circle is

dM = RSMaF(Rcd¢). (C.4)

Substituting Equations (C.1), (C.2), and (C.3) into Equation (C.4) and integrating

around the contact circle gives the total moment due to friction which can resist

slipping

SRsFTiM r~1 - cos2 0 sin 2 # do

2ILRs FT I
Et cos9,-j (C.5)ir sin 0 2

where E is the solution to an elliptic integral of the second kind. The function
log [•2 E (cos 8, Z)] is plotted for 0 from 0 to Z in Figure C.3.

To maximize the resisting moment the contact angle should be small; however,
too small a contact angle will produce a locked condition between the ball and
cylinder. In order for the structure to remain unlocked we need 0 > tan-1 p.
Assuming steel on steel with a coefficient of friction y = .3, the value of the
contact angle which just produces locking is 0 = .29. Reading the scaled moment
from Figure C.3, the maximum resisting moment just before the locking condition
is

Mmax = log-'(.37)yFTRs = .7FTRs
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Contact Angle (0 in Radians)

Figure C.3: Log plot of scaled resisting moment as a function of the ball-cylinder

contact angle for the flexible fixture arm.

and the maximum allowable applied force is

Rs
Fapp,maz = .7FT R

For example, given a steel sphere with radius Rs = .5 inch (12.7 mm) and a cable

with tension FT = 700 lbs. (3114 Nt.), the maximum force which may be applied

at 10 inches (254 mm) from the ball is 24.5 lbs. (109 Nt.).
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Errors Generated with a

Spherical Wrist
Appendix D

In this section we investigate errors in positioning the endpoint of a spheri-

cal wrist joint, Figure D.1, due to errors in actuator positioning. The different

types of endpoint positioning errors for robot manipulators are discussed in Sec-

tion 2.7. Errors may be divided into repeatable errors and nonrepeatable errors.

A nonrepeatable error (probabilistic) is essentially the repeatability (as defined in

Section 2.4) at a point in the workspace. The repeatable error is essentially the

accuracy minus the repeatability. We assume that errors are either due to inac-

curacies in joint positioning or to other factors such as non-rigid members, link

geometric inaccuracies and misalignment, etc. The repeatable and nonrepeatable

errors in joint positions produce errors at the endpoint proportional to the value

of the Jacobian at that particular configuration. The four components of endpoint

error are

eendpointt- J V) e(r) + X a(i)I + frep(i) + ja(i) (D.1)

where x is the vector of joint positions, J(£) is the Jacobian matrix, 4',,p() is the

repeatable joint error vector, r•,p(£) is the nonrepeatable joint error vector, and

fre,() and fa,,(£) are all remaining repeatable and nonrepeatable errors repec-

tively.

In this section we investigate the magnitude of endpoint position errors due to

joint positioning errors for a spherical wrist; that is, we are only concerned with the

terms in Equation D.1 involving the Jacobian. Assuming rotary joint positioning
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Figure D.1: Spherical Wrist Joint

errors in the pitch and yaw directions of 1.5 milliradians or of a revolution,' the

errors in positioning in the x, y, z and combined directions are shown in Figure D.2.

Errors in the roll actuator do not produce position errors for parts centered in the

grippers and are not included in the analysis. Note that the errors in the x and y

directions produce complementary errors; that is, when combined they sum to a

constant throughout the workspace.

If accuracy is more important in one direction rather than another, the best

wrist configuration may be selected using the plots in Figure D.2. The lowest

overall errors occur when the pitch axis is in the 0 position (grippers pointing

straight down).

'This value was chosen because inexpensive commnercial encoders are available to this accuracy.
Higher accuracy encoders are also available.
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Figure D.2: Spherical wrist errors in the three coordinate directions and.the carte-

sian sum. Errors are generated from yaw and pitch actuator errors of 1.5 millira-

dians.
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Product of Two Normally

Distributed Random Variables
Appendix E

In this section the probability density function for the product of two normally

distributed random variables is derived. The sample space for the random variable

z = Xy,

where x and y are also random variables, is shown in Figure E.1. The curve

for a specific value of z = z0 is shown, that is, the curve x0 = O is plotted.,

where xo and yo are specific values of random variables x and y respectively. The

procedure given in [531 is followed for deriving the distribution p2 (zo) from the

joint x and y distribution, pz,,(Xo, yo) (Pz,y(xo, Yo) = Pz(xo) Py(Yo) for x and y

linearly independent). First the cumulative density function, p<_z(zo), is found by

integrating p,,y(zo, Yo) over the portion of the sample space corresponding to z < zo

P, z(z) = 1 1o Pz,y(xo, yo) dxo dyo + ] Pz,y(xo, yo) dxo dyo.
-- =(=O zo=-oy•o=--oo f- =•

(E.1)

Integrating over x0, then differentiating with respect to zo, we obtain an expression

for the derived density function for z

roo 1 zo
pz(zo)= 2 P--p,y -,o dyo. (E.2)

We are interested in the case where x and y are independent normally distributed

random variables with respective variances oa and oa; thus, the joint density func-
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Figure E.1: Sample space for random variable z = xy.
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Figure E.2: Derived distribution for the product of two normally distributed inde-
pendent random variables.

tion for x and y is

1 1
Pz,y (Xo, yo) = r exp27r1a22 2

r +2 2

a ao

Substituting this joint distribution into Equation (E.2)

1 ° 1 1
Pz (zo) = - exp7r ir2 u2Y, = oyo 2

The solution to this equation may be found in a table of integrals [75]. The solution
is

1

Pz (zo) = Ko Izolvl-zoy (E.4)

where Ko(x) is a modified Bessel function of the second kind, order 0 [87]. A plot
of p,(zo) is shown in Figure E.2.

] dyo.za 2
Ur2I

(E.3)

v - - I
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