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Abstract

Incorporation of a low-density, low-wave-speed medium (LWSM) into a structure
yields significant damping if the speed of wave propagation in the medium is low
enough for standing waves to arise in it. In this thesis, we characterize wave propa-
gation in low-density granular media and foams for use as structural damping treat-
ments and develop analytical and numerical techniques for prediction of the damping
attained in structures that incorporate LWSM.

Structural damping by incorporation of LWSM is attractive for hollow thin-walled
structures. We develop analytical approximations for the loss-factor in the structural
modes of cylindrical shells and Timoshenko beams and attain predictions in good
agreement with measurements.

For more complicated geometries, it is often necessary to employ a finite element
model to predict the dynamics of structures. But inclusion of LWSM into a finite
element model significantly increases the size of the model, introduces frequency-
dependent material properties, and introduces a large number of modes that are
dominated by deformation of the LWSM. Hence, the eigenvalue problem becomes
significantly more difficult by addition of the LWSM. We develop an iterative approach
based on the eigensolution of a structure without LWSM and the forced response of
the LWSM to obtain approximations for the complex eigensolution.

Damping by inclusion of LWSM is an attractive option for reduction of the sound
radiated from vehicle driveshafts, which are typically thin-walled hollow cylinders
with yokes welded at each end. The bending and ovaling modes of the driveshaft
between 500 and 3000 Hz are efficient radiators of sound and are excited by gear
transmission error in the rear differential. Filling the driveshaft with a. lossy, low-
density foam adds significant damping to these modes and thus reduces the radiated
sound.

Thesis Supervisor: Samir A. Nayfeh
Title: Associate Professor
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Chapter 1

Introduction

1.1 Background

Vibration damping plays an important role in machines and structures by improving
performance and stability, reducing noise, and increasing lifetime. Advances in and
increased demands of motion control, vibration reduction, vibration isolation, and
noise suppression require improvements in damping technology. Useful methods and
accurate models are required to design, implement, and optimize damping treatments.

Vibration damping is often divided into two categories, active and passive. Active
damping treatments utilize sensors to measure the performance of the machine or
structure, and a control algorithm calculates a corrective action which is supplied by
an actuator. Passive treatments typically involve converting kinetic or strain energy
into heat through methods such as constrained-layer damping, tuned-mass dampers,
viscous fluids, or passively-shunted piezoelectric materials. Active treatments are
typically more complicated and more expensive than passive treatments.

1.1.1 Resonant damping

One common, typically passsive, damping treatment is a resonant damper, in which a
sprung inertia reacts against the primary structure to reduce vibration. The simplest
embodiment of a resonant damper is the tuned-mass damper, as illustrated Figure 1-
1 [23]. Tuned-mass dampers are effective only in a, narrow frequency band and are
sensitive to frequency tuning. Previous researchers have explored methods to mitigate
these problems. One of these methods includes using many resonant absorber as
sketched in Figure 1-2. Zapfe and Lesieutre [75] showed that these types of absorbers
but with a distribution of tuning frequencies can provide broadband damping. Some
researchers have coined the term "fuzzy structures" for structures with many resonant
subsystems.

During the study of viscoelastic free-layer damping treatments, Oberst [43] ob-
served significant damping of flexural vibrations at frequencies corresponding to thick-
ness resonances of the attached viscoelastic layer. Ungar and Kerwin [62] derived the
first model for such systems and showed that significant damping can occur over a
range of frequencies because an infinite number of through-the-thickness resonance



Figure 1-1: Single-degree-of-freedom tuned-mass damper

Figure 1-2: Vibrating structure with many resonant absorbers



can occur but that the amount of damping decreases after the first thickness reso-
nance. This method of damping did not gain wide acceptance because of material
limitations that existed at the time (1964). More specifically, the available viscoelas-
tic materials were too dense and too stiff for it to be practical to add a thick layer of
viscoelastic material because of the large associated weight penalty.

House et al [24, 45] recognized that damping using thickness resonances could
be implemented using lightweight granular materials. Fricke [19] demonstrated ap-
plications where significant damping was attained using lightweight, low-wave-speed
granular materials, but he did not use any quantitative models. Nayfeh and co-
workers [41, 66, 65] developed detailed quantitative models and suggested the use of
foams as a low-wave-speed damping material.

Damping using low-wave-speed media has many properties that make it suitable
for a wide variety of applications. With proper material selection, it can be used at
extreme temperatures. Foams, fibrous materials, and granular materials are durable
and resilient making them well-suited for applications requiring long lifecycles and
survival of large strains, impact, and shock. The damping is insensitive to frequency
tuning and works over a broad frequency spectrum such that significant damping per-
sists even with changes to the primary structure. LWSM damping does not introduce
signficia~nt creep so it is attractive for precision applications. It is inexpensive and
easy to package into a structure or machine, especially thin-walled tubing, making
low-wave-speed media an attractive solution for mitigation of structure-borne sound.
Figure 1-3 compares constrained-layer damping to LWSM damping for a hollow box
beam for equal added mass. The LWSM treatment provides higher peak damping
and equivalent performance at high frequencies. Additionally, the low-wave-speed
damper is easier to manufacture.

1.1.2 Flexural Bearings

Flexural bearings are elastic elements that constrain an object in one or more direc-
tions. They play an important role in precision engineering because they allow for
smooth motion. One drawback when designing using flexures is their susceptiblity
to vibration. Varanasi [64] demonstrated that foam is well-suited to damping the
vibratory modes of a planar flexure stage as shown in Figure 1-4. In such an ap-
plication, performance is limited by the out-of-plane modes of the stage and modes
dominated by deformation of the blades. A low-wave-speed foam is easily introducted
into the gaps between the flexure blades and adds significant damping to these par-
asitic modes. Additionally, the introduction of the foam does not limit the range of
the stage.

1.1.3 Drivetrain Noise

There are many sources of noise and vibrations in passenger vehicles, including inter-
actions between the tires and the road, air flow around the vehicle, engine combustion
and exhaust, and the drivetrain. In large rear-wheel-drive vehicles, the drivetra.in can
be a significant contributor of undesirable noise and vibration.
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Figure 1-3: Comparison of optimized constrained-layer damping (CLD) treatment
and low-wave-speed media damping treatments designed for the first and second
bending modes of a simply-supported aluminum box beam (50 mm x 50 mm x 1 m,
5 mm wall thickness): LWSM (solid), CLD (dashed). Vertical dotted lines denote
frequencies of Euler-Bernoulli vibration modes.

Figure 1-4: Planar flexure stage
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A rear-wheel-drive vehicle's power train system consists of the engine, flywheel,
clutch or torque converter, transmission, driveshaft, differential, and right and left
axle half-shafts (see Figures 1-5 and 1-6). The transmission output is connected to
the driveshaft which transmits the power to the rear differential. The driveshaft is
typically a thin-walled tube (or pair of thin-walled tubes coupled at an intermediate
bearing) connected to the transmission and differential by U-joints. The differential
offers a further gear reduction and distributes power to the rear tires through the rear
axle half-shafts.

Vibration sources for the drivetrain include meshing of gear teeth, gear trans-
mission error, torque fluctuations from the engine, imbalance of rotating parts, and
rapid acceleration or clutch engagement. Gear transmission error is considered by
many researchers to be the largest contributor to drivetrain noise. Gear transmission
error is the normalized velocity variation of the driven gear when the driving gear is
rotating at a constant velocity (Smith [56]). The variations in velocity can result in
large, impulsive forces that excite vibratory modes which create audible noise.

Various terminology exists to describe the vibration and noise phenomena that
occur in vehicle drive-lines. Driveline shuffle, also known as shunt or tip-in and tip-
out, is front to back oscillation of the entire drivetrain at 2-8 fHertz. Gear rattle
is the noise produced by meshing of the unloaded transmission gears which occurs
at frequencies less than 80 Hertz. Clutch judder is a vibratory phenomena in the
7-20 Hertz range caused by stick-slip during engagement of the clutch. While these
lower frequency phenomena are largely "rigid body" motions, at frequencies above
500 Hertz the vibratory modes are dominated by deformation of the driveshaft. The
modes, which are often excited by gear meshing, involve combinations of bending,
torsion, and "ovaling" of the driveshaft. They are often referred to as whine or
clonk [52].

System Modeling

One of the difficulties in understanding the behavior of vehicle drive-lines is devel-
opment of accurate but manageable models. Many authors have used finite element
models (e.g., Theodossiades et al [61]). Farshindianfar et al [15] used a distributed-
lumped modelling technique in which some elements of the system are modelled as
discrete and some as continuous and implemented it in Matlab and Simulink to study
both clonk and shuffle. Couderc et al [9] used a discrete model to study low frequency
(under 70 Hertz) vibrations and found that the model predicted the measured natu-
ral frequencies to within six percent. Because it is important to understand how the
vibrations are excited initially, many papers have been written on modelling and dy-
namics of gears (e.g., Donley et al [13]) and on gear transmission error excitation (e.g.,
Kartik and Houser [31]). Previous researchers have also examined the noise/vibration
paths that reach the passenger compartment (e.g., Wilson and Clapper [71]).

A vital portion of the modelling is determination of which vibration modes are
responsible for the noise. Theodossiades et al [61] performed finite element analysis
on a drivetrain test rig with a two-piece driveshaft to determine the dominant vibra-
tion modes. They conclude that clonk is dominated by the "ovaling" modes of the
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Figure 1-5: Schematic of drivetrain of rear-wheel-drive vehicle



Figure 1-6: Photograph of a driveshaft (shown next to a meter stick for scaling)

driveshaft. They identified ovaling modes between 1650 and 1750 Hertz for the rear
driveshaft and above 3000 Hertz for the front driveshaft. Sun et al [60] identified
the principle modes in the gear mesh frequency range, between 100 and 1000 Hertz.
They identified the inertia of the differential's ring gear and the torsional stiffness at
the pinion gear as the most sensitive parameters for noise reduction. Based on these
findings they gave general rules for low-noise drivetrain design.

Approaches to Noise and Vibration Reduction

A variety of approaches have been proposed for reduction of high frequency noise.
One common approach is to reduce the transmission error through better design
or improved manufacturing tolerances. Chung et al [6] reduced noise levels by 10
dB by using finite element analysis of gear contact to design the gears to reduce
transmission error. Another approach involves "tuning" components to reduce the
noise. The components are selected such that the natural frequencies of the drive train
which are lightly damped are not close to the mesh frequencies of the gears. Richards
and Pines [53] used a periodic driveshaft to create stop bands such that the natural
frequencies of the driveshaft would not be close to the mesh frequencies of the gears.
Farshidianfar et al [15] used genetic algorithms to optimize the flywheel inertia, drive-
line backlash, and clutch spring stiffness to reduce the clonk noise. Miyauchi et al [39]
modified the gear shapes and added a ring to the driven gear which is tuned to reduce



vibration. Noise may also be reduced by adding damping to the drive shaft by filling
with foam or wrapping it with wire (see [63]). Active approaches have been studied
but are not common, probably because they are too expensive to implement.

Automotive Gear Whine

The driveshaft is a lightly damped member of vehicle drivetrains and an efficient
radiator of sound. Many vibration modes of the shaft lie within the gear mesh fre-
quency ranges of the transmission and rear differential, 1-1.3 kHz and 300-800 Hz,
respectively. Vibration modes of shell-type structures typically occur in clusters. For
a complicated system such as this, the precise prediction of the natural frequencies is
difficult because the boundary conditions are not exactly known and may vary. The
mode shapes can be predicted with sufficient accuracy because they are not sensitive
to small changes. Sound levels are observed to be highest when the shaft's shell modes
are close in frequency to one or more of the bending modes [7]. The ideal solution
must be robust to variations in frequency in addition to being cost-effective. Most of
the previous work on this problem has dealt with improvements in modeling of the
drivetrain, and the resulting approaches to reduce gear whine are design modifica-
tions which have resulted in only marginal improvement. However, Vafaei et al [63]
filled the driveshaft with foam and wrapped it with wire but did not have a model
to explain the results. A commercially available treatment is to apply cardboard lin-
ers with rubber spacers to the inside of driveshafts to damp the vibrations, but the
results are limited [7]. Active damping methods have also been studied but are not
common because they are too expensive. Low-wave-speed foams are an attractive
solution because they are inexpensive, provide damping over a large frequency range,
and are insensitive to changes in the natural frequencies of the driveshaft. Figure 1-7
shows the frequency response of a driveshaft that has been removed from the vehicle
using an impact hammer and accelerometer for various damping treatments. The
frequency response shows that a low-wave-speed foam adds significant damping even
to the first bending mode. A moderately stiff foam does not perform as well. Analysis
of foam-filled cylinder is presented in Chapter 6.

1.2 Overview

This thesis develops and demonstrates modelling and analysis tools to add damping
to structures using low-wave-speed media.

Varanasi and Nayfeh [66] developed formulas for prediction of damping in Euler-
Bernoulli beams coupled to lossy, lightweight granular materials. The Timoshenko
beam model is more accurate than the Euler-Bernoulli model for thin-walled beams
which one is likely to use if they are being filled with a granular material. Chapter 2
develops a method to predict the loss factor of Timoshenko beams coupled to a
granular material and presents experimental verification. A similar procedure for
Timoshenko beams coupled to a low-wave-speed foam is contained in the Chapter 3.
Chapter 4 demonstrates a design approach for using foam to damp the bending modes
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Figure 1-7: Frequency response of driveshaft removed from vehicle with various
damping treatments: empty (dots), cardboard liner (dash-dot), moderately stiff foam
(dashed), low-wave-speed foam (solid)

of solid and thin-walled beams and compares the results to those attainable with
constrained-layer damping.

Thin-walled cylindrical shells are common structural element. Experimental re-
sults show that significant damping can be obtained in the beam bending and wall
flexing modes when a cylindrical shell is filled with a lossy, low-wave-speed material.
Chapter 5 presents an analytical method to predict the loss factor of cylindrical shells
filled with a lightweight granular material. Chapter 6 presents an analytical method
to predict the loss factor of cylindrical shells filled with lossy foams.

For large or complicated structures, the finite element method is commonly used to
predict the vibratory response. The addition of a low-wave-speed material to the finite
element model presents challenges such as frequency dependent properties, significant
increase in number of degrees of freedom, and increase in number of vibratory modes.
Chapter 7 develops and demonstrates an eigenvalue solver for structures coupled to
low-wave-speed media (LWSM) that handles the problems created by the addition of
the LWSM.

1.3 Summary of thesis contributions

* Vibration damping of Timoshenko beams filled with lightweight low-wave-speed
media: We study an infinite length Timoshenko beam coupled to a low-wave-
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speed granular material to obtain the loss factor as a function of frequency
independent of boundary conditions. Comparison to the results using Euler-
Bernoulli beam theory shows that the choice of beam model does not have a
significant effect because the dynamics and model of the granular material is
the dominant element in determining the loss factor.

* Comparison of low-wave-speed damping to constrained-layer damping: We com-
pare the loss factors attainable using constrained-layer damping and low-wave-
speed damping for a solid beam and for a thin-walled beam for a given amount
of added mass and in the process present simple design formulas for the foam
damiping treatment. We show that LWSM can achieve higher peak loss factors
and that LWSM provides better broadband performance for thin-walled tubes.

* Vibration damping of cylindrical shells filled with lightweight granular materi-
als: \Ve study vibrations in infinite length cylindrical shell filled with lightweight
granular materials. We obtain the relation between loss factor and frequency
independent of boundary conditions for beam bending and wall flexing mode
shapes. Results are verified experimentally.

* Vibration damping of cylindrical shells filled with lightweight foams: We study
vibrations in infinite length cylindrical shells filled with lightweight foams. We
obtain the relation between loss factor and frequency independent of boundary
conditions for axial, torsional, beam bending, and wall flexing mode shapes.
Results are verified experimentally for the beanm bending and wall flexing modes.

* Approximate eigenvalue solution of finite element formulation of structures cou-
pled to lossy, low-wave-speed media: The eigenvalue problem for finite element
models of structures coupled to low-wave-speed media is complicated by the
frequency dependent nature of the LWSM, complex stiffness of the LWSM, and
significant increase in the number of degrees of freedom of the model. An eigen-
value solution is developed that tailored to handle these complications.

* Characterization of material properties of low-wave-speed media: We use a, non-
resonant test to measure the shear and extensional moduli of foam samples for
various initial strains. A resonant column test is used to measure the speed of
sound and loss factor for a granular material.



Chapter 2

Vibration damping of Timoshenko
beams coupled to lightweight,
low-wave-speed granular materials

2.1 Introduction

The introduction of a granular material or foam into a structure or machine is a
relatively simple and low-cost approach to attenuation of vibration. Oberst [43],
Morris [40], and James [27] observed damping in structures consisting of metal and a
soft, lossy laminate such as foam or rubber due to resonances through the thickness
of the lossy material. Ungar and Kerwin [62] developed a model to estimate the
loss factor of plates and beams with a viscoelastic layer due to resonances through
the thickness and compared the model with experimental measurements. They mod-
elled the viscoelastic material with a one-dimensional wave equation (through the
thickness) and a complex Young's modulus. House [24] used a similar model to study
damping in tubular beams filled with viscoelastic spheres with the idea that the small
contact areas between the spheres results in an effectively softer viscoelastic material
and hence the onset of damping occurs at a lower frequency than with a solid layer.

Traditionally, dense granular fills (such as sand, lead shot, or steel balls) have been
selected for such applications in order to obtain strong coupling between the structure
and the granular material. In general, damping with granular materials can be divided
into two categories based on the dominant; energy dissipation mechanism: continuum
viscoelastic behavior such as demonstrated by House and co-workers above [24, 45] in
which energy is dissipated through the hysteresis associated with elastic deformation
of the particles and particle impact behavior in which energy is dissipated through
impacts and sliding friction between particles. Particle impact dampers consist of
a container partially filled with a relatively dense granular material such that the
particles can more easily slide over one another or become "airborne" and impact the
casing or another particle (e.g., [46, 35, 72, 47, 48, 18]). The particle impact damping
mechanism is highly nonlinear. Accurate models do not exist for systems with particle
impact dampers owing to the lack of a continuum type model for the granular medium.



The static, quasi-static, and dynamic behavior of granular materials include a variety
of nonlinear phenomena that are the research focus of many physicists and applied
mathematicians (e.g., [26]). The impact and frictional losses are negligible in the
continuum mechanism because the particles are nearly locked together and only an
insignificant fraction of particles is "airborne" at any instant.

Cremer and Heckl [10] noted that damping in sand-filled structures is caused by
resonances through the thickness of the sand layer. Richards and Lenzi [54] performed
a series of experiments on sand-filled tubes to determine the influence of parameters
such as cavity shape, particle size, amount of granular material, and excitation am-
plitude and direction and concluded that damping attains a maximum at frequencies
where resonances can be set up in the granular material and that damping is approx-
imately proportional to the added mass. Bourinet and Le HIouedec [4] expanded on
the ideas of Cremer and HIeckl. They modelled the sand-filled beams using Timo-
shenko beam theory with an added "apparent mass" to capture the behavior of the
compression waves in the granular medium. Sun et al [59] modelled sand as a fluid
while using statistical energy analysis to predict the damping in a sand-filled struc-
ture. Pamley et al [45] compared the use of viscoelastic spheres to constrained-layer
and free-layer damping and concluded that the through-the-thickness damping is the
most effective method for the same weight penalty. Rongong and Tomlinson [55]
examined discrepancies between model and experiment caused by the idealization of
the particles as a continuum and at relatively high levels of excitation. Experiments
by Fricke [19] and Nayfeh et.al. [41] indicate that low-density particles can provide
high damping of structural vibration if the speed of sound in the fill is sufficiently
low. Varanasi and Nayfeh [65] showed that the dynamics of beams filled with such a
low-density granular fill can be predicted by treating the fill as a compressible fluid
with a complex speed of sound. Park [50, 49] studied properties of granular materials
for application to vibration and noise reduction. Varanasi and Nayfeh [66] attained
similar damping behavior using lossy, lightweight foams with a low speed of sound
and modelled the foam using the two-dimensional equations of elasticity with complex
moduli.

In this chapter, we consider the problem of damping vibration in beams coupled
to lossy, lightweight granular materials. We present the results of experiments on
powder-filled rectangular tubes and a powder-filled cylindrical tube. To model the
damping phenomenon and obtain estimates for the damping, we consider steady
harmonic wave propagation in the axial direction of an infinitely long beam and treat
the powder as a compressible fluid with a complex speed of sound. We use both
Euler-Bernoulli and Timoshenko beam models for comparison. Based on the spatial
decay characterized by a complex wavenumber, we obtain an estimate of the loss
factor associated with motion as a function of frequency.

2.2 Experiments

We conduct experiments on an aluminum rectangular tube, a steel square tube, and an
aluminum circular tube. Frequency response functions of the empty and filled tubes



are measured using an impact hammer (PCB 086B03), accelerometer (PCB 356B21),
and dynamic signal analyzer (Siglab 20-42). The excitation and acceleration mea-
surements are at opposite ends of the beams. The beams are supported using elastic
strings located 22% from each end to approximate free-free boundary conditions. The
granular material for all experiments is 3M Glass K1 Microbubbles [1]. The ends of
the beam were sealed with latex membranes when filled with powder.

2.2.1 Filled Box Beams

An aluminum rectangular tube of 1.83 m length, 25.4 mm width, 38.1 mm height,
and 3.18 mm wall thickness was filled with a 67.6 kg/m 3 fill of glass microbubbles
resulting in a 4.1% added mass to the beam. The noncollocated frequency response
functions of the empty and filled beams are shown in Figure 2-1.

Frequency [Hertz]

Figure 2-1: Measured noncollocated force-to-acceleration frequency response of rect-
angular aluminum tube (measurement and force at opposite ends of the beam): empty
(dashed) and filled (solid)

A square steel box beam of length 2.04mm, width 19.1mm, and thickness 1.59mm
was filled with 65.9 kg/m3 of glass microbubbles resulting in an added mass of 1.9%
to the bealm. The noncollocated frequency response functions of the empty and filled
beams are shown in Figure 2-2.
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Figure 2-2: Measured noncollocated force-to-acceleration frequency response of square
steel tube (measurement and force at opposite ends of the beam): empty (dashed)
and filled (solid)

2.2.2 Filled Circular Tube

A circular aluminum tube of length 1.14m, outside diameter 42.2mm, and thick-
ness 3.81mm was filled with 74.1 kg/m 3 of microbubbles resulting in an added mass
of 6.0%. The empty and filled frequency response functions of the noncollocated
measurements are shown in Figure 2-3.

2.2.3 Determination of Material Properties

Yanagida et al measured the stiffness and damping ratio of binary powder mixtures
by measuring the resonance of a mass-loaded, powder-filled cup subject to harmonic
excitation. Palumbo and Park [44] measured the speed of sound and loss factor of a
uniform, granular fill using the same method.

Instead of using a mass-loaded sample, we measure the powder properties using a
powder-filled tube with a fixed plunger at one end and a moveable piston at the other
end (see Figures 2-4 and 2-5). The fixed plunger is connected to a high-sensitivity
force sensor (PCB Piezotronics 208C01, 108.2 mV/lbf). The moveable piston is ac-
tuated using an electrodynamic shaker (Vibration Test Systems VG 100M-4). The
acceleration of the piston is measured using PCB 356B21. Latex membranes are used
to seal around the plunger and piston. The hardware setup for this method can be
made more easily than the rmass-loaded approach. By replacing the moving mass with
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Figure 2-3: Measured noncollocated force-to-acceleration frequency response of cir-
cular aluminum tube (measurement and force at opposite ends of the beam): empty
(dashed) and filled (solid)

a fixed wall, we reduce the load on the shaker and hence can test at higher frequencies
for a given shaker.

A sine sweep is performed such that the sample is subject to compression while
the force amplitude is kept approximately constant, and the acceleration-to-force
transfer function is measured. The powder exhibits resonances at approximately
integer intervals (see Figure 2-7). Based on this observation and the inability of the
powder to support large shear stresses, we model the granular media as a compressible
fluid. The energy dissipation is included through the imaginary part of the speed of
sound. The speed of sound in the granular material is then given by

c = co(1 + jir) (2.1)

where r is the loss factor and

co = -fn (2.2)n

where e is the depth of the sample, n is the number of vibration antinodes, and fn
is the natural frequency in Hertz of the acceleration-to-force transfer function. The
loss factor is given by r = 2( where ( is the damping ratio of the vibration mode.

We conduct a series of experiments using tubes of lengths 39.5 mm and 51.8 mm
and diameter 34.5 mm with densities ranging from 69 kg/m 3 to 80 kg/rn3 at a force
amplitude of 0.018 N. We use the smallest force amplitude possible to minimize
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Membranes

Figure 2-4: Schematic of powder property testing

nonlinear effects. Using the first three resonances of the 51.8 mm samples and the
first two resonances of the 39.5 mm samples, we obtain the speed of sound and loss
factors shown in Figure 2-6. This figure shows a softening trend with increasing
frequency. The performance of the shaker limited the tests to below 2 kHz. Because
we are interested in the properties of the granular material up to 5 kHz, we take the
average speed of sound to be c = 69(1 + 0.13j) meters per second.

Figure 2-5: Photograph of apparatus for measuring the properties of the powder

2.3 Modelling

We develop an approach to obtaining estimates of the loss factor as a function of
frequency based on a beam-fluid system of infinite length under steady harmonic vi-
bration at frequency w. We assume wave solutions (Aejkzx) for the fluid pressure and
beam displacements. Because the coupled equations are difficult to solve in closed
form analytically and the density of the fluid is small compared to the mass of the
beam, we use an iterative approach to solve. The results show that the scheme typi-
cally converges after just a few iterations. Using the estimated complex wavenumber
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Figure 2-6: Measured speed of sound and loss factors (x), average speed of sound
and loss factor (dashed)
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Figure 2-7: Typical measured acceleration-to-force frequency response functions for
the 51.8 mm sample (dashed) and 39.5 mm sample (solid)
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for each frequency, we compare the result to an equivalent beam with a complex
Young's modulus to find the loss factor of the coupled beam-fluid system. Below,
we consider three cases: a filled rectangular tube, a filled circular tube, and a solid
bar with a free layer on top. We use both the Euler-Bernoulli and Timoshenko beam
models for comparison because the Timoshenko model is known to be more accurate
for thin-walled tubes and for higher mode shapes.

This approach offers many advantages over trying to solve for the loss factor of
a finite length beam. This method is mathematically more simple because one does
not need to impose boundary conditions at the ends of the beam. The result of this
approach is a curve showing the loss factor as a function of frequency based on the
material properties of the beam, granular medium, and cross-sectional geometry of
the beam. It is independent of length and boundary conditions. This method could
prove useful to the engineer designing a system or retrofitting a system to reduce
vibration.

2.3.1 Euler-Bernoulli Beams

We model the structure as a Euler-Bernoulli beam. The nondimensional governing
equation for the beam under harmonic motion where lengths and displacements have
been nondimensionalized by the height of the powder layer h is

d~w
d4 - Q2  = P(x, w) (2.3)

where

2 pA h4 i (2.4)
EI

w is the frequency, w is the deflection, E is the Young's modulus, I is the moment
of inertia of the beam, A is the cross sectional area of the beam, p is the volumetric
density, and P(x, w) is the loading from the pressure applied by the powder whose
exact form depends on the cross sectional geometry of the beam.

The granular medium is modelled as a compressible fluid with a complex speed
of sound c = co(1 + jrl) where ir is the loss factor associated with the speed of sound.
The speed of sound in terms of the material loss factor rl,, is c = co V1 + jiT,, such
that the material loss factor is approximately twice the speed of sound loss factor. It
is governed by the wave equation

C 2p + Q2p = 0 (2.5)

where c is the speed of sound in the fluid and p is the pressure in the fluid that has
been nondimnensionalized by E. The boundary conditions of the powder depend on
the geometry of the beam.



Figure 2-8: Sketch of a rectangular box beam

Filled rectangular beam

For a rectangular box beam of internal width b and height h where the powder has no
free surface, we assume that the pressure in the granular medium is independent of
the width-wise coordinate z; therefore, the force per unit length applied to the beam
by the powder is

b
P(x, Q) = - (p(x, y = 1, £) - p(x, y = 0, Q)) (2.6)

The associated boundary conditions on the powder for steady harmonic motion are

dp(x, y = 0, Q) p /fh2 ( 22v(x) (2.7)
Oy pA

Op(x, y = 1, Q) pfh ,12
- l•,w(x) (2.8)dy pA

where pf is the density of the powder. We assume solutions of the form

w(x) = We jk,',  (2.9)

p(x, y) = p(y)ejkxx (2.10)

The governing equation for the beam becomes

(k - 2 )W = -(P(y = 1) - p(y = 0)) (2.11)



The governing equation for the powder becomes

d2P ý22 El1

dy2 C2 pAh2 - k) 7 = 0

with boundary conditions

dj(y = 0) ph2W
dy pA

dpa(y = 1) p_ ph" 'QI/
dy pA

Solving the equation for the pressure, we obtain

p(y) = cl cos ky + c2 sin k

where
K2 =Q22 El

- c2 pAh 2  Kx

The boundary condition at y = 0 gives

c2 = p 2

pAk,

and the boundary condition at; y = h gives

fh W (cos k. -pAk, sin ky

Therefore, the pressure in the fluid is

1)

p(x, y, w) =
pAky

cos k - 1
sin" cos(ky) + sin (kyy))

At the interface between the fluid and the beam (y = 0, h), we have

p(y = fhW (cos - -- (y = 1
S pAky sin k) = y = 1) (2.20)

The equations for the filled beam may be written using only a simple modification to
the inertia term of the equations for the empty beam

(k4 - 22) W = 22 WB

pfbhB= 2k
k7,pA

1 - cos k
sin k )

(2.21)

(2.22)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

'yY

(2.18)

(2.19)

where



This quantity B is a mass ratio with a frequency dependent scale factor determined
by the pressure at the interfaces between the fluid and the beam.

Next, we solve for the complex wavenumber as a function of frequency using an
iterative approach. We use the dispersion relation for the empty beam as the initial
guess for the wavenumber by setting B = 0. That is, we guess

k, = (2.23)

This initial guess is real valued. Then, we calculate the corresponding value of B for
each frequency. Then, we solve for the wavenumber using

1

kX = (ý2(1 + B)) (2.24)

The next iteration begins by recalculating the value of B from (2.22) at each frequency.
We continue the iterations until they converge to within a desired error bound. For
a one percent error, typically one or two iterations is sufficient.

To obtain the loss factor, we assume that there exists an equivalent empty beam
with a modulus of E = Eo(1 + jr). We solve for the modulus using the dispersion
relation and then substitute the relation for the complex wavenumber (as a function
of frequency) to obtain the complex modulus as a function of frequency. Then, the
loss factor is given by

Im E
SReE (2.25)Re E

Making use of the dispersion relation for the empty beam (2.23) and recognizing that
the modulus of the beam only appears in Q, the loss factor is given by

Im _ Im (2.26)
7 = 9W = 2(2.26)Re - Re

Figure 2-9 compares the dimensionless dispersion relations for an empty and filled
box beam. The nondimensinonal frequency

47r El 4Trwh
* = -- i-- = (2.27)

co pAh 2  C0

has been scaled such that resonances through the thickness of the powder occur at
integer values. Comparing the real part of the dispersion curve of the filled beam with
the dispersion curve of the empty beam, we find that the difference is small which
confirms our assumption that the behavior (mode shapes and natural frequencies) of
the beam is not significantly altered by the addition of the granular material. We
notice that these two curves intersect when the nondimensional frequency is near 1,
2, 3, ... n, where n is an integer. These intersections correspond to resonances in the
powder. The resonances occurring at odd n correspond to large increases in damping
(see Figure 2-10)because the pressure distribution in the powder acts to significantly
oppose the motion of the beam. The resonances occurring at even n do not give



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Nondimensional Frequency Q*

Figure 2-9: Typical dispersion curve for a rectangular tube with a loss factor of
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(dashdot).

1

u,cc

0

u)
LL

-j

1
0 0.5 1 1.5 2 2.5 3

Nondimensional Frequency K2*
3.5 4

Figure 2-10: Typical curves of loss factor as a function of frequency
factors 0.05 (solid), 0.1 (dashed), 0.5 (dashdot)
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Figure 2-11: Sketch of box beam partially filled with powder

significant damping because the pressure at the top and bottom of the powder layer
tend to cancel.

From the perspective of the beam, intersections of the real part; of the dispersion
curve for the filled beam and the dispersion curve of the empty beam correspond to
changes in the perceived effect of the powder between added mass or added stiffness.
For example, below a nondimensional frequency of 1 the powder acts primarily as an
added mass, and the natural frequencies of the finite length beam are lower than the
corresponding frequencies of the empty beam. Between a nondimensional frequency
of 1 and 2, the powder acts as a spring to effectively stiffen the beam. The resulting
natural frequencies of a finite length beam are higher than those of the empty beam.
This transition from apparent added mass to added stiffness is similar to what occurs
in a discrete tuned-mass damper system above and below the resonant frequency of
the absorber subsystem.

Figure 2-10 plots the loss factor normalized by the mass ratio as a function of
nondimensional frequency for various loss factors. The loss factor has local maxima
near odd resonances of the powder and local minima near even resonances of the
powder. The loss factor is normalized by the mass ratio because the loss factor is
nearly linear with the added mass.

Free layer on beam

We now consider vibration a rectangular beam that is only partially filled with powder
resulting in a free surface for powder (see Figure 2-11). The beam is again modelled by
the Euler-Bernoulli model (2.3) and the granular medium by a compressible fluid (2.5).

The force per unit length applied to the beam by the powder is

bP(x, Q)= p(x, y = 0, Q) (2.28)h



Figure 2-12: Sketch of circular tube geometry

The associated boundary conditions on the powder for steady harmonic motion are
given by (2.7) and

p(x, y = 1, ) = 0 (2.29)

To obtain the loss factor for the partially filled beam, we follow the same procedure
as for the filled beam. The correction term B given by (2.22) becomes

pfbh
B = p tan ky (2.30)pAky

We again use the iterative procedure to find the complex wavenumber for each fre-
quency of interest and then calculate the loss factor by finding an equivalent beam
as described for the rectangular tube.

Filled circular beam

The circular beam (see Figure 2-12) filled with granular materials is modelled again
using the Euler-Bernoulli beam (2.3) and a compressible fluid (2.5) where now we
nondimensionalize lengths and displacements by the internal radius of the tube R
and the pressure by E such that the nondimensional frequency is given by

2 =pAR4 2  (2.31)
El

The force per unit length applied to the beam by the powder for a circular beam



of inner radius R is

P(x, ) = jsin Op(x, r = 1, 0, Q) dO (2.32)

where 0 is the angle relative to the horizontal as shown in Figure 2-12. The associated
boundary conditions for steady harmonic motion on the powder are

p(x, r = 0, 0) < oo (2.33)

ap(x, r = 1,, 012) p [)fR 2 w sin 0  (2.34)
Or pA

We assume the same solution for the beam as before

w(x) = Wejkzz  (2.35)

For the fluid, we assume a solution of the form

p(x, r, 0) = p(r) sin 0 ejk: x (2.36)

Based on the form of the pressure, the force per unit length applied to the beam by
the powder can be evaluated from

!(x, 7) = sin 2 0p(r = 1)ejka z d = -r_(r = 1)ejk' •  (2.37)

Making use of (2.36), the governing equation for the fluid (2.5) becomes a Bessel
equation

T2 2 + r + r2  k -1 p = (2.38)
dr2 dr C2 pAR 2

with boundary conditions
p(r = 0) < 0o (2.39)

dp5(r = 1) = P!R2 Q2W (2.40)
dr pA

The solution of (2.38) is

p(r) = c J1 (ker) + c2Y1 (krr) (2.41)

where
w2 EI

k? = - k2 (2.42)c2 pAh2  x (2.42)

J1 is the Bessel function of the first kind of order one, and Y1 is the Bessel function
of the second kind of order one. Imposing the boundary conditions, we obtain

c2 = 0 (2.43)



pfR 2 2 2W
C1 = pAJ (kr) (2.44)

where J' is the derivative of the Bessel function of the first kind of order 1.
The resulting pressure distribution is

pf R2 22W (2.45)(r) = A J (k,r)(2.45)pAJI (kr)
Now the term B in (2.21) becomes

B rpfR2
B = JA (kr) (2.46)pAgi (k,)

We solve (2.21) for the wavenumber using the same iterative procedure as for the
rectangular tube. Then, we solve for the loss factor using the same procedure as
before.

2.3.2 Timoshenko Beam

The Timoshenko beam model is an improvement over the Euler-Bernoulli model
through inclusion of shear terms. The differences between the two models are most ev-
ident for thin-walled beams and for relatively high mode numbers. Below we develop
the procedure to predict the loss factor as a function of frequency for Timnoshenko
beams coupled to lightweight, lossy granular materials and compare these results to
the results obtained with the Euler-Bernoulli model.

The nondimensional governing equations for a uniform Timoshenko beam under
steady, harmonic motion subjected to a force per unit length are

-82 + 2g32720 = 0 (2.47)

ox2  - 0 Q22 2w = 62P(x, Q) (2.48)

where ¢ is the rotation of the cross section, lengths and displacements are nondimen-
sionalized by the height of the powder h, and

EI
/32 = (2.49)

kAGh 2

=2 (2.50)
Ah 2

-22 = pAh 4W2  (2.51)
EI

where k is the shear parameter determined by the geometry of the cross section and
G is the shear modulus of the beam.



Filled rectangular beam

The rectangular box beam is sketched in Figure 2-8. The terms relating to the
behavior of the powder do not change from the Euler-Bernoulli case because they are
only dependent on the lateral deflection of the beam. The force per unit length applied
to the beam by the powder is given by (2.6). The associated boundary conditions on
the powder for steady harmonic motion are given by (2.7, 2.8).

We assume solutions of the form

O(x) = Nej kZx (2.52)

w(x) = Weikjx (2.53)
p(x, y) = p(y)ejk,x (2.54)

The beam equation becomes

1 +[32k - [32 2 2  -jkx N 0(255)
jkx 02Q2] W 2 X

where
b

P(x, Q) = (p(y = 1) - p(y = 0)) (2.56)

The governing equation for the fluid becomes (2.12) with the associated boundary
conditions given by (2.13) and (2.14). The solution for the pressure in the fluid is
given by (2.19). At the interfaces between the fluid and the beam (y = 0 and y = 1),
the pressure is given by (2.20). The equations for the filled beam may be written
using only a modification to the inertia term of the equations for the empty beam in
the form

(1 + 2k -jk] Q2 [22y2 2= () (257)
jkx kx 0 2(1 + B) W 0

where B is given by (2.22).
Next, we solve for the complex wavenumber as a function of frequency using an

iterative approach. We use the dispersion relation for the empty Timoshenko beam
as the initial guess for the wavenumber by setting the determinant of the matrix in
(2.57) with B = 0 to zero. This initial guess will be real. Then, we calculate the
corresponding value of B for each frequency. We substitute for B into (2.57) and
solve for the wavenumber k, by setting the determinant of the coefficient matrix to
zero. The next iteration begins by recalculating the value of B at each frequency.
We continue the iterations until they appear to converge, which has been after one
or two iterations for most cases.

When solving for the wavenumber during each iteration, one obtains a quadratic
equation in k2 so there are four mathematically acceptable solutions for the wavenum-
ber. The four solutions are really just two pairs of solutions for kI, and within each
pair the difference is a sign which indicates the direction of the wave. For convenience
we choose the positive root. The difference between the two pairs of wavenumbers



is that only the spectrum derived from the positive root in the quadratic equation is
valid [58].

To obtain the loss factor, we use the same method as with the Euler-Bernoulli
beam. We assume that there exists an equivalent empty Timoshenko beam with a
complex modulus E = Eo(1 + jo). We solve for the modulus using the dispersion
relation and then substitute the relation for the complex wavenumber (as a function
of frequency) to obtain the complex modulus as a function of frequency. Then, the
loss factor is given by (2.25).

The beam equations for an infinite beam under steady, harmonic motion may be
written in nondimensional form [25]

1 +2kix - Q2 [22 () = () (2.58)

Making use of
E

G = (2.59)
2(1 + v)

we recognize that the modulus only shows up in Q; therefore, if we solve for Q2, the
loss factor is given by

Im 1
m~~ R (2.60)Re

The solution of Q2 is given by solving the eigenvalue problem (2.58). The proper
value of the two solutions must be selected in keeping with the fact that there is only
one valid spectrum of the Timoshenko beam model [58].

Figure 2-13 compares the loss factor curves found using the Euler-Bernoulli and
Tirnoshenko beam theories for various values of the shear parameter k. From this
figure, we conclude that the Euler-Bernoulli model is sufficient for calculating the
loss factor (There are significant differences in the dispersion curves between the
two models.). The physical reasoning behind this conclusion is that the behavior of
granular material, specifically, the frequencies at which the powder resonances occur
do not change.

Free layer on beam

The partially filled box beam (see Figure 2-11) is again modelled by the Timoshenko
model (2.47, 2.48) and the granular medium by a compressible fluid (2.5). The force
per unit length applied to the beam by the powder is given by (2.28). The associated
boundary conditions on the powder for steady harmonic motion are given by (2.29)
and (2.7).

We assume the same form of solutions as for the rectangular tube (2.52, 2.53,
2.54). After solving for the pressure at the beam-fluid interface, we again obtain the
eigenvalue problem (2.57), but now the quantity B is given by (2.30).

We again use the iterative procedure to find the complex wavenumber for each
frequency of interest and then calculate the loss factor by finding an equivalent beam
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Figure 2-13: Comparison of the results using the Euler-Bernoulli and Timoshenko
beam theories using different values of the shear parameter k: solid (Euler-Bernoulli),
dashed (k = 0.01), dotted (k = 0.1), dashdot (k = 1). The beam is an aluminum
rectangular tube with width 1", height 1.5", wall thickness 0.125". The actual value
of the shear parameter for this beam is 0.53.
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dispersion relation for empty beam (dashed), Euler-Bernoulli dispersion relation for
empty beam (dashdot)



as outlined for the rectangular tube.

Filled circular beam

The circular beam (see Figure 2-12) filled with granular materials is modelled again
using the Timoshenko beam (2.47, 2.48) and a compressible fluid (2.5) where h is
replaced by the internal radius of the cylinder R.

The force per unit length applied to the beam by the powder is given by (2.37).
The associated boundary conditions for steady harmonic motion on the powder are
given by (2.33) and (2.34).

We assume solutions (2.53), (2.52), and (2.36). The assumed solution for the
pressure results in the beam loading P(x, w) being given by (2.37). The governing
equation for the fluid is then reduced to a Bessel equation (2.38). The resulting
solution for the pressure after imposing the boundary conditions is (2.45), and the
parameter B is given by (2.46). The resulting equation for the beam coupled to the
powder is (2.57).

We proceed to solve for the wavenumber using the iterative procedure described
above. After the wavenumber has been found, we can solve for the loss factor us-
ing (2.60).

2.4 Results

We compute the theoretical loss factor curves as a function of frequency using the
methods outlined earlier. Figures 2-15, 2-16, and 2-17 show these curves along with
the data for the beam experiments. Tables 2.1, 2.2, and 2.3 show the measured
natural frequencies and loss factors of the filled beams and the predicted loss factors.
For the predicted loss factors, the speed of sound in the powder is taken to be c =
69(1 + 0.13j) m/s based on the series of measurements discussed earlier.

The mismatch between predicted and measured loss factor curves suggests that
the real part of the speed of sound of the granular material is too large. Quanti-
tative comparison suggests that the real part of the speed of sound (co) should be
approximately 57 m/s. The errors obtained in measuring the properties of the gran-
ular material are likely due to a variety of factors including humidity and packing
variations.

As can be seen in Figures 2-1 and 2-3 and in Tables 2.1 and 2.3, one of the modes
of the undamped beam has "split" into two well-damped modes for the filled beam.
This occurs near the first resonance of the powder. The addition of the powder creates
an additional degree of freedom in the system. In this neighborhood, there is a mode
in which the powder moves approximately in phase with the beam and one where
the powder moves out of phase from the beam. As seen from the tabulated natural
frequencies, this frequency is also the point at which powder transitions from acting
as an added mass (filled beams have lower natural frequencies) to an added stiffness
(filled beams have higher natural frequencies). In the steel beam experiments, the
mode splitting is not visible because the new mode is well damped, but the added



Table 2.1: Natural frequencies and damping
Natural Frequency [Hz] Loss Factor

Mode Empty Filled Measured Predicted
1 71.8 70.5 1.7x10 -3  3.5 x 10- 5

2 197.5 193.6 2.9x10 - 3 2.8 x10 - 4

3 384.3 375.8 3.9x10 - 3 1.2 x 10- 3

4 628.8 610.2 9. 0x10- 3 5.1 x10 - 3

844.0 7.6x10 - 2  2.3x10 - 2

5 928.2 995.0 7.4x10 -2  7.3x10 - 2

6 1277.2 1290.4 0.011 5.3x 10- 2

7 1672.8 1674.8 0.0064 1.1x10 - 2

8 2109.3 2105.0 6.8x10 - 3 5.4 x10 - 3

9 2583.3 2577.3 1.4x10 - 2 5.5 x 10-

10 3090.2 3094.9 9.5 x 10- 3  1.3x 10- 2

11 3624.3 3635.0 6.0x 10- 3  1.1 x 10- 2

12 4183.9 4183.2 0.0061 5.0 x 10- 3

13 4762.6 4762.7 0.0077 4.6 x 10- 3

Table 2.2: Natural frequencies and damping of powder-filled square steel box beam
Natural Frequency [Hz] Loss Factor

Mode Empty Filled Measured Predicted
1 30.4 30.1 2.8 x10 - 4 7.4 x10 - 7

2 83.7 82.8 1.1 x10 - 3 5.6 x10- 6

3 164.0 162.1 3.3 xl 0-3  2.2 x10 - 5

4 270.3 267.8 3.2 x10 - 3 6.0 x10 -5

5 402.5 398.7 2.5 x10 - 3 1.3 x10 - 4

6 559.9 554.5 2.9 x 10- 3 2.8 x10 - 4

7 741.8 734.5 3.6 x 10-  5.5 X 10- 4

8 947.6 937.7 4.5 x 10- 3 1.0 x10- 3

9 1176.2 1162.7 6.4 x10 -3  2.0 x10- 3

10 1427.4 1408.5 1.1x10 - 2 4.2 x10 - 3

11 1699.4 1672.2 2.6x 1)- 2  1. 0x 10- 2

12 1991.3 2003.2 4.3x10 - 2  3.7x 10- 2

13 2302.0 2315.0 1.5x10 - 2  5.2x10 - 2

14 2631.1 2638.1 7.6 x10-3 2.0x10 - 2

15 2976.2 2979.1 5.7 x10 - 3 9.2 x10- 3

16 3336.8 3337.3 5.2 x 10- 3 5.2 x10 - 3

17 3714.9 3712.0 4.6 x10 - 3 3.5 x10- 3

18 4100.1 4092.8 4.5 x10 - 3 2.6 x10-3

19 4503.6 4514.5 4.5 x10 - 3 2.3 x10 - 3

20 4925.5 4922.4 3.7 x10 - 3 2.3 x10 - 3

of aluminum box beam filled with powder



Table 2.3: Natural frequencies and damping of aluminum circular tube filled with
powder

Natural Frequency [Hz] Loss Factor
Mode Empty Filled Measured Predicted

1 184.4 179.4 0.0054 0.00027
2 501.8 486.6 0.0076 0.0026
3 964.4 883.2 0.060 0.025

1045.1 0.12 0.094
4 1554.4 1567.2 0.0094 0.032
5 2253.8 2248.9 0.0086 0.0072
6 3042.3 3051.6 0.016 0.0094
7 3900.3 3903.8 0.0073 0.0082
8 4807.8 4819.9 0.0075 0.0039

mass to added stiffness transition still occurs.

2.5 Conclusions

Significant damping can be introduced to a structure by filling it with a lossy, lightweight,
low-wave-speed granular material. Strong coupling between the vibration of the struc-
ture and motion of the granular material occurs at and above frequencies which
support wave propagation through the thickness of the granular material results in
significant damping.

This damping mechanism has many advantages. It introduces very little creep
into the structure because the stresses in the granular material are small. Provided
that the proper granular material is chosen, this method can be used at extreme
temperatures. Many granular materials are inexpensive.

We have demonstrated an analytical, iterative approach to calculate the loss fac-
tor as a function of frequency of beams filled with granular materials. This approach
calculates the loss factor using the spatial decay of an infinite-length beam under
steady harmonic motion. As a result, the loss factor estimates are independent of
the beam's boundary conditions or length. We have shown that the added complica-
tions of using Timoshenko beam theory instead of Euler-Bernoulli beam theory are
unnecessary even at high frequencies because the powder behavior does not change
significantly from one to the other and the powder behavior the dominant factor in
determining the loss factor.

There exists numerous suitable granular materials besides glass microbubbles.
Some materials that do not provide good damping in solid form may perform well if
they are ground into a granular state.
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Chapter 3

Vibration damping of beams
coupled to lightweight,
low-wave-speed media

3.1 Introduction

We consider the vibration of uniform beams coupled to lightweight, lossy foams. To
model the damping phenomenon and obtain estimates for the damping, we consider
steady harmonic wave propagation in the axial direction of an infinitely long beam
and treat the foam as an elastic continuum with a complex modulus of elasticity. We
use both Euler-Bernoulli and Timoshenko beam models for comparison. Based on
the spatial decay characterized by a complex wavenumber, we obtain an estimate of
the loss factor associated with motion as a function of frequency.

3.2 Euler-Bernoulli beam with a layer of foam

The governing differential equation for the Euler-Bernoulli beam under steady har-
monic motion is

d4
-& bhT (•, =O, w) =O (3.1)

El - pAw 2 63 - ba (i, y = 0,w, w) 2 0W) = 0 (3.1)d&4  2 ax

where Tj(^, 9 = 0, W) and a(£, = 0, w) are the shear and normal stress in the foam
at the beam-foam interface. Assuming a wave solution for the beam W^ = hWe.iK: x,
the governing equation in dimensionless form becomes

K4W -02W -SY(x, y = 0, q) -TX,(x, y = 0, Q) = 0 (3.2)

where lengths, displacements, and the wavenumber Kh are nondimensionalized with
the height of the beam h. The dimensionless frequency is given by

02 pAh 4 2 (3.3)
El



Figure 3-1: Sketch of solid beam with low-wave-speed damping treatment

The normal stress loading term SY is

bh3
Sy = •E•U(x, y = 0, Q) (3.4)

The shear loading term T,, is given by

bh" i3 T
T, = bh3  (x, y =O, 0) (3.5)

2EI Ox

The governing equations for the foam in dimensionless form under steady harmnic

mot;ion assuming the same x dependence as the beam and exponential dependence in

the y direction (i, = hUej-x x +sy , i = hVJeKxx+Sy) are

Af +t2f f -ff U ) (3.6)
jK - -T K +s2 + V} 0}l8K[ k Aft+2Gf f - f +2G f-

where Gf is the shear modulus of the foam, Af the Lami parameter of the foam given

by

A fEf (3.7)
(1 + vf)(1 - 21/f)

where vf is the Poisson ratio of the foam, Ef is the Young's modulus of the foam,

h
f



and the dimensionless frequency is

(3.8)Q2 Pf 2 P2 Pf E I
f Af + 2Gf A= + 2Gf p Ah 2

The shear stress in the foam is

= C + avTXYr = Gf .+ (3.9)

The normal stress in the foam is

(3.10)

The first step is to obtain the dispersion relation for the beam without the foam.
This dispersion relation is given by

KX = Q2 (3.11)

Then for each frequency of interest Q, we solve for the displacements
due to the deformation of the beam. The homogeneous equation for the
solved by solving at each value of Q the polynomial eigenvalue problem

in the foam
foam can be

(A 2s2 + Als + Ao)

A2 --

(U) = (0
G

Af+2Gf

0

sa - K2
Ao = f0

The foam displacements are given by

(U(X:Y)) =\V(X, y))
4

i=1
(3.16)( iv ejK~x~siy\vi)

where ci are constants to be determined through imposition of the boundary con-
ditions, si are the eigenvalues, and (Ui V)T are the eigenvectors. The boundary
conditions on the foam are that the shear and normal stress must vanish at the free
surface y = h//h and that there is no slip at the beam-foam interface y = 0. The

where

(3.12)

A, = jKx
A1 + 2Gf

0]
)fAf+2Gf/2

(3.13)

(3.14)

(3.15)

Bu =vAf =91L + (Af + 2G07)TX ayd~



boundary conditions are obtained by solving

c1. W

B c2 Q (3.17)C3 0
C4 0

where B is a square matrix whose i-th column is given by

AfjKxUie"s + (A, + 2G )siVei (3.18)

G1 (siUie'sih +jKXVe)

Instead of solving for a particular value of W, we normalize the constants c. by writing
cj W = ci to obtain the equation

B C2,W = i (3.19)
B C3,W 0

Then, we return to the relation for the coupled beam foam system. Substituting
the results for the foam, we obtain the dispersion relation for the full system

4 = q2i= EI

+ Gf, sici,wUi + jKgci,WV (3.20)

To solve this equation for the wavenumber K, we solve iteratively at each frequency
of interest. First, we consider the beam decoupled from foam to obtain the original
dispersion relation. Then, we use that value of the wavenumber on the right hand
side and to solve for the deformation of the foam. Then we solve again for K1 and
repeat the iterations until the error between successive estimates of the wavenumber
is small enough.

To obtain the loss factor, we assume that there exists an equivalent empty beam
with a modulus of E = E0 (1 + jq). We solve for the modulus using the dispersion
relation and then substitute the relation for the complex wavenumber (as a function
of frequency) to obtain the complex modulus as a function of frequency. Then, the
loss factor is given by

Im ES= E (3.21)
Re E

Making use of the dispersion relation for the empty beam (3.11) and recognizing that



the modulus of the beam only appears in Q, the loss factor is given by

Im Im
Im = • h (3.22)Re Re

3.2.1 Results

Figure 3-2 shows the real part of the dispersion curve for a beam with a layer of foam
with rlf = 0.3 and 5% added mass. The dispersion curve for the undamped beam
is indistinguishable from the real part of the dispersion curve for the damped beam
becua~se the LWSM is a small perturbation to the system but does not significantly
alter it's properties. Figure 3-3 shows the imaginary part of the dispersion relation.
The local minima correspond to resonances in the LWSM and local maxima in the
loss factor of the beam-foam system. The local maxima correspond to zeros of the
foam and local minima of the beam-foam system. Figure 3-4 shows the loss factor as
a function of nondimensional frequency.

Figure 3-5 shows the results of an experiment by Varanasi and Nayfeh [66].
Varanasi performed two methods of analysis, a complicated modal expansion and
complex wavenumber approach similar to that given above. Both methods agree well
with the experimental results.

3.3 Euler-Bernoulli beam filled with foam

The procedure to obtain the loss factor for an Euler-Bernoulli beam filled with foam
is identical to that of the beam with a layer of foam except some of the equations
differ because of the different geometry.

The governing equation becomes

EI - pAw2d - b4(i, = -h/2, w) + bar(I,y) = h/2, w)
bh 47 h2 w)

+ (\ , -h/2, w) + h/2, w)) 0 (3.23)2 dO 0ý
where h is the height of the foam. Assuming a travelling wave solution for 'b, the
dimensionless equation (3.2) becomes

K4W - Q02W - E3l- (r,(x, -1/2, Q) - oa,(x, 1/2, Q))

bh'3  8O xy -0 ( 2+ E1 ) y(T -1/2, ) + (x, 1/2, = 0 (3.24)2EI 8z OX
The governing equations for the foam (3.6) remain unchanged. The boundary con-

ditions for the foam are no slip at the two beam-foarn interfaces y = +1/2. Therefore
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Figure 3-2: Real part of the dispersion curve for an Euler-Bernoulli beam with a layer
of foam with loss factor qf = 0.3 and 5% added mass. The dispersion curve of the
undamped beam is indistinguishable from the real part of the dispersion curve of the
damped beam.
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Figure 3-3: Imaginary part of the dispersion relation for an Euler-Bernoulli beam
with a layer of foam with loss factor rf = 0.3 and 5% added mass

the column in the matrix B given in (3.18) becomes

Uie-s" /2
¼Vie-s"i,2J

(3.25)

and the corresponding right hand side in (3.19) becomes

2
1

2
1

(3.26)
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Figure 3-4: Typical dimensionless plot of loss factor as a function of frequency for an
Euler-Bernoulli beam with a layer of foam with loss factors of 77f =0.3 (dash-dot),
0.5 (dashed), 0.8 (solid)
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12.7 mm high x 1.448 m long) with a layer of EAR C-3201 foaim (12.7 mm thick, 3.9%
added mass): theory (solid), experiment (x). Experimental results from Varanasi and
Nayfeh [66].
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Finally, the dispersion relation for the coupled systerm given in (3.20) becomes

K = 2 + AjKcwUe-/ 2 + (A• + 2Gf)sici,wVie- /2
i=1

- AjKxci,w + (A1 + 2Gf)si.c2,w est/2

- 3G ( s4 c ,wUei/2 + jKxCi,WV e-s/2

+ sici,wUiesi/2 + jKxci,wVie/2)) (3.27)

Again, this equation must be solved iteratively as described above. The loss factor is
then calculated using (3.22).

3.3.1 Results

Figures 3-7 and 3-8 show the dispersion relation for a beam filled with foam. As
with the beam with a layer of foam, the dispersion curve for the undamped beam is
practically indistinguishable from the real part of the dispersion curve for the damped
beam. Again, the minima and maxima in the imaginary part of the dispersion curve
correspond to the maxima and minima in the system loss factor, which is shown in
Figure 3-9.

3.4 Timoshenko beam with a layer of foam

The nondimensional governing equations for a uniform Timoshenko beam under
steady, harmonic motion subjected to a force and moment per unit length are

X-2  + - 2•2y2 = M(x, Q) (3.28)

-Ox- + - 2n2= 02P(x, 2) (3.29)

where ¢ is the rotation of the cross section, lengths and displacements are nondimen-
sionalized by the height of the beam h, and

EI
_2 = (3.30)
kAGh 2

I
Ah 2

2 =pAh4 2  (3.32)
EI
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Figure 3-7: Real part of the dispersion curve for an Euler-Bernoulli beam filled with
layer of foam with loss factor rf = 0.3 and 5% added mass. The dispersion curve of
the undamped beam is indistinguishable from the real part of the dispersion curve of
the damped beam.
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Figure 3-8: Imaginary part of dispersion relation for Euler-Bernoulli beam filled with
foam whose loss factor is r7f = 0.3 and 5% added mass

where k is the shear parameter determined by the geometry of the cross section and
G is the shear modulus of the beam. The forcing due to the stress at the beam-foam
interface is given by

M(x, ~) bh
kAG kAG (x y = 0, ) (3.33)

hP(x, R) bh
hP(, (x, y = 0, Q) (3.34)kAG kAG

The equations for the foam remain unchanged from above. The deformation of the
foam is obtained using the eigenvalue problem in (3.12). The boundary conditions
on the foam are imposed using

B c2 = (3.35)
C3 0

C4 0
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where each column of B is given by (3.18). We use the principle of superposition to
write ci = c~,NN + ci,wW to obtain to sets of equations for the Ci,N and ci,w

C1,N

B C2,N 0 (3.36)
\c4,N /

ci,w\ (0o

C3,W 0
\C4,W / 0

Applying the results of the foam deformation the forcing terms (3.33) and (3.34) in
the Timoshenko beam equations (3.28) and (3.29), we obtain a polynomial eigenvalue
problem

(A2K2 + AK + Ao + A) )= (0) (3.38)

where

A2 [2 0 (3.39)

Al = (3.40)

A0 =[1- 2f32rr2  022] (3.41)

A = -h 2k =1Ci,N ( Ui + jKxVi))
[kAG ( i= Ci,N (AfjKxUi + (Af + 2G)siVi))

2ke (G ,= Cs,w (siUi + jKxi)) (3.42)
kAG (Zi ,w (Af jKUi + (A• + 2Gf)siVi))

To solve this equation for the wavenumber Kx, we solve iteratively for each frequency
Q of interest. First, we solve for the dispersion relation of the undamped beam by
setting A1 = 0. This solution results in four values of the wavenumber. Only two of
them are correct, one corresponding to the right travelling wave and one corresponding
to the left travelling wave [58]. Then, the correct value of the wavenumber is used
to solve for the foam displacements and obtain A1 . Then, a new estimate of the
wavenumber is obtained. Again, we must ensure that we are choosing the proper root
consistently. We continue this iterative procedure until the error in the wavenumber
estimation is sufficiently small.

After obtaining the complex wavenumber, we calculate the loss factor using an



equivalent empty beam. The resulting equation for the loss factor is

Im 1r Im (3.43)
Re 'Q2

To obtain Q2 from the complex wavenumber, we use the dispersion relation for the
empty beam given by the determinant of (3.38) with Af = 0. Again, we must maintain
consistency in choosing the appropriate solution that agrees with the Timoshenko
beam model.

3.4.1 Results

The dispersion curve and loss factor plots for a solid beam with a layer of foam
using the Timoshenko beam model are indistinguishable from those obtained using
the Euler-Bernoulli beam model (see Figures 3-2, 3-7, and 3-4). We perform the
comparison below for thin-walled beams, in which the differences between the two
models are more pronounced.

3.5 Timoshenko beam filled with foam

The procedure to obtain the loss factor for a Timoshenko beam filled with foam is
the same as the procedure above but with changes to some equations because of the
different boundary conditions at the interface of the beam and foam.

The forcing of the

M(x, j) bh
kAG 2kAG (Tx,(x, = -1/2, A) + T7,j(x, y = 1/2, Q)) (3.44)

hP(x, 2) bh
kAG kA- (a y(x,y = -1/2, Q) - ao(x, y = 1/2, Q)) (3.45)
kAG kAG

The homogeneous equations for the foam remain unchanged. The change in the
boundary conditions causes (3.36) to become

C 1  
-5N)

B C2 = (3.46)
C4 W

which we separate into

B C2,N 1 (3.47)
(C4,N 0j



and

B c2,/W = (3.48)
c3,w 0
C4,w 1/

as before where the i-th column of B is given by

Uiesi/2 1
Vesa/ 2

Uie-s/ 2  (3.49)
Uie-,/2

LVie-si/2 J
After obtaining the foam displacements and resulting stresses, the governing equa-

tion for the beam-foam system is still a polynomial eigenvalue problem given by (3.38),
but Af becomes

AbhGA = c4 ,w (e-, '/2 + esi/2 ) (SiU + jK Vi))

bhG 1 cW (esi/2 + esi/2 S + jK )) (3.50)

bh (=I cA,w (As jKxUi + (Af + 2Gf) s Vi) (e- •/2 - e/2

3.5.1 Results

Figures 3-10 and 3-11 compare the dispersion relation for a beam filled with foam
using the Timoshenko and Euler-Bernoulli beam models. The differences are negli-
gible except at high frequencies. The loss factor curves are compared in Figure 3-12
and reveal no noticeable difference. The same result is observed even as the shear
parameter k is made smaller to accentuate the difference between the two models.

3.6 Conclusions

Based on the comparisons between the loss factor curves obtained using the Euler-
Bernoulli and Timoshenko beam models, we conclude that the model of the foam is
the element in obtaining an accurate estimate of the loss factor and that the Euler-
Bernoulli model is sufficient to predict the loss factor of beam bending vibrations in
systems with LWSM.
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Figure 3-10: Comparison of the real part of the dispersion curve for a beam filled
with foam using the Euler-Bernoulli model (dashed) and Timoshenko model (solid)
with a foam loss factor r7f = 0.8
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Figure 3-11: Comparison of the imaginary part of the dispersion curve for a beam
filled with foam using the Euler-Bernoulli model (dashed) and Timoshenko model

(solid) with a foam loss factor 77f = 0.8
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Figure 3-12: Comparison of loss factor for a beam filled with foam obtained using the
Euler-Bernoulli beam model (dashed) and Timoshenko beam model (solid)





Chapter 4

Comparison of constrained-layer
damping and damping via coupling
to low-wave-speed media

4.1 Introduction

Contrained-layer damping (CLD) is a common method of adding damping to struc-
tures. A constrained layer damper consists of a thin layer of a viscoelastic material
glued to the primary structure and then "constrained" by a layer of metal glued to
the top, as sketched in Figure 4-1. Formulas exist for analysis and design of con-
strained layer dampers e.g., Nayfeh [42], Marsh and Hale [38]. To demonstrate the
effectiveness of low-wave-speed damping, we present a comparison of CLD and LWSM
damping with equal added mass for a solid beam and a box beam. We consider a
simply-supported beam, which is equivalent to an infinite beam, and design CLD and
LWSM damping treatments for the first two bending modes subject to a constraint
of 5% added mass. For the case of the box beam, we impose the additional constraint
that the damping treatment must be fully contained within the tube. Pamley et al [45]
compare constrained-layer damping, free-layer damping, and low-wave-speed damp-
ing using viscoelastic spheres for a thin-walled steel box beam and conclude through
experiments that the low-wave-speed treatment is the most mass efficient.

4.2 Comparison for solid beam

We compare the attainable damping of a five-layer symmetric constrained layer damper
to a single layer of low-wave-speed foam for a simply-supported square steel beam
50 mm wide, 50 mm tall, and 1 in long (see Figures 4-1, 4-2 and 4-3). Both damping
treatments are designed with 5% added mass.
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Figure 4-1: Sketch of solid beam with constrained-layer damper

4.2.1 Design of constrained-layer damper

For a given added mass and assuming a symmetric five layer configuration, the
constrained-layer damper is designed in the following manner. We also assume that
the viscoelastic material has a loss factor 7, = 1 and that the constraining layers are
steel for its high stiffness.

Assuming that the damper spans the width of the beam and that the mass of the
viscoelastic material is negligible compared to the constaining layers, we calculate the
height of the constraining layers using

h2 = ,Al (4.1)
2p2b2

where p is the allowable damper-to-beam mass ratio, pl is the density of the primary
beam, P2 is the density of the constraining layers, A1 is the cross sectional area of the
primary beam, and b2 is the width of the constraining layers. The stiffness parameter
is given by

2c 2E 2A 2Y = (4.2)
ElI + 2E212

where c is the distance between the neutral axis of the primary beam and the neutral
axis of the constraining layer as shown in Figure 4-2 given by

hi + h2c = t + 2  (4.3)
2

which simplifies for a thin viscoelastic layer to

h, + h2c = 2 (4.4)2
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Figure 4-3: Sketch of solid beam with low-wave-speed damping treatment
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The coupling or shear parameter is given by

GH
9 = tEA (4.5)tE2A2k2

where 2H is the width of the viscoelastic layer and in this case is given by H = b2/2,
kx is the wavenumber, and G is the shear modulus of the viscoelastic layer. The loss
factor is given by

"q=Y (4.6)g2(1 + Y)(1 + 72) + g(2 + Y) + 1

The optimal value for the shear parameter from Nayfeh [42] is given by

2 = (4.7)
-(1 + Y)(1 + 7)

The corresponding maximum loss factor is

irmax = (4.8)
Y + 2 + 2 /(1 + Y) (1 + 712)

Using gopt, we can solve for the optimal ratio of G/t, for a wavenumber corresponding
to the shape and frequency at which we would like to obtain maximum damping. The
damping for any wavenumber can then be calculated.

4.2.2 Design of LWSM damper

A simplified method of designing the low-wave-speed damping treatment involves
estimating the frequency of the first thickness resonance at which maximum damping
is obtained. For a free layer of foam, this condition occurs when the thickness of the
foam layer is one quarter of the wavelength. To calculate this frequency, we use the
plane equations of elasticity and constrained to only allow vertical motion of the foam
and obtain

2 2 vfRe(Ef)
(2 = (4.9)

opt 2hf pf(1 - 2vf)(1 - vf)
where r/2hf corresponds to the quarter-wave mode shape through the thickness of
the foam. To relate the frequency of maximum damping to the frequency and mode
shape of the simply-supported (or infinite) beam, we use the dispersion relation of
the Euler-Bernoulli beam given by

k=X 2E1A1 4 (4.10)

to obtain the required modulus of the foam

Re(Ef) = k pt Ell p (1 - vf)(1 - 2vf) (4.11)X ,opt•\2 rhol A] vf
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For a simply-supported beam, the wavenumbers at resonance are

n7r
kx,88= L (4.12)

where L is the length of the beam and n is the mode number. For example to optimize
damping for the second mode, we set kx,,t = 27r/L.

To choose the foam, we constrain its geometry to have the same width as the
beam and its height to be half that of the beam. Then, the modulus is calculated for
the mode of interest.

4.2.3 Solid beam comparison results

Figure 4-4 compares the loss factors for the two damping treatments. The peak
damping is greater for LWSM, but the CLD has a greater bandwidth.

4.3 Comparison for hollow box beam

We compare the attainable damping of a five-layer symmetric constrained layer damper
to a single layer of low-wave-speed foam for a square, aluminum box beam (b =45 mm
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Figure 4-6: Sketch of box beam with low-wave-speed damping treatment

wide, h =45 mm tall, 5 mm wall thickness, 1 m long) as shown in Figures 4-5 and 4-
6). The damping treatments have the same added mass, five percent. We require the
damping treatments to be placed inside the tube so that there is no increae in height.

4.3.1 Design of constrained-layer damper

The design of the constrained-layer damper follows the same approach as given above,
but the geometry constraint changes the parameter c to c = h1/2 - h2/2, if we again
assume the that thickness of the viscoelastic layer is negligible.

4.3.2 Design of LWSM damper

The design of LWSM treatment follow the same approach as for the LWSM treatment
on a solid beam. We assume that the foam is well described by the planar equations
of elasticity amnd that slip can occur at the side beam-foam interfaces but that no slip

t-)
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Figure 4-7: Comparison of loss factor for simply-supported aluminum box beam with
constrained-layer damper (dashed) to low-wave-speed damper (solid) for different
design modes

occurs at the top and bottom interfaces. The optimal frequency is given by

2= ) 2 vfRe(Ef)
W hf = pf(1 - 2vf)(1 - vf)

because the vertical displacement of the foam is now a half wave.

We use the Euler-Bernoulli dispersion relation to determine the mode shape and
to solve for the modulus of the foam.

Re(Ef) = k1,opt ( 2 rE (1 pf ) (4.14)

where kx,opt is the wavenumber of the mode shape where damping is maximum.

4.3.3 Results

Figure 4-7 shows the loss factor as a function of frequency for the CLD and LWSM
damping treatments designed for the first and second modes of the beam. The LWSM
clearly gives better performance. It has a larger peak damping and the same band-
width as the CLD. As shown by Ungar and Kerwin [62], the low frequency asymptote
of the LWSM damping curve has a slope of +2, and the high frequency asymptote
has a slope of -1.

~



4.4 Conclusions

Low-wave-speed media damping outperforms constrained-layer damping in thin-walled
tubes because it can attain greater peak damping and a comparable bandwidth. For
solid beams, LWSM offers a higher peak damping but the bandwidth is limited. Addi-
tionally, foams examined in this thesis (EAR C-3201 and Foamex Sensus) have a stiff-
ening frequency dependence; in other words, the modulus increases with frequency.
This property increases the broadband nature of the LWSM damping. Furthermore,
the LWSM treatments are easier to manufacture. CLD requires an adhesive that is
very thin and very stiff. The adhesive in a LWSM damper is not subjected to large
stress so almost any adhesive is sufficient. In fact for LWSM in a tube, a slightly
oversized piece of foam can be held in place by a preload force without adhesive.



Chapter 5

Vibration damping of cylindrical
shells using lightweight granular
materials

5.1 Introduction

In this chapter, we consider the problem of damping vibration in thin-walled cylin-
drical tubes by filling with a granular material. We present the results of experiments
on a powder-filled free-free cylindrical tube in which significant damping is attained
in beam-bending and tube-wall-flexing modes. To model the damping phenomenon
and obtain estimates for the damping in these modes, we consider steady harmonic
wave propagation in the axial direction of an infinitely long cylindrical tube and
treat the powder as a compressible fluid with a complex speed of sound. Based on
the spatial decay characterized by a complex wavenumber, we obtain an estimate of
the loss factor associated with motion as a function of frequency and the number of
circumferential nodes.

5.2 Experiments

We conduct experiments on a welded, carbon-steel cylindrical tube of length 1.58 m,
outside diameter 7.62 cm, wall thickness 1.65 mm, and mass 4.8 kg. The cylinder is
filled with 3M Glass K1 Microbubbles. The average particle diameter is 65 microns [1].
The measured density of the fill is 78 kg/m 3 . The total mass of the powder is 0.49 kg,
or 11.8% of the mass of the cylinder. A thin latex membrane at each end encloses the
particles. The cylinder is supported with strings at the quarter points to approximate
free-free boundary conditions. A triaxial accelerometer (PCB 356B08) is fixed at one
end of the tube, and excitation is provided by an impact hammer (PCB 086B03) in
the radial direction at various points along the shell [51]. Mode shapes are fit using
Star Modal analysis software [57].

A typical measured frequency response (force to acceleration) is shown in Figure 5-
1. The natural frequencies, mode shapes, and damping coefficients for the empty tube
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Figure 5-1: Collocated frequency response (force to acceleration) of the tube mea-
sured near the end of the tube in the radial direction (dashed line unfilled, solid line
filled). Mode shape labels (n, m) refer to the number of nodal points (2n) along the
circumference and the number of nodal points along the length of the cylinder (m+ 1).
(See also Figure 5-2.)

are given in Table 5.1. As with many shell geometries, the modes occur in clusters.
The granular material adds significant damping for modes above 400 Hz. For some
modes in this range, standing waves in the powder result in an effect like that of a
tuned-mass damper where the mode splits from a single lightly damped peak into
two well-damped peaks. The clustering, mode splitting, and well-damped nature of
the frequency response for the filled cylinder cause some difficulties in estimation of
the loss factor, mode shapes, and natural frequencies from the experiments.

5.3 Modelling

The literature on the vibration of thin-walled shells contains a number of different
models [32]. For the purpose of this work, we are interested in obtaining estimates of
the loss factors of the lower-order modes (n = 1 and 2 as sketched in Figure 5-2) using
the simplest model which captures the essential physics. The approach is to solve for
the wavenumber as a function of frequency in a cylinder of infinite length driven at
a frequency w. The wavenumber will be complex because we model the granular
medium as having a complex speed of sound. To obtain the system loss factor, we
then consider a hypothetical empty tube whose wall material has a complex modulus
Eo(1 + jrl). By solving for the value of Eo(1 + j'r) that renders that same complex
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Figure 5-2: Cross sections of the mode shapes for different n

Table 5.1: Measured natural frequencies of the empty and filled tube, where n is
one half the number of circumferential nodal points and m + 1 is the number of
longitudinal nodal points.

Empty
Freq. Loss Factor

[Hz] [%]
204 0.16
546 0.08

702 0.13
735 0.10
800 0.05
925 0.08

1030 0.16
1120 0.06
1380 0.12
1610 0.22
1680 0.06

Filled
Freq. Loss Factor
[Hz] [%]
193 1.7
448 6.6
593 7.8
664 4.0
682 3.5
738 5.0
898 10.
978 5.3
1032 1.2
1138 1.9
1371 1.4
1624 1.6
1688 1.5

Mode
n
1 1
1 2
1 2
2 1
2 2
2 3
2 4
2 4
1 3
2 5
2 6
1 4
2 7



Figure 5-3: Schematic of cylinder geometry and displacements

wavenumber in the hypothetical empty tube as in the
effective loss factor rl for a given w.

We employ Reissner's equations [30] in dimensionless
monic motion:

filled tube, we obtain the

form assuming steady har-
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where x is the coordinate along the axis of the cylinder normalized by its
radius R; h is the thickness of the cylinder; u, v, and w are respectively the
circumferential, and radial displacements which have been nondimensionalized
p is a dimensionless geometric parameter given by

32 _ 12h
12R2

(5.1)

03  -
---3 __ 22v (5.2)

(5.3)

mean
axial,
by R;

(5.4)



and ~ is the dimensionless frequency

= w (5.5)

where w is the dimensional angular frequency and c, is the speed of compressional
waves in a flat plate:

c2 (5.6)p (1 - v2
The parameters E, ps, and v are respectively the Young's modulus, volumetric density,
and Poisson's ratio of the cylinder material, and q3 is the complex magnitude of the
applied stress in the radial direction nondimensionalized by the factor E/(1 -_ 2). In
our problem, this applied stress is the pressure exerted by the powder on the tube
wall from within.

We seek solutions of the form

u(x, ¢) = U cos Kxx cos no (5.7)
v(z, ¢) = V sin Kx sin no (5.8)

w(x, ¢) = W sin gKx cos no (5.9)

where K, is the nondimensional wavenumber in the axial direction and n is an integer.
Following the approach of Varanasi and Nayfeh [65] and based on the experiments

described earlier, we model the granular medium as a compressible fluid with a com-
plex speed of sound c. For steady harmonic motion at a frequency w, the pressure p
in this fluid is nondimensionalized by the plane-strain modulus of the tube material
E/(1 - v2) and is governed by

V2p + -PP = 0 (5.10)

with the boundary condition that the pressure at the tube wall must be proportional
to the acceleration of the wall. That is,

O WsinKx cos n (5.11)

where pf is the density of the granular medium and we have made use of the expression
given by (5.9).

The condition given by (5.11) suggests that we take

p(r, €, x) = P(r) sin Kxx cos no (5.12)

Then, the governing equation (5.10) for the pressure in the cylinder becomes Bessel's
equation of order n for p(r). We obtain a solution of the form

P(r) = c J,, (Krr) + C2Y, (Krr) (5.13)



where cl and c2 are constants, J, is the Bessel function of the first kind of order n,
Y, is the Bessel function of the second kind of order n, and Kr is given by

= 2 2 C2
Kr= - - K (5.14)

c 2

The constant c2 must be zero to maintain finite pressure in the pipe at the origin. The
boundary condition at the wall gives cl, and the resulting solution for the pressure in
the tube is

(r) = PW12 iJn(Krr) (5.15)
Ps dJ,(Kr)

dr rf-

Returning to the equations governing motion of the shell and making use of (5.7)-
(5.9), (5.12), and (5.15), we obtain algebraic equations for U, V, and W in the form

(K(A4 + KA2 + KxAj + Ao -_ 2M) = () (5.16)

where

0 0 0
A4 = 0 0 (5.17)

0 0 /2
1 0 0

A2 =0 'V( + 102) n02 (5.18)
0 n,32 20 2n2

S-nl+ -v
A,= -n- 0 0 (5.19)

-V 0 0

1-_n 0 0 1
Ao = 0 n 2 (1 + 2) n +713 2  (5.20)

L0 n+ n3o 2  1+o22n4J

10 0

M = 1 (5.21)
0 0 1 + P" " K

pLh KrJ (K, )

where Jn is the derivative of the Bessel function of the first kind. Setting the determi-
nant of the coefficient matrix in (5.16) equal to zero, we obtain a dispersion relation
relating wavenumber Kx to frequency Q1. Because of the dependence of Jn(Kr) on K,
and Q2, we use an iterative approach to the solution as outlined in the following.

First, we solve for the wavenumber IK in an empty tube, for which the inertia
matrix (5.21) is given by the identity matrix. There are multiple solutions for K,, and
the appropriate one is chosen through examination of the corresponding mode shapes



and comparison to a desired reference. The reference mode shapes can be taken
using the plane strain mode shapes (see Figure 5-2). For example, beam bending
modes (n = 1) have eigenvectors approximately given by [0 1 -1] T, and the lowest
frequency variety of n = 2 modes have approximate eigenvectors [0 0.5 -1]'.

Based on this initial estimate of KA, we evaluate the inertia matrix given by (5.21)
with where the value of K, set by the estimate of K,, and solve again the eigenvalue
problem for K,. We continue this iterative procedure until the value of K, converges.

Once K. has been determined, we estimate the equivalent loss factor as a function
of frequency. To do this, we again consider an empty cylinder, now characterized by
an "effective" complex Young's modulus E = Eo(1 + jrl) and solve for the value of
E that yields the same value for the complex wavenumber K, as computed for the
filled tube.

As a result of the nondimensionalization, the modulus of the tube only appears
in the nondimensional frequency parameter Q given by (5.5). For each value of n, we
substitute the value of K, obtained above into (5.16) with the inertia matrix given by
the identity matrix and solve the resulting eigenvalue problem for W2. In solving the
eigenvalue problem we obtain multiple solutions for Q2, and the appropriate value is
chosen after examination of the corresponding mode shape. Finally, the loss factor is
obtained using

Im E Im1
S= e Re1 (5.22)Re E Re.

5.4 Results

Figures 5-4 and 5-5 show the predicted and measured loss factors based on the mea-
sured complex speed of sound c = 69(1 + 0.13j) m/s and density pf = 78 kg/m 3 .
The loss factor curves for n = 1 and n = 2 agree qualitatively with the experimental
results. Based on these figures, it appears that the estimates of the value of the real
part of the speed of sound co is too high and the loss factor rf is too low because the
peaks in the theoretical loss-factor curves are sharper and occur at higher frequency
than indicated by the data.

The model and experiments both demonstrate that the powder can behave like
a tuned-mass damper. Like the tuned-mass damper, the powder adds an additional
degree of freedom to the system so that near a resonance in the undamped structure
there may exist two resonances in the damped structure, Furthermore, the powder
may act to stiffen the primary structure at some frequencies while softening it at
others. Experimental results in Table 5.1 and Figure 5-1 show that modes n = 1,
m = 2 and n = 2, m = 4 undergo "splitting". When splitting occurs, the powder
moves in phase with the structure in the lower-frequency mode and out of phase with
the structure in the higher frequency mode.
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Figure 5-6: Nondimensional dispersion relation for n = 1 and granular material loss
factor rlf = 0.10 (dash-dot, wavenumber of empty cylinder; solid, real part of complex
wavenumber of filled cylinder; dashed, imaginary part of complex wavenumber of filled
cylinder)

5.5 Discussion

We define a new, nondirnensional frequency that is normalized by the parameters of
the powder given by

S•_= w.= R (5.23)
CO CO

Damping attains local maxima and minima when ! is order unity.
Typical dimensionless dispersion relations for n = 1 and n = 2 are given in

Figures 5-6 and 5-7, respectively. The dispersion curve gives the relation between the
wavenumber and frequency for a travelling wave in an infinite cylinder. The standing
wave behavior (i.e., natural frequencies) for a finite tube can be approximated using
the dispersion curve. A resonance in the finite tube occurs when the wavenumber is
approximately an integer multiple of the inverse of the length of the cylinder. The
values of the wavenumber at which resonances occur should not vary significantly
from the empty to filled cylinders; therefore, a comparison between the dispersion
relation for the filled cylinder and the real part of the dispersion relation for the
unfilled cylinder can be used to explain the differences in behavior of the filled and
unfilled finite cylinders.

At low frequencies, the real part of the wavenurnmber is greater than the wavenum-
ber of the empty shell because the powder tends to act primarily as an added mass
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Figure 5-8: System loss factor as a function of nondimensional frequency for n = 1
for granular material loss factors 0.1 (solid), 0.5 (dashed), 0.8 (dash-dot)

and lower the resonant frequencies. At a value of the wavenumber Kx which cor-
responds to a resonance in the finite, empty tube, the value of the nondimensional
frequency 2 at the same value of K_ is smaller for the filled cylinder than for the
empty cylinder.

Above a resonant frequency of the powder, the real part of the dispersion relation
may lie above or below the original dispersion curve, indicating whether the powder
acts primarily as an added mass or stiffness on the tube, respectively. For small
perturbations (i.e., a small added mass), the powder typically acts to stiffen the
cylinder just above the first resonance as shown in Figures 5-6 and 5-7.

When the real part of the dispersion relation is not monotonically increasing, one
finds three frequency values for a given value of the wavenumber and mode-splitting
can occur. The smallest and largest of the three frequency values correspond to
the observed vibration modes of the finite tube. The intermediate frequency, which
has a negative slope corresponding to a negative group velocity, is not observed in
experiments.

Representative loss factor curves for n = 1 and n = 2 are given in Figures 5-8
and 5-9, respectively. The peaks in the loss factor curves are caused by resonances in
the granular medium, and the valleys are caused by anti-resonances in the granular
medium. The curves for n = 2 do not start at zero frequency because this mode has
a non-zero cutoff frequency.

Using the plane wave approximation of Ungar and Kerwin [62] because the wave-
length in the axial direction is much great than the radius of the cylinder, we can
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Figure 5-9: System loss factor as a function of nondimensional frequency for n = 2
for granular material loss factors 0.1 (solid), 0.5 (dashed), 0.8 (dash-dot)

ignore K, in (5.14) to obtain Q ; K,. The method for calculating the dispersion
relation and loss factor remain the same and the resulting differences are negligi-
ble. This approach can be used to estimate the critical nondimensional frequencies.
The resonance frequencies of the powder are determined by setting J' (f) = 0 to
obtain f2 e 1.8412,5.3314,... for n = 1 and Q2 , 3.0542,6.7061,... for n = 2. The
anti-resonance frequencies are determined by setting J0(i) = 0 to obtain for n = 1:
f2 ; 3.8317, 7.0156,... and for n = 2: f2 , 5.1356,8.4172, ....

5.6 Conclusions

The results of the experiments described in this chapter demonstrate that filling a
thin-walled cylinder with a low-density granular material can provide considerable
damping in a simple and inexpensive manner. We have developed a model that
couples shell vibrations to a lossy, compressible fluid and compute dispersion relations
and loss factor curves as functions of frequency for the various mode shapes. The
travelling-wave behavior described by the dispersion relations is used to approximate
the damping in the standing-wave behavior observed in resonant response of finite
cylinders.

The theoretical loss factor curves agree reasonably well with the measured results
for beam bending modes and tube-wall-flexing modes. Both theory and experiments
show that there is little damping at low frequencies, but significant damping occurs
above 400 Hz. The differences between the measurements and theory are attributable



in large part to difficulties in obtaining an accurate model of the powder. This is still
an active research area (see e.g., [26]).

Potential applications of this damping method include autmotive driveshafts whose
modes are excited by gear teeth meshing as well as other closed structures where mod-
erate frequency vibrations are a nuisance, especially high-temperature applications
because many granular materials (like the glass spheres used in our experiment) are
heat resistant. Further work is needed to identify and characterize granular materials
that are lightweight, lossy, and have a low speed of sound.





Chapter 6

Vibration damping of cylindrical
shells using lightweight,
low-wave-speed media

6.1 Introduction

The introduction of foam into a machine or structure is a simple, low-cost method
of reducing noise and vibration. Oberst [43], Morris [40], and James [27] observed
damping in structures consisting of metal and a. soft, lossy laminate such as foam
or rubber due to resonances through the thickness of the lossy material. Ungar and
Kerwin [62] developed a model to estimate the loss factor of plates and beams with
a viscoelastic layer due to resonances through the thickness and compared the model
with experimental measurements. They modelled the viscoelastic material with a one-
dimensional wave equation (through the thickness) and a complex Young's modulus.
Other researchers (e.g., [10, 4, 45, 66]) have studied damping caused by resonance
through the thickness of granular media. G6ransson [22] discusses the energy dissi-
pation mechanisms of foams as described by Biot's model [3] and shows acoustic and
vibration experiments for plates with attached layers of foam. Vigran et al [67] use
finite elements to obtain the forced response of a sandwich plate in which the core is
modelled using Biot's equations for a porous material. Jaouen et al [28] use a mixed
pressure-displacement finite element formulation of the Biot-Allard model to study
forced vibrations of a metal plate covered with a layer of foam

In this chapter, we consider the problem of damping vibration in thin-walled
cylindrical tubes. We present the results of experiments on a foam-filled free-free
cylindrical tube in which significant damping is attained in beam-bending and tube-
wall-flexing modes. To model the damping phenomenon and obtain estimates for the
damping in these modes, we consider steady harmonic wave propagation in the axial
direction of an infinitely long cylindrical tube and treat the foam as an elastic solid
with a complex modulus. Based on the spatial decay characterized by a complex
wavenumrber, we obtain an estimate of the loss factor associated with motion as a
function of frequency and the number of circumferential nodes.



6.2 Experiments

We conduct experiments on a welded, carbon-steel cylindrical tube of length 1.83 m,
outside diameter 10.2 cm, wall thickness 3.0 mm. The cylinder is filled with Foamex
Sensus viscoelastic memory foam [17]. The nominal diameter of the foam is 10.2 cm
resulting in a 6% preload when loaded inside the tube. The unloaded density of the
foam is 67.4 kg/m" . The total mass of the foam is 1.00 kg, or 7.1% of the mass of the
cylinder. The effective density of the foam loaded inside the tube is 76.7 kg/m3 . The
cylinder is supported with strings at the quarter points to approximate free boundary
conditions. A triaxial accelerometer (PCB 356B08) is fixed at one end of the tube,
and excitation is provided by an impact hammer (PCB 086B03) in the radial direction
at various points along the shell [51]. Mode shapes are fit using Star Modal analysis
software [57].

A typical measured frequency response (force to acceleration) is shown in Figure 6-
1. The natural frequencies, mode shapes, and damping coefficients for the empty
tube are given in Tables 6.1 6.4. As with many shell geometries, the modes occur
in clusters. The clustering and well-damped nature of the frequency response for the
filled cylinder cause some difficulties in estimation of the loss factor, mode shapes,
and natural frequencies from the experiments. Some modes, such as those with n = 2
and m = 10, appear twice because the weld line of the tube breaks the symmetry and
allows the same qualitative mode sha~pe to appear at two close but distinct frequencies.

Frequency [Hz]
00

Figure 6-1: Typical measured freqency response of cylinder empty
(solid)

(dashed) and filled
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Figure 6-2: Cross-sections of deformation of vibration modes for various n

Table 6.1: Measured natural frequencies of the empty and filled tube for the beam
bending modes (n = 1, see also Figure 6-2)

Empty
Freq. Loss Factor

[Hz] [%]
188 0.98
501 0.61
937 0.27
1462 0.27
2046 0.21
2684 0.15
3339 0.13
4006 0.11
4669 0.12

Filled
Freq. Loss Factor
[Hz] [%]
182 3.0
496 4.6
934 2.7
1461 1.7
2050 1.3
2675 1.4
3335 1.1
4004 0.70
4676 0.69
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Table 6.2: Measured natural frequencies of the empty and filled tube for the n = 2
modes (see also Figure 6-2)

Empty
Freq. Loss Factor
[Hz] [%]

814 0.32
832 0.25
885 0.23
986 0.18
1144 0.18
1363 0.21
1630 0.21
1938 0.19
2646 0.19
3007 0.18
3031 0.16
3427 0.15
3856 0.25
4230 0.11
4265 0.14

Filled
Freq. Loss Factor
[Hz] [%]
800. 4.2
805 2.1
827 2.7
881 3.0
982 2.2
1142 1.3
1359 1.1
1627 1.9
1935 1.7
2643 1.3
3035 1.1

3422 1.1
3843 0.89

4258 0.71
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Table 6.3: Measured natural frequencies of the empty and filled tube for the n = 3
modes (see also Figure 6-2)

Empty
Freq. Loss Factor
[Hz] [%]
2279 0.27
2295 0.15
2306 0.14
2329 0.14
2363 0.15
2412 0.15
2476 0.16
2559 0.15
2662 0.14
2787 0.16
2931 0.24
3100. 0.2 7
3286 0.18
3492 0.16
3714 0.16
3950 0.15
4199 0.15
4725 0.17
4995 0.18

Filled
Freq. Loss Factor
[Hz] [%]
2269 1.9
2290. 1.7
2312 1.7
2318 1.3
2351 1.3
2400. 1.2
2463 1.3
2552 1.6
2652 1.4
2780. 1.3
2928 1.4
3096 1.4
3289 1.3
3488 1.1
3714 1.0
3949 0.88
4200. 0.89

101

Mode
m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19



Table 6.4: Measured natural frequencies of the empty and filled tube for the n = 4
modes (see also Figure 6-2)

Empty
Freq. Loss Factor
[HIz] [%]

4346 0.27
4358 0.09
4374 0.17
4393 0.16
4415 0.14
4444 0.14
4478 0.15
4521 0.15
4570 0.15
4628 0.13
4691 0.17
4772 0.13
4858 0.13
4955 0.14

Filled
Freq. Loss Factor

[Hiz] [%]
4324 1.2

4346 1.2
4390. 0.79

4446 1.3
4482 1.2
4524 1.2
4574 1.2
4628 1.0
4693 0.87
4771 0.77
4857 0.72
4957 0.89

6.3 Foam Material Properties

6.3.1 Introduction

The goal of this section is to obtain a simple description of the dynamic properties
of the foam used for vibration damping. Porous materials are very common, and
models of their behavior have been studied by many researchers in a variety of fields.
In materials science (see e.g., [20]) the approach is usually to predict bulk properties
of a, foam from factors such as cell shape and density. However, these approaches
are typically concerned with quasi-static not dynamic behavior. Biot [3] developed a
model, that is widely used in acoustics and geology for the deformation of the solid and
surrounding fluid that does not require a detailed, geometric description of the porous
microstructure. Allard [2] expanded on this work, but this model is cumbersome to
use when coupled to a structure. Acoustic materials are commonly measured using
an impedance tube (see e.g., [74]). Properties such as firmness, compression set, tear
strength, and sometimes acoustic absorption are typically quoted for commercially
available foams (e.g., [16]), but moduli are not quoted since the stress-strain curve
is often nonlinear. The simplest models for the purpose of this work are an effective
Young's modulus, an effective shear modulus, and loss factor.

To measure the dynamic properties of the foam, we use the methods of Varanasi
and Nayfeh [66], which consist of non-resonant shear and uniaxial tests. The foam
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Metal Discs

Figure 6-3: Schematic of compression test

used in these experiments is Foamex Sensus viscoelastic, or "memory," foam and has
a measured density of 64.7 kg/m 3.

6.3.2 Uniaxial Test

The test setup (see schematic in Figure 6-3) consists of a layer of foam (9.3 mm
thick undeformed, 29.2 mm diameter) glued between two metal discs. One disc is
connected to an electromagnetic shaker (Vibration Test Systems VG100M-4), and
the other disc is connected to ground. The motion of the shaker is measured with
an acclerometer (PCB 356B21, 1.05 mV/(m/s 2)), and the force applied to the foam
sample is measured using a forced transducer (PCB 208C01, 108.2 mV/N) placed
between the fixed disc and ground. The shaker is driven using an amplifier (Techron
7541) in current mode. A signal analyzer (Spectral Dynamics Siglab 20-42) is used to
drive the system, measure the sensor outputs, and create the transfer functions. The
system is driven with a random excitation. To minimize nonlinear effects, we use the
smallest force amplitude that yields a reasonable signal-to-noise ratio.

The uniaxial stress-strain curve of a foam under quasi-static deformation often
demonstrates nonlinear behavior [20]. To obtain the material properties in the pres-
ence of material nonlinearity, we measure the dynamic stiffness of the foam at a
variety of initial strains, which are implemented by applying a DC offset in addition
to the driving signal.

A typical measured transfer function (force/acceleration) is shown in Figure 6-
4. The modulus as a function of frequency is calculated; a typical plot is shown in
Figure 6-5. Above approximately 100 radians/second, the modulus of the foam is
approximately linear on logarithmic axes and hence well modelled by the relation
E(w) = Eo(1 + j?7)wm. The loss factor is nearly independent of frequency so we
use its average value as the material loss factor. Figures 6-6, 6-7, and 6-8 show the
initial modulus E0, loss factor r, and slope m, resectively, of the modulus model as a
function of initial strain.

Figure 6-6 shows that the modulus can be significantly increased or decreased by
applying an initial strain to the foam. An initial compression of the foam results in
much softer behavior when the elements of the matrix that composes the foam begin
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Figure 6-6: Measured values of Eo as a function of initial strain
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to buckle [20]. An initial tension leads to a stiffening effect because deformation is
tension dominated, as opposed to bending dominated in the undeformed state.

6.3.3 Shear Test

A shear test is used to calculate the shear modulus. Once the shear modulus is known,
we calculate the Poisson ratio using the relation

ES= 2G 1 (6.1)
2G

The test setup (see schematic in Figure 6-9) consists of two thin pieces of foam
(2 cm x 2.5 cm x 6.1 mm thick) glued between opposites side of a metal block and
the inner faces of a metal U-shaped channel. The walls of the U-channel are adjustable
to vary the initial compressive/tensile strain on the foam. The metal block is actuated
by an electromagnetic shaper. The U-shaped channel is connected to ground. An
accelerometer measures the motion of the block, and a force transducer between the
ground and the U-channel measures the force applied to the foam. Again, a dynamic
signal analyzer is used to drive the shaker and measure the sensor outputs. The
system is driven with a random excitation. To minimize nonlinear effects, we use the
smallest force amplitude that yields a reasonable signal-to-noise ratio.

The measured transfer function and modulus curves resemble Figures 6-4 and 6-
5, respectively. Using the same model for the shear modulus as for the Young's
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Figure 6-9: Schematic of shear test

Table 6.5: Values for logarithmic model E = Eo(1 + jr~)w m , G = Go(1 + jrl)wm at
-6% strain

Property Value
Eo 8000 Pa
Go 3200 Pa
slope m 0.4
loss factor 77 0.7
Poisson ratio 0.25

modulus (G(w) = Go(1 + lj7)w m ), we find that the shear modulus has approximately
the same loss factor qr = 0.7 (see Figure 6-12) and slope m = 0.4 (see Figure 6-11).
The variation of the shear modulus parameter Go with initial strain does not follow a
clear trend like the Young's modulus (see Figure 6-10). A search of the literature does
not suggest that there should be a significant and well-defined correlation. Once the
initial strain is known, the values of Eo and Go can be determined, and the Poisson
ratio is calculated using (6.1).

For the experiment of the cylinder filled with foam, the undeformed diameter of
the foam is 10.2 cm, and the internal diameter of the cylinder is 9.5 cm resulting
in an intial strain of -6%. Using this initial strain and the data from the shear and
compression tests, the resulting parameters for the logarithmic model are calculated
and given in Table 6.5.
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Figure 6-13: Schematic of cylinder geometry and displacements
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6.4 Modelling

6.4.1 Cylindrical Shell

We employ Reissner's equations [30] in dimensionless form assuming steady harmonic
motion:

02 u 1- I O2u 1 + v 02v Ow R 1 - v2

+ + + v = -02u qq (6.2)
x82  2 d +2  2 OxO Ovx h E

1 + v 2u 1- v 27 1 02 u
2 x + (1 + 0 2)

w 32 03w 03w _01VR1 2+ oxo - = -2v 1 - (6.3)
(92 ( 3 h(3 E

Ou dv 8 Ov v-- V +
(024aW 04W 04W \ R 1 -V2

SW 2 + 2 - + = -2w h -- E r (6.4)OX 4  X2 o 2  a4 h E

where x is the coordinate along the axis of the cylinder normalized by its radius
R; h is the mean thickness of the cylinder; u, v, and w are respectively the axial,
circumferential, and radial displacements; j is a dimensionless geometric parameter
given by

02 = (6.5)
12R 2

Q is the dimensionless frequency

= wR (6.6)
Cp

where w is the dimensional angular frequency and c, is the speed of compressional
waves in a flat plate:

E
c2 = (6.7)
v p,(1 - v2)

E, ps, and v are respectively the Young's modulus, volumetric density, and Poisson's
ratio of the cylinder material; and q3 is the complex magnitude of the applied stress
in the radial direction which has been nondimensionalized by the factor E/(1 - v2).
In our problem this applied stress is the pressure exerted by the powder on the tube
wall from within.
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We seek solutions of the form

u(x, ) = U cos kx cos n
v(x, ) = V sin kx sin n¢

w(x, ) = W sin k.x cos no

(6.8)
(6.9)

(6.10)

where k, is the nondimensional wavenumber in the axial direction and n is an integer.

We assume stress loadings of the form

qx = -rx,. cos kxx cos no
qO = --r, sin kxx sin no

q,. = -r,, sin kxx cos no

(6.11)

(6.12)

(6.13)

where the negative sign is necessary because the foam is on the inside of the shell.

Returning to the equations governing motion of the shell (6.2-6.4) and making
use of (6.8)-(6.10) (6.11)-(6.13), we obtain algebraic equations for U, V, and W in
the form

(kA 4 + kA 3 + k'2A 2 + kxA 1 + Ao - p 2M) ( uW)i
R1 - v2

h E

T.r)

\rr/,"rrr (6.14)

0[0 0
A4 =  0 0 0

0 0 #2
0 0
0 0J
() 0

A2 [ 0
0

0n[2
2f12n2]

0,l+V _V]

0 0
0 0

n2(1 +/32)
n + n 3 2

0
n +3 n324
1 + fnl4J

M =0 1 0
0 1
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where

0

0
A -nl+v

-

-Vy
1-1Vn22

Ao = 0
0

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

1 (1 + 32)



6.4.2 Foam in Cylindrical Coordinates

The nondimensional equations of elasticity for a cylindrical solid (see Figure 6-14)
under steady harmonic motion are given by

L11  L12  L13  Uf
L21  L22  L 23  VUf
L 31 L23 L33: wf

+2 0
01 /Uf\

01 Vf)
1] \Wf/

(6.21)

where lengths and displacements have been
of the shell R,

nondimensionalized by the mean radius

Using the methods of Mirsky (1965) (also see Leissa [32]), we find the solutions
to be

u(x, r, ) = Uf(r) cos kxx cos no
v(x, r, ) = Vf (r) sin kxx sin no

w(x, r, ) = Wf(r) sin kmx cos n¢
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and the nondimensional frequency is given by

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)L33 = 2(1 - Vf)

2 = 2RM(1 + vf)(1 - 2vf) P.w2

2pf(l1+vf)(1-2vf)

(6.30)

(6.31)
(6.32)
(6.33)

L1 = (1 - 2v ) r 2



Figure 6-14: Schematic of cylinder geometry and displacements

where

Uf (r) = kxA,,,Jn(pir) + kxBmYn(pir)

- CmnJn(p 2r) - DmnYn(p2r)

Vf(r) = - AmnJn(pr) + n Bmnyn(pr) + n CJn(p2r)
r r r

n . dJn(P2r) dY+F (p2r)
+-DmnYn(p 2r) + Em + F dr
r dr dr

(6.34)

(6.35)

Wf(r) = Am dJn(pir)
dr

+ BmdY(pr) + Cmndr
dJ,(p 2r)

D dY, (2r) n n+ Dmn -r) mn J (p2r) + - FYn (p2r)
dr r r

(6.36)

where Amn,, Bmr, C,r,, Dmn, E.n, and F.r, are constants, J. is the Bessel function
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of the first kind, Y, is the Bessel function of the second kind and

P 2(1 - vf)

1- 2Vf

The boundary conditions are

Uf (r = 0) < 00
Vf(r = 0) < 00
VW(r = 0) < oo00

Uw((r = R) =

VW (r= R)-= V( R
Wf r= = W

The boundary conditions at r
constants are found using

-An
R

dJn(d

= 0 require Bmn = 0 = Dmn = Fmn,. The remaining

(pa2) -(P2) 0( 1 A0
(P2) dr Cmn = V (6.45)

2 R ) n Emn W
R

To facilitate a later step, we divide the solutions for Amn,, Cmn, and E,,n into parts cor-
responding to the cases where the right hand side is given by (1 0 0 )T, (0 1 0)T,
and (0 0 1)T such that

(AEmnUm
Emnu /

Amn •  Amnw
+V CmnV + W CnWI

.Emnv / Emnw

Using the displacements, the stresses at the interface of the foamn and the cylin-
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(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

Amn\

=Cmn
SEmn/

(6.46)



drical shell are given by

Ef

(1 + f) (R)2

- p ) n (P2') P2 7 Jn+1R P2 ,)]Cmn

+ nJn
2 P2 Rl

Tr4= (1= v i), [-n(n -
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1) J A pi

R4p2
R

Th)

R ) + npl J,+1R

- n2• Jn+1R ( R4)]Cmn

-p 2 Jn+ 1R

[1 (
2n(n - 1)2

R
+ n(n - 1)

+ [n(n -

+ (k -p -221x 2 R 2p~l~ )

+1 j 'ý41 ArnnR

A (p4)JA (P2 'ý
J Rp2

jnI

ni•J
- P2 n+1 1

These stresses can be written in terms of the shell displacements

[a1 a 2
a 4 a 5
Q7 a•

a3 Amnc Amn, Amn ,,
a96 LCmnU CmnV CmnW Vw
ag E7mnU Emny Emnw W
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Pi )]Amn

+[-(n2
-n 22n P2 r
2) J (P2(R\

Ef
T (1 + vf ) ( ) 2

P2 JR4l Ern } (6.48)

KR)

2 Cmn

P227ZI R')Emn} (6.49)

( Tr
Tr¢
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Ef
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a9 = n(n - 1),Jn

a 6 = - (n 2
p~r2 '

-n--
2

P27~)R n
Jn

a3 -= - nJn2
a 8 = (n(n - 1)

- np2-

p2 7)R
ft 2

P2RI)
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Rii~
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a1 = kx nJn Ri\

P1.-
R

+ pi-

S Jn+R
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6.4.3 Iterative Solution for the Wavenumber

Using the relations for the stresses developed at the exterior of the foam, we can write
the governing equation for the foam as

(k4A 4 + kxA 3 + k'A 2 + k.A 1 + Ao

R 1 - v2  Ef

h E ( l+ f)

1al
a4
Pa7

q- 2M) V

(-2 (3 Irnn

a 2 a3 AmnU
a5 a6  CmnU
a8 a9J LEmnU

Amnv

CmnV
Emnv

Amnw U)
Emrnwj W

(6.60)

This equation may be written in a simplified form as

(k4 A4 + k A + A2 + k +k2A2 ± kxA+ Ao + Af -
fo)
0)0Q2M) V

(UW)
(6.61)

where Af is a matrix that represents the complex impedance of the foam given by

R 1 - v2 Ef 1 a 2 a3  Amnu Amnn Amnwl
Af E (1 '+ R2 a 4 a5 a 6  CU CmnV CmnW (6.62)

A E (1 + v) a7 as a9 EmnU Emnv Emnw
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Now that we have an equation for the combined foam-shell system, we must
solve for the wavenumber k,. Because the matrix A1 is a nonlinear function of the
wavenumber k_ and Af is relatively small, we use an iterative approach to solve for
the wavenumber. First, for each desired value of n over the desired frequency range we
compute the corresponding wavenumbers for the empty shell (i.e. by setting Af = 0 in
(6.61)). Then, using this initial estimate for the wavenumber we calculate the stresses
developed in the foam at the interface with the shell and the corresponding matrix
Af. Next, we recalculate the wavenumber using (6.61). We continue to recalculate Af
and the wavenumber until the value of the wavenumber converges to within a desired
error. For an error of 1 x 10- 9 in the wavenumber, usually only three iterations are
necessary.

To solve (6.61) for the wavenumber k, as a function of frequency, we treat the
problem as a polynomial eigenvalue problem, which can easily be transformed into
a traditional eigenvalue problem. There are multiple solutions for the wavenumber
corresponding to different modes shapes and to right or left travelling waves. To select
the appropriate solution, we examine the corresponding mode shape and choose a
single direction of propagation for consistency.

6.4.4 Loss Factor

Once k, has been determined, we estimate the equivalent loss factor as a function of
frequency. To do this, we again consider an empty cylinder, now characterized by an
"effective" complex Young's modulus E = E0(1 + jr/). Then the loss factor is given
by

Im E
S= E (6.63)Re E

As a result of the nondimensionalization, the modulus of the tube only appears in the
nondimensional frequency parameter Q given by (6.6). For ea~ch value of n, we use
the set of k, obtained above and (6.14) with the inertia matrix given by the identity
matrix becomes an eigenvalue problem for 22 for the empty tube. In solving the
eigenvalue problem we obtain multiple solutions for W2, and the appropriate value is
chosen after examination of the corresponding mode shape. Finally, the loss factor is
obtained using

Im Q n 
(6.64)

Re.

6.5 Results

Figures 6-15-6-20 show the loss factor curves and experimental loss factor measur-
ments for the cylinder filled with Foamex Sensus foam. Based on the loss factor
curves, we conclude this model and solution method are a good predictor of the loss
factor. In Figure 6-20 the experimental data occur at a lower frequency than theoret-
ical curve shows. There are a few contributing factors to this result. The dispersion
relation of the undamped curve is calculated beginning a small percentage above the
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cutoff frequency. Even though the added mass of the foam effectively lowers the cutoff
frequency, it is not easy to calculate the loss factor and dispersion relation at frequen-
cies below the original cutoff of the empty cylinder. Furthermore, the prediction of
the cutoff frequency by the shell model is not exact.

-A
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Nondimensional Frequency Omegahat
0.4 0.45

Figure 6-15: Loss factor as a function of frequency for torsional (n = 0) modes

6.6 Discussion

We define a new, nondimensional frequency that is normalized by the parameters of
the low-wave-speed material given by

(6.65)

2p(l+vfy)(1-2*vf)

Damping attains local maxima and minima when C is order unity.
Typical dimensionless dispersion relations for n = 0 (torsion), n = 1 and n = 2

are given in Figures 6-21-6-26, respectively. The dispersion curve gives the relation
between the wavenumber and frequency for a travelling wave in an infinite cylinder.
The standing wave behavior (i.e., natural frequencies) for a finite tube can be approx-
imated using the dispersion curve. A resonance in the finite tube occurs when the
wavenumber is approximately an integer multiple of the inverse of the length of the
cylinder. The values of the wavenumber at which resonances occur should not vary
significantly from the empty to filled cylinders; therefore, a comparison between the
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Figure 6-16: Loss factor as a function of frequency for axial (n = 0) modes
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Figure 6-17: Loss factor as a function of frequency for n = 1. Asterisks denote data
from Table 6.1.
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Figure 6-18: Loss factor as a function of frequency for n = 2. Asterisks denote data
from Table 6.2.
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Figure 6-19: Loss factor as a function of frequency for n = 3. Asterisks denote data
from Table 6.3.
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Figure 6-20: Loss factor as a function of frequency for n = 4. Asterisks denote data
from Table 6.4.

dispersion relation for the filled cylinder and the real part of the dispersion relation
for the unfilled cylinder can be used to explain the differences in behavior of the filled
and unfilled finite cylinders.

The axial and torsional (n = 0) modes have linear dispersion relations because
those waves are nondispersive. The bending and wall flexing modes are dispersive
and have nonlinear dispersion relations. For n > 1 and the n = 0 breathing modes,
there is a non-zero cutoff frequency so the dispersion relation does not start at zero
frequency.

The real part of the dispersion relation does not vary significantly from the dis-
persion relation for the empty cylinder. At frequencies where the real part of the
dispersion relation for the filled cylinder lies above the dispersion relation for the
empty cylinder, the low-wave-speed material is acting as an added mass, lowering the
resonant frequencies for a given mode shape. At frequencies where the real part of
the dispersion relation of the filled cylinder lies below that of the empty cylinder, the
low-wave-speed material is acting to stiffen the cylinder. For lossy low-wave-speed
media, the real part of the dispersion relation of the filled cylinder will be monotoni-
cally increasing. For low-wave-speed materials with small loss factors, the real part of
the dispersion curve may have inflection points near the resonant frequencies of the
low-wave-speed material. Near these frequencies, the system may experience mode
splitting, two resonant frequencies exist in the neighborhood where only one reso-
nance existed in the undamped system. This behavior is analogous to a tuned-mass
damper.
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Figure 6-21: Dispersion relation of empty cylinder (dashed) and real part of dispersion
relation of foam-filled cylinder (solid) for torsional (n = 0) modes
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Figure 6-22: Imaginary part of the dispersion relation for foam-filled
torsional (n = 0) modes and q = 0.2
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Figure 6-23: Dispersion relation of empty cylinder (dashed) and real part of dispersion
relation of foam-filled cylinder (solid) for bending (n = 1) modes
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Figure 6-24: Imaginary part of the dispersion relation for cylinder filled with foam
for the bending (n = 1) modes and 77 = 0.2
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Figure 6-25: Dispersion relation of empty cylinder (dashed) and real part of dispersion
relation of foam-filled cylinder (solid) for n = 2 modes
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Figure 6-26: Imaginary part of the dispersion relation for cylinder
for the n = 2 vibratory modes and ~ = 0.2
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The imaginary part of the dispersion relation determines the decay of the wave,
or the damping. It has local maxima and minima corresponding to local minima and
maxima in loss factor.

Figures 6-27 and 6-28 show typical loss factor curves for n = 0 (torsion) and n = 1.

1

0

..(U0g(U-

-.J

1
5 10 15

Nondimensional Frequency Omegahat

Figure 6-27: Nondimensional loss factor curves for torsional (n = 0) mode with
,q = 0.2 (dashed) and r7 = 0.7 (solid)

6.7 Conclusions

The results of the experiments described in this paper demonstrate that filling a
thin-walled cylinder with a soft, low-density foam material can provide considerable
damping in a simple and inexpensive manner. We have developed a model that
couples shell vibrations to a lossy, elastic material and computes dispersion relations
and loss factor curves as functions of frequency for the various mode shapes. The
travelling-wave behavior described by the dispersion relations is used to approximate
the damping in the standing-wave behavior observed in resonant response of finite
cylinders. The theoretical loss factor curves agree well with the measured results for
beam bending modes and tube-wall-flexing modes.

Potential applications of this damping method include reduction of structure-
borne sound. Such an example is autmotive driveshafts whose modes are excited
by gear teeth meshing as well as other closed structures where moderate frequency
vibrations are a nuisance. Further work is needed to identify and characterize low-
wave-speed materials that are lightweight and lossy.
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Chapter 7

Finite element analysis of
structures coupled to lightweight,
low-wave-speed materials

7.1 Introduction

The finite element method is a valuable tool for analysis and design of structures.
Eigenvalue problems are frequently encountered when solving for mode shapes and
natural frequencies. Numerical methods for the solution of eigenvalue problems are
well studied (see e.g., [21]). To facilitate the solution of eigenvalue problems of struc-
tures containing low-wave-speed media, a numerical method is tailored for such prob-
lems.

The resulting eigenvalue problems of structures containing low-wave-speed media
have certain characteristics, some of which make the numerical methods more difficult
to implement. The addition of low-wave-speed media to a structure significantly
increases the size of the discritized system matrices. The increase size of the matrices
greatly increases the computation time for standard algorithms. As an example,
the number of elements for a thin-walled cylinder is approximately proportional to
the surface area of the cylinder, but the number of elements for a cylinder filled
with LWSM is approximately proportional to the volume. In general, the low-wave-
speed media has frequency dependent properties. The frequency dependence means
that the eigenvalue problem becomes nonlinear, and the standard algorithms are no
longer useful. Furthermore, these systems have eigenmodes which consist primarliy of
motion of the LWSM and, therefore, have a very high loss factor. Hence, the modes
are irrelevant to the practical engineer, and it is inefficient and unnecessary to solve
for them.

Similar problems of complex eigenvalues and frequency dependent material prop-
erties arise when using finite elements to analyze structures with constrained layer
damping. Johnson and Kienholz [29] obtain estimates of the loss factor using the
modal strain energy method. In the modal strain energy method, the mode shapes
are assumed to be real and the loss factor is calculated from a summation of the
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ratio of the loss factor of each element times the strain energy in that element to
the total strain energy of the structure. Leung [33] extended the common subspace
iteration method to symmetric, complex matrices, which makes it useful for calcu-
lating a few eigenvalues of frequency independent systems. Ma and He [36] use an
asymptotic method in which the natural frequency, loss factor, and eigenvector are
expanded in a series to solve the complex eigenvalue problem of damped sandwich
plates. Potier-Ferry and co-workers [11, 14, 37] extend the asymptotic method using
Pade approximants and homotopy. Cortes and Elejabarrieta [8] use the undamped
eigenvalues and eigenvectors as the starting point. Then, they begin an iterative loop
which computes eigenvector derivatives and uses the Rayleigh quotient to find the
eigenvalue. Because the method calculates each eigensolution individually, frequency
dependent properties can be used by updating the frequency dependent portions of
the matrices during each iteration. Wagner et al [68] model foam using a discrete
Kelvin model in finite element simulations of automotive structures damped with
foam. Chen et al [5] analyze finite element models of sandwich structures using a two
step approach. In the first step, they calculate the eigensolution of the real part of
the system using an asymptotic method. In the second step, they use order reduction
on the full complex system. Dewulf and De Roeck [12] compare four approximate
eigensolution methods for frequency-dependent constrained layer systems and use
modal strain energy to calculate the loss factor. Wang and Wereley [69] use a spec-
tral finite element analysis in which the elements are formulated using the travelling
wave displacement solutions to analyze sandwich beams with frequency dependent
constrained layer damping. Lin and Xia [34] solve the eigenproblem for undamped,
frequency-dependent structures using dynamic condensation.

In this chapter, we develop an eigenvalue solution method for the finite-element
discritization of a multi-degree-of freedom structure coupled to a lightweight, frequency-
dependent damping material. The underlying principle of operation is that the mode
shapes of the primary structure do not change significantly with the addition of the
damping material, and therefore, the motion of the low-wave-speed media can be
treated as a forced problem. First, the desired eigenvalues and eigenvectors of the
undamped structure are calculated using a traditional method, such as subspace it-
eration or Lanczos method. Then, for each desired eigenvalue and eigenvector of the
primary structure, the displacement of the damping material is calculated using the
structure as the excitation and the eigenvalue estimate as the driving frequency. The
eigenvalue of the full system is then calculated using the Rayleigh quotient. Iterations
continue on the deformation of the damping material using the newest estimate of the
eigenvalue until convergence. Finally, the loss factor can be calculated as the ratio of
the imaginary part to the real part of the eigenvalue.

This method has the advantage that it only calculates the desired modes, not the
well damped modes which are dominated by motion of the low-wave-speed medium.
Furthermore, it allows for frequency dependent materials to be used. The method
relies on its separation into a smaller eigenvalue problem and a smaller forced problem
to attain computational efficiency.
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7.2 Approximate Eigensolution Method

The finite element model of the primary structure is characterized by a mass matrix
M, and stiffness matrix K,. The finite-element model of the damping material is
characterized by a mass matrix Mf and frequency-dependent, complex stiffness matrix
Kf (w). The damping material and primary structure are coupled together without
slip such that there are common degrees of freedom between the two models (see
Figure 7-1). The displacement vector of the primary structure may be partitioned
into the "free" and interfacial degrees of freedom

u = us (7.1)uUi)

and the displacement vector of the damping material can similarly be partitioned

Uf = i (7.2)
Uf "-Uff

Based on these displacement vectors, the mass and stiffness matrices for the primary
structure and damping material can be partitioned

[Ms .M8i] (7.3)

Ks = KT Kij (7.4)

[M ii Mfi
M =L M M(7.5)

[Kfij Kfi] (7.6)KfK(w) = KfTi K (7.6)

where K (w) is complex and possibly frequency depenedent due to its nature as a
lossy material.

The governing equations for the combined system are given by

T Kdii+Kfii Kfi -w 2  M iiMfii Mfi xi 0

O K KJ K[J 0 MT MffJ Xff o
(7.7)

where we have not written the frequency dependence and loss factor of the damping
material for compactness.

The first step is to calculate the eigensolution of the primary structure given by

(K, - wM) ( ) = 0 (7.8)
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Coupled Noc

Figure 7-1: Schematic of coupled finite element mesh for primary structure and low-
wave-speed material

to serve as the starting point for the damped structure. Any standard algorithm such
as subspace iteration or Lanczos method can be used. For computation efficiency,
only the desired number of modes should be calculated.

Then, the iterative loop begins. The displacement of the foam is calculated using
dynamic condensation and is given by

Xff = -(K!0 - w2Mff) -l( - 2Mi) (7.9)

where L is the current estimate of the natural freuqency. This current estimate 5C is
used to evaluate the stiffness matrices if the system is frequency dependent. Matrix
inversion is not used because it is computationally expensive. Rather, the system is
solved using a more efficient algorithm.

Then, the eigenvalue is estimated using the complex Rayleigh quotient of the full
system

4 2+1 = (7.10)

where the eigenvector v is given by

/ Xsf
v = xi (7.11)

\xff/

Iterations continue by recalculating xff using the newest estimate of w until w has
converged.

An inherent assumption in this procedure is that the that changes in the interfacial

130



component of the eigenvector Vi will be small at each iteration. Because we are
concerned with systems involving a small added mass and stiffness, this assumption
has merit.

One possible problem is that dynamic condensation eliminates the ability to obtain
certain modes. This is clearly seen in a single degree of freedom system with an
attached absorber. Dynamic condensation of the absorber results in an equation
with a single root even though there are two modes for this system.

7.3 Implementation and Results

The approximate eigenvalue solver and following examples are implemented using
Matlab.

7.3.1 Sample Analytical Problem

In this section, we consider an example which can be solved analytically for compari-
son. We consider a single-degree-of-freedom spring-mass system to which is attached
a uniform bar with modulus E(1 + jo), cross-section A, density p and length e. The
left end of the bar (x = 0) has a lumped mass M and is connected to ground with
a spring K as shown in Figure 7-2. The governing equation of the bar under steady
harmonic motion is

02u W2

2+2 u = 0 (7.12)Ox2 C2

where c is given by
c2 E (7.13)

P
and

E = Eo(1 + j?) (7.14)

The boundary conditions on the ends of the bar are

EAO (X = 0) = (K - w2M)u(x = 0) (7.15)

and
(x = 0 (7.16)

The solution to (7.12) is

u(x) = cl sin -x + c2 cos -- (7.17)
c c

The boundary condition at x = 0 gives

cl K - w2M
(7.18)

C2 EA"
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Primary Structure
Absorber

Figure 7-2: Sketch of single-degree-of-freedom system with LWSM absorber

The boundary condition at x = £ gives

C1 W- = tan -e (7.19)
C2 C

Equating (7.18) and (7.19, we obtain the frequency relation

K - w2M w W
= -_ tan -w (7.20)

EA c c

This relation must be solved numerically to obtain the natural frequencies. The mode
shapes are obtained by setting c2 = 1 to give

u(x) = tan -£ sin-x + cos -z (7.21)
c c c

Figure 7-3 shows very good agreement between the analytical solution and both
the full eigensolution and the approximate eigensolution of the finite element model.
This figure also demonstrates the ability of the approximate eigensolution to only
capture the mode of interest. A significant reason for the success of this example is
that the eigenvector of the primary structure does not change with the addition of
the foam. From the frequency response (see Figure 7-4), one sees that the second
mode of the structure is very well damped but still has some effect on the frequency
response. This mode is not captured by the approximate finite element approach.

7.3.2 Bar with layer of foam

In this section, we consider an example problem to demonstrate the ability of this
method to only solve for the modes of interest. We demonstrate the utility of the
proposed method and compare its results to the full eigensolution. We consider a
uniform, aluminum bar of length 63.5 cm, width 12.7 mm, and height 12.7 mm con-
strained to move only in the axial direction. A uniform layer of low-wave-speed
material is attached to the top of the bar (see Figure 7-5). The foam is modelled
using plane strain such that only displacements in the plane occur. The foam has a
Young's modulus of 207500 Pa, Poisson ratio of 0.36, loss factor of 0.7, and density
of 67.4 kg/mn3 . The bar is discritized using 10 two-node elements, and the foam is
discritized using 100 four-node elements (ten along the length and ten through the
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Figure 7-3: Predicted loss factor for spring-mass system with attached bar of LWSM:
analytical for first few modes (x), approximate eigensolution of finite element model
(o), full eigensolution of finite element model (+)
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Figure 7-4: Frequency response for finite element model of spring-mass with (dashed)
and without (solid) bar of LWSM
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Figure 7-5: Sketch of bar with layer of foam

thickness). To calculate the first eight eigenvalues to within 10- 9 using the approx-
imate method, the algorithm requires on average four iterations. Figures 7-6.... 7-9
show the first two axial mode shapes of the bar and foam. Figures 7-10 and 7-11
show the eigenvalues and loss factors calculated

7.3.3 Timoshenko beam with layer of foam

In this example, we compare the approximate eigenvalue solver for a uniform Timo-
shenko beam with a layer of foam to the analytical approach developed earlier and to
experimental measurements. The analytical model produces a curve displaying loss
factor as a function of frequency for a uniform beam, independent of boundary con-
ditions and length. A comparison of the analytical model using both the Timoshenko
and Euler-Bernoulli beam theories shows that there is negligible difference between
the loss factor curves because the deformation of the foam, which is the dominant
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Figure 7-6: First axial mode shape of bar
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Figure 7-7: LWSM deformation for first axial mode of bar



Position [m]

Figure 7-8: Second axial mode shape of bar

Figure 7-9: LWSM deformation for second axial mode of bar

136



x 104

7

1.5
real(co)

Figure 7-10: Eigenvalues of finite element model of
proximate eigensolutions (o), full eigensolution (+)

10-1

10-2

10
-4

10
- 5

0 0.5 1 1.5 2 2.5
Frequency [Hz]
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Figure 7-12: Sketch of beam covered with layer of foam

factor in determining the loss factor, does not change significantly between the two
models.

We consider an aluminum, rectangular Timoshenko beam of width 38.1 mm,
height 12.7 mm, and length 1.448 m vibrating in the x - z plane as shown in Figure 7-
12. A layer of EAR C-3201 foam of height 12.7 mm and width 38.1 mm is placed on
top of the beaIn along its full length.

The foam has a Young's modulus of 2075w05 Pa, Poisson ratio of 0.36, loss factor
of 0.8, and density of 67.4 kg/mn3 as measured by Varanasi and Nayfeh [66]. The beam
is discritized using 20 three-node Timoshenko beam elements. The foam is discritized
nine-node plane strain elements, 20 along the length and 10 through the thickness. A
coordinate transformation assuming small displacements is used to convert rotational
and transverse displacements at the centerline of the beam to axial and transverse
displacements at the top of the beam, where it interfaces with the foam.

To calculate the first 20 eigenvalues to within 10-' using the approximate method,
the algorithm requires on average five iterations for each eigenvalue.

Figure 7-13 shows good agreement between the experimental results, the analytical
estimates developed earlier based on spatial decay of the bending waves, and the
approximate finite element method.

7.3.4 Cylinder filled with foam

We consider a uniform, steel cylinder of length 1.83 m, outside diameter 10.2 mm, and
thickness 3.0 mm. The cylinder is filled with Foamex Sensus viscoelastic "memory"
foam. The foam's properties are based on measurements described earlier. The
cylinder is discritized using twenty seven node elements, one through the thickness,
twenty-four around the circumference, and ten along the length (see Figure 7-14).
Two simulations are run using different meshes (both utilizing 27-node brick elements)
are used for the foam core. The more refined mesh is shown in Figure 7-15. Figures 7-
16 7-19 compare the loss factors calculated using the finite element method with
experimental and analytical results for various circumferential modes (values of n)
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Figure 7-13: Loss factor of aluminum beam covered with a layer of EAR C-3201
foam using: solid line analytical theory, o finite element result, x experiment. Foam
properties by Varanasi and Nayfeh [66]

utilizing the coarse mesh. It should be noted that Wang et al [70] used a finite element
study to classify the mode shapes of the thick-walled cylinders into six categories
instead of simply by the longitudinal and circumferential node numbers.

7.4 Discussion

Figures 7-16-7-19 show that the agreement between the loss factors calculated using
the approximate eigensolution of the finite element model agree well with experi-
mental and theoretical results below 2000 Hz. Above 2000 Hz, the approximate
eigensolution overestimates the real part of the natural frequency but underestimates
the loss factor. While the proofs of the properties of the Rayleigh quotient may not
strictly hold for a complex stiffness, we expect that the finite element model should
overestimate the real part of the natural frequencies and that the error should grow
with frequency as shown.

The coarseness of the mesh is the root of these errors. Because the approximate
eigenvalue solver is implemented in Matlab, we are significantly limited by the sizes
of the matrices as well as the lack of an efficient solver. Improving the mesh of
the cylinderical shell will improve the prediction of the real part of the eigenvalues.
Refinements in the radial direction do not have a significant effect becuase a single
element accurately captures the radial deformation of a cylinder. For the foam core,
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Figure 7-14: Mesh used for cylindrical shell: 24 elements (27-node bricks) in circum-
ferential direction, 10 elements in axial direction, 1 element through the thickness

Figure 7-15: Cross section of refined mesh of foam core
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Loss Factor for n=1 (beam bending)
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Figure 7-16: Loss factor of foam filled cylinder for bending modes (n = 1): approimate
eigensolution of finite element (o), experiment (*), analytical method (solid)

Loss Factor for n=2
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Figure 7-17: Loss factor of foam filled cylinder for n = 2 modes: approirnmate eigenso-
lution of finite element (+), experiment (*), analytical method (solid)
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Loss Factor for n=3
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Figure 7-18: Loss factor of foam filled cylinder for n = 3 modes: approimate eigenso-
lution of finite element (A), experiment (*), analytical method (solid)

Loss Factor for n=4
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Figure 7-19: Loss factor of foam filled cylinder for n = 4 modes: approimate eigenso-
lution of finite element (E), experiment (*), analytical method (solid)
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the mesh must be increased primarily in the radial direction because that is the
primary direction of deformation and hence has significant effect on the accuracy of
the loss factor. Figures 7-20 and 7-21 show that a refinement of the mesh of the foam
core significantly improves the estimates of the loss factor. However, the error in the
estimates of the real part of the natural frequency remain becuase that is a function
of the mesh of the primary structure.

JA ̂-I

Frequency [Hz]
00

Figure 7-20: Loss factor of foam filled cylinder for bending (n = 1) modes: approxi-
mate eigensolution of finite element (o) with refined mesh of foam core, approximate
eigensolution of finite element (0) with coarse mesh of foam core, experiment (H),
analytical method (solid)

An additional complication that can occur is the appearance of mode splitting.
Because of the additional degrees of freedom provided by the LWSM, pairs of vibra-
tory modes can occur near resonant frequencies of the primary structure where only
one mode previously existed. The "new" modes have approximately the same shape
for the primary structure, but the LWSM vibrates in phase with the primary structure
at the smaller resonant frequency and out of phase at the larger resonant frequency.
This phenomenon is analogous to the behavior seen in a discrete tuned-mass damper.
We leave this implementation for future work.

7.5 Conclusions

This chapter developed an approximate eigenvalue solver for finite element models
of structures coupled to low-wave-speed media. The solver was developed to han-
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Figure 7-21: Loss factor of foam filled cylinder for bending (n = 1) modes: approxi-
mate eigensolution of finite element (o) with refined mesh of foam core, approximate
eigensolution of finite element (i) with coarse mesh of foam core, experiment (*),
analytical method (solid)
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dle certain problems encountered when a low-wave-speed material is added to finite
element model of a structure, such as frequency dependent material properties, "un-
interesting" modes dominated by motion of LWSM, and a significant increase in the
number of degrees of freedom in the finite element model. The solver works under
the assumption that the LWSM is a small perturbation to the system such that the
mode shapes of the primary structure do not change significantly. Under this as-
sumption, the eigenvalue problem is transformed into a forced harmonic problem,
and the Rayleigh quotient is used to iteratively find calculate the complex eigenvalue.
The solver is implemented using Matlab and results on simple structures show that
it works well. Results for a more complicated structure, a cylinder filled with foam,
show that the solver works well at low frequencies but that coarse mesh required by
the limitations of Matlab in terms of memory size and solver efficiency prevent the
eigenvalues of higher modes from being accurately calculated.

In the near future, we would like to implement this approximate solver on a
commmercial finite element program. The current implementation of the solver does
not make use of the banded nature of the stiffness and mass matrices for the forced
problem. In a future implementation, we could either maintain that banded nature
or use a solver that contains an algorithm based on graph theory that optimizes the
Gaussian elmination order and hence effectively re-establishes the banding.

145



146



Chapter 8

Conclusions

8.1 Findings

The objective of this thesis has been to develop and demonstrate tools to facilitate
the application of low-wave-speed media (LWSM) as a structural damping treatment.
Significant levels of damping are achieved at frequencies above the first thickness res-
onance of the low-wave-speed material. We have shown that LWSM is an effective
and mass-efficient damping treatment that compares favorably to constrained-layer
damping, particularly for thin-walled tubes. We have demonstrated one such appli-
cation, reduction of noise radiated from vehicle driveshafts. The analytical methods
developed for beams and cylinders are shown to be accurate by comparison to ex-
perimental measurements. The approximate eigenvalue solver makes the the finite
element method a practical tool for analyzing structures with LWSM.

The use of low-wave-speed materials as a damping treatment has many advantages
over other damping treatments that allow it to offer superior performance in a number
of different applications. The low-wave-speed materials that we have examined, such
as glass microbubbles, fiberglass insulation, steel wool, and viscoelastic foam, are
relatively inexpensive. Manufacturing a structure with LWSM is typically simpler
than for constrained-layer damping because the materials can easily conform to a
complicated geometries and a high strength glue bond is not required. Many of
the materials mentioned above also have a wide temperature range. The broadband
damping nature is a useful advantage. Changes to the primary system or errors in
modelling the primary system do not cause significant degradation in performance.
Furthermore, even though the damping is designed for a specific type of mode, such
as damping the beam bending vibrations of a thin-walled tube, signicant damping is
still attained in torsional, axial, and wall-flexing modes. Varanasi [64] demonstrated
that LWSM can improve the performance of belt drives, which takes advantage of the
ability of LWSM to accomodate large strains, and flexure stages, which take advantage
of the fact that the addition of LWSM will not introduce significant creep because
the stresses in the LWSM are small. Impact and shock mitigation is an attractive
application of LWSM that requires further exploration because of the broadband
nature of the damping, the ability to accomodate large strains, and the durability of
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LWSM.

8.2 Future Work

8.2.1 Materials Modelling and Selection

There are two extensive bodies of literature on porous materials, the materials science
viewpoint focusing on quasi-static behavior and design of materials and the acoustics
viewpoint focusing on acoustic properties, which need to be bridged for successful
development of low-wave-speed media as a damping treatment. Materials scientists
have the tools to analyze foams and fibrous materials at a cellular level to predict
properties and to develop low-wave-speed materials with desired properties. Acoustics
researchers have done extensive testing and modelling of porous, fibrous, and granular
materials. The combination of these two would allow for the development of low-wave-
speed materials suited for a variety of specialized applications. The lack of material
properties data is currently a hindrance to application. Additionally, exploration of
existing materials like steel wool and fiberglass that can be used in cryogenic and
high temperature applications is needed.

8.2.2 Mode splitting in finite element

Recalling from the experiments of structures coupled to granular materials the exis-
tence of mode-splitting, the tuned-mass-damper-like behavior in which two vibratory
modes exist in the neighborhood of one mode of the undamped structure, we recognize
a need to account for the possibility of this occurence in the finite element method.
This scenario of mode splitting could arise in applications where selection of a lossy
material is not possible, perhaps due to environmental compatibility concerns. To
solve for this behavior, one must recognize that while the mode shape of the primary
structure is relatively unchanged, the low-wave-speed media moves in phase with the
structure for the lower frequency mode and out of phase from the structure for the
higher frequency mode.

8.2.3 Implementation into commercial finite element code

The eigenvalue solver will be most useful to the engineering community if it is imple-
mented in a commercial finite element code so that it may take advantage of all the
tools currently found in a commercial package. We hope to implement this algorithm
in a commercial code in the near future.
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Appendix A

Damping torsional vibrations in
cylinders using lightweight,
low-wave-speed media

A.1 Introduction

In this section, we develop an analytical model for torsion of a circular tube filled with
a low-wave-speed material. This formulation differs from the study of the cylinder
filled with foam because in that case the full equations to model a cylinder were
required because we were concerned with all possible mode shapes. In this case
where we are only concerned with torsion, the equations for the cylinder simplify
significantly.

A.2 Modelling

We model the cylinderical tube as a simple bar subject to torsion. The foam is
modelled as a elastic solid with a complex modulus. The foam and cylinder are
coupled together through a "no-slip" condition. To obtain estimates of the system
loss factor, we study an infinite length cylinder and foam subject to steady harmonic
motion. We first calculate the wavenumber as a function of frequency for the the
empty cylinder. For a simple torsional model, the waves are nondispersive, and the
wavenumber is proportional to frequency. Then, we calculate the motion of the
foam at the corresponding frequency and wavenumber. Based on the motion of the
foam, the stress at the foam-cylinder interface is calculated. This stress results in
an applied torque per unit length to the cylinder. Using this applied stress, we
can calculate a correction to the dispersion relation of the cylinder. Next, we use
an iterative procedure to solve for the wavenumber of the combined cylinder-foam
system. Finally, we use the complex wavenumber to calculate the loss factor as a
function of frequency.
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Figure A-1: Schematic of cylinder geometry and displacements

A.2.1 Hollow Cylinder

a20 R2O + 2 = T(x, Q) (A.1)Xz2 GJ
where lengths have been nondimensionalized by the inner radius RP, G is the shear
modulus, J is the moment of inertia, T(x, Q) is the harmonic, applied torque per unit
length, and

= wR (A.2)

where
(A.3)C. =-

-'S

We assume a solution of the form

¢(x, Q) = Ne i kzx

and obtain
Rj T(x, r)
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Figure A-2: Schematic of foam geometry and displacements

A.2.2 Foam

The governing differential equation in dimensionless form for the foam under plane
strain and harmonic motion is

- 2 vif) (r2 •( 52 r2
a 2 a2

+rr r2++ r + 2 - 1)
+2r 2R2(1 + vf)(1 - 2vf) f w2] v(r, ,w) = 0SEf I ~ V)J-~

We assume a solution for the foam that has no dependence on the angular coordinate

v(r, 0) = V(r)e j k. x

Then, (A.6) reduces to a Bessel equation

d
+ 7'drdr2 +r2 (2 - k - 1) V(r) = 0

C f -C-f
Cf Cf

c = GfCf P
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(A.7)

where

where

(A.8)

(A.9)

(A.10)

+2
+ 2(1 - vf) (92



where Gf is the complex shear modulus of the foam and pf is the density of the foam.
The solution to (A.8) is given by

V(r) = al J(k:rr) + blY (kA-r) (A.11)

where al and bl are constants to be determined by the boundary conditions, Ji(k,.r)
is the Bessel function of the first kind of order one, Yi (krr) is the Bessel function of
the second kind of order one, and

k7 = f22 - k2 (A.12)

The boundary condition at r" = 0 requires that V(r) is finite; therefore, we obtain
bl = 0. We impose the no-slip boundary condition at the interface of the foam and
the cylinder to obtain

a1 - (A.13)
J, (kr)

Next, we calculate the shear stress at the cylinder-foaum interface using

7r,0 = Gf -%4 (A.14)

where shear strain %¢,O is given by

dV(r) V(r) (A.15)
dr r

The resulting shear stress is

T7b(r = 1) = N (J(k,7 ) - Ji(kr)) (A.16)

J, (kAr)

where J' is the derivative of the Bessel function of the first kind of order one.

The torque per unit length applied to the cylinder by the foam is

T(x, Q) = - 7 ro(r = 1)R dO = 2XR2 GfN (J(kr) 1) (A.17)

where the negative sign is required because the foam is inside the tube.

A.2.3 Solution for Complex Wavenumber

Substituting for (A.17) into (A.5), we obtain

(k- "_ 22) N = -2Rf - 'J(kr) 1 N (A.18)X G J J (kAr)
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Solving this equation for the wavenumber, we obtain

Gf JR(!(kk = F2 + 2  ( Jk)) (A.19)

We use an iterative procedure to solve this equation because the wavenumber shows
up inside the Bessel function. First, we take k, = Q as the initial estimate that is
given by an empty tube. Next, we calculate the correction term due to the stress at
the foam-tube interface using this initial guess. Then, we calculate the wavenumber
using (A.19). We recalculate the foam correction term using this updated value for
the wavenumber and then obtain a new estimate of the wavenumber using (A.19). We
continue this iterative procedure until the wavenumber converges to within a desired
error bound. Typically only one or two iterations is required for one percent error.

A.2.4 Loss Factor

To calculate the loss factor, we assume that we have an empty cylinder with a complex
modulus given by G = Go(1 + jr/) where rl is the material loss factor. Using the fact
that torsional waves are nondispersive and the definition of QZ (A.2), we obtain the
loss factor to be

n ( (A.20)
Re (k

A.3 Results

The real part dispersion curve for the filled tube crosses the that of the empty tube.
From (A.19) the these two curves cross when

Re(Ji(kr)) = Re(J((kr)) (A.21)

These intersections occur in pairs, one in which the imaginary part of is a minimum
and one in which the imaginary part is approximately zero. The case in which the
imaginary part is a minimum occurs when J1 (k,.) is close to zero and corresponds to
local maximum in the system loss factor. The value of kr corresponds to the roots
of J1 3.8317, 7.0156, 10.1735,... Because we assume the wavenumber to be small,
kmr - Q and the roots of J1 are approximately the nondimensional frequencies of
maximum damping. The other case occurs when Jl(kr) ; Ji (kr) and corresponds
to a local minimum of damping. This corresponds to the case when the stress at
interface is a minimum. In fact, one obtains this equality when solving for free
vibration of a cylindrical solid by imposing the zero stress condition at the surface.
The corresponding values of kr are 4.5700, 7.7715, 10.9374,...

These results could easily be modified for a layer of foam on the inside or outside
of the tube. A similar analysis could be performed to calculate the loss factor of axial
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Nondimensional Frequency Omegahat=o Rcf

Figure A-3: Dispersion curve for torsional vibrations: empty (dash-dot), real part of
wavenumber for foam-filled tube (solid), imaginary part of wavenumber for foam-filled
tube (dashed). Fourteen percent mass ratio, foam material loss factor of 0.1
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Figure A-4: Loss factor curves as a function of nondimensional frequency 2 for various
material loss factors: r- = 0.1 (dash-dot), 0.5 (solid), 0.8 (dashed)
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vibration of uniform tubes filled with low-wave-speed media. In that case a circular
or rectangular cross section is tractable.
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