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Abstract

Investors commonly use stopping rules to help them get in and out of their investment
positions. Despite their widespread use and support from behavioral finance, there
has been little discussion of their impact on portfolio performance in classic portfolio
choice theory. In this thesis, I remedy this situation by discussing the performance
impact of stopping rules, highlighting the stop-loss rule.

Stop-loss rules-predetermined policies that reduce a portfolio's exposure after
reaching a certain threshold of cumulative losses-are commonly used by retail and
institutional investors to manage the risks of their investments, but have also been
viewed with some skepticism by critics who question their efficacy. I develop a simple
framework for measuring the impact of stop-loss rules on the expected return and
volatility of an arbitrary portfolio strategy, and derive conditions under which stop-
loss rules add or subtract value to that portfolio strategy. I show that under the
Random Walk Hypothesis, simple 0/1 stop-loss rules always decrease a strategy's
expected return, but in the presence of momentum, stop-loss rules can add value. To
illustrate the practical relevance of this framework, I provide an empirical analysis of a
stop-loss policy applied to a buy-and-hold strategy in U.S. equities, where the stop-loss
asset is U.S. long-term government bonds. Using monthly returns data from January
1950 to December 2004, I find that certain stop-loss rules add 50 to 100 basis points
per month to the buy-and-hold portfolio during stop-out periods. By computing
performance measures for several price processes, including a new regime-switching
model that implies periodic "flights-to-quality," I provide a possible explanation for
our empirical results and connections to the behavioral finance literature.

Consistent with the traditional investor's problem, I discuss a generalization of
this approach to general stopping rules, which are superimposed on arbitrary portfolio
strategies. I define a stopping utility premium and discuss how uncertainty about the
true stochastic process can explain a potential value added or value lost by the use
of stopping rules in practice.

Thesis Supervisor: Andrew W. Lo
Title: Harris & Harris Group Professor of Finance
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Chapter 1

Introduction

As changes in government policy and the reduction of social security shift more and

more responsibility of retirement investment decision-making onto the individual in-

vestor, effective financial planning and asset allocation has become a critical issue. In

parallel, the field of portfolio choice has developed an ever expanding set of solutions

to the asset allocation problem. Despite the plethora of solutions, practical limita-

tions relating to the difficulty in forecasting returns and the real costs of active trading

suggest a more passive approach to investment, based on low-cost index funds with

little emphasis on active trading or frequent rebalancing. Despite the simplicity of this

passive approach, human behavior often contradicts this approach leading investors

to change their investment positions based on market performance. As a result, in

practice, portfolio allocation is dominated by the use of common heuristic strategies

and simple rules that overlay underlying investment strategies. In particular, stop-

loss rules-predetermined policies that close out long or short positions after reaching

a certain threshold of losses-are commonly used by retail and institutional investors

to manage the risks of their portfolios. Due to the highly nonlinear nature of these

stopping rules, it is difficult to gauge their impact on overall portfolio performance in

the classic framework of portfolio choice. In this thesis, I develop a general framework

for measuring the efficacy of stop-loss rules and other stopping-based market-timing

strategies, which is applicable to general price processes and independent of sampling

frequency. I then characterize the link between stop-loss, nonlinear market-timing



strategies, and a stopping premium. This link allows me to provide guidelines for the

use of stopping rules in practice, which connects in a very natural way to standard

portfolio theory.

This thesis consists of three main sections. In Chapter 2, I discuss practical

asset allocation by focusing on four discussion areas: financial planning, traditional

portfolio choice theory, behavioral finance, and empirical findings in asset allocation.

This section explains some of the key differences between asset allocation in practice

and theory, as well as provides motivation for examining stopping rules. Motivated by

the portfolio choices of investors and my discussion of asset allocation, I then examine

the efficacy of the classic stop-loss rule in Chapter 3. In order to explain "When

stop-loss rules stop losses?", I develop a framework for measuring their performance

impact on an underlying strategy and derive conditions under which stop-loss rules

add or subtract value from an arbitrary portfolio strategy. In particular, I discuss

how, under the random walk hypothesis, stop-loss cannot stop losses, whereas, under

momentum or regime switching, stop-loss may actually stop losses. To illustrate the

practical relevance of my framework, I provide an empirical analysis of a stop-loss

policy applied to a buy-and-hold strategy in U.S. equities, where the stop-loss asset is

U.S. long-term government bonds. Using monthly returns data from January 1950 to

December 2004, I find that certain stop-loss rules add 50 to 100 basis points per month

to the buy-and-hold portfolio during stop-out periods. By computing performance

measures for several price processes, including a new regime-switching model that

implies periodic "flights-to-quality," I provide a possible explanation for the empirical

results and connections to the behavioral finance literature. Given the success of my

framework for examining the efficacy of stop-loss rules, I extend this framework to

more general superposition type stopping rules in Chapter 4. I demonstrate how

stopping rules can add or subtract value to arbitrary portfolio strategies. I explain

this more specifically by examining scenarios where I relax the assumption that the

stochastic process for asset returns is known, and I show how in the classic utility

sense stopping rules can add value.



Chapter 2

Asset Allocation

In this chapter, I highlight several important aspects in asset allocation including: fi-

nancial planning, traditional portfolio choice theory, behavioral finance, and empirical

portfolio choice. In Section 2.1, I discuss financial planning for individual investors

by examining the current state of the field for long term investment. I explain who

provides investment services for households and the specific investment vehicles that

are available for the typical household retirement investor. In Section 2.1.4, I discuss

how a retirement plan is created and predominant rules of thumb for asset allocation

in retirement planning. I then discuss several heuristic strategies, which can be de-

duced, by examining common retirement investment options as well as general advice

in Section 2.1.5. Following my discussion of the practical implementation of financial

planning, I then turn to the academic based theory of portfolio choice in Section 2.2.

I review the field of portfolio choice and discuss how it has been extended to pre-

dictability in asset returns in Section 2.2.1 as well as its connections with behavioral

finance in Section 2.2.2. Given the recent emphasis on behavioral finance in portfolio

choice, I then turn to the field of behavioral fiance and examine the basic relevant

principles for investor decision-making in Section 2.3. After my examination of the

practical aspects of portfolio planning in Section 2.1, my discussion of the academic

findings relating to portfolio choice in Section 2.2, and a review of important investor

decision making principles in Section 2.3, it only seems fit that the final section of this

chapter focuses on what household investors' are actually doing in their investment



accounts. I discuss the current findings in empirical portfolio choice allowing me to

point out the important characteristics it shares with the principles laid out in the

three previous sections.

2.1 Financial Planning

The financial planning field has long been providing advice for both individuals and

businesses on how to effectively save and plan their financial future. Most investors

are not aware of how to structure their lifestyle in ways that allow them to create ef-

fective spending and savings habits that can secure their stable retirement, children's

education, or buy their dream house. Individual investors are faced with real world,

non-linear and uncertain constraints, which may make taking financial decisions feel

daunting and complex. As a result financial planning is both a necessary and com-

plicated experience for investors. Since financial planning is a field which must cater

to wide variety of needs and goals for individual investors, the field is governed by

simple heuristics, general advice, and simple rules to follow.

Financial planners stress several important but simple goals for investors. Those

goals include: creating positive net worth, spending less than you earn, and starting

to save as soon as possible. These goals are exactly mirrored by academic work based

on positive NPV and the time value of money. The aim of financial planning is to help

individuals create good financial habits which are consistent with their financial goals.

Since financial planners must attempt to provide a suitable solution financial plan for

each individual investor, instead of exact solutions they offer general heuristic advice.

In particular, they suggest tax-deferred investing (participation in a retirement plan),

diversification, long term contributions, financial protection, and monitoring.

The use of tax exempt vehicles is heavily stressed by financial planners because

it provides a simple way for investor to take advantage of "free" opportunities given

to them by the government. They suggest making maximum contributions into tax-

deferred or tax-exempt funds such as IRAs or employee based defined contribution

plans. I provide a summary of these investment options in Section 2.1.2.



Financial planners understand that a tax exempt vehicle is a simple way for an

investor to make decent returns without having to make speculative choices. Finan-

cial planners also suggest that investors engage in automatic saving strategies. They

provide heuristic methods to maintain this behavior which include joining defined

contribution plans, saving consistently with every paycheck, diverting earnings di-

rectly into savings accounts, and saving part or all of bonuses and raises. This advice

is important because it demonstrates how investors can use self-control mechanisms

which avoid human behaviors that are not consistent with good financial health. More

specifically, by saving systemically, one avoids the potential for putting money into

the market only during upward movements in the market. Automatic investing helps

the investor "average" into the market.

Financial planners also stress diversification. They remind investors that having

some portion of their investment in products with higher risk can help boost returns.

This boost in return can help keep individuals up to speed with inflation. As for where

to invest, they suggest diversified funds that can provide the portfolio management.

There is one point where the investment advice of financial planners is controversial.

They make the comment that you can afford more risks if your investment horizon is

longer. This comment can sometimes be used to suggest that financial planners think

risks decrease in the long run, which is not true. In fact, risks increase with horizon

but for most people risk tolerance decreases with horizon.

Financial protection is also important to secure long term investments in the

case of an emergency or down-period in the economy. Financial planners suggest

that investors maintain an emergency fund of money which is accessible to prevent

from early liquidation of long term holdings. Another form of financial protection is

insurance. Products such as life insurance, car insurance, and fire insurance can help

investors protect their long term investments and help them to deal with financial

crises.

Since financial goals, market conditions, and income conditions change with time,

financial planners also suggest monitoring and revising financial plans every 2 or 3

years or when there are significant changes in preferences, goals or financial condi-



tions such as changes in the tax code. Monitoring financial performance can help

keep investors on track with their goals. The low monitoring frequency of individ-

ual investors further suggests that when they invest they should invest in products

such as diversified funds which automatically adjust with time or require minimum

monitoring frequency.

Financial planners also stress the importance of avoiding common financial traps.

The most common of these include high interest debt such as credit cards and loans.

Since one of the greatest mistakes investors make is lack of participation in savings

plans, they stress that it is never too late to start saving for the future.

2.1.1 Long Term Investment: Current State of the Industry

Over the past several years there have been significant changes in the financial indus-

try which has resulted in changes in the structure of how people invest their money.

Banks, Insurance Companies, and Brokerage Firms have become more similar in the

services that they offer. As a result, the field of Financial Planning has expanded

significantly and grown in importance over the past twenty years.

As a result of financial planning advice, the financial industry has developed prod-

ucts which attempt to cater to the needs of individual investors. Companies like

Vanguard@, Fidelity@, TIAA-CREF@, Janus Funds@ and American Funds® pro-

vide a wide array of funds for individuals with varying preferences. Each of these

funds promote their services by suggesting that they provide diversification, port-

folio management, lower costs than active investment, experience in the field, size,

continuity, and ease for the investor.

Vanguard® suggests there are three important considerations for a potential in-

vestor: investment objective, time horizon, and risk tolerance. Common investment

objectives are retirement planning, funding college education, estate planning, gen-

eral investing, and tax planning. Time horizon is important because several funds

have time varying allocation between different asset classes. Risk tolerance is con-

sidered synonymous with the amount of allocation to stocks versus bond and cash

equivalents. The main categories for classifying risk are conservative and growth.



Conservative funds have less exposure to equities and growth funds are more heavily

weighted in equities and higher risk products.

Retirement funds or retirement planning funds which vary asset allocation with

time horizon are often called lifecycle or lifestyle funds. Each of these funds is es-

sentially a fund of funds which is mixed appropriately for the desired amount of

risk tolerance whether it be growth, conservative growth, etc. Common examples

of the lifestyle or lifecycle funds are Vanguard LifeStrategy® Funds, and Fidelity

Freedom@ Funds. A broader review of investment options is presented in the follow-

ing section.

2.1.2 Retirement and Long Term Investment Options:

When it comes to retirement plans, there are many options in particular: Quali-

fied plans, individual retirement accounts (IRAs), "almost" qualified plans, and Non-

Qualified Plans. These plans are generally sweetened with tax-breaks to encourage

taxpayers to save for retirement. Because of these "free opportunities", the govern-

ment has laid out very complicated rules governing how much money can be put

into these plans, as well as regulations and penalties for withdrawing monies before

retirement, and distribution requirements.

A Qualified Plan is a plan that is qualified to receive certain tax benefits as

described by Section 401 of the U.S. Tax Code. It is essentially a forced savings plan

established by an employer to benefit its employees. Plans of this type include 401(k),

profit sharing plans, Stock Bonus Plans, Money Purchase Pension Plans, ESOPs,

Defined Benefit Plans Target Benefit Plans and Self-Employed Plans (Keoghs). The

most common of these are the 401(k) Profit Sharing Plans and Defined Benefit Plans.

A 401(k) Profit Sharing Plans or simply 401(k) plans allow the employees to

choose to defer some of their salary and employers can also make contributions. Typ-

ically, there are "vesting" rules that apply. Employees are always "100%" vested in

their deferrals but the employer contributions are subject to various vesting rules.

The growth of such plans has shifted more responsibility for retirement savings and

investment management onto the individual. In order to provide a diversified set of



bonds and equities, employers typically offer a "menu" of funds that the employee

may choose from.

401(k) plans are quite different from the Defined Benefit Plans. In contrast, De-

fined Benefit Plans place more of the funding burden on the employer rather than

the employee. They typically require the employer to make annual contributions and

the plan is generally maintained in one large account. The terms of a defined benefit

plan always include a promise to pay each participant a specific dollar amount as an

annuity beginning at retirement. In order to fund this plan, companies must com-

pute annually the funds necessary to satisfy their retirement liabilities. Recent stock

market corrections and the decline in interest rates have resulted in many large com-

panies having "under-funded" defined benefit plans. In addition to having strongly

concentrated company risk, Defined Benefit Plans can also be non-transferable. In

the modern workplace, investors need more flexibility as well as more diversified risks

to protect their investments. As a result, Defined Benefit Plans are becoming less

and less common.

Another investment option which employers can offer is a Stock Bonus Plans.

Stock Bonus Plans are similar to profit sharing plans with the exception that the

employer contributes to the plan in the form of shares of the company stock. It is

clear that this can be a problem for employees of companies which have gone under

such as MCI® or Enron@. Generally, these plans are available for larger companies

who can afford to administer and comply with federal regulations. These plans are

offered in hopes of promoting employee loyalty, yet many financial experts would

argue that such plans force employees to be insufficiently diversified.

Over the past years, the Federal Government has also provided more options for

small businesses, self-employed individuals, and individuals who are not covered by

employer sponsored plans. Such opportunities include Individual Retirement Ac-

counts (IRAs), SIMPLE IRA Plans (Savings Incentive Match Plan for Employees

of Small Employers), SEPs (Simplified Employee Pensions), and Roth IRAs. As in

profit sharing plans, these plans are also subject to regulations governing contribu-

tions amounts, withdrawal restrictions, and distribution requirements. The Federal



government eliminated both reporting and annual filings which made these plans

more affordable to administer. As a result, these plans are available to individuals

and small business through large brokerage firms, banks, insurance companies, and

low cost providers such as Vanguard, Fidelity@, and Schwab@. As in a 401(k),

the funds available to individual participants are broad and therefore, the individual

bears the burden of selecting and managing their investment accounts.

2.1.3 Where to Invest, Who can Invest, and in What?: An

Industry Summary

In Table 2.1, I summarize the investment providers and the services they provide to

investors. The structure of this table is the result of changes in the tax code, changes

in governmental regulations, and changes in reporting rules for investment providers

over the past few decades. Unlike in the past, there are now many different sectors or

types of providers who are catering to various types of investors. The main types of

financial institutions which provide investment services are investment banks, insur-

ance companies, brokerage firms, mutual fund companies, and registered investment

advisors. Despite the division in Table 2.1, the lines between types of investment

providers has grown increasingly blurred. For example, Fidelity@, Vanguard@, and

Schwab® provide mutual funds and brokerage accounts while also offering insurance

and annuities. Northwestern Mutual@ sells both insurance and mutual funds. In-

creasingly, insurance agents are becoming certified financial planners in order to be

licensed to sell mutual funds. It is clear that the industry is offering a broader spec-

trum of services, but it seems to be significantly harder for an investor to know where

and with whom to invest.

As I explained in Section 2.1, a good financial plan should be highly specialized to

suit that individual's needs and goals. Unfortunately, it is the case, in general, that

the larger the assets the more individualized the approach. Most investment providers

have certified financial planners (CFPs) who create a "financial plan" for investors.

This financial plan involves gathering a great deal of information regarding: income,



Financial Institutions Mutual Equities/ Insurance Private Fee Structure
Funds Fixed Income Products Accounts

Individualized

Investment Banks Yes Yes Yes Yes Varies
Insurance Companies Yes Yes
Brokerage Firms Yes Yes Yes Yes Varies, trading fees

% AUM
Mutual Funds Yes
Registerd Investment Advisors Yes Yes Yes Yes Fees based on

% AUM

Table 2.1: A Summary of Financial Investment Providers and Their Products and
Services

expenses, debt level, projected growth of income, risks, current assets, retirement

assets, estate planning (preparation of wills, etc.), tax issues, financial goals, ability

to tolerate risk, investment experience, and commitment to the process. Planners

may charge a fee for this service; this fee is sometimes waived if the plan leads to

management of assets, sales of insurance products, etc. Since financial advisors are

compensated based on the fee structure and company incentives, there are always

questions regarding conflict of interest between advisors and clients. In many cases,

investors may be unaware of incentive based bias of investment advisors.

2.1.4 Asset Allocation in Retirement Plans

Despite the amazing advances in quantitative methods applied to finance and portfolio

theory, the choice of asset allocation for individual investors remains more of an "art"

than a science. Since most individuals are unaccustomed to financial markets and

financial decision-making, the choice of asset allocation is often decided upon by

financial planners based on simple heuristics and general categories of risk tolerance.

For investors retirement planning can be divided into two steps: the financial goal

setting and asset allocation. Financial goal setting requires investors to estimate the

required funds they will need to support their lifestyle after retirement. An individual

must estimate time to retirement, years in retirement, income till retirement, income

after retirement, bequest motives, and required rates of return. With all of these



inputs, financial planning tools can help investors estimate how much they should

contribute regularly to their 401(K), IRA, and retirement savings accounts. Once

investors have a good idea of the rates of return they require, they are still far away

from completing their financial plan because they still need to decide what they will

invest in.

As Fidelity® boasts on their website, asset allocation is what drives 91% of re-

turns. The choice of asset allocation is a difficult one because financial planners rely

on both personal intuition as well as a basic benchmarking scale for defining risk tol-

erance. The following two heuristics are prevalent in all financial planning strategies

provided by investment companies today.

1. Investors can bear larger risks when the horizon is large

2. Asset Allocation to stocks versus bonds is indicative of risk tolerance, i.e. higher

tolerance for risk more exposure to stocks versus bonds and cash equivalents.

Investment strategies are benchmarked by how much growth or income they claim

to provide. Growth portfolios are heavily weighted in stocks, foreign equities, and

higher risk ventures. Income portfolios are heavily weighted in bonds and there-

fore they tend to fluctuate less in value and provide cash outflows such as coupon

payments. Portfolios of both stocks and equities are generally categorized from ag-

gressive to conservative, where aggressive generally denotes more exposure to stocks

and conservative denotes more exposure to bonds. Table A.7 demonstrates how

Vanguard® explains a heuristic between asset allocation and portfolio objectives for

its LifeStrategy® Funds. Fidelity@ provides the categories in Table A.8 and their

heuristic mapping to asset allocation, they also suggest appropriate time horizons.

To get a better good idea about strategies for asset allocation which are suggested

by financial planners, it is beneficial to examine all-in-one mutual fund options for

individuals. The most widely cited advantage of an all-in-one mutual fund is that

they provide less monitoring frequency and less involvement for individuals. This

may be advantageous for individuals with less experience in markets who may be

incapable or uninterested in making portfolio decisions over time. All-in-one funds



are also important for this thesis because they provide some transparency in regards

to shifts in asset allocation over time. The three main types of all-in-one fund choices

are lifecycle funds, balanced allocation funds, and target maturity funds. Each of

these fund types are summarized in the following paragraphs.

Target maturity funds are mutual funds which are a basket of index type funds

diversified among asset classes. The key characteristic of this type of fund is that the

allocation to various asset classes varies as the fund matures. Since investors do not

have to monitor or adjust their allocation with time, they do not incur taxable gains,

taxes, or trading costs beyond the base mutual fund fees. While being well diversified

within asset classes, target maturity funds are not diversified in their mutual fund

or index fund providers so they may be some intrinsic company specific risk since all

of the indices are offered by the same investment company. In addition, target ma-

turity funds vary substantially in the level of risk which they deem appropriate over

different horizons based on the fund provider. For example, one investment company

may have a more conservative or more growth oriented tilt to the underlying asset

allocation. I will examine how several investment companies implement their time

varying allocation to demonstrate how they benchmark their asset allocation over

time. Tables A.1, A.2, A.3, A.4, and A.5 list the time dependent allocation specifi-

cation for target maturity funds for Fidelity@, Vanguard@, Putnam Investments®,

American Century Investments®, and T. Rowe Price@ respectively.

Lifecycle or lifestyle funds are similar to target maturity funds in that they are well

diversified among asset classes yet they maintain a relatively static allocation strategy

over time. Lifecycle funds are differentiated by general categories of risk tolerance as

defined by growth, conservative growth, income, etc. Tables A.7, A.8, A.9, A.10, and

A.11 list the allocation for lifecycle type funds for Vanguard@, Fidelity®, T. Rowe

Price@, Schwab@, and American Century Investments@ respectively.

Balanced funds are similar to lifecycle funds except that they are funds which

invest in securities directly in order to track index performance. They are generally

focused on their relative performance with respect to a benchmark index or basket of

indices. Allocation specifications for balanced funds for Fidelity®, T. Rowe Price®,



and Schwab@ are also listed in Tables A.8, A.9, and A.10 respectively.

2.1.5 Financial Planning Heuristics for Asset Allocation

Given my general discussion of heuristics for asset allocation in the previous section,

in this section I outline in further detail several common asset allocation strategies.

Buy-and-Hold

By far the most common and the most simple strategy is the buy-and-hold strategy.

In a buy-and-hold strategy, the investor simply decides the initial amount of stock

and bonds to purchase and he or she does not alter the allocation throughout the

course of the investment. The buy-and-hold strategy is motivated by the assumption

that the initial allocation will be optimal if it is held over a long enough period of

time. Financial Planners advise investors to avoid speculation about market perfor-

mance since market moves may be temporary. These temporary moves may cause

investors to be pushed into action by simple noise effects. A buy-and-hold portfolio

may make more sense for an investor who is interested in stock only or bond only

portfolios because it does not require intermediate rebalancing. Common examples

of buy-and-hold portfolios are those of Stock funds, Index Funds, Bond funds, etc.

Mathematically, the evolution of the portfolio weights wt at time t for the risky asset

St can be described by the following equation where Bt denotes the value of bonds

at time t, and ns and nB denotes the initial number of stocks and bonds purchased.

nsSt
SSt + n BBt

Value Weighted with periodic adjustment

Due to the increased duration of retirement funding as well as the long lived retire-

ment income plans, most financial planners would suggest that horizon effects have

diminished. This suggests that investors generally choose a level of risk tolerance with

which they are comfortable. Once used to this level of tolerance, they will remain



comfortable with that level unless they are extremely close to the end of their lives

or there is a large market event which can change general investor sentiment. This

suggests that a risk tolerance appropriate asset allocation mix would be an appro-

priate strategy. As a result, many investment management companies offer a wide

selection of balanced funds or Lifecycle funds with benchmark allocation such as 60

40. To avoid excessive trading costs and to attempt to profit from some short term

market timing, most fund managers have either implicit or explicit (as defined in the

investment prospectus of the fund) bounds or limits on their exposure to various asset

classes. In theory, these bounds can help managers to sell when stocks are high and

buy when stocks are low. Classic examples of this type of strategies are the so called

lifecycle funds as discussed in the previous section. Table A.11, American Century

Investments@ One Choice Portfolios provides an example of explicit bounds on the

allocation to asset classes. Under a value-weighted strategy, the evolution of alloca-

tion weights wt to the risky asset St can be described in the following equation where

w~ and w, are the upper and lower bounds on allocation to the risky asset respec-

tively. ns and nB denote the number of stocks (or shares of an index) and bonds in

the portfolio at time t. St and Bt are the prices of the risky and riskfree assets at

time t.

Wu Stns > Wuwt w Stn +Btnt
wt = Stn+t - w < St+n' < Wu

Stn Wj+B Stn +Btr W
Stns

Stnl +Btn b  W

Lifestyle Planning

Although the link between risk tolerance and age is actively debated, financial plan-

ners still argue that risk tolerance should decrease with age. For example, with a

shorter horizon, they argue that you have less opportunities to wait out unfavorable

market conditions. Because of age effects, several financial companies have marketed

target maturity funds which become progressively more conservative as the lifespan

of the fund decreases. A simple heuristic consistent with a target maturity fund is



the classic age heuristic. Simply put the age heuristic is to allocate 100 minus your

age to stocks. The evolution of the portfolio weights to stocks wt can be described for

the age heuristic in the following equation with at denoting the age of an individual

at time t.

t t -1 Age Heuristic
100

Most target maturity funds divide assets into three basic asset classes: stocks, bonds,

and cash equivalents. If I define ws, w B, and we as the allocation to stocks, bonds,

and cash equivalents, I can describe their evolution in over time in the following

equation where T is the total retirement period, fs('), fB() and fc(') are functions

of the remaining time to maturity t - T and (ws , wB , woc) are the initial allocations

to stocks, bonds, and cash equivalents respectively.

ws = os - fs(T - t)

wt = wo - fB(T - t)

wc  = w - fc(T-t)

where 1 = fs(T-t)+fB(T - t) + fc(T - t)

Tables A.1, A.2, A.3, A.4, and A.5 in the appendix demonstrate how fs(T-t), fB(T-

t) and fc(T - t) evolve as a function of time to maturity T - t. It is clear from their

prospectuses that stock allocation decreases with time, bond allocation increases with

time, and that short term products are introduced only for time periods 15 or 10 years

or less. It is also important to note that for larger horizons (25 years or greater) there

are minimal changes in allocation and most funds have relatively aggressive growth

strategies. Given the rough description of how allocation varies over time, the time

varying allocation can be simplified into a set of linear constants a and 8 with initial



and final allocation limits wl and w2.

w is

tB aB(T - t) + OBW2

BC
w = C(T - t) + C

where 1 = wt B - + C

T - t > tsT-t~t 2

ts < T- t < ti

T-t<t s 2

t3 <T - t < t B

T - t > t1S<T-t<t
t < T- t < tC2

T-t<t c

A summary of linearized weights for several investment companies is detailed in Table

A.6.

Constant Proportion Portfolio Insurance (CPPI)

A CPPI strategy buys shares as they rise and sells shares as they fall. The investor

selects a floor below which the portfolio value is not allowed to fall. The floor increases

with the rate of return of cash. The cushion is defined as the difference between the

portfolio value and the floor. A CPPI decision rule is to keep the exposure to risky

assets at a constant multiple of the cushion. Letting wt be the weight in the risky

asset at time t, f be the floor value, and m be the multiplier, the weight in the risky

asset wt can be described by the following equation.

(Stn + Bn b - fert) * m
Stnt + Btnt

Market Timing

Since overall asset allocation has been cited as the driving factor for performance, it is

no surprise that some level of market timing could incur improvements in performance.



For asset allocation, the relative performance of bonds to stocks is a key factor for

adjusting allocation. This suggests a simple heuristic that stipulates that when debt

provides low returns, allocation should be slanted more into equities. When the

opportunities in bonds are attractive, the allocation should be slanted more into

bonds. A well-known example of a time-varying allocation heuristic between stocks

and bonds is the Fed Model. The Fed Model compares the yield on a 10 year treasury

note and the earnings on the S&P 500 Index. In a market timing allocation strategy,

the portfolio weight is a function f(St, Bt, Yt) of the underlying asset classes stocks

St and bonds Bt and a set of state variables Yt at time t. Similar to a value weighted

strategy, this strategy may also dictate allocation decisions based on simple bounds

on the state variable. Letting Yu and yl be the upper and lower bounds on the state

variable yt, I can describe evolution of portfolio weights in the following equation.

Wt = f (St, Bt, yt)

W1 Yt > Yu
Stn

3

Wt n+Btnt Y1 < Yt < Yu

w2 Yt _ Y1

2.2 Portfolio Choice Theory

The field of portfolio choice and asset allocation began with the work of Markowitz

(1952) on mean variance analysis. Mean variance analysis provided the first analytic

framework for examining portfolio choices in an analytic manner for single period

investment horizons. Mean variance analysis suggested that all investors hold the

same portfolio and that the proportion held in risky assets would depend on the

risk aversion levels of different investors. Mean variance analysis paved the way for

the work of Tobin (1958) on mutual fund separating theorems. Despite the success

of mean variance analysis, it could not provide insight for multi-period investment

horizons or higher order characteristics of asset returns. As a result, both Samuelson

(1969) in the discrete case and Merton (1969) in the continuous case provided multi-

period methods for solving the portfolio choice problem using dynamic programming



techniques. As research in behavioral finance and predictability in asset returns have

evolved, the portfolio optimization problem has been extended accordingly to include

non-myopic utility functions, various types of predictability in asset returns, as well

as stochastic opportunity sets. I outline the effect of predictability and time-varying

opportunity sets on portfolio choice problems in Section 2.2.1. In Section 2.2.2, I

provide an overview of recent literature concerning behavioral aspects of portfolio

choice.

2.2.1 Portfolio Choice and Predictability

In recent years, as a result of the publication of widespread evidence of predictability

in markets (see Brennan and Xia (2001), Xia (2001)), there has been an increased

interest in the effect of predictability on portfolio optimization. Not surprisingly

predictability has been found to play a significant role in the choice of optimal policies

for portfolio construction. The problem of predictability has been addressed both

numerically and explicitly under various formulations of the investor's problem. I

outline the literature for explicit, approximately explicit, and numerical solutions to

the portfolio optimization problem.

There are three well known closed-form solutions to the portfolio choice problem

with time-varying opportunity sets: Kim and Omberg (1996), Wachter (2002), and

Liu (1999). Using an Ornstein-Uhlenbeck process for the risk premia which is not

perfectly correlated with the underlying return, Kim and Omberg (1996) solve the

problem explicitly, in the case of terminal wealth with a HARA utility function. Using

their explicit solution, they show that investors will hedge against changes in the risk

premia and the size of the hedge will depend on the parameters of the underlying

dynamics. They also conclude that risky allocation does not necessarily increase

with the horizon unless the risk premia is positive. Following the work by Kim and

Omberg (1996), Liu (1999) proposed a new formulation of the investor's problem

where the risky asset and the instantaneous variance both follow a diffusion process.

He solves the problem explicitly and uses the solution to compare static and dynamic

portfolio choices. In contrast to standard mean variance analysis, he suggests that



risky allocation may not be a good proxy for risk aversion, and that volatility may

not always deter a risk averse investor from risky assets. Using the assumption that

markets are complete, Wachter (2002) provides a solution to the investor's problem

with utility over consumption in the case of mean reversion in the risk premia. Her

solution is important because it provides a method for resolving the issue of terminal

wealth versus intermediate consumption. It also provides some key economic insight

parallel to traditional theory in fixed income notably coupon bonds, duration, etc.

She shows that the optimal portfolio allocation is analogous to a weighted average,

similar to duration in coupon bonds. This interpretation is useful because it can

explain the sign of the hedging demand, the shortfalls of log-linear approximation

approaches commonly used for approximating the budget constraint, as in Campbell

and Viceria (1999), as well as convergence results for long horizons.

To circumvent analytical intractability issues in portfolio optimization, several

other approximations have been applied to provide approximately explicit solutions.

Campbell and Viceria (1999) assume an infinitely long lived investor and provide an

analysis of predictability by using a log-linearization of the first order conditions and

budget constraints. Other papers have used an expansion of the value function for

power utility functions (see Das and Sundaram (2000) and Kogan and Uppal (2002)).

Approximation techniques have been useful in specific cases of the portfolio op-

timization problem, but most commonly the problem has been solved by exact or

approximate dynamic programming techniques. Popular examples include Brennan,

Schwartz, and Lagnado (1997), Balduzzi and Lynch (1999), Barberis (2000), Xia

(2001), and Brandt (1999). Brennan, Schwartz, and Lagnado (1997) use a joint

markov process for three state variables: long-term bonds, short-term bonds, and

the dividend yield. Their analysis provides encouraging evidence that predictability

has a significant impact on portfolio performance and highlights the importance of

time horizon. Balduzzi and Lynch (1999) examine the affect of transaction costs on

allocation decisions. Barberis (2000) incorporates parameter uncertainty. Xia (2001)

demonstrates how predictability and learning have a substantial affect on portfolio

selection. Her analysis suggests that asset allocation should take into account pre-



dictability as well as be dynamically updated as more information about the predictive

variables becomes available. Brandt (1999) presents a solution that is robust to distri-

butional assumptions following a non-parametric approach. Ait-Sahalia and Brandt

(2001) extend the approach in Brandt (1999) over a larger set of utility functions

and examine predictive variable choice without distributional assumptions. Brandt,

Goyal, Santa-Clara, and Stroud (2005) provide a simulation based method for dis-

crete problems with state dependence using non-parametric regression methods over

simulated paths. Using a log-linearization, Campbell, Chan, and Viceria (2003) solve

the problem with many state variables.

Despite the various methodologies for solving the portfolio optimization problem,

whether the solution is analytical, approximate, or numerical, it is clear that forces

such as predictability, model specification, and model uncertainty can have a sig-

nificant impact on portfolio performance when compared with the myopic solutions

derived by Merton (1969) and Samuelson (1969). In summary, the solution to the

portfolio choice problem can still be described in terms of two investments: a myopic

investment and hedging terms, as suggested by Merton (1971). However the most

recent literature establishes the fact that in many scenarios these hedging terms,

whether they are due to changes in the opportunity set or to model uncertainty, can

dominate the effects of myopic investment choices. These results suggest that, in

many cases, there is value-added to strategies which involve dynamic allocation and

market timing effects. Given the clear dependence on assumptions about stochastic

processes of each optimal portfolio policy and the reality that the true future evolution

of asset returns is both unknown and uncertain, the difficult question still remains

for an investor: where and when is a dynamic non-myopic strategy applicable?

2.2.2 Portfolio Choice and Behavioral Finance

Despite the plethora of solutions to the portfolio optimization problem, few devi-

ate from the standard set of utility functions derived by expected utility theory.

Given that behavioral finance experts would agree that investors do, in fact, vio-

late several axioms of expected utility, it is clear that there are strong limitations



on the power of these solutions to explain or provide financial advice consistent with

actual investor behavior. Behavioral finance theorists have developed a set of al-

ternative utility functions, commonly called non-expected utility, which are more

consistent with behavioral choices. Common frameworks for modeling non-expected

utility preferences include loss aversion and prospect theory (Kahneman and Tversky

(1979,1992)), disappointment aversion (Bell (1985), Gul (1991)) ambiguity aversion

(Gilboa and Schmeidler (1989)), and regret theory (Bell (1982), Loomes and Sug-

den (1982)). As a result of this work, several other authors have examined portfolio

optimization using behavioral finance to provide insight for some common financial

anomalies and the current state of institutional portfolio construction. Some of these

recent applications include loss aversion and prospect theory (Benartzi and Thaler

(2001), Berkelaar and Kouwenberg (2000), Berkelaar, Kouwenberg, and Post (2003),

Ait-Sahalia and Brandt (2001)), ambiguity aversion (Ait-Sahalia and Brandt (2001)),

downside-risk (Berkelaar and Kouwenberg, 2000), and disappointment aversion (Ang,

Bekaert, andl Liu (2005)). In the following sections, I outline several behavioral based

utility functions and review research findings.

Prospect Theory and Loss Aversion

Prospect theory, a framework for modeling behavioral preferences was first laid out

by Kahneman and Tversky (1979). Loss aversion is a specific case of prospect theory.

Loss aversion captures the fact that people do not weigh losses and gains equally,

but in fact they are more interested in relative performance. The notion of relative

performance implies that investors are less concerned with absolute wealth. Under

loss aversion, individuals weigh the probabilities of events objectively; however, at

the same time, they often weigh outcomes unobjectively based on the principles of

standard expected utility theory. The effect of loss aversion on portfolio choice has

been examined by Benartzi and Thaler (1995), Berkelaar and Kouwenberg (2000),

Berkelaar, Kouwenberg, and Post (2005), and Ait-Sahalia and Brandt (2001).

Berkelaar, Kouwenberg, and Post (2005) evaluate the portfolio strategy for both

a loss averse utility function using a kinked power function and the general prospect



theory utility function. They find that loss averse investors follow portfolio insurance

strategies with risky allocation increasing with horizon. They demonstrate how the

convexity of a prospect theory utility function can result in large gambling effects.

In an earlier working paper by Berkelaar and Kouwenberg (2000), the authors ex-

amine how prospect theory and loss aversion preferences are effected by higher order

moments of returns (i.e. skewness and kurtosis). In the case of prospect theory

preferences, they find that higher order moments can create substantial break even

effects. Ait-Sahalia and Brandt (2001) examine partial predictability, by comparing

optimal portfolios from expected utility theory (mean variance and CRRA) and non-

expected utility (ambiguity aversion and prospect theory). Consistent with financial

planning advice, they suggest allocation dependent on conditional state variables us-

ing a time-varying combination of indices. In the case of loss aversion and prospect

theory, they find horizon effects that can cause investors to avoid risky allocation for

shorter horizons. Regardless of preferences, they find that optimal portfolios include

significant market timing. In particular, horizon effects and market timing are the

most pronounced for prospect theory investors. They also make another poignant

remark about return predictability, warning that it is small in recent years and ex-

tremely noisy. This remark highlights the fact that although we have analytically

tractable results such as those proposed by Wachter (2002) and Kim and Omberg

(1996), the implementation of an optimal strategy, based on predictability, could be

extremely difficult, and may result in poor performance. They suggest that their

approach using the Euler equations to estimate portfolio weights directly, is more

robust to model specification. By avoiding distributional assumptions, they focus on

the objective function and allow returns to vary nonlinearly with predictive variables

over time.

Ambiguity Aversion

Ambiguity aversion is based on the idea that investors may not be able to assign

probabilities to future returns. Ait-Sahalia and Brandt (2001) find that an increase

in ambiguity aversion is parallel to an increase in risk aversion. They also find that



increased ambiguity may cause some investors to avoid taking particular positions,

for example, in bonds. In the case of risky bonds, the return may not be sufficient to

outweigh the ambiguity of investing in them.

Disappointment Aversion

As an alternative to loss aversion, some authors have examined the use of disappoint-

ment aversion following the framework set out by Gul (1991). As in loss aversion, bad

events are weighted more heavily than more good events. The key difference is that

the reference point for disappointment aversion, is simply the certainty equivalent.

Disappointment aversion has characteristics similar to expected utility theory and

thus is more tractable analytically than many other behavioral models of preferences.

In addition, loss aversion introduces convexity into the objective function causing

risk seeking, gambling type effects, whereas disappointment aversion maintains con-

cavity. Ang, Bekaert, and Liu (2005) use disappointment aversion to explain non

participation in the stock market, as well as, dislike for negative skewness.

2.3 Behavioral Finance

Scholars of behavioral finance and financial psychologists have documented a plethora

of long-standing and persistent behavioral effects in all types of investors. For sim-

plicity, these effects can be divided into two main categories: cognitive and emotional.

Cognitive effects refer to human cognitive decisions based natural brain processing,

which are inconsistent with so called "rational" decision-making. On the other hand,

emotional effects are decisions which are linked to strong emotional responses. Both

cognitive and emotional effects can be divided into collective or group mentality based

decision-making, and individual effects. In fact, individual and collective effects can

be quite different in nature. Common individual cognitive biases include anchoring,

attention bias, framing, habits, and home bias. Common collective cognitive bias

can include consensus, common beliefs, and social learning, etc. Common individ-

ual emotional biases include denial, greed, regret aversion, overconfidence, pride, etc.



Cognitive Bias
Individual
Anchoring, Attention Bias, Attribution, beliefs, cognitive
overcharge, cognitive dissonance, framing, heuristics,small
numbers representativeness, mental accounts, habits, hindsight
bias, home bias

Collective

Cascades, common beliefs, consensus, manipulation, memes,
mimicry, paradigms, percolation, positive feedback, social learning

Emotional Bias
Individual

Addition, endowment effect, denial, greed, fear, hope, loss/ regret
aversion, magical thinking, optimistic bias, overconfidence, pride,
status quo bias

Collective

Conformity, crowd hysteria, epidemics, fads, groupthink, herding,
peer pressure

Table 2.2: A Summary of Cognitive and Emotional Behavioral Effects:
Collective and Individual Biases (Source: Behavioral Finance Definitions
http://perso.orange.fr/pgreenfinch/bfdef.htm)

Common collective emotional biases include epidemics, fads, herding, peer pressure,

etc. A summary of common cognitive and emotional behavioral effects is presented

in Table 2.2. Although it is clear that both cognitive and emotional effects are per-

sistent in investors, in the past few years researchers started to piece together both

how they affect individual choices as well as the market as a whole. The task of

understanding finance from a behaviorial perspective is difficult, because there are

many types of behavioral effects and they vary greatly with the state of the market,

by the individual, as well as by their interpretation.

There are two main focuses in behavioral finance, the first being explaining com-

mon market anomalies and the second being explaining investor decision-making and



choices. In this thesis, I focus more on the second because it is more relevant to

financial planning and individual investment choices. In Section 2.3.2, I will discuss

how individual preferences have been modeled and provide motivation as well as a

literature summary.

2.3.1 Behavioral Effects

Before attempting to apply behavioral finance to areas such as financial planning

and portfolio choice, it is important to understand the basic effects which have been

documented in order to motivate the study of their application. Due to the exten-

sive nature of this material, I provide a brief summary of behavioral finance. For

further reference, there are several authors which provide a more extensive summary

of behavioral finance including Shefrin (2005) and Barberis and Thaler (2003).

2.3.2 Modeling Preferences and Decision Making

The resounding support for the persistent evidence of behavioral biases produced

an excellent question for researchers: "How can behavioral biases be characterized

in terms of preferences?". This question was first examined in the founding work

by Kahneman and Tversky (1979) who defined an alternative method for explaining

investor preferences, namely, prospect theory. There have been many extensions to

their work to explain a wider base of behavioral phenomena. In addition to prospect

theory, other theories and alternatives to expected utility theory include disappoint-

ment aversion (Gul(1991)), regret theory (Bell (1982), Loomes and Sugden 1982)),

and rank dependent utility (Quiggin (1982), Segal (1987,1989), and Yaari (1987)). In

the following sections, I summarize and formalize, where applicable, several of these

behavioral based approaches to modeling investor preferences.

Prospect Theory

Prospect Theory, as first proposed by Kahneman and Tversky (1979, 1992), is an

alternative method for modeling preferences of investors with two key characteristics.



First individuals are less concerned with absolute wealth but instead they derive util-

ity in terms of gains and losses with respect to a particular reference point. Second,

instead of having concave utility functions individuals have S-shaped utility func-

tions with risk averse behavior over gains and risk seeking behavior over losses. As

compared to expected utility theory, prospect theory can explain the purchasing of

insurance and lottery tickets. Another key feature of prospect theory is that indi-

viduals do not always properly weigh probabilities. In fact they often overweigh low

probability events and underweigh high probability events. This feature of investor

behavior can cause investors to combine very safe and very risky assets resulting

in a lack of diversification (Barber and Odean (2000), Benartzi and Thaler (2001),

Polkovnichenko (2002)).

Prospect theory's key contribution is the introduction of the concept of framing.

Because investors frame their investment choices and engage in mental accounting,

they consistently make decisions which are inconsistent with expected utility theory.

Thaler (1985, 1999) discusses how mental accounting can cause investors to separate

individual investments, and thus they can make decisions which as an aggregate do

not satisfy principles of standard expected utility theory.

Inorder to clarify how prospect theory is implemented, I will provide the formu-

lation suggested by Kahneman and Tversky (1979,1992). The first simplification of

the problem is to examine a gamble with at most two non-zero outcomes (see also

Barberis and Thaler (2003)). They define a gamble as a group of four quantities

(x, p; y, q) where an individual gets x with probability p and gets y with probability

q with x < 0 < y or y < 0 < x. The value of the gamble is defined by the following

expression.

V(x,p;y,q) = -(p)v(x) + i(q)v(y)

According to Kahneman and Tversky (1979), the function v(.) is S-shaped and can



be formulated using two functions with f(.) concave and g(.) convex.

Sf(x) x>O

v(x) = g(x) x < 0
0 o.w.

The formulation of v(.) allows for risk aversion over gains and risk seeking behavior,

or gambling effects over losses consistent with human behavior. When the convexity

over losses is more pronounced than the concavity over gains, an individual is said

exhibit loss aversion. The second function in the value function, ir(.), accounts for

the weighing of probabilities allowing them to be non-linear. Individuals tend to

overweigh small probability events, hence they buy insurance and often pay too much

for it. This overweighing of small probability events can be achieved by setting

w(p) > p when p is small. In addition to small probability events, people place more

weight on events that are relatively certain.

Kahneman and Tversky (1979) extended their framework to multiple gambles, by

allowing for a set of gambles each with outcome xi and probability Pi where the value

function can be written as follows.

V(x,p) = Zriv(xi)
i

where

(x) = me X < 0

with

ri = w(Pi) -w(P*)
P-

w(P) =
(P + (1 - )at least as goo)1/

Pi is the probability the gamble with yield an outcome at least as good as xi and Pj*



is the probability the outcome will be strictly greater than xi. Using experimental

evidence Kahneman and Tversky (1979) estimate the parameters under prospect

theory preferences to be A = 2.25, a = 0.88, and 7 = 0.65. Here A is the coefficient

which determines the level of loss aversion.

Disappointment Aversion

Disappointment Aversion is defined by

Pw oo

U(w) = JU(W)dF(W) +A U(W)dF(W)

where U(W) is the felicity function, for example Power Utility, and A is the coefficient

of disappointment aversion, F(W) is the cumulative distribution for wealth with p w

as the certainty equivalent for wealth W where K is a scalar given by the following

equation.

K = P(W <_ w)+AP(W > pw)

For values of A, where 0 < A < 1, outcomes below the certainty equivalent are

downweighted.

Regret Theory and Cognitive dissonance

The concept of regret is one that all individuals are familiar with, but its potential

implications on investor behavior was first examined by Bell (1982) and Loomes and

Sugden (1982). Both Bell and Loomes and Sugden argued that individuals maximize

a modified utility function as a result of regret and other psychological effects. Consis-

tent with Bell's model for regret, Shefrin and Statman (1985) explain that regret can

motivate individuals to defer the selling of losing positions and accelerate the selling

of winning positions. Similar to regret, cognitive dissonance is the mental dilemma

that individuals face when they face the possibility that they may be wrong. Because

of regret and or cognitive dissonance, individuals may engage in transactions which



are not consistent with expected utility to reduce or avoid regret. Thaler (1980) sug-

gests that regret is stronger than pride and thus individuals may prefer inaction over

action when faced with losses.

Mental Accounting

Thaler (1985, 1999) explains that people use implicit accounting systems. In their

investments, they mentally code their gains and losses according to prospect theory.

People frame the outcomes in a way that makes them the happiest. Different in-

dividuals have varying preferences for the organizational structure of their "mental

accounts." As a result, contrary to standard economic assumptions about wealth,

wealth is not fungible. In accordance with prospect theory, the difference between

losses and gains as well as their relative strengths when they are combined will cause

individuals to aggregate outcomes in some cases, and segregate in others. Thaler

(1985) defines several cases: multiple gains, multiple losses, mixed gains, and mixed

losses. For multiple gains, people prefer segregation because of concavity, where as

for multiple losses they prefer integration. For mixed gains, people prefer to cancel

losses with large gains whereas for mixed losses people prefer to segregate large losses

from small gains. Increases in gains are segregated while increases in losses tend to

be integrated. A decrease in a gain is integrated, while an decrease in a loss is segre-

gated. Since individuals tend to examine accounts with a loss separately, the decision

to close an account at a loss may be extremely difficult for an investor. Johnson and

Thaler (1990) examine the "break even" effect and show that in the case of closing

out a loss, an investor will engage in risk seeking behavior and be reluctant to realize

the loss.

Self-Control

In the context of financial planning, Shefrin and Thaler (1981) discuss the concept of

self control in individuals. They model an investor as a combination of planners and

doers. They show that individuals rationally choose to impose constraints on their

behavior especially when the benefits and costs are uncertain and occur at different



times. Since most people commonly use rules of thumb when they invest, it is clear

that these rules can not be characterized by first order conditions consistent with

the standard economic framework. Shefrin and Thaler's findings are consistent with

Stigler (1966), who asserts that people find utility in protecting themselves from a

future lack of will-power. Given the framework of self control, simple orders like stop-

loss orders can be seen as a rule which is imposed to protect an investor from a future

inability to sell in the event of a loss.

Selling vs. Buying

Although most theoretical models view buying and selling as similar transactions, in

fact, psychologically they are very different. Odean (1999) highlights these differences

and explains why behavior the buy and sell side are characteristically different. He

explains that on the buy side, with a large pool of potential choices, people engage

in attention focusing and they end up buying assets who have gone up in the last

two years, seemingly believing that the trend will continue. On the other hand when

selling securities, investors tend to sell after a long period of upward trend as well but

the investments they sell seem to outperform those they bought after they sell them.

Odean (1999) highlights these differences by pointing out that investors are interested

in past performance when they sell and they are strongly motivated by their aversion

to taking a loss on a sale causing them to prefer to sell the winners in their portfolio.

Disposition Effect

The disposition effect, the disposition to sell winners too soon and hold losers too long,

has been examined by Shefrin and Statman (1985). Shefrin and Statman (1985) sug-

gest that the disposition effect can be attributed to loss aversion, mental accounting,

regret aversion, lack of self control, as well as tax considerations. They exert that

tax implications alone are not sufficient to explain the effect. They suggest that lack

of self control against regret aversion could explain the use of controlled behavior

choices such as a stop-loss order. They also reason that tax loss selling contrary to

the work of Constantinides (1983,1984), is a form of self control because December



can be perceived as a tax planning deadline. They also explain how the combination

of multiple behavioral attributes of investors could produce such effects. First, Loss

aversion where investors are reluctant to realize losses will cause them to engage in

risk seeking behavior over losses and to be quicker to realize winners than losers.

Investors frame their invests over gains and losses with respect to a reference point

such as the purchase point. Secondly, investors engage in mental accounting so they

do not aggregate their investment decisions but instead with each purchase a new

mental account is opened (Thaler 1985, 1999). In fact, Johnson and Thaler (1990)

explain that investors encounter considerable difficulty closing an account at a loss.

Third, Shefrin and Statman (1985) discuss the psychological implications of a buying

and selling. They suggest that investors are motivated by pride but anxious about

regret over decisions they may have made which may not have been correct. They

also note that it has been shown by Thaler (1980) that regret is more powerful than

pride causing investors to prefer inaction to action when faced with regret. Fourthly,

Shefrin and Statman emphasize the human desire for self control. They cite key ex-

amples in the behavior of individuals and in the behavior of professionals who follow

iron-clad, "cut your losses at x", rules.

As a result of the groundbreaking work of Shefrin and Statman, many authors

began to examine the existence of disposition effects in various investor accounts and

on market prices. More specifically, several authors have examined the existence of

the disposition effect in investor accounts including individual investment accounts

(Odean (1998, 1999)), in Finland (Grinblatt and Keloharju (2001)), professional in-

vestors (Shapira and Venezia (2001)), and real estate markets (Genesove and Mayer

(2001)). Using data from discount brokerage accounts, Odean (1998) showed empir-

ically that individual investors realize winners much more often than losers, except

in December due to tax implications. In a following paper, Odean (1999) described

adverse trading habits of individual investors. He found that the stocks investors sell,

outperform the ones they buy. He discussed several regularities in the sample. First,

investors buy securities with greater price changes over the last two years than the

ones they sell. Second, they buy a similar number of winners and losers but they



sell more of the winners. Lastly, they sell securities that have risen sharply in the

weeks prior to sale. Odean suggests that these patterns can be explained, in part,

by the psychological differences between buying and selling. He suggests that when

investors buy securities they engage in attention focusing, because they have so many

securities to choose from. As a result, they are attracted to those securities with

abnormal performance. In addition, when investors are selling a security, because

of the lack of short selling, they are limited to the small set of securities they own.

The adverse selling behavior can be attributed to the reluctance to short sell and the

disposition effect. Because of behavioral attributes, the decision to sell involves both

past and future performance, whereas in a buy situation an investor only needs to

form future expectations. What we can gain from Odean (1999) is that the act of

selling can be exceedingly complex for an investor, because it strongly affected by

behavioral biases. On the other hand, he suggests that the main behavioral bias on

the buy side is attention focusing. The divide between buying and selling provides

a clear motivation for self control tactics. Self-control mechanisms help an investor

predetermine action on the sell side, when an investor is most influenced by regret,

loss aversion, and risk-seeking behavioral tendencies.

Based on empirical evidence it is clear that the disposition effect exists, and thus

it must have implications on market prices. In Odean's work on trading behavior,

he suggests that the trends in trading behavior suggest that individuals do have in-

formation, but they are not using it correctly. In addition to Odean's work on the

disposition effect several other authors have examined the its potential implications.

Jegadeesh and Titman (1993) show that investors buy at the top of momentum cy-

cles where the trends tend to reverse within a year. They show that momentum

based strategies can generate profits of 1% per month. Nofsinger and Sias (1999) find

price reversals for those securities with a high percentage of individual ownership.

Ranguerova (2001) showed that disposition effects are increasing in market capital-

ization. Grinblatt and Han (2004) examine a model of the reference point distribution

to explain that these behavioral forces create a spread between the fundamental value

and the stock price.



2.4 Empirical Portfolio Choice

Despite the many possible solutions to the portfolio choice problem, industry recom-

mendations and educational resources for financial planning suggest a more passive

approach to investment, based on low-cost index funds with little focus on active

trading or frequent rebalancing. This "buy-and-hold" philosophy is supported by the

prevalence of common investment strategies and the recent popularity of all-in-one

asset allocation and target retirement funds.

Although a passive approach to investment seems over simplified in the field of

portfolio choice, empirical studies have demonstrated how human behavior is incon-

sistent with this approach. In particular, household investment behavior is fraught

with drastically simpler issues. Ameriks and Zeldes (2004) observe that:

... a great deal of observed variation in portfolio behavior may be ex-

plained by the outcome of a few significant decisions that individuals

make infrequently, rather than by marginal adjustments continuously.

Moreover, other documented empirical characteristics of investor behavior include:

non-participation (Calvet, Campbell, and Sodini 2006), under-diversification (Cal-

vet, Campbell, and Sodini 2006); limited monitoring frequency and trading (Ameriks

and Zeldes 2004, Agnew, Balduzzi, and Sunden 2003), survival-based selling deci-

sions or a "flight to safety" (Agnew 2003), an inability to hedge risks (Massa and

Simonov, 2004), and concentration in simple strategies through mutual-fund invest-

ments (Calvet, Campbell and Sodini 2006). Variations in investment policies due to

characteristics such as age, wealth, and profession have been examined as well.'

Non-participation and under-diversification are perhaps the two most examined

issues in empirical household investment decisions. Households are more likely to par-

ticipate if they have higher income, higher financial wealth, higher liabilities, higher

education, have disposable income like private pensions or if they are retirees (Calvet,

Campbell, and Sodini 2006). Studies seem to suggest greater sophistication in higher

'Lack of dependence on age in allocation, lower wealth and lower education with greater non-
participation and under-diversification, greater sophistication in higher wealth investors (Ameriks
and Zeldes (2004)).



wealth investors (Ameriks and Zeldes 2004) where investors with lower wealth and

lower education seem to be associated with greater non-participation and underdi-

versification (Calvet, Campbell, and Sodini 2006). This finding is consistent with

previous empirical studies, which demonstrate how wealthy investors invest differ-

ently than poorer ones (Tracy, Schneider, and Chan 1999, Heaton and Lucas 2000,

and Carroll 2002).

Empirical studies on asset allocation to specific asset classes does provide some

limitations. More specifically, Blume and Friend(1975) as well as Kelly (1995) point

out that the true picture of asset allocation would require knowledge of mutual fund

allocation, to assess an investor's true level of diversification. This point is important

because Calvet, Campbell, and Sodini (2006) show that most diversification can be

attributed to mutual fund investment, which is consistent with Ameriks and Zeldes'

(2003) finding that mutual fund investment dominates stocks in most households.

In fact, Calvet, Campbell, and Sodini (2006) find that amongst participating house-

holds 87% hold mutual funds where only 55% hold stocks, with 76% of stock holders

also owning mutual funds. In terms of asset classes, stocks seem to be dominated

by mutual fund strategies, bonds can be seen as safe assets for long term investors

(Campbell and Viciera 2002), and a large proportion of investors hold cash. In par-

ticular, Calvet, Campbell, and Sodini (2006) document that investors are holding

41% of their assets in cash or cash equivalents (with the remaining wealth distributed

around 31% in mutual funds and capital insurance, and 28% in securities). The large

exposure to cash may be motivated by the real-life liquidity constraints, that house-

hold investors face. It is also important to point out that despite little discussion of

real estate investment in traditional portfolio choice, empirical studies show that real

estate seems to vary the most drastically based on demographics, of all asset classes,

with strong increases in exposure to real estate based on age and wealth (Calvet,

Campbell, and Sodini 2006).

Several authors have examined the importance of asset class flows. In particular

in a recent paper by Agnew (2003), she asserts that instead of overtrading as was

documented in brokerage accounts by Odean (1999) and Odean and Barber (2000),



individual investors actually trade very infrequently. In fact, she finds, by examining

asset class flows, that investors often shift out of equities, after extremely negative

asset returns, into fixed income products. She claims that this shows that in re-

tirement accounts investors are more prone to exhibit a "flight to safety" instead of

explicit return chasing. Given that one in three of the workers in the United States

participates in 401(K) programs, it is clear that this "flight to safety" could have a

significant impact on market prices as well as demand.

In summary, empirical findings suggest that behavioral effects play an important

role in investment decision-making. More specifically, concepts in behavioral finance

related to prospect theory, loss aversion, ambiguity aversion, regret theory, lack of

self control, and mental accounting provide further insight into why this may be the

case.





Chapter 3

Stop-Loss

Stop-loss rules-predetermined policies that reduce a portfolio's exposure after reach-

ing a certain threshold of cumulative losses-are commonly used by retail and insti-

tutional investors to manage the risks of their investments, but have also been viewed

with some skepticism by critics who question their efficacy. In this paper, we de-

velop a simple framework for measuring the impact of stop-loss rules on the expected

return and volatility of an arbitrary portfolio strategy, and derive conditions under

which stop-loss rules add or subtract value to that portfolio strategy. We show that

under the Random Walk Hypothesis, simple 0/1 stop-loss rules always decrease a

strategy's expected return, but in the presence of momentum, stop-loss rules can add

value. To illustrate the practical relevance of our framework, we provide an empiri-

cal analysis of a stop-loss policy applied to a buy-and-hold strategy in U.S. equities,

where the stop-loss asset is U.S. long-term government bonds. Using monthly re-

turns data from January 1950 to December 2004, we find that certain stop-loss rules

add 50 to 100 basis points per month to the buy-and-hold portfolio during stop-out

periods. By computing performance measures for several price processes, including

a new regime-switching model that implies periodic "flights-to-quality", we provide

a possible explanation for our empirical results and connections to the behavioral

finance literature.



3.1 Introduction

Thanks to the overwhelming dominance of the mean-variance portfolio optimization

framework pioneered by Markowitz (1952), Tobin (1958), Sharpe (1964), and Lintner

(1965), much of the investments literature-both in academia and in industry-has

been focused on constructing well-diversified static portfolios using low-cost index

funds. With little use for active trading or frequent rebalancing, this passive perspec-

tive comes from the recognition that individual equity returns are difficult to forecast

and trading is not costless. The questionable benefits of day-trading are unlikely to

outweigh the very real costs of changing one's portfolio weights. It is, therefore, no

surprise that a "buy-and-hold" philosophy has permeated the mutual-fund industry

and the financial planning profession. 1

However, this passive approach to investing is often contradicted by human behav-

ior, especially during periods of market turmoil.2 These behavioral biases sometimes

lead investors astray, causing them to shift their portfolio weights in response to

significant swings in market indexes, often "selling at the low" and "buying at the

high". On the other hand, some of the most seasoned investment professionals rou-

tinely make use of systematic rules for exiting and re-entering portfolio strategies

based on cumulative losses, gains, and other "technical" indicators.

In this paper, we investigate the efficacy of such behavior in the narrow context

of stop-loss rules, i.e., rules for exiting an investment after some threshold of loss

is reached and re-entered after some level of gains is achieved. We wish to identify

the economic motivation for stop-loss policies so as to distinguish between rational

and behavioral explanations for these rules. While certain market conditions may

encourage irrational investor behavior-for example, large rapid market declines-

1This philosophy has changed slightly with the recent innovation of a slowly varying asset allo-
cation that changes according to one's age, e.g., a "lifecycle" fund.

2For example, psychologists and behavioral economists have documented the following systematic
biases in the human decisionmaking process: overconfidence (Fischoff and Slovic, 1980; Barber and
Odean, 2001; Gervais and Odean, 2001), overreaction (DeBondt and Thaler, 1986), loss aversion
(Kahneman and Tversky, 1979; Shefrin and Statman, 1985; Odean, 1998), herding (Huberman and
Regev, 2001), psychological accounting (Tversky and Kahneman, 1981), miscalibration of probabil-
ities (Lichtenstein et al., 1982), hyperbolic discounting (Laibson, 1997), and regret (Bell, 1982a,b;
Clarke et al., 1994).



stop-loss policies are sufficiently ubiquitous that their use cannot always be irrational.

This raises the question we seek to answer in this paper: When do stop-loss

rules stop losses? In particular, because a stop-loss rule can be viewed as an overlay

strategy for a specific portfolio, we can derive the impact of that rule on the return

characteristics of the portfolio. The question of whether or not a stop-loss rule stops

losses can then be answered by comparing the expected return of the portfolio with

and without the stop-loss rule. If the expected return of the portfolio is higher with

the stop-loss rule than without it, we conclude that the stop-loss rule does, indeed,

stop losses.

Using simple properties of conditional expectations, we are able to characterize

the marginal impact of stop-loss rules on any given portfolio's expected return, which

we define as the "stopping premium". We show that the stopping premium is inex-

tricably linked to the stochastic process driving the underlying portfolio's return. If

the portfolio follows a random walk, i.e., independently and identically distributed re-

turns, the stopping premium is always negative. This may explain why the academic

and industry literature has looked askance at stop-loss policies to date. If returns

are unforecastable, stop-loss rules simply force the portfolio out of higher-yielding

assets on occasion, thereby lowering the overall expected return without adding any

benefits. In such cases, stop-loss rules never stop losses.

However, for non-random-walk portfolios, we find that stop-loss rules can stop

losses. For example, if portfolio returns are characterized by "momentum" or positive

serial correlation, we show that the stopping premium can be positive and is directly

proportional to the magnitude of return persistence. Not surprisingly, if condition-

ing on past cumulative returns changes the conditional distribution of a portfolio's

return, it should be possible to find a stop-loss policy that yields a positive stopping

premium. We provide specific guidelines for finding such policies under several return

specifications: mean reversion, momentum, and Markov regime-switching processes.

In each case, we are able to derive explicit conditions for stop-loss rules to stop losses.

Of course, focusing on expected returns does not account for risk in any way.

It may be the case that a stop-loss rule increases the expected return but also in-



creases the risk of the underlying portfolio, yielding ambiguous implications for the

risk-adjusted return of a portfolio with a stop-loss rule. To address this issue, we

compare the variance of the portfolio with and without the stop-loss rule and find

that, in cases where the stop-loss rule involves switching to a lower-volatility asset

when the stop-loss threshold is reached, the unconditional variance of the portfolio

return is reduced by the stop-loss rule. A decrease in the variance coupled with the

possibility of a positive stopping premium implies that, within the traditional mean-

variance framework, stop-loss rules may play an important role under certain market

conditions.

To illustrate the empirical relevance of our analysis, we apply a simple stop-loss

rule to the standard asset-allocation problem of stocks vs. bonds using monthly U.S.

equity and bond returns from 1950 to 2004. We find that stop-loss rules exhibit

significant positive stopping premiums and substantial reductions in variance over

large ranges of threshold values-a remarkable feat for a buy-high/sell-low strategy.

For example, in one calibration, the stopping premium is approximately 1.0% per

annum, with a corresponding reduction in overall volatility of 0.8% per annum, and

an average duration of the stopping period of less than 1 month per year. Moreover, we

observe conditional-momentum effects following periods of sustained losses in equities

that seem to produce scenarios where long-term bonds strongly dominate equities for

months at a time. These results suggest that the random walk model is a particularly

poor approximation to monthly U.S. equity returns, as Lo and MacKinlay (1999) and

others have concluded using other methods.

Motivated by Agnew's (2003) "flight to safety" for household investors, which is

similar to the well-documented "flight to quality" phenomenon involving stocks and

bonds, we propose a regime-switching model of equity returns in which the Markov

regime-switching process is a function of cumulative returns. We show that such a

model fits U.S. aggregate stock index data better than other time-series models such

as the random walk and AR(1), and can explain a portion of the stopping premium

and variance reduction in the historical data.



3.2 Literature Review

Before presenting our framework for examining the performance impact of stop-loss

rules, we provide a brief review of the relevant portfolio-choice literature, and illustrate

some of its limitations to underscore the need for a different approach.

The standard approach to portfolio choice is to solve an optimization problem

in a multi-period setting, for which the solution is contingent on two important as-

sumptions: the choice of objective function and the specification of the underlying

stochastic process for asset returns. The problem was first posed by Samuelson (1969)

in discrete time and Merton (1969) in continuous time, and solved in both cases by

stochastic dynamic programming. As the asset-pricing literature has grown, this

paradigm has been extended in a number of important directions. 3

However, in practice, household investment behavior seems to be at odds with

finance theory. In particular, Ameriks and Zeldes (2004) observe that

... a great deal of observed variation in portfolio behavior may be ex-

plained by the outcome of a few significant decisions that individuals

make infrequently, rather than by marginal adjustments continuously.

Moreover, other documented empirical characteristics of investor behavior include

non-participation (Calvet, Campbell, and Sodini 2006); under-diversification (Calvet,

Campbell, and Sodini 2006); limited monitoring frequency and trading (Ameriks and

Zeldes 2004); survival-based selling decisions or a "flight to safety" (Agnew 2003);

an absence of hedging strategies (Massa and Simonov, 2004); and concentration in

simple strategies through mutual-fund investments (Calvet, Campbell and Sodini

2006). Variations in investment policies due to characteristics such as age, wealth,
and profession have been examined as well. 4

3For a comprehensive summary of portfolio choice see Brandt (2004). Recent extensions include
predictability and autocorrelation in asset returns (Brennan and Xia, 2001; Xia, 2001; Kim and
Omberg, 1996; Wachter, 2002; Liu, 1999; and Campbell and Viceria, 1999), model uncertainty (Bar-
beris, 2000), transaction costs (Balduzzi and Lynch, 1999), stochastic opportunity sets (Brennan,
Schwartz, and Lagnado, 1997; Brandt, Goyal, Santa-Clara, and Stroud, 2005; and Campbell, Chan,
and Viceria, 2003), and behavioral finance (see the references in footnote 2).4For example, lack of age-dependence in allocation, lower wealth and lower education with greater
non-participation and under-diversification, and greater sophistication in higher wealth investors



In fact, in contrast to the over-trading phenomenon documented by Odean (1999)

and Barber and Odean (2000), Agnew (2003) asserts that individual investors actually

trade infrequently. By examining asset-class flows, she finds that investors often shift

out of equities after extremely negative asset returns into fixed-income products, and

concludes that in retirement accounts, investors are more prone to exhibit a "flight

to safety" instead of explicit return chasing. Given that 1 in 3 of the workers in the

United States participate in 401(k) programs, it is clear that this "flight to safety"

could have a significant impact on market prices as well as demand. Consistent with

Agnew's "flight-to-safety" in the empirical application of stop-loss, we find momen-

tum in long-term bonds as a result of sustained periods of loss in equities. This

suggests conditional relationships between stocks and bonds, an implication which is

also confirmed by our empirical results. 5

Although stop-loss rules are widely used, the corresponding academic literature

is rather limited. The market microstructure literature contains a number of studies

about limit orders and optimal order selection algorithms (Easley and O'Hara, 1991;

Biais, Hillion, and Spatt, 1995; Chakravarty and Holden, 1995; Handa and Schwartz,

1996; Harris and Hasbrouck, 1996; Seppi, 1997; and Lo, MacKinlay, and Zhang,

2002). Carr and Jarrow (1990) investigate the properties of a particular trading

strategy that employs stop-loss orders, and Tschoegl (1988) and Shefrin and Statman

(1985) consider behavioral patterns that may explain the popularity of stop-loss rules.

However, to date, there has been no systematic analysis of the impact of a stop-loss

rule on an existing investment policy, an oversight that we remedy in this paper.

3.3 A Framework for Analyzing Stop-Loss Rules

In this section, we outline a framework for measuring the impact of stop-loss policies

on investment performance. In Section 3.3.1, we begin by specifying a simple stop-

have all been considered (see Ameriks and Zeldes, 2004).
5 Although excess performance in long-term bonds may seem puzzling, from a historical perspec-

tive, the deregulation of long-term government fixed-income products in the 1950's could provide
motivation for the existence of these effects.



loss policy and deriving some basic statistics for its effect on an existing portfolio

strategy. We describe several generalizations and qualifications of our framework

in Section 3.3.2, and then apply our framework in Section 3.4 to various return-

generating processes including the Random Walk Hypothesis, momentum and mean-

reversion models, and regime-switching models.

3.3.1 Assumptions and Definitions

Consider any arbitrary portfolio strategy P with returns {rt} that satisfy the following

assumptions:

(Al) The returns {rt} for the portfolio strategy P are stationary with finite mean p

and variance a2 .

(A2) The expected return p of P is greater than the riskfree rate rf, and let ?r -I -rf

denote the risk premium of P.

Our use of the term "portfolio strategy" in Assumption (Al) is meant to underscore

the possibility that P is a complex dynamic investment policy, not necessarily a static

basket of securities. Assumption (A2) simply rules out perverse cases where stop-loss

rules add value because the "safe" asset has a higher expected return than the original

strategy itself.

Now suppose an investor seeks to impose a stop-loss policy on a portfolio strategy.

This typically involves tracking the cumulative return Rt(J) of the portfolio over a

window of J periods, where:6

J

Rt(J) rt-j+l (3.1)
j=1

and when the cumulative return crosses some lower boundary, reducing the invest-

ment in P by switching into cash or some other safer asset. This heuristic approach
6 For simplicity, we ignore compounding effects and define cumulative returns by summing simple

returns rt instead of multiplying (1+rt). For purposes of defining the trigger of our stop-loss policy,
this approximation does not have significant impact. However, we do take compounding into account
when simulating the investment returns of a portfolio with and without a stop-loss policy.



motivates the following definition:

Definition 1 A simple stop-loss policy S(y, 6, J) for a portfolio strategy P with

returns {rt} is a dynamic binary asset-allocation rule {st} between P and a riskfree

asset F with return rf, where st is the proportion of assets allocated to P, and:

0 if Rt-l(J) < -7 and st-_ = 1 (exit)

1 if rt-1 > 6 and st-1 = 0 (re-enter)
st - (3.2)

1 if Rt- 1 (J) 2 -y and st-1 = 1 (stay in)

0 if rt-1 < 6 and st- = 0 (stay out)

for y7 0. Denote by r,t the return of portfolio strategy S, which is the combinaton of

portfolio strategy P and the stop-loss policy 8, hence:

rst - strt + ( - st)rf. (3.3)

Definition 1 describes a 0/1 asset-allocation rule between P and the riskfree asset F,

where 100% of the assets are withdrawn from P and invested in F as soon as the

J-period cumulative return Rt, (J) reaches some loss threshold 7 at t l . The stop-loss

rule stays in place until some future date t2 -1 > tl when P realizes a return rt,-1

greater than 6, at which point 100% of the assets are transferred from F back to P at

date t2 . Therefore, the stop-loss policy S(y, 6, J) is a function of three parameters: the

loss threshold 7, the re-entry threshold 6, and the cumulative-return window J. Of

course, the performance of the stop-loss policy also depends on the characteristics of

F-lower riskfree rates imply a more significant drag on performance during periods

when the stop-loss policy is in effect.

Note that the specification of the loss and re-entry mechanisms are different; the

exit decision is a function of the cumulative return Rt-1(J) whereas the re-entry

decision involves only the one-period return rt-1. This is intentional, and motivated

by two behavioral biases. The first is loss aversion and the disposition effect, in which

an individual becomes less risk-averse when facing mounting losses. The second is the

"snake-bite" effect, in which an individual is more reluctant to re-enter a portfolio



after experiencing losses from that strategy. The simple stop-loss policy in Definition

1 is meant to address both of these behavioral biases in a systematic fashion.

To gauge the impact of the stop-loss policy S on performance, we define the

following metric:

Definition 2 The stopping premium A, (S) of a stop-loss policy S is the expected

return difference between the stop-loss policy S and the portfolio strategy P:

A, _ E[rst] - E[rt] = po (rf - E[rt st = 0]) (3.4)

where Po - Prob(st = 0) (3.5)

and the sto:pping ratio is the ratio of the stopping premium to the probability of

stopping out:

- = rf - E[rtst = 0] . (3.6)
Po

Note that the difference of the expected returns of rt and rt reduces to the product

of the probability of a stop-loss Po and the conditional expectation of the difference

between rf and rt, conditioned on being stopped out. The intuition for this expression

is straightforward: the only times rst and rt differ are during periods when the stop-

loss policy has been triggered. Therefore, the difference in expected return should

be given by the difference in the conditional expectation of the portfolio with and

without the stop-loss policy-conditioned on being stopped out-weighted by the

probability of being stopped out.

The stopping premium (3.4) measures the expected-return difference per unit

time between the stop-loss policy S and the portfolio strategy P, but this metric may

yield misleading comparisons between two stop-loss policies that have very different

parameter values. For example, for a given portfolio strategy P, suppose S1 has a

stopping premium of 1% and S2 has a stopping premium of 2%; this suggests that

82 is superior to SI. But suppose the parameters of S2 implies that S2 is active only

10% of the time, i.e., 1 month out of every 10 on average, whereas the parameters of



S1 implies that it is active 25% of the time. On a total-return basis, S 1 is superior,

even though it yields a lower expected-return difference per-unit-time. The stopping

ratio A,/po given in (3.6) addresses this scale issue directly by dividing the stopping

premium by the probability Po. The reciprocal of Po is the expected number of periods

that st = 0 or the expected duration of the stop-loss period. Multiplying the per-unit-

time expected-return difference A, by this expected duration 1/p, then yields the

total expected-return difference A,/po between rf and rt.

The probability Po of a stop-loss is of interest in its own right because more fre-

quent stop-loss events imply more trading and, consequently, more transactions costs.

Although we have not incorporated transactions costs explicitly into our analysis, this

can be done easily by imposing a return penalty in (3.3):

r,t _ strt + (1 - st)rf - st -St-ll (3.7)

where , > 0 is the one-way transactions cost of a stop-loss event. For expositional

simplicity, we shall assume r =0 for the remainder of this paper.

Using the metrics proposed in Definition 2, we now have a simple way to answer

the question posed in our title: stop-loss policies can be said to stop losses when

the corresponding stopping premium is positive. In other words, a stop-loss policy

adds value if and only if its implementation leads to an improvement in the overall

expected return of a portfolio strategy.

Of course, this simple interpretation of a stop-loss policy's efficacy is based purely

on expected return, and ignores risk. Risk matters because it is conceivable that a

stop-loss policy with a positive stopping premium generates so much additional risk

that the risk-adjusted expected return is less attractive with the policy in place than

without it. This may seem unlikely because by construction, a stop-loss policy involves

switching out of P into a riskfree asset, implying that P spends more time in higher-

risk assets than the combination of P and S. However, it is important to acknowledge

that P and S are dynamic strategies and static measures of risk such as standard

deviation are not sufficient statistics for the intertemporal risk/reward trade-offs that



characterize a dynamic rational expectations equilibrium.7 Nevertheless, it is still

useful to gauge the impact of a stop-loss policy on volatility of a portfolio strategy P,

as only one of possibly many risk characteristics of the combined strategy. To that

end, we have:

Definition 3 Let the variance difference A,2 of a stopping strategy be given by:

A02 - Var[ret] - Var[rt] (3.8)

= E[Var[rstlst]] + Var[E[rstlst]] - E[Var[rtlst]] - Var[E[rtlst]] (3.9)

S-poVar[rtlst = 0] +

o(l ) [(rf - E[rtst = 0])2 / ( - E[rtlst = 0]o)] (3.10)
1 - Po

From an empirical perspective, standard deviations are often easier to interpret, hence

we also define the quantity A, V/Var[ret] - a.

Given that a stop-loss policy can affect both the mean and standard deviation of

the portfolio strategy P, we can also define the difference between the Sharpe ratios

of P with and without S:

AsR = E[rt] - rf _i - rf (3.11)
as a

However, given the potentially misleading interpretations of the Sharpe ratio for dy-

namic strategies such as P and S, we shall refrain from using this metric for evaluating

the efficacy of stop-loss policies.8

3.3.2 Generalizations and Qualifications

The basic framework outlined in Section 3.3.1 can be generalized in many ways. For

example, instead of switching out of P and into a completely riskfree asset, we can al-

low F to be a. lower-risk asset but with some non-negligible volatility. More generally,
7 See Merton (1973) and Lucas (1978), for example.
8 See Sharpe (1994), Spurgin (2001), and Lo (2002) for details.



instead of focusing on binary asset-allocation policies, we can consider a continuous

function w(.) E [0, 1] of cumulative returns that declines with losses and rises with

gains. Also, instead of a single "safe" asset, we might consider switching into multiple

assets when losses are realized, or incorporate the stop-loss policy directly into the

portfolio strategy P itself so that the original strategy is affected in some systematic

way by cumulative losses and gains. Finally, there is nothing to suggest that stop-

loss policies must be applied at the portfolio level-such rules can be implemented

security-by-security or asset-class by asset-class.

Of course, with each generalization, the gains in flexibility must be traded off

against the corresponding costs of complexity and analytic intractability. These trade-

offs can only be decided on a case-by-case basis, and we leave it to the reader to make

such trade-offs individually. Our more modest objective in this paper is to provide

a complete solution for the leading case of the simple stop-loss policy in Definition

(1). From our analysis of this simple case, a number of generalizations should follow

naturally, some of which are explored in Kaminski (2006).

However, an important qualification regarding our approach is the fact that we do

not derive the simple stop-loss policy (3.2) from any optimization problem-it is only

a heuristic, albeit a fairly popular one among many institutional and retail investors.

This is a distinct departure from much of the asset-pricing literature in which in-

vestment behavior is modelled as the outcome of an optimizing individual seeking to

maximize his expected lifetime utility by investing in a finite set of securities subject

to a budget constraint, e.g., Merton (1971). While such a formal approach is cer-

tainly preferable if the consumption/investment problem is well posed-for example,

if preferences are given and the investment opportunity set is completely specified-

the simple stop-loss policy can still be studied in the absence of such structure.

Moreover, from a purely behavioral perspective, it is useful to consider the impact

of a stop-loss heuristic even if it is not derived from optimizing behavior, precisely

because we seek to understand the basis of such behavior. Of course, we can ask the

more challenging question of whether the stop-loss heuristic (3.2) can be derived as

the optimal portfolio rule for a specific set of preferences, but such inverse-optimal



problems become intractable very quickly (see, for example, Chang, 1988). Instead,

we have a narrower set of objectives in this paper: to investigate the basic properties

of simple stop-loss heuristics without reference to any optimization problem, and

with as few restrictions as possible on the portfolio strategy P to which the stop-

loss policy is applied. The benefits of our narrower focus are the explicit analytical

results described in Section 3.4, and the intuition that they provide for how stop-loss

mechanisms add or subtract value from an existing portfolio strategy.

Although this approach may be more limited in the insights it can provide to the

investment process, the siren call of stop-loss rules seems so universal that we hope to

derive some useful implications for optimal consumption and portfolio rules from our

analysis. Moreover, the idea of overlaying one set of heuristics on top of an existing

portfolio strategy has a certain operational appeal that many institutional investors

have found so compelling recently, e.g., so-called "portable alpha" strategies. Overlay

products can be considered a general class of "superposition strategies", and this is

explored in more detail in Kaminski (2006).

3.4 Analytical Results

Having defined the basic framework in Section 3.3 for evaluating the performance

of simple stop-loss rules, we now apply them to several specific return-generating

processes for {rt}, including the Random Walk Hypothesis in Section 3.4.1, mean-

reversion and momentum processes in Section 3.4.2, and a statistical regime-switching

model in Section 3.4.3. The simplicity of our stop-loss heuristic (3.2) will allow us

to derive explicit conditions under which stop-loss policies can stop losses in each of

these cases.

3.4.1 The Random Walk Hypothesis

Since the Random Walk Hypothesis is one of the most widely used return-generating

processes in the finance literature, any analysis of stop-loss policies must consider this

leading case first. Given the framework proposed in Section 3.3, we are able to derive



a surprisingly strong conclusion about the efficacy of stop-loss rules:

Proposition 1 If {rt} satisfies the Random Walk Hypothesis so that:

rt = / + ft , Ct c' White Noise(0, a.) (3.12)

then the stop-loss policy (3.2) has the following properties:

A = Po(Trf- p) = - Po (3.13a)

A = - 7r (3.13b)
Po

Ag2 = -Poo 2 + po(1 - po)ir2  (3.13c)
7r A + r

AsR = - + (3.13d)
a ýx/A0 2 + u 2

Proof: See Appendix A.2.1. I

Proposition 1 shows that, for any portfolio strategy with an expected return

greater than the riskfree rate rf, the Random Walk Hypothesis implies that the

stop-loss policy (3.2) will always reduce the portfolio's expected return since A, <0.

In the absence of any predictability in {rt}, whether or not the stop-loss is activated

has no information content for the portfolio's returns; hence, the only effect of a

stop-loss policy is to replace the portfolio strategy P with the riskfree asset when the

strategy is stopped out, thereby reducing the expected return by the risk premium

of the original portfolio strategy P. If the stop-loss probability Po is large enough

and the risk premium is small enough, (3.13) shows that the stop-loss policy can also

reduce the volatility of the portfolio.

The fact that there are no conditions under which the simple stop-loss policy

(3.2) can add value to a portfolio with IID returns may explain why stop-loss rules

have been given so little attention in the academic finance literature. The fact that

the Random Walk Hypothesis was widely accepted in the 1960's and 1970's-and

considered to be synonymous with market efficiency and rationality-eliminated the

motivation for stop-loss rules altogether. In fact, our simple stop-loss policy may be

viewed as a more sophisticated version of the "filter rule" that was tested extensively



by Alexander (1961) and Fama and Blume (1966). Their conclusion that such strate-

gies did not produce any excess profits was typical of the outcomes of many similar

studies during this period.

However, despite the lack of interest in stop-loss rules in academic studies, invest-

ment professionals have been using such rules for many years, and part of the reason

for this dichotomy may be the fact that the theoretical motivation for the Random

Walk Hypothesis is stronger than the empirical reality. In particular, Lo and MacKin-

lay (1988) presented compelling evidence against the Random Walk Hypothesis for

weekly U.S. stock-index returns from 1962 to 1985, which has subsequently been con-

firmed and extended to other markets and countries by a number of other authors.

In the next section, we shall see that, if asset-returns do not follow random walks,

there are several situations in which stop-loss policies can add significant value to an

existing portfolio strategy.

3.4.2 Mean Reversion and Momentum

In the 1980's and 1990's, several authors documented important departures from the

Random Walk Hypothesis for U.S. equity returns,9 and, in such cases, the implications

for the stop-loss policy (3.2) can be quite different than in Proposition 1. To see

how, consider the simplest case of a non-random-walk return-generating process, the

AR(1):

IIDrt = p + p(rt-1 - ~) + Et , , White Noise(0, o2 ) , p E (-1, 1.14)

where the restriction that p lies in the open interval (-1, 1) is to ensure that rt is a

stationary process (see Hamilton, 1994).

This simple process captures a surprisingly broad range of behavior depending

on the single parameter p, including the Random Walk Hypothesis (p = 0), mean

reversion (pE (-1, 0)), and momentum (p= (0, 1)). However, the implications of this

9 See, for example, Fama and French (1988), Lo and MacKinlay (1988, 1990, 1999), Poterba and
Summers (1988), Jegadeesh (1990), Lo (1991), and Jegadeesh and Titman (1993).



return-generating process for our stop-loss rule are not trivial to derive because the

conditional distribution of rt, conditioned on Rt- 1 (J), is quite complex. For example,

according to (3.4), the expression for the stopping premium A, is given by:

A, = po(r - E[rtlst = 0]) (3.15)

but the conditional expectation E[rtlst = 0] is not easy to evaluate in closed-form

for an AR(1). For p - 0, the conditional expectation is likely to differ from the

unconditional mean p since past returns do contain information about the future, but

the exact expression is not easily computable. Fortunately, we are able to obtain a

good first-order approximation under certain conditions, yielding the following result:

Proposition 2 If {rt} satisfies an AR(1) (3.14), then the stop-loss policy (3.2) has

the following properties:

S- -r + pa + q (Q, , J) (3.16)
Po

and for p > 0 and reasonable stop-loss parameters, it can be shown that 77(y, 6, J) > 0,

which yields the following lower bound:

A > -• r + pa (3.17)
Po

Proof: See Appendix A.2.2. I

Proposition 2 shows that the impact of the stop-loss rule on expected returns is

the sum of three terms: the negative of the risk premium, a linear function of the

autoregressive parameter p, and a remainder term. For a mean-reverting portfolio

strategy, p < 0; hence, the stop-loss policy hurts expected returns to a first-order

approximation. This is consistent with the intuition that mean-reversion strategies

benefit from reversals, thus a stop-loss policy that switches out of the portfolio after

certain cumulative losses will miss the reversal and lower the expected return of

the portfolio. On the other hand, for a momentum strategy, p > 0, in which case

there is a possibility that the second term dominates the first, yielding a positive



stopping premium. This is also consistent with the intuition that in the presence of

momentum, losses are likely to persist, therefore, switching to the riskfree asset after

certain cumulative losses can be more profitable than staying fully invested.

In fact, (3.17) implies that a sufficient condition for a stop-loss policy with rea-

sonable parameters to add value for a momentum-AR(1) return-generating process

is

7r
p > - - SR (3.18)

where SR is the usual Sharpe ratio of the portfolio strategy. In other words, if the

return-generating process exhibits enough momentum, then the stop-loss rule will

indeed stop losses. This may seem like a rather high hurdle, especially for hedge-fund

strategies that have Sharpe ratios in excess of 1.00! However, note that (3.18) assumes

that the Sharpe ratio is calibrated at the same sampling frequency as p. Therefore,

if we are using monthly returns in (3.14), the Sharpe ratio in (3.18) must also be

monthly. A portfolio strategy with an annual Sharpe ratio of 1.00-annualized in the

standard way by multiplying the monthly Sharpe ratio by vT2--implies a monthly

Sharpe ratio of 0.29, which is still a significant hurdle for p but not quite as imposing

as 1.00.10

3.4.3 Regime-Switching Models

Statistical models of changes in regime, such as the Hamilton (1989) model, are

parsimonious ways to capture apparent nonstationarities in the data such as sudden

shifts in means and variances. Although such models are, in fact, stationary, they do

exhibit time-varying conditional means and variances, conditioned on the particular

state that prevails. Moreover, by assuming that transitions from one state to another

follow a time-homogenous Markov process, regime-switching models exhibit rich time-

series properties that are surprisingly difficult to replicate with traditional linear
1 0Of course, the assumption that returns follow an AR(1) makes the usual annualization factor of

vI2 incorrect, which is why we use the phrase "annualized in the standard way". See Lo (2002) for
the proper method of annualizing Sharpe ratios in the presence of serial correlation.



processes. Regime-switching models are particularly relevant for stop-loss policies

because one of the most common reasons investors put forward for using a stop-loss

rule is to deal with a significant change in market conditions such as October 1987

or August 1998. To the extent that this motivation is genuine and appropriate, we

should see significant advantages to using stop-loss policies when the portfolio return

{rt} follows a regime-switching process.

More formally, let rt be given by the following stochastic process:

rt = Itrit + (1 - It)r2t , rit r, n ?) , i=1, 2 (3.19a)

It+1 =1 It+1=0

A It=l ( Pll P12A = 2 (3.19b)
It 0 P21 P22

where It is an indicator function that takes on the value 1 when state 1 prevails

and 0 when state 2 prevails, and A is the Markov transition probabilities matrix

that governs the transitions between the two states. The parameters of (3.19) are the

means and variances of the two states, (pI, P2, al, os), and the transition probabilities

(p1, P22). Without any loss in generality, we adopt the convention that state 1 is the

higher-mean state so that P1 > P2 . Given assumption (A2), this convention implies

that pi1 > rf, which is an inequality we will make use of below. The six parameters

of (3.19) may be estimated numerically via maximum likelihood (see, for example,

Hamilton, 1994).

Despite the many studies in the economics and finance literatures that have im-

plemented the regime-switching model (3.19), the implications of regime-switching

returns for the investment process has only recently been considered (see Ang and

Bekaert, 2004). This is due, in part, to the analytical intractability of (3.19)-while

the specification may seem simple, it poses significant challenges for even the simplest

portfolio optimization process. However, numerical results can easily be obtained via

Monte Carlo simulation, and we provide such results in Sections 3.5.

In this section, we investigate the performance of our simple stop-loss policy (3.2)



for this return-generating process. Because of the relatively simple time-series struc-

ture of returns within each regime, we are able to characterize the stopping premium

explicitly:

Proposition 3 If {rt} satisfies the two-state Markov regime-switching process (3.19),

then the stop-loss policy (3.2) has the following properties:

AA = po,'(rf- Al) + Po,2 (rf - 2) (3.20)

= (1 - 0,2)(rf - ) + o,2 (rf - A2) (3.21)
Po

where

Po,i = Prob (st= 0, It= 1) (3.22a)

Po,2 Prob (st= 0, It=O) (3.22b)

Po,2 po,2 = Prob(It= 0 st= 0). (3.22c)
Po

If the riskfree rate rf follows the same two-state Markov regime-switching process

(3.19), with expected returns rf1 and rf2 in states 1 and 2, respectively, then the

stop-loss policy (3.2) has the following properties:

A, = 0o,1(rfl -11) + po,2(rf 2 - A2) (3.23)

= (1 - Po,2)(rfl - pi) + Po,2(rf 2 - /12) . (3.24)
Po

The conditional probability /o,2 can be interpreted as the accuracy of the stop-loss

policy in anticipating the low-mean regime. The higher is this probability, the more

likely it is that the stop-loss policy triggers during low-mean regimes (regime 2),

which should add value to the expected return of the portfolio as long as the riskfree

asset-return rf is sufficiently high relative to the low-mean expected return P2.

In particular, we can use our expression for the stopping ratio A,/po to provide

a bound on the level of accuracy required to have a non-negative stopping premium.

Consider first the case where the riskfree asset rf is the same across both regimes.



For levels of Ao,2 satisfying the inequality:

Po,2 > 41 - rf (3.25)
P1 - P2

the corresponding stopping premium A, will be non-negative. By convention, ~l > P2,

and by assumption (A2), p1 > rf, therefore the sign of the right side of (3.25) is

positive. If rf is less than P2, then the right side of (3.25) is greater than 1, and

no value of Po,2 can satisfy (3.25). If the expected return of equities in both regimes

dominates the riskfree asset, then the simple stop-loss policy will always decrease

the portfolio's expected return, regardless of how accurate it is. To see why, recall

that returns are independently and identically distributed within each regime, and we

know from Section 3.4.1 that our stop-loss policy never adds value under the Random

Walk Hypothesis. Therefore, the only source of potential value-added for the stop-

loss policy (3.2) under a regime-switching process is if the equity investment in the

low-mean regime has a lower expected return than the riskfree rate, i.e., P2 <rf. In

this case, the right side of (3.25) is positive and less than 1, implying that sufficiently

accurate stop-loss policies will yield positive stopping premia.

Note that the threshold for positive stopping premia in (3.25) is decreasing in the

spread P1- P2. As the difference between expected equity returns in the high-mean

and low-mean states widens, less accuracy is needed to ensure that the stop-loss policy

adds value. This may be an important psychological justification for the ubiquity of

stop-loss rules in practice. If an investor possesses a particularly pessimistic view of

the low-mean state-implying a large spread between Pl and p2-then our simple

stop-loss policy may appeal to him even if its accuracy is not very high.

3.5 Empirical Analysis

To illustrate the potential relevance of our framework for analyzing stop-loss rules,

we consider the performance of (3.2) when applied to the standard household asset-

allocation problem involving just two asset classes: stocks and long-term bonds. Using



monthly stock- and bond-index data from 1950 to 2004, we find that stop-loss policies

produce surprising conditional properties in portfolio returns, stopping losses over a

wide range of parameter specifications. Our simple stop-loss rule seems to be able to

pick out periods in which long-term bonds substantially out-perform equities, which

is especially counterintuitive when we consider the unconditional properties of these

two asset classes historically.

For our empirical analysis, we use the monthly CRSP value-weighted returns

index to proxy for equities and monthly long-term government bond returns from

Ibbotson and Associate to proxy for bonds. We also consider Ibbotson's short-term

government bond returns for purposes of comparison. Our sample runs from January

1950 to December 2004, the same time span used by Ang and Berkart's (2004) study

of regime-switching models and asset allocation. In Section 3.5.4, we consider the

longer time span from January 1926 to December 2004 to reduce estimation error for

our behavioral regime-switching model estimates.

Ann.
Asset Mean Ann. SD pl Skew Kurt Min Med Max Ann. MDD

(%) (%) (%) (%) (%) (%) Sharpe (%)

Equities 12.5 14.4 2 -0.3 4.7 -21.6 1.3 16.8 0.9 38.4
Long-Term Bonds 6.2 9.0 6 0.6 6.4 -9.8 0.3 15.2 0.7 25.1
Short-Term Bonds 4.8 0.8 96 1.0 4.4 0.0 0.4 1.4 5.8 1.3

Table 3.1: Summary statistics for the CRSP Value-Weighted Total Market Index,
and Ibbotson Associates Long-Term and Short-Term Government Bond Indexes, from
January 1950 to December 2004.

In Table 3.1, we summarize the basic statistical properties of our dataset. To be

consistent with practice, we implement our stop-loss policies using simple returns, but

also provide means and standard deviations of log returns for equities and bonds in

Table 3.2 to calibrate some of our simulations. The results in Table 3.1 are well known

and require little commentary: stocks outperform bonds, long-term bonds outperform

short-term bonds, and the corresponding annual volatilities are consistent with the

rank-ordering of mean returns.



In Section 3.5.1, we present the performance statistics of our stop-loss policy ap-

plied to our stock and bond return series. We provide a more detailed performance

attribution of the stop-loss policy in Section 3.5.2. In Section 3.5.3, we compare our

empirical findings to simulated results under the Random Walk Hypothesis, momen-

tum and mean reversion, and regime switching. We conclude that stop-loss rules

apparently exploit momentum effects in equities and long-term bonds following peri-

ods of sustained losses in equities.

3.5.1 Basic Results

The empirical analysis we perform is straightforward: consider investing 100% in

equities in January 1950, and apply the simple stop-loss policy (3.2) to this portfolio

on a monthly basis, switching to a 100% investment in long-term bonds when stopped

out, and switching back into equities 100% when the re-entry threshold is reached.

We run this simulation until December 2004, which yields a time series of 660 monthly

returns {rst) with which we compute the performance statistics in Definition 2.

Specifically, we compute performance measures for the simple stop-loss strategy

(3.2) for cumulative-return windows J= 3, 6, 12, and 18 months over stop-loss thresh-

olds y = 4-14% and re-entry thresholds 6=0% and 2%. The performance measures

A,, A,, , and po are graphed in Figure 3-1. Two robust features are immedi-
PO'

ately apparent: the first is that stopping premiums A. are positive, and the second

is that the volatility differences A, are also negative. This suggests that stop-loss

rules unambiguously add value to mean-variance portfolio optimizers. Moreover, the

robustness of the results over a large range of parameter values indicates some signif-

icant time-series structure within these two asset classes.

Figure 3-1 also shows that A, seems to decrease with larger cumulative-return

windows, especially for J = 6 and 12 months. This finding is consistent with A,

increasing in po when the riskfree rate rf is higher than the conditional expected return

of equities, conditioned on being stopped out (see equation (3.15)). For reference, we

plot po in Figure 3-2.

For reference, we also plot po in Figure 3-2 and find that po is monotonically
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Figure 3-1: Stop-loss performance metrics A,, A0, , and Po for the simple stop-loss
policy over stopping thresholds y = 4-14% with 6 = 0%, J = 3 months (o), 6 months
(+), 12 months (o), and 18 months (a).
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decreasing with 'y as we would expect. In addition, p, generally ranges between 5%

and 10% implying that stop-loss rules stop-out rather infrequently, approximately

once a year or once every two years. Nevertheless, these infrequent decisions seem to

add considerable value to a buy-and-hold equity portfolio.

Figure 3-1 also contains plots of the stopping ratio A,/po and the figure shows

that the stop-loss policy yields an incremental 0.5% to 1% increase in expected return

on a monthly basis. The worst A,/po occurs for the 3-month cumulative-return

window, and the best A,,/po is obtained for large thresholds with an 18-month window

size. For the shorter window lengths, smaller thresholds provide less value-added but

the value remains positive. However, for the 18-month window, larger thresholds

perform better. This connection between stop-loss threshold and cumulative-return

window size suggests that there is some fundamental relation-either theoretical or

behavioral-between the duration of losses and their magnitude.

AsR(mn) po vs.y
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Figure 3-2: Stop-loss performance metrics for AsRfor the simple stop-loss policy over
stopping thresholds y = 4-14% with 6 = 0%, J = 3 months (o), 6 months (+), 12
months (o), and 18 months (a).

In Tables A.13 and A.14 of Appendix A.2.4, we examine the performance of eq-

uities and bonds during stopped-out periods for stop-loss thresholds 6 = 0% and

6= 2%, and find that bonds have significantly better performance with the same level

of volatility whereas stocks show reduced performance and increased volatility. We

apply a Kolmogorov-Smirnov test to compare the returns before and after stop-loss

policies are triggered, and find statistically significant p-values, indicating a difference

- --



between the marginal distribution of returns in and out of stop-out periods (see Table

A.15).

Our findings seem to imply momentum-like effects for large negative equity re-

turns, except in the case of large losses over short periods of time which seems to

imply reversals. However, since the main focus of our attention is on means and

variances, a natural concern is the undue influence of outliers. Even during stop-out

periods, we find that the kurtosis of stock and bond returns to be in the range of

2 to 3 (see Tables A.13 and A.14). We also find that the stop-out periods are rela-

tively uniformly distributed over time, refuting the obvious conjecture that a small

number of major market crashes are driving the results. Surprisingly, when we ex-

clude the "Tech Bubble" by limiting our sample to December 1999, we find increased

performance for our stop-loss policy in most cases. One explanation is that during

significant market declines, our stop-loss policy may get back in too quickly, thereby

hurting overall performance.

Figure 3-1 also includes a plot of a,, which shows that volatility is always reduced

by the stop-loss policy, but the reduction is smaller for larger stopping thresholds y.

This is to be expected because larger thresholds imply that the stop-loss policy is

activated less often. Nevertheless, the reduction in variance is remarkably pronounced

for a strategy which so rarely switches out of equities (see Tables A.13 and A.14 for

the relative frequency and duration of stop-outs). This reduction seems to be coming

from two sources: switching to a lower-volatility asset, and avoiding subsequently

higher-volatility periods in equities.

Based on the empirical behavior of A~ and A,, we expect an increase in the

Sharpe ratio, and Figure 3-2 confirms this with a plot of AsR. The stop-loss policy

has a significant impact on the portfolio's Sharpe ratio even in this simple two-asset

case. The relation between AsR and window size underscores the potential connection

between the amount of time losses are realized and appropriate stop-loss thresholds.

Based on our empirical analysis, we conclude that stop-loss policies could indeed

have added value to the typical investor when applied to equities and long-term bonds

from 1950 to 2004. In the next two sections, we provide a more detailed analysis of



these results by conducting a performance attribution for the two assets, and by

examining several models for asset returns to gauge how substantial these effects are.

3.5.2 Performance Attribution

The empirical success of our simple stop-loss policy implies periods where long-term

bonds provide more attractive returns than equities, which beckons us to examine

in more detail the properties of both asset classes during stopped-out periods. In

particular, we would like to understand if the positive stopping premium is driven by

avoiding downside-momentum in equities, positive returns from a flight-to-safety in

bonds, or both. Although a closer analysis indicates that both phenomena are present,

the conditional performance in bonds seems more compelling. To demonstrate this

effect, we examine a specific stop-loss policy and graph the conditional asset-class

properties in Figure 3-3, 3-4, and 3-5.

(a) (b) (c)

Figure 3-3: Empirical CDFs of (a) Ibbotson Associates Long-Term Government Bond
returns (Tb); (b) CRSP Value-Weighted Total Market returns (re); (c) and their dif-

ference (Tb - re), for returns during stopped-out periods (50 data points, dotted line)

and non-stopped out periods (610 data points, solid line) with stop-loss parameters
J=12, y = 8%, and 6 = 0%, from January 1950 to December 2004.

In Figure 3-3, we plot the empirical cumulative distribution functions (CDFs) for

equities, long-term bonds, and their difference for stopped-out and non-stopped-out

returns, and in Figure 3-4, we plot the corresponding return histograms for equities

and long-term bonds during stopped-out periods, non-stopped-out periods, and both.

Figure 3-3 shows that for long-term bonds, returns during stopped-out periods seem

to first-order stochastically dominate returns during non-stopped-out period, and that0nd no-tpe ou peiDs.70dt ons sldln)wt to-ospr tr
J=1,7 % ad( =0,fo6 0aur.90t Dcme 04



stopped-out returns exhibit a much larger positive skew. In contrast, equities have

larger negative returns and a few larger positive returns, coupled with larger volatility.
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Figure 3-4: Histograms of (a) Ibbotson Associates Long-Term Government Bond
returns (rb); (b) CRSP Value-Weighted Total Market returns (re); and (c) their dif-
ference (rb - re), for returns during stopped-out periods and the entire sample, with
stop-loss parameters J = 12, y = 8%, and 6 = 0%, from January 1950 to December
2004.

When we examine the difference between long-term bonds and equities, we find

that the CDF of the stopped-out periods almost first-order stochastically dominates

the CDF of the non-stopped-out periods, and the positive skew is due to both the

increased positive skew in long-term bonds and the large negative returns in equi-

ties. The stopped-out difference does not stochastically dominate the non-stopped

out periods due to the few large positive returns in equities during stopped-out pe-
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riods. By examining these conditional CDFs, we conclude that performance during

stopped-out periods is generally good because equities tend to have persistent nega-

tive performance and long-term bonds generate excess performance during the periods

following negative equity returns. In addition, long-term bonds do not stochastically

dominate equities because of the few large reversals in equity returns.

rb vs. r (stopped out)
1

0.8

0.6

0.4

0.2

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

b VS. r (not stopped out)
r b vs. r. (not stopped out)

Figure 3-5: Empirical CDFs of Ibbotson Associates Long-Term Government Bond
returns (rb) vs. CRSP Value-Weighted Total Market returns (re), for returns during
stopped-out periods (50 data points, dotted line) and non-stopped out periods (610
data points, solid line) with stop-loss parameters J = 12, 'y = 8%, and 6 = 0%, from
January 1950 to December 2004.

In Figure 3-5, we compare equities to bonds directly by plotting the empirical

CDFs for both assets together, for stopped-out and non-stopped-out periods. In this

case, we find that during non-stopped-out periods, equities provide a higher return

than bonds 70% of the time, but during stopped-out periods, equities provide a higher

return only 30% of the time.

3.5.3 A Comparison of Empirical and Analytical Results

To develop further intuition for the empirical results of Section 3.5.1, we conduct

several simulation experiments in this section for the return-generating processes of

Section 3.4. These simulations will serve as useful benchmarks to gauge the economic
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Return c k a p
Process (%) (%) (%) (%)

AR(1) 0.93 0.17 4.12 2.52
AR(1) (ann.) 11.16 2.04 14.28 -
Equity lID 0.95 0.17 4.12 -
lID (ann.) 11.46 2.04 14.28 -

Long-Term lID 0.48 0.06 2.58 -
Bonds lID (ann.) 5.81 0.80 8.93 -

Table 3.2: Parameter estimates for monthly log returns under both IID and AR(1)
return-generating processes for the CRSP Value-Weighted Total Market Index, and
IID return-generating process for and Ibbotson Associates Long-Term and Short-Term
Government Bond Indexes, from January 1950 to December 2004.

Frequency Pel 112 ael 0e2 •Ib Pb2 
0 bl b2 2

(%N (%/0) M o) M (M (%/) (N (%)
Monthly 1.26 0.34 3.11 5.65 0.36 0.72 1.64 3.81 67
Annual 15.14 4.06 10.77 19.57 4.37 8.70 5.67 13.20 -

Table 3.3: Maximum likelihood estimates for a regime-switching model with constant
transition probabilities for the CRSP Value-Weighted Total Market return, and Ibbot-
son Associates Long-Term and Short-Term Government Bond returns, from January
1950 to December 2004.

significance of our empirical results, and can also provide insights into the specific

sources of value-added of our stop-loss policy.

We simulate three return-generating processes: the Random Walk Hypothesis, an

AR(1) with positive p (momentum), and the regime-switching model (3.19). For each

process, we simulate 10,000 histories of artificial equity and bond return series, each

series containing 660 normally distributed monthly returns (the same sample size as

our data), and calibrated to match the means and standard deviations of our data.

The parameter estimates used for the IID and AR(1) cases are given in Table 3.2,

and the regime-switching parameter estimates, estimated by maximum likelihood, are

given in Table 3.3.

For each return history, we apply our stop-loss policy (3.2), compute the perfor-



mance metrics in Definition 2, repeat this procedure 10,000 times, and average the

performance metrics across these 10,000 histories. Figure 3-6 plots these simulated

metrics for the three return-generating processes, along with the empirical perfor-

mance metrics for the stop-loss policy with a window size J = 12 months and a

re-entry threshold of 0%.

Given our analysis of the Random Walk Hypothesis in Section 3.4.1, it is clear

that IID returns will yield a negative stopping premium. According to Proposition

1, we know the value of the stopping premia A, depends on our choice of stopping

threshold only through Po, and the value of A-_ = rf -p is constant. Figure 3-6 confirms
Po

these implications, and also illustrates the gap between the Random Walk simulations

and the empirical results which are plotted using the symbol "o". The t-statistics

associated with tests that the empirical performance metrics A,, A,, and ASR are

different from their simulated counterparts are all highly significant at the usual levels,

implying resounding rejections of the Random Walk Hypothesis. Alternatively, for

our simulations to be consistent with our empirical findings, long-term bonds would

have to earn a premium over equities of approximately 1% per month, and equities

would have to have much higher volatility than their historical returns have exhibited.

For the AR(1) simulations, Figure 3-6 shows little improvement in explaining the

empirical results with this return-generating process-the simulated stopping pre-

mium is still quite negative for the amount of positive autocorrelation we have cali-

brated according to Table 3.2. Using Proposition 2, we can approximate and bound

the value of the stopping ratio to be:

S rf - p + pa = -0.0034
po

which is comparable to the stopping ratio under the Random Walk Hypothesis,

-0.0045. Given empirical values for A,/po, we can back out the implied value of

p under an AR(1); these implied values are given in Table 3.4. Clearly, these implied

autocorrelations are unrealistically high for monthly equity returns, suggesting that

simple AR(1) momentum cannot explain the empirical success of our stop-loss policy.
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Figure 3-6: Empirical and simulated performance metrics A,,A,, -4L, and Po for
Po

the simple stop-loss policy with stopping thresholds - = 4-14%, 6 = 0%, J = 12
months. The empirical results (o) are based on monthly returns of the CRSP Value-
Weighted Total Market Index and Ibbotson Associates Long-Term Bond Index from
January 1950 to December 2004. The simulated performance metrics are averages
across 10,000 replications of 660 monthly normally distributed returns for each of
three return-generating processes: IID (+), an AR(1) (a), and a regime-switching
model (*).

J Implied p PMLE
(Months) (%) (%)

3 28.1 2.5
6 33.6 2.5

12 39.0 2.5
18 40.1 2.5

Table 3.4: Implied first-order serial correlation coefficient
tion of A- assuming an AR(1) return-generating processPO
average across the following parameter values for y: 4%,
10%.
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The third set of simulations is based on the regime-switching model (3.19) where

long-term bonds are also assumed to vary across regimes, and the parameter estimates

in Table 3.3 show some promise of capturing certain features of the data that neither

IID nor AR(1) processes can generate. The conditional asymmetry of the two regimes

is characterized by one regime with higher returns in equities and lower returns in

bonds, and the other with lower returns in equities and higher returns in bonds.

Using Proposition 3 (the case with a regime-switching riskfree asset), we can gauge

the level of accuracy required of our regime-switching model to obtain a positive

stopping premium. Recall from (3.24) that

= rfl - P1 + Po,2(rf2 - rfl +±A1 - A12)
Po

= - 0.009 + 0.0128po,2

Using this simple result, we see that the stop-loss strategy must correctly switch into

bonds with 69.9% accuracy to yield a positive stopping premium. Given the level

of volatility in asset returns, it is unrealistic to expect any stopping rule to be able

to distinguish regimes with such accuracy. To confirm this intuition, we simulate

the regime-switching model using the parameter estimates in Table 3.3 and plot the

implied accuracy Po,2 over a large range of stop-loss rules in Figure 3-7. The 3-

month stopping window outperforms the other stopping windows, especially for large

stopping thresholds y, but none of the implied accuracies comes close to the required

accuracy of 69.9% to yield a positive stopping premium. Despite the intuitive appeal

of the regime-switching model, it cannot easily account for the empirical success of

our simple stop-loss policy.

3.5.4 A Behavioral Regime-Switching Model

Given the lack of success in the regime-switching model (3.19) to explain the empirical

performance of the simple stop-loss policy, we propose an alternative based on the

flight-to-safety phenomenon. The motivation for such an alternative is the mounting

empirical and experimental evidence that investors have two modes of behavior: a
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Figure 3-7: The probability of correctly being out of equities during the low-mean
regime for equities, or 10,2, under Hamilton's (1989) regime-switching model for Basic
Stop Loss Rules over various stopping thresholds y = 4-14% with 6 = 0%, J = 3 (o),
6 (+), 9 (o), and 18 (A) months, threshold for positive AP.

normal state, and a distressed or panic state."1 An implication of this behavior is

that investors are asymmetrically impacted by losses, resulting in a flight to safety.

The "distress state" is characterized by a lower mean in equities, as well as a higher

mean in bonds, and one possible trigger is a sufficiently large cumulative decline in

an investor's wealth, e.g., a 401(k) account (Agnew, 2003)

This phenomenon can be captured parsimoniously by extending the regime-switching

model (3.19) to allow the regime-switching probabilities to be time-varying and de-

pendent on a cumulative sum of past asset returns:

exp(a, + b1Re-,(J))Prob(It= It-1=) = exp(a + J (3.26a)
1 + exp(al + blRt- (J))

exp(a, + biRt-l(J))
1 + exp(a2 + b2Rt-1(J))

The motivation for such a specification is to capture the flight-to-safety effect where

the probability of switching to the distress state increases as cumulative losses mount,

"Examples of such evidence include: disposition effects (Shefrin and Statman, 1985; Odean,
1998, 1999); disappointment aversion (Gul, 1991); loss aversion and prospect theory (Kahneman
and Tversky, 1979,1992); and regret (Bell, 1982a,b; Loomes and Sugden, 1982).
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which implies a negative bl coefficient if we continue to adopt the convention that

state 1 is the higher-mean state.12 This behavioral regime-switching model can be

estimated via maximum likelihood estimation following an approach similar to Ang

and Bekaert (2004) (see Appendix A.2.3 for details), and the parameter estimates for

our monthly equity and long-term bond return series are given in Table 3.5. With the

exception of the case where J = 18, the bl coefficient estimates are indeed negative,

consistent with the flight-to-safety phenomenon. Moreover, the coefficient estimates

b2 are positive and much larger in absolute value than the b, estimates, implying a

stronger tendency to return to the high-mean state from the low-mean state given

a cumulative gain of the same absolute magnitude. The fact that both bl and b2

estimates are the largest in absolute value for the shortest horizon J = 3 is also

consistent with the behavioral evidence that losses and gains concentrated in time

have more salience than those over longer time periods.

J PLel Le22 Gel (e2 1 lb2 abl ab2 a1 a2 bi b2 (ebl yeb2(%) (%) (%) (%) (%) (%) (%) (%)

Monthly:
3 1.05 0.32 3.43 5.82 0.33 0.82 1.90 3.87 -4.02 -5.00 -7.53 24.05 0.24 0.15
6 1.04 0.40 3.42 5.68 0.35 0.73 1.85 3.82 -3.87 -4.04 -3.00 10.10 0.22 0.16

12 1.03 0.36 3.41 5.69 0.34 0.76 1.85 3.83 -3.52 -3.14 -2.99 2.47 0.23 0.16
18 1.08 0.48 3.27 5.46 0.34 0.79 1.73 3.64 -4.51 -3.95 4.25 5.47 0.00 0.01

Annual:
3 12.59 3.78 11.89 20.17 3.90 9.84 6.56 13.41 -4.02 -5.00 -7.53 24.05 0.24 0.15
6 12.48 4.76 11.85 19.67 4.17 8.74 6.41 13.25 -3.87 -4.04 -3.00 10.10 0.22 0.16

12 12.31 4.33 11.81 19.71 4.07 9.09 6.41 13.26 -3.52 -3.14 -2.99 2.47 0.23 0.16
18 12.94 5.73 11.32 18.90 4.04 9.48 5.99 12.59 -4.51 -3.95 4.25 5.47 0.00 0.01

Table 3.5: Maximum likelihood estimates of the behavioral regime-switching model
for monthly and annual log-returns for the CRSP Value-Weighted Total Market Index
and Ibbotson Associates Long-Term Government Bond Index, from January 1950 to
December 2004, and for cumulative-return windows J=3, 6, 12, and 18 months.

Using the maximum likelihood estimates in Table 3.5, we can compute the implied

accuracy Po,2 required to achieve a positive stopping premium, and these thresholds

are given in Table 3.6. These more plausible thresholds-for example, 58.9% for

12According to (3.26a), a negative value for bl implies that cumulative losses would increase the

probability of transitioning from state 1 to state 2.



3-month returns-show that a regime-switching model, modified to include time-

varying transition probabilities based on cumulative returns, is capable of explaining

the empirical results of Section 3.5. Moreover, a simulation experiment similar to

those of Section 3.5.3, summarized in Table 3.7, also yields levels of implied accuracy

levels required to yield positive stopping premia.

Bound on

(Months) P
>0

3 58.9
6 67.6

12 63.4
18 70.4

Table 3.6: Implied lower bound for the accuracy 1o,2 of the simple stop-loss policy
to ensure a positive stopping premia, based on maximum likelihood estimates of the
behavioral regime-switching model applied to monthly returns of the CRSP Value-
Weighted Total Market Index and Ibbotson Associates Long-Term Government Bond
Index, from January 1950 to December 2004.

These results confirm the intuition that regime-switching models-properly ex-

tended to incorporate certain behavioral features-can explain more of the empirical

performance of simple stop-loss rules than the other return-generating processes we

have explored. In fact, the differences between the empirical and simulated perfor-

mance of our stop-loss policy are not statistically significant under the behavioral

regime-switching model for many of the stop-loss parameters, and the behavioral

regime-switching model generates variance patterns that are more consistent with

those in the data.

However, despite providing a better explanation of the empirical success of our

stop-loss policy, the behavioral regime-switching model cannot generate the magni-

tude of stopping premia observed in the historical record. Therefore, stop-loss poli-

cies must be exploiting additional time-varying momentum in equities and long-term

bonds that we have not completely captured in our time-series models of stock and

bond returns. We leave this as a direction for future research.



Table 3.7: Simulated values for implied &o,2, and thresholds for positive stopping
premium based on maximum likelihood parameter estimates of the behavioral regime-
switching model with behavioral cumulative-return windows of length n and stop-loss
cumulative-return windows of length J.

3.6 Conclusion

In this paper, we provide an answer to the question when do stop-loss rules stop losses?

The answer depends, of course, on the return-generating process of the underlying

investment for which the stop-loss policy is implemented, as well as the particular

dynamics of the stop-loss policy itself. If "stopping losses" is interpreted as having a

higher expected return with the stop-loss policy than without it, then for a specific

binary stop-loss policy, we derive various conditions under which the expected-return

difference-which we call the stopping premium-is positive. We show that under the

most common return-generating process-the Random Walk Hypothesis-the stop-

ping premium is always negative. The widespread cultural affinity for the Random

Walk Hypothesis, despite empirical evidence to the contrary, may explain the general

indifference to stop-loss policies in the academic finance literature.

However, under more empirically plausible return-generating processes such as

momentum or regime-switching models, we show that stop-loss policies can gener-

Implied
J mplied Range of Po,2 Bound on Po,2
n Empirical(Months) with => A0

sPo,2 Simulation
3 1.16 [0.421,0.834] 0.589
6 1.58 [0.404,0.714] 0.676

12 1.70 [0.341,0.566] 0.634
18 1.84 [0.432,0.583] 0.704
3 1.16 [0.485,0.847] 0.589

6 6 1.58 [0.499,0.762] 0.676
12 1.70 [0.418,0.604] 0.634
18 1.84 [0.474,0.619] 0.704
3 1.16 [0.578,0.785] 0.589

12 6 1.58 [0.565,0.713] 0.676
12 1.70 [0.486,0.668] 0.634
18 1.84 [0.528,0.593] 0.704
3 1.16 [0.663,0.857] 0.589

18 6 1.58 [0.635,0.871] 0.676
12 1.70 [0.545,0.604] 0.634
18 1.84 [0.594,0.691] 0.704



ate positive stopping premia. And when applied to the standard household asset-

allocation decision between U.S. equities and long-term bonds from January 1950

to December 2004, we find a substantially positive stopping premium with a corre-

spondingly large reduction in variance. These empirical results suggest important

nonlinearities in aggregate stock and bond returns that have not been fully explored

in the empirical finance literature. For example, our analysis suggests elevated lev-

els of momentum associated with large negative returns, and asymmetries in asset

returns following periods of cumulative losses.

Our analytical and empirical results contain several points of intersection with the

behavioral finance literature. First, the flight-to-safety phenomena-best illustrated

by events surrounding the default of Russian government debt in August 1998-

may create momentum in equity returns and increase demand for long-term bonds,

creating positive stopping premia as a result. Second, systematic stop-loss policies

may profit from the disposition effect and loss aversion, the tendency to sell winners

too soon and hold on to losers too long. Third, if investors are ambiguity-averse,

large negative returns may cause them to view equities as more ambiguous which,

in relative terms, will make long-term bonds seem less ambiguous. This may cause

investors to switch to bonds to avoid uncertainty about asset returns.

More generally, there is now substantial evidence from the cognitive sciences lit-

erature that losses and gains are processed by different components of the brain.

These different components provide a partial explanation for some of the asymme-

tries observed in experimental and actual markets. In particular, in the event of a

significant drop in aggregate stock prices, investors who are generally passive will

become motivated to trade because mounting losses will cause them to pay attention

when they ordinarily would not. This influx of uninformed traders, who have less

market experience and are more likely to make irrational trading decisions, can have

a significant impact on equilibrium prices and their dynamics. Therefore, even if

markets are usually efficient, on occasions where a significant number of investors ex-

perience losses simultaneously, markets may be dominated temporarily by irrational

forces. The mechanism for this coordinated irrationality is cumulative loss.



Of course, our findings shed little light on the controversy between market effi-

ciency and behavioral finance. The success of our simple stop-loss policy may be

due to certain nonlinear aspects of stock and bond returns from which our strategy

happens to benefit, e.g., avoiding momentum on the downside and exploiting asym-

metries in asset returns following periods of negative cumulative returns. And from

the behavioral perspective, our stop-loss policy is just one mechanism for avoiding

or anticipating the usual pitfalls of human judgment, e.g., the disposition effect, loss

aversion, ambiguity aversion, and flight-to-safety.

In summary, both behavioral finance and rational asset-pricing models may be

used to motivate the efficacy of stop-loss policies, in addition to the widespread use

of such policies in practice. This underscores the importance of learning how to deal

with loss as an investor, of which a stop-loss rule is only one dimension. As difficult

as it may be to accept, for the millions of investors who lamented after the bursting

of the Technology Bubble in 2000 that "if I only got out earlier, I wouldn't have lost

so much", they may have been correct.



Chapter 4

General Superposition Strategies

Superposition type stopping rules - or predetermined policies to stop out of underlying

portfolio strategies - are commonly used by investors to get in and out of positions.

The most well-known type of this superposition or overlay type strategy is that of

the stop-loss rule from the previous chapter. Given the analysis of stop-loss, in this

chapter I examine a more general approach to overlay type strategies and discuss how

the performance of superposition strategies can be evaluated in general terms. This

general framework is based on the classic investor's utility maximization problem and

suggests how stopping rules can impact arbitrary portfolio strategies. By relaxing the

assumption that the true stochastic process for asset returns is known, stopping rules

can exploit higher order properties of asset returns by solving alternate optimization

problems. This approach can be specialized to the simple case of buy-and-hold mean

variance preferences to allow for a discussion of the random walk hypothesis versus

predictability.

4.1 Background

When you talk to investors, of any type, whether he or she is an investment practi-

tioner, hedge fund manager, or a household investor, it remains clear that all investors

are fundamentally concerned with the act of getting in and out of investments. This

observation is clearly supported by the principles of behavioral finance laid out by



prospect theory, loss aversion, regret aversion, etc. As a result, when investors make

decisions, they are fundamentally concerned about relative performance and the re-

alizing of losses and gains. They also use mental accounting principles which cause

them to disaggregate and aggregate their performance. As a result, instead of per-

forming an aggregate optimization, investors use rules and heuristics consistent with

human decision making.

Recent extensions to the portfolio choice problem have highlighted the importance

of perturbations to the investor's problem.1 These extensions demonstrate how port-

folio strategies can still remain optimal while departing from a traditional myopic

portfolio strategy as proposed by Merton (1969, 1971) and Samuelson (1969). In

contrast with the theory proposed by portfolio choice, the empirical evidence, as well

as, a review of the financial planning industry, demonstrates that investors adopt

simple heuristics for investment. Consistent with common anecdotal evidence from

investors and the principles of mental accounting, these simple heuristics are often

supplemented by simple rules and policies which help investors to engage in the act

of buying and selling. Although the practice of adopting simple rules to allow for self

control may seem inconsistent with models which call for optimization, the practice

of using heuristics and rules is hardwired into the human decision-making process.

This observation highlights the fact that the optimization problem abstracts away

from real difficulty investors face with the physical act of buying and selling. Based

on the principles of human decision-making, it is clear that humans adopt and fine

tune simple decision rules to allow which make discrete decisions.

Anecdotal evidence from investors and empirical evidence in portfolio performance

supports the conclusion that investors use simple rules and heuristics. Ameriks and

Zeldes (2004) demonstrate that while using simple heuristic strategies, it is the dis-

crete decisions investor's make that creates the largest determinant of portfolio per-

formance. It is precisely these discrete decisions which are of interest in this chapter.

1Predictability (Brennen and Xia (2001), Xia (2001)), non-standard utility function (Ait-Sahalia
and Brandt (2001)), portfolio constraints (Balduzzi and Lynch (1999)), and model uncertainty (Bar-
beris (2000))



4.2 Framework for Analyzing Superposition Stop-

ping Rules

In this section, I outline a framework for measuring the impact of superposition type

stopping policies on investment performance. In Section 4.2.1, I begin by specifying a

class of stopping policies and quantify their impact on the simple Investor's problem.

I outline the specific case of maximizing expected return with two assets under buy-

and-hold strategies in Section 4.3. I then apply my framework to discuss two classic

stopping rule examples including the stop-loss and buy-low sell-high strategies in

Section 4.4.

4.2.1 Assumptions and Definitions

Consider an arbitrary portfolio strategies Pa with a E A, where A is a set of arbitrary

portfolio strategies and stopping policies S e S, where S is a set of stopping poli-

cies. Any arbitrary portfolio strategy Pa has returns {rat} and satisfies the following

assumptions:

(Al) The returns {rat} for the portfolio strategy Pa are stationary with finite mean

Pa(f) and variance o2(f) under any stationary distribution for asset returns f.

(A2) For all arbitrary portfolio strategies a E A, where A is the set of arbitrary

portfolio strategies - the addition of any stopping rule S E S does not alter

the arbitrary portfolio strategy - the stopping policy is superimposed onto the

arbitrary portfolio strategy Pa.

(A3) There exists a true stochastic process f* for asset returns {rt} which is station-

ary.

My use of the term "portfolio strategy" in Assumption (Al) is meant to underscore

the possibility that P is a complex dynamic investment policy, not necessarily a

static basket of securities. Assumption (A2) maintains that a stopping policy is

superimposed onto an arbitrary portfolio strategy with out altering the dynamics



of the arbitrary strategy. This assumption is crucial for defining an "overlay" or

"superposition" type strategy and in the definition of the performance metrics for the

stopping policy. Assumption (A3) is important for benchmarking the performance of

arbitrary portfolio strategies. The key point of this analysis is that f* exists but is

unknown. My use of the expression {rt} is meant to underscore the possibility that

{rt} is a vector of asset returns not necessarily one risky asset. From this point on, I

can assume for notational purposes that given a utility function U(rat), defined over

the asset returns {rat} of a portfolio strategy, is maximized under the true distribution

(f*) of asset returns by arbitrary portfolio strategy Pa.. Consistent with classic mean

variance analysis, I formulate the one period investor's problem for a given utility

function. The investor maximizes his or her utility over portfolio strategies under the

true distribution for asset returns f*.

Definition 4 The Simple Investor's Problem is to find the best portfolio strategy

a E A which maximizes the expected utility E[U(rat)] as a function of the portfolio

strategy Pa with returns {rat} where the true distribution for asset returns {rt} is f*.

max E[U(rat)] (4.1)
aEA

{rt} I f* (4.2)

Remaining consistent with industry practice and mental accounting principles, I then

define a stopping policy. Under Assumption (A2), the stopping policy does not alter

the dynamics of an underlying strategy. The key difference between an arbitrary port-

folio strategy and a stopping policy is that a stopping policy is applied to a portfolio

strategy; it is only a rule. On the other hand, the combination of an underlying strat-

egy and a stopping rule creates a different portfolio strategy P,. Motivated by the

use of stopping rules in practice, it is precisely this new strategy which is of interest

in this section.

Definition 5 A stopping policy S(F, Ft- 1) for a underlying portfolio strategy PR

with returns {rut} is a dynamic binary asset-allocation rule {st} between Pu and an



alternative arbitrary portfolio strategy Pa with returns {rat}, where st is the proportion

of assets allocated to Ps, and:

st = f(S(F, Ft,1)) (4.3)

st is determined by the stopping policy defined by S((F, Ft-1) where Ft-1 is the infor-

mation vector at time t-1 and F is a vector of parameters. Denote by {rst} the return

of overall new portfolio strategy Ps, which is the combination of underlying portfolio

strategy Pu and the alterative portfolio strategy Pa with a E A using the corresponding

stopping policy S E S, hence:

rTt - Strut + (1 - st)rat. (4.4)

Letting P, be the investor's choice of underlying strategy with returns {rut}, I can

simply assume that Pu is the strategy which is the optimal portfolio strategy for the

Investor's problem assuming asset returns follow an approximation of the stochastic

process fu. Thus,

Efu[U(rut)] > Efu[U(rat)] Va E A (4.5)

For an arbitrary portfolio strategy Pu, the investor can improve his or her expected

utility by maximizing over a set of stopping rules S E S and alternative strategies Pa

forall a E A. This results in a new portfolio strategy Ps. This option for improving

the portfolio strategy suggests a new performance metric Av(s), which is outlined in

the following definition.

Definition 6 The stopping utility premium Av(s) of portfolio strategy Ps with

returns {rst} for an underlying portfolio strategy Pu with stopping policy S E S into

an alternative portfolio strategy Pa with returns {rat} with a E A is the expected

difference in utility between the underlying portfolio strategy P, and the new portfolio



strategy P, with the stopping policy:

Au(s) E[U(r)] -E[U(rt)E[U( t)] = Po (E[U(rat) - U(rut) st = 0]) (4.6)

where po - Prob(st = 0) (4.7)

Given this definition the expected utility of the new portfolio strategy P8 is the follow-

ing:

E[U(rst)] = E[U(rut)] + Au(s) (4.8)

Using the definition of the utility premium, I can define a new optimization problem

for the investor.

Definition 7 Given an underlying portfolio strategy Pu with returns {rut}, the In-

vestor's Stopping Policy Problem is to find a new portfolio strategy P, using a stopping

policy S E S and alternative portfolio strategy Pa with returns {rat} to maximizes the

stopping utility premium Au(s).

max Au(s) (4.9)
SES,aEA

{rt} ~ f* (4.10)

4.2.2 Policy Improvement and Uncertainty

Given that the true stochastic process for asset returns f* is unknown, I can then

clarify how a stopping rule can improve the performance of an underlying strategy. If I

first consider the case that the stochastic process is known, the option to use stopping

policies can clearly improve the performance of an arbitrary portfolio strategy a G A.

Corollary 8 Given an underlying portfolio strategy P, with returns {rut}, if there ex-

ists an alternative portfolio strategy Pa with returns {rat} and stopping policy S E S

such that a and S are a solution to the Investor's stopping policy Problem with

Au(s) > 0 for new portfolio strategy P, then Ef* [U(rst)] > Ef [U(rut)] and P8 domi-

nates underlying portfolio strategy Pu.



Proof: Using the definition of Au(s),

Ef*[U(rst)] = Ef.[U(rut)] + (s)

> Ef.[U(rut)]

This result is trivial for the case where (f*) is known, because in this case the Investor

will choose a*. For any other arbitrary portfolio strategy the investor will choose the

stopping policy st = 1 with an alternative portfolio strategy Pa* and stop out for all

time into P,,.. Despite the simplicity of the case where the distribution is known,

this result still gives intuition into how a stopping policy may improve an arbitrary

portfolio strategy, when I relax my assumptions about the distribution of asset re-

turns. As in reality, an investor must assume approximations to the true stochastic

process and ,design his or her portfolio strategy P based on these assumptions. Given

both the complicated nature of parameter estimation, model dependence, and the

intractability in finding portfolio strategies under complicated stochastic processes,

investors generally assume rather simple stochastic processes which best fit the ag-

gregate properties of asset returns. As a result, I return to the underlying portfolio

strategy Pu. An investor, who assumes that f, is a good aggregate approximation to

f*, will select portfolio strategy Ps, where P, is the solution to the Investor's prob-

lem under f,,. In addition to the investor's beliefs about aggregate return dynamics,

an investor :may also examine other approximations to the true stochastic process

denoted by fL,. The motivation for the use of f,, is that fu, may be a better condi-

tional approximation of f*, but not necessarily a better aggregate approximation of

f*. In practice, as models of asset returns become increasingly complex to fit higher

order or state dependent dynamics of asset returns, there is a substantial tradeoff

in overspecification, model uncertainty, and parameter estimation problems. These

problems can outweigh the benefits of finding optimal policies (See Barberis 2000).

As a result, the investor only uses the approximation fu, to make conditional portfolio

decisions. I outline how the use of conditional approximations to f* can be connected



to the use of stopping policies in the following corollaries. In Corollary 9, I relax the

assumption that f* is known but allow the conditional approximation to be exact

over a subset of policies and alternative strategies. In Corollary 10, I extend this by

allowing the conditional approximation of f* to be exact within some bound, over a

subset of policies and alternative strategies.

Corollary 9 Given an underlying portfolio strategy Pu and there exists a subset of

stopping policies S E 9 C S and arbitrary portfolio strategies a E A C A such that

conditioned on the stopping policy being activated (i.e. st = 0), Au(s) If, = Au(s)lf.

for the new portfolio strategy P,. If there exists a solution (S, a) for portfolio strategy

P, to the Investor's stopping problem with Av(s) > 0 under fu, then

Ef. [U(rst)] > E-.[U(rtt)] (4.11)

Proof:

Ef [U(r,t)] = E. [U(rut)] + AU(s')lIf (4.12)

= Ef.[U(rut)] + Au(s') If, (4.13)

> Ef.[U(rut)] (4.14)

This corollary explains how an alternative stochastic process ft, which fits the condi-

tional properties of the true stochastic process f*, can suggest stopping policies that

improve the underlying choice of portfolio strategy. A key difference between this

corollary and traditional literature in portfolio choice, is that it does not depend on

one aggregate stochastic process. In reality, it may be the case that some stochastic

processes are conditionally a better fit.

Corollary 10 Given an underlying portfolio strategy P, and there exists a subset

of stopping policies S E S C S and arbitrary portfolio strategies a E A C A such

that under an approximate stochastic process fu, the approximate stochastic process



is E approximate in utility function over all S E S and a E A for resulting portfolio

strategies P,, hence:

IZu(s)If - AU-s) < E VS E S,a E A

If there exists a solution to the Investor's stopping policy Problem (S, a) E (9, A) for

portfolio strategy P, with Av(s) If, > E then P, dominates Pu under f*.

Ef. [U(rst)] > Ef. [U(rut)] (4.15)

and hence;

IEf.[U(ra*t)] - Ef[U(rst)]j < IEf.[U(ra*t)]- Ef.[U(rut)ll (4.16)

Proof: Given that IAu(s)lf* - Au(s)lfu,I 5 E if Au(s)lfu, > e then Au(s)lfu, > 0 and

Ef.[U(rst)] = Ef*[U(rut)] + Au(s')If* (4.17)

> Ef. [U(rut)] (4.18)

The previous corollary explains how under fu,, a stopping policy can be used to

improve overall performance of a strategy.

4.2.3 Utility Premiums

Consistent with my analysis of stop-loss rules in Chapter 3, I discuss specific cases of

utility functions, define general notions of stopping premiums, and define other perfor-

mance metrics. These definitions include the stopping premium, variance difference,

volatility difference, and Sharpe Ratio difference.

Definition 11 Given an underlying portfolio strategy Pu with returns (rut}, the

stopping premium A, (s) of a new portfolio strategy P, with stopping policy S E S

and alternative portfolio strategy Pa with returns rat } is the expected return difference



between the underlying portfolio strategy Pu and the new portfolio strategy P,:

A,(s) E[rt] - E[rut] = Po (E[rat- rutst = 0]) (4.19)
where po - Prob(st = 0) (4.20)

and the stopping ratio is the ratio of the stopping premium to the probability of

stopping out:

A (s) = E[rat - rtlst = 0] . (4.21)
Po

Note that the difference of the expected returns of rst and rut reduces to the product

of the probability of a stopping out of the underlying strategy Po and the conditional

expectation of the difference between alternative portfolio strategy rat and the un-

derlying portfolio strategy rut, conditioned on being stopped out. The intuition for

this expression is straightforward: the only times rst and rut differ are during periods

when the stopping policy has been triggered. Therefore, the difference in expected

return should be given by the difference in the conditional expectation of the portfolio

with and without the stopping policy-conditioned on being stopped out-weighted

by the probability of being stopped out.

The stopping premium (4.19) measures the expected-return difference per unit

time between the new stopping strategy P, with stopping policy S and alternative

portfolio strategy Pa and the underlying portfolio strategy Ps, but this metric may

yield misleading comparisons between two stopping policies that have very different

parameter values. For example, for a given underlying portfolio strategy Ps, suppose

S, has a stopping premium of 1% and S2 has a stopping premium of 2%; this suggests

that S2 is superior to SI. But suppose the parameters of S2 implies that S2 is active

only 10% of the time, i.e., 1 month out of every 10 on average, whereas the parameters

of S, implies that it is active 25% of the time. On a total-return basis, S 1 is superior,

even though it yields a lower expected-return difference per-unit-time. The stopping

ratio Az/po given in (4.21) addresses this scale issue directly by dividing the stopping
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premium by the probability po. The reciprocal of Po is the expected number of periods

that st = 0 or the expected duration of the stopping period. Multiplying the per-unit-

time expected-return difference A, by this expected duration 1/po then yields the

total expected-return difference A,/po between rat and rat.

Of course, this simple interpretation of a stopping policy's efficacy is based purely

on expected return, and ignores risk. Risk matters because it is conceivable that

a stopping policy with a positive stopping premium generates so much additional

risk that the risk-adjusted expected return is less attractive with the policy in place

than without it. However, it is important to acknowledge that P,, Pa, Ps and S are

dynamic strategies and static measures of risk such as standard deviation are not

sufficient statistics for the intertemporal risk/reward trade-offs that characterize a

dynamic rational expectations equilibrium.2 Nevertheless, it is still useful to gauge

the impact of a stopping policy on volatility of an underlying portfolio strategy Ps,

as only one of possibly many risk characteristics of the combined strategy. To that

end, I have:

Definition 12 Let the variance difference AZ2(s) of a stopping strategy S for new

portfolio strategy Ps be given by:

A92 (s) Var [rt] - Var[rut] (4.22)

= E[Var[rt st]] + Var[E[rstlst]] (4.23)

- E[Var[rut st]] - Var[E[rtIst]] (4.24)

From an empirical perspective, standard deviations are often easier to interpret, hence

I also define the quantity A,(s)- /Var[rt] - a.

Given that a stopping policy can affect both the mean and standard deviation

of the underlying portfolio strategy Pu, I can also define the difference between the

Sharpe ratios of P, with and without 8:

Definition 13 Let the Sharpe ratio difference AsR(s) of a stopping strategy P, be
2 See Merton (1973) and Lucas (1978), for example.
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given by:

ASR(s) _ E[rt] - rf _ E[rt] - rf (4.25)
os a

In addition to basic utility premiums, stochastic dominance may also provide a

method for determining if a stopping policy will add value to an underlying strat-

egy. Stochastic dominance theory and empirical tests for stochastic dominance are

summarized in Section A.3.

4.3 A Simple Case: Two Assets, Buy-and-Hold

Having defined the basic framework in Section 4.2 for evaluating the performance of

general "superposition" type stopping rules, I now discuss the implications for the

simple case of maximizing expected return over one risky and one riskfree asset. This

analysis parallels my analysis of stop-loss in Chapter 3. I first outline how this scenario

simplifies the performance metrics defined in Section 4.2.3. I examine several data

return generating processes including the Random Walk Hypothesis in Section 4.3.1,

general predictability in Section 4.3.2, and a statistical regime-switching model in

Section 4.3.3. Using the simple definition for the stopping premium A,(s), I can then

outline explicit conditions under which stopping rules can add value to the underlying

buy-and-hold strategy in the risky asset.

Proposition 4 Let the underlying portfolio strategy P, be a buy-and-hold strategy in

the risky asset {rt}, then a stopping policy S into an alternative portfolio strategy

Pa where Pa is a buy-and-hold strategy in the riskfree asset {rf }. The following
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simplifications for the performance metrics hold:

A,(s) Po (rj - E[rtlst = 0]) (4.26)

s- rf- E[rtlst = 0] (4.27)
Po

A,2(s) - -poVar[rt st = 0] +

Po(1- Po)[(r/-E[rlst= ])f -- - E[rtlst = 0] ( .28)

,(s) + A (S) - (4.29)

where Po - Prob(st = 0) (4.30)

4.3.1 The Random Walk Hypothesis

Since the Random Walk Hypothesis is one of the most widely used return-generating

processes in the finance literature, any analysis of stopping policies must consider this

leading case first. Given the framework proposed in Section 4.2, I am able to derive a

surprisingly strong conclusion about the efficacy of stopping rules which is consistent

with the findings of Alexander (1961) and Fama and Blume (1966):

Proposition 5 If {rt} satisfies the Random Walk Hypothesis so that:

IID
rt = I + ft , It " White Noise(0, au) (4.31)

Given two buy-and-hold strategies then any stopping policy S for the stopping strategy

P, has the following properties:

A (s) = po(rf - p) = -por (4.32a)

A (s) = - 7 (4.32b)
Po

A,2 (s) = -po 2 + po( - po) r 2  (4.32c)
7) AIL + 7r

SR(S) - + (4.32d)
V CA0.2 + 0-2

Proposition 5 shows that, for any portfolio strategy with an expected return greater

than the riskfree rate rf, the Random Walk Hypothesis implies that any stopping
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policy will always reduce the portfolio's expected return since A,(s) < 0 Vs. In the

absence of any predictability in {rt}, whether or not a stopping policy is activated,

has no information content for the portfolio's returns; hence, the only effect of a

stopping policy is to replace the underlying portfolio strategy P, in the risky asset

with the riskfree asset when the strategy is stopped out, thereby reducing the expected

return by the risk premium of the original portfolio strategy P". If the stopped out

probability Po is large enough and the risk premium is small enough, (4.32) shows

that the stopping policy can also reduce the volatility of the portfolio.

The fact that there are no conditions under which any stopping policy can add

value to a buy-and-hold portfolio with IID returns may explain why stopping rules

such as stop-loss have been given so little attention in the academic finance literature.

The fact that the Random Walk Hypothesis was widely accepted in the 1960's and

1970's-and considered to be synonymous with market efficiency and rationality-

eliminated the motivation for stopping rules altogether. In fact, these stopping poli-

cies may be viewed as a more sophisticated version of the "filter rule" that was tested

extensively by Alexander (1961) and Fama and Blume (1966). Their conclusion that

such strategies did not produce any excess profits was typical of the outcomes of many

similar studies during this period.

However, despite the lack of interest in stopping rules in academic studies, invest-

ment professionals have been using such rules for many years, and part of the reason

for this dichotomy may be the fact that the theoretical motivation for the Random

Walk Hypothesis is stronger than the empirical reality. In particular, Lo and MacKin-

lay (1988) presented compelling evidence against the Random Walk Hypothesis for

weekly U.S. stock-index returns from 1962 to 1985, which has subsequently been con-

firmed and extended to other markets and countries by a number of other authors.

In the next section, I demonstrate that, if asset-returns do not follow random walks,

there are many situations in which stopping policies can add significant value to an

existing underlying portfolio strategy.
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4.3.2 General Predictability

In the 1980's and 1990's, several authors documented important departures from the

Random Walk Hypothesis for U.S. equity returns,3 and, in such cases, the implications

for the stopping policies can be quite different than in Proposition 5. In this simple

case, if I examine the stopping ratio ýL (s) I see that I have a condition for when the

stopping premium will become positive.

Proposition 6 If there exists a stopping policy S which satisfies the following, then

A,(s) > o

E[7rtlst = 0] < A,(s) > 0 (4.33)

Proposition (6) highlights how a stopping rule can exploit conditional predictability

by finding times when the conditional risk premium is negative when conditioned

on the stopping rule. This is demonstrated more clearly in the following section

on regime switching processes and a clearer example is provided using stop-loss in

Chapter 3.

4.3.3 Regime-Switching Models

Statistical models of changes in regime, such as the Hamilton (1989) model, are

parsimonious ways to capture apparent nonstationarities in data such as sudden shifts

in means and variances. Although such models are, in fact, stationary, they do exhibit

time-varying conditional means and variances, conditioned on the particular state that

prevails. Moreover, by assuming that transitions from one state to another follow a

time-homogenous Markov process, regime-switching models exhibit rich time-series

properties that are surprisingly difficult to replicate with traditional linear processes.

To the extent that this motivation is genuine and appropriate, I examine the efficacy

of stopping rules for the particular case when the portfolio return {rt} follows a

regime-switching process.
3See, for example, Fama and French (1988), Lo and MacKinlay (1988, 1990, 1999), Poterba and

Summers (1988), Jegadeesh (1990), Lo (1991), and Jegadeesh and Titman (1993).
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More formally, let rt be given by the following stochastic process:

IID N(•{,rt = Itrlt + (1-It)r2t , rit (p, o ) i = 1,2 (4.34a)

It+1=1 It+i=O

A It = 1 12 (4.34b)
it= 0 P21 P22

where It is an indicator function that takes on the value 1 when state 1 prevails

and 0 when state 2 prevails, and A is the Markov transition probabilities matrix

that governs the transitions between the two states. The parameters of (4.34) are the

means and variances of the two states, (Apl, u 2, ap, a,2), and the transition probabilities

(Pll, 22). Without any loss in generality, I adopt the convention that state 1 is the

higher-mean state so that p• > A2. If I assume the aggregate risk premium is non-

negative, this implies that Il > rf, which is an inequality I will make use of below.

The six parameters of (4.34) may be estimated numerically via maximum likelihood

(see, for example, Hamilton, 1994).

Proposition 7 If {rt} satisfies the two-state Markov regime-switching process (4.34),

then a stopping policy S has the following properties:

AL,(s) = Po,1(rf - P1) + Po,2(rf - 2) (4.35)

(s) = (1 - P0,2)(rf - + o,2(rf - /2) (4.36)
Po

where

po,1 - Prob (st = 0, It= 1) (4.37a)

Po,2 - Prob (st=0, It=0) (4.37b)

Po,2 po,2 = Prob(It=It=0s=) . (4.37c)
Po

If the riskfree rate r1 follows the same two-state Markov regime-switching process

(4.34), with expected returns rf 1 and rf2 in states 1 and 2, respectively, then the
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stopping policy (S) has the following properties:

A,(s) = o,l(rT1 - p1) + Po,2 (rf2 - 2) (4.38)

(s) = (1 - o,2)(rf 1 - 1) + Po,2(rf 2 - 12) (4.39)
Po

The conditional probability 1o,2 can be interpreted as the accuracy of a stopping policy

in anticipating the low-mean regime. The higher is this probability, the more likely it

is that the stop-loss policy triggers during low-mean regimes (regime 2), which should

add value to the expected return of the portfolio as long as the riskfree asset-return

rf is sufficiently high relative to the low-mean expected return P2.

In particular, I can use the expression for the stopping ratio Aj/po(s) to provide

a bound on the level of accuracy required to have a non-negative stopping premium.

Consider first the case where the riskfree asset r1 is the same across both regimes.

For levels of Po,2 satisfying the inequality:

Po,2 Ž - Ar (4.40)
P1 - P2

the corresponding stopping premium A,(s) will be non-negative. By convention,

1l > P2, and if I assume that the aggregate risk premium is non-negative, Pl > rf,

therefore the sign of the right side of (4.40) is positive. If rf is less than P2, then

the right side of (4.40) is greater than 1, and no value of 10,2 can satisfy (4.40). If

the expected return of equities in both regimes dominates the riskfree asset, then

any stopping policy will always decrease the portfolio's expected return, regardless of

how accurate it is. To see why, recall that returns are independently and identically

distributed within each regime, and we know from Section 4.3.1 that the stopping

policy never adds value under the Random Walk Hypothesis. Therefore, the only

source of potential value-added for a stopping policy (S) under a regime-switching

process is if the equity investment in the low-mean regime has a lower expected return

than the riskfree rate, i.e., P2 < rf. In this case, the right side of (4.40) is positive and

less than 1, implying that sufficiently accurate stopping policies will yield positive
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stopping premia.

Note that the threshold for positive stopping premia in (4.40) is decreasing in the

spread /l - A2. As the difference between expected equity returns in the high-mean

and low-mean states widens, less accuracy is needed to ensure that a stopping policy

adds value. This may be an important psychological justification for the ubiquity of so

called stopping rules like stop-loss in practice. If an investor possesses a particularly

pessimistic view of the low-mean state-implying a large spread between l1 and P2-

then any such stopping policy may appeal to him even if its accuracy is not very

high.

The conclusions in this section exactly mirror those discussed in my study of

stop-loss. Most importantly, all stopping rules can be connected to the accuracy

of the stopping rule based on the asymmetries in asset regimes. More specifically,

the accuracy required for using a stopping rule depends explicitly on the level of

asymmetry in asset returns in vary regimes. Thus, consistent with practice, if an

investor believes that a rule has sufficient accuracy in predicting regime shifts, he or

she may consider applying this rule. Classic examples include simple trend following

rules based on moving averages, buy-high sell-low strategies, stop-loss rules, stop-

gain rules, etc. As a result, this link between stopping rules and accuracy confirm the

intuition behind the classic saying, that a good investor knows "when to get in and

when to get out."

4.4 Examples of Stopping Policies

In this section, I discuss a few popular examples of stopping rules including stop-loss

and buy-low sell-high. I demonstrate how these stopping rules fit into the definitions

I proposed in Section 4.2.1. The stop-loss rule was examined in detail in Chapter 3,

and I discuss the results for the buy-low sell-high strategy in Section 4.4.2.
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4.4.1 Stop-Loss

Investor's commonly apply stop-loss rules to take losses in investments. This typically

involves tracking state dependent quantities such as a cumulative return Rt(J) of the

portfolio over a window of J periods, where:4

J

Rt(J) - rt-j+l (4.41)
j=1

and when the cumulative return crosses some lower boundary, reducing the invest-

ment in P by switching into cash or some other safer asset. This heuristic approach

motivates the following definition:

Definition 14 A simple stop-loss policy 8(y, 6, J) for a portfolio strategy P with

returns {rt} is a dynamic binary asset-allocation rule {st} between P and a riskfree

asset F with return rf, where st is the proportion of assets allocated to P, and:

0 if Rt-1(J) < -- and st_ = 1 (exit)

1 if rt-1 > 6 and st-1 = 0 (re-enter)
st - (4.42)

1 if Rt_ 1(J) --' and st- = 1 (stay in)

0 if rt-1 < 6 and st- = 0 (stay out)

for > 0.

Definition 14 describes a 0/1 asset-allocation rule between P and the riskfree asset

F, where 100% of the assets are withdrawn from P and invested in F as soon as the

J-period cumulative return Rt, (J) reaches some loss threshold - at tl. The stop-loss

rule stays in place until some future date t2 -1 > tl when P realizes a return rt2_1

greater than 6, at which point 100% of the assets are transferred from F back to P

at date t2 . Therefore, the stop-loss policy S(y, 6, J) is a function of three parameters:

the loss threshold y, the re-entry threshold 6, and the cumulative-return window J.
4For simplicity, I ignore compounding effects and define cumulative returns by summing simple

returns rt instead of multiplying (1+rt). For purposes of defining the trigger of our stop-loss policy,
this approximation does not have significant impact. However, I do take compounding into account
when simulating the investment returns of a portfolio with and without a stop-loss policy.
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The stop-loss policy is examined in further detail in Chapter 3.

4.4.2 Buy-Low Sell-High

Many investment sites enjoy boast about their ability to buy-low and sell-high. Fit-

ting this strategy into the framework of superposition strategies, this typically would

involve tracking state dependent quantities such as cumulative returns Rt(J) over a

window of J periods. Since the decision to get in and get out may not be symmetric,

this strategy may involve tracking cumulative returns over different window sizes as

well. When a cumulative window crosses some lower boundary, a buy will be initi-

ated, whereas when a cumulative window crosses some upper boundary a sell with be

initiated. This heuristic approach motives the following definition:

Definition 15 A simple buy-low sell-high policy S(Yh, 7T, Jh, J1 ) for a portfolio

strategy P with returns {rt} is a dynamic binary asset-allocation rule {st} between P

and a riskfree asset F with return rf, where st is the proportion of assets allocated to

P, and:

0 if Rt- 1(Jh) > yh and st-1 = 1 (sell high)

1 if Rt- (J1 ) > yI and st_- = 0 (buy low)
st -- (4.43)

1 if Rt-1(Jh) • -yh and st-1 =1 (stay in)

0 if RP-1(J1 ) < -y and st-_l = 0 (stay out)

for yh, y1 > O.

Definition 15 describes a 0/1 asset-allocation rule between P and the riskfree asset

F, where 100% of the assets are withdrawn from P and invested in F as soon as the

Jh-period cumulative return Rtl (J) reaches some gain threshold yh at t,. The buy

low sell high rule stays in place until some future date t2 -1 > t when P realizes

a return R 2t, 1(JI) less than -yl, at which point 100% of the assets are transferred

from F back to P at date t2. Therefore, the buy low sell high policy S(Yh, 7Y, Jh, J1 )

is a function of four parameters: the gain threshold yh, the loss threshold -ye, and the

cumulative-gain-return window Jh, and the cumulative-loss-return window J1.
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4.5 Discussion and Conclusion

In this chapter, I have examined a class of stopping policies, which I call superpo-

sition strategies. These strategies are called superposition strategies because they

are simply "overlay" policies, in that they do not alter the underlying dynamics of

the strategies they are superimposed on. Since in practice, either based on mental

accounting or because of simplicity, investors often choose an underlying strategy.

Following this choice, they subsequently perturb this strategy by applying simple

rules, which govern when they get in and out of positions. The most common of

which is the stop-loss rule, as discussed in the previous chapter. As a result of these

perturbations to their underlying strategy, the new strategy they have created what

I define as P3, can be quite different in nature from their original choice. In addition

to being consistent with many principles in behavioral finance, this practice is also

supported by empirical evidence that suggests that the discrete decisions investors

make seem to be the greatest determinant of overall portfolio performance. Given the

predominance of stopping rules in practice, the framework I suggest in this chapter,

albeit rather simple, lends some direction into understanding how stopping rules can

add or subtract value from underlying strategies.

By examining the classic utility framework parallel to mean variance analysis, I

define a utility stopping premium. This performance metric allows me to measure the

impact of a stopping policy on an underlying strategy. By relaxing assumptions about

the true stochastic process for asset returns, I can explain how the use of stopping

rules may actually improve the performance of an underlying strategy. This analysis

may provide some motivation for saying that successful practitioners seem to "know

when to get in and when to get out" of their positions. I show how the appropriate

use of stopping rules can actually add value, which is consistent with the theory laid

out by portfolio choice. Motivated by the fact that the true return generating process

for asset returns is unknown and complex specifications of that return generating

process can investors lead astray, the use of simple heuristics and the skillful use of

stopping rules can lead to better performance. On the other hand, at the same time,

111



consistent with classic warnings from financial planning practitioners, even with a

simple heuristic strategy, timing the market is extremely difficult, and those investors

who advertently or inadvertently apply stopping rules by following market trends risk

severely under performing even a simple heuristic strategy.
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Chapter 5

Conclusion

Despite the many advances in portfolio choice, a careful look at the financial planning

industry and the empirical literature in portfolio choice, demonstrates that despite

these advances, financial planning remains more of an "art" than a science. As a

result, there is a predominance of simple heuristics and investment rules, both among

households, and investment professionals. Despite being at odds with theories of

classic utility maximization, the field of behavioral finance lends support to these

techniques as being grounded in the basic mechanics of human decision making. As

opposed to solving an explicit optimization problem, I focus directly on the appli-

cation of stopping rules with investment strategies to remain consistent with how

investors actually invest. I define a framework for measuring the performance impact

of stopping rules consistent with standard portfolio theory.

When I turn my attention to the classic stop-loss rule, I attempt to answer the

question "When do stop-loss rules stop losses?", using a simplification of the general

framework for superposition type strategies. I show how the answer to this question

depends explicitly on the return generating process of the underlying investment, as

well as the specific dynamics of the stop-loss policy itself. By defining and examining

a stopping premium, I can explicitly determine when stop loss rules may actually

add value. In particular, given the most commonly assumed stochastic process, the

Random Walk Hypothesis, I show that stop-loss rules never stop losses. In the case of

predictability, I show that momentum type effects, modeled using simple serial auto-
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correlation and conditional asymmetries in return regimes, can produce a positive

stopping premium.

To demonstrate the practical applicability of my approach, I apply my stop-loss

rule to the standard household allocation problem between U.S. equities and long-

term bonds from January 1950 to December 2004. I find a substantially positive

stopping premium, over large ranges of threshold values for the stop-loss rule, which

is coupled with substantial reductions of variance. These findings suggest important

non-linearities in aggregate stock and bond returns, which may be motivated by some

type of flight-to-safety or flight-to-quality.

More generally, there is now substantial evidence from the cognitive sciences liter-

ature that losses and gains are processed by different components of the brain. These

different components provide a partial explanation for some of the asymmetries ob-

served in experimental and actual markets. In particular, in the event of a significant

drop in aggregate stock prices, investors who are generally passive will become mo-

tivated to trade, because mounting losses will cause them to pay attention when

they ordinarily would not. This influx of uninformed traders, who have less market

experience and are more likely to make irrational trading decisions, can have a sig-

nificant impact on equilibrium prices and their dynamics. Therefore, even if markets

are usually efficient, on occasions where a significant number of investors experience

losses simultaneously, markets may be dominated temporarily by irrational forces.

The mechanism for this coordinated irrationality is cumulative loss.

Of course, these findings shed little light on the controversy between market ef-

ficiency and behavioral finance. The success of the simple stop-loss policy may be

due to certain nonlinear aspects of stock and bond returns from which the strategy

happens to benefit, e.g., avoiding momentum on the downside and exploiting asym-

metries in asset returns following periods of negative cumulative returns. And from

the behavioral perspective, the stop-loss policy is just one mechanism for avoiding,

or anticipating, the usual pitfalls of human judgment, e.g., the disposition effect, loss

aversion, ambiguity aversion, and flight-to-safety.

In summary, both behavioral finance and rational asset-pricing models may be
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used to motivate the efficacy of stop-loss policies, supporting the widespread use of

such policies in practice. This underscores the importance of learning how to deal

with loss as an investor, of which a stop-loss rule is only one dimension. As difficult

as it may be to accept, for the millions of investors who lamented after the bursting

of the Technology Bubble in 2000, that "if I only got out earlier, I wouldn't have lost

so much", they may have been correct.

As a result of the analysis of the classic stop-loss rule, I generalize the approach to

general stopping rules. This generalization allows me to outline how stopping rules or

superposition strategies can actually add or subtract value from underlying strategies,

in the classic utility sense. I outline how uncertainty about return generating pro-

cesses can produce situations, where various more complicated approximations of the

true return generating process can lead to better investment strategies, by exploiting

higher order characteristics of asset returns.

Following the general framework, I discuss various premiums related to the classic

utility theory, such as, the stopping premium similar to my analysis of stop-loss

rules. I then discuss the case of maximizing the stopping premium and examine how

predictability in asset returns may create scenarios where stopping rules can add value

to underlying strategies. To further demonstrate the performance impact of stopping

rules I revisit the stop-loss rule as well as examine another popular rule, the buy-low

sell-high strategy.
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Appendix A

Supplemental Material

A.1 Asset Allocation

In this section, I present additional material related to asset allocation including basic

definitions of investment options for retirement and tables which summarize the asset

allocation specifications for lifecycle, target maturity, and balanced all-in-one asset

allocation funds.

Basic Definitions: Retirement Investment Options

IRA: An Individual Retirement Account (IRA) is a brokerage account that allows

earnings to compound over time on either a federally tax-free or tax-deferred

basis. Investments in tax-advantaged accounts can compound more quickly

than those in taxable accounts. Beyond an employer-sponsored retirement plan

such as a 401(k), a Roth or Traditional IRA is widely considered the most

advantageous retirement savings vehicle available.

401(k) Plan: This is the most popular of the defined contribution plans and is

most commonly offered by larger employers. Employers often match employee

contributions.

403(b) Tax-Sheltered Annuity Plan: Think of this as a 401(k) plan for em-

ployees of school systems and certain nonprofit organizations. Investments are
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made in tax-sheltered annuities or mutual funds.

SIMPLE IRA: The Savings Incentive Match Plan for Employees of Small Employ-

ers is one of the newest types of employer-based retirement plans. There is also

a 401(k) version of the SIMPLE.

Profit-Sharing Plan: The employer shares company profits with employees, usu-

ally based on the level of each employee's wages.

ESOP: Employee stock ownership plans are similar to profit-sharing plans, except

that an ESOP must invest primarily in company stock. Under an ESOP, the

employees share in the ownership of the company.

SEP: Simplified employee pension plans are used by both small employers and the

self-employed. 1

iFor further references please consult: http://www.cfp.net http://www.fidelity.com
http://www.vanguard.com http://www.tiaa-cref.org http://www.irs.org
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Maturity Equity Foreign Equity Bonds Investment Grade High Yield Short Term
(%) (%) (%) (%) (%) (%)

35 85 15 15 5 10 0
30 84 14 17 8 9 0
25 83 13 18 10 8 0
20 75 11 26 18 8 0
15 69 10 31 23 8 0
10 60 9 37 30 7 3
5 46 5 44 39 5 9
0 45 5 43 38 5 12
-5 23 0 38 37 1 40
<-5 20 0 40 39 1 40

Table A.1:
Prospectus

Fidelity@ Freedom Fund Allocation (Source: Fidelity Freedom@ Funds
2005, http://www.fidelity.com)

Maturity Stocks Bonds Cash
(%) (%) (%)

40 90 10 0
30 80 20 0
20 60 40 0
10 50 50 0
0 35 65 0

<0 20 75 5

Table A.2: Vanguard@ Target Maturity Fund Allocation (Source: Vanguard@ Tar-
get Maturity Funds Prospectus 2005, http://www.vanguard.com)
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Maturity Stocks Bonds Cash
(%) (%) (%)

45 95 4 1
40 95 4 1
35 94 5 1
30 89 8 3
25 84 12 4
20 79 15 6
15 70 21 9
10 57 29 14
5 37 39 24
0 25 45 30

Table A.3: Putnam@ RetirementReady Funds (Source: Putnam@ RetirementReady
Funds Prospectus 2005, http://www.putnam.com)

Maturity Stocks Bonds Cash
(%) (%) (%)

40 85 13 2
30 80 18 2
20 67 28 5
10 53 42 5
0 35 55 10

Table A.4: American Century@ My Retirement Portfolios (Source:
American Century@ My Retirement Portfolios Prospectus 2005,
http://www.americancentury.com)
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Maturity Stocks Bonds Cash
(%) (%) (%)

40 93 7 0
35 93 7 0
30 93 7 0
25 93 7 0
20 87.5 12.5 0
15 80 19 1
10 73.5 23 3.5
5 67.5 25.5 7
0 60.5 30 9.5

<0 43 28.5 28.5

Table A.5: T. Rowe Price@ Retirement Funds (Source: T. Rowe Price@ Retirement
Funds Prospectus 2005, http://www.troweprice.com)
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Vanguard LifeStrategy Funds 6 Stocks Bonds
(%) (0%)

Income 20 80
Conservative Growth 40 60
Moderate Growth 60 40
Growth 80 20

Table A.7: Vanguard LifeStrategy@Funds: Performance Objective and Asset Al-
location Specifications (Source: Vanguard LifeStrategy@Funds Prospectus 2005,
http://www.vanguard.com)

A.2 Stop-Loss

In this appendix, I provide proofs of Propositions 1 and 2 in Sections A.2.1 and A.2.2,

a derivation of the likelihood function of the behavioral regime-switching model (3.26)

in Section A.2.3, and present some additional empirical results in Section A.2.4.

A.2.1 Proof of Proposition 1

The conclusion follows almost immediately from the observation that the conditional

expectations in (3.4) and (3.6) are equal to the unconditional expectations because of

the Random Walk Hypothesis (conditioning on past returns provides no incremental

information), hence:

A, = - Po7r < 0

S= - r < 0

(A.1)

(A.2)

and the other relations follow in a similar manner. I
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Fidelity ® Equity Foreign Equity Bonds Cash Horizon
(%) (%) (%) (%) (years)

Most Aggressive 100 20 0 0 > 10
Aggressive Growth 85 15 15 0 > 10
Growth 70 10 25 5 > 5
Balanced 50 5 40 10 < 5
Conservative 50 0 20 30 5 5
Short-term 0 0 0 100 n/a

Table A.8: Fidelity® Funds: Performance Objective and Asset Allocation Specifica-
tions (Source: Fidelity® Funds Prospectus 2005, http://www.fidelity.com)

T. Rowe Price Personal Strategy Funds ® Stocks Bonds Cash
(%) (%) (%)

Income 40 40 20
Balanced 60 30 10
Growth 80 20 0

Table A.9: T. Rowe Price® Personal Strategy Funds: Performance Objective and
Asset Allocation Specifications (Source: T. Rowe Price® Personal Strategy Funds
Prospectus 2005, http://www.troweprice.com)

Schwab MarketTrack Portfolios ® Stocks Bonds Cash
(%) (%) (%)

Income 40 55 5
Balanced 60 35 5
Growth 85 15 5

Table A.10: Schwab@ MarketTrack Portfolios:Performance Objective and Asset Al-
location Specifications (Source: Schwab@ MarketTrack Portfolios Prospectus 2005,
http://www.schwab.com)
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American Century One Choice Portfolios @ Stocks Bonds Cash
(%) (%) (%)

Very Conservative 25 (20,30) 50 (45,55) 25 (15,35)
Conservative 45 (39,51) 45 (38,52) 10 (5,20)
Moderate 64 (53,73) 30 (21,41) 6 (0,15)
Aggressive 79 (60,90) 19 (10,30) 2 (0,15)
Very Aggressive 96 (75,100) 2 (0,10) 2 (0,15)

Table A.11: American Century@ One Choice Portfolios: Performance Objective and
Asset Allocation Specifications (Source: American Century@ One Choice Portfolios
Prospectus 2005, http://www.americancentury.com)

A.2.2 Proof of Proposition 2

Let rt be a stationary AR(1) process:

rt = p, + p(rt-1 - P) + et
IID 2Et N White Noise(0, c) p E (-1, 1JA.3)

We seek the conditional expectation of rt given that the process is stopped out. If

we let J be sufficiently large and 6 = -oo, we note that st = 0 is equivalent to

Rt- 1(J) <-y and st-l= 1 with Rt-2(J)- -7y. Using log returns, we have

E[rtlst = 0] = E[rt Rt_l(J)<-7y,Rt_2 (J)> -7]

= p(1 - p) + pE[rt-I +ctRt-i(J)<-7, Rt 2(J)>-/y]

= p(1- p) + pE[rt-llRt-(J )<-y, Rt- 2 (J)> -]

(A.4)

(A.5)

(A.6)

By definition Rt-l(J) = rt-1 + .- + rt-j and Rt-2(J) = rt-2 +" rt-J-1. Setting

y - t-2 + " + rt-J then yields:

E[rtst = 0] - p(1 - p) + pE[rt-1I Rt 1(J) <- y, Rt_2(J) > - 7] (A.7)

= p(1 - p) + pEy [E[rt 1 rt-_ < --y - y, rt-J-1i> - -- y]] (A.8)
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For J large enough, the dependence between rt-J-1 and rt-1 is of order o(pJ ) a 0,

hence:

(A.9)

/- - a" (A.10)

which implies:

E[rt st = 0] < /(1 - p)+ p(p - a)

< - pa

I

A.2.3 Behavioral Regime-Switching Likelihood Function

The behavioral regime-switching model begins with the standard regime-switching

model (3.19):

rt Itrit + (1 - It)r2t

A =  It= 1

It= =0

Stit • , i =1, 2

It+1=1 It+= 0

Pll P12

P21 P22

where It is an indicator function that takes on the value 1 when state 1 prevails and

0 when state 2 prevails, and A is the Markov transition probabilities matrix that

governs the transitions between the two states.

The simple extension we propose is state-dependent transition probabilities:

Prob (It= 0|It 1 = 1, Ft-1; 0)

Prob (It = 1It-1= 0, F7t_1; 0)

exp(al + biRt_1(n))
1 + exp(al + bjRtl(n))

exp(a 2 + b2 Rt-1(n))
1 + exp(a 2 + b2 Rt-1(n))
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(A.14)

< Er,__1 [E[rt-1|rt-1 <rt-J-1]]E, [E[rt-1 rt-1 < - - y]]



where Rt-l(n) is defined to be the cumulative n-period return:

Rt-x(n) = rt-1 + - + rt-n (A.15)

and Tt_1 is the information set at time t-1, which includes rt-1, Rt_-(n), and all

lags of these two variables.

Using methods from Hamilton (1994) we can construct the likelihood function as

a function of the parameters 0- {=p, u, a,, bl, a2, b2}. Denote by r the matrix of data

for equity and long-term bond returns from t= 1,..., T. Then the likelihood function

is given by:

f(r i) = ft ((rtt, It= 1; )Prob(It= liF 1-; O) +

f(rt lF1, It =0; 9)Prob(It=0|_j1 ; 0) (A.16)

- (f(rtFt-1, It=1; )pit + f(rTt 1, It=0; 8)p2t) . (A.17)
t=1

The terms f (rt Ft-1, It= 1; 0) and f(rt t-1, It= 0; 0) are simply normal distributions

for both bonds and equities. The conditional probabilities are more challenging. We

present the expression for Pit only, since the other conditional probability is similar:

Pit Prob(It= 1 .'t1; 0) = Prob(It= 1 It-l= 1, .t-1; O)qt-1 +

Prob(It= 1I t-1 0, Ft-1; 9) q- 1) (A.18a)
( exp(a, + biRt-(n)) + exp(a 2 + b2Rt-l(n))=.1-1+exp(al+blRtil(n)). .. qn-1 + q9tl8b)1 + exp(a, + biRt-1(n)) 1 + exp(a 2 + b2Rt 1-(r))

= (1 - gl(Rt-l(n)))qt-1 + g2 (Rt-1 (n))q 2t-i (A.18c)

where

S f(t-11 It-1 = 1, Ft- 2; O)plt-2
qt-I ( t-1= 1, Ft-2; 9)plt-2 + f(t-1It-1= 0, Ft- 2; O)p2t-2 (A.19a)

f (F-1 It- 1= 0, Ft-2; O)p2t-2q2t- ft- 11 I=t_-1= 1, .Ft-2; O)plt-2 + f (Yt-lllt-= 0, .Ft-2; O)p2t-2
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We are left with one final term which we must characterize, f(Ft-1It-1 = 1, $Ft-2; 0),

which is the probability density function for the new information set given the past

information and the past state. Since Ft- 1 = {(rt-1, rft-1), Yt-2} we need the same

expression f(rt- It- 1= 1, Ft-2; 0) which is a normal distribution.

Denote by 0(.) the standard normal density function, and let:

rit -•p i = 1, 2. (A.20)
( 9'i

Then the likelihood function may be rewritten more compactly as:

T

f(r 0) = J(ltplt + 02tP2t) , where (A.21a)
t=1

q1t-1P1t-1
Pit = (1 - gi(Rt-1)) i lt-iP+t-X _- +

lt-lt-P1t- + 2t-lP2t-1

+ 2t-1P2t-1
g2(Rt-1) (A.21b)

qlt-lPt--l + 2t-lP2t-1

lt-1Pxt-1
P2t 91= g(Rt-1)

Olt-lPlt-1 + 02t-lP2t-1

(1 - g2(t_1)) 2t-lP2t-1 (A.21c)
Olt-lPlt-1 + 02t-lp2t-1

We can then use an iterative algorithm that calculates pit as a function of Rt- 1, rt-1,

and pit-1. Once we have all the Pit's, we substitute them into the expression for f(r08)

to calculate the likelihood function for a given 0, and then solve for the maximum

likelihood estimator in the usual fashion. I

A.2.4 Additional Empirical Results

In this section, we provide four additional tables to supplement the empirical results

in the main text. In Table A.12, we present a more detailed set of summary statistics

for the buy-and-hold equities strategy of Section 3.5 with and without the stop-

loss policy, including means, standard deviations, Sharpe ratios, and skewness and

kurtosis coefficients for various stop-loss parameters (y,6,J). In Tables A.13 and A.14,

we present similar performance statistics, but only for returns from the stopped-out

128



periods, assuming a re-entry threshold of 0% in Table A.13 and 2% in Table A.14.

And in Table A. 15, we report p-values of Kolmogorov-Smirnov test statistics designed

to distinguish between the unconditional returns of our two asset classes and their

conditional counterparts, conditioned on being stopped-out.

J (8=0) 7 A a Sharpe Skew Kurt Sharpe Skew Kurt
(%)  (%) (%) (%) (%)

No Stops - 12.5 14.4 0.87 -0.3 4.7 12.5 14.4 0.87 -0.3 4.7
8=0 8=2%

-4 12.9 13.2 0.97 -0.5 5.2 12.1 13.0 0.94 -0.4 5.3
-6 12.8 13.5 0.95 -0.4 5.0 12.6 13.4 0.94 -0.4 5.0
-8 13.2 13.7 0.96 -0.4 4.9 13.1 13.5 0.97 -0.4 5.0

-10 12.8 13.8 0.93 -0.4 4.8 12.8 13.7 0.93 -0.4 4.8
-12 12.7 13.9 0.92 -0.4 4.7 12.7 13.8 0.92 -0.4 4.7
-14 12.5 14.0 0.89 -0.4 4.7 12.5 13.9 0.90 -0.4 4.7

-4 13.5 13.2 1.03 -0.5 5.3 12.8 12.8 1.00 -0.5 5.5
-6 13.3 13.4 1.00 -0.5 5.0 12.8 13.1 0.97 -0.5 5.2
-8 13.2 13.5 0.98 -0.5 5.0 12.8 13.3 0.97 -0.5 5.0

-10 13.1 13.6 0.96 -0.4 4.9 12.9 13.4 0.96 -0.4 5.0
-12 12.7 13.7 0.93 -0.4 4.8 12.5 13.5 0.92 -0.4 4.9
-14 12.5 13.7 0.91 -0.4 4.8 12.3 13.6 0.90 -0.4 4.8

-4 13.7 13.4 1.03 -0.5 5.1 13.5 13.0 1.03 -0.5 5.3
-6 13.6 13.5 1.01 -0.5 5.0 13.4 13.1 1.02 -0.5 5.2
-8 13.4 13.5 0.99 -0.5 4.9 13.1 13.3 0.98 -0.5 5.1

12 -10 13.3 13.6 0.98 -0.5 4.9 13.0 13.3 0.97 -0.5 5.0
-12 13.1 13.6 0.96 -0.5 4.9 12.8 13.4 0.95 -0.5 4.9
-14 13.0 13.8 0.95 -0.4 4.8 12.9 13.5 0.95 -0.5 4.9

-4 13.1 13.6 0.96 -0.5 4.9 12.9 13.4 0.96 -0.5 4.9
-6 13.2 13.6 0.97 -0.5 4.8 13.0 13.5 0.97 -0.5 4.9
-8 13.3 13.7 0.98 -0.5 4.8 13.1 13.5 0.97 -0.5 4.8

-10 13.6 13.7 0.99 -0.5 4.8 13.4 13.6 0.99 -0.5 4.8
-12 13.7 13.7 1.00 -0.5 4.8 13.4 13.6 0.98 -0.5 4.8
-14 13.6 13.7 0.99 -0.5 4.8 13.6 13.6 1.00 -0.4 4.9
-141 13.6 13.7 0.99 -0.5 4.8 13.6 13.6 1.00 -0.4 4.9

Table A.12:: Performance statistics of a buy-and-hold strategy for the CRSP Value-
Weighted ToIbtal Market return with and without a simple stop-loss-policy, where the
stop-loss asset yields the Ibbotson Associates Long-Term Government Bond return,
for stop-loss thresholds - = 4-14%, re-entry threshold 6 =0%, 2%, and window sizes
J=3, 6, 12, and 18 months, from January 1950 to December 2004.
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y p-Value p-Value p-Value p-Value p-Value p-Value p-Value p-Value
(%) re rb re rb re rb re rb

J=2 J=6 J=12 J=18
-3 0.08 0.12 0.04 0.04 0.20 0.11 0.05 0.02
-4 0.04 0.02 0.07 0.05 0.07 0.10 0.09 0.07
-5 0.09 0.01 0.18 0.01 0.10 0.09 0.08 0.10
-6 0.08 0.01 0.18 0.10 0.10 0.05 0.04 0.04
-7 0.12 0.00 0.07 0.24 0.04 0.12 0.08 0.04
-8 0.04 0.00 0.02 0.13 0.08 0.08 0.08 0.08
-9 0.02 0.00 0.01 0.07 0.11 0.04 0.05 0.09

-10 0.00 0.00 0.00 0.17 0.06 0.05 0.01 0.03
-11 0.00 0.00 0.01 0.12 0.12 0.01 0.01 0.03
-12 0.01 0.00 0.05 0.10 0.06 0.02 0.01 0.05
-13 0.09 0.00 0.03 0.20 0.02 0.02 0.01 0.04
-14 0.04 0.06 0.07 0.25 0.02 0.02 0.01 0.04

Table A.15: p-values of Kolmogorov-Smirnov tests for for the equality of the empirical
distributions of monthly returns unconditionally and after stop-loss triggers, for the
CRSP Value-Weighted Total Market Index and Ibbotson Associates Long-Term Bond
Index from January 1950 to December 2004.
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A.3 Stochastic Dominance

When solving the investor's problem, it is necessary to specify both a preference

structure for investors, as well as parameterize the underlying distribution of asset

returns. It can be argued that making a particular assumption, about either prefer-

ences or underlying asset price dynamics, will dramatically influence the results. To

circumvent this problem, it is possible to analyze conditional asset returns using first

and second order stochastic dominance. The key advantages of stochastic dominance

is that it is applicable for general preferences and it deals directly with empirical data

without distributional assumptions. Although the approach is non-parametric, it is

definitely not a panacea for distributional assumptions. In fact, the application of

stochastic dominance testing has been limited due to computational issues, questions

about the impact of sampling error on results for small samples, as well as limited

model flexibility to account for multiple asset choices.

Empirical tests for stochastic dominance can be divided into two main approaches:

grid based methods (Davidson and Duclous 2000), and Kologorov-Smirnov based

methods (McFadden 1989, Kaur, Rao, and Singh 1994, Barrett and Donald 2003).

Davidson and Duclous (2000) propose a grid method which can be useful for deal-

ing with multiple hypotheses allowing for both dependent and independent samples.

In the following sections, I summarize basic definitions for first and second order

stochastic dominance and discuss a summary of two methods for empirical testing of

stochastic dominance. For the empirical testing, I focus on the Kolmogorov-Smirnov

approach; this is due to its simplicity and the possibility to use conditional bootstrap-

ing methods to account for possible dependence in samples. The Kolmogorov-Smirnov

based approach was first outlined by McFadden (1989), but various authors have ex-

tended his results. In particular, Barrett and Donald (2003) propose a bootstraping

based method, which focuses on two prospects and allows both for dependent sam-

pling with unequal sample lengths.
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A.3.1 Basic Definitions

In this section, I summarize, according to Huang and Litzenberger (1988), various

types of first and second order stochastic dominance.

First Order Stochastic Dominance

Following Huang and Litzenberger (1988), a risky asset A is said to first order

stochastically dominate B, or A <1 B if all individuals having monotonically

increasing and continuous utility functions would prefer A to B. Letting fA and fB

be the rate of return on the assets A and B respectively. F(-) is the cumulative

distribution function. The following three statements are equivalent:

1. A< iB (A.22)

2. FA(z) 5 FB(z) (A.23)

3. fA = B & & > O (A.24)

Second Order Stochastic Dominance

According to Huang and Litzenberger (1988), a risky asset A is said to second order

stochastically dominate B, denoted A <2 B if all risk averse individuals having

utility functions with continuous derivatives except on a countable subset of [1,2]

prefer A to B. A <2 B if and only if

E[fA] = E[fB] (A.25)
d

and S(y) = J(FA(z) - FB(z))dz < 0 Vy e [c, d] (A.26)

C

then again the following three statements are equivalent

1. A <2 B (A.27)

2. E[fA] = E[fB] and S(y) _ 0 Vy (A.28)

3. fA d-B + F, with E[|IfA] (A.29)
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Monotonic Second Order Stochastic Dominance

A risky asset A second order stochastic monotonically dominates B, denoted A _<M B

if all risk averse and non-satiable individuals prefer A to B, then the following three

expressions are equivalent.

1. A <MB (A.30)

2. E[fA] 2 E[fB] and S(y) < 0 Vy (A.31)

3. fA =d rB + Z, with E[E|fA] (A.32)

A.3.2 Empirical Tests for Stochastic Dominance

In this section, I summarize two methods for performing empirical tests for stochastic

dominance. Let r, i = 1... N be N independent and identically distributed (iid)

sample returns with cumulative distribution function (CDF), Fe(z), and r?, i = 1 ... N

be iid samples returns with CDF, Fb(x), define De(x) and Db(x) as follows:

De(x) = Fe(u)du

0

Db () = fFb(u)du
0

Without loss of generality, I assume the support is [0, ~], then e can be said to

stochastically dominates b of the second order if De(x) < Db(x), Vx > 0. There are

two alternative hypotheses Ho and H1.

Ho: De(x) 5 Db(x) Vx E [0, ]
H, : De(x) > Db(x) for some x e [0,E]
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Barrett and Donald (2003) propose the following test statistic, I to test H0.

K = 2 )1  sup[De(x) - Db(x)]
x

where De(x) = (x - ei)dF,(u)
0

N

- k(x ei)I(ei < x)i=1
i--1
N

N (x - ei)+
i=1

By adopting asymptotic results for Brownian Bridges, Barrett and Donald (2003)

show that the test will reject with probability one if the hypothesis Ho is false. To test

this hypothesis, p-values can be simulated using an arbitrarily fine grid for calculating

the suprema of K(see Barrett and Donald 2003).

To deal with higher order stochastic dominance, Barrett and Donald (2003) sug-

gest other test statistics which are derived using asymptotic results as well. Let

{X},N_1 be N samples from a marginal distribution Fx(.) and {Y}J 1 be M samples

from a marginal distribution Gy(.), they define the following statistics S, and S2 for

first and second order stochastic dominance respectively.

( NM 1/2

S, = sup(G(z) - F(z))
N _+M z

2 = ( NM 1/2

S2 2) Sup(I(O(z))- I(F(z)))
N1where I(F(z)) = (- )+

i=1

M1I(G(z)) = (z- yi)+
i=1

The test for the hypothesis that G first order and second order stochastically dom-

inates F can be summarized by the following two sets of hypothesises: HJ and HI1,
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and HO2 and H2.

H0" G(x) < F(x) Vx

H'1 G(x) > F(x) for some x

H • (t)dt <_ F (t) dt Vx

H1: G(t)dt > F(t)dt for some x

Using the fact that the limiting distributions for both F and G can be characterized by

Brownian Bridge Processes combined with the continuous mapping theorem, Barrett

and Donald (2003) define the random variables SGF and SG,F

ISG,F = sup( B -G- 1 -AB F)

2SG,F = sup(vA J B - Gdt- AfB -Fdt)

Where B -F is the composite of a brownian motion and the distribution function F,

and A is the sampling frequency for both distributions. The corresponding probability

of rejecting the null hypothesis for both first and second order stochastic dominance

can be bounded above by S using Proposition 1 from Barrett and Donald (2003).

lim P(rejectHo) < P(SF,G <C) = a(C)
N,M-+oo

The corresponding p-values can be evaluated using simulation, to calculate the prob-

ability that S > S for both first and second order stochastic dominance. By taking

R resamples of size (N, M) of the empirical distribution, and letting Fk,, and G*M,r

be the corresponding empirical distributions of the resamples. An estimate of the

pvalue, denoted P1 and p2, can be computed using Monte Carlo simulation over the
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R samples.

1 (SF,G > S1)
J~)1

1 R NM
( N + M sup(GM,r

r=l

- Pk,r) > S1)

1
S1(S2FG > S2)

r=lRf x
1( N+TMM sup(

r=l 
x

1
R G*,,(t)dt - Fk,,(t)dt) > S1)
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