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Abstract

Complex traits are conditions that, as a result of the complex interplay among genetic
and environmental factors, have wide variability in progression and manifestation. Because
most common diseases with high morbidity and mortality are complex traits, uncovering
the genetic architecture of these traits is an important health problem. Asthma, a chronic
inflammatory airway disease, is one such trait that affects over 300 million people around the
world. Although there is a large amount of human genetic information currently available
and expanding at a rapid pace, traditional genetic studies have not provided a concomitant
understanding of complex traits, including asthma and its related phenotypes. Despite the
intricate genetic background underlying complex traits, most traditional genetic studies
focus on individual genetic variants. New methods that consider multiple genetic variants
are needed in order to accelerate the understanding of complex traits.

In this thesis, the need for better analytic approaches for the study of complex traits
is addressed with the creation of a novel method. Probabilistic graphical models (PGMs)
are a powerful technique that can overcome limitations of conventional association study
approaches. Going beyond single or pairwise gene interactions with a phenotype, PGMs
are able to account for complex gene interactions and make predictions of a phenotype.
Most PGMs have limited scalability with large genetic datasets. Here, a procedure called
phenocentric Bayesian networks that is tailored for the discovery of complex multivariate
models for a trait using large genomic datasets is presented. Resulting models can be used
to predict outcomes of a phenotype, which allows for meaningful validation and potential
applicability in a clinical setting.

The utility of phenocentric Bayesian networks is demonstrated with the creation of
predictive models for two complex traits related to asthma management: exacerbation and
bronchodilator response. The good predictive accuracy of each model is established and
shown to be superior to single gene analysis. The results of this work demonstrate the
promise of using the phenocentric Bayesian networks to study the genetic architecture of
complex traits, and the utility of multigenic predictive methods compared to traditional
single-gene approaches.

Thesis Supervisor: Marco F Ramoni, PhD
Title: Assistant Professor of Health Sciences and Technology
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Chapter 1

Introduction

1.1 Motivation

Uncovering the genetic architecture of complex traits is an important current problem whose

solution would dramatically improve the health of people around the world. Complex traits

are conditions with wide variability in symptoms and seemingly different mechanisms of

onset and progression. Although they are heritable, they cannot be easily explained in

terms of a single or few genes, and their expression is altered strongly by environmental

factors. Intensely studied complex traits include aspects of cardiovascular disease, Type 2

diabetes mellitus, asthma, obesity, autism, Huntington's disease, Parkinson's disease, and

Alzheimer's disease. Genes related to most of these diseases have been found, but few of

them have helped in making advances in treatment and prevention.

The large amount of human genetic information that is currently available and continues

to expand at a rapid pace has not resulted in a concommitant understanding of complex

traits. This disappointing fact has been partly attributed to the difficulty of studying

complex traits with traditional genetic techniques [1]. Association studies, the most common

genetic studies, attempt to find genes that are more prevalent in individuals with a disease

and therefore likely to be involved in causing the disease. A great number of association

studies have been published, but their results are often never duplicated [2, 3, 4]. This

lack of reproducibility has led to skepticism regarding the utility of association studies.

Some have postulated that in their current form, association studies will never be able to

explain complex traits because only models that account for complex gene-gene and gene-

environment interactions are suitable for this task [5, 6]. Despite the difficulty of studying



complex traits, the growing availability of genetic data makes the development of better

methods necessary for the elucidation of the genetic architecture of complex traits.

One of the main limitations of traditional association studies is that they investigate

the relationship of single genes or assume additive effects of single genes to a phenotype.

Because complex traits are caused by multiple genes, which likely interact epistatically,

methods that take into account the complex interaction of many genes are likely to be more

useful than one-gene-at-a-time approaches. The results of traditional association studies

are lists of genes that are significant based on a statistical threshold. Validation studies

involve replicating initial findings, which does little more than to increase the sample size

of the original result. In most cases, results of gene association studies are not been used

in a clinical setting or to motivate further biological studies. Lacking from these studies is

a result that can be applied to an individual such as a quantitative risk for a phenotype or

disease. Being able to give a probability for risk of a disease is highly useful in a clinical

setting. Quantitative measures for an outcome are readily interpretable and decisions about

how to change an individual's life can be confidently made. Predictive models give such

quantitative results, assigning a probability for an outcome based on observed data. They

are validated by assesing their predictive accuracy on independent populations. In addition

to providing useful and testable results, multivariate predictive models are likely to provide a

thorough explanation of the biological variability that is responsible for a complex phenotype

by taking into account many uncommon pathways.

Probabilistic graphical models (PGMs) are a powerful technique that can overcome lim-

itations of conventional association study approaches. Going beyond single or pairwise gene

interactions with a phenotype, probabilistic graphical models are able to account for com-

plex gene interactions. Addtionally, they can be used to make predictions of a phenotype

of interest for individual subjects that allows for ascertainment of their validity. Bayesian

networks, a common PGM approach, are regarded as an emerging paradigm for the analysis

of complex traits [7, 8]. They have been successfully used to study gene expression data [9],

protein-protein interactions [10], and pedigree analysis [11]. They also have been used to

model the multigenic association and predict the occurrence of stroke in sickle cell anemia

patients, demonstrating their suitability to understand the genetic basis of complex traits

and predict a clinical phenotype [12]. Unfortunately, most Bayesian network discovery algo-

rithms have limited ability to handle the large genetic datasets that are currently available.



Novel methods that are tailored for gene association are necessary for the use of Bayesian

networks in large candidate gene and whole genome studies.

Asthma, a chronic inflammatory airway disease, is a serious global problem affecting

20.5 million Americans and over 300 million people around the world [13, 14]. Both the

prevalence and death rate of asthma rose dramatically in the US and globally between 1960

and 2001, and have remained at high levels or continued to increase since then [15, 13, 16].

Asthma is a costly disease, as demonstrated by the increased risk of emergency room visits,

hospitalization. and sick absences that are associated with it [17, 18]. Over $16 billion

are spent yearly in the US on asthma-related healthcare expenses [13]. Asthma has a

demonstrable genetic basis, with heritability estimates ranging from 0.36 to 0.87 [19, 20,

21, 22, 23, 24, 25]. and over 100 genes individually associated with asthma or a related

phenotype [26].

Two important aspects of asthma management are exacerbations and bronchodilator

response. Asthma exacerbations, commonly known as asthma attacks, are the major cause

of morbidity, mortality and healthcare costs for individuals with asthma [27, 28, 29]. Ex-

acerbation episodes involve worsening of asthma symptoms, including shortness of breath,

cough, wheezing, chest pain or tightness, mucus production, or some combination of these.

Uncovering the genetic basis underlying asthma exacerbations would be helpful to under-

stand the biology of exacerbations, discover novel therapeutic targets, and identify those at

risk of suffering from them.

A common clinical test that is used for the evaluation of reversible airway obstruction

and the diagnosis of asthma is the bronchodilator response test. The basis of this test is

to find out whether administration of a bronchodilator medication improves FEV1. The

most potent and rapidly acting bronchodilators currently available for clinical use are 32-

agonists [30]. They are used not only for bronchodilator tests, but as routine asthma

therapy, despite the interpatient variability in their efficacy. Evidence for the genetic basis

of bronchodilator response has been establihsed in family aggregation and gene association

studies. A thorough understanding of the genetic basis of bronchodilator response would be

helpful to identify patient-specific treatments, identify novel therapeutic targets, and help

in the diagnosis and monitoring of asthma. Further, such a test would help establish which

patients are responsive to 32-agonists and what genetic mechanisms may be responsible for

variability in patient response.



1.2 Thesis Overview

The goal of this work is to create a new Bayesian network discovery approach that can be

used to study complex diseases with large genetic datasets and use the new method to create

predictive models of two complex phenotypes related to asthma management: exacerbation

and bronchodilator response.

In Part 1, the use of PGMs in the study of complex traits is explored. Complex traits

are defined, and traditional methods used to study their genetic basis are explored [Chap-

ter 2]. The focus is on case-control gene association studies, as this approach is the most

common in the investigation of complex traits. After noting the limitations of traditional

association studies, PGMs are introduced and a review of their use in genetic applications

is provided [Chapter 3].

A novel approach to learning Bayesian networks for the study of complex traits is de-

scribed in Part II. First, Bayesian networks are explored in depth [Chapter 4], including

how networks are learned from data, and how they are used to make predictions. Af-

ter describing the limitations of Bayesian networks in genomic scale association studies, a

new method to learn them is proposed: phenocentric Bayesian networks [Chapter 5]. This

method takes advantage of a main goal of gene association studies: the desire to predict

the risk for a phenotype or disease in individual subjects.

Asthma and asthma management are surveyed in Part III. Chapter 6 provides the nec-

essary background on asthma to appreciate the complexities in defining and understanding

this disease. After establishing the importance of the genetic component of asthma, fea-

tures of asthma management are introduced [Chapter 7]. In particular, aspects of asthma

exacerbation and bronchodilator response are addressed to understand them as complex

traits.

Genetic tests for prediction of asthma exacerbation and bronchodilator response are

constructed in Part IV. After describing the study population and genetic data used [Chap-

ter 8], phenocentric Bayesian networks are used to learn predictive models of these aspects

of asthma management. Details of each model are provided in Chapters 9 and 10. The

predictive accuracy of the models is established as good and shown to have advantages over

single-gene approaches.

The results of this work demonstrate the promise of using the phenocentric Bayesian



networks to study the genetic architecture of complex traits and demonstrates the utility

of multigenic predictive methods compared to single gene approaches.



Part I

Probabilistic Graphical Models in

Complex Trait Genetics



Chapter 2

Complex Traits

2.1 Definition

Complex traits are conditions with wide variability in physical manifestation and seemingly

different mechanisms of onset and progression [1, 31]. Understanding them is an impor-

tant problem whose solution would dramatically impact millions of people as most common

disorders, which are the greatest health burden in the Western world, are complex traits.

Although they are heritable, with observed familial aggregation, complex trait inheritance

patterns do not follow Mendelian proportions. The complexity in heritability can be due

to a strong and intricate influence of environmental factors on a simple genetic inheri-

tance pattern, a network of complex genetic interactions that is mildly influenced by few

environmental factors, or, a network of multiple and complex genetic and environmental in-

teractions. Unfortunately, most complex traits seem to follow the last pattern. That is, they

cannot be easily explained in terms of a single or few genes, and their expression is altered

strongly by many environmental factors. Intensely studied complex traits include features

of cardiovascular disease, Type 2 diabetes mellitus, asthma, obesity, autism, Parkinson's

disease, and Alzheimer's disease.

2.2 Genetics

Uncovering the genetic architecture of complex traits is an important step towards under-

standing them. For many years, linkage studies in which patterns of allele segregation and

disease occurrence in family pedigrees are compared, helped to elucidate the causes of many



simple Mendelian genetic traits. The traditional measure in such studies is the LOD score,

given by [32]:

L(r)LOD = log L(r)
L(0.5)'

where L(r) is the likelihood of a disease and genetic marker occurrence as a function of

genetic recombination fraction r. When r = 0 alleles are transmitted together, whereas

when r = 0.5 alleles are transmitted independently. Larger LOD scores indicate that

transmission of a genetic marker is associated with having a disease. Linkage analysis

methods have been applied to study complex traits, but they are usually ill-suited to the

task because of the complexity with which such traits are inherited. For over ten years,

population-based association methods have been prefered [33] though they are recognized

as a technique with limitations for the study complex traits [34]. Armed with data from

the human genome [35, 36], the promise of HapMap International Project [37], and myriad

genetic data gathered around the world, the expectation was that great strides would be

made in solving complex traits. Indeed, genes related to many complex traits have been

found, but given the large amount of human genetic information that is currently available

and continues to expand at a rapid pace, the understanding of complex traits has been

disappointingly slow [38, 39]. Nonetheless, association studies are the most common method

used in genetic analysis and will continue to be widely used for years to come.

2.3 Association Studies

Genetic association studies attempt to find genes that are associated with a phenotype of

interest. The key assumption in such studies is that a group of individuals who share a

phenotype have a genotic commonality. There are two prevalent association study designs:

case-control and familial. Although familial studies have the advantage of some built-in

control because people with a more similar genotype with and without a disease are com-

pared, case-control studies are often favored because it is easier to gather large cohorts from

the general population than to find families with enough cooperative members. Additional

advantages of case-control designs in the genetic dissection of complex traits are discussed

in [40, 41]. The two most common traditional methods used in case-control studies are

contingency table tests and logistic regression models.



Contingency Table Tests

Contingency tables are widely used for significance testing of categorical variables. Data

are separated into rows and columns, and tested for independence or association. A generic

case-control table used to find an association between a gene and occurence of a phenotype

is the following:

Major allele Heterozygous allele Minor allele Total
Cases Ml Hi mi N1 = M1 + H1 + m1
Controls Hh2 H2 M2 N 2 = M 2 + H 2 + m 2
Total n1 = M1 + M n2 712 = H1 + H 2  n3 = m + r2 NT = N1 +N 2

Each entry in the table corresponds to the number of occurrences of a given genotype for

cases or controls. The sums along columns and rows are referred to as column margins and

row margins, respectively. The overall number of entries (NT) is referred to as the grand

total. When performing significance testing to find out whether the occurrences of genotypes

are significantly different among cases and controls, we compare the actual, or observed,

occurrences to expected values. The expected values are those corresponding to the null

hypothesis that the distribution of each type of allele is equal for the cases and controls.

That is, the probability for a control to have each genotype is equal to the probability

for a case to have each genotype. The computation of expected values is performed by

calculating, for each i x j cell of the table, the product of the ith row margin by the jth

column margin, divided by the grand total. The table of expected values, corresponding to

the table above is:

Major allele Heterozygous allele Minor allele
Cases [NI(M 1 + M2]/NT [N1 (H1 + H2]/NT [N1(mI + m2]/NT
Controls [N2 (M 1 + M2]/NT [N2 (H 1 + H2]/NT [N2 (ml + m2]/NT

Now that expected and observed values have been obtained, a statistical measure to test

the null hypothesis that there is no difference among the genotypes of cases vs. controls is

needed. A traditional measure to test this hypothesis is Pearsons X2:

X2 - E (Oj - Ej)2

X = (2.1)
jEi

where Oij and Eij refer to the i x j cells of the observed and expected tables, respectively.

The sum, X 2 , follows a chi-square distribution with an appropriate number of degrees-of-



freedom (df) for our table if the null hypothesis of equality in the distribution of genotypes

among cases and controls is true. In most situations, the number of df for an R x C

contingency table is/are (R - 1) x (C - 1). However, because Hardy-Weinberg equilibrium is

assumed in the genotype example, that table has one df. Choosing an appropriate threshold

of significance (often a = 0.05) allows for the acceptance or rejection of the null hypothesis:

* If X 2 > x 2 (df, 1 - a), then we reject the null hypothesis. In the genotype example,

the genotypes would be distributed differently among cases and controls.

* If X 2 < X,2 (df, 1 - a), then we accept the null hypothesis. In the genotype example,

there would be no difference in the genotype distribution of cases versus controls.

Knowing the df and a allows for the calculation of a p-value corresponding to the X 2

obtained. The p-value is the area under the chi-square distribution, of the appropriate df,

integrated from X 2 to infinity. A p-value is often reported as a measure of how strong the

case versus control genotype distributions are similar or different.

For the chi-square test to be reasonable, certain conditions should hold. Most generally,

no more than 1/5 of the cells should have expected values < 5 and no cell should have an

expected value < 1. Allelic tables have previously been used to perform contingency tests,

but this practice has been discouraged following results showing that they are not as robust

as genotype tables in some situations (e.g. when alleles are codominant) [41].

A common alternative to analyze a contingency table is the calculation of Fisher's exact

test. This test does not use approximations involved in calculating X 2 and so is often pref-

ered. Though it is computationally more demanding, it is implemented in most statistical

and mathematical software packages [42].

Contingency table measures often include calculations of the odds ratio. There are many

subsets of genetic variables that are analyzed when looking for associations. Odds ratios

provide estimates of how much more likely cases versus controls are to have a specific allele

or genotype. Some of the most often used comparisons and their corresponding odds ratios

(OR) are:

1. Allele frequency ratio in cases versus controls:

OR - (2MI1i + H1)(2m 2 + H2 )

(2.MA2 + H 2 )(2mi + Hi)



2. Ratio of heterozygous genotype to major genotype in cases versus controls:

HIM 2OR =
MI H2

3. Ratio of minor to major genotype in cases versus controls:

nly M2OR =

4. Allele positivity. Ratio of minor plus heterozygous genotypes to major genotype in

cases versus controls:

OR (mi + Hi)M 2

M1 (m 2 + H2)

5. Armitages trend test [43]:

H1M2 + mlH2 + 4mlM2
OR = N 12  N 23  N1 3M 1 H2 + Him 2 + 4(mlM2M1m 2)0 ·5

N12  N2 3  N 13

where Nij = ni + nj (i.e. the sum of column margins of the observed genotype table).

For (1) through (5) above, chi-square tests can be performed by making tables with the

relevant subset of alleles or genotypes. Armitage's trend test, also known as the Cochran-

Armitage test, is one of the most common tests used in genetic association studies [42]. It is

a conservative test that does not depend on the assumption of Hardy-Weinberg equilibrium

of a gene. The test consists in finding a trend among genotypes and presence of a phenotype

by assuming that the alleles confer an additive effect. Therefore, the cases of a disease would

be expected to have a homozygous minor genotype more often than a heterozygous genotype

because having two copies of the minor allele would increase the likelihood of a disease. If

there is no relationship among genotypes and the disease, then the proportion of cases and

controls with each genotype is equal.

Contingency tests allows for the calculation of statistical significance of individual genes

only. This is of utility when testing for the effects of singles genes, as in monogenic traits,

but of less utility when trying to find a group of genes that affect a complex trait.



Logistic Regression Models

Binary logistic regression models are a type of regression that is used to determine the best

predictors of a two-choice-outcome dependent variable. Given a set of categorical and/or

continuous independent variables, a model with those that best describe the dependent

variable is constructed. A logistic regression model can be used to predict the dependent

variable given a set of independent variables. Additionally, the model can be used to measure

the percent of variance in the dependent variable explained by the independents, and to rank

the independent variables by their contribution towards explaining the dependent variable,

including interaction effects. Interaction terms are usually no larger than the product of

two independent variables as the computation time rises significantly and the model rarely

improves with higher order terms.

Logistic regression models are constructed by transforming the dependent variable into a

logit variable, which is the natural log of the odds of the dependent occurring. A maximum

likelihood estimation (MLE) procedure is then applied to find significant independent vari-

ables. The logit transform of a binary dependent variable, Yi, with independent variables

Xi,l,, Xi,p-1 is given by:

logit(Iri) = 3 + Z 3jx13,

where E[Yi] =: ri. The MLE is analogous to the least squares estimation used to find the

coefficients in a linear regression model. But, instead of looking at changes in the dependent

variable given changes in the independent variables, the MLE looks at changes in the log of

the odds of the dependent variable. The 13 coefficients are the weight that is given to each

independent variable.

Logistic regression requires that observations are independent and that the linear rela-

tionship to the logit function holds. Because the model can be used to make predictions

of the dependent variable, model accuracy can be checked by making a prediction with the

independent variables used to construct the model. Predictions are usually made with log

likelihood tests of the data. The goodness of fit of the model can also be assessed with

Chi-square tests.

In a stepwise logistic regression, a logistic regression model is built by adding or remov-

ing independent variables according to a statistical significance test at each step. Stepwise

regression procedures are useful when the number of independent variables is large. They



can be run in the forward, backward, or both selection directions. Forward selection pro-

cedures begin with a constant-only model to explain the dependent variable, and add the

most significant independent variables one at a time according to a statistical criteriofi. The

backward selection procedure begins with all of the independent variables and removes one

at a time, according to a criterion by which the variable removed is deemed worst. The

both selection refers to a combination of forward and backward procedures.

The most common criterion used to add/remove variables in the stepwise regression

models is the likelihood ratio test, but other measures such as Raos efficient score statistic,

the Wald statistic, and the conditional statistic have been developed. Most of these methods

are based on the likelihood ratio test. The stepwise regression is ended when some criterion is

met. In most cases, the criterion used is either (1) last step, (2) Akaike Information Criterion

(AIC) [44], or (3) Bayesian Information Criterion (BIC) [45]. The last step criterion consists

of updating the model until adding another variable would not significantly improve the

model according to the likelihood ratio test. The AIC criterion penalizes the likelihood by

the number of variables added to the model to attempt to reduce overfitting. A logistic

regression is stopped when the lowest AIC is found. The AIC is given by:

AIC(M) = -21og[L(M)] + 2p(M),

where L(M) is the likelihood estimate for model M, and p(M) is the number of predictors

used in model M (i.e. the number of degrees of freedom). The BIC criterion, also known

as the Schwarz criterion, penalizes the likelihood by the number of variables added to the

model taking into account the sample size of data used to construct the model. Models

built with large datasets are at a higher risk of being overfitted than smaller datasets. The

BIC is given by:

BIC(M) = -2log[L(M)] + p(M)log(n),

where L(M) and p(M) are the same as for the AIC and n is the sample size. Methods

using AIC and BIC criteria are considered penalized maximum likelihood methods because

they penalize the likelihood of the data by the complexity of the model used to describe it.

Because the BIC takes into account the number of observations in addition to the number

of model parameters, models found using the BIC tend to be more parsimonious than those

obtained with the AIC criterion.



The stepwise procedure is usually recommended for exploratory purposes as it easily

models noise in data. Many problems with stepwise regression models have been described,

and a few will be mentioned here. There is a high likelihood of multicollinearity with

larger numbers of independent variables, and stepwise procedures do poorly when faced

with collinearity. A large number of subjects are required per independent variable to keep

the number of fortuitous significant variables down. For instance, at a 0.05 significance

level, one out of 20 independent variables is expected to be significant by chance alone.

Peduzzi et al. estimated that there should be no more than one independent variable for

each 10 occurrences of the smaller of the dependent variable outcomes [46]. All of the tests

to evaluate the performance of the stepwise logistic regression model, which is attempting to

find a best hypothesis, are based on tests that were designed to test prespecified hypotheses.

As the number of independent variables rises, calculations can become intractable, especially

when interaction terms are included. Therefore, logistic models of genetic data are of limited

utility when data for hundreds or more genes are studied simultaneously.

2.4 Limitations of Association Studies in Complex Traits

Although successful gene associations in complex traits have been found and association

study designs are more powerful to detect susceptibility variants in complex traits than

linkage analysis studies [33], strong concern has surfaced over the lack of reproducibility

of many association studies [47, 4, 48]. Some of the factors that are responsible for un-

reproducible results and other limitations of traditional association studies are discussed

below [39, 491.

Ambiguous Phenotype Definition

Because complex traits are difficult to define precisely, or their definition allows for a het-

erogeneous group of disease processes to be classified as one, some genetic studies do not

have homogeneous trait populations. Though most complex trait studies use objective

phenotypes to define case versus control populations in an attempt to overcome problems

related to trait definition, which minimizes within study population heterogeneity, different

studies often use different criteria to define complex traits, making between-study compar-

isons difficult. When compared studies using different phenotype definitions appear to be



unreproducible, it cannot be determined whether the inconsistencies are due to two true

associations to different phenotypes or inconsistent associations to a common phenotype.

Population Structure

When case and control populations differ by more than the phenotype of interest, then any

gene association measured may be due to any of the differences among them. For instance,

if the groups have different ethnic distributions, then genetic associations measured may

be related to ethnic genetic heterogeneity and not the phenotype of interest. A more

complicated population structure effect may be that similar alleles are expressed diferently

among populations due to gene-gene and/or gene-environment interactions. In this case,

similar alleles may only be found to be associated to a trait in some populations. Problems

related to population structure have long been recognized and most studies attempt to

reduce this error source with study designs. Methods to account for population structure

in gathered data have been proposed [42]. Such methods include the use logistic regression

models [50] and principal component analysis [51] with null SNPs to account for population

structure.

Changes in Statistical Power

In traditional association studies, power is proportional to the number of subjects stud-

ied. Therefore, if follow-up studies have fewer subjects than initial studies, then initial

associations found will not be re-measured. Additionally, intial studies may use popu-

lation extremes to measure genetic differences (e.g. diseased subjects with severe symp-

toms/phenotype and control subjects with no symptoms or phenotype expression of any

form), while follow-up studies may use more representatitive samples of the populations

being studied (e.g. diseased and control subjects with variable phenotype expression). In

such cases, the follow-up studies may also have less power to detect genetic association

because the allelic distribution is more likely to be heterogeneous within the disease and

control groups.

Chance

As the number of genetic variants studied gets larger, the probability of finding false-

positive associations due to chance alone becomes higher. This is especially true in simple



association designs where p-value tests with little stringency are used to test for significance

and with current whole-genome approaches where over 500,000 SNPs are measured at one

time. Many studies with simple statistical designs fail to exclude chance as the cause of

association, and publish measured associations with more confidence than they deserve.

Publication Bias

Because negative association results are rarely published, especially when they are not

from follow-up studies, literature searches of association are biased towards finding false-

positive results. This has a strong impact on candidate gene approaches and experimental

designs. Additionally, good systematic reviews and meta-analysis studies are hidered by

the unavailability of negative results. Examples demonstrating publication bias by showing

the large association effects measured in small studies and the small association effects in

large studies can be found in [52]. Errors due to publication bias should diminish in the

near future with the advent of genome-wide association studies and the public availability

of large genetic datasets.

Rare Alleles

Allelic heterogeneity occurs when a variety of genetic variants can independently cause a

trait. In this situation, true but different allelic associations could explain a trait in different

populations studied. Under the "common-allele, common-variant" hypothesis, it is believed

that the allelic spectrum that causes common traits is small [53, 47]. This view does not

suggest that allelic heterogeneity plays a significant role in explaining inconsistenices among

association study results. Alternative views that consider rare alleles to be significant in

explaining complex traits [54] would account for some association study inconsistencies.

The common-allele, common variant view has been prevalent over the past decade, but the

importance of rare alleles has become more accepted in light of recent studies where rare

alleles play a significant role in determining complex traits [55].

Single Gene Additive Approach

An important limitation of traditional association studies in the study of complex traits

is that they investigate the relationship of single genes or assume additive effects of single

genes to a phenotype. Because complex traits are caused by multiple genes, methods that



take into account the complex interaction of many genes are more useful than one-gene-

at-a-time approaches [56, 57]. Though in principle logistic regression models can account

for multivariate interactions, in practice they are inadequate to do this with large genetic

datasets.

Studies do not Predict Individual Outcomes

The results of traditional association studies are lists of genes that are significant based on a

statistical threshold. Validation studies involve replicating initial findings, which does little

more than to increase the sample size of the original result. Results of gene association

studies have not often been used in a clinical setting or to motivate further biological

studies. Lacking from these studies is a result that can be applied to an individual such as

a quantitative risk for a trait that would be useful in a clinical setting. Such quantitative

measures for an outcome are readily interpretable and decisions about how to change an

individual's life can be based on them. Though logistic regression models can assign a

probability to predict an outcome, few genetic studies use the models for this purpose.



Chapter 3

Probabilistic Graphical Models

3.1 Introduction

Probabilistic graphical models (PGMs) use principles from graph theory and probability

theory to model complex systems with multiple interacting entities. They were developed

to address high-dimensional problems that were intractable with existing methodologies.

The approach consists in reducing large problems into smaller, more maneagable ones using

conditional independence assumptions [58, 59]. Computational algorithms can be created

to address the smaller problems, whose solutions can be joined to build a comprehensive

solution. In a probabilistic graphical model, the attributes of a problem are treated as ran-

dom variables and the relationships among them are described by probability distributions.

The model is wholly characterized by a joint probability distribution and its correspond-

ing graphical representation. The underlying probabilistic foundation allows PGMs to find

and use complex multivariate dependencies to understand a problem, while the graphical

representation is helpful to intuitively interpret the relationships among variables.

Originally, graphical models were constructed by having experts choose graphs of con-

ditional variable dependency relations and use subjective assessments of the probability

distributions that quantified the dependencies. Although this approach is sometimes used

today, there are few cases where it can be applied successfully and incontrovertibly. Instead,

learning methods have been developed that extract the conditional dependencies and graph

models from user-supplied data. The existence of efficient algorithms to learn models from

data makes PGMs a powerful tool to discover complex data dependencies.

The process of learning consists of two main parts: parameter estimation and model



selection [60]. Parameter estimation refers to the process of calculating the conditional

probabilities of a given model structure. This is often accomplished using a maximum

likelihood approach. Model selection refers to choosing a structure that best captures the

dependencies among the variables and is often performed by optimizing a score such as a

Bayes' factor comparing the marginal likelihood of two models.

Once a model has been selected, a common desired task is to use the model for prediction

(i.e. inference). This task serves to validate the model's ability to capture the dependencies

among the data used to create it, and to test its generalizability with independent datasets.

There are many ways to carry out predictions [59]. Exact calculations can be performed

but are usually too computationally intense for practical purposes. Most algorithms rely

on approximations and exploit a model's graphical structure to increase computational

efficiency.

After defining some basic notions needed to describe graphs, some of the most common

probabilistic graphical models are introduced. The first two, Bayesian networks and Markov

random fields are stationary models, while hidden Markov models are temporal models.

In PGMs, nodes represent random variables and edges represent the probabilistic de-

pendencies among nodes [61]. Edges between nodes can be directed or undirected [Figure 3-

1(a)]. Directed edges are represented as arrows and are called arcs. Trails are sequences

of edges that; connect nodes in a graph. Paths are trails in which edges are followed only

along directions in which arrows point. A trail of undirected edges is an undirected path,

while a trail of arcs followed from arrow tails to heads is a directed path. If a path leads

from node A to node C, then node A is said to be an ancestor of C, and C a descendant

of A [Figure 3-1(b)]. If there is one edge between these two nodes, then node A is said

to be the parent of B, and B is a child of A. When a trail begins and ends on the same

node, such a trail is a cycle [Figure 3-1(c)]. Connected graphs are those which have trails

between any two nodes [Figures 3-1(b) and 3-1(c)]. A tree is a connected graph with no

cycles [Figures 3-1(b)]. A graph composed of arcs only is a directed graph. A directed

acyclic graph (DAG) is a directed graph that contains no cycles [Figures 3-1(b)]. A clique

C is a maximal subset of a graph's nodes in which every node is directly connected to every

other node in C.



(a) Edges representing probabilistic
dependency between two nodes can be
directed (left) or undirected (right)

(b) A path connects ancestor node A
to descendant nodes B and C. Node A
is a parent of child node B.

(c) A cycle contains at least
one path connecting nodes
back to themselves.

Figure 3-1: Basic concepts used in probabilistic graphical models.

3.2 Bayesian Networks

The most common PGMs are Bayesian networks [62]. Bayesian networks are DAGs that

represent variables Y = {Y1, ... , YN } [Figure 3.2]. Each variable has a conditional probability

P(Y ,Hl), where HiJ are the parents of Yi. The joint probability distribution of the network

is given by the product of each variable's conditional probability:

P(Yl, ... , YN) = f P(Yi Ii), (3.1)

Bayesian networks are most often used when asymmetric probabilistic relationships exist

between nodes. In some frameworks, such as artificial intelligence or medical decision-

making, arcs represent causal relationships. However, arc relationships need not be causal.

The development of efficient learning methods have made Bayesian networks one of the



most promising tools in data mining. Details regarding Bayesian networks are given in

Section 4.

Figure 3-2: Bayesian networks are DAGs, were nodes represent variables and arcs represent
conditional dependencies among variables.

3.3 Markov Random Fields

Markov random fields (MR.Fs) are undirected graphs where the relationships between vari-

ables Y = { YI/, ..., YN } are given by potentials that capture the interactions among small

subsets of variables [Figure 3.3]. The joint probability distribution is given by:

P(Y1, ... ,YN) = • i[Ci],

where (i[Ci] is the ith potential over variable subset Ci, and Z is a normalization constant

given by:

z= Z E cI i
CEY i

Originally developed to model lattices of particles, MRFs are most often used to address

problems in which variables are correlated and there is no clear directionality to their

relationship.

3.4 Hidden Markov Models

Hidden markov models (HMMs) are representations of stochastic processes in which future

states are assumed to be conditionally independent of past states given the present state.



Figure 3-3: Markov random fields are undirected graphs, were nodes represent variables
and edges represent conditional dependencies among variables.

Underlying an observed variable is a hidden one with unknown parameters. The purpose of

the HMM is to uncover the unknown parameters using variations of the observed variable.

Graphically, HMMs are represented as shown in Figure 3.4. Each top node in this figure

represents the state of a hidden random variable X at a given time. The bottom nodes

represent the observed states of random variable Y at a given time. The joint probability

distribution for observing a sequence of L instances of Y, Y = yo, ...: YL-1 is given by:

P(Y) = P(Y|X)P(X),

where X represents every possible combination of sequences x0 , XL-1. This sum is effi-

ciently calculated using the forward-backward procedure, which allows for predictions of an

observed outcome [63]. Efficient algorithms have also been created to address the question

of (1) finding the most likely sequence of X, given model parameters, that could have gen-

erated a sequence of Y (Viterby algorithm), and (2) given a sequence of observed values

of Y, learn the model parameters (Baum-Welch algorithm) [64]. Problems that can be

represented as an HMM can be readily solved because of the wealth of algorithms that exist

to understand these models.

3.5 Genetics Applications

Probabilistic graphical models are a powerful technique that can overcome limitations of

conventional association study approaches. Going beyond single or pairwise gene interac-

tions with a phenotype, probabilistic graphical models are able to account for complex gene



Figure 3-4: Hidden Markov Models are directed graphical models representing a time pro-
cess. The observed random variable Y depends on a hidden random variable X at each
time point.

interactions. Addtionally, they can be used to make predictions of a phenotype of interest

for individual subjects that allows for ascertainment of their validity.

Sequence Analysis

HMMs have been used for a variety of DNA and protein sequence analysis studies [64, 65, 66].

One of the most common applications is sequence alignment for the identification of similar

genes, protein-coding regions and transcription binding sites within and between species,

and to find families of related sequences. Such applications have helped speed up the

analyses of newly genotyped species by allowing the identification of genomic regions based

on prior knowledge of previously genotyped species. They have also helped to identify

the function of unknown genes within one species by identifying similarities between newly

genotyped regions and known genes.

Linkage Analysis

A variety of algorithms have been developed for genetic pedigree linkage analysis using

probabilistic graphical models. Family pedigrees can be represented naturally as Bayesian

networks with nodes representing individuals and arcs connecting parents to offspring. Fig-

ure 3-5(a) shows a traditional pedigree used in inheritance analysis. A Bayesian network

representation for this pedigree is shown in Figure 3-5(b). This representation holds for

genotypes undergoing Mendelian inheritance. For a system with a alleles, the genotype for

each individual, Gi, has one of a(a + 1)/2 possible states. The joint probability distribution

for a network representing N individual's genotypes is given by:

P(.q,...,gN) = f 7r(.qi) -r ('qjlgm3 , gfj)
i E.T" j .



where 7r represent the founder genotypes (i.e. the genotypes of those without parents), F

is the set of all founders, and 7 are the transmission probabilities with which a genotype is

transmitted to an individual whose mother has genotype gm, and father has genotype gfj:

S(gi gm,, gf,) = P(Gi = gi IGmi = gm,, Gf = gI,).

More general PGM pedigree representations and their use in simple linkage analysis, de-

tection of a quantitative trait locus (QTL), and other applications can be found in [11].

(a) A family pedigree used in traditional linkage analysis.

(b) Bayesian network representation where nodes represent individual
genotypes, which depend on parental genotypes.

Figure 3-5: Bayesian network representation of a family pedigree for linkage analysis.



Multilocus Association

Most current case-control association methods that consider more than single SNPs, do so

with the intention of identifying single genetic loci that cause a disease. Multiple SNPs are

considered to take advanatage of linkage disequilibrium among nearby genetic markers in the

identification of causal loci. Because many SNPs are likely to be in linkage disequilibriumn

with a causative genomic region, considering multiple markers is likely to increase the signal

around true causative site [31, 67].

One approach to multilocus association is to relate haplotypes, rather than individual

SNPs, to a trait or disease [68]. Haplotypes are patterns of genetic variation that tend to

occur simultaneously along a chromosome [69]. The human genome is organized into blocks

such that the state of some SNPs usually allows inference about the state of other SNPs

in certain regions. Because complete resequencing of many individuals is not currently

feasable, methods to infer haplotypes from limited genetic markers are necessary. Haplo-

type maps for representative populations provide a mechanism by which SNPs that uniquely

identify haplotypes (htSNPs) can be selected for association studies [70]. The htSNPs can

be used in association studies using conventional one-SNP-at-a-time approaches with the as-

sumption that a. greater genetic variation of the population is being accounted for than with

other SNP selection procedures. Alternatively, haplotypes can be infered computationally

and then associated directly to a trait using conventional statistical measures [71].

HMM models have been used to model dependencies between haplotype blocks [72] and

to model haplotype ancestry along chromosomes [73, 74] to perform linkage disequilibrium

mapping of genetic traits. More complex PGM for multilocus association, based on variable-

length Markov chains, have been developed [75].

An alternative to using haplotype maps to model linkage disequilibrium is to consider

multiple SNP interaction terms with PGMs. These methods provide an alternative to

haplotype maps that can account for dependencies among SNPs that do not assume a

simple physical proximity relationship to model linkage disequilibrium and consider more

than pairwise associations. MRFs describing dependencies of multiple genetic markers and

a trait have been used for such multilocus association studies [76]. The metric used in these

studies for graphical model selection is the Bayesian information criterion:

log(h)BIC = log[L(G)] - o-df(G),2



where L(G) is the likelihood of graphical model G, h is the number of haplotypes observed,

and df(G) is the number of degrees of freedom of model G. The model with highest BIC is

kept. An extension of this work cana perform haplotype reconstruction in addition to finding

associations among genetic markers and a phenotype [77]. An alternative PGM approach

has been developed for genomewide scale linkage analysis that also uses decomposable

MRFs, but uses Bayesian model averaging (i.e. a Markov Chain-Monte Carlo algorithm)

to select SNPs associated with a disease instead of keeping a single model with a maximal

score [8].

Although the approaches discussed above consider multiple SNPs, limits are usually

placed on which SNPs can interact on the basis of physical distance because the interac-

tion under consideration is that due to linkage disequilibrium. A limitation of the above

algorithms is that they require phased haplotype data. Though robust and efficient al-

gorithms to infer haplotypes are available [78, 79, 80], the results of these procedures still

have uncertainties that are often not considered when measuring association. Further, most

haplotype identification algorithms do not scale to genomewide studies. Consideration of

epistatic gene-gene interactions have not been implemented in these approaches, though

some authors mention the ability of their methods to do so [72, 8].



Part II

A Novel Bayesian Network

Approach for Complex Traits



Chapter 4

Bayesian Networks

4.1 Fundamentals

Most Bayesian network algorithms have been developed for categorical variables which

are considered here. Let ci be the number of states of Yi and Yik be a state of Yi. The

conditional dependency linking Yi to its parents, IIi, is mathematically defined by the

conditional probability distributions of Yi given each of the posible configurations of its

parents 7ril ... , 7Tiqi. A node Yi is conditionally independent of one of its non-descendants,

ND(Yi), given parents Hi that both have in common. Such conditional indepence relations

allow for the factorization of the joint probability of a set of values of Y, Yk = {Ylk, ---, YNk}:

N

P(Yk) = P(Yiklrij), (4.1)
i=1

where 7rij are the configuration of states of Hi in Yk. Note that the index j of ir is actually

a function of i and k because the parent configuration in a set of values Yk is determined

by the index i, which specifies the child variable and hence the parents it can have, and the

index k, which specifies the states of the parent variables.

4.2 Parameter Estimation

Assume a DAG M and a sample of n cases y = {yl,..., yn} are given. The sample y is

an n x N matrix because each case, Yk, is a row vector with each entry corresponding

to the state of one of the N variables Yk = (ylk, ... , YNk). The 0 parameters are to be



estimated. That is, 0 = (Oijk) = (p(yik'rij), 6) are to be found. The parameter vector

Oij = (0ijl, ... , Oijci) is associated to the conditional distribution of Yi lrij inferred from y.

The standard way to estimate 0 is to use conjugate analysis. Let n(yik(•rij) be the

frequency of (yikl7rij) pairs in the sample, and let (7rij) = Ek rL(Yik-Tij) be the frequency

of rij. The joint probability shown in Equation 4.1 can be written in terms of the unknown

Oijk:
N

P(Yk 1) fJOijk,
i=l

where j is determined by i and k. If the cases Yk are independent, then the likelihood

function is the product of the joint probabilities:

n N qi ci

L(O) = 17 P(YkIO) k= Jl f l n(YlkriJ)
k=1 i=1 j=lk=1

The innermost products local likelihood contributions from individual parent configurations:

r 6 An(Yikl7rij)Sijk (4.2)
k=1

while the middle product is that of local parents-child configurations:

qi ciJl rj 6 n(YikVrij)

j=1 k=1

An assumption that usually holds when the likelihood can be factorized into parents-child

contributions is global independence: the parameter vectors 0ij and Oijl, associated to vari-

ables Y' and Yi, are independent for i - i'. If Oij and Oij,, which are associated to the

distributions of Yi, are independent given different parent contributions rij and 7rijy, where

j A jY, then local independence holds and the joint prior density of can be factorized into:

N qi

p(Olio) = 1- 7[ p(o0 jI 0).
i=1 j=1

When global and local independence hold and there are no missing values in the sample y,

the posterior density of 0 is proportional to the product of the above factorizations of the



prior density and likelihood functions:

p(O9I1) c p(O ijlo) r I o ij )
ij k=1

The posterior density factorization allows for the independent update of Oij, for all i, j,

which reduces the update process to local procedures. If the prior distribution of Oij, for

all i, j, is a Dirichlet distribution, D, with hyperparameters {aijl, ..., aeij}, a~ijk > 0 for all

i, j, k, then the prior density of Oij is given by:

p(Oij lo) OC rl C0'.k-1

k

up to a constant factor. This prior is conjugate to the local likelihood (Equation 4.2),

as indicated by the similar functional forms. The prior hyperparameters, aijk encode the

observer's prior belief and can be thought of as representing the frequencies of imaginary

cases needed to formulate the prior. The frequency of such imaginary cases in the parent

configuration 7rij is:
ci
> (aCji - 1) = Cij - ,

k=1

where oiij becomes the local precision. Further, Ej aij = ai, and ai is the global precision on

Oi. For consistency, it is assumed that imaginary samples have equal numbers of observations

for all variables Y: such that ai = a. This assumption is actually necessary to enforce local

and global parameter independence [81]. The marginal probabilities of (yikl rij) can be

specified by the (Oijk :

E[Oijkio= ik p(iky7riij),
oij

and

E[Oijk](1 - E[Oijk])Var[Oijkl o =
aij ± 1

Note that for fixed E[Oijk], the variance of Oijk becomes large with small values of aij .Therefore,

small Cij denotes great uncertainty of the parameters. Initial ignorance can be represented

by assuming aijk = a/(ciqi) for all i, j, k, which reduces p(yik17rij) to 1/ci.

Dirichlet distributions are closed under marginalization, which means that if initially

the parameters follow a Dirichlet distribution, Oij , D(aijl, ... , aij,), then any subset of



parameters, (Oijl, ... , Oijs, 1 -Ek=l Oijk), will have a Dirichlet distribution D(Oij 1, ... , Oijs, 1-

E=-1 Oijk). The parameter Oijk will follow a Beta distribution with hyperparameters aijk

and aij - aijk:

p(Oijk Io) k1 - Oijk)a ij-tijk

making marginal inference easy to carry out. When the parameter independence and prior

Dirichlet distribution assumptions hold, then the posterior density of 0 will remain a product

of Dirichlet densities and Oij I D(aIijl + n(y il rij), ..., aijc, + n(yic, I7rij)). The updating

procedure has increased the hyperparameters by the frequency of cases observed in the sam-

ple, n(yicj 17rij), which allows for a simple calculation at each updating step. The posterior

expectation and variance become:

E[Oj ijk + n(Yik7rij)
[cij + n(7rij)

Var[OijkII] = E[Oijkl11](1 - E[Oijk1It])

aij + n(rrij) + 1

The local precision has increased from aij to aij + 7rij, demonstrating that as the frequency

of parents observed increases, our parameter uncertainty decreases.

4.3 Model Selection

Given a set of models M = {Mo, ..., Mm} that are believed to contain a true model of

dependence among a set of variables Y, the best model must be identified. Initially, each

model is assigned a prior probability p(Mjllo). Let O(j) be a vector of the conditional

dependencies specified by Mj. The familiar Bayesian procedure is used to compute posterior

probabilities from the priors and marginal likelihood functions:

p(Mj ll) oc p(M ilo)p(yl j)

To find the most probable model, the marginal likelihood, p(ylMj), must be computed:

p(yIMj) f p((0J) M j)p (y O (j)1 )d O
(j) (4.3)



where p(O(J) IMj) is the prior density of O(j) and p(yO(j3)) is the likelihood function assuming

AMj is the model of dependence. Equation 4.3 has a closed form solution when assumptions

analogous to those in the previous section hold:

1. All sample cases are known

2. The cases are independent given O(j)

3. The prior distribution of parameters is conjugate to the sampling model p(ylO(J)).

Specifically, O() - D(o ij, ... , aijci) and global and local independence of the param-

eters holds.

The marginal likelihood of Mj becomes:

p(yN M) =N r(q) 1- r(ijk + n(yik I1rij))

i=1 j=1 F(aij n(=ri)) k=1 ijk)

where F(-) is the Gamma function [82]. Thus, the marginal likelihood can be computed

with the hyperparameters of the Gamma function, aijk + n(Yik 17rij), and the local precision

values, cij + n(7rij), of the posterior distributions of Oij.

When the number of variables is large, exhaustive searches through all models becomes

computationally impossible. This has led to the development of heuristic methods to shorten

the search process. Often, the search time is shortened by imposing some ordering among

variables in the form of Yi -< Yj, meaning that Yi cannot be the parent of Yj, and the

parents-child dependence is used to find local answers that are then pieced into a global

solution. Both of these are used in the K2 algorithm, which is a common method used in

the building of Bayesian networks [83]. In this algorithm, the local contribution of a node

Yi and its parents II to the overall joint probability p(ylMj) is calculated using:

g(Yi, Hi) = H (aj + n(Tij) r(ijk n(ikij)) (4.4)
j=1 + n( k=1 F(aijk)

The algorithm proceeds by adding one parent at a time to node Yi and computing g(Yj, Hi).

The set of parents, Hi, is expanded to include the parent node that maximally contributes

to g(Yi, Hii), until the probability ceases to increase at which point the algorithm considers

remaining nodes.



4.4 Prediction

Bayesian networks are usually created for the purpose of calculating the probability of an

outcome or assessing some interesting feature of the problem the model addresses. How

to use a selected model to make a prediction is a difficult problem. In theory, very large

tables of probabilities could be created that consider all nodes in a network simultaneously.

In practice, most predictive algorithms exploit the structure of networks to perform local

computations, which are then joined to give an overall solution. This approach drastically

reduces computational time, making Bayesian networks useful in practice.

The most common Bayesian network inference algorithm is the clique-tree propagation

algorithm [58]. Clique-tree propagation involves two processes: compilation and propaga-

tion. The compilation process involves grouping variables into cliques, organizing these into

junction trees, and assigning numerical data to their appropriate locations in the junction

tree. The propagation stage involves the performance of local computations and their dis-

semination along the junction tree to obtain a desired global solution. A general description

of this algorithm follows.

Compilation

Moralisation

The compilation process begins by turning a Bayesian network into an undirected graph by

a process called moralisation. During this process, every arc is converted into an undirected

edge, and new edges are added between every pair of parents of a node. In this new graph,

the set composed of each node and its parents, Yi U Ili, has an edge between every pair of

elements and is said to be complete. The joint probability distribution 3.1 becomes

P(YY, ..., YN) = J P(Y4H I) = R c (YC), (4.5)
i CEC

where C is the set of all cliques C, and ¢ are the potentials of each clique. The potentials

are obtained by multiplying the conditional probabilities of the Yi U Hi within each clique,

which can be done easily because the graph is moral. A simple example of a moralised

graph is shown in Figure 4.4.



Figure 4-1: Beginning of compilation process of a Bayesian network (left). The network
is moralised by converting directed edges to undirected edges and joining parents of each
node (middle). The moral graph is triangulated by adding edges in all cycles with more
than three nodes such that nonadjacent nodes are connected (right).

Triangulation

After a Bayesian network has been moralised, a process called triangulation is performed.

Triangulation entails the addition of edges to the graph until all cycles with more than

three nodes have chords, edges that connect two nonadjacent nodes in the cycle, by a

process called elimination:

1. A copy the moral graph is created and an ordering of nodes is chosen

2. For each ordered node:

(a) Fill-in edges are added between all pairs of the node's neighbors

(b) The node and all of its adjacent edges are removed

(c) Remaining fill-in edges are added to the original moral graph

3. The moral graph becomes a triangulated graph

The joint probability distribution remains that given in Equation 4.5, but the set of cliques C

is now that in the triangulated graph. Finding an optimal triangulation, one that produces

the smallest possible cliques, is an NP-complete problem [84]. However, there are various

criteria used to order the nodes such that the triangulation process produces optimal re-

sults efficiently in most cases [85, 86]. Because the running time of inference algorithms is



exponential in the size of the largest clique, optimizing the triangulation step is crucial to

computational efficiency.

Junction Tree Formation

In the next step of the clique-tree propagation algorithm, the cliques of the triangulated

graph are identified and connected as nodes into a junction tree. For the propagation process

to work properly, this tree must satisfy the property that A n B C D for all A, B, D E C,

where D is between A and B if it lies in the unique path from A to B. That is, elements

found in cliques A and B must be in each of the cliques along the path connecting A and

B. Details of the junction tree construction process can be found in [61].

Once the junction tree has been obtained, the potentials for each clique, 0c are calcu-

lated. As shown in Equation 4.5, this is done by assigning the original node's conditional

probabilities, P(YilIi), to cliques that contain node Yi and its parents Ii. First, all cliques

are initialized to have unit potential: Oc(Yc) - 1. Then, each node Yi is assigned to one of

the cliques containing it. If S(C) is the set of nodes assigned to clique C, then the clique

potentials are updated to be given by:

¢c(Yc)= l P(YIlrl-).
Y2 CS(C)

and the overall joint probability distribution becomes:

P(Y1, ..., YN) = P(YirIi).
ceC YiS(C)

Before propagation, it is common to update the potentials with observed data. For each

clique containing an observed node Yi = y*, the potential is changed to 0* as follows:

0 otherwise

This step, referred to as entering evidence, updates the joint probability to that given

observed nodes Y":

P(Y1, ... , YN Y) = cEc C(Yc)(4.7)
Z(Yý)



where Z(Y;) is a normalization constant equal to the probability of the observations, P(Y;),

and is given by:

z(Y) = Z C (Yc). (4.8)
Y CEC

Propagation

Construction of the junction tree permits actual calculations of the probabilities of interest,

beginning with the probability of the observations given by Equation 4.8. In practice,

this algorithm is not solved with brute force because the number of terms in the sum grows

exponentially with the number of network nodes. A common approach is to select one clique

to be the root of the network, and then use a peeling algorithm to propagate messages to

the root [58]. The propagation begins at leaves, or cliques other than the root with only

one neighbor, which are peeled off as the calculation gets passed towards the root.

Let the initial clique potentials, Vc, of a junction tree be given by Vc = 0*, C E C.

When a message passes from leaf L to its neighbor D, the potential OL is marginalized to

S = L rý D:

V,~S(Ys) C L(YS, XL\D).
XL\D

Before leaf L is removed from the junction tree, its neighboring clique D absorbs the message

from L as its potential changes to OD: V)D = DL -

After all leaves other than the root, R, have been peeled, the probability of the root

given the observations are all that remain to solve Equations 4.7 and 4.8:

P(YRI Y;) = 'R(YR)

Z(Y;) = EZOR(YR).

YR

where VR is the modified potential after all messages have been sent along the junction tree.

The conditional probabilities of individual nodes in the root clique can now be obtained

by summing appropriately over a maneagable number of node configurations. Variations of

this propagation scheime havc been created for specific applications [87]. Similarly, various

computational shortcuts can be incorporated in specific situations [11].

The clique-tree propagation algorithm, and all other exact inference algorithms, are ef-

ficient with sparse graphs, but can be very slow with large graphs as their running time is



exponential in the size of the largest clique of the triangulated moral graph. Several approxi-

mate inference algorithms have been developed and are appropriate for specific applications,

but many of them use elements of the exact approach outlined above.

4.5 Applications to Complex Trait Genetics

Bayesian networks are regarded as an emerging paradigm for the analysis of complex traits

because of their ability to model complex multivariate dependencies and make predic-

tions [88, 7, 8]. In addition to being used in pedigree linkage analysis as described in

Section 3.5, they have been used to study gene expression data [9] and protein-protein in-

teractions [10]. Of most relevance to this thesis, Bayesian networks have been used to study

complex trait genetics in association studies.

One candidate gene association study investigated the prediction of stroke in sickle cell

anemia patients using Bayesian networks [12]. Sickle cell anemia (SCA) is a monogenic

recessive disease, but it is phenotypically complex. The clinical course of individuals suf-

fering the disease has a wide range of severity and timing of symptoms. Stroke is a severe

complication that affects 6-8% of sickle cell anemia patients, often before the age of 20. In

order to find whether any candidate genes could serve to identify SCA patients who are

likely to suffer a stroke, a Bayesian network was constructed using 108 SNPs in 39 candidate

genes from 1398 SCA subjects. The resulting network contained 31 SNPs from 12 genes

that interact to modulate the risk of stroke. Of these SNPs, 25 corresponding to 11 genes

directly modulated stroke risk. Validation of the model in an independent population of

1.14 individuals had an accuracy of 98.2%. A forward logistic regression model was made

for comparison to the Bayesian network model. It found that 5 SNPs from 11 genes di-

rectly modulated the risk of stroke, with a predictive accuracy of 88% in the independent

population. The Bayesian network model was clearly superior to the logistic regression

model.

Another study investigated the relationship among 20 SNPs in the apolipoprotein E gene

and blood plasma apolipoprotein E levels (apoE) [89]. This study did not use a model for

prediction, but instead searched for SNPs that were most related to apoE in bootstrapped

models. Though the study was restricted to SNPs in one gene, the relationships modeled

among SNPs are more complex than they would be using traditional association methods.



Chapter 5

Phenocentric Bayesian Networks

5.1 Introduction

As described in Section 4.5, Bayesian networks are a promising method to understand

complex traits. Though they have been successfully used in candidate gene studies with

0(100) SNPs or less, conventional BN implementations do not scale up to current genomic

dataset sizes. Most recent candidate gene studies use thousands of SNPs, and with the

advent of whole genome association studies, methods capable of handling 0(500, 000) are

needed. Here, we describe a BN learning algorithm that focuses on prediction of a phenotype

using large SNP genotype datasets for case-control association studies.

5.2 Challenges of Genomic Data Analysis

The analysis of large phenotype and genotype datasets used in the study of most complex

traits requires methods more powerful than those currently available [34, 90, 91, 49]. Tradi-

tional approaches that look at one SNP or characteristic at a time, such as those described

in Section 2.3 are inadequate to find the complex interactions that underlie complex traits.

Multivariate methods are an improvement over univariate methods in that they examine

more than single interactions between genetic and phenotypic independent variables and an

outcome of interest. Logisitic regression models are the most common multivariate method

used in association studies described in Section 2.3. Although they can account for in-

teraction terms among SNPs and phenotypic covariates such as age and gender, they have

serious shortcomings for the study of complex traits [92]. Because the number of parameters



needed to fit a logistic regression grows exponentially as inter-variable interaction terms are

considered, logistic regression models are usually constructed with no greater than pairwise

interaction terms. Even in this situation, calculations can become intractable with a large

number of variables. Additionally, the independent variables in a logistic regression model

are treated as covariates rather than random variables, which causes the identification of

genotyping errors and missing genotypes difficult to handle in genetic association studies.

Bayesian networks are a powerful PGM technique that can overcome the limitations

of conventional association study approaches as discussed in Sections 3.5 and 4.5. Going

beyond single or pairwise gene interactions with a phenotype, BNs are able to account

for complex multivariate interactions. Addtionally, they can be used to make predictions

of a phenotype of interest for individual subjects that allows for ascertainment of model

validity. BNs are better able to find relationships among a large number of variables than

logistic regression models. However, the performance of BNs is challenged by large genomic

datasets. The recent advent of genomewide association (GWA) studies is promising for

uncovering the genetic architecture of complex traits. The magnitude of data produced in

such studies eclipses data produced by earlier candidate gene and linkage studies. Initial

GWA studies measured over 100,000 SNPs in hundreds of subjects [93, 94], and current

GWA study sizes have increased to over 500,000 SNPs in thousands of subjects [95]. With

the promise of this massive data comes the challenge of proper and efficient analysis [7].

Conventional single-SNP analysis of large datasets is able to find some of the most common

or penetrant genetic variants for a trait, but is unable to provide a thorough picture of the

complex genetic dependencies that produce the traits. Without more powerful multivariate

methods that can scale to large datasets, the promise of fully understanding the genetic

underpinnings of complex traits will likely not be fulfilled.

5.3 Learning Gene Association Bayesian Networks

The complex dependency relationships among SNPs and a trait can be modeled with BNs.

In the simplest case, one SNP modulates a trait. Figure 5.3 shows the graph and conditional

probability table (CPT) for this case, where SNP A modulates a trait. According to the

CPT, there is a higher likelihood for trait presence if SNP A's genotype is AA and for trait

absence if SNP A's genotype is aa.



SNP A Genotype (A)

A

AA Aa aa
0.36 0.48 0.24

Genotype
SNP A

AA 0.2 0.8 1
Aa 0.4 0.6
aa 0.9 0.1

Figure 5-1: SNP A modulates a trait. The BN graphical representation (left) and the
associated conditional probability table (right) are shown.

Expanding this model, let the trait be modulated by two SNPs, A and B [Figure 5.3].

The CPT's size has increased to 2 x 9, and the dependencies among genotypes have become

more complex. With m SNPs, the CPTs size grows as 2 x 3m, which becomes computa-

tionally unmanageable for large m. In this model, the assumption of independence between

SNPs has been made. In many biological situations, SNPs are independent of one another so

this assumption is correct. However, SNPs can be dependent through linkage disequilibrium

or other biological mechanisms.

A

Genotype
A

AA
AA
AA
Aa
Aa
Aa
aa
aa
aa

B
BB
Bb
bb
BB
Bb
bb
BB
Bb
bb

0.2
0.3
0.3
0.2
0.6
0.6
0.3
0.8
0.9

0.8
0.7
0.7
0.8
0.4

0.4
0.7
0.2
0.1

Figure 5-2: SNPs A and B modulate a trait. The BN graphical
the associated conditional probability table (right) are shown.

representation (left) and

B



For the sake of computational efficiency and to not make assumptions about SNP in-

dependence, the representation in Figure 5.3 can be changed to that of Figure 5.3. In this

alternate representation, the trait is independent and it modulates SNPs A and B. The

SNPs are conditionally independent given the trait and SNP independence is no longer as-

sumed. As new SNPs are added to the model in this representation, there is linear growth

of small CPTs: with m SNPs, m 2 x 3 tables are required.

A B

SNP A Genotype
AA Aa aa
0.1 0.2 0.7
0.6 0.3 0.1

SNP B Genotype
BB Bb bb
0 0.1 0.9

0.7 0.2 0.1

Figure 5-3: BN representation where the trait is independent and SNPs A and B are
conditionally independent given the trait. This dependency can be represented by two 2 x 3
conditional probability tables.

Although having trait be the parent node is computationally efficient and makes more

realistic assumptions about SNP independence, the quantity of interest is the probability

of trait absence or presence (T) given a genotype (G), P(TIG). Using Bayes Theorem, we

can find this measure by inverting the relationships between trait and SNPs. The joint

probability for the representation in Figure 5.3, where the genotype is given by SNPs A

and B is P(T, A, B) = P(T)P(AIT)P(B T). To obtain P(TIA, B), we use P(TIA, B) =

P(T)P(TIA)P(TIB), where for each SNP S, P(TIS) is given by Bayes Theorem:

P(T) = P(SIT)P(T)
P(T S) = P(S)

Thus we have an efficient basis for adding SNPs to a BN describing a trait. In addition to

having SNPs that are dependent on trait, some added SNPs will be marginally independent

of it.



One way to implement BN learning algorithms for genetic association models is to use

this structure in which trait is the root node of the network and the genotypes are either

conditionally dependent or marginally independent of it. This dependency structure can

represent the association of independent as well as interacting SNPs with trait. Addition-

ally, this structure captures complex models of dependency because the marginal likelihood

measuring the association of each SNP with trait is functionally independent of the as-

sociation of other SNPs with trait. In conventional BN learning algorithms, such as the

K2 algorithm described in Section 4.3, relationships among all nodes are explored. The K2

greedy-search strategy considers ordered nodes in turn, and builds a list of parents based on

nodes that have already been considered. Although only a subset of all nodes are considered

at each step, if the number of nodes becomes too large, the algorithm becomes intractable.

5.4 A Novel Discovery Procedure

To make predictions of a node in a BN, knowing the node's parents, its children, and the

parents of its children are all that is required. This set, known as a node's Markov blanket,

directly modulates the node of interest. Thus, even if a strategy such as K2 is used to learn

a full set of relations among nodes in a network, only the Markov blanket of each node is

used to make predictions. This suggests a learning algorithm that focuses on finding the

Markov blanket of a node, when the prediction of one node is of interest. In the case of

genetic prediction of a phenotype, this strategy is optimal for finding the SNPs that best

predict a phenotype. We call the corresponding network a phenocentric Bayesian network

(PBN). Given a set of nodes S, a phenotype p, and a Bayes factor threshold bf, use the

following algorithm to find the PBN:

PHENOCENTRIC-BAYESIAN-NETWORK (S, bf)
1 Net - []
2 while maxiEs[SCORE(p --4 i)/SCORE(i)] > bf
3 do S +- S - i
4 M -- p
5 child <-- i
6 while maxjEs[SCORE(M U j -- i)/SCORE(M -- i)] > bf
7 do M -- A MU j
8 parents <-- M
9 Net - EXPAND-NETWORK(Net, child, parents)

10 return Net



In this algorithm, nodes are greedily selected to become children, and then parents of

each child are found. The metric to choose whether a node should be kept is Bayes factor,

a ratio of likelihoods for a model with or without the node in question. The likelihood,

referred to as SCORE in the algorithm, can be the log likelihood given in Equation 4.4, the

Bayesian Information Criterion (BIC), or an analogous measure. The bf can be changed to

adjust the stringency of model selection. In the most liberal case, bf = 1. The EXPAND-

NETWORK refers to an algorithm that adds a child node and its parents to a network Net.

The network returned is that with the highest likelihood of predicting phenotype given

genotype.

The network obtained is quantified using the conditional probability distribution of each

node given the parent nodes. Conditional probabilities are estimated using:

P(xik rij) = ajk +- nijk
aij + 7Lij

where xik represents the state of the child node, 7rij represents a combination of states of the

parent nodes, nijk is the sample frequency of (xik, 7rij) and nij is the sample frequency of 7rij.

The parameters aijk and aij = Ek aijk encode the prior distribution with the constraint

Ej aij = a for all j. The parameter a is chosen by sensitivity analysis. Predictions with

the network can be performed using conventional approaches, such as those described in

Section 4.4.

5.5 Conclusion

A novel approach to learn BN has been described, which focuses on learning the relation-

ships that will best predict the outcomes of a given node. Addressing the need for better

analytic methods for the study of complex traits, the PBN approach is tailored for gene

association studies where the goal is to successfully predict a trait given a set of genetic

markers (i.e. SNPs). Tailoring PGM and especially BNs for the study of complex traits

is the most promising approach for modeling traits that accounts for their complex ge-

netic underpinnings and has a quantitative metric to assess their predictive accuracy for

individuals.



Part III

Asthma Management Features as

Complex Traits



Chapter 6

Asthma

6.1 Definition

Classically, asthma is recognized by signs and symptoms including shortness of breath,

cough, and wheezing. These findings are not very specific and can be attributed to many

other respiratory disorders. According to the Global Initiative for Asthma Management

and Prevention, asthma is a chronic inflammatory disorder of the airways in which many

cells play a role, in particular mast cells, eosinophils, and T lymphocytes. In susceptible

individuals this inflammation causes recurrent episodes of wheezing, breathlessness, chest

tightness, and cough particularly at night and/or in the early morning. These symptoms

are usually associated with widespread but variable airflow limitation that is at least partly

reversible either spontaneously or with treatment. The inflammation also causes an associ-

ated increase in airway responsiveness to a variety of stimuli [14].

6.2 Impact

Asthma is a serious global problem affecting 20.5 million Americans and over 300 million

people around the world [13, 14]. Its high and rising prevalence in most of the world has

resulted in asthma being refered to as an epidemic [16]. Figure 6-1 shows the estimated

burden of asthma around the world according to 2004 estimates [96]. Asthma is a costly

disease, as demonstrated by the increased risk of emergency room visits, hospitalization,

and sick absences that are associated with it [17, 18]. Over $16 billion are spent yearly in

the US on asthma-related healthcare expenses [13].
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Figure 6-1: Prevalence of asthma around the world [14].

Both the prevalence and death rate of asthma rose dramatically in the US and globally

between 1960 and 2001, and have remained at stable levels or slightly decreased since

then [15, 13]. According to a CDC study looking at US asthma data from 1982 to 1992,

self-reported asthma rates increased by 42% (1995). This same study found that in the 5

to 34 year age group, the rate increased by 52% (from 34.6 to 52.6 per 1000). Because this

age group is thought to have the most accurate asthma diagnosis, this increase emphasizes

that asthma prevalence rose during these years. According to other estimates, the number

of asthma cases reported between 1980 and 1995 increased by 75% (from 30.7 to 53.8 per

1000), and asthma cases in children under the age of five increased by 160% [15]. The

prevalence and morbidity of asthma have also been found to be on the rise worldwide [14].

In most countries who keep records, asthma prevalence has been rising through 2002 [16].

Explanations for the increased prevalence of asthma have been proposed. They include

increased rates of diagnosis due to increased physician and public awareness of asthma

symptoms and increased environmental factors that contribute to asthma. However, it

is more likely that asthma is more prevalent due to increased risk factors than increased

diagnosis [97].
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In the US, asthma mortality and hospitalization rates have increased, particularly in

minority populations [15]. From 1980 to 1993, the asthma death rate increased 118% and

the annual hospitalization rate increased 28% in the 0 to 24 year old subject category.

A racial disparity between deaths in African Americans versus Caucasian Americans has

also surfaced over this time period. This difference has been hypothesized as being due to

socioeconomic factors, including differences in access to medical care [98, 99].

6.3 Diagnosis

Asthma is not diagnosed on the basis of a single clinical test or a definitive pathological

process. Instead, asthma is diagnosed based on a thorough clinical history and a series

of pulmonary function tests, including measures of lung volume, airflow, bronchodilator

response. and diffusing capacity. Age, gender, family history, and race are not highly useful

in the diagnosis of asthma. Although it often manifests initially in children, asthma can

occur at any age [100]. Differences in rates of asthma based on gender in different age groups

have been observed, but these differences are not significant enough to preferentially suspect

asthma in a patient of a particular gender [101]. Sufficient evidence exists to support the

heritability of asthma, and about 50% of children with asthma have a positive parental

history [102, 103]. However, the predictive value of a family history has not been studied

and so is not helpful in the diagnosis of asthma. Studies on the incidence of asthma by

race have found little difference of clinical utility for diagnosis, other than the finding that

asthma is rare in Inuit populations [104, 105].

Clinical Lab Tests

Routine clinical lab tests that can be performed to help diagnose an asthmatic include

chest radiographs and allergy tests. Chest radiographs primarily help rule out other causes

of signs and symptoms suggestive of asthma or to find evidence of asthma complications.

Allergy tests axe performed because some patients who develop asthma are thought to do

so as a consequence of underlying atopy (i.e. allergic tendency). In blood tests, elevated

eosinophil count and serum immunoglobulin E (IgE) concentration are supportive of atopy.

However, extremely elevated eosinophil percentage (> 15%) suggests diagnoses other than

asthma such as parasitic infections and pulmonary infiltrates. Extremely elevated IgE



levels (> 1000ng/mL) suggest asthma as well as eczema and allergic bronchopulmonary

aspergillosis, two conditions associated with asthma. Identification of specific allergens is

also possible with the use of skin tests and radioallergosorbent tests (RAST). To perform an

allergy skin test, a set of antigen-containing solutions are injected via individual lances into

the epidermis of a subject. Allergic reactions are identified as those where a large wheal

and flare reaction form within 10-15 minutes after the antigen is administered. RAST

tests are tests in which a subjects blood is exposed to particular antigens, and then IgE

antibody levels are measured around such antigens. Many airborne allergens are known to

cause asthma, including dust mite antigen, cat and dog danders, cockroach antigen, pollens,

and mold spores. Association of these allergens to asthma can sometimes be elicited from a

patients history, in which case the skin or RAST tests provide further evidence that a person

has allergic asthma. Knowing what substances a subject is allergic to helps in determining

potential asthmatic triggers and taking steps towards avoiding them.

Pulmonary Function Tests

Lung dysfunction in asthmatic patients includes (1) variable airflow limitation that is re-

versible with bronchodilator administration and (2) airway hyperresponsiveness, which is an

excessive decrease in airflow in response to specific stimuli. Monitoring airflow is therefore

essential to diagnose and track asthmatic patients. Pulmonary function tests (PFTs) are

tests designed to measure parameters that are related to airflow. These tests provide an

objective measure of pulmonary capacity that is correlated with disease severity. Measures

obtained with PFTs include spirometry values, bronchial hyperresponsiveness and reversible

airway obstruction.

Spirometry

Spirometry is the most useful and readily available pulmonary function test. It consists of

a, series of pulmonary function measures that are performed with a dedicated instrument.

Because the instrument costs approximately $2000, the tests are usually performed in a

clinical setting. The most usefule measures obtained include forced expiratory volume in

one second (FEVI) and forced vital capacity (FVC).

FEV1 , the total volume of air exhaled after 1 second, is the most important measure

used to determine airway obstruction [106]. It decreases linearly with worsening airway



obstruction, and increases with relief of airway obstruction.A conventional classification

scheme is: borderline obstruction greater than 80% predicted FEVI; mild obstruction 60-

80% predicted FEV1 ; moderate obstruction 40-60% predicted FEVy; severe obstruction

less than 40% predicted FEVI. Serial FEV1 values can be measured to assess pulmonary

status in a single patient over time, although these are usually performed using peak ex-

piratory flow rate measures by a patient at home. FEV1 is known to be dependent on

gender, age, height, and race. Measures of a patients FEV1 can be compared to predicted

values from established normal populations to determine airway obstruction. Commonly

used equations to calculate predicted FEV1 are those by Knudson et al [107].

The FVC is the total volume of air exhaled during a maximal exhalation. Because it

does not fall as much as FEV1 with obstructed airways, FVC is a less useful measure of

airway obstruction. FEV1 is dependent on the volume of inhaled air: if a subject does not

inhale maximally before exhaling, the FEV1 will fall. Therefore, FVC measures provide a

standard value to correct FEVI for amount of air inhaled. A measure composed of these

two, which has been shown to be very sensitive to airflow limitation, is the FEV1 to FVC

ratio (FEV1 : FVC) [106, 108]. Spirometry values are dependent on subject effort and

cooperation. A properly trained person should coach a patient through the spirometry test

for more reliable results. The reproducibility of FEV1, FVC, and FEV1 : FVC have been

determined to be 5% or less [106, 108]. Therefore, spirometry values are an important

objective measure that can help in the diagnosis of asthma.

Bronchial Hyperresponsiveness

During bronchoprovocation testing, a patient is stimulated with a known bronchoconstric-

tor, such as inhaled metacholine, and pulmonary function tests before and after the provoca-

tion are compared to determine bronchial hyperresponsiveness. The performance of normal

subjects and asthmatics is significantly different in such a test. Besides inhaled metacholine,

substances used to stimulate bronchoconstriction include exercise, hyperventilation of cold

and/or dry air, and inhalation of histamine. Bronchoprovocation testing can also be used

to test for suspected asthmatic precipitants in a patient. The most common metacholine

bronchoprovocation test consists in (1) performing spirometry before and after inhalation

of a negative control (e.g. saline), (2) administering five dosed metacholine inhalations fol-

lowed by a spirometry test after two minutes, (3) if the FEVI decreases by 20% or less



than the initial value, five metacholine inhalations are repeated at a higher dose followed by

another spirometry test after two minutes, (4) step (3) is repeated until the FEV1 decreases

by more than. 20% of the initial value or until the highest metacholine dose is administered.

If the FEV1 drops by more than 20% at low doses of metacholine, then the subject is said

to have bronchial hyperresponsiveness. The result of a bronchoprovocative test is usually

reported as the dose of metacholine (or stimulating agent) administered that resulted in a

decrease in FEV1 of 20%. In the normal population, studies have estimated that 7% of

individuals will have bronchial hyperresponsiveness. Diseases other than asthma can lead

to positive bronchoprovocation tests, including allergic rhinitis. Because the false negative

rate of this test is estimated to be less than 5%, negative test results are valuable in ruling

out asthma in an individual.

Reversible Airway Obstruction

Reversible airway obstruction is a classic, but not necessary, finding in asthma. The most

common test to evaluate it is a bronchodilator test. The protocol of such a test in most labs

involves (1) obtaining a pre-bronchodilator set of spirometry values, (2) taking two metered-

dose inhaler inhalations of a rapidly acting beta-agonist (e.g. albuterol), (3) waiting 10-20

minutes to allow the beta-agonist to take effect, and (4) obtaining a post-bronchodilator

set of spirometry values. An increase in FEV1 following bronchodilator administration is a

typical finding in an asthma patient. One recommendation for a significant bronchodilator

response in an adult is that FEV1 or FVC increase by 12% and at least 200mL (1991). In

some cases, a, patient may not show FEVI improvement after bronchodilator administration

despite a subjective feeling of improved breathing capacity. This improvement may be

measurable by other parameters, such as lung volume. Therefore, although FEV1 often

increases after bronchodilator administration, a lack of change does not necessarily imply

that the bronchodilator had no effect. Bronchodilator response is further discussed in

section 7.4.

6.4 Environmental Risk Factors

Many environmental factors contribute to the incidence and severity of asthma, including

some that are currently unknown. Strong links to individual environmental factors can be



difficult to find because such a wide range of environmental and genetic factors contribute

to asthmatic status. Nonetheless, several environmental contributors involved in asthma

are known. They include: exposure to indoor allergens, outdoor air pollution, respiratory

infections, smoking and exposure to tobacco smoke.

Indoor Allergens

Indoor allergens, including dust mites, animal allergens, cockroach allergen, and endotoxin,

play a significant role in the onset of asthma. Exposure to such allergens has increased as

indoor living (i.e. houses that are isolated from outdoor air) has become more widespread

in the West. Concomitantly, the prevalence of asthma has risen in developed countries [97,

109]. However, studies have found no association between increased levels of exposure to

dust mites early in life and the developement of childhood asthma [110, 111]. Perhaps some

individuals are more likely to develop asthma after indoor allergen exposures because of an

underlying genetic predisposition.

Outdoor Air Pollution

Outdoor air pollution is known to be associated with lung disease, but it has not been clearly

associated with asthma. Population studies after the German reunification are some of the

best large-scale natural experiments that can look at the effects of different environments

on genetically similar individuals. Lack of association of air pollution to asthma in this

population provides strong evidence for no association, but the issue remains controversial

because of the association between pollution and respiratory illness [112, 113]. In the US,

levels of pollution were found to be correlated to bronchitis and chronic cough, but not to

asthma [114]. However, exposure to pollutants is associated with asthma exacerbations [114,

115]. Other studies confirmed that asthmatics react differently to pollutants than non-

asthmatics: asthmatics reacted (i.e. wheezed) to lower concentrations of inhaled sulfur

dioxide, but reacted similarly to ozone and nitrous oxide [116, 117]. These studies also

investigated whether outdoor air pollution was associated with asthma incidence, and the

authors concluded that the answer is negative.



Respiratory Infections

Respiratory infections are known to exacerbate asthma [118, 1191 and there is an associ-

ation between viral respiratory infections and asthma development in adults [97, 120]. In

children, some studies have provided evidence that lower rates of respiratory infection lead

to increased asthma and atopy prevalence [121]. Conversely, frequent respiratory infections

during childhood seem to decrease the likelihood of developing asthma later in life [122].

Tobacco Exposure

As with outdoor air pollution, smoking and exposure to tobacco smoke is related to pul-

monary illness. Some studies have found a relationship between smoking and the devel-

opment of asthma [123]. In adults, exposure to tobacco smoke has been associated with a

slight increase in asthma, odd-ratio of 1.39 [124]. Secondhand smoking is especially harmful

in the development of asthma in the case of smoking mothers of young children [125, 126].

Such children are twice as likely to develop asthma than their peers with non-smoking

mothers. Prenatal exposure to maternal smoking is also associated with an increased risk

of developing asthma [127, 128].

6.5 Pathogenesis

Inflammation is known to be an early event in asthma. Infiltrating cells are usually found

in airway biopsies of newly diagnosed asthmatics [129]. Figure 6-2 shows some of the known

components of airway inflammation at a cellular level (130]. Some of the major character-

istics of this inflammation are infiltration of airway wall by cosinophils and lymphocytes,

Eosinophil and Lymphocyte Infiltration of Airway Wall

A study investigating the infiltrate distribution in the airways found that a higher inflam-

matory cell density is found in smaller airways, which may help explain the characteristic

peripheral airway obstruction of asthma [131]. Specifically, in the large airways (> 3.0mm),

the infiltrate locates mostly to the region between the basement membrane and simooth

muscle layers. In smaller airways (< 3.0mm), infiltrate locates more to regions between the

smooth muscle layer and alveolar attachments than to the region between basement mem-

brane and smooth muscle. Further evidence for the obstruction being caused by infiltrates



is provided by studies that correlated the amount of eosinophils within the airway wall with

asthma severity [132, 133]. Eosinophils involved in asthma are in an activated state, but

the mechanisms of activation are poorly understood. One hypothesis is that stimulation of

high affinity IgE receptors (FcERI) and/or low affinity IgE receptors (FcERII) leads to the

eosinophil activation.

Many of the lymphocytes that infiltrate airways are of a TH2 subtype, which are

known to produce IL3, IL4, IL5, and GM-CSF, but not interferon-gamma, and to ex-

press CCR3 [134]. Production of IL4 and IL5 further increase an allergic response by

contributing to the formation of mast cells, the differentiation of TH2 lymphocytes, and

the differentiation and chemotaxis of eosinophils [135]. The release of cytokines promotes

the differentiation of plasma cells that can produce IgE against specific antigens [136]. The

IgE molecules, which are transported through the circulation, attach to mast cells and

eosinophils via the FcERI [137]. When the mast cells are reexposed to antigen, they secrete

more mediators and cytokines, which perpetuate the asthmatic response.

Some transcription factors are known to be involved in asthma. Members of the cytokine

signaling family known as signal transducers and activators of transcription (STATs) are

known to be constitutively activated in asthma [138]. In addition to eosinophils and lym-

phocytes, neutrophils are found in the lung airways of severe asthmatics [139].

Inflammation of Airway Parenchymal Cells

The phenotype of cells that are normally present in airways, as opposed to infiltrates,

becomes more inflammatory. The most prominent change is the sensitization of mast cells

by IgE towards specific antigens [140]. Airway smooth muscle becomes hypertrophic and

hyperplastic [141] and airway epithelium becomes thickened and dysplastic, which causes

loss of the normal pseudostratified columnar arrangement [142].

Airway Remodeling

Noncellular components of the airway wall undergo inflammatory changes. Collagen is de-

posited at the basement membrane [143] and the loose areoloar connective tissue in the

spaces between the epithelium and smooth muscle and outside the smooth muscle ex-

pands [144]. Both of these changes create a thickened airway wall that contributes to

airway hyperresponsiveness by contributing to airway constriction [145].
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Figure 6-2: Cellular mechanisms of airway inflammation [130].

The above description of airway inflammation has been found to be incomplete by further

asthmatic studies. When an IL5 antibody was administered to patients with mild asthma,

airway eosinophilia was nearly eliminated but airway responsiveness did not improve [146].

Administration of IL12 into a cohort of asthmatics caused a reduction of eosinophils but no

airway responsiveness change [147]. These findings put into question the role of eosinophils

in causing the airway hyperresponsiveness that is characteristic of asthma. A more complete

picture on the pathogenesis of asthma is likely to emerge with further studies.

6.6 Genetics

Asthma has a demonstrable genetic basis, with heritability estimates ranging from 0.36 to

0.87, and is known not to be transmitted in a simple Mendelian pattern [19, 20, 21, 22,

23, 24, 25]. Twin studies have attributed a greater genetic than environmental component

to asthma [22, 23, 24, 25]. However, asthma results from the interaction of multiple genes

with environmental and developmental factors, making it a prototypical complex disease.

Over 100 genes have been individually associated with asthma or a related pheno-

type [26]. Of these genes, 25 have been associated in six or more populations and 54

have been associated in two to five populations. Two of the regions with the strongest evi-

dence for involvement in asthma by association studies are: chromosome 11q13 (to bronchial



hyperresponsiveness and total serum IgE) and a region on chromosome 5q (to total serum

IgE) [148]. In addition to the genes found by linkage and association studies, positional

cloning has found four genes that are associated with asthma: ADAM33 [149], DPP10 [150],

PHF11 [151], and GPRA [152]. Some of the genes that are known to reside in 5q31-q33

are the beta-2 adrenergic receptor [153], some cytokine genes (IL4, IL5, IL9, IL13), glu-

cocorticoid receptor 1 (GRL1), and GM-CSF [154]. Although there is some evidence that

variants of the beta-2 adrenergic receptor gene correlate with IgE levels [155] and nocturnal

asthma [156] in known asthmatics, the variants alone have not been found to be predictive

of asthma. A case-control study found that the IL4 receptor was associated with high total

or specific IgE levels [157].



Chapter 7

Asthma Management

7.1 Overview

The main goals of asthma management are to prevent and treat asthma exacerbations,

episodes of worsening asthma symptoms, and to help patients lead as normal a life as

possible by optimizing lung function and minimizing symptoms that interrupt daily activi-

ties. Although pharmacologic therapy is an important component of asthma management,

good asthma, control is also achieved by a combination of routine monitoring of patient

symptoms and lung function, controlling asthma triggers, and patient education [158]. Per-

forming these latter tasks is important to ensure that a patient has an optimal medication

regimen.

Patient Monitoring

Routine monitoring of asthma symptoms and lung function are helpful to prevent the wors-

ening of asthma [158]. Symptoms that should be routinely monitored include how often

reliever medications are taken, how often patients wake up during the night with asthma

symptoms, how many school or work absences due to asthma have taken place, how many

times asthma interfered with daily activities, and how many exacerbations have occured.

An increase of one or many of these symptoms suggests that asthma is poorly controlled.

Pulmonary function monitoring helps quantify the amount of airflow obstruction in a pa-

tient. Serial measurements in an individual patient serve to determine how well asthma is

being controlled.



Controlling Asthma Triggers

Identifying and avoiding triggers of asthma, is an important component of successful asthma

management that often results in reduced exacerbations and medication use. Common

triggers are those described in the Environmental Risk Factor Section 6.4: indoor allergens,

outdoor pollutants, respiratory infections, and tobacco smoke. Other common triggers

include physical activity, emotional stress, cold air, gastroesophageal reflux, and medications

such as aspirin [158].

Patient Education

Patient education, which has been shown to reduce asthma hospitalization rate, improve

daily function, and improve patient satisfaction [159, 160], involves patients in the monitor-

ing of their symptoms and pulmonary function, identifying and avoiding asthma triggers,

and properly using asthma medications.

7.2 Pharmacologic Therapy

There are two broad categories of asthma drugs: reliever drugs and controller drugs [161].

Reliever drugs attempt to reverse acute bronchoconstriction. The most common type of

reliever drugs, which are the treatment of choice for mild asthmatics, are /32 -agonists (e.g. al-

buterol, metaproterenol, pirbuterol, levalbuterol). The (2-agonists act by relaxing bronchial

smooth muscle via 32-adrenergic receptor activation. More details regarding Q2-agonists

are in Section 7.4. For moderate or severe asthma, reliever drugs are often combined with

controller drugs. Controller drugs reduce the severity of airway inflanimmation and obstruc-

tion. The most common types of controller drugs are inhaled corticosteroids (e.g. budes-

onide, beclomethasone, flunisolide, fluticasone) and leukotriene modifiers (e.g. montelukast,

zafirlukast, zileuton). Corticosteroids are potent anti-inflammatory agents that affect T-

lymphocyte responses. Their binding to cytoplasmic glucocorticoid receptors leads to their

translocation to cell nuclei and the transcription of anti-inflammatory genes. Corticos-

teroid administration decreases airway inflammation and hyperresponsiveness by inhibiting

inflammatory cell recruitment and production of cytokines [162]. Although corticosteroids

and ,2-agonists are different forms of therapy that have unique pathways of action, there is

growing evidence that these molecular pathways overlap [163, 164, 165]. One of the effects



they have in common is the ability to activate glucocorticoid receptors [166, 167]. Syner-

gistic effects between the two drugs are due partly to the increased nuclear translocation

of corticosteroid-activated glucocorticoid receptors after administration of long-acting 32-

agonists [168]. Clinical trials have demonstrated the efficacy of using both corticosteroids

and long-acting 32-agonists in the treatment of asthma [169, 170]. Leukotrienes are po-

tent biochemicals released from mast cells, eosinophils and basophils, that contract airway

smooth muscle, increase vascular permeability, increase mucus secretions, and attract and

activate inflammatory cells [171]. Leukotriene modifier drugs attempt to reverse the effects

of leukotrienes, which helps counteract the inflammatory response in asthma patients [172].

Asthmatics do not respond uniformly to therapy, as studies of medication efficacy have

found [173, 174, 175, 176]. Further, as many as one-half of asthmatic patients do not

respond at all to the most efficacious current asthma therapies, namely beta-agonists, cor-

ticosteroids, and leukotriene modifiers [175, 177, 178]. There are various factors that lead

to the variability in drug reponse, but a substantial portion is thought to be due to genetic

differences. The identification of patients that would respond to a specific treatment, which

would greatly enhance treatment efficacy, is currently hindered by the lack of a definition

of what it is to be a non-responder and the mechanism of such resistance.

Antiasthmatic and bronchodilator drugs are some of the most highly prescribed medica-

tions in the US [179]. According to 2003-2004 National Center for Health Statistics records,

they were the second most prescribed drugs in children after penicillins, and the third in all

age groups after antidepressants and non-steroidal anti-inflammatory drugs. Although these

drugs are prescribed for more respiratory conditions than just asthma, particularly in older

adults, these statistics highlight how common asthma drugs are despite the heterogeneity

of their efficacy.

7.3 Asthma Exacerbation

Asthma exacerbations, commonly known as asthma attacks, are the major cause of mor-

bidity, mortality and healthcare costs for individuals with asthma [27, 28, 29]. Therefore,

they are one of the main targets f asthma management. Exacerbation episodes involve

worsening of asthma symptoms, including shortness of breath, cough, wheezing, chest pain

or tightness, mucus production, or some combination of these. In 2004, 11.7 million Amer-



icans (3.9 million children under 18) had an asthma attack [13]. This comprises 57% of

the 20.5 million Americans who are estimated to have asthma. American Lung Association

data gathered between 1997 and 2004 consistently show that children 5-17 years old have

the highest exacerbation rates [13]. Indeed, asthma is the third leading cause of hospital-

izations in children, occurring an estimated 198,000 times per year [180]. Exacerbations

present similarly in both sexes, but the rates are higher in young boys than in girls during

childhood and are higher in adult women than adult men [181].

Pathophysiology

The airway narrowing causing airway obstruction in asthma exacerbations is due to a com-

bination of smooth muscle contraction, thickening of airway walls, and secretions within

airway lumen. A sudden onset of these events throughout the tracheobronchial tree, result-

ing in a severe reduction in airflow, is what comprises an asthma attack. After an attack,

the obstruction of airways reverses from larger to smaller ones. Initially, usually after hours

to days, the trachea, mainstem bronchi, lobar bronchi, and segmental bronchi reopen. The

smaller peripheral airways may not return to normal until after weeks or months of time

have elapsed.

Determining the exact cause of exacerbations is difficult. Many exposures have been

linked to asthma exacerbations, but causal mechanisms remain unclear. The majority

of exacerbations are associated with respiratory viral infections (RVIs), especially rhi-

novirus [182, 183, 184]. In particular, respiratory viruses are found in over 80% of children

with exacerbations [183]. Knowing that viruses are involved in asthma exacerbations has

motivated studies to identify the cellular mechanisms through which exacerbation takes

place. Chcmokines have been identified as important mediators of respiratory viral infec-

tion [185]. For instance, CCL5 and CXCL8 are related to exacerbation of allergic asthma.

In asthmatic subjects with rhinovirus infection, CXCL8 levels correlated with severity of

symptoms [186]. Pollutants [114, 115] and allergens [187, 188] have also been linked to

asthma exacerbations, mostly by increasing the propensity towards exacerbations due to

RVIs.



Treatment and Prevention

The main approach to managing exacerbations is to prevent them. This is accomplished

by managing asthma and by attempting to reverse worsening symptoms before a severe

exacerbation develops. Most patients have plans with instructions to increase their med-

ications at home as their symptoms worsen. Plans include a threshold of symptoms for

which a patient should seek medical help by either calling their physician or going to an

emergency room or hospital. Once they occur, exacerbations are usually treated with a

combination of short-acting beta-2 agonists and systemic corticosteroids until symptoms

subside [161]. The inhaled beta-2 agonist helps to relax the smooth muscle in the airways,

while the corticosteroid helps reverse inflammation.

Identification of At-Risk Patients

A subset of asthma patients suffers from frequent exacerbations. The proper identification

this group is of clinical importance both to monitor it more carefully and to treat it more

aggressively [189]. Additionally, it is important to identify those patients who are not at risk

of exacerbations in order to not overmedicate them. The most severe group of exacerbators,

those with near-fatal and fatal asthma, has been well described [190]. Predictors of this

type of asthma, which results in respiratory arrest and/or death, are increased medication

use (beta-agonists, oral steroids, and oral theophylline) and a history of hospital and/or

intensive care unit admissions and mechanical ventilation. Prior emergency department

assessment visits and use of inhaled corticosteroids have not been found to be predictors of

severe asthma.

Some asthma patients suffer from frequent exacerbations that are not as severe as those

of near-fatal and fatal asthmatics. These exacerbations are still a serious and costly health

problem that interferes with patient's lives. Attempts to characterize patients who suffer

from frequent exacerbations have been made, but this group is still not well understood. In

one study, patients with multiple exacerbations per year compared to those with one exac-

erbation per year were more likely to be on higher doses of inhaled and oral corticosteroids,

bc hospitalized, have chronic sinusitis and be intolerant to non-steroidal anti-inflammatory

drugs [191]. Medical conditions that have been associated with frequent exacerbations in-

clude severe nasal sinus disease, gastro-esophageal reflux, recurrent respiratory infections,



psychological dysfunction, and obstructive sleep apnea [192].

The preceding studies demonstrate that there is no good way to identify asthma patients

who will have exacerbations, until the patients have an established history of exacerbations.

Some of the findings, such as the fact that frequent exacerbators are more likely to be

hospitalized than other asthmatics, does not help determine what patients are exacerbators

until after they have develped a serious medical problem. What would be most useful is to

identify who is at risk for exacerbations before a pattern of disease has been established.

This would reduce the number of exacerbations and the morbidity, mortality and cost

associated with asthma.

Genetic Basis

The underlying genetics of asthma exacerbations is unknown. Because exacerbations occur

in some patients with asthma and not others who have been exposed to similar environ-

ments, a genetic basis that predisposes some individuals to exacerbations is likely. For

example, subtle differences in a variety of chemokine genes could predispose some individu-

als to respond differently to viruses, differences in interleukin genes could predispose some

individuals to repond more aggressively to stimuli, or differences in many groups of genes

could create the end-effect of asthma exacerbations in some individuals but not others. Un-

covering the genetic basis underlying asthma exacerbations would be helpful to understand

the biology of exacerbations, discover novel therapeutic targets, and identify those at risk

of suffering from them.

7.4 Bronchodilator Response

Bronchodilator responsiveness is a common clinical test that is used for the evaluation of

reversible airway obstruction and the diagnosis of asthma. The basis of this test is to find

out whether administration of a bronchodilator medication improves FEV1 as described in

Section 6.3. The physiological response to a bronchodilator is a complex trait, involving

intricate interactions among airway epithelial and smooth muscle cells and nerves. In a

single individual, repeated tests are quite variable if not performed in a pulmonary funciton

test laboratory by a properly trained test administrator [193]. When properly performed,

single bronchodilator tests are appropriate to assess airway responsiveness and effectiveness



of a bronchodilator drug in a patient although some measurement variability remains [194].

The lack of response to a bronchodilator does not always imply that a patient will not

benefit from bronchodilator therapy [195].

Quantification of Response

In order to meaningfully interpret bronchodilator response tests, a reliable quantitative

measurement has to be established. Studies have been conducted to establish the best

comparison of pre- and postbronchodilator measures, which are usually FEVW and FVC.

The most common ones are absolute change (AFEV1), percent change from initial value

(AFEVI%i'nit), and change in percent predicted (AFEV1 %pred), which are defined as

follows:

AFEV1 = Postbronchodilator FEV1 - Prebronchodilator FEVW

_ Postbronchodilator FEVI - Prebronchodilator FEV1
AFEVl/%init = x 100%

Prebronchodilator FEV1

AFEVi%pred = Postbronchodilator FEV1%pred - Prebronchodilator FEVI%pred

Controversies still exist regarding which of these measures is most accurate and reliable.

Because prebronchodilator FEVI is dependent on variables including a person's age, gender,

height, and race, a way to normalize the change in FEVI to account for a person's base-

line tpuhnonary function is generally favored. Of the above three measures, AFEVI%init

and AFEV1%pred account for prebronchodilator lung function. In children, AFEVI%pred

has been proposed as the best measure because it provides a measure that is independent

of age, height, and prebronchodilator lung function [196]. Other studies have found that

AFEV1 %p'red should be used because it is best at differentiating asthmatics from oth-

ers [197] and because it is less dependent on prebronchodilator lung function and has the

highest reproducibility among measures [198]. However, the recommended clinical measure

is percent change from baseline: AFEVW%init [194, 199].

Response Thresholds

After choosing a measure for bronchodilator response, a criterion to differentiate bron-

chodilator responders from non-responders must be determined. Because bronchodilator

response is a continuous variable, the values for such a threshold are arbitrary. Studying



the distribution of bronchodilator responsiveness in asthmatics and non-asthmatics provides

reasonable estimates for thresholds to best differentiate these populations. A common choice

is to use the upper 95th percentile of a sample measures from normal non-asthmatic sub-

jects, who compared to asthmatics, do not have an increase of airflow after bronchodilator

administration. This threshold for the AFEVi%pred in one population was 9% [200]. The

most current clinical threshold for improvement of AFEV1%init is 12% or greater than

200mL, while improvements less than 8% or less than 150mL are considered to be within

measurement variability [194, 199].

02-Agonists

The most potent and rapidly acting bronchodilators currently available for clinical use are

032-agonists [30]. Their primary effect is to stimulate f2 receptors on the surface of airway

smooth muscle cells, which via an increase in intracellular cyclic AMP levels, relaxes airway

smooth muscles and reduces bronchoconstriction. These drugs are the primary drugs used

in bronchodilator tests and are routinely used for the pharmacologic management of asthma.

For the treatment of acute asthma exacerbations, 32-agonists are the incontrovertible

drug of choice, but controversies exist regarding the chronic use of these bronchodilators

as a maintenance therapy in asthma. Two studies in the early 90s reported that chronic

use of beta agonists was associated with increased mortality, decreased asthma control, and

lower efficacy than inhaled corticosteroids [201, 202]. These studies lead to great concern

regarding the safety of beta agonists, but more recent studies have found no or weak asso-

ciation of chronic beta agonist use to mortality [203, 204, 205, 206]. Similarly, most studies

of the effect of chronic beta agonist use on asthma symptoms have found no evidence for

increased complications (e.g. exacerbations) or decreased asthma control [207, 208]. Some

concern regarding the safety of beta agonists still exists and patients who take them are

monitored carefully. Treatement with inhaled corticosteroids is generally favored over treat-

ment with beta agonists in most mild and moderate asthma patients because the former

are more effective at reducing symptoms than the latter [209, 210]. When treatment with a

corticosteroid alone does not help decrease symptoms significantly, combination long-acting

beta agonist and corticosteroid therapy has been found to be effective [211, 212].

Regardless of the daily therapy choice for a patient, f/2-agonists remain the favored

rescue medication. Therefore, understanding the effectiveness of 32-agonists remains an



important question for most asthma patients because even if they do not take beta agonists

regularly, they likely use them for worsening symptoms and/or exacerbation treatment. A

better understanding of bronchodilator response tests would be helpful to establish what

patients benefit from /12-agonist therapy.

Genetic Basis

Evidence for the genetic basis of bronchodilator response has been establihsed in a family

aggregation study and genetic association studies. Familial aggregation of bronchodilator

response was established in a study of 1,161 families in a rural community in China that

found correlations of adjusted AFEV1%init values in parent-offspring pairs [213].

Genetic variants of the beta-2 adrenergic receptor have been shown to change the bron-

chodilator response of individuals in four separate study populations [214, 215, 216, 217].

Although the reanalysis of two prospective studies found that polymorphisms of this gene

can partially predict the patient response to inhaled albuterol [218, 219], these results have

not been incorporated in clinical practice because they are not considered strong enough

by clinicians.

A better understanding of the genetic basis of bronchodilator response would be helpful

to identify patient-specific treatments, identify novel therapeutic targets, and help in the

diagnosis and monitoring of asthma. Further, such a test would help establish what patients

are responsive to /32-agonists and what genetic mechanisms may be responsible for variability

in patient response to such drugs.
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Chapter 8

Data and Methods

8.1 Subject Population

The Childhood Asthma Management Program (CAMP) is a multi-center, longitudinal,

randomized, double-blinded clinical trial that followed 1,041 asthmatic children (5-12 years

of age) for approximately four years [220]. The subjects were assigned to one of three

treatment groups: budesonide, nedocromil, placebo. Subjects were selected for having mild

to moderate asthma, which was assessed as those having had asthma symptoms and/or

medication in six or more months of the previous year without requiring more than one

asthma hospitalization or five or more prednisone bursts, having a history of intubation for

asthma, an FEV1 less than 65% of normal, or any other pulmonary disease. All subjects

had an initial methacholine bronchoprovocation test resulting in 20% FEV1 reduction to

ensure a more objective definition of asthma was followed. Informed consent was obtained

from all CAMP participants and their parents. Following completion of the clinical trial,

an additional 922 subjects have been followed for an additional 6 years in the CAMP

Continuation Study (CAMPCS). The studies were approved by the Institutional Review

Board of the Brigham and Womens Hospital.

8.2 Clinical Data

Follow-up visits occurred every four months and spirometry was performed twice yearly.

Data collected included responses to questions regarding asthma symptoms and severity

and medications used (e.g. "How many times have you called the doctor since the previous



visit?", "How many overnight hospitalizations due to asthma have occurred since the last

visit?", "How often have you used albuterol?"). Spirometry was performed according to

American Thoracic Society recommendations with a volume-displacement spirometer, and

airway responsiveness was assessed by methacholine challenge with the Wright nebulizer

tidal breathing technique [220]. Spirometry and methacholine testing were performed by

pulmonary function technicians trained and certified specifically for the CAMP protocol and

procedures. Spirometry performed met or exceeded the American Thoracic Society (ATS)

standards. Spirometry and methacholine testing were performed at least 4 h after the use

of a short-acting bronchodilator and 24 h after the last use of a long-acting bronchodilator.

Postbronchodilator (two puffs albuterol by metered-dose inhaler) measurements were taken

at each spirometry session (18). After administration of the bronchodilator, the minimal

elapsed time before the postbronchodilator test was 15 min. Equations used to predict

the average value of lung function measures for age, sex, and height were race-corrected

according to Coultas and coworkers [221] for Hispanics, and according to Knudson and

coworkers [107] for all other ethnic groups. Total blood eosinophils were counted by center-

specific methods. Serum total IgE was measured by radioimmunosorbent assays from blood

samples collected during the CAMP screening sessions. Genetic data was collected for 968

children and 1518 parents, representing 582 complete nuclear families.

8.3 Genetic Data

Candidate Genes

Candidate genes were selected to be genotyped based on a previously identified association

to asthma or a related phenotype. Some of the candidate genes, involved in innate immunity

and pharmacogenetic pathways, are described below. A full list of genotyped genes (n =

441), named according to the September 2006 NCBI data (Build 36.2), is given in Table A.1.

The biological pathways representing the genes according to the Kyoto Encyclopedia of

Genes and Genomes (KEGG) database [222] are given in Table A.2.

Innate Immunity Genes

Genes involved in innate immunity included chemokines, interleukins, toll-like receptors and

other transmembrane proteins. Chemokines are pro-inflammatory cytokines that induce



chemotaxis in nearby responsive cells, especially leukocytes, which then recruit monocytes,

neutrophils, and other cells involved in innate immunity. The Eotaxin gene family (eo-

taxin/CCL11 [223], eotaxin-2/CCL24 [224], eotaxin-3/CCL26 [225]), is composed of C-C

chemokines that are potent eosinophil chemoattractants that act via a common receptor

(CCR3) found primarily on eosinophil cell surfaces [226]. Eotaxins are involved in the

recruitment of peripheral blood eosinophils into the lung during acute allergic inflamma-

tion [227, 228]. Interleukins (ILs) are cytokines that are involved in a wide range of immune

responses. ILl0 is an anti-inflammatory cytokine that inhibits the secretion of other proin-

flammatory cytokines (e.g. ILl, IL6, IL8, IL12), making it an immunosuppressant of T

cells, monocytes, and macrophages (i.e. it suppresses the TH1 phenotype) [229]. It has

been shown to have lower in vitro production from macrophages and mononuclear cells of

asthmatics [230, 231] and have lower mRNA levels in bronchoalveolar lavage cell pellets

of asthmatics [232]. IL10 variants have been associated to asthma phenotypes (i.e. FEV1

percent of predicted and IgE levels) in children [233]. In the presence of IL4 in vitro, IL10

regulates IgE production [234]. Additional interleukins that may play a role in asthma in-

clude IL8, a C-X-C chemokine that potently chemoattracts and activates neutrophils [235].

The Toll-like receptor (TLR) group of transmembrane proteins is a highly conserved set of

innate immune :pattern recognition receptors. Motifs present in microbial antigens (e.g. bac-

terial DNA, lipoglycans, lipoproteins) stimulate TLRs in antigen-presenting cells, including

tissue macrophages, blood monocytes, and dendritic cells, which leads to the activation of

cytokines and other genes that mediate immune responses and initiate the transition from

innate to acquired immunity [236, 237]. TLR10 [238] genotypes have been associated with

asthma diagnosis.

Glucocorticoid and 32 -Agonist Interaction Genes

The 32-agonist drugs act by binding to 02 adrenergic receptors (132 ARs) on smooth muscle

cells. These receptors are G-protein coupled receptors that act by adenylyl cyclase acti-

vation leading to increased levels of cAMP and protein kinase A (PKA) activation. The

activated PKA phosphorylate a variety of targets, which act to decrease intracellular Ca 2+

thereby causing muscle relaxation. One 32AR SNP has been associated with decreased

pulmonary function response to albuterol treatment [218, 239] and an increased frequency

of asthma exacerbations [219]. A study looking at /02AR haplotypes based on 13 SNPs



found that bronchodilator response was related to the haplotype pair but not to individual

SNPs [217]. The CAMP study also investigated 32 AR haplotype and SNP relationships

to bronchodilator response and found that regions of this gene that may be significant in

32-agonist treatment response [178]. Although the above studies demonstrate that [ 2 AR

genotype plays a role in success of 32-agonist therapy, a set of SNPs that accurately predicts

successful treatment has not been identified.

The corticotropin-releasing factor type 1 and 2 receptors, CRHR1 and CRHR2, are

G-protein coupled receptors involved in the Hypothalamic-Pituitary-Adrenal (HPA) axis.

Corticotropin-releasing hormone (CRH) is the endogenous hormone that binds the CRHR

receptors to activate the HPA [240]. The HPA is sometimes referred to as the stress axis be-

cause it plays a major role in the stress response. In addition to their primary role in stress,

glucocorticoids are involved in modulating the immune system [241, 242]. Specifically, it

has been shown in a mouse model that in the absence of CRH, endogenous glucocorti-

coid production decreases and airway inflammation increases [243]. Polymorphisms of the

CRHR1 gene have been associated with differences in therapeutic response of asthmatics

to glucocorticoids [244].

SNP Selection

SNP selection was performed such that a small set of SNPs distinguished the common

haplotypes of the genes of interest [245]. Haplotypes were inferred using Bayesian methods

as implemented in PHASE [79]. SNPs that distinguished the most common haplotypes

were identified using the BEST algorithm [246]. Only haplotypes that were found in the

Caucasian population at a frequency of 5% or greater were considered because the study

population is composed of Caucasian subjects only. Rare SNPs (minor allele frequency

i5%) were considered for genotyping if the SNP led to a nonconservative amino-acid change,

implying potential functional significance. The number of SNPs genotyped for each gene,

assigned according to the September 2006 NCBI data (Build 36.2), are shown in Table A.1.

In addition to the SNPs in this table, data for 466 intergenic SNPs is available. Most of

these SNPs are in linkage disequilibrium with candidate genes.



Genotyping

Most selected SNPs were genotyped with an Illumina BeadStation 500G using the Gold-

enGate assay, an allele-specific hybridization reaction. Briefly, 250ng of genomic DNA is

obtained for each subject for the multiplex reaction. Three oligonucleotides are designed

for each SNP loci. Two 5' oligonucleotides (PI' and P2') are specific: for the two SNP al-

leles. The 3' base of each oligonucleotide is complementary to one of the two SNP alleles,

allowing hybridization with one of the two alleles. The third oligonucleotide, 3' to the SNP,

is specific for each SNP locus. The three oligonucleotides contain universal PCR primer

sites. The 3' oligonucleotide includes an address sequence that will hybridize to a specific

silica bead. After allele-specific hybridization and extension, the extended product serves

as a template for a PCR reaction using 2 fluorescent-labeled primers (PI' and P2') and one

unlabeled primer (P3'). The PCR products are then hybridized to the bead labeled with

a complementary sequence to the address sequence on oligonucleotide P3'. To achieve a

high-level multiplex assay consisting of thousands of SNPs per sample, the Illumina plat-

form uses a bead-based fiber-optic array for each DNA sample [247]. For a 1536 SNP array,

there is a, matrix of 50,000 individual fibers so that each SNP is represented approximately

30 times [248]. For each SNP, a sequence complementary to the address tag on P3' has

been hybridized to a silica bead randomly assembled into the matrix of optical fibers. After

array manufacture, a series of DNA hybridizations is used to decode the location of each

randomly-located bead [249]. Following hybridization of PCR products to the beads, the

array is scanned at two different wavelengths, and the fluorescent output for each SNP

is recorded. Software is used to integrate fluorescent signals to obtain bead location in

each array, thereby deciphering the genotype for each SNP of each subject. The genotype

calls are highly accurate, with call rates over 99.5% and greater than 99.5% reproducibility

between duplicate samples [248].

Subjects missing more than 5% of SNP data, and SNPs missing in more than 5% of

subjects were dropped. Hardy-Weinberg equilbrium was checked in all SNPs among control

subjects using the exact procedure in [250] with a p = 0.01 significance threshold, and those

that were not in equilibrium were droped. SNPs with minor allele frequence (MAF) less

than 5% were dropped. Missing alleles were imputed marginally from the HWE distribution

among controls.



8.4 Traditional Association Tests

The Cochran-Armitage test for trend as implemented in the SAS FREQ procedure is used

to measure the association of single SNPs to a phenotype of interest [251]. Variables with

exact p-values less than 0.05 are reported as significant.

Binomial logistic regression models are built in SAS with the LOGISTIC forward step-

wise procedure [251]. This model finds covariate variables most strongly associated with

a response variable according to Fisher's scoring criterion. Regressors with p < 0.05 are

reported as significant.

8.5 Predictive Validation

The predicted probability of an outcome of interest, given evidence in a Bayesian network,

is calculated using the clique algorithm implemented in Bayesware Discoverer [61]. Good-

ness of fit is assessed using fitted values, by predicting phenotype in each subject used to

construct the network. Network robustness is assessed via a twentyfold cross-validation

in which each of twenty non-overlapping data subsets, obtained by randomly splitting the

original dataset, is used as an independent dataset while the remaining 19 subsets are used

to learn the network dependencies. Fitted values or cross-validation predicted probabilities

are compared to actual phenotypes using receiver operator characteristic (ROC) curves.

ROC curves are plots of sensitivity versus 1 - specificity that are commonly used to

evaluate the goodness of tests [252]. By varying the classification threshold where cases

are differentiated from controls, a series of sensitivity and specificity pairs are obtained

by comparing predicted and actual subject phenotypes. The area under an ROC curve

(AUROC) is used as a measure of accuracy. Tests that are perfect at differentiating cases and

controls have an AUROC of 1.0. When a test is no better at classifying cases and controls

than doing so randomly, the AUROC is 0.5. Based on these extremes, a conventional scheme

used to classify the predictive accuracy of tests is:

AUROC Rating
0.5-0.6 Fail
0.6-0.7 Poor
0.7-0.8 Fair
0.8-0.9 Good
0.9-1.0 Excellent



For each predictive model, ROC curves are created by comparing the predicted to the

actual phenotypes. Convex hulls are estimated using the Qhull algorithm [253] as imple-

mented in Matlab (The Mathworks, Inc., Natick, MA 01760), and the area under the convex

hull is obtained using the trapezoidal rule.



Chapter 9

Asthma Exacerbation

9.1 Overview

Asthma exacerbations, commonly known as asthma attacks, are the major cause of mor-

bidity and mortality in asthma [27, 28, 29]. Exacerbation episodes involve worsening of

asthma symptoms, including shortness of breath, cough, wheezing, chest pain or tightness,

mucus production, or some combination of these [Section 7.3]. As the primary reason for

asthma hospitalizations and emergency room visits, they account for a large portion of

asthma healthcare expenses. In 2004, 11.7 million Americans (3.9 million children under

18) had an asthma attack [13]. This comprises 57% of the 20.5 million Americans who are

estimated to have asthma. American Lung Association data gathered between 1997 and

2004 consistently show that children 5-17 years old have the highest exacerbation rates [13].

Indeed, asthma is the third leading cause of hospitalizations in US children, occurring an

estimated 198,000 times per year [180].

The underlying genetics of asthma exacerbations is unknown. Twin studies have at-

tributed a greater genetic than environmental component to asthma [22, 23, 24, 25]. Because

exacerbations occur in some patients with asthma and not others in similar environments, a

genetic basis that predisposes individuals to exacerbations is likely. Uncovering the genetic

basis underlying asthma exacerbations would be helpful to understand the biology of ex-

acerbations, discover novel therapeutic targets, and identify those at risk of suffering from

them. In this work, a genetic predictive model of asthma exacerbations was created with

PBN [Section 5] using data from the CAMP trial [Section 8.1].



9.2 Phenotype Definition

A cohort of Caucasian CAMP subjects with available genetic data were selected to create the

predictive model of exacerbation. These subjects are not part of the steroid treatment group

of CAMP and were followed during CAMPCS. The clinical data used to define exacerbation

in these subjects is responses to the questions "How many times have you had an overnight

hospitalizion for asthma since the last visit?" and "How many times have you had an

emergency room visit for asthma since the last visit?" that were gathered over 10 years

during trial visits or some CAMPCS phone interviews. Subjects are classified as cases

(i.e. exacerbators) if they have at least one overnight hospitalization and controls (i.e. non-

exacerbators) if they do not have emergency room visits or hospitalizations during the

observation period. A total of 290 subjects, 83 cases and 207 controls, meet the criteria

outlined.

9.3 Model

The genetic data available for the subjects included 2443 SNPs from 350 candidate genes

and 399 intergenic loci. All of these SNPs are in Hardy-Weinberg Equilibrium among

controls and have minor allele frequencies greater than 0.05. A PBN was learned from the

genetic data [Figure 9-1]. In this network, 132 SNPs from 55 genes and 28 intergenic loci

are found to be predictive of exacerbation [Table A.3].

9.4 Predictive Accuracy

The model's goodness was assessed using fitted values by predicting exacerbation for each

subject used in the PBN construction. The corresponding area under the ROC curve

(AUROC) is 0.97. Model robustness was tested by performing a 20-fold cross-validation, in

which the original dataset was split into 20 subgroups and each subgroup was used as an

independent dataset while the remaining subgroups were used to learn the PBN parameters.

The AUROC for the cross-validation procedure was 0.84 [Figure 9-2], which demonstrates

that the network has good predictive accuracy.

To compare the performance of the PBN to a single-gene approach, datasets created

using information of SNPs from one gene at a time were created. The PBN was used to



Figure 9-1: Phenocentric Bayesian network of asthma exacerbation. Exacerbation is pre-
dicted by 132 SNPs from 55 genes and 28 intergenic loci.

classify cases and controls using this single-gene data, and corresponding AUROC of fitted

values were obtained. As Figure 9-3 shows, the predictive accuracy of individual genes is

nearly random (0.50) in most cases. Using all of the genes is far better than individual ones.

9.5 Biological Interpretation

Biological pathways corresponding to the genes in the PBN were found in the Kyoto En-

cyclopedia of Genes and Genomes (KEGG) database [222]. Additionally, genes in the

glucocorticoid and beta-agonist pathways were analyzed because of the importance of these

paths in asthma management. Pathways with several represented genes are shown in Ta-

ble 9.5. Among the genes in the PBN, four have been associated to asthma in previous
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Figure 9-2: Predictive accuracy of exacerbation PBN. The area under the ROC curve
corresponding to fitted values is 0.97 (red, solid) and to 20-fold cross-validation is 0.84

(orange, dashed).

studies (IFNG, NR3C1, HAVCR1, ADRB2) and ten to immune processes (PHF11, CD3E,

IL18, IFNG, NR3C1, MIF, HAVCR1, PRKCA, ADRB2, BDKRB2).

The G-protein coupled receptor (GPCR) and calcium signaling pathways are two highly

represented pathways in the exacerbation PBN [Figure 9-4]. Four GPCRs are represented,

each with potential involvement in asthma exacerbation. The serotonin (HTR2A) and

bradykinin (BDKRB2) receptors are known to be involved in airway cell contractility [254,

255, 256]. The beta-2 adrenergic receptor (ADRB2) is involved in bronchial smooth muscle

dilation [30]. Changes in these three GPCRs could lead to increased exacerbations due to

changes in airway contractility. The corticotropin releasing hormone receptor (CRHR1) is

involved in glucocorticoid synthesis, which mediates inflammatory responses. Deficiency of

CRH or CRHR1 has been shown to lead to inflammatory response changes [257, 243]. In

addition to GPCR genes, two ligands (CRH and UCN3) and several downstream effectors

(PRKCA, PLCB1, ITPR3, GNAS, GNAI2, ATF1) are represented [222, 258]. Some of the

downstream effectors are part of calcium signaling, which is significant because alterations in

calcium homeostasis can increase airway smooth muscle contractile responses [259]. Overall,
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Figure 9-3: Predictive accuracy of single genes in the exacerbation PBN. The area under the
ROC curve corresponding to fitted values of a dataset consisting of single gene information
shows that the full PBN exacerbation model (red) has far better predictive performance
than single genes (blue).

differences in these GPCR pathways could lead to asthma exacerbations through changes

in airway cell contractility and/or changes in inflammation.

Another group of highly represented SNPs in the exacerbation PBN are from genes re-

lated to steroid and beta-agonist pathways [Figure 9-5]. Both of these pathways are targets

for the most common asthma drugs: corticosteroids and beta-agonists [Section 7.2]. The

genes involved include receptors for both of these drugs (NR3C1, ADRB2), which are nor-

mally activated by endogenous ligands [166, 167]. The beta-two agonist receptor (ADRB2)

is also a GPCR shown in Figure 9-4. Differences in steroid and beta-agonist pathways sug-

gests that differential response to endogenous or administered steroids and beta-agonists

could lead to increased exacerbations through changes in inflammatory response or bron-

chodilation. These pathways overlap with the GPCR and calcium signaling pathways.
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Pathway Name Represented Genes
G-protein coupled receptor CRH, UCN3, HTR2A, CRHR1,
(GPCR) signaling ADRB2, BDKRB2, PRKCA, PLCB1

ITPR3, GNAS, GNAI2, ATF1
Calcium signaling pathway TPR3, GNAS, HTR2A, PRKCA,

PLCB1, ADRB2, BDKRB2
Glucocorticoid NR3C1, NCOA1
Beta-agonist DDC, ADRB2, GRK6, ARRB1
Phosphatidylinositol signaling system ITPR3, GRK6, PRKCA, PLCB1
Long-term depression GNAI2, ITPR3, CRH, GNAS, CRHR1,

PRKCA, PLCB1
Gap junction GNAI2, ITPR3, GNAS, HTR2A,

PRKCA, PLCB1
Tyrosine metabolism MIF, AOX1, DDC
Neuroactive ligand-receptor interaction UCN3, NR3C1, CRH, HTR2A, CRHR1,

ADRB2, BDKRB2

Table 9.1: Biological pathways that are represented by genes in the exacerbation PBN.

9.6 Traditional Association Test Results

The Cochran-Armitage trend test was performed to do a traditional single-SNP association

analysis of the genetic markers to exacerbation. This analysis found that 85 SNPs from 44

genes and 23 intergenic loci are individually associated to exacerbation at a p < 0.05 signifi-

cance level [Table A.4]. Association results of this type, routinely reported in the literature,

are verified by replication studies. However, translation of this type of results to a clinical

setting is slow because they are not useful for individual risk assessment. Of the 44 genes

that are significant in the trend test, 19 are in part of the exacerbation PBN: AAA1, ATF1,

BDKRB2, DDC, DKFZP586AO, FCHSD1, GNAS, GNB2L1, HAVCR1, HTR2A, LETMD1,

LOC441121, MFNG, NCOA1, NR3C1, PLCB1, PRKCA, RASSF3, TMPRSS12. Of the 19

in common with the PBN, 16 were genes whose individual predictive accuracy is higher

than 0.50 in Figure 9-3. Therefore, even the genes whose statistical association is signifi-

cant according to the test, have low individual predictive accuracy. Using the combination

of genes in the PBN provides a more robust framework to differentiate exacerbators from

non-exacerbators than using single genes.
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Figure 9-4: G-protein coupled receptor and calcium signaling pathway genes in the exacer-
bation PBN. Genes that are represented in the PBN are in boxes.

9.7 Comparison to Clinical Model

As an alternative to a genetic test, would a model made of clinical variables be better

to predict asthma exacerbations? When a new asthma patient is observed, there is no

way to know that the patient will have exacerbations. Once a history of exacerbations

is established, then it can usually be assumed that the patient will have future asthma

attacks. In clinical practice, it would be most useful to know that a person will be a

future exacerbator before a history of attacks has been established. A genetic test could be

performed for this purpose. An alternative test using clinical variables would only use data

available at a first visit, prior to long observations.

Using the CAMP subjects from which the PBN was learned, clinical variables available

at the beginning of the CAMP trial (i.e. pre-trial) were analyzed and used to build a stepwise

logistic regression model. Characteristics of pre-trial clinical variables for the subjects are

shown in Table 9.2. Fisher's exact test on categorical values found that parent(s) smoking

and positive skin test(s) are individually associated with exacerbation. The Kruskal-Wallis

test found that the distributions of age, height, weight, BMI, eosinophilia, Ln(PC2o), pre-
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Figure 9-5: Glucocorticoid and beta-agonist pathway genes in exacerbation PBN. Genes

that are represented in the PBN are in boxes.

bronchodilator FEV1, and bronchodilator response measured either as AFEV1 %init or

AFEV1 %pred are significantly different in cases and controls.

A predictive model of asthma exacerbation was built using a forward stepwise logistic

procedure with the pretrial clinical data. This model found that bronchodilator response

defined as AFEVl%init, age, parent(s) smoking, and IgE levels are predictive of exacerba-

tion [Table 9.7]. The goodness of this model compared to the PBN model was assessed by

comparing AUROC curves of fitted values of the subjects used in the model construction.

As Figure 9-7 shows, the genetic model's AUROC (0.97) is significantly higher than the

clinical variable model (0.73), p-value < 0.001 [260].

A second clinical variable model of exacerbation was created with Bayesian networks.

The continuous variables were made into categorical ones by splitting each into quar-

tiles, and a Bayesian network was learned using Bayesware Discoverer [12]. In the re-

sulting model, age, BMI, mother smoking while pregnant, bronchodilator response defined

as AFEV1 %init, pre-bronchodilator FEV1 : FVC, positive skin test, and IgE levels are

predictors of exacerbation [Figure 9-6]. Despite the discretization procedure, the predictive

accuracy of the Bayesian network (AUROC of fitted values equal to 0.74) is higher, although
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Total Cases Controls p-value

(N = 290) (N = 83) (N = 207)
.1821Gender, no (%)

Male
Female

Age, years
Age at asthma onset, years
Height, cm
Weight, kg
BMI, kg/cm2

Mother smoking while pregnant, no (%)
Yes
No

One or both parent(s) smoke, no (%)
Yes
No

Positive skin test(s), no (%)
Yes
No

Total serum IgE, log(IU/mL)
Eosinophilia, log(cells/mmr3 )
Ln(PC2o), ln(mg/mL)
Pre-BD FEV1, L
Pre-BD FEV1 : FVC
Pre-BD FEV1%pred
BDR AFEV1%init
BDR AFEV1%pred

179 (61.72)
111 (38.28)

9.1 (2.2)
3.2 (2.6)
134 (14)
34 (12)
18 (3)

41 (14.21)
247 (85.76)

120 (41.38)
170 (58.62)

246 (84.83)
44 (15.17)
2.6 (0.7)
2.5 (0.6)
0.2 (1.2)
1.7 (0.5)

80 (8)
95 (14)

.11 (.11)
9.9 (8.3)

46 (15.86)
37 (12.76)
8.2 (2.2)
2.8 (2.2)
129 (14)
30 (11)
17 (3)

17 (5.90)
66 (22.92)

46 (15.86)
37 (12.76)

76 (26.12)
7 (2.41)
2.8 (0.6)
2.6 (0.6)

-0.04 (1.2)
1.5 (0.5)

79 (9)
95 (16)
.15 (.16)
13 (11)

133 (45.86)
74 (25.52)
9.5 (2.1)
3.4 (2.7)
136 (14)
35 (12)
18 (3)

24 (33)
181 (62.85)

74 (25.52)
133 (45.86)

170 (58.62)
37 (12.76)
2.5 (0.7)
2.4 (0.6)
0.3 (1.2)
1.8 (0.5)

80 (8)
96 (13)
.09 (.08)
8.5 (6.5)

Table 9.2: CAMP pre-trial clinical data in exacerbation cases and controls. Mean (standard
deviation) are reported unless otherwise noted. Categorical variable p-values are for Fisher's
exact tests, continuous variable p-values are for Kruskal-Wallis tests. BD is bronchodilator;
BDR is bronchodilator response.

not statistically different (p-value 0.080), than that of the logistic regression [Figure 9-7].

The genetic PBN model has much higher predictive accuracy than the clinical variable

Bayesian network model (p-value < 0.001).

In 2003, the CAMP research group published a report in which risk factors for hospital-

ization of asthma prior to enrollment in the clinical trial were identified [261]. Performing

univariate analysis on data for all 1041 children who enrolled in the trial, they found that

younger age of asthma onset, longer duration of asthma, greater number of positive allergy

skin tests, higher serum IgE level, greater peripheral blood eosinophilia, greater recent in-

haled corticosteroid use, greater airway obstruction, greater airway hyperresponsiveness,

and lower patient intelligence quotient (IQ) were all associated with prior asthma hospital-

.0001

.2113

.0002
.0001
.0002
.0632

.0024

.0468

.0770

.0003

.0455

.0001

.3395

.6944

.0008

.0003



Step Variable Entered p-value
1 Bronchodilator response AFEVi%init 0.0001

2 Age 0.0005
3 One or both parent(s) smoke 0.0016
4 IgE levels 0.0054

Table 9.3: Pre-trial
acerbation.

clinical variables selected by forward stepwise regression to model ex-

PARENT SMOKING

IN UTERO SMOKING

Figure 9-6: CAMP pre-trial clinical variable exacerbation Bayesian network. Age, BMI,
mother smoking while pregnant, bronchodilator response defined as AFEV1 %init, pre-
bronchodilator FEV1 : FVC, positive skin test, and IgE levels are predictors of exacerba-
tion.

ization. Using all of these variables to construct a forward multivariate logistic regression,

they found that younger age of asthma onset, longer duration of asthma, recent use of in-

haled corticosteroid, greater airflow obstruction, and lower patient IQ were significant risk

factors for prior asthma hospitalization. Another study using CAMP subjects found that

FEV1%pred was associated to asthma exacerbations defined as subjects with oral steroid

use, emergency department visits and/or hospitalizations [262]. Our one-variable-at-a-time

analysis results, which were obtained using a subset of all CAMP subjects and data obtained

just prior to the clinical trial beginning, are consistent with most of these findings. How-

ever, some inconsistencies appear to be present among the studies. It is difficult to compare

the studies in terms of what variables are "better" than others to differentiate exacerbators

from non-exacerbators because there is no measure of predictive accuracy. What is most

useful, especially in a clinical setting, is a model that can be validated with predictive test-

ing in individual subjects. As the stepwise logistic regression model and Bayesian network
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Figure 9-7: Comparison of clinical variable exacerbation forward logistic regression model
(FLR; dash-dot, green), Bayesian Network (BN; dash,purple) and genetic exacerbation
phenocentric Bayesian network (PBN; solid, red). The genetic model is better than the
clinical models as demonstrated by AUROC of fitted values of 0.97 for PBN versus 0.73
for FLR and 0.74 for BN. Curves for PBN are significantly different from clinical model
AUROCs (p-value < .0001). The BN and FLR AUROC are not significantly different from
each other (p-value 0.080).

results demonstrate, the predictive accuracy of clinical variables known at the beginning

of the CAMP trial is low. The genetic PBN model is significantly better at predicting

exacerbation and would be an easier and more objective test to administer to new patients.

9.8 Conclusion

A successful genetic predictive model of asthma exacerbations was built using PBNs. This

model found that 132 out of 2443 SNPs from 55 out of 350 genes and 28 out of 399 intergenic

loci are predictive of asthma exacerbation. The model's predictive accuracy is good, as

established with fitted values (AUROC 0.97) and a 20-fold cross-validation (AUROC 0.84).

The multivariate exacerbation model was compared to a single-gene approach, and the

superior predictive accuracy of the multivariate approach was demonstrated. Comparison



of the genetic PBN to a forward logistic regression model and a Bayesian network built

with CAMP clinical data shows that the genetic model has better predictive accuracy

(AUROC of 0.97 versus 0.73 and 0.74 for fitted values, respectively) and would be a more

objective and easily administered clinical test. The genes represented in the exacerbation

PBN suggest biological pathways that could be involved in mediating exacerbations via

changes in inflammation and airway cell contractility.



Chapter 10

Bronchodilator Response

10.1 Overview

Measurement of bronchodilator response (BDR) is a common clinical test for the evalua-

tion of reversible airway obstruction and the diagnosis of asthma [Section 7.4]. This test is

administered to determine whether administration of a bronchodilator medication improves

FEVI. It consists in a pre-bronchodilator measurement of FEVI, administration a bron-

chodilator (e.g. albuterol), and a follow-up measurement of FEV1. In asthmatics compared

to non-asthmatics, there tends to be a large change in FEV1. The physiological response to

a bronchodilator is a complex trait, involving intricate interactions among airway epithelial

and smooth muscle cells and nerves.

The most potent and rapidly acting bronchodilators currently available for clinical use

are 32-agonists [30]. Their primary effect is to stimulate /12 receptors on the surface of

airway smooth muscle cells, which via an increase in intracellular cyclic AMP levels, relaxes

airway smooth muscles and reduces bronchoconstriction. These drugs are the primary drugs

used in bronchodilator tests and are routinely used for the pharmacologic management of

asthma despite their variable efficacy among patients.

Evidence for the genetic basis of BDR has been established in family aggregation and

gene association studies but a comprehensive understanding of this response has not been

realized. Unraveling the genetic basis of bronchodilator response would be helpful to identify

patient-specific treatments, identify novel therapeutic targets, and help in the diagnosis and

monitoring of asthma. Further, a predictive test would help establish what patients are

responsive to /32-agonists and what genetic mechanisms may be responsible for variability



in patient response to such drugs. In this chapter, a genetic predictive model of BDR was

created with PBNs [Section 5] using data from the CAMP trial [Section 8.1].

10.2 Phenotype Definition

Bronchodilator response is a more complicated trait to define than asthma exacerbation

because it is a continuous trait, with no clear boundary separating responders from non-

responders. Further, a variety of BDR definitions are used by different studies and in

different clinical settings. In this work, the definition chosen for BDR is AFEVi%init.

This definition is the most commonly used one in a clinical setting. Because there is no

clear boundary to distinguish cases from controls, arbitrary thresholds must be chosen [Sec-

tion 7.4]. Two extreme regimes of BDR, according to clinical standards, were selected to

define cases and controls. By selecting extreme regimes, the genetic signal from each group

should be maximal.

A cohort of Caucasian CAMP subjects with available genetic data were selected to create

the predictive model of BDR. These subjects are not part of the steroid treatment group

of CAMP and have at least 9 out of 11 BDR test data available. Subjects are classified

as cases (i.e. responders) if they have a mean BDR of 12% or greater and controls (i.e.

non-responders) if they have a mean BDR less than 8%. A total of 308 subjects, 113 cases

and 195 controls, meet the criteria outlined.

10.3 Model

Genetic data available for these subjects includes 2444 SNPs from 350 candidate genes and

402 intergenic loci. All of these SNPs are in Hardy-Weinberg Equilibrium among controls

and have minor allele frequencies greater than 0.05. A PBN was learned from the genetic

data [Figure 10-1]. In this network, 163 SNPs from 55 genes and 22 intergenic loci are found

to be predictive of BDR [Table A.5].

10.4 Predictive Accuracy

The model's goodness was assessed using fitted values by predicting BDR for each subject

used in the PBN construction. The corresponding area under the ROC curve (AUROC) is



Figure 10-1: Phenocentric Bayesian network of BDR. The BDR is predicted by 163 SNPs
from 55 genes and 22 intergenic loci.

0.94. Model robustness was tested by performing a 20-fold cross-validation, in which the

original dataset was split into 20 subgroups and each subgroup was used as an indepen-

dent dataset while the remaining subgroups were used to learn the PBN parameters. The

AUROC for the cross-validation procedure was 0.80 [Figure 10-2], which demonstrates that

the network has good predictive accuracy.

To compare the performance of the PBN to a single-gene approach, datasets created

using information of SNPs from one gene at a time were created. The PBN was used to

classify cases and controls using this single-gene data, and corresponding AUROC of fitted

values were obtained. As Figure 10-3 shows, the predictive accuracy of individual genes is

nearly random (0.50) in most cases, whereas using all of the genes has an AUROC of 0.94.
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Figure 10-2: Predictive accuracy of BDR PBN. The area under the ROC curve corre-
sponding to fitted values is 0.94 (red, solid) and to 20-fold cross-validation is 0.80 (orange,
dashed).

10.5 Biological Interpretation

Biological pathways corresponding to the 55 genes in the PBN were found in the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database [222]. Pathways with several repre-

sented genes are shown in Table 10.5. Some of these pathways are related to neuronal signal-

ing, indicating that bronchodilators may be activating these pathways differently in those

who respond and do not respond to bronchodilators. Additionally, some of the pathways are

cell-signaling pathways, suggesting involvement of a cellular response to bronchodilators.

Among the genes in the PBN, three have been associated to asthma in previous studies

(DPP10,IL12B,IHAVCR1) and four to immune processes (PRKCA,DPP1O,IL8RA,IL12B).

The G-protein coupled receptor (GPCR) and calcium signaling pathways are highly

represented in the BDR PBN [Figure 10-4]. In particular, both corticotropin releasing hor-

mone receptors are represented (CRHR1, CRHR2). The corticotropin releasing hormone

receptor (CRHR1) is involved in glucocorticoid synthesis, which mediates inflammatory re-

sponses. Deficiency of CRH or CRHR1 has been shown to lead to inflammatory response
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Figure 10-3: Predictive accuracy of single genes in the BDR PBN. The area under the ROC
curve corresponding to the fitted values of a dataset consisting of single gene information
shows that the full PBN BDR model (red) has far better predictive performance than single
genes (blue).

changes [257, 243]. In addition to GPCR genes, several downstream effectors (PRKCA,

PLCB1, ITPR2, ATF1, CREB5) are represented [222, 258]. Some of the downstream ef-

fectors are part of calcium signaling, which is significant because alterations in calcium

homeostasis can increase airway smooth muscle contractile responses [259]. Overall, dif-

ferences in the CRHR pathways could lead to asthma BDR differences through changes in

glucocorticoid synthesis and inflammation.

Some steroid and beta-agonist pathway genes are represented in the BDR PBN [Fig-

ure 10-5]. Both of these pathways are targets for the most common asthma drugs: corti-

costeroids and beta-agonists [Section 7.2]. Intuitively, beta-agonist pathway involvement in

BDR differences is expected. However, few of these genes are present in the BDR PBN.

Steroid pathway genes are more highly present. As mentioned in Section 7.2, the glucocor-

ticoid and beta-agonist pathways overlap [166, 167]. As glucocorticoid receptors become

activated, they can increase translation of beta-2 adrenergic receptors, which can increase

i I



Pathway Name Represented Genes
G-protein coupled receptor CRHR1, CRHR2, PLCB1, ITPR2
(GPCR) signaling PRKCA, CREB5, ATF1

Calcium signaling PRKCA, PLCB1, ITPR2
Glucocorticoid NCOA1, CREB5, STAT5A

Beta-agonist DDC

JAK-STAT signaling pathway STAT3, IL12B, STAT5A, STAT4,
STAT1, IL12A

Phosphatidylinositol signaling system ITPR2, PRKCA, PLCB1

TOLL-like receptor signaling pathway IL12B, STAT1, IL12A

Long-term depression CRHR1, PRKCA, ITPR2, PLCB1

Long-term potentiation PRKCA, ITPR2, PLCB1
Gap junction PRKCA, ITPR2, PLCB1

Tryptophan metabolism TPH1, CYP4F8, DDC, CAT

Table 10.1: KEGG pathways that are represented by genes in the BDR PBN.

the effect of beta-2 agonists. Therefore, the represented glucocorticoid pathway genes, in-

cluding the CRHR genes, could modulate BDR by influencing the beta-agonist pathway or

by changing inflammatory response.

The JAK-STAT signaling pathway is highly represented in the BDR PBN, and unlike

the pathways discussed above, was not present in the exacerbation PBN [Figure 10-6].

JAK-STAT signaling, which is used by immune cells, is involved in asthma by changing the

phenotype of cells to be TH2-like [263]. Two cytokines (IL12A, IL12B) that activate cy-

tokine receptors and four STATs (STAT1, STAT3, STAT4, STAT5A) that convey cytokine

signals are in the BDR PBN. Changes in inflammation mediated by JAK-STAT signaling

could alter BDR.

10.6 Traditional Association Test Results

Traditional single-SNP association was performed using the Cochran-Armitage trend test.

This analysis found that 108 SNPs from 47 genes and 12 intergenic loci are individually

associated to BDR at a p < 0.05 significance level [Table A.6]. Association results of this

type, routinely reported in the literature, are verified by replication studies. Translation

of this type of result to a clinical setting is slow because it does not useful for individual

subject evaluation. Of the 47 genes that are significant in the trend test, 21 are part of the

BDR PBN: CREB5, CRHR1, CRHR2, CYP4F8, DDC, DKFZP586AO, GPR162, HAVCR1,

HDAC5, IL12A, IL12B, ITPR2, JAG1, MAPT, NCOA2, PPM1H, PRKCA, SERPINE2,
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Figure 10-4: G-protein coupled receptor pathway genes in the BDR PBN. Genes that are
represented in the PBN are in boxes.

SMARCB1, SRGAP1, STAT3. Of the 21 in common with the PBN, 18 are genes whose

individual predictive accuracy is higher than 0.50 in Figure 10-3. Therefore, even the

genes whose statistical association was significant according to the test, have low individual

predictive accuracy. Using the combination of genes together in the PBN provides a more

robust framework to differentiate BDR cases and controls.

10.7 Conclusion

A successful genetic predictive model of BDR was made using PBN. This model found

that 163 out of 2444 SNPs from 55 out of 350 genes and 22 out or 402 intergenic loci are

predictive of BDR. The predictive accuracy of the model is good, as established with fitted

values (AUROC 0.94), and a 20-fold cross-validation (AUROC 0.80). The multivariate

model was compared to a single-gene approach, and the superior predictive accuracy of the

multivariate approach is demonstrated. Genes represented in the BDR PBN suggest that

biological pathways that modulate BDR include those involved in glucocorticoid synthesis

and action, which may lead to changes in inflammation and/or the beta-agonist pathway.
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Figure 10-5: Glucocorticoid and beta-agonist pathway genes in BDR PBN. Genes that are
represented in the PBN are in boxes.
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Figure 10-6: JAK-STAT signaling pathway genes in BDR PBN. Genes that are represented
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Chapter 11

Conclusion

11.1 Summary

In this thesis, the need for better analytic methods for the study of complex traits is ad-

dressed with the development of phenocentric Bayesian networks. The procedure is tailored

for the discovery of multivariate models with large genomic datasets and can be used to pre-

dict outcomes of a phenotype of interest. It focuses on learning probabilistic relationships

that best predict outcomes of a variable of interest, which is a suitable approach for gene

association studies where the goal is to successfully predict a trait given a set of genetic

markers (i.e. SNPs) The procedure is as powerful as other PGM to uncover complex depen-

dencies among many variables, with the advantage that it can be used with large genetic

datasets.

The utility of phenocentric Bayesian networks is demonstrated with the creation of

predictive models for two complex traits related to asthma management: exacerbation and

bronchodilator response. Successful genetic predictive models were built for each of these

traits. The exacerbation model, utilizing 133 out of 2443 SNPs from 55 out of 350 genes

and 28 out or 399 intergenic loci, has good predictive accuracy (fitted value AUROC 0.97,

20-fold cross-validation AUROC 0.84). The BDR model found that 164 out of 2444 SNPs

from 55 out of 350 genes and 22 out or 402 intergenic loci are predictive of BDR. The

predictive accuracy of this model is also good (fitted value AUROC 0.94, 20-fold cross-

validation AUROC 0.80). The models obtained suggest biological pathways that could be

involved in exacerbation and BDR. Both models are shown to be superior than single gene

analysis, emphasizing the need for methods that consider complex dependencies among
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variables and demonstrating that phenocentric Bayesian networks are a useful approach to

study the genetic architecture of complex traits.

11.2 Future Directions

The exacerbation and bronchodilator response models created have been shown to have

good predictive accuracy using fitted values and cross-validation. However, in order for the

predictive models to be verified as generally applicable, they must be tested in independent

populations. These models can be readily tested with new genetic data when it becomes

available. Verification of their accuracy in other populations will provide certainty that the

results are useful in a clinical setting. Further, verification will increase the likelihood that

biological testing of hypotheses suggested by genes in the networks will provide valuable

insights into the mechanisms underlying these traits.

The recent advent of genomewide association (GWA) studies with over 500,000 markers

is promising for uncovering the genetic architecture of complex traits. However, with-

out more powerful multivariate methods that can scale to these large datasets, whose size

eclipses earlier candidate gene studies, the promise of fully understanding the genetic un-

derpinnings of complex traits will likely not be fulfilled. PBNs are a promising approach

for the analysis of these large datasets. Testing PBNs with GWA datasets will be necessary

to verify their ability to create useful predictive models at a genomewide scale. If neces-

sary, minor modifications to the algorithm's scoring procedure can easily be implemented

to adjust the efficiency of the algorithm. Tailoring this method and other PGMs for the

study of complex traits is the most promising approach for modeling traits that accounts for

their complex genetic underpinnings and has a quantitative metric to assess their predictive

accuracy for individuals.
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Appendix A

Tables

Table A.1: CAMP candidate genes

Gene Name SN
AAA1
AACS

ACCN2
ACVR1B
ACVRL1
ADAM19
ADAM33

ADCY6
ADCY7
ADCY9

ADCYAP 1
ADCYAP1R1

ADRB2
ALDH7A1

ALOX15
AMHR2

ANKRD33
ANKRD5

AOX1
APOB48R

AQP2
AQP6
ARG1

ARHGAP9
ARRB1
ARRB2

ATF1
ATF7

ATP2A2
ATP5G2

Continued on Next

rPs Genotyped
20
3
5
1
5
1

14
10
5

24
2
6

70
8
8
1
1

14
20

1
4
5
6
3

17
2
6
1
4
2

Page...
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Table A.1 Continued
Gene Name

ATP6VOB
AVIL

BCL2L10
BDKRB1
BDKRB2

BIN2
BRD7

BXDC5
C110RF72
C120RF22

C140RF166B
C1QL1

C40RF9
C5

C50RF16
C6ORF125

C90RF26
CACNB33

CALCOCO1
CAPS2

CAT
CCDC93
CCDC97

CCL11
CCL17
CCR5
CD3E

CD4
CDK4

CEBPA
CENTG1

CHIT1
CHRM2
CHRM3

CLN3
COL2A1

CPAMD8
CPM

CPSF6
CREB1

CREB3L1
CREB3L2

CREB5
CREBBP
CREBL2

SNPs Genotyped
1
6
1
6

21
7
1
4
1

11
1
1
2
2
1
2

11
2
1
2
7
1
2

10
11
11
1

10
2

12
4

21
4
9
1

11
3

10
5
8
7
1

52
2
1

Continued on Next Page...
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Table A.1 - Continued

I JPs GenotypedGene Name SiN
CREM

CRH
CRHBP
CRHR1
CRHR2

CRP
CSK

CSRP2
CST3

CTDSP2
CTLA4

CTSO
CX3CR1

CYP27B1
CYP2A13
CYP2C9
CYP2E1
CYP3A4
CYP3A5
CYP4F3
CYP4F8
DAZAP2

DBP
DCAL1

DCD
DCTN2

DDC
DDIT3
DEFB1

DELGEF
DERL3

DIAPH1
DKFZP547KO
DKFZP586AO
DKFZP586DO
DKFZP761L1

DNAJC14
DPH2

DPP10
E2F7

ECEL1
EGR1
ELA1
ELF2
ELF5

Continued on Next
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Table A.1 - Continued

I Gene Name SiN
F2R

F2RL1
F2RL3

FAM19A2
FAM98C

FBN2
FCER2

FCHSD1
FKBP4
FKBP5

FLG
FLJ12355
FLJ20489
FLJ21125
FLJ21908
FLJ23436
FLJ45983

GAL
GALNT6

GATA3
GFRA4

GLS
GLS2

GLYCAM1
GMEB1
GNAI1
GNAI2
GNAI3
GNAS

GNAT2
GNB1

GNB1L
GNB2L1

GNB3
GNB5
GNG5
GNG7

GNS
GOSR2

GPR162
GRB2

GRIP1
GRK4
GRK5
GRK6

Continued on Next
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Ps Genotyped
7
7
1
1
2

16
18
3
4

19
2
4
1
8
1
2
4
6
2
4
7
4
2
1
9

14
8

18
8
3

20
16
5
9

24
6
8
4
1
2
2
1
9

13
6

Page...



Table A.1 - Continued

NPs GenotypedGene Name Si
GRK7

GSTP1
HAT1

HAVCR1
HDAC1
HDAC2
HDAC3
HDAC5

HDAC7A
HELB

HLA-DQA1
HLA-G

HMGA2
HNMT

HOXC13
HS322B1A

HSP90AA1
HTR2A

HUMCYT2A
ICAM1
ICAM4
ICAM5

IFNG
IGFBP6

IKBKAP
IL10

IL12A
IL12B

IL12RB1
IL12RB2

IL13
IL18

IL18BP
IL22
IL26
IL27
IL4

IL4R
IL8

IL8RA
IL8RB
IMP5
INDO

INDOL1
INSIG2

Continued on Next Page...



Table A.1 - Continued

IGene Name SlN
IP013

IRAK3
ITFG2

ITGAL
ITG1B7
ITPR1
ITPR2
ITPR3

JAG1
K5B

KCNC2
KCNH2

KCNMB4
KDR

KIAA0141
KIAA1755

KIF5A
KITLG
KRT18
KRT3
KRT4

KRT6IRS
KRT6L

KRT8
KRTHB5

KYNU
LAG3

LEMD3
LEPREL2
LETMD1

LGR5
LOC253264
LOC283400
LOC283403
LOC284890
LOC285626
LOC341315
LOC387894
LOC390338
LOC390342
LOC400050
LOC400568
LOC400620
LOC401904
LOC440098

Continued on Next
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JPs Genotyped
15
7
1

17
3

36
51
25
17
2
6
1
2
2
1
1
1
3
1
2
3
1
1
3
1

14
1
1
1

20
4
1
2
1
4
8
2
4
1
3
2
2
1
2
1
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Table A.1 - Continued

I •Ps GenotypedGene Name S1
LOC440399
LOC440552
LOC440591
LOC440806
LOC440935
LOC441121
LOC441346
LOC441641
LOC57228

LOC643093
LOC643231
LOC643489
LOC643559
LOC643625
LOC643645
LOC643788
LOC643865
LOC643878
LOC644733
LOC645253
LOC645495
LOC645507
LOC645623
LOC645738
LOC646067
LOC647071
LOC653518

LOX
LRIG3

LTA
LYZ

MAPK1
MAPK3

MAPT
MARS

MAST3
MBD6
MDM2

MED11
METTL1

MFNG
MGC4093

MGP
MIF

MMP12
Continued on Next
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Table A.1 - Continued

I JPs GenotypedGene Name SIN
MMP19

MRPL36
MS4A2

MSH3
MYO5C

NAB2
NADK

NAPIL1
NCOA1
NCOA2
NCOR2

NDFIP1
NFATC4

NONE
NOS3
NPFF

NPSR1
NROB2
NR1I2

NR3C1
NUMA1
OR10P1
OR56B4
OR6C1

OR6C68
OS-9

OSBPL8
PCAF

PCDH12
PDGFB
PELP1
PERQ1
PHF11

PHLDA1
PIP5K2C

PLCB1
PLCB2
PLCB3
PLCB4

PLN
POMC

POU6F1
PPARG
PPM1H
PRKCA

Continued on Next
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Table A.1 - Continued
Gene Name SI!

PRR7
PTAFR
PTGDR
PTGES
PTGIR
PTPRB
PTPRR
QTRT1

RAB3IP
RAC2

RACGAP1
RAPGEF3

RARG
RASGRP4

RASSF3
RBMS2

RCBTB1
RGS12
RGS16

RHBDF2
ROBO1

RYR1
S100A10
SCARB1

SDPR
SEMA3B
SENP1

SERPINA6
SERPINE2
SETDB2

SGOL1
SLC11A2
SLC12A2
SLC16A7
SLC26A10

SLC4A8
SLC6A4

SMARCA4
SMARCB1

SMARCE1
SOAT2
SPATA1
SPHK2

SPINK5
SRGAP1

Continued on Next

NPs Genotyped
2
2

14
16
2
2
2
1
6
4
1
6
1
3
3
1

16
2
2
5
1
2
9
4
9
1
1
3

26
7
2
59
1
2
3
2

13
17
15
2
1
1
2
1
3

Page...
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Table A.1 Continued

I TPs GenotypedGene Name SIN
STAT1
STAT2

STAT3
STAT4

STAT5A

STAT5B
STAT6

SYCE1
TACR1
TBCA
TBK1

TBKBP1
TBX1

TBX21
TDO2

TEX12
TFCP2

TGFB1
TLR10
TLR4

TMEM106C
TMEM132B
TMEM142A

TMEM19
TMEM5

TMPRSS12
TNF

TPH1
TPH2

TRAPPC5
TRHDE
TRIM41
TRIM55

TSFM
TSPAN31

UBC
UBE20

UCN3
URP2
USP5

USP52
VDR
VEGF

VMD2L3
WARS2

Continued on Next
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Table A.1 - Continued
Gene Name SNPs Genotyped

WDFY3 1
XRCC5 3

XRCC6BP1 4
YEATS4 9
ZNF659 1
ZNF740 1
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Table A.2: KEGG pathways that are represented by
CAMP candidate genes.

Pathway Name
Calcium signaling pathway

Cytokine-Cytokine receptor interaction

Fc Epsilon Ri signaling pathway

Gap junction

Inositol phosphate metabolism

JAK-STAT signaling pathway

Linoleic acid metabolism

Long-term depression

Long-term potentiation

MAPK signaling pathway

Continued on Next Page...

Represented Genes
SPHK2, GNAS, PLN, PLCB2,
PRKCA, F2R, BDKRB2, NOS3,
HTR2A, CHRM2, CHRM3, BDKRB1,
TACR1, ADCY7, PTAFR, PLCB1,
ATP2A2, ITPR3, ADCY9, ITPR1,
PLCB4, PLCB3, ADRB2, ITPR2,
RYR1
CCR5, IL12B, IL4, CX3CR1,
VEGF, IL4R, ACVR1B, IL10,
KDR, LTA, PDGFB, IL8RA,
IL12A, IL13, IL26, IFNG,
IL12RB2, IL12RB1, CCL17, TNF,
IL18, AMHR2, CCL11, KITLG,
IL22, IL8RB, IL8, TGFB1
TNF, IL13, IL4, MS4A2, PRKCA,
MAPK3, RAC2, MAPK1, GRB2
GNAI2, GNAI1, GNAI3, ADCY6,
GNAS, PLCB2, PRKCA, MAPK3,
PLCB1, MAPK1,ITPR3, ADCY9,
ITPR1, PDGFB, HTR2A,PLCB4,
PLCB3, ITPR2, ADCY7, GRB2
GRK4, PIP5K2C, IRAK3, GRK6,
GRK7, PLCB4, PLCB2, PLCB3,
PLCB1, GRK5
IL13, IFNG, IL26, IL12B,
IL12RB2, IL12RB1, IL4, STAT4,
CREBBP, STAT5B, IL4R, STAT6,
ILl0, STAT3, STAT5A, IL22,
STAT1, STAT2, IL12A, GRB2
CYP3A4, CYP2C9, CYP2E1,
ALOX15, CYP3A5
GNAI2, GNAI1, GNAI3, GNAS,
CRHR1,PLCB2, PRKCA, PLCB1,
MAPK3, MAPK1,ITPR3, CRH,
NOS3, ITPR1, PLCB4,PLCB3,
ITPR2, RYR1
ITPR3, ITPR1, RAPGEF3, CREBBP,
PLCB4, PLCB2, PRKCA, PLCB3,
MAPK3, ITPR2, PLCB1, MAPK1
MAPT, PTPRR, DDIT3, ARRB1,
PRKCA, MAPK3, ACVR1B,
RASGRP4, MAPK1,TNF, CACNB3,
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Table A.2 - Continued
Pathway Name Represented Genes

PDGFB, NFATC4, RAC2, TGFB1,
ARRB2, GRB2

Natural killer cell mediated cytotoxicity TNF, IFNG, ITGAL, NFATC4,
HLA-G, PRKCA, MAPK3, RAC2,
MAPK1, GRB2, ICAM1

Neuroactive ligand-receptor interaction POMC, PTAFR, UCN3, CRHR2,
CRHR1, GAL, F2R, BDKRB2,
NPFF, PTGDR, ADCYAP1, CRH,
NR3C1, CHRM2, HTR2A, F2RL3,
ADCYAP1R1, CHRM3, BDKRB1,
TACR1, F2RL1, ADRB2, PTGIR

Nicotinate and nicotinamide metabolism GRK4, IRAK3, GRK6, AOX1,
GRK7, NADK, GRK5

Notch signaling pathway HDAC2, MFNG, CREBBP, HDAC1,
NCOR2, JAG1

Phosphatidylinositol signaling system GRK4, IRAK3, GRK6, PLCB2,
PRKCA, PLCB1, ITPR3, PIP5K2C,
ITPR1, GRK7, PLCB4, PLCB3,
ITPR2, GRK5

Regulation of actin cytoskeleton ITGB7, ITGAL, MAPK3, F2R,
BDKRB2, MAPK1, PIP5K2C, CSK,
PDGFB, CHRM2, CHRM3, BDKRB1,
RAC2, DIAPH1

T cell receptor signaling pathway IL10, CD3E, TNF, CD4, IFNG,
IL4, NFATC4, CTLA4, CDK4, GRB2

TGF-Beta signaling pathway TNF, AMHR2, IFNG, ACVRL1,
CREBBP, MAPK3, TGFB1, ACVR1B,
MAPK1

TOLL-like receptor signaling pathway TNF, IL12B, TBK1, IL8, TLR4,
STAT1, RAC2, IL12A

Tryptophan metabolism TDO2, WARS2, TPH1, CYP4F8,
INDO, KYNU, AOX1, DDC,
TPH2, ALDH7A1, CAT

116



Table A.3: Exacerbation PBN genes. The AUROC of
fitted values predicting exacerbation using information for
each of 55 genes used in Figure 9-3 is shown. An additional
28 intergenic SNPs are in the PBN.

c
NPs in PBNGene Name SP

AAA1
AACS

ADRB2
AOX1
AQP6

ARRB1
ATF1

BDKRB2
C120RF22
C50RF16

C6ORF125
CD3E
CRH

CRHR1
CYP2E1

DDC
DKFZP586A0

FCHSD1
GATA3
GNAI2
GNAS

GNB2L1
GRK6

HAVCR1
HDAC3
HTR2A

IFNG
IL18

INDOL1
ITGAL
ITPR3

LETMD1
LOC387894
LOC441121

MFNG
MIF

NCOA1
NR3C1
PHF11
PLCB1
PRKCA

Continued on Next
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AUROC
0.60
0.50
0.50
0.47
0.50
0.50
0.60
0.58
0.50
0.50
0.56
0.58
0.56
0.50
0.50
0.57
0.61
0.57
0.60
0.60
0.71
0.50
0.50
0.44
0.50
0.56
0.50
0.50
0.50
0.50
0.50
0.54
0.50
0.61
0.56
0.50
0.56
0.60
0.50
0.50
0.53
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Table A.3 - Continued
Gene Name

PTGES
RACGAP1

RASSF3
RCBTB1

SDPR
SLC11A2
SLC16A7
SRGAP1

TFCP2
TMPRSS12

TRHDE
TRIM55

UCN3
VEGF

AUROCSNPs in PBN
1
1
1
5
2
2
1
1
1
6
1
1
1
2

0.50
0.50
0.58
0.61
0.50
0.50
0.50
0.50
0.55
0.60
0.50
0.55
0.50
0.57
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Table A.4: Exacerbation Trend Test. SNPs associated
to exacerbation at the p < 0.05 significance level are shown.
SNPs are labeled with their gene name followed by a counter
if more than one SNP from the same gene is in the table.

SNP
INTERGENIC. 1

ATF1
RASSF3
GNAS.1

INTERGENIC.2
NR3C1.1

TMPRSS12.1
INTERGENIC.3

FCHSD1.1
INTERGENIC.4

NR3C1.2
INTERGENIC.5

FCHSD1.2
BDKRB2

INTERGENIC.6
TMEM132B

DKFZP586A0
INTERGENIC.7

GRK7
INTERGENIC.8
INTERGENIC.9

GNAS.2
IL12RB2

GMEB1.1
INTERGENIC. 10

CST3
PRKCA
PLCB1

CREM.1
NCOA1
HTR2A
ITPR1

INTERGENIC. 11
KRTHB5
CREM.2

MFNG
DPP10

HAVCR1
LETMD1.1

GRK5.1
LETMD1.2

p - value
0.0002
0.0018
0.0020
0.0025
0.0029
0.0034
0.0036
0.0039
0.0054
0.0054
0.0073
0.0079
0.0079
0.0081
0.0087
0.0087
0.0088
0.0090
0.0102
0.0110
0.0122
0.0131
0.0141
0.0179
0.0179
0.0179
0.0179
0.0184
0.0188
0.0189
0.0190
0.0200
0.0201
0.0208
0.0212
0.0213
0.0213
0.0219
0.0220
0.0221
0.0221

Continued on Next Page...
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Table A.4 - Continued
SNP

GMEB1.2
INTERGENIC.12
INTERGENIC.13

ARRB1
WARS2

INTERGENIC.14
GMEB1.3

C6ORF125
GNB5.1

INTERGENIC. 15
INTERGENIC.16

ITPR3.1
ITPR3.2

TMPRSS12.2
INTERGENIC. 17

ADCYAP1
FCHSD1.3

LOC645253
CREM.3

CRP
LEMD3
GRK5.2

INTERGENIC. 18
TMPRSS12.3

CAT. 1
GNB2L1
GNB5.2

LOC441121.1
LOC441121.2

CREM.4
PTGDR
CREM.5

INTERGENIC.19
INTERGENIC.20
INTERGENIC.21

DDC
GNG7

INTERGENIC.22
PCAF
HAT1
AAA1

INTERGENIC.23
ITPR2
CAT.2

p - value

120

0.0223
0.0223
0.0229
0.0233
0.0233
0.0240
0.0255
0.0256
0.0262
0.0270
0.0270
0.0278
0.0278
0.0300
0.0303
0.0319
0.0328
0.0332
0.0337
0.0357
0.0370
0.0389
0.0390
0.0397
0.0397
0.0399
0.0410
0.0417
0.0429
0.0434
0.0434
0.0434
0.0436
0.0437
0.0442
0.0448
0.0448
0.0458
0.0471
0.0481
0.0483
0.0486
0.0497
0.0498
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Table A.5: BDR PBN genes. The AUROC of fitted values
predicting BDR using the information for each of 54 genes
used in Figure 10-3 is shown. An additional 22 intergenic
SNPs are in the PBN.

I NPs in PBNGene Name ST
ANKRD5

ATF1
BIN2

C120RF22
CAT

CREB5
CRHR1
CRHR2

CYP4F8
DDC

DELGEF
DKFZP586A0

DPH2
DPP10
GNG5

GPR162
HAVCR1

HDAC5
HOXC13

ICAM5
IL12A
IL12B

IL8RA
IP013
ITPR2
JAG1

KCNMB4
LETMD1

LOC285626
LOC341315
LOC401904
LOC643093
LOC643625

LRIG3
MAPT

NCOA2
NCOR2
PLCB1

PPM1H
PRKCA

SERPINE2
Continued on Next
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AUROC
0.50
0.60
0.54
0.50
0.56
0.61
0.64
0.67
0.63
0.65
0.50
0.62
0.55
0.50
0.57
0.53
0.60
0.50
0.50
0.50
0.57
0.57
0.56
0.50
0.50
0.60
0.55
0.55
0.50
0.54
0.59
0.50
0.50
0.56
0.58
0.56
0.41
0.50
0.59
0.60
0.58
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Table A.5 - Continued
Gene Name

SLC11A2
SMARCA4
SMARCB1

SRGAP1
STAT1

STAT3
STAT4

STAT5A

TEX12
TFCP2

TMEM19
TMPRSS12

TPH1

SNPs in PBN
3
2
7
1
5
7
4
1
1
1
1
3
2

AUROC
0.50
0.50
0.54
0.55
0.59
0.50
0.52
0.50
0.50
0.50
0.56
0.62
0.50
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Table A.6: BDR Trend Test. SNPs associated to exacer-
bation at the p < 0.05 significance level are shown. SNPs are
labeled with their gene name followed by a counter if more
than one SNP from the same gene is in the table.

SNP p - value
LOC401904 0.000204

DDC 0.000407
CYP4F8.1 0.000536

JAG1.1 0.001969
PPM1H 0.002285

INTERGENIC. 1 0.002575
CRHR1.1 0.00315

INTERGENIC.2 0.003622
CYP4F8.2 0.004672

CREB5 0.005198
GPR162 0.005335

TMEM19 0.005889
INTERGENIC.3 0.00589
INTERGENIC.4 0.00589

PRKCA.1 0.006161
CRHR2.1 0.006253

INTERGENIC.5 0.006998
PRKCA.2 0.00761

INTERGENIC.6 0.008065
CRHR1.2 0.008991
CRHR1.3 0.009568
CRHR1.4 0.009588
CRHR1.5 0.009716
CRHR2.2 0.009777

MAPT 0.010656
IL12B 0.010796

SMARCB1.1 0.011313
SMARCB1.2 0.011313
SMARCB1.3 0.011313
SMARCB1.4 0.011313

NAP1L1 0.011352
IL12A.1 0.012199

CRHR1.6 0.012337
GNAS.1 0.013494

CRHR1.7 0.013995
NCOA2.1 0.015033
CRHR1.8 0.015237

HAVCR1.1 0.015656
CRHR1.9 0.016026

PTGDR 0.016711
TPH2 0.016881

Continued on Next Page...
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Table A.6 - Continued

I SNP
CRHR1.10

IL12A.2
IL12RB2.1

NPSR1
CRHR1.11
HAVCR1.2

INTERGENIC.7
SMARCB1.5
SMARCB1.6
SMARCB1.7

GNAS.2
ADCY9.1

GNB5
NCOA2.2
PRKCA.3
NCOA2.3

CRHR1.12
SRGAP1

PRKCA.4
HAVCR1.3

SDPR
INTERGENIC .8

HAVCR1.4
HTR2A

ADCY9.2
NCOA2.4
NCOA2.5
NCOA2.6

CRHR1.13
NCOA2.7

SMARCB1.8
TRHDE

PRKCA.5
INTERGENIC.9

GSTP1
IL 12RB2.2

ITPR2.1
INTERGENIC.10

DERL3
SERPINE2

DKFZP586A0
NCOA2.8
NCOA2.9

NCOA2.10
GNBIL

Continued on Next Page...
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p - value
0.017133
0.019154
0.019278
0.019583
0.020196
0.020758
0.020763
0.020848
0.020848
0.020848
0.021429
0.023504
0.023603
0.023865
0.025101

0.02546
0.026421
0.027309
0.027927
0.028029
0.02805

0.028321
0.028718
0.028814
0.029418
0.029457
0.029457
0.029457
0.030757
0.030925

0.03143
0.031469
0.031724
0.032235
0.032252
0.032258
0.032698
0.032954

0.03548
0.036034
0.036261
0.036844
0.036844
0.036844
0.036863



Table A.6 Continued

NCOA2.11
IL4R

GALNT6
HAVCR1.5

ITPR2.2
OS

IMP5.1
NCOA2.12

GNAI1
ARRB1
HDAC5
IMP5.2

INTERGENIC. 11
INTERGENIC. 12

IL18BP
NCOA2.13

STAT3
JAG1.2

CYP2A13
LOC645253
LOC390338

PRKCA.6

0.037023
0.03754

0.037825
0.038089
0.038416
0.039674
0.039929
0.039988
0.041676
0.041879
0.042981
0.043874
0.044381
0.044804
0.046656
0.046987
0.047067
0.048085
0.048344
0.049131
0.049455
0.049689
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