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Abstract

Astronauts perform space teleoperation tasks with visual feedback from outside cameras. Individuals
differ greatly in the ability to integrate camera views, understand the workspace, and ensure clearances
between the robot arm and obstacles. We believe that these individual differences correlate with two
known subcomponents of spatial intelligence: perspective-taking (PT) and spatial visualization (SV). A
preliminary study [1] supports this hypothesis. We believe astronauts use PT (the ability to imagine an
object from a different viewpoint) to integrate camera information into an environmentally-referenced
frame defined by the arm control axes. In some cases, it may be easier to visualize the manipulation of
the payload with respect to the robot arm itself, than to the environment. In that case, SV(i.e., the
ability to mentally manipulate an object from an egocentric perspective) may be exploited. We
measured the performance of 25 naive subjects who used hand-controllers to rotate and translate, and
3 environmentally-fixed camera views. These devices controlled a 2-boom, 6 degree-of-freedom
virtually-simulated arm to perform pickup and docking subtasks. To challenge the subjects' spatial ability
we introduced a wide separation between camera views for some tests, and misalignments between the
translation control and the display reference frames. We used the Perspective-Taking Ability test (PTA)
and the Purdue Spatial Visualizations Test: Visualization of Views (PSVT:V) to measure PT, and the Cube
Comparisons test (CC) to assess SV. We concluded that PTA predicted performance on pickup and
docking subtasks, but PSVT:V did not. CC scores correlated with those measures of performance that did
not necessarily require PT. High perspective-taking scorers performed the pickup task significantly
more efficiently than low, but not faster. In docking, however, they were both significantly faster and
more accurate, collided less often, and docked more accurately. In both tasks they moved along only
one axis at a time. High CC scorers docked significantly more accurately and rotated about fewer axes at
any one time. Whenever we found a significant effect of PSVT:V on a dependent variable, we also
found one for PTA; but not the reverse. We had expected higher PT scorers to perform better than
others under the challenge of wider camera angles and greater control-display frame misalignments, but
we could not demonstrate this. On average females were slower and had lower docking accuracy, an
effect related, perhaps, to their lower spatial ability scores. This study of performance during the first
two hours of teleoperation training may help define issues for future research.

Thesis Supervisor: Charles M. Oman
Title: Senior Lecturer

Keywords: teleoperation, remote manipulation, spatial ability, perspective taking, spatial visualization,

mental rotation.
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Chapter 1. Introduction

Think of the robot arm that is mounted on the Space Shuttle or the Space Station. Now think of the

astronauts, inside the Shuttle or the Station, trying to manipulate this robot using three visual displays

and two hand controllers. The displays provide camera views of the arm and workspace from three

different environmentally fixed perspectives, and the controllers govern the translational and rotational

motion of the end effector. Manipulation is relatively simple if a camera view is aligned with the arm's

motion (i.e., when the astronaut moves the arm to the right, the arm on the screen moves to the right).

The task is harder, however, if the camera view and the arm's motion are not aligned (for example,
when moving the arm to the right, the arm on the screen moves forward). When all the camera views

are misaligned with the control axes, the task becomes even more complicated. NASA astronaut

teleoperation trainers say that the ability to mentally integrate these camera views varies from one

astronaut to another, and this thesis is an attempt to understand why.

Teleoperation is widely used in areas such as medicine, underwater exploration and space activities to

perform tasks that require the intelligence and awareness of a human but the physical capabilities of a

robot to perform tasks in environments that are dangerous or inaccessible to people. In the case of

space exploration diverse tasks such as deployment of satellites, maintenance of payload, inspection

and repair of the Space Shuttle or the construction of the International Space Station (ISS) have been

performed through teleoperation, using either the Space Shuttle or the ISS Remote Manipulator

Systems (RMS) (Figure 1). Maintaining awareness of the spatial location and the relative motion

between all the elements in the workspace, such as payloads, structures, the arm itself and the different

cameras is not an easy task, and operating the remote manipulators requires intensive training.

Consequently, current space remote manipulation procedures require having two operators to carefully

monitor each movement of the arm, select and orient each camera view, and each other's actions,

maintaining spatial situation awareness and alertness for potential collisions or spatial misjudgments.

These procedures increase the duration of RMS operations, and require additional valuable crew time

on each mission.

The robot arms are frequently operated with respect to a control reference frame that is allocentric: The

arm consistently moves in the same direction -with respect to the external environment- for the same

input of the hand controller, independently of where the camera view points are. This is referred to as

"external" control mode. To manipulate the arm in this mode, the operator must observe the robot

from multiple camera perspectives which are often not aligned with the control reference frame. As a

result, the motions commanded on the hand controllers will not necessarily correspond to a similar

motion on the camera display (e.g., a leftward motion on the hand controller may result in an arm

movement in depth for Display 1, and motion to the right in Display 2!). Safe operation requires having

the ability to integrate the different camera views by perceiving and mentally processing the
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misalignment between each image and the control reference frame of the arm. The failure to perform

this cognitive task has led to several operational difficulties in space operations; in most cases,

astronauts have trouble finding the optimal camera views to define the adequate clearances from the

surrounding structure [2].

Figure 1. The robot arm (left) is controlled by astronauts inside
the International Space Station or Space Shuttle (right)

During the RMS training, individual differences in the astronaut trainees' abilities to select the correct

camera view, understand the images provided, maneuver the robot arm and maintain adequate

clearances between objects have come to light,' suggesting that a specific set of factors within the

operators' general intelligence could be influencing their teleoperation performance. We believe that

spatial ability is one of those factors, and that it should be possible to predict the strengths and

weaknesses of each astronaut in specific aspects of teleoperation, before they are assigned to a mission,

or even before they are trained as operators. This would allow each astronaut to follow RMS training

tailored to his/her specific needs, and would allow matching RMS operators with complementary skills.

Moreover, in the case of an onboard emergency requiring an unrehearsed teleoperation task, it may be

possible to predict who would be the best candidate to perform the task. This could lead to shorter,

safer and more efficient space operations.

This thesis presents a first attempt to define the aspects of space teleoperation performance that are

influenced by the operator's spatial abilities and suggests a research strategy for future experiments.

Chapter 2 reviews a) RMS operations, training and performance assessment, b) previous research on

human spatial intelligence and ability testing, and c) the results of successive preliminary pilot

experiment that lead to, in Chapter 3, the objectives and hypotheses for the experiment described in

this thesis. Chapter 4 presents the details of our experimental method. Chapters 5 and 6 present the

results and a discussion of their relevance for teleoperation performance.. Conclusions are presented in

Chapter 7 and suggestions for further research in Chapter 8.

I J. Young, NASA Johnson Space Center, personal communication.

8



Chapter 2. Background

2.1. RMS operations, training and performance assessment 2

The Remote Manipulator Systems (RMS) on the Space Shuttle and the International Space Station (ISS)

are used by astronauts to perform orbital deployment, maintenance and repair of satellites (such as the

Hubble Space Telescope), build large structures (such as the ISS itself), and more recently, to monitor

the state of the Shuttle's thermal shield before reentry. They consist of a robot arm and a Robotic

Workstation (RWS). The Shuttle and RMS robot arms are very similar, with the main difference that the

Shuttle arm has 6 degrees-of-freedom (DOF), while that in the ISS has 7 DOF. They are manipulated from

the RWS, which is composed of three video displays, numeric displays of arm state including position

and orientation of the end effector, and two hand controllers, for translation and rotation respectively

(Figure 2) [3]. The Space Shuttle has rear cockpit windows looking into the payload bay that permit

direct visual monitoring of the operations. Each of the video monitors can show an image from a camera

located on the surrounding structure of the Shuttle or Station, and on the end effector itself. Astronauts

select an appropriate camera view and can pan, tilt and zoom each camera to their preference, in order

to obtain the best possible view. Visual feedback is usually the only dependable information3 source for

arm motion and clearance, while additional information on the position and orientation of the end

effector is provided on a separate numeric display. The translation and rotation of the robot arm can be

aligned with a control frame fixed to the spacecraft ("external control mode") or fixed to the moving end

effector ("internal mode"), as specified by the operator.

2 This section was adapted from a 2007 research proposal "Advanced Displays for Efficient Training and Operation
of Robotic Systems", NSBRI RFA-07001-S2, CM Oman, Principal Investigator, with the permission of the authors.

3 DOUG (Dynamic Onboard Ubiquitous Graphics, see last paragraph of this section) is used as supplementary
spatial awareness system, though the information is not deemed accurate enough to depend on for clearance
assessment.
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Figure 2. Robotic Workstation (RWS) [4]

Beginning in 2003, all NASA astronaut candidates must complete a one hour-long "Robotics Aptitude

Assessment" (RAA), a computerized test battery. The RAA is designed to test the candidates' ability to

judge clearances, to perform a docking task with two hand controllers, to use both internal and external

command modes to reorient objects, to translate the end effector through specific paths and rotate it to

different positions, and to use both hand controllers simultaneously and multi-axially. The RAA has not

been validated as a selection tool, thus the data from the assessment are not used as a selection

criterion. Once selected, the astronauts begin their teleoperation training with Generic Robotics Training

(GRT), where they are taught the basic robot arm manipulation tasks (e.g., flying the arm, grappling

objects, or choosing the appropriate camera views) in a sequence of 15 consecutive lesson modules.

Two training systems are used throughout the GRT sessions: BORIS (Basic Operational Robotics

Instructional System) and the Multi-Use Remote Manipulator Development Facility (MRMDF). Both

systems closely simulate the real RMSs, virtually (BORIS, 6DOF) or physically (MRMDF, 7DOF), and

provide multiple camera views and two hand controllers.

Two astronauts are required to operate the real robot arms. In a space teleoperation mission, the Ri

operator is the one in charge of manipulating the arm hand controllers, while R2 is in charge of tracking
the moving object with the camera, switching the camera views as instructed by Ri, and monitoring

obstacle clearance and situational awareness. Those trainees who show the best training performance

are classified as primary operators (Ri), while those who present lower but acceptable skills are

classified as secondary operators (R2). Usually, operators are assigned to a mission as Ri or R2,

according to their original post-training classification; however, there are times when the mission R2 is

someone who had a Ri evaluation designation and the mission task Ri is someone who had only

attained R2 scores. This latter person serves as the Ri for scripted tasks, but should a problem arise,
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then the two operators would switch roles with the "better" operator assuming RI duties. In all nominal

cases, the R2 has been fully trained so they are capable of performing the nominal task, whether they

received R1 or R2 scores in training4.

During under robotics training, astronauts are evaluated after specific lessons by a group of Robotics

Instructors and Instructor Astronauts. Performance scores are given based on a weighed sum of nine

standardized criteria.5 The weighting of the scores is based on estimated impact on mission success,

therefore higher weighting is given to criteria relating to spatial/visual perception, situational

awareness, clearance monitoring and maneuvering, which cover collision and singularity avoidance,

correct visualization of end position and attitude, adequate camera selection and real time tracking,

motion smoothness and the ability to maneuver in more than an axis at a time. Interestingly, this

evaluation method assigns those astronauts with better performance to RI positions, when in reality it

is the R2 operator's main task to provide clearance and situational awareness support.

The astronauts who do not achieve the minimum requirements (acceptable/strong grades) must

undergo remedial training, including methods to help trainees visualize the orientation of the control

reference frame. These visualization methods include the use of small scale physical models of the arm

and the reference axes, and also DOUG (Dynamic Onboard Ubiquitous Graphics), a laptop computer

virtual recreation of the International Space Station that allows the user to navigate freely around the

Station and obtain a better understanding of the location of the different structures. DOUG is also used

for supplemental awareness during robotic operations, although it cannot be used as a dependable

source of clearance information, due to its accuracy limitations. These visualization methods strongly

suggest that spatial ability plays an important role in space teleoperation performance, and being able

to predict beforehand the spatial weaknesses and strengths might simplify the RMS training process and

make it more efficient.

2.2. Human spatial abilities

General intelligence is the manifestation of the cognitive capacities of an individual. Those capacities

(such as reading, logical thinking, memorizing, multiplying, etc.) can be measured by psychometric tests,
which allow the differentiation of cognitive abilities between individuals or groups. One of the

components of an individual's general intelligence is the spatial ability.

Our ability to imagine, transform and remember any kind of information acquired by visual experience

such as maps, pictures, or 3D drawings, can be described by our spatial ability, and it is believed that this

4 J. Tinch, Chief Engineer of the Astronaut Office Robotics Branch, NASA Johnson Space Center, personal
communication.
S The Instructor Astronauts are not involved in all the evaluations, but mostly on the final stage.
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ability depends on factors such as gender, age, and personal experience. Different subcomponents of
spatial ability have been identified over the past 40 years, each of them defining a specific mental
function required for image processing. . The typical approach has used principal component analysis to
decompose performance into 2-7 underlying spatial ability subcomponents.

Although the classification of such subcomponents slightly differs among authors, two main classes can
be defined: spatial orientation (SO) and spatial visualization (SV) Spatial orientation refers to the ability
to imagine different viewpoints of an object, and has recently been subdivided into perspective-taking
(PT) and mental rotation (MR). The main difference between PT and MR is the frame of reference which
is manipulated to achieve this viewpoint. In PT the observer's frame of reference moves (i.e., the object
stays still and the observer moves around it), whereas in MR the display reference frame is fixed (i.e.,
the observer stays still) and the object is imagined as rotating. For instance, to describe how the school
library looks from the tall building in front of it, we would tend to use PT and imagine our own
translation while climbing the tall building and peeking out the window. However, to describe how the
back side of a quarter appears, most people would use MR and visualize themselves flipping a coin,
instead of moving their own viewpoint. Recently, Kozhevnikov and Hegarty [5] and Hegarty and Waller
[6] have determined that PT and MT are distinguishable abilities, although highly correlated. Spatial
visualization (SV) can be described as the ability to visualize the transformation of objects or surfaces in
an image into other configurations (unfolding a paper sheet, for instance).

In addition to spatial orientation and visualization, other subcomponents of spatial ability have been
proposed. For example, Carroll [7] includes closure speed (ability to rapidly access representations from
long-term memory), flexibility of closure (ability to maintain the representation of an object in working
memory while trying to distinguish it in a complex pattern), perceptual speed (ability to rapidly compare
or find symbols or figures), and visual memory (ability to remember the spatial distribution of objects or
figures). Pellegrino et al. [8], and Contreras et al. [9] have suggested the existence of dynamic spatial
performance, as a supplemental set of factors, including the abilities to perceive and extrapolate real
motion, predict trajectories and estimate the arrival time of a moving object.

2.2.1 Measures of Spatial Orientation and Spatial Visualization

Many different cognitive tests have been developed to measure each subcomponent of spatial ability.
The majority of these tests are still paper-and-pencil based, but the trend is to move towards computer-
based tests, which enable the measurement of a greater number of variables, including the temporal
aspects of performance. The Kit of Factor-Referenced Cognitive Tests [101 contains several paper-and
pencil tests that have been used for several years in the field of spatial cognition research, such as the
Cube Comparisons test (SV) and the Paper Folding test (SV). Other widely used paper-and-pencil tests
are the Vandenberg and Kuse Mental Rotations Test, developed by Vandenberg and Kuse (MR) [11], and
the Purdue Spatial Visualization Test by Guay [12], which has three sections: Rotations (MR), Views (PT)

12



and Development (SV). Among the computerized tests, there are the Perspective-Taking Ability test or

PTA [131, and the Pictures Test [6] which test two- and three-dimensional PT, respectively.

The Cube Comparisons test has generally been classified as a means of measuring MR ([14] [15], [16]),
however, recent reviews of the test now call for its classification as a measure of Spatial Visualization

([17], [18], [7]).

The Cube Comparisons (CC) test, the Perspective-Taking Ability test (PTA), and the Purdue Spatial

Visualization - Visualizations of Views (PSVT:V) test are of particular interest for this thesis, and are
described in more detail below.

In the CC test, subjects are shown pairs of cubes with a letter or a geometric figure on each face, and are

asked to determine whether the cubes are different or could be the same, but rotated. Twenty one
pairs of cubes are given (Figure 3) on each of the two 3-minute sessions. This test measures a person's

ability to rotate an object -an imaginary wooden cube- in their mind. Just and Carpenter [16] explain
that there are four common strategies to solve this test: mental rotation around standard (intrinsic)
axes, mental rotation around task-defined axes, use of orientation-free rules, and perspective-taking.

Their results suggest that low scorers use mostly mental rotations about standard axes (defined by the

faces of the cubes), while high CC scorers use mental rotations and comparisons of object features
utilizing task-defined (non-standard) axes. Hence, many reviewers believe the CC test draws on spatial

visualization skills in addition to simple mental rotation abilities.

Figure 3. Sample problems from the Cube Comparisons test showing different cubes (left) and same but
rotated cubes (right)

In the computerized version of the Kozhevnikov Perspective-Taking Ability test (PTA) the subject is
shown a top-down plan view of a person surrounded by seven items (airport, hotel, school, etc.). He is
instructed to imagine himself facing one of the items and is given five seconds to study the relative
locations of the other elements. Then, one of the other items flashes and he is instructed to indicate the
direction to the indicated target, with respect to his egocentric reference frame. There are 58 trials in
the test, and the score is based on angular error as well as response time (Figure 4). Kozhevnikov and
Hegarty [5] found that two main strategies can be used to solve this test: perspective-taking and mental
rotations. The choice of strategy depends on the angle between the egocentric reference frame and the
imagined heading: mental rotation is commonly used for smaller angles (< 1000), and perspective-taking
is used for large angles. The PTA test measures perspective-taking ability in a two dimensional azimuthal
plane, and presents targets using a map. Kozhevnikov and Hegarty mention that a three-dimensional
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perspective view adaptation of PTA might encourage the use of PT strategies to a greater degree,
"suppressing" the use of mental rotations.

You tm fw a AlrpWL

Figure 4. Screenshot of the Perspective-Taking Ability test [5]

In the Purdue Spatial Visualization Test: Visualization of Views (PSVT:V) (Figure 5), a subject is presented

with pictures of various solid objects located in the center of a "glass" cubic box, shown in an isometric

view. On each trial, a black dot is located on one of the vertices of the box, and the subject must imagine

how the object looks from that perspective, and choose one of 5 alternative two-dimensional

projections. Although PSVT:V has not been widely validated, the majority of the subjects that have taken

it informally as part of a Man Vehicle Laboratory experiment have reported the use of PT over any other

strategy to solve the test. This information suggests that the PSVT:V test could be a useful measure of

three-dimensional PT, and may be differently correlated to the performance of three-dimensional PT

tasks -such as space teleoperation- than a two-dimensional PT test like PTA. More specifically, this test

may provide richer information on the ability to take a perspective at wider three-dimensional angles

(between the observer's egocentric reference frame and the imagined heading).

Figure 5. Purdue Spatial Visualizations: Visualizations of Views test (PSVT:V)
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We hypothesized that the most important spatial ability subcomponents when performing

teleoperation tasks are the PT component of spatial orientation, as measured by the PTA and PSVT:V

tests, and spatial visualizations, as measured by the CC test.

2.2.2 Gender differences in spatial ability

Several studies have found an effect of gender on spatial ability tests, but the results do not consistently

define a clear trend. Findings suggest that male subjects tend to perform better in such tests [19] -
women are only favored only when visuospatial memory is required [20]. Although consistent large

gender differences favoring males are only found in mental rotation tasks [21], [22], males also generally

outperform females in way-finding tasks [23]. Ecuyer-Dab and Robert [24] speculate these differences

originate from natural selection. They argue that the male species requires stronger navigational skills

and understanding the physics of moving objects -such as projectiles-, while the females species is
entitled to a low-risk and conservative behavior, focusing on nearby spatial cues over large-space
navigation.

2.3. Previous research on teleoperation performance and
spatial ability

Different aspects of teleoperation that have been studied, such as the adaptation to changes in
reference frames or the use of displays, provide indirect evidence that spatial abilities may be correlated
with performance. Lamb and Owen [2] found that using an egocentric reference frame for space
teleoperation tasks resulted on higher performance than when using an exocentric (world) reference

frame. In this experiment, subjects used a head-mounted display and two controllers to fly a robot arm

towards a payload target, grasp it, and locate it into the cargo bay of the Space Shuttle, in a virtually-

recreated environment. DeJong, Colgate and Peshkin [25] investigated the influence of rotations

between the different reference frames (e.g., hand controllers, camera and display, end effector) and

concluded that performance improved as the number of rotations between the reference frames
decreased. They recommend matching the controllers and displays with their corresponding elements in
the remote site, in terms of reference frame as well as physical location, to allow the operator to have a

better understanding of the work area. Spain and Holzhausen [26] found that performance is not

necessarily improved if the number of camera viewpoints available to perform teleoperation tasks is
increased. Although the alternate orthogonal views provide useful depth information which could have

contributed to improve the task performance, subjects often did not use the additional camera
viewpoints. According to the authors, these additional views increase the subject's mental workload,
which may reflect the effort to spatially integrate the view.

A few previous studies have found direct correlations between teleoperation performance and spatial
abilities. However none of them included the use of multiple displays to perform the tasks. Laparoscopic
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surgery (also called minimally invasive surgery) is an important application of teleoperation in the

medical field. Eyal and Tendick [28] found a significant correlation between the ability of novice subjects

to learn the proper position of an angled laparoscope and their scores on Card Rotations, Paper Folding

and Perspective-taking tests, which measure SV (paper folding), MR (Card Rotations) and PT (paper PTA

test) aspects of spatial abilities. Tacey and Lathan [29] measured lower completion times in a single-

display teleoperator pick-and-place task for subjects with higher spatial ability, as measured by a

composite test of the Paper Folding test and Stumpf's Cube Perspective test. Lathan and Tracey [30]

studied 2D navigation performance using a mobile telerobot, with a single camera for visual feedback.

They measured the operators' spatial recognition ability with the Complex Figures test and Stumpf's

Spatial Memory test, and spatial manipulation ability with the Block Rotation and Stumpf's Cube

Perspective test, and found a correlation between high performance and high test scores.

2.4. Preliminary study6 and rationale for experiment design

We performed a preliminary study [1] correlating spatial orientation ability and teleoperation

performance in a simulated teleoperation task where the operator used three stationary cameras and

external (spacecraft, not end-effector) referenced control. Spatial ability was tested with the

Perspective-Taking Ability test (PTA), Cube Comparisons (CC) test, and Purdue Spatial Visualization -

Visualization of Views test (PSVT:V). The relationship between the camera views and the orientation of

the control reference frame was also systematically manipulated. Despite the small number of subjects

used in this preliminary experiment, interesting trends were found, indicating that people with better

spatial abilities as measured by PTA and PSVT:V performed better. This section describes the methods

and results of the study, followed by a discussion of the limitations/problems which led to the

development of the thesis experiments.

2.4.1 Reference frames

We defined two reference frames related to the teleoperation task: control referenceframe and display

reference frame. The control reference frame was a world-fixed frame (i.e., independent to the

perspective from which the robot is observed) whose axes were defined by the actions of the

translational and rotational hand controllers. In our experiments, the control reference frame was

always aligned with the world reference frame, i.e. it corresponded to the "external" control mode of

the Space Shuttle or ISS RMS.

6 A more complete description of this study, including methods and analysis, can be found in the conference paper
in APPENDIX K.
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The display reference frame, on the other hand, corresponded to what would be the observer's

egocentric reference frame if he were located at a camera viewpoint. For purposes of this experiment,
we assumed all three cameras were in a plane containing the Z (depth) axis, and pointed toward the

center of the work area. Although the observer could look at any camera, we arbitrarily defined the
primary axis of the display reference frame as aligned with the view axis of the central camera,
corresponding in some sense to the observer's "average" viewpoint.

Axes on the control reference frame were designated in capital letters (±X, ±Y, ±Z), whereas those in the
display referenceframe were designated in lower case letters (±x, ±y, ±z).

2.4.2 Overall design

Given the absence of studies relating spatial abilities and multiple-screen teleoperation, we decided to
run an experiment that would correlate the perspective-taking (PT) and spatial visualization (SV) ability
of individuals with their performance on a RWS-simulated environment. We wanted to define an
experiment design that would challenge the PT ability of subjects, and provide information on the
relative contribution of each spatial ability to the performance of a series of pickup-and-dock tasks.
Considering that the ability to imagine how a scene looks from a camera view is strongly related to the

angular separation between the observer's egocentric reference frame and the imagined viewing
location [5], we designed a within-subjects experiment using three camera configurations, each with a
different angular separation between the cameras' lines of view. The hypothesis was that with greater
angular separation, poor perspective-takers would present lower performance. Spatial visualization (SV)
ability was also measured, expecting that good high scorers would rotate the end effector around
multiple standard axes at a time [16], independent of the changes in camera angular separation.

We created a space teleoperation environment, including a virtual 6 degrees-of-freedom (DOF)
Unimation PUMA-like robotic arm mounted on a fixed truss, three fixed virtual camera views projected

in three computer screens and two hand controllers. Subjects were instructed to use the virtual arm to
grapple a simulated cargo module then dock it onto an ISS node as fast and accurately as possible. Three
camera configurations (a, 1, y) were tested. The configurations consisted of three cameras equidistant

to the base of the arm, and located on a plane tilted 45* from the horizontal axis (Figure 6). In
configuration a and R, the control and the display reference frames were aligned, whereas in
configuration y the reference frames were horizontally misaligned by 180* about the vertical axis. The

angular separation between the two external cameras in configurations a and y was 600, and in P it was
120*. We hypothesized that subjects with higher perspective-taking ability would perform better in the
configurations with high angular separation, as opposed to those with low ability. We expected CC score

to have an effect on docking accuracy (specifically on the angular offset), but not on the other measures
of performance, since the task was focused on challenging the subject's perspective-taking ability. Four
different trials were presented to the subjects, characterized by different initial positions and
orientations of the cargo module. The arm initial position and the ISS node location and orientation
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were the same for every trial. Each trial was repeated four times during each camera configuration,

reaching a total of 16 trials per configuration. To account for learning effects, subjects were divided into

two groups, each with a different order of camera configurations (a-p-y, and a-y-P). The experiment

included a total of 56 trials, including 8 training trials before configuration a.

-------

Figure 6. The three cameras are positioned along a circumference (black contour) tilted 450 from the
horizontal plane. Camera configurations a, 0 and y are defined by the angular distance between cameras 1

and 3.

Three tests were administered to assess spatial ability: Cube Comparisons test (CC), Perspective-Taking

Ability test (PTA) and Purdue Spatial Visualization: Visualization of Views test (PSVT:V). We used two

different perspective-taking tests because - as discussed earlier - we considered them to be

complementary: PTA has been validated with a large number of subjects but involves only two-

dimensional perspective-taking, whereas PSVT:V involves three-dimensional perspective-taking,

although no major validation has been performed.

The performance metrics measured were: total time to perform the task, observation time before first

controller input, percentage of the task time during which there was a controller input (%motion), the

input of axial and angular degrees of freedom, and the position and orientation docking offsets of the

module with respect to the node. Seven subjects finished the experiment (3 female, 4 male, all

Aerospace Engineering students).

After finishing the experiment, subjects completed a questionnaire in which they described the different

level of discomfort they encountered throughout the session, as well as the strategies used to perform

the trials.

2.4.3 Results

Subjects with better spatial visualization ability performed the task faster, and required less observation

time, whereas those with high perspective-taking ability performed the task in longer times, required

longer observation times and rotated in multiple axes at a time.

The highest performance by subjects occurred in configuration 3, with shorter times, greater %motion,
and increased use of multi-axial translation. Configuration a and y were characterized by longer total

times and lower %motion (Figure 7). The presence of left-right reversal in y was reflected by longer
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observation times, as well as the tendency to translate in one orthogonal axis at a time. No significant

correlations were found between docking accuracy and test scores or configuration.

Cube Comparisons test
-_Low Score

- - High Score

--

Purdue Spatial Visualizations test

Low Score
- - High Score

I II I I
CL Q

0 1 1 1 1
a 7 a p C

Figure 7. Average task performance in preliminary study per configuration (a, 0, y) grouped by subjects
scoring low (solid lines) or high (dashed lines) on the Cube Comparison(left)

and Purdue Spatial Visualization (right) tests.
Total time (top); Center: %motion (center); Angular docking error (bottom).

Learning trends were characterized by a reduction in total and observation times, and increase in

%motion and in diagonal translation. A decrease in docking accuracy with each repetition was also

detected, although it may have been caused by fatigue. No change was observed on the number of

standard axes around which the end effector was simultaneously rotated, suggesting that if subjects do

eventually learn to use multi-axis simultaneous control, the time required exceeds the length of our

experiment.

19

400

300

200

100

0

I-

100

0

90.

80.

70

60

50

40

30

-I-
- ~ .~K-

15

10-
-o

(D

5 I-- E->{
I--I--



2.4.4 Potential experimental design improvements

During our analysis of the questionnaire and data, a number of confounding factor resulting from our

simulation and experiment became apparent.

Subjects reported using the central camera much more than the other two cameras, since it provided

most of the visual information they needed, and was exactly aligned (or misaligned 180* in y) with the

control reference frame. Additionally, due to the fact that the angular separation between the cameras

was not the same, subjects were more likely to integrate a pair of views that included the central

camera than the one that did not. The primary use of the central camera may have reduced the

correlation of spatial ability (PT) on performance, since this ability was not utilized by their viewing

strategy. This strategy choice may also have been a result of the lack of sufficient visual cues to establish

an allocentric frame within which they could understand the relationships between the camera views.

Thus, they might have relied on mental rotation-based strategies to determine how to move the arm.

This strategy would also only require one view most of the time.

We were not able to define a metric to assess the distance traveled in the direction opposite to the final

goal (inverse motion) because subjects had the freedom to choose any path to perform the task. For

example, some of the subjects reported that they found it easier to move the module, in the sense of

avoiding a collision between the robot arm, module, or truss, in front of the arm than behind, even if the

distance traveled was larger. The choice of path may have been driven by the desire to avoid collisions

Consequently, paths lengths differed significantly, affecting the total time of the task, as well as

complicating the use of a metric of motion in the wrong direction (called inverse motion by Akagi [27]).

Including this metric could provide useful information regarding the understanding of the misalignment

between the control reference frame and the display reference frame.

Although subjects were instructed to avoid collisions, no feedback was given to them, and no

quantitative information was available to assess whether subject had followed the rules, other than the

experimenter's observations. If subjects had commanded arm motion regardless of whether a collision

would occur, their task completion time would be artificially shorter than if they had to correct the

condition before proceeding with their task.

Since the ISS node remained in the same position and orientation for every trial, subjects may have

mastered the docking technique without further need the information from the camera views, and

reducing the need to use spatial abilities to perform the task. This monotony may even have led to

boredom within subjects, and a decrease in the docking accuracy with repetitions. In general, boredom

from the length of the experiment (2.5 to 4 hours, including breaks) could have changed the operators'

speed-accuracy trade-off and confounded the results. Subjects consistently reported feeling mentally

overloaded or bored by the last configuration.
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Chapter 3. Objective and hypotheses

3.1. Objective

The objective of this experiment was to answer the following experimental questions:

i. Is perspective-taking ability (measured by the PSVT:V and PTA tests) correlated to performance

on teleoperation subtasks such as pickup and docking?

a. How is this correlation affected by wider camera separations?

b. How is this correlation affected by misalignments between the control and display

reference frames?

ii. Is spatial visualization ability (measured by the CC test) correlated to performance on

teleoperation subtasks such as pickup and docking?

iii. Is gender correlated to performance on simulated space teleoperation tasks?

3.2. Hypotheses

According to the description of space teleoperation activities and human spatial ability addressed above,

we predicted the following answers to the experimental questions:

i. Effect of perspective-taking ability on pickup and docking task performance:
We hypothesized performance is affected by the subject's perspective-taking ability.

We expected subjects with better perspective-taking ability (higher scores on PTA or PSVT:V

test) would perform faster, with more continuous and accurate motion, fewer collisions, and

use more axes simultaneously during translation than those with poor perspective-taking ability.

We also expected such subjects to have a higher docking accuracy in docking tasks.

In particular, we expected that:

a. Subjects with high scores on the PSVT:V test would perform better than those with low

scores when the cameras' lines of view were more widely separated in angle. Their

ability to perform better at larger angular separations would be reflected in faster and

more accurate translation, higher docking accuracy in position and orientation, and the

simultaneous use of a larger number of axes during translation.

b. High PTA scorers would perform better than low scorers when there was a horizontal

misalignment between the control reference frame and the display reference frame.

Their ability to perform better at larger misalignments angles should be reflected in
shorter times to perform a task and smaller translational errors.
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ii. Effect of spatial visualization ability on pickup and docking task performance:
We hypothesized that performance would be affected by the subject's spatial visualization

ability.

We expected subjects with better spatial visualization ability (higher scores on the CC test)
would perform better in rotational motion than low scorers. While manipulating the end
effector, we expected them to rotate about more standard axes at any one time, as a way to
improve their efficiency. We also expected such subjects to have a higher orientation (angular
and roll) docking accuracy in docking tasks.

iii. Effect of gender on pickup and docking task performance:

If women have, as reported, lower spatial ability than men, we expected they may translate
along fewer axes simultaneously, require longer task times and deliver lower docking accuracy.
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Chapter 4. Methods

To test these hypotheses, and based on the recommendations from the preliminary study, we

conducted a main experiment according to the following design.

4.1. Camera configurations

Table 1 defines the three configurations (A, B and C) were defined, where A and B were aligned to the

control reference frame and C was horizontally misaligned by and angle 1 = 90*. The angular separation,

a, between the cameras in A and C was the same (55*), and cameras in B had a greater separation (800).

Note that unlike the preliminary study, the camera view axes do not lie one same plane, and so formally

speaking there is no "central" camera. As in the preliminary experiment, the setting of three cameras

was fixed.

A A

Y Y

f

A

FC7
*4 - /

Figure 8. Camera configurations.
Top -

Side (left) and front (right) view of the robot arm mounted on two fixed trusses. Lines of view of three fixed
cameras -located on the surface of a cone- point towards the shoulder of the arm. Solid arrows represent the

control reference frame (XYZ). Dotted arrows represent the display reference frame (xyz).
Bottom -

A (left), with 55 degrees separation between the lines of view of the cameras, reference frames are aligned.
B (center), with 80 degrees separation between the lines of view of the cameras, reference frames are aligned.

C (right) with 55 degrees separation between the lines of view of the cameras, reference frames are
misaligned by 90 degrees.
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Table 1. Description of the camera configurations in terms of angular separation between the camera views
and angular misalignment between the control and display reference frame

Configuration Angular separation a Angular misalignment 1

A 550 00

B 800 00
C 550 90*

Configuration B was designed -similarly to configuration 1 in our preliminary study- to challenge the

subjects' three-dimensional perspective-taking ability by increasing the angle between the camera's

lines of view. Configuration C, in contrast, was designed to challenge the subjects' two-dimensional

perspective-taking ability by increasing the angle between the control and the display reference frame.

The main difference between configuration y in the preliminary study, and configuration C in this study

is the magnitude of the horizontal misalignment (180* in y, and 90* in C). The rationale behind this

change was our suspicion that subjects might have used strategies (e.g. simple control reversal rules)

different from perspective-taking when being presented to an exact left-right reversed configuration, as

in configuration y. We chose a 900 misalignment so that the control-display reference frame

misalignment would be large enough to challenge perspective-taking, but not so large as to motivate

subjects to use strategies different from perspective-taking to understand the camera views. Even

though greater misalignments (e.g., 135*) would have provided a consistent left-right reversal in all the

cameras, we feared that larger separation would only be understood by the best perspective takers,

forcing the average subject to use alternative strategies to perform the task. We believe, however, that

this assumption should be addressed in future studies.

3

Y 1
t.X

15 45*

)75-

2

Figure 9. Location of the three camera views relative to the horizontal axis x. The three cameras are mounted
on the corner of an equilateral triangle parallel to the plane xy of the display reference frame.

The three cameras were placed on the corners of an imaginary equilateral triangle, with the normal

vector to its surface pointing towards the shoulder of the robot arm, as shown in Figure 9. The triangle

was rotated around its center point so that all cameras were as separated as possible from the vertical

or horizontal planes. The cameras 3, 1, and 2 were always located at 45, 165 and 285 degrees

(counterclockwise) respectively, with respect to the horizontal plane (defined by the left/right and
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front/back of the control frame). The distance from each of the cameras to the shoulder of the robot

arm was the same.

4.2. MIT Remote Manipulation System Simulator (MIT RMSS)

A generic Robotic Workstation (RWS)-like simulator was developed at MIT. It included three display

screens, a Translational Hand Controller (THC), a Rotational Hand Controller (RHC) and a keyboard, as

shown in Figure 10.

Figure 10. MIT Remote Manipulator System Simulator

The displays were Dell 17" flat LCD screens located at the same distance (3' approx.) from and pointing

towards the subject. The simulation was run on two Windows computers using Vizard's networking

capabilities. The main simulation server (1.5GHz Pentium4 PC with dual head nVidia GeForce 6600

graphics) performed the kinematic calculations, graphics processing and hand controller I/O. The second

computer (550MHz Pentium3 PC with nVidia GeForce3 graphics) rendered the third camera viewpoint.

The images shown in the left, central and right computer monitors displayed the views from the left,

central and right cameras, respectively.

The two hand controllers, modeled after the RWS, controlled the translation and rotation of the robot

end effector. For the translational hand controller (THC) a 3DOF linear joystick was custom-built from a

2DOF joystick, a linear potentiometer and a USB controller card. The controllers had a constant

force/torque gradient, and central dead zone in all the degrees of freedom used.

The two hand controllers, modeled after the actual RWS joysticks, controlled the translation and

rotation of the arm's end effector. For the translational hand controller (THC, Figure 11 left) a 3DOF

linear joystick was custom-built from a 2DOF joystick, a linear potentiometer and a USB controller card.
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This THC can be moved in three different directions: up/down, right/left and front/back. The rotational

hand controller (RHC, Figure 11 right) was a commercial Logitech Extreme3DPro USB game controller

that had 3 DOF (right/left, front/back, and twist). The controllers had a constant force/torque gradient,

and small central dead zone in all the degrees of freedom used. On the THC, the force gradient was the

same for the up/down and left/right motion, and higher for the front/back motion. Similarly, on the RHC

it was the same for front/back (pitch) and right/left (roll), but lower for twist yaw).

Figure 11. Translational Hand Controller (left) and Rotational Hand Controller (right)

4.3. Environment configuration

Using the Vizard 3.0 VR development package (WorldViz, Santa Barbara, CA.), a simulated RMS

workspace was created that was similar to the BORIS training software used in General Robotics

Training7. It included a Unimation PUMA (Programmable Universal machine for Assembly)-class 6-

degree-of-freedom (DOF) robotic arm of similar dimension to the Shuttle RMS (Figure 12). Three of the

joints on the arm provided the translation of the end effector (the tool at the end of the arm used to

grab the payload), and other three joints rotated it. The software library RRG Kinematix v.4 (Robotics

Research Group, Univ. of Texas) was incorporated into a plug-in module for Vizard to calculate the

forward and inverse kinematics of the robot arm. The dynamics of the arm and other objects were not

modeled in this simulation.

Subjects used the THC to control the linear rate of translation (1.8 m/s max) of the end effector along

the three orthogonal axes of a fixed external control reference frame. (Table 2) Subjects used the RHC to

7 The main code for this simulation was written by Dr. Andrew M. Liu. Minor adaptations related to the specific
design of this experiment were implemented by M. Alejandra Menchaca-Brandan. The complete code is
documented in APPENDIX G.
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control the angular rates of the Euler angle rotations (180*/s max) that define the end effector

orientation. The RHC degrees of freedom were mapped to the Euler angles is shown in Table 3. In this

implementation of rotation control, pitch control (e.g. rotation about the X-axis of the control frame) is,
in fact, performed using the same external control reference frame as translation control. However,
because an Euler angle representation involves rotations about axes of a moving reference frame, the

subsequent Y- and Z-axis rotations are usually not aligned with the external control reference frame.

Table 2. Mapping of the THC joystick input on the end effector translation

THC Joystick motion End effector axis of translation
Left/right -X/+X
Up/down +Y/-Y

In/out +Z/-Z

Table 3. Mapping of the RHC joystick input on the end effector rotation

RHC Joystick motion Euler angle rotation axis
forward/backward X-axis

Left/right Z-axis
twist Y-axis

It should be noted that the simulation does not exactly replicate the actual RMS control modes, which is

typically in either an external or internal reference frame for both translation and rotation.

The base of the arm was mounted on the intersection of two perpendicular structural trusses, which
replaced the single fixed truss used in the preliminary experiment. These trusses served as obstacles and

provided additional environmental cues, promoting the use of perspective-taking to perform the task.

One end of one truss was colored differently (orange) than the rest (gray), in order to indicate the
forward direction of the control reference frame.9

8 If the X-axis rotation is zero, then y-axis rotation will be aligned with the external control frame. Similarly, if both

x- and y-axis rotation is zero, then Z-axis rotation is aligned with the external control frame

9 Before running the final experiment we tested three subjects on an environment where the trusses were all
colored differently and subjects were instructed to use the colors of the trusses to identify the orientation of the
control reference frame. We discovered, however, that the truss colors provided so much visual information about
the orientation of the control reference frame, that all of the subjects used mental rules to perform the task (e.g.,
"I knew that pushing the hand controller would always move the end effector along the blue truss") and none used
their perspective-taking ability. Moreover, none of them perceived any changes between camera configurations.
For the final experiment, we decided to remove most of the colors from the trusses, and leave a more discrete
visual indication of the control reference frame orientation. We also stopped instructing the subjects to use to
color of the truss as an orientating cue. We expected these final changes would help subjects to orient themselves,
without forcing them to use a specific manipulation strategy.
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Figure 12. Robot arm mounted on two large fixed trusses.
The base of the arm was 2.5 m" long and the forearm and upper arm, 4 m long.

The three virtual camera viewpoints of the environment (described in section 4.1. ) were displayed on

the three computer monitors of the MIT Remote Manipulation System Simulator. The viewpoints had a

field of view of 40.

4.4. Task

The preliminary study showed that mastering rotational hand controller skills may require considerably

more time than originally provided. As a consequence, we divided the experiment that originally

involved pickup and docking within the same trial, into two separate phases: pickup and docking. On

each pickup trial -which required mostly translation- subjects were instructed to manipulate the arm to

capture a payload dish by its front (yellow) face (Figure 13, left). Pickup happened automatically after

touching the dish with the end effector. During the docking trials -requiring both translation and

rotation of the end effector-, subjects had to translate a cargo module (already attached to the end

effector) towards an ISS node and assemble them by aligning both docking ports. Each of the docking

ports had a blue and a pink stripe, one on each side of the port, which had to be matched (in color)

during docking (Figure 13, center and right). As long as the port was visible, at least one of the stripes

was visible too. Subjects pressed the space bar when they considered that the module's docking port

10 Although the size of the arm was specified in meters, in this thesis we use "unit length" as the measure of

distance. 1 unit length = 1 m.
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was as accurately aligned with the node's port as possible (that is, coaxial and with the stripes on both

docking ports properly aligned, Figure 13). No feedback regarding time or accuracy was provided.

Figure 13. Pickup of the payload dish (left) and docking of the cargo module onto the ISS node (center and
right)

The initial position of the robot arm, as well as the position and orientation of the payload dish, cargo

module and ISS node changed between trials. As shown in Figure 14 the ideal trajectories from the point

of departure to the ideal final point were defined by the lines connecting the vertices of a cube centered

on the intersection of the structural trusses. Two-dimensional trajectories were selected from those

paths on the sidewalls of the cube, and the three-dimensional trajectories matched those paths

connecting opposite corners of it.

The payload dish and the ISS node were oriented in such way that the last part of each trial (grasping in

pickup phases, and docking in docking phases) had to be performed in a specific direction, as indicated

by the short arrows in Figure 14. For instance, if the surface of the payload dish was pointing parallel to

the +X direction, the end effector had to be moved in the -X direction in order to grasp the dish.

Similarly, if the node's docking port was facing down, the module had to be translated upwards to be

docked. Therefore, on each trial the target objects were oriented to allow one of the following four

orientations (Figure 14): up (+y, with respect to the observer's reference frame), down (-y), right (-x) or

left (+x).

The initial orientation of the cargo module was defined so that only one 90-degree rotation around an

external reference frame axis was needed to dock with the node for the right/left docking directions,

and an additional 45-degree rotation around another axis was needed for the up/down directions.

A given ideal trajectory was used in both the pickup and docking phases to allow comparison between

phases. These paths, as well as the orientation of the objects, were always aligned with the observer's

reference frame such that the paths looked the same regardless of the camera configurations. For

statistical analysis, this also eliminated the cross effects of path and configuration. All paths had the

same length.
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Figure 14. Trial paths (thick arrows) defining the starting and ending point of the arm's end effector. The
center of each cube is defined by the intersection of the two trusses (left). Trials can be two-dimensional (1-4)
or three-dimensional (5-8). The training paths are also shown (9-11). Short gray arrows indicate the direction

of the pickup/docking (±x, ±y). Paths are defined with respect to the display reference frame (the
arrangement of the objects looks the same in configurations A and C).

In the docking trials using two-dimensional paths, a semi-transparent vertical wall was placed in

alignment with one of the structural trusses to constrain the space within which to move the arm. This

was to reduce the large variance in path distances observed in the preliminary study. Subjects were

instructed to cross through the wall when manipulating the robot.

Figure 15. Two-dimensional path with semi-transparent wall
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Subjects were notified of a collision by a red message displayed on the top right corner of each display.

Collisions were defined as the intersection of any two objects in the environment, including the end

effector with other links of the robot arm. Only the contact between the cargo module and the node

was not considered a collision. A blue warning sign appeared on the screens when the robot arm passed

through a kinematic singularity, which sometimes resulted in losing control of the arm and having to

repeat the trial (this situation only happened twice in the experiment).

4.5. Task performance metrics

During each trial, the position and orientation of the end effector, and a collision indicator were

recorded at 60 Hz during pickup trials, and 30 Hz during docking trials. From these data, the following

metrics were calculated to assess the operator's performance. Some of the metrics were derived from

Akagi et al [27] who analyzed the correlation of various measures of robot arm operator performance,

and defined a set of key measures to be used as teleoperation performance metrics. A summary of the

metrics is presented in Table 4.

Table 4. Measures of performance for each phase. The third and fourth columns indicate which measure was
used to assess performance on each phase.

Measures of Description Pickup Docking
performance Phase Phase

Observation time Time between the initiation of the task and the first hand controller
(T-obs)" input ___

Task time (T task) Time required to complete the task between first and last hand X X
controller inputs

Confirmation time Time between the final hand controller input and the end of the X
(Tconf) trial

%motion Percent of Ttask during which the end effector was moving (active X X
time)

Axial time (Tax) Total time where the end effector was translating X X

Angular time (Tang) Total time where the end effector was rotating X X

Collision time (T coll) Total time during which a collision was detected X X

# of collisions (CollNum) Number of collisions per trial X X

Degree of inverse Distance travelled away from the target (payload dish or ISS node
motion (DIMx, DIMy, docking port) on each axis (world/control reference frame) X X
DIMz)II

Axial DOF input (DOFax) Average of simultaneous use of axial degrees of freedom (DOF) X X
I during T~task

1 Total time to complete a trial = Tobs + Ttask + Tconf
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(DOFax = 1 if the subject never moved on more than one standard
12axis at a time; DOFax = 3 if the subject moved on the three axes

every time throughout the task)

Average of simultaneous use of angular degrees of freedom (DOF)

Angular DOF input during T-task
(DOFang = 1 if the subject never rotated around more than one X X

(DOFang) standard axis3 at a time; DOFang = 3 if the subject rotated around
the three standard axes every time throughout the task)

%bimanual Percentage of active time in which both hand controllers were used X Xsimultaneously

Axial offset (Ax Offs) Radial distance between the axes of the two docking ports (cargo
-_ _ module and ISS node) (Figure 16)

Angular offset Angular separation between the axes of the two docking ports
(AngOffs) (Figure 16)

Roll offset (RollOffs) Angular separation between the lateral marks in the two docking
- ports (Figure 16)

Time to complete the task, observation and confirmation time (Ttask, T_obs, Tconf): For both pickup
and docking subtasks, the task time was defined as the time between the moment of the first

movement of the arm and its last. The period of time between beginning of the trial and the arm's first
movement was called observation time (Tobs), assuming that the subject used those seconds to

analyze (observe) the scene before reacting. Similarly (in docking trials only), the period of time between
the arm's last movement and the moment at which the subject decided to terminate the trial -by
pressing the space bar- was called confirmation time (Tconf). We assumed that this time was used to

confirm the accuracy of the docking. The total trial time was divided into these smaller components,
after the belief that each of these times provided different information on the subject's strategy to
compete a trial.

Axial and angular time (Tax, Tang): In each docking trial, two additional times were measured: the

time during which the subject was exclusively translating, axial time (Tax), and exclusively rotating,
angular time (Tang). These additional measurements were included in order to analyze the individual
parts of the docking task separately. In particular, comparing the time spent during parallel parts of the
two phases (pickup and docking) was of particular interest. The parallel times were Tax, the time of
linear motion during docking, and Ttask, the task time during pickup. This choice was influenced by the
fact that pickup requires almost no rotation. Therefore, the difference between Tax (docking) and
Ttask (pickup) is expected to reflect the intrinsic difference between pickup and docking on otherwise

comparable tasks.

12 Standard axes for translation are referenced to the control reference frame.
1 Standard axes for rotation are referenced to the end effector's local reference frame.
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Collision time and number of collisions (T_coll, CollNum): The total number of collisions per trial

(CollNum), and the total time spent in a collision condition (Tcoll) were measured. It was unknown

whether subjects would spend different times colliding (e.g., one subject could have collided ten times

within ten seconds, and another could have one single ten-second long collision), and thus both

measures were defined.

Percent of motion (%motion): This index of continuity in the motion of the robot arm corresponded to

the fraction of the time Ttask spent in motion (whether linear or rotational). A subject's style, related

to the continuity of his motion toward the target, was the fraction of the time that he spent moving as

opposed to pausing or thinking.

Axial and angular input of degrees of freedom (DOFax, DOFang): The number of axes along which the

arm was linearly moved at any one time was called axial input of degrees of freedom (DOFax). Similarly,

number of (standard) axes about which the arm was rotated at any one time was called angular input of

degrees of freedom (DOFang). These measures, adapted from Akagi et al [271, were intended to

characterize a subject's style for controlling the robot arm: a conservative subject would tend to

move/rotate about only one axis at a time, while a subject who was more confident of their actions or

more of a risk taker would move/rotate about multiple axes at a time. A change in control movements in

from one axis to two would indicate an increase in the subject's confidence to move within the

environment.

Percent of bimanual control (%bimanual): Subjects could use both controllers simultaneously when

operating the arm, in an effort to decrease the task time. The fraction of the task time (Ttask) spent in

bimanual control was called %bimanual. This measure would account for those subjects that might have

been moving along/about one single axis at a time, but with both controllers at the same time.

Degree of inverse motion (DIMx, DIMy, DIMz): This measure, initially proposed by Akagi et al. [31],

characterize the subject's efficiency of translation. Smaller values indicate less extraneous (and

hence,more efficient) robot arm movement. The degree of inverse motion in the direction of, say, the X

axis (DIMx) is defined as the linear distance traveled away from the target in the X direction during a

trial. Correspondingly, inverse motion in the Y and Z directions are DIMy and DIMz.

Docking offsets (Ax Offs, AngOffs, RollOffs): Accuracy of docking was measured by (1) axial offset

(AxOffs), or the radial distance between the cargo module and the ISS node docking ports; (2) angular

offset (AngOffs), or the angle between the docking ports' axes; and (3) roll offset (RollOffs), or the

angle between the docking stripes.
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Figure 16. Docking offsets:
Axial offset (AxOffs, left): radial distance between the docking ports

Angular offset (AngOffs, center): angle between the docking ports
and Roll offset (RollOffs, right): angular separation between the stripes on the docking ports

4.6. Spatial ability metrics

The metrics used to measure the subjects' spatial ability were the Cube Comparisons test (CC), the

Perspective-Taking Ability test (PTA), and the Purdue Spatial Visualization test: Visualization of Views

(PSVT:V). CC is a paper-and-pencil test designed to measure individual's mental rotation ability. These

tests are described in the Background section.

The CC test score was calculated by counting the number of correct answers minus incorrect answers.

The published PSVT:V test was untimed, however, a six-minute constraint was set for this experiment.

This constraint encouraged subjects to work quickly, utilizing PT skills rather than other non-PT

strategies. None of the subjects had time to solve more than 26 out of the 30 trials. The net corrected

score was the number of correct answers (-) one fourth of the number of incorrect answers, to

compensate for the estimated number of correct answers arrived at by random guess. (The original

scoring method does not account for random guesses.)

4.7. Subjects

The experimental protocol was reviewed and approved by MIT's institutional human subject

experimental review board. A total of 26 subjects (11 female, 14 male) was tested. One female subject

elected not to finish the last 8 trials, because of mild eye strain discomfort -she had forgotten her eye

drops. Their ages ranged from 22 to 34, and all except for three were or had been MIT students. The

other three subjects were professionals. Five subjects were left handed. The majority of the subjects

said they used the computer between 5 and 7 hours a day, and did not currently play videogames.

Seven of them had never had any experience with video games or computer games. They received

$10/hour compensation for their participation.
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4.8. Procedure

The experiment was divided into two sessions. During the first session (45 minutes on average), subjects

answered a questionnaire with general information and specific questions regarding their daily use of

the computer and their previous experience with video games, virtual reality software and game

controllers. Finally, they completed three spatial ability tests in the following order: Cube Comparisons

test (CC), Purdue Spatial Visualization Test: Visualization of Views (PSVT:V) test, and Perspective-Taking

Ability test (PTA). If the subjects had previously taken any of these tests as part of a previous MVL

experiment then their scores from the previous test were kept to avoid any effect of learning or
familiarity. They were not required to re-take these tests.

The second session (from 1.5h to 4h, 3h on average) focused on space teleoperation testing. Subjects

were introduced to the simulation using a 15-minute Power Point Presentation (theoretical training),

included as Appendix J. This presentation described the environment configuration, the kinematics of

the robot arm, the use of the hand controllers, the procedures to pickup the payload and dock the cargo

module onto the ISS node, the rules to follow (e.g., avoiding collisions and singularities, and remaining

within the work area), and the overall structure of the experiment. They were instructed to do the task

as fast and accurately as possible. During this training, they were given two 2-minute sessions to

practice the use of the translational and rotational hand controller, respectively.

To ensure that all subjects had a basic understanding of the tasks, they were asked to verbally repeat

the main rules to be followed throughout the experiment, and were reminded of those they could not

remember.

Each phase had 8 testing trials. These trials were balanced according to the dimensionality of the paths

(2D, 3D), the direction of the pickup and docking (up/down/right/left), and the vertical direction of

motion from initial to final point (up/down). The trial order was the same for both phases14.

Two groups of subjects were randomly selected, and the groups were balanced based on gender and CC

scores: both groups had the same number of males and females, and the mean CC scores were kept as

similar as possible (Group 1 = 20.25, Group 2 = 21.24). We chose CC test scores to balance the groups

because in the preliminary study CC provided the strongest effects and the test that has been validated

over a greater population of subjects. Each group performed the different camera configurations of the

experiment on a different sequence, to account for increase or decrease in performance due to learning

or fatigue effects, respectively. Group 1 followed the sequence of configurations A-B-C, whereas Group

2 performed the experiment using the configurations in the order A-C-B (Table 5).

14 Path order: 5 - 2 - 3 - 8 - 6 - 1 - 4 - 7. Training path order: 9 - 10 - 11. Sections with only one training trial
included path 9. For more detail on the paths, refer to Figure 14.
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Table 5 Experiment procedure. p = pickup, d = docking, tp/td = training pickup/docking

Training + Testing
Phase 1 2 3 4 5 6 7 8 9 10 11 12

Configuration (Group 1) A B C
Configuration (Group 2) A C
Section (phase) tp p td tp p td d tp p td d
Trials 3 8 1 1 8 0 8 1 8 8

Configuration A included three pickup and one docking practice trials. Configurations B and C involved
only one training trial in the pickup phase, to adapt to the new camera configuration. A total of 54 trials
were completed during the experiment.

Subjects took a 5-minute break between each section. During this time they talked to the experimenter
about their impressions of the recently finished part. Subjects were questioned verbally (e.g., "tell me

about your strategies", "how did you find the views?", "how did you feel your translation/rotation
movements?", "did you notice any difference with respect to the last sections?") The same questions

were asked to all subjects, and they were deliberately phrased to avoid providing hints that could affect

their performance in the forthcoming sections. These inter-session questions are listed in APPENDIX C.

At the end of the experiment, subjects completed a final written questionnaire to gather information

regarding the strategies they used to perform the different tasks, possible difficulties encountered while
using the controllers, and assess potential discomforts caused by the task.
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Chapter 5. Results

This chapter provides an overview of the statistical analysis of the performance data and the spatial

ability test scores. Then, each hypothesis (as listed in section 3.2. ) is addressed individually, dividing the

results by task phase (pickup or docking).

We analyzed the relationship between the tested measures of spatial ability and performance using

mixed regression modeling (Systat v.11). The fixed effects in the model were: camera configuration (A,

B, or C), trial path (1-8, see section 4.4. ), gender, group (1 for subject who completed the camera

configurations in the order A-B-C, and 2 for those who followed A-C-B), standardized age, previous

videogame experience, and the cross effect of group * camera configuration. Since we found no

correlation between the score on the CC test and either perspective-taking test score (PTA or PSVT:V),

we used two separate models to examine the effect of those test scores (either CC and PTA, or CC and

PSVT:V). Those test scores were included as covariates, each standardized (converted into a Z value)

over the subject sample. We also examined the cross effect of the corresponding perspective-taking test

(PTA or PSVT:V) with configuration. The only random effect was subject.

Table 6 List of independent (left) and dependent (right) variables used in the statistical analysis. Variables
marked with - were only used in the analysis of the docking Dhase.

15 The values obtained for this measure of performance were so low that it would not be analyzed.

37

Independent variables Type
PT score (PTA or PSVT:V) covariate
CC score covariate
Configuration * PT score category

A*PT,B*PT,C*PT
Configuration category

A, B, C
Group category

1,2
Gender category

Female, Male
Trial path category

1-8
Videogame Experience category

0/1
SetCam category

0/1
Configuration * Group covariate

A*1, B*1, C*1
A*2, B*2, C*2

Age covariate

Dependent Variables
T_task
T_ax ~
T_ang
T_obs
T_conf
T_coll
%motion
DOFax
DOFang
%bimanuals
DIMx
DIMy
DIMz
AxOffs~
Ang_Offs ~
RollOffs ~



Table 6 lists the independent and dependent variables used in the analysis. One regression model was

obtained for each phase (pickup or docking), combined with each dependent variable (10 for pickup, 16

for docking), for each PT tests, PTA and PSVT:V. A total of 52 regressions were obtained.

During the breaks between configurations we asked subjects to describe the location of the cameras:

Some subjects knew with precision where the cameras were located, and were even surprised at the

question ("of course I know where the cameras were"); in contrast, the other subjects were unable to

describe anything related to the camera location ("I don't know. Maybe up, maybe down", "I didn't

really pay attention", or even "understanding the camera locations would have required too much

workload, I didn't need to know it"). We thought that this added information might correlate with

performance, so we defined a category variable (SetCam: 0= no knowledge of camera locations, 1=

correct knowledge of camera locations) which we included in the model.

In our preliminary analyses we found no clear effect of the number of hours subjects used a computer or

of the number of hours they spend playing video or computer games. We did not include these as

independent variables in the final analysis. We had few left-handed subjects, all male, and for that

reason did not include handedness in our model.

To conform to the regression model assumptions of comparable variance and normal distribution of the

residuals, we analyzed the logarithms of the time and accuracy data, not the original numbers

themselves. The %motion and DOF values (i.e. DOFax, DOFang), were treated after an arcsin(sqrt(),

transformation, since the data ranges were intrinsically constrained.

Four performance metrics, collision time (Tcoll), multiaxial linear motion (DOFax), and multiaxial

rotation (DOFang) were not normally distributed and had to be analyzed separately. The analysis was

done instead with the average values for each phase (pickup or docking) within each configuration (6

data points per subject). The number of collisions (CollNum) was not included as a factor in the model
because it was strongly correlated with the collision time (R = 0.859).

The analysis included all the measurements taken for 24 subjects -all our subjects except two. Subject

29 was removed because his test scores and performance were very different from and uncharacteristic

of the pattern seen in the other subjects'7 .The data corresponding to configuration A of subject 15 was

also removed because he did not perform the same experiment as the others: he reported not

understanding the instructions and treating those test trials as training trials.

16 A summary of all the effects found in the several mixed regressions can be viewed in APPENDIX H.
17 The subject's scores on the three tests were the highest among the subjects (his scores on PTA and PSVT:V were
the highest we have recorded in the laboratory). He finished the test in 1 hour, half the time of the next fastest
subject, and his accuracy was the best of any.
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Since the PTA test has been validated among a larger pool of subjects, we present the full results of the

mixed regression model only for PTA, and for brevity, not for PSVT:V. We describe the PSVT:V regression

model results only that illustrate the difference between the two tests on predicting task performance.

The complete set of results for both tests is provided in 0.

5.1. Overview of spatial ability test scores

The descriptive statistics of the spatial ability test scores are presented in Table 7.

Table 7 Descriptive statistics of spatial ability test scores

Test Mean (Median) SD Max Min Male Mean Female Mean

PTA 19.97 (21) 7.79 32 7 24.0 19.5

PSVT:V 21.42 (21) 4.52 29 8.5 16.0 11.4

CC 13.60 (13.5) 4.81 21 1.25 20.1 21.7

The PTA scores of the subjects in our sample were distributed roughly normally, but the other two test

scores, for PSVT:V and CC, had nearly uniform distributions. There was no significant correlation

between CC scores and either perspective-taking test, PSVT:V (Figure 17a) and PTA (Figure 17b),
although a previous experiment in our laboratory"' found such a correlation between PTA and CC (R =

0.0.648). We did find, however, that PTA and PSVT:V were significantly correlated (R = 0.577) among our

subjects (Figure 17). The majority of our subjects reported using the appropriate mental strategy used

for each spatial test. 19

18 Hirofumi Aoki, personal communication.

19 For the CC test, the majority of our subjects visualized rotations of the cubes. They did not use other strategies
as imagining taking a particular perspective or using simplifying formal rules that did not require the use of spatial
abilities, as mentioned by Just and Carpenter in [16].
For the PTA test, most subjects used perspective-taking tactics. Some reported using mental rotation of arrows as
described by Hegarty [13], and others used other strategies that did not require spatial ability by predicting by
predicting the region in which the answer would fall in order to reduce the response time.
Finally, most of the subjects approached the PSVT:V test by taking the designated perspective. The few who
attempted to use mental rotations (either by rotating the glass cube and comparing it to the multiple choices, or
rotating each of the multiple choices into the desired position) shortly realized that their strategy was time-
consuming and soon switched to perspective-taking. One subject, who had the lowest PSVT:V score, reported that
he could not understand which strategy to use to find the right answer. His PTA score, however, was close to the
mean.
These observations on strategies summarize the experimenter's impressions based on discussions with most, but
not all subjects.
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On both perspective-taking ability tests (PTA and PSVT:V) males subject outperformed females by a

small difference. On the CC test, however, females had a slightly (non-significant) higher mean score.

While the scores for male subjects repeat those reported by Ekstrom et al. [101, those for females

subjects are twice as high. This probably originates due to the fact that most female subjects were MIT

engineering students, who arguably were preselected for spatial skills.
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Figure 17. Correlation between the spatial ability tests:
a) PSVT:V vs. CC, b) PTA vs. CC, c) PSVT:V vs. PTA
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5.2. Effect of perspective-taking ability
5.2.1 Pickup phase

Figure 18 and Figure 19 show the trends of the most relevant pickup performance metrics, between

configurations. Performance is grouped into high and low PTA and PSVT:V score groups 2 0 divided by the

sample mean. (See Table 7)
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Figure 18. Effect of PTA and PSVT:V test scores on pickup performance metrics, by configuration (PART I).
Dotted lines correspond to high scorers and continuous lines to low scorers. The dependent variables for

which a significant effect of score was found are framed in double lines. The dependent variables represented
in pairs (PTA, PSVT:V) are, from left to right, and top to bottom:

a) task time (T_task), b) observation time (T-obs),c) %motion, d) collision time (Tcoll),

The Subject Data table in 0 lists which subjects were in the high and low groups. The statistical analysis included
the test scores as covariates in the model. Because the mixed regression model separates out the effects of other
independent variables, while plots show group averages that may include effects from other factors, there may be
slight inconsistencies between the plot and the full model.
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Figure 19. Effect of PTA and PSVT:V test scores on pickup performance metrics, by configuration (PART
II). Dotted lines correspond to high scorers and continuous lines to low scorers. The dependent variables for
which a significant effect of score was found are framed in double lines. The dependent variables represented

in pairs (PTA, PSVT:V) are, from left to right, and top to bottom:
a) average number of axes of simultaneous translation (DOFax, value range 1-3), b) average number of axes

of simultaneous rotation (DOFang, value range 1-3),
c, d, e) degree of inverse motion along the X, Z and Y axes (DIMx, DIMz, DIMy)

High and low perspective-takers show consistent differences in performance: high scorers (on either

test) had a higher efficiency in horizontal and vertical motion (low DIMx, DIMy, DIMz), and moved less
continuously (low %motion) than low scorers. High PSVT:V scorers translated along fewer axes at any
one time than lower scorers (low DOFax), and high PTA scorers also rotated about fewer axes at a time
than low scorers (low DOFang), but not significantly.
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Table 8 shows the size of these effects, and compares them to the mean value of the dependent

variable for pickup trials. Some of the differences between high and low scorers are consistent but very

small. In %motion high scorers were only a few units below low scorers. Similarly, high scorers used axial

degrees of freedom to translate (DOFax) slightly more than low scorers did. The differences in degree of

inverse motion between high and low scorers varied from one tenth to one third of the mean value, and

were about twice the diameter of the payload dish (0.3 of a unit.)

Table 8. Magnitude of the effect of the two different levels (high/low) of score (PTA or PSVT:V) and their
mean, for the performance measures of pickup.

Effect of configuration

Configuration B - wider angular separation between cameras

High PTA scorers had shorter collision times than low scorers in configuration B (p = 0.005), but this

difference is small, because only a few collisions were observed in pickup.

Contrary to what we expected, we did not find significant differences in task performance between high

and low PSVT:V scorers in this configuration.

Configuration C - control-display reference frame misalignment

High scorers completed the task about 4 seconds faster than low and the corresponding cross-effects

are significant (PTA, p = 0.037; PSVT:V. p = 0.004). Those cross-effects, however, tend to cancel the
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PTA PSVT:V
Variable Mean (p-value) (p-value)

T_task (s) 61.34

T_obs (s) 2.15

T_coll (s) 0.48

%motion 63.55 -3.22 -3.02
(0.046)

DOFax (axes) 1.16 -0.04
(0.001)

DOFang (axes) 2.17

DIMx (units of length) 5.65 -0.70 -.031

DIMz (units of length) 2.92 -0.57 -0.67
(0.005) (0.047)

DIMy (units of length) 2.26 -0.83 -0.72

_ _ _ (0.001)



corresponding main effects. We conclude that they are small and have no major impact on our

hypotheses.

Although Figure 18c suggests that low PTA scorers had greater amounts of inverse motion along all

three axes (DIMx, DIMy, DIMz) in configuration C, there was no significant cross effect of test score and

configuration, for those variables.

5.2.2 Docking phase

Figure 21 and Figure 21 show the results on the performance metrics in docking phase, for high and low

PTA scorers, by configuration.
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Figure 20. Effect of PTA and PSVT:V test scores on docking performance metrics, per configuration
(PART I). Dotted lines correspond to high scorers and continuous lines to lower scorers. In a frame are those

dependent variables where a significant effect of score was found. The dependent variables represented in
pairs (PTA, PSVT:V) are, from left to right, from top to bottom: a) task time (T_task), b) observation time

(Tobs), c) confirmation time (T-conf), d) collision time (Tcoll), e) %motion
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Figure 21. Effect of PTA and PSVT:V test scores on docking performance metrics, per configuration (PART
II). Dotted lines correspond to high scorers and continuous lines to lower scorers. In a frame are those

dependent variables where a significant effect of score was found. The dependent variables represented in
pairs (PTA, PSVT:V) are, from left to right, from top to bottom:

a) number of axes of simultaneous translation (DOFax, value range 1-3),
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As in pickup, in docking we find a significant effect of perspective-taking test scores on performance.

Results indicate that high scorers performed the task almost 30 seconds faster (low T task), and had

about one fourth shorter collision times than low scorers. From this task time, their translation time

(Tax) was about 3s shorter, but their angular time (Tang) was not different from that of low scorers. In

addition, high PTA scorers required 1 second (significantly) less to observe the scene (Tobs).

High scorers showed higher degrees of inverse motion in horizontal and vertical motion (low DIMx,
DIMy, DIMz), translating less than low scorers to go from the initial point of the end effector to its last.

These differences are of about the same magnitude as that on pickup. They also showed a non-

significant trend toward higher angular and roll accuracy in docking (AngOffs, RollOffs).

To a small degree, high PTA scorers rotated about fewer axes at a time (low DOFang) than lower scorers,
while high PSVT:V scorers translated along fewer axes at a time (low DOFax).

The size of these effects and their significance are shown in Table 9.

Table 9. Magnitude of the effect of the two different levels (high/low) of score (PTA or PSVT:V) and their
mean, for the performance measures of docking
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Variable Mean PTA PSVT:V

T-task (s) 184.96 -29.82
__________________ _ _____ (0.019) _ _ _ _

Tobs (s) 7.38 -1.27

T-coll (s) 3.04 -1.04
(0.003)

%motion 52.72
DOFax (axes) 1.16 -0.04

_________________ ___ ___(0.025)

DOFang (axes) 2.52 -0.09
(0.002)

DIMx (units length) 5.24 -0.63 -0.38
(0.023)

DIMz (units length) 3.00 -0.52 -0.57
(0.045)

DIMy (units length) 2.62 -0.54 -0.70

T-ax (s) 51.20 -3.32
(0.000)

T-ang (s) 37.30

AxOffs (units length) 0.03

AngOffs (degrees) 3.36 -0.08 -0.56

RollOffs (degrees) 10.68 -0.70 -0.56
(0.045)

T-conf (s) 5.36 -0.84
____________________(0.019) _ _ _ _ _



Effect of configuration

Configuration B - wider angular separation between cameras

When the cameras had wider angular separations, high PSVT:V scorers needed significantly more time

to confirm the accuracy of the docking (Tconf, p = 0.047) than lower scorers -a small effect. The results

are consistent with the (non-significant) trend that high PSVT:V scorers had higher accuracy when

moving along X and Y (low DIMx, DIMy) than low scorers did.

There were no significant effects of PTA score on any dependent variable for configuration B.

Configuration C - control-display referenceframe misalignment

High perspective-taking scorers (both tests) required shorter (but not significantly shorter) confirmation

times than low scorers, when there was a misalignment between the control and display reference

frames.

5.2.3 Interpretation of perspective taking results

Our hypothesis predicted that subjects with high perspective-taking test scores would perform better in

teleoperation subtasks such as pickup and docking. In both tasks we expected high scorers to move
more accurately and continuously, with higher multi-axial translation and fewer collisions, than low

scorers. We also expected them to complete the task faster.

As predicted, high scorers (in both tests) moved more accurately than low scorers in pickup and in

docking. Their degree of inverse motion -the total integrated distance-traveled away from the final

target along each axis- was smaller in all three configurations. We also found that high scorers (PTA)

collided significantly less and performed the task faster than low scorers in the docking phase. (The

number of collisions in the pickup phase was too small to indicate any large effect of score.)

We were surprised by the results found for %motion and multi-axial translation (DOFax). Contrary to

what we expected, we found that high scorers consistently moved with less continuity than low scorers

in the pickup phase, even if this difference was small. This means that they paused more often

throughout the task. We also found that high PSVT:V scorers translated along fewer axes at a time than

low scorers in both tasks, while high PTA scorers rotated about fewer axes at a time than low (in docking

only). If it is true that better performers tend to use fewer degrees of freedom to translate and rotate, it

would suggest that NASA may wish to review its performance evaluation metric of multi-axial motion.

NASA encourages astronauts to move along and rotate about multiple axes, but if the present results

are correct, that policy may reduce performance, at least during the initial phase of training studied in

this experiment.
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The results above suggest that good perspective-takers do, as our hypothesis suggested, perform better

on pickup and docking tasks than poor perspective-takers, independent of the location of the cameras.

Their ability to integrate the camera views more efficiently may allow them to plan their desired

trajectory, and foresee potential collisions. Their criterion for selecting a trajectory of motion, however,

apparently was not based on the shortest distance to travel, but on the easiest motion to perform: along

one axis at a time. It is likely that this strategy made it easier to understand and predict the motion of

the arm, and this enabled them to estimate adequate clearances in a timely manner, and avoid

collisions.

As stated in the hypothesis, we expected the effect of high PSVT:V score to be particularly strong when

the separation of the camera views was large (i.e., when the task was especially challenging in the sense

of 3D perspective-taking). We did not find evidence to support this prediction.

We also predicted that subjects with higher PTA scores would perform better when there was a

misalignment between the control and display reference frames. In configuration C, high PTA scorers

performed the pickup task significantly faster and had non-significantly lower inverse motion than low

scorers. In the absence of stronger evidence, we cannot conclude that the misalignment between the

reference frames had different effects on the performance of good and poor perspective-takers, though

such effects were seen in the preliminary study.

There are two possible explanations for the lack of significant cross effects between PT scores (PSVT:V

and PTA) and configuration (B and C, respectively): 1) Test scores do not reliably predict an effect on the

subjects' performance in pickup and docking tasks, or 2) Our experiment did not challenge the subjects'

perspective-taking ability enough to show an effect of score on performance. We found significant main

effects of PTA score on several dependent variables which suggests that it may be a good predictor of

performance on our tasks, and that those tasks challenge the abilities measured by PTA. A more

challenging experiment that includes a larger misalignment (say, of 135* rather than 90*) might help

resolve this uncertainty PTA measures PT ability only in azimuth. However, we found few significant

main effects of PSVT:V. This suggests that it may not be the predictive measure of 3D perspective-taking

performance we had hoped for.
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5.3. Effect of spatial visualizations
5.3.1 Pickup phase

The CC test provided an estimate of a subject's

pickup performance metrics as between camera

scorers is shown separately.
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Figure 22. Effect of CC test score on pickup performance metrics, by configuration. Dotted lines correspond
to high scorers and continuous lines to lower scorers. The dependent variables for which a significant effect of
score was found are framed in double lines. The dependent variables represented are, from left to right, from

top to bottom: a) task time (T_task), b) angular time (T_ang), c) collision time (T-coll),
d) number of axes of simultaneous rotation (DOFang, value range 1-3)

The only significant effect of CC score on any pickup performance metric was on DOFang, and its

magnitude was small: High CC scorers rotated simultaneously about fewer axes than low scorers

(DOFang, mean = 2.17, effect (between high and low scorers) = 0.06, p = 0.016).
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5.3.2 Docking phase

Figure 21 shows the variation in selected docking performance metrics as between

configurations. The performance of high and low CC scorers is shown separately.

I I I

CC Score

Low
High

A B C
Configuration

A B
Configuration

1 1
0 - CC Score

9__ LOW

8- -- High
7-

0 - -
5-

4-

3-

2

A B C
Configuration

7

6

5

4

ao2

1

0 1 1

0- CC Score
Low

0- High

0-

0-

0-
0 - -

0 I-

A B C
Configuration

Figure 23. Effect of CC test score on docking performance metrics, by configuration. Dotted lines correspond
to high scorers and continuous lines to lower scorers. The dependent variables for which a significant effect of
score was found are framed in double lines. The dependent variables represented are, from left to right, from

top to bottom: a) task time (T_task), b) angular time (T_ang),
c) number of axes of simultaneous rotation (DOFang, value range 1-3),

d, e, f) axial, angular and roll docking offsets (AxOffs, AngOffs, RollOffs)

High CC scorers had a significantly higher docking accuracy than low scorers. The differences between

their angular and roll offsets (Ang_Offs, Roll_Offs) were of about one fifth of the mean values. There is a

parallel but non-significant effect of CC score on axial docking accuracy (AxOffs).

We found a small but significant effect of CC score on angular time (Tang) -high scorers used about 8%

more time to rotate than low.
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Table 10. Magnitude of the effect of the two different levels (high/low) of CC score and their mean, for the
performance measures of docking

5.3.3 Interpretation of CC test results

We expected CC test score to have a significant effect on the measurements of rotation performance of

the end effector. We hypothesized that subjects with higher CC scores would rotate the end effector

about more axes simultaneously (DOFang, pickup and docking), that they would have a higher

orientation docking accuracy (i.e., angular and roll offsets), and that they would spend less time in

rotation, throughout the docking task. Our results do not support that hypothesis completely.

As predicted, subjects with high CC scores had significantly higher accuracy in docking. Their angular and

roll offsets were smaller than those of low scorers.

Contrary to our hypothesis, high CC scorers rotated about fewer axes at any time (DOFang) during the

pickup trials. This tendency of high CC scorers to be slightly more conservative in their motion resembles

that found for PTA and PSVT:V scores. It suggests that a better understanding of the controls does not

necessarily lead to multi-axial motion, but to more conservative movements. This strategy probably

allows better scorers to do the task more efficiently, and with a lower mental workload.

That failure of CC score to predict performance suggests that skill at spatial visualizations and mental

rotation may not be a good predictor of teleoperation performance. Even if operators were good

visualizers or mental rotators, they would still need the perspective-taking ability that would allow them

to integrate the camera views efficiently. The ability may be necessary, but it may not be sufficient to

support an outstanding operator.
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Variable Mean CC

T-task (s) 184.96 14.81

DOFang (axes) 2.52 0.01

Tang (s) 37.30 +3.44
(0.016)

AxOffs (units length) 0.03 -0.005

AngOffs (degrees) 3.36 -0.66
(0.002)

RollOffs (degrees) 10.68 -2.46
1 (<0.0005)



5.4. Effect of gender differences
5.4.1 Pickup Phase

Figure 24 shows (only) the significant effects of gender on performance in pickup trials, by configuration.
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Figure 24. Significant gender differences on pickup performance metrics, by configuration. Dotted lines are
for male, and continuous lines for female subjects. The dependent variables represented are, from left to righ:

a) task time (T~jask), b, c) number of axes for simultaneous translation and rotation (DOFax, DOFang),
d) degree of inverse motion along the X axis (DIMx)

Women required significantly longer times (almost 30%) than men to complete the pickup trials

(Ttask). They translated along fewer axes at any one time (DOFax), but rotated about more axes at any

given time (DOFang). As shown in Table 11, both differences are small.

Women moved less efficiently along the X axis, as measured by X inverse motion, DIMx. Although this

difference is not significant, it is greater than the any of the significant differences between high and low

tests scorers.
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Table 11. Magnitude of the effect of gender and their mean,
for the performance measures of pickup

5.4.2 Docking phase

Figure 25 shows the effects of gender on some

configuration.
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Figure 25. Gender differences on docking performance metrics, by configuration. The dependent variables
for which a significant effect of gender was found are framed in double lines. Dotted lines are for male, and

continuous lines for female subjects. The dependent variables represented are, from left to right: a) task time
(T_task), b) axial time (Tax), c, d) angular and roll docking offsets (AngOffs, RollOffs)
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Variable Mean Gender

T_task (s) 61.34 17.12
(0.001)

DOFax (axes) 1.16 0.03
(0.052)

DOFang (axes) 2.17 -0.11
(0.012)

DIMx (units length) 5.65 1.00
(0.050)

Gender
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As in pickup, in docking women needed about 11% more time than male subjects to move axially (Tax).

They also had lower orientation docking accuracy (AngOffs; RollOffs), as shown in Table 12.

Table 12. Magnitude of the significant effect of gender and their mean,
for the performance measures of pickup

5.4.3 Interpretation of gender effects

According to our hypothesis, we expected to find an effect of gender on performance in pickup and in

docking. There was, indeed, a significant effect of gender in some performance measures. Except for

T_task (pickup) and T-ax (docking), which can be considered as similar variables, no other dependent

variable showed significant effects of gender on both pickup and docking.

The performance of female subjects is consistent with their lower scores on the spatial tests and with

several studies (see section 2.2.2) in which women have shown poorer spatial performance - they were

slower in translation (Tax), and had lower accuracy in docking (Ang_Offs, RollOffs). There is one minor

exception to this trend. The number of axes along which female subjects translated (DOFax) in pickup

was significantly higher than that of male subjects, when we would have expected it to be lower (as it is

for other low scorers). The size of the effect, however, is small, and given the many dependent variables

we have studied, we would expect to encounter an occasional false positive.

5.5. Other effects
5.5.1 Age

We saw few significant effects of age on the measures of performance. In pickup, younger subjects had

significantly higher inverse motion along the Z axis (DIMz, p=0.011). In docking, they needed less

observation time (Tobs, p = 0.003), and had lower roll offset (RollOffs, p = 0.036). These observations,
apart from the hypotheses for which the experiment was designed, suggest that younger subjects may

have traded accuracy and attention for speed. An experiment designed to better control speed/accuracy

tradeoffs and to test for effects of age could contribute to further study of these differences.
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Variable Mean Gender

T-ax (s) 51.20 6.03
(0.050)

Ang_Offs (degrees) 3.36 1.25
(0.001)

RollOffs (degrees) 10.68 3.20
_______________(0.008)



5.5.2 Understanding of camera location (SetCam)

As mentioned in the first part of this chapter, we found a clear division between those subjects who

were able to describe the location of the cameras (SetCam = 1) and those who were not (SetCam = 0).

We did not find a significant correlation between subjects' values of SetCam and their spatial ability

scores.

We did find some significant effects of SetCam on the performance metrics. In pickup, subjects

(SetCam=1) who were able to describe the positions of the cameras showed higher inverse motion along

the X axis (DIMx, p = 0.001), compared to those who could not. In docking, they required significantly

longer times (Tconf, p = 0.043) to confirm the accuracy of their docking.

These effects are small, sparse, and inconsistent across phases. It is therefore difficult to draw any

conclusions about how this knowledge relates to task performance. The metric may reflect whether a

subject was able to integrate the different sources of information into their representation of the

environment, but whether this has any impact on task performance is unknown.

5.5.3 Past videogame experience

We found significant effects of past videogame experience on the performance measures of the docking

phase. Those subjects who reported that they had habitually played videogames at some time needed

significantly less time (4.5 seconds) to rotate to the desired position (Tang, p= 0.001) than those who

had never that habit. They also rotated about fewer axes at a time (DOFang, p = 0.042).

These results indicate that subjects with previous videogame experience might have felt more

comfortable in rotation than other subjects. It could also be that they had more experience with

joysticks and were, therefore, more fluent in the use of the rotational hand controller. Again, subjects

with more experience tend to adopt a control strategy of using fewer degrees of freedom for rotation.
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Chapter 6. Discussion

6.1. Strategies of motion

After each configuration, we asked our subjects about their strategies to translate and rotate the robot

arm. All reported understanding translation during the first set of practice trials. Three did not

immediately understand that the motion of the arm was under end-effector control, and kept trying to

operate the arm by moving each of the joints with the translational hand controller. We clarified that

issue before the testing phase started. The translation of the arm in configurations A and B was

generally described as "easy" and "intuitive". In configuration C, some subjects noticed -but could not

explain- the misalignment between the display and reference frames: They reported that "the arm was

doing something weird". Some resorted to trial-and-error strategies to move right/left and front/back

in response to their not being able to understand the translation motion, but did not consider it a

challenge.

In contrast, subjects found rotation control very difficult to understand. The majority (as opposed to

"some" in translation) used trial-and-error strategies to operate the rotational hand controller. They

explained that in order to rotate the cargo module into the desired position they had to activate the

hand controller randomly until the achieved orientation by accident. There are two explanations for this

confusion. First, the model of joystick we used was hard to rotate about only one axis at a time -

subjects were likely, for example, when trying to roll the stick, to yaw it involuntarily at the same time.

Second,the end effector was rotated about a moving reference frame (see section 4.3. ), which was not

clearly explained to the subjects (see APPENDIX J). Consequently, the number of axes about which

subjects rotated at the same time (DOFang) was consistent and very high throughout the experiment

(close to three, its highest possible value).

Inverse motion

The degree of inverse motion was considerably higher in the X direction, DIMx, than in the Y or Z

directions, DIMy or DIMz. Since the paths were designed and balanced to have similar motion along all

three axes on each phase, the higher value of DIMx suggests that we measured something beyond

inverse motion. Subjects may have felt more comfortable in moving, exploring, in the xy plane (display

frame of reference), and more readily in the horizontal (X) than in the vertical (Y) direction. This would

explain why, in configuration C (where the X and Z axes are visually exchanged), the inverse motion

along Z decreased significantly while along X it increased. Although DIMx likely measured something

beyond inverse motion, we find that these variables (DIMx, DIMy, DIMz) do measure the efficiency of

the subject's motion.
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6.2. Accuracy

We used three measures of docking accuracy: the radial distance between the centers of the docking

ports (AxOffs), the angular distance between their axes (AngOffs), and their roll misalignment

(Roll-Offs) -the angular distance between the stripes on the docking ports. Although we expected these

quantities to measure the subject's ability to integrate the different camera views to position the cargo

module, we found that most of these offsets were very small for most subjects -the mean axial offset

was only about 10% of the diameter of the docking port, and the mean angular offset was only about 3

degrees. These errors might even have been at the very limit of what subjects could perceive as an

offset. This was likely due to our insistence during the training that subjects dock as accurately as

possible. Consequently, subjects spent much of their time ensuring a "perfect" docking. On a scale from

1 to 5 ("not important" to "very important"), most of our subjects treated each of the aspects of docking

as "very important". As small as they were, for all subjects, there were significant differences among

subjects and they correlated with CC scores. In the future, by limiting the time a subject may spend on

a task, we may be able to measure the trade-off between time and docking accuracy; Defining a

"accurate docking" range would be a good way to keep subjects from investing excessive time on a

perfect docking when a near-perfect docking would be fully acceptable.

6.3. Use of multiple displays

After completing each configuration, we asked our subjects if they had a preferred camera view (during

that configuration) and how many cameras they had used, simultaneously. Although their answers may

not have been consistent with their actions, there were some trends worth noting:

Table 13. The combinations of camera(s) subjects preferred for each configuration.
Cameras 1, 2 and 3 correspond to the left, center and right screens, respectively. Subjects preferred the

combination of cameras 1 and 3 (underlined).

Camera(s) Config A Config B Config C
1 only 2 2 3
2 only 1
3 only 3 1 1
1&2 1 2
1&3 9 5 7
2&3 1 1
1, 2 and 3 2 5 7
Not stated 8 9 5
Total 25 25 25

As Table 13 shows, the most commonly used combination of cameras, over all configurations, was 1 and

3 together. Almost no subjects used camera 2, either individually or in combination with other cameras.
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This may be because camera 2's position was (Figure 8) at the bottom, beneath the XY control plane,
and because understanding a scene may harder when it was viewed from below. In contrast, as shown

in Fig. 8, cameras 1 and 3 had approximately the same elevation. One explanation for the preference for

cameras 1 and 3 may be found in recent reports [32] of tests on imagined rotations. They are faster to

perform about the body's principal axis than about the roll axis. The rotation that would carry camera 1

to camera 2 (which is below it) is a roll; the rotation that would carry it to camera 3 (which is

approximately at the same altitude) is a yaw--about the body's principal axis. Therefore, transitions

between the use of cameras 1 and 3 are, from that result, more convenient than those between

cameras l and 2 or cameras 3 and 2 (which is also a roll). This may contribute to the evident preference

observed in our subjects.

Figure 26. Number of cameras used simultaneously for each configuration, as reported by
the 25 subjects after completing each configuration.

As shown in Figure 26, the number of subjects who reported using only one camera at any one time

decreased considerably from configuration A to B and C, whereas the number using two cameras

simultaneously increased, correspondingly. We can interpret this result in two ways: 1) Subjects learned

how to use the cameras efficiently only after practicing on configuration A (which was presented first),
or 2) Subjects used more cameras simultaneously to navigate the more difficult configurations.
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Chapter 7. Conclusions

Preliminary findings suggest that spatial ability strongly influences performance on some of the

significant subtasks of space teleoperation. The relevant components of spatial ability are perspective-
taking and spatial visualization. To confirm preliminary findings, we measured the performance of 25
naive subjects who used translation and rotation hand controllers and 3 environmentally fixed camera
views to control a 2 boom, 6 degree-of-freedom simulated arm while performing pickup and docking
subtasks. To challenge the subjects' spatial ability we tested subjects on narrow- and wide- separations

between camera views. We also introduced misalignments between the translation control and the
display reference frames to explore the robustness of their performance.

We used the Perspective-Taking Ability test (PTA) and the Purdue Spatial Visualizations Test:
Visualization of Views (PSVT:V) to measure perspective-taking ability, and the Cube Comparisons test
(CC) to asses spatial visualization ability.

Our study found that scores on the PTA, Perspective-Taking Ability test, predict the quality of
performance in subtasks of teleoperation. The PSVT:V scores are less reliable predictors.

High perspective-taking scorers performed the pickup task with significantly higher efficiency (lower

inverse motion) than low scorers, but not necessarily faster. In the docking task, however, they

performed significantly faster (TTask was about 30s less out of 180s, p=0.019) and more accurately

(horizontal inverse motion in x, z: DIMx, DIMz), respectively, they collided with obstacles less (i.e., spent
fewer seconds in collisions), 1 second less out of 3 seconds of average collision time (p=0.003) , and had

higher docking accuracy (RollOffset, 0.7 degrees less out of 10.7 degrees, p=0.045).

In both tasks high perspective-taking (PSVT:V) scorers moved along only one axis at a time. This is an

interesting result since during robotics training, NASA encourages astronauts to move along several axes
at once, to shorten their time to target. Our best-performing subjects, however, moved along single

axes, successively, for both pickup and docking tasks.

The experimental results do not allow us to conclude that subjects with higher PTA scores will perform

better when the misalignment between the control and display reference frames is as large as 90
degrees. (Testing at larger misalignment angles may be necessary to demonstrate this effect).

In the docking task, high spatial visualization (CC) scorers showed significantly higher accuracy
(Roll Offset=-2.46 out of 107 degrees, z=3.49, p< 0.0005; AngOffset =-0.66 out of 3.3 degrees total, z=
3.09, p=0.002)-as we expected- but rotated about fewer axes at any one time, on the average-which

we did not expect. Presumably, the reasons for this and for the corresponding result on translation
cited above are the same.
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The study found effects of gender on performance. On average, females required longer times to
complete the tasks, and had lower accuracy in the attachment, an effect partially explained by spatial

ability scores. There were no significant effects beyond those explained by differences in spatial ability
as measured by PTA and CC.

We conclude that PTA scores are useful for predicting the efficiency with which a trainee can, after two
hours of training in virtual reality, and avoid collisions of the robot with obstacles. Our findings suggest
that strategies used to solve the PTA test are similar to those used to understand the visual feedback
provided by fixed displays, in teleoperation tasks.

These findings can also be considered when assigning astronauts to R1 and RI roles on a teleoperations
team: The abilities measured correspond to performances that weigh differently on operators RI and
R2. PTA score can, therefore, help us prepare personnel to make best use of their tested abilities,
through customized, targeted training. The results of this study can help predict which areas of
teleoperation will benefit most from the investment of training time with a particular operator.

Although this study focused on the performance of subjects during their first two hours of teleoperation
experience, it defines a path for future research and relevant measures of teleoperation performance.
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Chapter 8. Suggestions for future work

This experiment, along with the preliminary study, is a first attempt to understand the underlying effects

of individual spatial ability on space teleoperation performance. Many questions, however, remain

unsolved, and future experiments should provide a broader understanding of these effects.

- To answer the question of whether perspective-taking ability has a greater effect on performance for

large misalignments between the control and display reference frame, misalignments greater than 90"

should be studied.

- This experiment did not address the effect of spatial ability on operator selection of optimal sets of

camera views. This ability is heavily weighted in astronaut teleoperation performance evaluations, and

should be looked at in more detail. The feature of selecting camera views is already implemented in our
virtual reality simulation.

- Our study was limited to fixed camera views; however, a camera mounted on the end effector is

constantly used by astronauts. The use of this camera requires to integrate both fix and moving images,

which might be a different challenge to perspective-taking ability of the subjects, and might even need

greater mental rotation ability - a question that should be answered. Combining the use of this camera

with fixed views would allow to define the effects of spatial ability on the performance of tasks that are

closer to real teleoperations.

- Although we measured the number of collisions, we did not specifically assess the subjects' ability to

foresee a proper clearance/collision. This aspect of performance is also heavily weighted by NASA
trainers. It would be interesting to design an experiment to test the correlation between spatial ability

and the subjects' ability to use different camera views to estimate the clearance of an object and an

obstacle.

The following modifications to our procedure could also provide valuable improvements:

" Define end effector rotation with respect to the "external" reference frame: In this and the

preliminary experiment, rotation was referenced to a coordinate frame mounted on the end

effector, a movable frame. Actual RMS operations in "external" mode are referenced to the

external frame, not the end effector frame.

* Limit the task time: Since our experiment was not timed, the effect of fatigue was stronger on

those who required longer times to finish, probably affecting their performance. Limiting task

time would reduce fatigue.
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We also found that some subjects traded time for docking accuracy. This made it more difficult

to define whether a higher performer was who had shorter times, or greater accuracy. In this

type of trials time would no longer be a measure of performance.

* Define an "acceptable docking" range: Another way of controlling the speed/accuracy tradeoff

would be to define an "acceptable docking" range, and to make the docking automatic (as

pickup). This range would allow subjects to finish a trial once they have pre-docked accurately

enough, and force everyone to aim for the same level of accuracy. In this type of trial docking

accuracy would no longer be a measure of performance.

* Provide real-time scores: Subjects would make a greater effort to perform better if they were

given real-time feedback on their performance. This would allow them to define which aspects

of performance to trade, based on known evaluating criteria.

" Improve the rotational hand controller mechanical characteristics: Subjects could accidentally

rotate about more axes than those intended, resulting in cross-coupled control. Stiffer springs

might contribute to eliminate this cross-coupling, by requiring greater forces to activate the

controller on each direction. A rotational hand controller with stiffer springs might allow

subjects to have a better understanding (feeling) of rotation.

* Assessment of the understanding of camera location before (or during) each test: We found that

some of our subjects did not understand (nor were interested in) the location of the cameras

with respect to the arm. Although this may have been because their strategies of motion were

not dependent on camera location, we know that in real life astronauts do know where each

camera is, even if they did not use that information to mentally integrate the views. It would be

useful then, to ensure that all subjects are aware of the location of the cameras, by asking them

(before the testing trials) with the images in front of them, to describe the relative position of

each view. After their description (which could be graded on a checklist), subjects should be

informed of the real location of the cameras, to ensure that they all have the same basic

understanding of the environment before the testing session.

* More practice trials: Our experiment allowed subjects relatively little time to practice before

being tested. This time was enough for subjects to understand the essence of the task, but not

to gain experience on it and experiment with different strategies. Longer training periods with

shorter testing trials (or multiple testing sessions) would ensure subjects' performance reached

a plateau on their learning curve.
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Appendices

APPENDIX A Subject Data

FO/Mi H/L
CODE Group Gender CC H/L CC PTA H/L PTA PSVT:V PSVT:V

1 1 0 19 1 18 1 1.25 1
2 1 0 15 1 25 1 11.75 1
3 1 0 32 1 15.6 1 11.5 1
4 1 0 26 1 20 1 19 1
s 1 0 23 1 22.4 1 11.75 1
6 1 0 16 1 8.5 1 5.5 1

8 2 0 24 1 14.7 1 10 1
9 2 0 9 1 19 1 6.5 1
10 2 0 31 1 21 1 11.25 1
11 2 0 26 1 24 1 16.75 1
12 2 0 21 1 25 1 18.75 1
13 2 0 18 1 21 1 13 1
15 1 1 17 1 27 1 13.5 1
16 1 1 13 1 21 1 15.75 1
17 1 1 9 1 25 1 15 1
18 1 1 32 1 29 1 20.75 1
19 1 1 27 1 20 1 13.75 1
20 1 1 21 1 26 1 13 1
21 1 1 12 1 21 1 6.75 1
23 2 1 14 1 24 1 21 1
24 2 1 7 1 16 1 13.5 1
25 2 1 30 1 26 1 20 1
26 2 1 27 1 25 1 19 1
27 2 1 21 1 24 1 10.25 1
28 2 1 14 1 18 1 16.5 1

29 2 1 38 1 34 1 25 1
Median i 21 21.7 13.5

SD 8.2 1_ 1__j 5.2 1 5.4 1

Mean 20.21 1 21.91 13.9 1

H/L: High / Low scorer group
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APPENDIX B Pre-Test Questionnaire

Gender: F M Age:

Right/Left handed: R L Course #:

Colorblind? Y N

1. Do you have any experience with Virtual 3-D environments (e.g. 3-D games, CAD, 3-D graphic
design, etc.)?

(Yes No) (If "Yes," can you please describe these experiences?)

2. Do you have any experience with joysticks or game controllers? (e.g. computer games, TV
games, robotic manipulation)

(Yes No) (If "Yes," can you please describe these experiences?)

3. How many hours per day do you use the computer?
0 1 - 3 3 - 5 5 -7 r_ More than 7

4. What do you typically use the computer for? (Please check all that apply)
F] Email/word processing/web browsing []Design (Graphical/Mechanical)

L Programming [: Gaming

D Other

5. Do you have / have you had the habit of playing video games?
(Yes No) (If "No," you are done with this questionnaire)

6. What was your age when you started playing videogames?
1<5 E15-12 [:112-18 E] 18-25 n>25

7. On average, how often (hours/week) did you play videogames when you played the most
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frequently?
1-3 [3-7

How many years ago was that?

0 [3 - 5

LI 7 -14

5 - 10

-14-28 11>28

10 - 15 > 15

8. On average, how often (hours/week) have you played videogames over the past 3 years?
Do 1-3 [13-7 [17-14 C14-28 E>28

9. What kind of video games do play
D First person

the most? (check as many as apply)

D Role-playing/Strategy

D Arcade/Fighting (please specify: 2D 3D)

E Simulation (driving, flying)

LI Sports (which? )

LI Other

Thank you. You may hand this questionnaire back to the experimenter.
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APPENDIX C Inter-Session Questionnaire

1. Can you repeat the rules to follow? 2. Can you repeat the instructions to follow?
(checklist) (checklist)

No collision: Pickup (automatic):
No singularities: Docking (space bar):
Remain in work area:

3. Session 1 (start time: end time: )

Did you use any special strategy to pick up? Did you use any special strategy to dock?

1. How many cameras did you use simultaneously?
2. The camera most used (1, 2 and/or 3)?
3. Did you understand the position of camera correctly (Yes/No)? If yes, can you please describe

briefly?

4. Session 2 (start time: end time: )

Did you use any special strategy to pick up? Did you use any special strategy to dock?

1. How many cameras did you use simultaneously?
2. The camera most used (1, 2 and/or 3)?
3. Did you understand the position of camera correctly (Yes/No)? If yes, can you please describe

briefly?
4. Did you notice any change from the last configuration?

5. Session 3 (start time: end time: )

Did you use any special strategy to pick up? Did you use any special strategy to dock?

1. How many cameras did you use simultaneously?
2. The camera most used (1, 2 and/or 3)?
3. Did you understand the position of camera correctly (Yes/No)? If yes, can you please describe

briefly?
4. Did you notice any change from the last configuration?
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APPENDIX D Post-Test Questionnaire

Congratulations! You have completed the robotic arm manipulation experiment. Thank you very
much for your time and effort. The following questions refer specially to your experience with
the desktop virtual reality system. Please answer each question and, if you wish, add any
comments.

1. If you experienced any of the
the level of discomfort.

EFFECT NONE

B.
C.
D.
E.
F.
G.
H.
I.
J.
K.

Nausea 1
Dizziness 1
Disorientation 1
Eyestrain 1
Blurred vision 1
Sweating 1
Headache 1
General discomfort
Mental fatigue 1
Other

1

1

following while using the virtual environment, please circle

SEVERE

2
2
2
2
2
2
2

2
2

2

3
3
3
3
3
3
3

3
3

3

4
4
4
4
4
4
4

4

5
5
5
5
5
5
5

4

4
5

5

5

1. How enjoyable/interesting was your interaction with the virtual environment?
Boring 1 2 3 4 5 Captivating

Comments?

2. Rate your proficiency on the following items,
(1 = very low, 5 = expert)
- Understanding the object properties
- Understanding the task
- Using the hand controllers
- Understanding camera viewpoints
- Understanding the frames of reference

3. How did you find the training trials to be?

after going through the Power Point training:

1
1
1
1
1

2
2

3
3

4
4

2 3 4 5
2
2

3 4 5
3 4 5
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1 2 3 4 5 Too few

Very useful 1 2 3 4 5 Useless

Comments?

4. How difficult was it for you to translate the arm with the translational controller?
Very difficult 1 2 3 4 5 Very easy

What made it difficult?

5. How difficult was it for you to rotate the hand with the rotational controller?
Very difficult 1 2 3 4 5 Very easy

What made it difficult?

6. Please describe the three camera configurations that were given to you (in terms of
difficulties found translating/rotating the arm).

D Section 1:

Z Section 2:

© Section 3:

7. Indicate where you think the cameras were located IN THE LAST SECTION OF THE
EXPERIMENT with respect to the truss intersection? (cameras are numbered from left to
right screens)
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8. To
0
0
0

9. To
0
0
0

10. To
0
0
0

11. To
0
0
0

12. To
El
El
El
El
El
El
El

mostly monitored:

mostly translated on:

mostly rotated along:

translate the module towards the node, you:
first rotated the module to its desired position and then translated it
first translated the module to the final position and then rotated it
rotated and translated the module simultaneously

avoid collisions, you: (mark as many as apply)
stayed as far from possible obstacles as possible
foresaw possible collisions and rotated the arm in advance to increase clearance
avoided rotating the module as much as possible
moved slowly in risky regions
moved out of the work area by crossing the semi transparent wall, if necessary
didn't care about collisions
other:

13. How important were the following criteria for
(1 = not important, 5

- Parallel docking marks
- Coaxial docking marks
- Aligned docking marks

1
1
1

2
2
2

you to consider a "good docking"?
= very important)

3
3
3

4
4
4

5
5
5

14. Do you have additional suggestions/comments regarding this experiment?

Thank you! Please return this questionnaire to the experimenter.
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1 display at a time
perform the task, you
1 axis at a time
2 axes at a time
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3 axes at a time



APPENDIX E Pre-Test Questionnaire Results

Note: The columns Q3 through Q9 correspond to the questions (and answers) of the pre-test

questionnaire (APPENDIX B).

FO/Mi LO/R1 V3D JS
Code Gender handed Age Course exp exp Q3 VG Q4 Q6 Q7 Q7b Q8 Q9

11 0 1 23 15 0 0 5 0 1,3
12 0 1 24 16 1 0 5 0 1,3

13 0 1 22 2 1 1 4 0 1

14 0 1 25 9 1 1 5 1 1,3 4 2 2 1 1,5

15 0 1 29 22 1 1 5 1 1,3 3 2 4 1 1,4,6

16 0 1 25 9 0 1 5 1 1,3 3 3 3 1 6

17 0 1 39 4 1 0 4 0 1,2

18 0 1 26 6 1 0 5 1 1,3 3 2 3 1 1

19 0 1 24 3 0 1 3 1 1 3 1 3 1 3,4

20 0 1 22 16 1 1 3 1 1,5 2 3 3 2 1,2,4

21 0 1 23 4 1 1 5 1 1,2,3,4 1 3 1 3 1,2,4

22 0 1 25 22 1 1 4 1 1,3,5 3 2 2 1 1,2

51 1 1 26 16 1 1 5 1 1,3 3 5 3 1 1,2

52 1 0 24 1 0 1 3 1 1 2 2 3 2 4

54 1 1 22 2 1 1 5 1 1,3 5 2 3 0 1,5,6

55 1 1 35 6 1 1 5 1 1,5 2 3 3 2 1,4

57 1 1 27 3 0 1 4 1 1,3 3 1 4 1 5

59 1 1 34 4 1 1 4 1 1,2,3 5 2 2 1 5

60 1 0 24 1 0 0 5 1 1,5 3 2 3 1 1,2

61 1 0 31 12 0 0 4 0 1,3,5

62 1 0 26 6 1 1 4 1 1,3,5 2 3 3 2 2,4,5,6

63 1 1 24 16 1 1 5 1 1,3,4 1 4 2 3 1,2,4

64 1 1 24 2 1 1 4 1 1,3 1 4 4 2 1,2

65 1 1 23 2 1 0 2 0 1,2

66 1 0 24 4 1 0 3 0 2

68 1 1 30 16 1 1 4 1 1,3,5 2 3 4 3 1,2,3,4
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APPENDIX F Post Test Questionnaire Results

Note: The description of questions Q3 through Q9 are given in the questionnaire in APPENDIX D.

Q13
Code Q8 3Cams Bcams C cams Q2 Q9 Q10 Q11 Q12 1 2 3 4 5 6

11 1 0 0 1 2 3 2 1 2 1
12 0 0 0 0 3 2 2 2 1 1 1 1
13 0 1 1 1 4 2 2 1 3 1 1
14 1 0 0 1 4 2 1 1 2 1 1
15 0 0 0 0 4 1 1 1 2 1 1
16 0 0 0 0 5 1.5 1.5 1 2.5 1 1
17 0 1 0 1 4 1 1 1 2 1 1
18 1 1 0 0 3 1 2 1 2 1 1 1
19 0 1 0 1 3 2 1 1 2 1 1
20 1 1 0 1 4 1 1 1.5 1.5 1 1 1 1
21 1 1 0 0 4 1 1 3 1 1 1
22 1 1 1 1 4 3 2 1 1 1 1
51 1 0 0 0 4 2 2 1 2 1
52 0 1 0 0 3 1 1 3 2 1 1 1
54 0 0 1 1 4 2 1 2 2 1
55 0 1 1 0 5 2 1 1 2 1 1 1
57 1 1 1 0 3 1 2 2 1 1 1 1
59 1 1 0 1 4 1 1 1 1.5 1 1
60 1 0 1 1 4 1 2 1 1 1
61 1 1 0 1 2 2 1 2 3 1 1
62 1 0 0 1 4 3 2 1 2 1
63 1 0 1 1 4 2 1 1 2 1
64 0 0 0 0 3 3 2 1 1 1
65 0 0 0 0 4 2 2 1 1 1 1
66 1 0 1 0 2 3 2 2 3 11 1
68 1 1 1 1 4 1 1 1 2
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APPENDIX G Source Code

# RWS-Expl.py

# This script creates a PUMA arm simulation with dual joystick control and multiple camera views of the workspace. It opens a network
# connection with another computer running a client version of the program to show a 3rd view of the workspace. This example uses the
# RRG.dll Python extension that encapsulates the RRG Kinematix robot kinematics library. This same script is used for either the
server or
# client - a different callback routine is called depending on the use.

# version 1.0 - January 2006
# This version is derived from RWS-sim-xl.py vl.2 (12/05). It has been modified for the preliminary experiments on spatial ability and
# SSRMS operation. It includes new features to read experiment input files defining camera views and initial locations for MPLM target
# objects. Initial experiments will use the arm with an external command frame of reference and fixed camera views (not user
switchable)
# There will be 3 sets of camera views and 4 intial starting locations for the MPLM. Changes are made to the following methods:
GetViewo,
# ParseObjectsFile(, keybdo

# version 2.0 - Feb 2006
# Fixed some problems with the oType (see comments in code). Using EulerZYX mode for EEF vector. Also fixed the MyNetworko
# callback so the client now works properly with the new object file formats. Had to create some new messages for sending info about
drops
# and new trials. Changed some of the default file names for the experiment control file. Can now handle multiple 'goal objects' in the
object
# file, and scene should be updated in both server and client.

# version 3.0 - March 2006
# Look into using the cluster method of networking. This should simplify code since only graphics related stuff is displayed on the
remote
# computers. Only drawback is that some server and client software needs to be started before running the script. On the plus side, the
script
# only has to on the main server machine.

# version 4.0 - July 2006
# Changed the DoIKO function to also perform the EEFvector Update. Check if singularity is reached using the latest joystick inputs. If
# singularity is reached, then do not update EEFvector with hand controller inputs, but return original values. Changed the format of the
# return value from RRG method GetHandPosition - now it returns the status (either MOM [measure of manipulability] or the error
code)
# Added a new column to the JA.history list for each trial - now has column whether arm is at a singularity point. 0 = "no" Required a
change
# in WriteJADataToFile() to accommodate extra column

# version 5.0 - Sept 2006
# Update the various functions to be compatible with Vizard v3. These updates include changes to the node3d collision methods (disable
# dynamics and use physics engine to check nodes), joysticks/gamepads

# version 6.0 - Feb 2007
# Revisions by Alejandra to allow new initial arm positions by trial - in ParseExperimentFile() function. All changes are commented by
# MAMB or ALE notation. New truss configuration is used - set up with 2 trusses along the x and z axes. Made changes to the .arm file
to
# only have 7 columns (eliminate the baserotation)

# version 7.0 - Feb 2007
# Added revisions by Alejandra to specify ArmPosition. AML added code to keep the position and orientation history of the target
(position
# in world coordinates, orientation in axis/angle in global coordinates. Still need to write some analysis code to recreate target positions
from
# these values for collision analysis. Can't get joint limits working - GetHandPosition returns funny values...

# version 8.0 - Feb 2007
# The program is now compatible with pickup and docking modalities.

# version 9.0 - Mar 2007
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# Included the new Vizard module vizinfo for displaying messages on the window (e.g., for sigularities, collisions, etc) Added a new
section
# to mainloop() for collision checking on the mplm/target after it has been docked. It uses a copy of the target object updated to be at the
# proper location and checks for collisions with the truss parts and node. Added an output line for keeping track of collisions
throughout the
# trial.

# version 10.0 - Mar 2007
# Some changes from Ale (Progress bar on the dialogs between trials). Added code so forearm is added to objects checked for
collisions. For
# pickup tasks, will check arm collisions, but for docking, it will just see if upper arm is colliding with mplm.

import RRG
import viz
import string
import vizmat
import time
import os
import vizinfo

#if viz.versiono[0] =='3':
# viz.quit()

viz.go(viz.NODEFAULTKEY viz.FULLSCREEN)
#viz.framerateo

### Define functions first ########### ##########################

def MatrixVectorMult(mat,vec):
outvec = []
for x in range(0,len(vec)):

outvec.append(0)
for y in range(Olen(vec)):

# print '%f + (%f * %f)' % (outvec[xl,mat[y*4+x,vec[y])
outvec[x] = outvec[x] + mat[y*4+x]*vec[y]

return outvec

#creates a new viewpoint based on the parameters given in list
def GetView(cameraview):

paramlist = string. split(cameraview)
newView = viz.add(viz.VIEWPOINT)
newView.translate(string.atof(paramlist[0]),string.atof(paramlist[ 1 ]),string.atof(paramlist[2])) # PosX, PosY, PosZ
newView.rotate(string.atof(paramlist[31),string.atof(paramlist[4]),string.atof(paramlist[5])) # theta, phi, rho
return newView

# Parses the file with the list of camera viewpoints used in the experiment/simulation
defParseCameraViewFile(CVFname ='RWSExpl -default.cam):

# Still need to figure out what to do for having a cameraview on arm....
print "Reading Camera file <",CVFname,">..."
CVlist = []
fp = open(CVFname, 'r)
all = fp.readlines()
if len(all) < 3:

print "*** ERROR: Must have at least three camera views ***"
fp.closeo
viz.quito

else:
for line in all:

CVlist.append(GetView(line))
fp.closeo
return CVlist

# Updates the viewpoint in a given window
def UpdateWindowViewpoint(winnum,viewnum):

if viewnum == 5:
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# print "update with view 6"
CameraViewArray[viewnum].update(por.get(viz.MATRIX,viz.ABSOLUTEWORLD))
winnum.viewpoint(CameraViewArray[viewnum])

# pass
else:

# print "update with view",viewnum+l
winnum.viewpoint(CameraViewArray[viewnum])

# Writes data to the output file after each trial. Summary data includes the information about input files (camera
# and object files) in a header. Each trial's data is listed on a separate line listing
# trial number, object number, trial starting time, time to grapple object, PointOfResolution matrix at grappling,
# time to completion, target matrix at end of trial.

def WriteSummaryDataToFile(basename, targetdata):
fp = open('%s-summary.dat' % (basename),'a)
outstr = '%d\t%d\t%d\t%6.2f' % (targetdata[0,targetdata[l1,targetdata[21,targetdata[3)
for item in targetdata[4]:

outstr = outstr + '\t'+ str(item)
outstr = outstr + '\t%6.2f % (targetdata[5])
for item in targetdata[61:

outstr = outstr + '\t'+ str(item)
outstr = outstr + '\n'
fp.write(outstr)
fp.close()

# This function is used to write to current joint angle state of the arm to a file. This will allow reconstruction
# of the path of the EEF and post-experiment checking for collisions or singularities

def WriteJADataToFile(basename,num,data):
filename = '%sjt%d.ja' % (basename,num)
fp = open(filename,'w')
for line in data:

outstr = '%s\t%s\t%s\t%s' % (line[O],line[1],line[2],line[31)
for item in line[41:

outstr = outstr + '\t' + str(item)
outstr = outstr + '\n'
fp.write(outstr)

fp.close()

def WriteTargetDataToFile(basename,num,data):
filename = '%s-t%d.tgt' % (basename,num)
fp = open(filename,'w')
for line in data:

outstr = '%s\t%s\t%s\t%s' % (line[O,line[l],line[2],line[3])
for item in line[4]:

outstr = outstr + '\t' + str(item)
for item in line[5]:

outstr = outstr + '\t' + str(item)
outstr = outstr + '\n'
fp.write(outstr)

fp.closeo

# Read the file that lists all targets and boxes in simulation and add to scene.
# The input file has columns for object type, filename for model, init position, init orientation

def ParseObjectsFile(filename = 'RWSExpldefault.obf):
print "Reading Object File <",filename,">..."
targets = [I
goals =[
obstacles = []

fp = open(filename,'r')
all = fp.readlines()
for line in all:

s = string.split(line)
if s[0] == 'target':

targets.append([s[1 ],string.atof(s[2]),string.atof(s[3 1),string.atof(s[4]),string.atof(s[5]),string.atof(s[6),string.atof(s[7])])
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# thing.collidemesh()
elif s[0] =='goal':

goals.append([s[l],string.atof(s[2]),string.atof(s[3]),string.atof(s[4])string.atof(s[5]),string.atof(s[6]),string.atof(s[7])])
elif s[0] == 'obstacle':

obstacles.append([s[l],string.atofts[2]),string atof(s[3]),string.atofts[4]),string.atof(s[5]),string.atofts[6]),string.atof(s[71)

fp.close()
return [targets, goals, obstacles]

# This function reads the Experiment File which lists the camera views and objects used in the experiment, as
# well as the configuration of each trial (targets, goals, obstacles)

def ParseExperimentFile(datafile, expfile = 'RWS_Expl _default.exp'): #MAMB: added arm initial position
global CurrentTrialNum, NumofTrials
print "Reading Experiment File <",expfile,">..."
viewarray = [1
TargetList = [1
GoalList = []
ObstacleList = []
HCgain = [1.0,1.01
arminitialposition = []
fp = open(expfile, 'r')
triallist = fp.readlines()
fp.close()
NumofTrials = len(trial-list)-6
# Write out a header for the summary data output file
if (datafile+'-summary.dat') in os.listdir('.'):

# Find out which was the last trial completed
print "Experiment has been previously started"
ans = viz.ask('Experiment has been started previously. Click YES if you want to continue with the next trial. Click NO to

start anew.)
if ans:

newesttrial = 0
PrevTrialFlag = 0
fp = open(datafile+'-summary.dat','a+')
prevtrials = fp.readlines()
for entry in prevtrials:

prevtrialnum = string. split(entry)[0]
if prevtrialnum.isdigit() and prevtrialnum> CurrentTrialNum:

PrevTrialFlag = 1
print "trial num",prevtrialnum,"completed"
newesttrial = int(prevtrialnum)

if PrevTrialFlag:
CurrentTrialNum = newesttrial+l

else:
CurrentTrialNum = 0

else:
fp = open(datafile+'-summary.dat','w')
CurrentTrialNum = 0

else:
fp = open(datafile+'-summary.dat','w')

fp.write('ExperimentFile\t%s\n' % (expfile))

for headerline in trial-list[0:6]: #was [0:5] --MAMB.
token = string.split(headerline)
if token[0] == 'version':

version = token[I]
fp.write('ExptFileVersion\t%s\n' % (version))

if token[0] == 'thcgain':
HC-gain[0] = float(token[1])

if token[0] == 'rhc.gain':
HCgain[1] = float(token[1])

if token[0] == 'camerafile':
viewarray = ParseCameraViewFile(token[ 1])
fp.write('CameraViewFile\t%s\n' % (token[Ij))
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#** *** *** ** * *****AL E** ** *** *** *** *** *** *** **** *

if token[O] == 'armfile':
[arminitialposition] = ParselnitJAngFile(token[1])
fp.write('InitJAngFile\t%s\n' % (token[l]))
print 'InitJAng file read'

#** *** *** **** ***p*A**** *** *** *** *** **** ** *** **

if token[O] == 'objectfile':
if token[1] == ":

print "ERROR: No object file specified"
viz.quit()

else:
[TargetList, GoalList, ObstacleList] = ParseObjectsFile(token[ I])
fp.write('ObjectDescriptionFile\t%s\n' % (token[1]))

fp.close()

return viewarray, arminitialposition, HC-gain, [TargetList, GoalList, ObstacleList], trial-list[6:len(trial-list)] # Skip first 5 lines of
expt file

def ParselnitJAngFile(filename = 'RWSExpl-default.arm'):
global InitJAng
print "Reading Object File <",filename,">..."
InitJAng = []
fp = open(filename,'r')
all = fp.readlines()
for line in all:

s = string.split(line)
InitJAng.append([string.atof(s[l]),string.atof(s[2]),string.atof(s[3)string.atof(s[4]),string.atof(s[5]string.atof(s[61),string.atofts[7
fp.close()
return [InitJAng]

# This function reads the Arm File which lists the initial joint angles of the arm in the trials of the experiment.

# Collect information about current experiment
def GetExptInfoo:

global IsDocking, Stage, Group
subjnum = viz.input('Enter the subject number')

## if Stage> 1:
## if (Group == 'gl'and Stage == '2') or (Group == 'g2' and Stage == '3'):
## config= 'B'
## else:
## config= 'C'
## else:
## config= 'A'
## if IsDocking:
## default = Exp2_Config'+config+'_d'
## else:
## default = Exp2_Config'+config+'_p'
## rootname = default

default = 'Exp2_ConfigAd'
rootname = viz.input('Enter the root name of the experiment:',default)
currentdate = time.strftime("%Y%m%d",time.localtime())
outputname = 'Subj%s_%s_%s' % (subjnum,rootname,currentdate)
return rootname+'.exp',outputname

# Update the end-effector position and orientation based on joystick inputs
def UpdateEEFvector(eef, thc, rhc, EEflag):

global VernierFlag

# To move the position of the manipulator, simply increment the position entries of the EEF vector
# using the sid output. NOTE: The y- and z-axes are switched because RRG uses RH coordinates, but
# Vizard uses LH coordinates.

# Xform sid data vector by appropriate coordinate frame. If in RO mode, use identity matrix. If in EE mode
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# then need to xform by inverse of current EEF attitude.
if VernierFlag:

vernier = vGAIN
else:

vernier = 1.0

if EEflag: # If using the internal frame, figure out sid position change in world coordinates
oldthc = the
X = vizmat.Transform()

# X.makeldent()
# X.makeTrans([1,2,3])

X.set(por.get(viz.MATRIX,viz.ABSOLUTEWORLD))
# print por.get(viz.EULER,viz.ABSOLUTEWORLD)
# print por.get(viz.MATRIX,viz.ABSOLUTEWORLD)

X.setTrans([0,0,0])
newvec = MatrixVectorMult(X.geto,[thc[l],thc[1I ,thc[21,0])
thc[O] = newvec[O]
thc[1] = newvec[I]
thc[2] = newvec[2]

# print '[%4.2f,%4.2f,%4.2f],[%4.2f,%4.2f,%4.2f]' % (oldthc[0],oldthc[1I,oldthc[21,thc[I],thc[1l,thc[2])#,
por.get(viz.MATRIX,viz.ABSOLUTEWORLD)
# pass;

eef[O] += (HCgains[O] * vernier*thc[0])
eefil] += (HCgains[0] * vernier*thc{21)
eef[2] += (HCgains[O] * vernier*thc[l])

# You can move the end effector orientation similarly by modifying the
# orientation entries of the EEF vector. The end effector angles are in radians!!
# For now we just switch between pos or orient

if oType == 1:
eef[3] += (-rhc[2]*vernier*HCgains[1]) # Sign flip for the Logitech 3D Extreme joystick
eef[4] += (rhc[l *veniier*HCgains[1])
eef[5] += (rhc[0]*vernier*HCgains[1])

else:
eef[3] += (rhc[O]*vernier*HCgains[I)
eef[4] += (rhc[1 ]*vernier*HCgains[1])
eef[5I += (rhc[2]*vernier*HCgains[1])

# poreuler = j3.get(viz.EULER,viz.ABSOLUTEWORLD)
# print 'EEF angle mode %d: %6.4f, %6.4f, %6.4f %6.4f, %6.4f, %6.4f %
(oType,eef[3],eefq4],eef[5],poreuler[0],poreuler[ I],poreuler[21)

return eef

# Convert to degrees
def ToDeg(num):

return num*57.296
# Perform the inverse kinematic calculations to find joint angles from EEF vector
# Returns joint angles in radians
# Changed in version 4 to also call UpdateEEFvector() and to check if arm reaches singularity.
def DoIK(JointAngles, EEFvector, oType, thc, rhc, EEflag):

global SingFlag
# Calculate the new EEFvector based on hand controller inputs.
newEEFvector = UpdateEEFvector( EEFvector, thc, rhc, EEflag ) #Note that y- and z-axes are switched for position in called fcn
# Caluculate the 4x4 homogeneous matrix from the EEF vector
handvector = RRG.FromVectorToXForm( newEEFvector, oType)
#After motion, recalculate the inverse kinematics to recover joint angles
[status,newJointAngles,newLimitStatus] = RRG.GetJointPosition( robotnum, handvector)

# Test out limit status
# print newLimitStatus, newEEFvector
# print map(ToDeg,newJointAngles)[0], newJointAngles[0], map(ToDeg,newJointAngles)[1], newJointAngles[1], newLimitStatus
# if (t in newLimitStatus):
# print "Joint violation", map(ToDeg,newJointAngles)
# else:
# print map(ToDeg,newJointAngles)

if status < 0.0:
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# Singluarity has been reached - don't update anything
if SingFlag == 0:

SingText.visible(viz.ON)
SingFlag = 1

return [JointAngles, EEFvector]
else:

# Convert angles back to degrees for Vizard
# for x in range(0,6):
# JointAngles[x] = JointAngles[x] * RAD2DEG
# print status, newJointAngles

if SingFlag == 1:
SingText.visible(viz.OFF)
SingFlag = 0

return [newJointAngles, newEEFvector]

# Resets the joint angles and EEF matrix to the starting position. Used to reset arm position between trials.
def ResetArmPoseo:

global EEFvector, ArmPosition
# Reset joint angles of the arm

# c2.rotate(0,1,0, -InitJAng[0])
# c3.rotate(0,0,1, -InitJAng[1])
# c4.rotate(0,0,1, -InitJAng[2])
# jl.rotate(0,1,0, InitJAng[3J)
# j2.rotate(0,0,1, -InitJAng[4])
# j3.rotate(0,1,0, InitJAng[5])

#***ALE***
sa = string.split(TrialList[CurrentTrialNum])
ArmPosition = int(string.atof(sa [len(sa)-l]))
print "ArmPosition: () ", ArmPosition
c2.rotate(0,1,0, -InitJAng[ArmPosition][0])
c3.rotate(0,0,1, -InitJAng[ArmPosition][1])
c4.rotate(0,0,1, -InitJAng[ArmPosition][2])
jl.rotate(0,1,0, InitJAng[ArmPosition][3])
j2.rotate(0,0,1, -InitJAng[ArmPosition][4])
j3.rotate(0,1,0, InitJAng[ArmPosition][5])

# j3.rotate(1,0,0, InitJAng[ArmPosition][5]) #Good to rotate the hand toward the module on docking trials
#***ALE***

for x in range (0,6):
# JAnglesRad[x] = InitJAng[x] * DEG2RAD

JAnglesRadix] = InitJAng[ArmPosition][x] * DEG2RAD #MAMB

# Calculate the initial EEF position and orientation (in robot base coordinates, not Vizard)
InitMatrix = RRG.GetHandPosition(robotnum,JAnglesRad)
EEFvector = RRG.FromXFormToVector( InitMatrix, oType)

# Reset the handpos position so collision detection works ok
handpos.translate(EEFvector[O]/1000.0,(EEFvector[2]/000.0), (EEFvector[ 1]/1000.0))

####################################################################
# End of script functions
####################################################################
# Define the callback routines used in the main part of the simulation. mainloop() is used as the main RWS simulation in Server or Debug mode.
keybd() is also active on the main RWS simulation server.
# This callback removes objects from the last trial and draws the new ones. Also resets the arm position back to the starting position and resets
the counter for grappling each target.

def PrepareNextTrial(num):
global CurrentTrialNum, dropflag, pickupflag
global target, target-cd, GoalObject, Obstacle
global trial-startjtime, trialendtime
global JA.history, Tgt-history, NunFrames
global Section, NumofTrials

linespace = 200*'
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if CurrentTrialNum < len(TrialList):
print "Preparing trial",CurrentTrialNum,"..."
# Remove goal object from the last trial. New one is drawn later
if len(GoalObject):

for thing in GoalObject:
thing.remove()
print "Removing goal objects from previous trial..."

GoalObject = [1
#***ALE***

# Remove obstacle object from the last trial. New one is drawn later
if len(Obstacle):

for thing in Obstacle:
thing.remove()
print "Removing obstacles from previous trial..."

Obstacle = []
#***ALE***

# Remove objects from the last trial
for thing in target:

thing.removeo
print "Removing target from previous trial..."

# Remove copies from the last trial
for thing in target-cd:

thing.remove()
print "Removing target from previous trial..."

target = []
targetcd [1
ResetArmPose()
dropflag = 0
pickupflag = 0

# Reset this list for each trial

# Reset the arm to starting position
# Reset list of picked up objects
# Restore state to not grappling anything

# Now put in the new ones
tokentype = 0
s = string.split(TrialList[CurrentTrialNum])
for token in s:

if token.isdigito:
if tokentype < len(ObjectList):

obstacles --that's why the -1
th
p
th
th
th
if

detection purposes

el

#********* *** **ALE** *** *** *** *** ******* *

#NOTE by MAMB: it doesn't like it that there are no

ing-params = ObjectList[tokentypel[int(string.atof(token))-1]
int "Object",thing-params[O]
ing = viz.add(thing-params[O])
ing.translate(thing-params[l],thing-params[2],thing-params[3])
ing.rotate(thing-params[4],thing-params[5],thing-params[61)
tokentype == 0:

target.append(thing)
print 'target', target
thing.collideMesh()
thing.disable(viz.DYNAMICS)
thing-cd = thing.copyo
target cd.append(thing-cd) # Make a copy of the target for collision

thing-cd.collideMesh()
thingcd.disable(viz.DYNAMICS)
thingcd.visible(viz.OFF)

if tokentype == 1:
GoalObject.append(thing)
thing.collideMesho
thing.disable(viz.DYNAMICS)

if tokentype == 2:
Obstacle.append(thing)
thing.color(1 ,1,1)
thing.alpha(0.2)

elif tokentype == 3:
ArmPosition = int(string.atof(token))
print "arm position: ", ArmPosition
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else:
if token == 'target':

print "Adding Target objects"
tokentype = 0

elif token == 'goal':
print "Adding Goal Objects"
tokentype = I

elif token == 'obstacle':
print "Obstacle..."
tokentype = 2

else:
tokentype = 3

print 'Added %d Goal objects:' % len(GoalObject)
print 'Added %d Targets' % len(target)
print 'Added %d Obstacles' % len(Obstacle)
if CurrentTrialNum== 0:

linel
else:

linel ='Good job! \n'
line2 ='Progress bar: '+CurrentTrialNum*'* '+(NumotTrials-CurrentTrialNum)*'_ '+'\n\n'
line3 = '%d trials to go! \n\n' % (NumofTrials - CurrentTrialNum)
line4 ='When you are ready to begin the next trial, press the RETURN key.

viz.ask(\n\n\n\n\n'+linel+line2+line3+line4+linespace+'\n\n\n\n\n\n')
trialstarttime = time.time()
print "Trial timer started at",trialstart-time
JA-history = []
Tgt-history = []
TrialData = []
NumFrames =0
print "Resetting joint angle history"
viz.callback(viz.TIMEREVENT, mainloop)
viz.starttimer(1)

else:
print "Current Trial Num",CurrentTrialNum

# if Section == '3':
# q = viz.ask(' * \n\n\nMISSION ACCOMPLISHED!\n You have finished the
experiment.\n\n\nClick YES to quit.\n **********************)

# else:
# q = viz.ask(' \n\n\nCONGRATULATIONS!\n You have finished this part of the
experiment!\n\n\nClick YES to quit.\n **********************')

linelO = 20*'*'+linespace
linelI = \n\n\nCONGRATULATIONS!\n You have finished this part of the experiment!\n\n\nClick YES to quit.\n'
q = viz.ask(linelO+linel 1+linel0)
if q:

RRG.DestroyRobot( robotnum)
viz.quito

collisioninfo = vizinfo.add('COLLISION')
collisionjinfo.bgcolor(1.0,0.0,0.0,0.7)
collision-info. visible(viz.OFF)

def mainloop(num):
global EEFvector, oType
global robotnum, dropflag, pickupflag, collisionflag
global JAnglesRad, controlMode
global trial-grabjtime, trial-grabstate
global JA.history, Tgt-history, SingFlag, TrialData, NumFrames
global CurrentTrialNum

## Need to make changes here for running an actual experiment - keep track of trials and measurements.
## Measurements include armjoint angles (complete record), time to pickup and time to place MPLM on node,
## final position of MPLM
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# print 'Elapsed Time:',viz.elapsedo,'seconds'
if NumFrames == 0:

print "Frame counter is set to",NumFrames
NumFrames += 1

if controlMode == 1:
data =[]
# Get data from joystick and implement a deadband to prevent drift of manipulator
# Signs may change depending on the SID that is used!!
# New method to get joystick data in Vizard3
siddata = sid.getPositiono
data.append([siddata[0],siddata[l,sid.getSlider,sidgetTwisto,siddata[2]]) # Data from SID #1
siddata = sid2.getPosition()
data.append([siddata[0],siddata[l],sid2.getSlider,sid.getTwist(,siddata[2]]) # Data from SID #2
# Filter data from joysticks and sliders with a central deadband (no inputs)
for x in range(0,2):

for y in range(0,4):
if abs(data[x][y]) < DEADBAND: # Check if joystick values are within deadband

data[x][y] = 0.0
if not THCflag: # This means that SID #1 is the Translational Hand Controller

the = [data[0][0], -data[0][1], data[01[2]] # The up/down axis sign is flipped because
rhc = [data[l][0], -data[l][l], data[l][3]] # of the USB gamepad output (MVL). Use twist for rhc

else:
the = [data[l][0], -data[(][1, data[1][211
rhc = [data[0][0], -data[0][I], data[0][3]]
print data[0J

position in called fcn

# This line has been moved into the DoIK function, so that we can test if singuarity is reached but hand
# controller input. IF it is, then just return the undated EEFvector.
EEFvector = UpdateEEFvector( EEFvector, thc, rhc, EEcontrolModeFlag) #Note that y- and z-axes are switched for

# Calculate the new joint angles from inverse kinematic equations
[JAnglesRad, EEFvectorl = DoIK( JAnglesRad, EEFvector, oType, thc, rhc, EEcontrolModeFlag)

# Transform the individual links with the calculated joint angles. Note the sign changes since
# Vizard uses LH coordinates and RRG is using RH coordinates.

c2.rotate(0,1,0, -JAnglesRad[0] * RAD2DEG)
c3.rotate(0,0,1, -JAnglesRad[l1] * RAD2DEG)
c4.rotate(0,0,1, -JAnglesRad[2] * RAD2DEG)
jl.rotate(0,1,0, JAnglesRad[3] * RAD2DEG)
j2.rotate(0,0,1, -JAnglesRad[4] * RAD2DEG)

# j3.rotate(1,0,0, JAnglesRad[5] * RAD2DEG) #Good to rotate the hand toward the modul
j3.rotate(0,1,0, JAnglesRad[5] * RAD2DEG)

c4mat = c4.get(viz.MATRIX,viz.ABSOL UTEWORLD)
c4_cd.update(c4mat, viz.ABSOLUTEWORLD)
currenttime = time.timeo
JAhistory.append([current-time,pickupflag,dropflag, SingFlag, JAnglesRad]) # Should

singularity flag? 7/3/06

# Display a dot at point of resolution. This also requires a shuffle of the axes of translation.
# I need this object to perform collision detection which does not work with hierarchical objects. :(
handpos.translate(EEFvector[OI/l 000.0,(EEFvector[2/1000.0), (EEFvector[ 11/1000.0))

# print EEFvector[O]/l 000.0,(EEFvector[2]/l000.0), EEFvector[1 ]/1000.0

# 1/11/06 AML - need to fix this because of new format for establishing viewpoints
# Update the camera view on display I if it is the camera view

# if 6 in DisplayStatus:
# if DisplayStatus.index(6) == 0:
# UpdateWindowViewpoint(winl,5)
# elif DisplayStatus.index(6) == 1:
# UpdateWindowViewpoint(win2,5)

# Keep track of the position of the target during the trial.

e on docking trials (MAMB)

I include another column with
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# Tgthiistory.append([currentjtime, pickupflag,dropflag,collisionflag,target[dropflag].getPosition(viz.ABSGLOBAL),
target[dropflag].getAxisAngle(viz.ABSGLOBAL)])

TgtLhistory.append([current-time, pickupflag,dropflag,collisionflag,target[dropflag].getPosition(viz.ABSGLOBAL),
target[dropflagl.getEuler(viz.ABSGLOBAL)I)

#print target[dropflag].getAxisAngle(viz.ABSGLOBAL)
# Use the undocumented collision detection routines to check if grabbing targets

# print viz.phys.intersectNode(target[dropflag])
if pickupflag:

# When module is picked up, start checking collisions with the copy of the object
targetcd[dropflag].update(target[dropflag].get(viz.MATRIX,viz.ABSOLUTEWORLD), viz.ABSOLUTEWORLD)
target-cd[dropflag.visible(viz.ON)
#clunk = viz.phys.intersectionNode(target-cd[dropflag])
if len(set([c4_cd,gxl,gx2,gyl,gy2,GoalObject[dropflag]]).intersection(viz.phys.intersectNode(target-cd[dropflag]))) 0

or len(set([gxl,gx2,gyl,gy2,GoalObject[dropflagl,target[dropflagll).intersection(viz.phys.intersectNode(c4_cd))) != 0:
collisioninfo.visible(viz.ON)
collisionflag = I

else:
collisioninfo.visible(viz.OFF)
collisionflag = 0

# Don't have to do anything since target will be part of the end effector scene graph.
# It's position and orientation will automatically be updated.
#pass

else:
if len(set([gxl,gx2,gyl,gy2,GoalObject[dropflagl,target[dropflag]]).intersection(viz.phys.intersectNode(c4_cd))) = 0:

collisioninfo.visible(viz.ON)
collisionflag = 1

else:
collisioninfo.visible(viz.OFF)
collisionflag = 0

if (handpos in viz.phys.intersectNode(target[dropflag])) and
vizmat.Distance(handpos.get(viz.POSITION),target[dropflagl.get(viz.POSITION)) <GRABDISTANCE:

trial-grab time time.timeo - trialstarttime
trial-grab-state = por.get(viz.MATRIX, viz.ABSOLUTEWORLD)
print 'Grabbed target after %6.2f seconds' % (trial__grabtime)
pickupflag = 1
por.visible(viz.ON)

# Attach the target to the end effector. Update the target's matrix to remain at the current
# location in world coordinates. When attaching to the end effector, the target's matrix in
# local object coordinates is used, which will shift and rotate the target.
mat = target[dropflagj.get(viz.MATRIX,viz.ABSOLUTEWORLD)
target[dropflagl.parent(por)
target[dropflagj.update(mat, viz.ABSOLUTEWORLD)
if not IsDocking:

trial-endtime = time.time(-trial starttime
trialend-state = target[dropflag].get(viz.MATRIX, viz.ABSOLUTEWORLD)

print 'Framerate for trial',CurrentTrialNum,':',NumFrames/trial-endtime,'fps ',NumFrames

target[dropflag].alpha(0.5) # Lighten color to
indicate dropped

WriteSummaryDataToFile(basename,[CurrentTrialNum,dropflag,trial-start-time,trial-grabtimetrialgrab-state,trialendtimetrial_
endstate])

dropflag = dropflag + 1
if dropflag < len(target):

pickupflag = 0
else:

print Trial #%d took %6.2f seconds' % (CurrentTrialNum,trial-endtime)
WriteJADataToFile(basename, CurrentTrialNum,JA history)
WriteTargetDataToFile(basename, CurrentTrialNum, Tgt-history)
CurrentTrialNum = CurrentTrialNum + 1
viz.callback(viz.TIMEREVENT, PrepareNextTrial)
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viz.starttimer(1)

def kybd(key):
global dropflag, pickupflag, ClientFlag, EEcontrolModeFlag
global controlMode, CmodeText, EEFvector, JAnglesRad, oType
global DisplayStatus, CurrentTrialNum
global trialstarttime, trial end time, trialendstate
global basename

if key == 'q':
RRG.DestroyRobot(robotnum)
print "Done"
viz.quit()

bounds = len(CameraViewArray)

if key == viz.KEY_Fl:
window

q = input("Select view 1-3 for window 1")
DisplayStatus[O] = q
if q >= 1 and q <= bounds:

CameraViewArray
viz.cluster.setMask(viz.MASTER)
UpdateWindowViewpoint(mainWin,q-1)
viz.cluster.setMask(viz.ALLCLIENTS)

elif key == viz.KEYF2:
window

q = input("Select view 1-3 for window 2")
DisplayStatus[ I I= q
if q >= 1 and q <= bounds:

viz.cluster.setMask(viz.MASTER)
UpdateWindowViewpoint(win2,q-1)
viz.cluster.setMask(viz.ALLCLIENTS)

elif key == viz.KEYF3:
most window

q = input("Select view 1-3 for window 3")
DisplayStatus[2] = q
if q >= 1 and q <= bounds:

viz.cluster.setMask(viz.CLIENT1)
UpdateWindowViewpoint(mainWin,q-1)
viz.cluster.setMask(viz.ALLCLIENTS)

elif key == viz.KEYESCAPE:
RRG.DestroyRobot(robotnum)
print "Done"
viz.quito

elif key == ''and pickupflag:
drop object

#Fl corresponds to the left-most

#if input number is in the bounds of

#change viewpoint on screen 1

#F2 corresponds to the middle

#change viewpoint on screen 2

#F3 corresponds to the right-

#if escape hit, quit program

#signal for arm to

trial-end-time = time. time()-trial_start -time
trial-endstate = target[dropflag].get(viz.MATRIX, viz.ABSOLUTEWORLD)

print 'Framerate for trial',CurrentTrialNum,':',NumFrames/trialendtime,'fps ',NumFrames

mat = target[dropflag].get(viz.MATRIX,viz.ABSOLUTEWORLD)
target[dropflag].parent(viz.WORLD)
target[dropflagJ.update(mat, viz.ABSOLUTEWORLD)

target[dropflag].alpha(0.5) # Lighten color to indicate dropped

por.visible(viz.OFF)

WniteSummaryDataToFile(basename,[CurrentTrialNum,dropflag,trial-starttimetrial-grab-time,trial-grab-state,trial-end-time,tial_
end-state])

dropflag = dropflag + 1
if dropflag < len(target):
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and EEF
# Flip control modes between JA

pickupflag = 0
else:

print Trial #%d took %6.2f seconds' % (CurrentTrialNum,trial-end time)
WriteJADataToFile(basename, CurrentTrialNum,JA_history)
WriteTargetDataToFile(basename, CurrentTrialNum, Tgthistory)
CurrentTrialNum = CurrentTrialNum + 1
viz.callback(viz.TIMEREVENT, PrepareNextTrial)

elif key == 'c':

if controlMode == 1:
controlMode = 0
CmodeText[0].visible(viz.ON)
print "JA on"

else:
controlMode = 1
# Update the EEF vector with the current joint angles
NewMatrix = RRG.GetHandPosition( robotnum, JAnglesRad )
EEFvector = RRG.FromXFormToVector( NewMatrix, oType )
CmodeText[O].visible(viz.OFF)
print "JA off"

elif key ==':
if controlMode and EEcontrolModeFlag == 0:

EEcontrolModeFlag = 1
print "Using EE iternal control frame"
CmodeText[fI.visible(viz.ON)

elif controlMode and EEcontrolModeFlag:
EEcontrolModeFlag = 0
print "Using default EE external control frame"
CmodeText[I].visible(viz.OFF)

elif key ==':
ResetArmPose()

elif not controlMode: # Use t
if key == '1':

JAnglesRad[0] = JAnglesRad[0] + JAstep*DEG2RAD
elif key == ':

JAnglesRad[O] = JAnglesRad[0] - JAstep*DEG2RAD
elif key == '2':

JAnglesRad[1] = JAnglesRad[1] + JAstep*DEG2RAD
elif key == '@':

JAnglesRad[l] = JAnglesRad[l] - JAstep*DEG2RAD
elif key == '3':

JAnglesRad[2] = JAnglesRad[2] + JAstep*DEG2RAD
elif key ==':

JAnglesRad[2] = JAnglesRad[2] - JAstep*DEG2RAD
elif key == '4':

JAnglesRad[3] = JAnglesRad[3] + JAstep*DEG2RAD
elif key =='$':

JAnglesRad[3] = JAnglesRad[3] - JAstep*DEG2RAD
elif key == '5':

JAnglesRad[4] = JAnglesRad[4] + JAstep*DEG2RAD
elif key ==':

JAnglesRad[4] = JAnglesRad[4] - JAstep*DEG2RAD
elif key == '6':

JAnglesRad[5] = JAnglesRad[5] + JAstep*DEG2RAD
elif key == 'A':

JAnglesRad[5] = JAnglesRad[5] - JAstep*DEG2RAD

def hatevent(hatval):
global VernierFlag

# Check hatswitch for coarse/vernier mode
if hatval >=0:

VernierFlag = not VernierFlag
print "Hat switch pressed", hatval
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# End of Callback routines
#################H# $ # #####H#####4# ###t

# Begin main portion of program
#GAIN = 15.0
vGAIN = 0.75
DEADBAND = 0.25
JAstep = 1.0
GRABDISTANCE = 0.3

DEG2RAD = 0.0174532925199
RAD2DEG = 57.2957795131

# Sets reduction gain for vernier mode
# Joystick deadband
# Step size when using joint angle control (these are degrees!)
# Max Distance from grapple point to consider MPLM as grabbed. This is the R or the grapple fixture

DebugFlag =
ClientFlag = 0
VernierFlag = 0
EEcontrolModeFlag = 0 # If set to 1, then EE control using an internal frame (moves with EE)
SingFlag = 0 # Indicates if arm is presently at a singularity
HCgains = [1.0,1.0]
# OpModes are as follows:
# 0 = Debug - small windows
# I = Experiment mode - full windows
OpMode = viz.choose('Select the operating mode',["Debug mode","Experiment mode"])
##Group = viz.input('Subject Group (gI or g2)','gl')
##Stage = viz.input('Stage (1,2 or 3)','1')
IsDocking = viz.choose('Select the mission',["Pick up","Docking"])

# Read the files listing all targets, goals, obstacles for the experiment. See comments with function definition
# for input file format

CurrentTrialNum = 0
[exptfile,basename] = GetExptInfoo

#[CameraViewArray,HCgains,ObjectList,TrialList] = ParseExperimentFile(basename, exptfile) # Default file is 'RWSExpL _default.exp'
[CameraViewArray,InitJAng,HCgains,ObjectList,TrialList] = ParseExperimentFile(basename, exptfile)
sa = string.split(TrialList[0])
ArmPosition = int(string.atof(sa [len(sa)-1))

#** *** *** ** ***** ** ***ALE* ** *** *** *** *** *** ** **

target = [] # Holds list of targets for a single trial
target-cd = [1 # Holds copies of targets for collisiondetection during trial (after targets are picked up)
#viz.framerateo
if OpMode == 0: # Zero means script runs in debug mode

viz.cluster.setMask(viz.CLIENT1)
viz.windowsize(640,480)
viz.clu ster.setMask(viz. MASTER)
viz.windowsize(1280,480)
viz.cluster.setMask(viz.ALLCLIENTS)

# Add joysticks or gamepads to control robot. Vizjoy is the new Vizard3 dIl
import vizjoy

sid = vizjoy.addo # This will be the first gamepad/joystick installed
print sid.getNameo
sid2 = vizjoy.addo # This will be the second gamepad/joystick installed
print sid2.getName()

#import sid # Make sure the sid.py and gamepad.dll are latest ones that allow more than one USB SID!
#sid2 = sid.addo # This is the second hand controller - SID #2 Figure out RHC and THC later

THCflag = viz.ask('Is the Translation Hand Controller **NOT** SID #1 T)

#sets initial viewpoints
mainView = viz.get(viz.MAINVIEWPOINT)
mainWin = viz.get(viz.MAINWINDOW)
viz.cluster.setMask(viz. CLIENT1)
mainWin.size(l,l)
mainWin.viewpoint(CameraViewArray[0]) #changed from 2 to O
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viz.cluster.setMask(viz.MASTER)
# Scrunch main window to left of screen
mainWin.size(.5,1)
mainWin.viewpoint(CameraViewArray[I])
#add window on left of screen
win2=viz.add(viz.WINDOW)
win2.position(.5,l)
win2.size(.5,l)
win2.viewpoint(CameraViewArray[2])
viz.cluster.setMask(viz.ALLCLIENTS)
DisplayStatus = [0,1,2]

#changed from 0 to 1

#changed from I to 2

# Shows the current viewpoint for each of the three displays. By default starts with 1st three entries

#
# These are defined in J. Craig, Intro to Robotics, starting on page 45...
# Assume the fixed frame of reference is the base reference frame. This will correspond to the Joint 0 frame
# which is also the same as Joint 1. x to the right, y into page, z up

oType = 1 # RRG has header file listing 2 = FixedXYZ, 0 = EulerXYZ, 1 = EulerZYZ AML corrected these on 3/31/05
# BUT really seems to work as such O=EulerZYZ, I=EulerZYX and 2=FixedXYZ - has implications for

UpdateEEFvector()

# Set initial control mode for robot: 0 = joint angle; I = end-effector rate
controlMode = I
CmodeText = []
CmodeText.append(vizinfo.add('Joint Angle Mode'))
CmodeText[0].translate(0.05,0.95)
CmodeText[0].alignment(vizinfo.UPPERLEFT)
CmodeText[0].visible(viz.OFF)
CmodeText.append(vizinfo.add('EE Internal Frame Mode))
CmodeText[l].translate(0.05,0.90)
CmodeText[l].alignment(vizinfo.UPPERLEFT)
CmodeText[l].visible(viz.OFF)
SingText = vizinfo.add('Singularity')
SingText.translate(0.95,0.85)
SingText.visible(viz.OFF)

# Enable Physics Engine to check collisions between objects
viz.phys.enableo
# Set the initial pose of the robot
#InitJAng = [-0.0, -40.0, 10.0, 0.0, -60.0, 0.0, 0.0] # These are specified in degrees but RRG uses radians
JAnglesRad = [0.0, 0.0, 0.0, 0.0, 0.1, 0.1, 0.01 # Holds joint angles in radians!
EEFvector =[
robotnum = RRG.CreateRobot( 'mvlpuma-xl.dh',InitJAng[ArmPositionJ)

# Add all the robot parts into the scene graph
cl = viz.add('mvlpuma-waist.wrl)
c2 = cl.addchild('mvlpuma-shoulder.wrl)
c3 = c2.addchild('mvlpuma-upperarm-xl.wrl)
c4 = c3.addchild('mvlpuma-forearm-xl.wrl')
j1 =c4.addchild('mvlpuma-j4.wrl')
j2 =jl.addchild('mvlpuma-j5.wrl)
j3 =j2.addchild('mvlpuma-j6.wrl')
por =j3.addchild(joint3.wrl) # This object is just to show the point of resolution

# This copy of the c4 link will get checked for collisions.
c4_cd = c4.copyo
c4_cd.collidemesho
c4_cd.disable(viz.DYNAMICS)
c4_cd.visible(viz.OFF)

# Move the pieces to the correct places in the zero-angle configuration
c2.translate(0, 2.5, 0)
c3.translate(0, 0, .50)
c4.translate(4.0, 0.0, -.30)
j 1.translate(0, -4.0, 0)
por.translate(0,-0.22,0)
por.rotate(90,90,0) # Rotate to get z-axis pointing in right direction - hope this doesn't mess up pickup
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por.visible(viz.OFF)

##******** ALE *********
#g = viz.add('truss2.wrl')
#g.translate(0,0,1)
#g.collideBox()
#g.disable(viz.DYNAMICS)
gx1 = viz.add('truss-orange.wrl')
gx2 = viz.add('truss2.wrl')
gx2.translate(0,0,15)
gxl.collideBox()
gxl.disable(viz.DYNAMICS)
gx2.collideBoxo
gx2.disable(viz.DYNAMICS)
gxl.color(l,.4,0) #10 0 = red, 1 10=
gyl = viz.add('truss2.wrl')
gyl.translate(15,0,0)
gyl.rotate(90,0,0)
gy2 = viz.add('truss2.wrl')
gy2.rotate(90,0,0)
gyl.collideBoxo
gyl.disable(viz.DYNAMICS)
gy2.collideBox()
gy2.disable(viz.DYNAMICS)

# NOTE: Any child objects will also become invisible!!!

#initial truss
#extending initial truss

yellow, 1 1 1 = white,

#perpendicular trusses

##gxl = viz.add(truss-orange.wrl') #initial truss
##gx2 = viz.add('truss-turquoise.wrl) #extending initial truss
##gx2.translate(0,0,15)
##gxl.collideBox()
##gxl.disable(viz.DYNAMICS)
##gx2.collideBox()
##gx2.disable(viz.DYNAMICS)
##gxl.color(l,.4,0) #1 0 0 = red, 11 0 = yellow, I l I = white,
##gx2.color(0,.5,.5) #0 1 0 = green, 0 0 1 = blue, 1 0 1 = purple, 0 1 1 = turquoise
##gyl = viz.add('truss-purple.wrl')
##gyl.translate(15,0,0)
##gyl.rotate(90,0,0)
##gy2 = viz.add('truss-purple.wrl') #perpendicular trusses
##gy2.rotate(90,0,0)
##gyl.collideBox()
##gyl.disable(vizDYNAMICS)
##gy2.collideBoxo
##gy2.disable(viz.DYNAMICS)
##gyl.color(.5,0,0.5) #1 0 0 = red, 1 1 0 = yellow, 1 11 = white,
##gy2.color(.5,0,0.5) #0 1 0 = green, 0 0 1 = blue, 1 0 1 = purple, 0 1 1 = turquoise
#ObstacleCube = viz.add('obstaclecube.wrl')
#ObstacleCube.color(1,1,1)
#ObstacleCube.alpha(.3)
#ObstacleCube.translate(-.05,0,0)

##******** ALE *********

# Set limits on joint angle rotation - try to prevent hitting itself
# Still not working in an understandable manner!! AML
#RRG.SetJointLimits( robotnum, 'mvlpuma.limits')
#print "Set Joint Limits"

#Note that the coordinate frames for each of the pieces is different in Vizard and RRG. In this case, we
# only need a simple sign change to get the pieces to rotate in the correct direction as Vizard uses LH coordinates
# and the RRG convection is to use RH coordinates.

##******** ALE *********
#cl.rotate(1,0,0, InitJAng[7])
#c2.rotate(0,1,0, -InitJAng[0)
#c3.rotate(0,0,1, -InitJAng[l])
#c4.rotate(0,0,1, -InitJAng[21)
#jl.rotate(0,1,0, InitJAng[3])
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#j2.rotate(0,0,l, -InitJAng[41)
#j3.rotate(0,l,0, InitJAng[5])
##******** ALE *********

# Set our point of resolution between the gripper fingers is about 20cm down the
# z-axis of the last frame. This is where the por object lies.
# This functionality was added to the RRG.dll vl.3 by AML 6-8-05
toolPoint = (0,0,220)
RRG.SetToolPoint( robotnum, toolPoint)

# Set the base pose to be at the same origin as Vizard coordinates. Since one cannot rotate a RH coordinate frame into
# a LH frame, we must still manually re-map the axes to draw correctly....

RobotBaseXform = [1,0,0,0,0,1,0,0,0,0,1,2500,0,0,0,1]
RRG.SetBasePose( robotnum, RobotBaseXform )
# Set some other values for the inverse calculations.
RRG.SetlnverseErrorTolerance( robotnum, 0.01, 1000.0)
RRG.SetMinimumMOT( robotnum, 100)

# Just put an object at the tool point (see a few lines above). This object is used for the collision detection
# so we can tell when to pick up an object. We don't need to render it to do collision detection.
handpos = viz.add('joint2.wrl)
#handpos.visible(viz.OFF)
handpos.collideMesh()
handpos.disable(viz.DYNAMICS)
# The GetHandPosition method requires an array of angles in radians

for x in range (0,6):

#JAnglesRad[x = InitJAng[CurrentTrialNum][x * DEG2RAD
JAnglesRad[x]= InitJAng[ArmPosition][x] * DEG2RAD

#* JAnglesRad[x *nitJAng[xI * DEG2RAD
# JAnglesFromlK[x] = InitJAng[x] * DEG2RAD

# Calculate the initial EEF position and orientation (in robot base coordinates, not Vizard)
InitMatrix = RRG.GetHandPosition(robotnum,JAnglesRad)
EEFvector = RRG.FromXFormToVector( InitMatrix, oType)
pickupflag = dropflag = 0 # Set initial state for pick up and drop flags
collisionflag = 0
NumFrames =0
trialstarttime = 0
trial-grab time = 0
trialendtime = 0
trialgrabstate = []
trial end state = []
JA history = [I
Tgthistory = []
TrialData = [I
GoalObject = [I
Obstacle = []
viz.gravity(0)
#sid.callback(sid.HATEVENT,hatevent)
viz.callback(viz.KEYBOARDEVENT,kybd)
viz.callback(viz.TIMEREVENT, PrepareNextTrial)
viz.starttimer(l)
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APPENDIX H Summary of Mixed Regressions

PICK UP PHASE

PTA

1. L_TTASK

Variable Estimate

INTERCEPT 1.711
GROUP -0.000
GENDER 0.072
FXD3(1) 0.043
FXD3(2) -0.083
FXD4(1) -0.059
FXD4(2) 0.101
FXD4(3) -0.164
FXD4(4) -0.067
FXD4(5) 0.031
FXD4(6) 0.086
FXD4(7) 0.075
VGEXP -0.003
SETCAMS 0.013
STDAGE 0.013
STDCC -0.032
STDPTA 0.018
FXD10(1) -0.005
FXD10(2) 0.027
FXD11(1) -0.009
FXD11(2) 0.035

2. L_TOBS

Variable

INTERCEPT

GROUP

GENDER

FXD3(1)

FXD3(2)

FXD4(1)

FXD4(2)

FXD4(3)

FXD4(4)

FXD4(5)

FXD4(6)

FXD4(7)

VGEXP

SETCAMS

STDAGE

STDCC

Estimate

0.247
-0.026
0.032
0.048

-0.027
-0.038
-0.011
0.047

-0.035
-0.003
0.062
0.053

-0.000
-0.001

0.066
-0.046

Standardized
Error

-.- 019
0.019
0.021
0.013
0.013
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.020
0.019
0.021
0.020
0.021
0.013
0.013
0.013
0.013

Standardized
Error

0.035
0.035
0.038
0.012
0.012
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.037
0.035
0.039
0.037
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Z

89.155
-0.011
3.462
3.352

-6.605
-2.509
4.288

-6.940
-2.848
1.313
3.637
3.159

-0.138
0.691
0.596

-1.551
0.857

-0.405
2.176

-0.689
2.779

p-value

0.000
0.992
0.001
0.001
0.000
0.012
0.000
0.000
0.004
0.189
0.000
0.002
0.890
0.490
0.551
0.121
0.391
0.686
0.030
0.491
0.005

Z

7.031
-0.731
0.840
4.108

-2.386
-1.751
-0.526
2.173

-1.647
-0.156
2.883
2.463

-0.001
-0.014
1.691

-1.241

p-value

0.000
0.465
0.401
0.000
0.017
0.080
0.599
0.030
0.100
0.876
0.004
0.014
0.999
0.988
0.091
0.214



STDPTA

FXD10 (1)

FXD10 (2)
FXD11 (1)

FXD11 (2)

3. LTCOLL

Variable

INTERCEPT

GROUP
GENDER

FXD3(1)

FXD3(2)

STDAGE

STDCC
STDPTA

FXD7(1)

FXD7(2)

FXD8(1)
FXD8(2)

5. TPCMOTION

Variable

INTERCEPT
GROUP
GENDER
FXD3(1)
FXD3(2)
FXD4(1)
FXD4(2)
FXD4(3)
FXD4(4)
FXD4(5)
FXD4(6)
FXD4(7)
VGEXP
SETCAMS
STDAGE
STDCC
STDPTA
FXD10(1)
FXD10(2)
FXD11(1)
FXD11(2)

-0.018
-0.016

0.013
-0.031
0.038

Estimate

0.247
0.022
0.081
0.011

-0.152
0.105

-0.114
0.072

-0.065
-0.015
0.083

-0.185

Estimate

0.929
0.015

-0.011
-0.012
0.039

-0.013
-0.026
0.002
0.019
0.001
0.035

-0.010
0.005
0.016
0.015

-0.011
-0.021
0.004

-0.023
0.004

-0.010

0.038
0.012
0.012
0.012
0.012

Standardized
Error

0.062
0.064
0.070
0.070
0.078
0.062
0.064
0.073
0.072
0.078
0.064
0.066

Standardized
Error

0.010
0.010
0.011
0.006
0.006
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.010
0.010
0.011
0.010
0.011
0.006
0.006
0.006
0.006

6. TDOFAX

Variable Estimate
Standardized

Error

-0.487
-1.374
1.115

-2.594
3.305

0.626
0.169
0.265
0.009
0.001

Z

4.002
0.339
1.159
0.151

-1.951
1.703

-1.787
0.986

-0.905
-0.198
1.288

-2.806

p-value

0.000
0.734
0.246
0.880
0.051
0.089
0.074
0.324
0.366
0.843
0.198
0.005

p-value

0.000
0.133
0.327
0.048
0.000
0.234
0.018
0.888
0.088
0.897
0.002
0.374
0.631
0.099
0.166
0.284
0.046
0.497
0.000
0.555
0.085

Z

94.121
1.502

-0.980
-1.976
6.462

-1.191
-2.357
0.141
1.707
0.129
3.106

-0.889
0.480
1.651
1.387

-1.072
-1.994
0.680

-3.764
0.590

-1.722

Z
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INTERCEPT

GROUP

GENDER

FXD3(1)

FXD3(2)

STDAGE

STDPTA

STDCC
VGEXP
FXD8(1)

FXD8(2)

FXD9(1)

FXD9(2)

7. T_DOFANG

Variable Estimate

INTERCEPT 0.907
GROUP -0.018
GENDER 0.055
FXD3(1) 0.021
FXD3(2) -0.020
STDAGE 0.064
STDPTA 0.029
STDCC -0.053
VGEXP 0.025
FXD8(1) 0.009
FXD8(2) -0.002
FXD9(1) -0.000
FXD9(2) -0.012

Standardized
Error Z

0.022
0.020
0.022
0.012
0.012
0.027
0.023
0.022
0.023
0.012
0.012
0.012
0.012

41.651
-0.900
2.510
1.820

-1.686
2.373
1.281

-2.410
1.117
0.767

-0.127
-0.032
-0.964

8. PDOFANXANG

Variable Estimate

INTERCEPT 0.586
GROUP -0.004
GENDER -0.005
FXD3(1) -0.015
FXD3(2) 0.016
STDAGE 0.005
STDPTA -0.020
STDCC 0.008
VGEXP 0.017
FXD8(1) 0.009
FXD8(2) -0.014
FXD9(1) -0.004
FXD9(2) -0.013

Standardized
Error

0.-017
0.017
0.018
0.012
0.011
0.018
0.020
0.019
0.018
0.012
0.012
0.012
0.012

Z

33.527
-0.256
-0.276
-1.323
1.405
0.277

-1.024
0.431
0.911
0.773

-1.247
-0.358
-1.125

Standardized
Error Z
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0.254
0.009

-0.032
-0.035
0.051

-0.028
-0.022
0.014
0.012

-0.016
0.001
0.006
0.001

0.016
0.016
0.017
0.012
0.011
0.017
0.018
0.017
0.017
0.012
0.011
0.012
0.011

15.897
0.554

-1.942
-3.001
4.453

-1.712
-1.205
0.799
0.711

-1.376
0.072
0.500
0.103

0.000
0.580
0.052
0.003
0.000
0.087
0.228
0.424
0.477
0.169
0.942
0.617
0.918

p-value

0.000
0.368
0.012
0.069
0.092
0.018
0.200
0.016
0.264
0.443
0.899
0.974
0.335

p-value

0.000
0.798
0.782
0.186
0.160
0.782
0.306
0.666
0.362
0.439
0.213
0.720
0.260

9. LDIMX

Variable Estimate p-value



INTERCEPT
GROUP
GENDER
FXD3(1)
FXD3(2)
FXD4(1)
FXD4(2)
FXD4(3)
FXD4(4)
FXD4(5)
FXD4(6)
FXD4(7)
VGEXP(1)
SETCAMS(1)
STDAGE
STDCC
STDPTA
FXD10(1)
FXD10(2)
FXD11(1)
FXD11(2)

10. LDIMZ

Variable

INTERCEPT
GROUP
GENDER
FXD3(1)
FXD3(2)
FXD4(1)
FXD4(2)
FXD4(3)
FXD4(4)
FXD4(5)
FXD4(6)
FXD4(7)
VGEXP(1)
SETCAMS(1)
STDAGE
STDCC
STDPTA
FXD10(1)
FXD10(2)
FXD11(1)
FXD11(2)

11. LDIMY

Variable

0.545
0.030
0.062

-0.061
-0.064
0.111
0.125

-0.341
-0.179
0.071
0.106
0.062
0.020
0.037
0.002

-0.010
-0.054
-0.008
0.010

-0.022
0.045

Estimate

0.135
0.049

-0.012
0.034

-0.177
0.072
0.107

-0.084
-0.664
0.087
0.291
0.088
0.013

-0.039
-0.111
0.069

-0.112
0.027
0.009
0.031
0.009

Estimate

INTERCEPT 0.246

0.031
0.031
0.032
0.027
0.026
0.047
0.048
0.054
0.053
0.048
0.047
0.047
0.032
0.011
0.032
0.031
0.032
0.027
0.026
0.027
0.026

17.732
0.980
1.960

-2.289
-2.434
2.351
2.617

-6.349
-3.390
1.470
2.243
1.320
0.619
3.277
0.054

-0.334
-1.675
-0.313
0.365

-0.829
1.688

Standardized
Error Z

0.035
0.038
0.042
0.033
0.018
0.015
0.068
0.078
0.065
0.071
0.068
0.068
0.011
0.039
0.043
0.041
0.040
0.037
0.037
0.037
0.038

Standardized
Error

0.030

3.920
1.306

-0.286
1.046

-9.827
4.674
1.576

-1.066
-10.236

1.223
4.272
1.302
1.112

-0.991
-2.550
1.682

-2.806
0.715
0.248
0.852
0.235

Z

8.107

95

0.000
0.327
0.050
0.022
0.015
0.019
0.009
0.000
0.001
0.142
0.025
0.187
0.536
0.001
0.957
0.739
0.094
0.755
0.715
0.407
0.091

p-value

0.000
0.191
0.775
0.296
0.000
0.000
0.115
0.287
0.000
0.221
0.000
0.193
0.266
0.322
0.011
0.092
0.005
0.475
0.804
0.394
0.814

p-value

0.000



GROUP
GENDER
FXD3 (1)
FXD3 (2)
FXD4 (1)
FXD4 (2)
FXD4 (3)
FXD4 (4)
FXD4 (5)
FXD4 (6)
FXD4 (7)
VGEXP(1)
SETCAMS(1)
STDAGE
STDCC
STDPTA

PSvv

1. LTTASK

0.025
0.028
0.021

-0.032
-0.093
0.174

-0.059
-0.037
0.029

-0.021
0.027

-0.012
0.042
0.003

-0.038
-0.127

Variable Estimate

INTERCEPT 1.713

GROUP 0.014
GENDER 0.079
FXD3(1) 0.043
FXD3(2) -0.083
VGEXP -0.002
SETCAMS 0.026
STDAGE 0.002
STDCC -0.037
FXD8(1) -0.059
FXD8(2) 0.101
FXD8(3) -0.164
FXD8(4) -0.067
FXD8(5) 0.031
FXD8(6) 0.086
FXD8(7) 0.075
STDPSVV 0.031
FXD10(1) -0.002
FXD10(2) 0.033
FXD11(1) 0.012
FXD11(2) 0.025

0.031
0.033
0.027
0.027
0.051
0.049
0.053
0.049
0.051
0.050
0.050
0.032
0.031
0.033
0.032
0.033

Standardized
Error

0.019
0.024
0.025
0.013
0.013
0.020
0.025
0.023
0.023
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.033
0.013
0.013
0.013
0.013

2. L_TOBS

Variable Estimate

INTERCEPT 0.252
GROUP -0.018
GENDER 0.049

Standardized
Error

0.036
0.044
0.046

0.832
0.862
0.767

-1.191
-1.833
3.541

-1.107
-0.743
0.573

-0.413
0.545

-0.373
1.353
0.098

-1.191
-3.849

0.406
0.389
0.443
0.234
0.067
0.000
0.268
0.458
0.566
0.680
0.586
0.709
0.176
0.922
0.234
0.000

Z

88.094
0.589
3.196
3.389

-6.568
-0.093
1.017
0.107

-1.631
-2.509
4.289

-6.941
-2.848
1.313
3.637
3.159
0.938

-0.121
2.547
0.936
1.918

p-value

0.000
0.556
0.001
0.001
0.000
0.926
0.309
0.915
0.103
0.012
0.000
0.000
0.004
0.189
0.000
0.002
0.348
0.904
0.011
0.349
0.055

Z

7.017
-0.399
1.080
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p-value

0.000
0.690
0.280



0.049
-0.028
0.007
0.013
0. 063

-0.059
-0.038
-0.011
0.047

-0.035
-0.003

0.062
0.053
0.017

-0.014
0.015
0.002
0.013

Estimate

0.270
0.004
0.035

-0.023
-0.106
0.095

-0.085
0.006
0.049

-0.089
-0.055
0.012

-0.141

Estimate

INTERCEPT 0.929
GROUP 0.005
GENDER -0.011
FXD3(1) -0.012
FXD3(2) 0.039
VGEXP 0.006
SETCAMS 0.010
STDAGE 0.023
STDCC -0.011
FXD8(1) -0.013
FXD8(2) -0.026
FXD8(3) 0.002
FXD8(4) 0.019

0.012
0.012
0.038
0.047
0 . 043
0.042
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.061
0.012
0.012
0.012
0.012

Standardized
Error

0.070
0.076
0.072
0.078
0.082
0.085
0.065
0.106
0.064
0.082
0.088
0.073
0.071

Standardized
Error

0.010
0.013
0.013
0.006
0.006
0.011
0.014
0.012
0.012
0.011
0.011
0.011
0.011

97

4.170
-2.373
0.173
0.280
1.472

-1.424
-1.736
-0.522
2.155

-1.633
-0.155
2.858
2.442
0.282

-1.138
1.252
0.143
1.080

0.000
0.018
0.863
0.780
0. 141
0.155
0.083
0.602
0.031
0.103
0.877
0.004
0.015
0.778
0.255
0.211
0.886
0.280

FXD3 (1)
FXD3 (2)
VGEXP
SETCAMS
STDAGE
STDCC
FXD8(1)
FXD8(2)
FXD8(3)
FXD8(4)
FXD8(5)
FXD8(6)
FXD8(7)
STDPSVV
FXD10(1)
FXD10(2)
FXD11(1)
FXD11(2)

3. LTCOLL

Variable

INTERCEPT
GROUP
GENDER
FXD3(1)
FXD3(2)
STDAGE
STDCC
STDPSVV
VGEXP
FXD8(1)
FXD8(2)
FXD9(1)
FXD9(2)

Z

3.852
0.052
0.489

-0.299
-1.290
1.115

-1.303
0.053
0.765

-1.096
-0.630
0.170

-1.969

p-value

0.000
0.959
0.625
0.765
0.197
0.265
0.193
0.958
0.444
0.273
0.529
0.865
0.049

5. T_PCMOTION

Variable Z

88.634
0.372

-0.800
-2.039
6.507
0.589
0.726
1.845

-0.907
-1.204
-2.382
0.142
1.724

p-value

0.000
0.710
0.424
0.041
0.000
0.556
0.468
0.065
0.364
0.229
0.017
0.887
0.085



FXD8 (5)
FXD8 (6)
FXD8 (7)
STDPSVV
FXD10(1)
FXD10(2)
FXD11(1)
FXD11(2)

0.001
0.035

-0.010
-0.021
0.001

-0.025
-0.012
-0.012

0.011
0.011
0.011
0.018
0.006
0.006
0.006
0.006

6. T_DOFAX

Variable Estimate

INTERCEPT 0.249
GROUP -0.017
GENDER -0.047
FXD3(l) -0.035
FXD3(2) 0.051
STDAGE 0.001
STDCC 0.021
VGEXP 0.006
STDPSVV -0.064
FXD8(1) -0.018
FXD8(2) 0.002
FXD9(1) -0.003
FXD9(2) 0.004

Standardized
Error

0.014
0.016
0.014
0.012
0.011
0.017
0.014
0.014
0.019
0.012
0.012
0.012
0.012

7. T_DOFANG

Variable Estimate

INTERCEPT 0.898
GROUP -0.032
GENDER 0.028
FXD3(1) 0.020
FXD3(2) -0.020
STDAGE 0.075
STDCC -0.033
VGEXP 0.010
STDPSVV -0.034
FXD8(1) 0.011
FXD8(2) -0.010
FXD9(1) 0.004
FXD9(2) -0.020

Standardized
Error Z

0.022
0.023
0.023
0.011
0.012
0.028
0.021
0.023
0.028
0.012
0.013
0.011
0.012

40.360
-1.409
1.245
1.769

-1.735
2.627

-1.539
0.417

-1.212
0.936

-0.778
0.366

-1.639

8. PDOFANXANG

Variable Estimate

INTERCEPT 0.590
GROUP 0.001
GENDER 0.009

Standardized
Error

0.018
0.020
0.019
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Z

33.217
0.054
0.476

0.130
3.138

-0.898
-1.186
0.148

-4.126
-1.954
-1.905

0.896
0.002
0.369
0.236
0.883
0.000
0.051
0.057

Z

18.165
-1.072
-3.247
-3.020
4.458
0.037
1.511
0.437

-3.379
-1.471
0.168

-0.262
0.318

p-value

0.000
0.284
0.001
0.003
0.000
0.970
0.131
0.662
0.001
0.141
0.867
0.793
0.751

p-value

0.000
0.159
0.213
0.077
0.083
0.009
0.124
0.677
0.225
0.350
0.436
0.714
0.101

p-value

0.000
0.957
0.634



FXD3 (1)
FXD3 (2)
STDAGE
STDCC
VGEXP
STDPSVV
FXD8(1)
FXD8(2)
FXD9(1)
FXD9(2)

9. LDIMX

Variable

-0.015
0.016

-0.001
-0.003
0.023
0.013
0.010

-0.015
-0.000
-0.006

Estimate

INTERCEPT 0.550
GROUP 0.019
GENDER 0.076
FXD3(1) -0.059
FXD3(2) -0.064
FXD4(1) 0.111
FXD4(2) 0.124
FXD4(3) -0.341
FXD4(4) -0.176
FXD4(5) 0.071
FXD4(6) 0.105
FXD4(7) 0.062
VGEXP(1) 0.028
SETCAMS(1) 0.037
STDAGE 0.014
STDCC -0.020
STDPSVV -0.024
FXD10(1) -0.005
FXD10(2) 0.016
FXD11(1) 0.006
FXD11(2) 0.029

10. LDIMZ

Variable Estimate

0.012
0.012
0.021
0.018
0.019
0.025
0.012
0.012
0.012
0.012

-1.272
1.345

-0.057
-0.159
1.243
0.512
0.786

-1.223
-0.005
-0.482

Standardized
Error Z

0.032
0.037
0.034
0.027
0.026
0.047
0.048
0.054
0.053
0.048
0.047
0.047
0.034
0.012
0.039
0.033
0 . 042
0.027
0.027
0.027
0. 027

17.094
0.517
2.230

-2.218
-2.442
2.338
2.589

-6.335
-3.342
1.463
2.230
1.308
0.833
3.192
0.369

-0.619
-0.573
-0.176
0.587
0.227
1.064

Standardized
Error Z

INTERCEPT 0.133
GROUP -0.012
GENDER -0.025
FXD3(1) 0.035
FXD3(2) -0.176
FXD4(1) 0.074
FXD4(2) 0.105
FXD4(3) -0.087
FXD4(4) -0.668
FXD4(5) 0.090
FXD4(6) 0.297
FXD4(7) 0.086
VGEXP(1) 0.015
SETCAMS(1) -0.085

0.203
0.179
0.955
0.874
0.214
0.609
0.432
0.221
0.996
0.630

p-value

0.000
0.605
0.026
0.027
0.015
0.019
0.010
0.000
0.001
0.144
0.026
0.191
0.405
0.001
0.712
0.536
0.566
0.860
0.557
0.820
0.287

p-value

0.036
0.051
0.052
0.033
0.018
0.015
0.068
0.078
0.065
0.071
0.068
0.068
0.012
0.053
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3.661
-0.229
-0.470
1.065

-9.698
4.789
1.541

-1.111
-10.287

1.267
4.354
1.266
1.336

-1.599

0.000
0.819
0.638
0.287
0.000
0.000
0.123
0.266
0.000
0.205
0.000
0.206
0.182
0.110



STDAGE -0.064 0.049 -1.300 0.194
STDCC 0.080 0.048 1.676 0.094
STDPSVV -0.133 0.067 -1.982 0.047
FXD10(1) 0.023 0.039 0.590 0.555
FXD10(2) 0.018 0.039 0.466 0.641
FXD11(1) -0.003 0.039 -0.071 0.943
FXD11(2) 0.030 0.039 0.766 0.444

11. LDIMY

Standardized
Variable Estimate Error Z p-value

INTERCEPT 0.248 0.037 6.716 0.000
GROUP -0.025 0.046 -0.554 0.579
GENDER 0.036 0.047 0.760 0.448
FXD3(l) 0.023 0.027 0.828 0.407
FXD3(2) -0.033 0.027 -1.217 0.224
FXD4(l) -0.096 0.051 -1.881 0.060
FXD4(2) 0.175 0.049 3.571 0.000
FXD4(3) -0.060 0.053 -1.130 0.259
FXD4(4) -0.035 0.049 -0.709 0.478
FXD4(5) 0.029 0.051 0.565 0.572
FXD4(6) -0.019 0.050 -0.387 0.698
FXD4(7) 0.028 0.050 0.568 0.570
VGEXP(1) -0.003 0.039 -0.076 0.939
SETCAMS(1) 0.014 0.048 0.281 0.779
STDAGE 0.047 0.044 1.077 0.281
STDCC -0.044 0.043 -1.038 0.299
STDPSVV -0.110 0.063 -1.757 0.079
FXD10(1) -0.012 0.028 -0.413 0.680
FXD10(2) 0.009 0.028 0.334 0.739
FXD11(1) -0.051 0.027 -1.841 0.066
FXD11(2) 0.034 0.027 1.240 0.215

DOCKING PHASE

PTA

1. LTTASK

Standardized
Variable Estimate Error Z p-value

INTERCEPT 2.167 0.022 99.282 0.000
GROUP 0.004 0.022 0.177 0.860
GENDER -0.007 0.024 -0.313 0.754
FXD3(1) 0.078 0.012 6.646 0.000
FXD3(2) -0.048 0.012 -4.155 0.000
VGEXP -0.041 0.023 -1.772 0.076
SETCAMS -0.016 0.022 -0.717 0.474
STDAGE -0.010 0.024 -0.427 0.670
STDCC 0.035 0.023 1.519 0.129

100



0.023
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.012
0.012
0.012
0.012

-2.352
-2.514
1.024

-6.203
1.505
3.699
9.968
1.887

-2.125
2.019

-0.841
0.705

STDPTA
FXD9 (1)
FXD9 (2)
FXD9 (3)
FXD9 (4)
FXD9 (5)
FXD9 (6)
FXD9 (7)
FXD10 (1)
FXD10 (2)
FXD11 (1)
FXD11 (2)

2. L_TOBS

Variable

INTERCEPT
GROUP
GENDER
FXD3(1)
FXD3(2)
FXD4(1)
FXD4(2)
FXD4(3)
FXD4(4)
FXD4(5)
FXD4(6)
VGEXP(1)
SETCAMS(1)
STDAGE
STDCC
STDPTA
FXD10(1)
FXD10(2)
FXD11(1)
FXD11(2)

3. LTCOLL

Variable

INTERCEPT
GROUP
GENDER
FXD3(1)
FXD3(2)
STDAGE
STDCC
STDPTA
SETCAMS
FXD8(1)
FXD8(2)
FXD9(1)
FXD9(2)

0.040
0.040
0.043
0.012
0.012
0.021
0.021
0.021
0.021
0.021
0.021
0.042
0.040
0.044
0.042
0.043
0.012
0.012
0.012
0.012

20.818
-1.315
0.748
6.814

-3.546
3.735
0.290
1.800
2.360

-3.791
-0.190
-0.256
0.428
2.929

-1.507
-1.205
-0.569
2.324

-1.686
1.502

Standardized
Error Z

0.037
0.041
0.046
0.044
0.043
0.047
0.046
0.048
0.042
0.044
0.043
0.044
0.043
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8.009
1.639

-0.849
0.563

-2.412
-0.796
0.789

-2.933
0.974
0.691

-1.075
-0.700
0.384

0.019
0.012
0.306
0.000
0.132
0.000
0.000
0.059
0.034
0.044
0.400
0.481

Standardized
Error Z

-0.055
-0.054
0.022

-0.134
0.033
0.080
0.215
0.041

-0.025
0.023

-0.010
0.008

Estimate

0.828
-0.052
0.032
0.082

-0.042
0.077
0.006
0.037
0.048

-0.078
-0.004
-0.011
0.017
0.129

-0.064
-0.051
-0.007
0.027

-0.020
0.018

Estimate

0.297
0.067

-0.039
0.025

-0.104
-0.037
0.036

-0.141
0.041
0.030

-0.047
-0.031
0.017

p-value

0.000
0.188
0.454
0.000
0.000
0.000
0.772
0.072
0.018
0.000
0.850
0.798
0.669
0.003
0.132
0.228
0.569
0.020
0.092
0.133

p-value

0.000
0.101
0.396
0.574
0.016
0.426
0.430
0.003
0.330
0.490
0.283
0.484
0.701



5. T_PCMOTION

Variable

INTERCEPT
GROUP
GENDER
FXD3(1)
FXD3(2)
VGEXP
SETCAMS
STDAGE
STDCC
STDPTA
FXD9(1)
FXD9(2)
FXD9(3)
FXD9(4)
FXD9(5)
FXD9(6)
FXD9(7)
FXD10(1)
FXD10(2)
FXD11(1)
FXD11(2)

6. T_DOFAX

Variable

INTERCEPT
GROUP
GENDER
FXD3(1)
FXD3(2)
STDAGE
STDPTA
STDCC
VGEXP
FXD8(1)
FXD8(2)
FXD9(1)
FXD9(2)

7.TDOFANG

Variable

INTERCEPT
GROUP
GENDER
FXD3(1)

Estimate

0.819
0.028
0.035

-0.012
-0.010
-0.000
0.024
0.024

-0.031
0.001

-0.032
-0.014
-0.034
-0.017
-0.014
-0.000
0.033

-0.005
0.003

-0.008
0.001

Estimate

0.263
0.018

-0.005
-0.028
0.048

-0.026
-0.010
0.015
0.007

-0.012
-0.003
-0.006
0.001

Estimate

2.484
0.017

-0.027
-0.015

Standardized
Error

0.018
0.018
0.020
0.006
0.006
0.019
0.018
0.020
0.019
0.019
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.006
0.006
0.006
0.006

Standardized
Error

0.018
0.018
0.019
0.010
0.010
0.019
0.021
0.019
0.019
0.010
0.010
0.010
0.010

Standardized
Error

0.025
0.025
0.027
0.018
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Z

45.629
1.555
1.803

-1.983
-1.734
-0.000
1.324
1.229

-1.608
0.056

-2.882
-1.233
-3.100
-1.589
-1.305
-0.011
2.971

-0.777
0.565

-1.255
0.151

p-value

0.000
0.120
0.071
0.047
0.083
1.000
0.185
0.219
0.108
0.956
0.004
0.217
0.002
0.112
0.192
0.991
0.003
0.437
0.572
0.209
0.880

Z

14.345
0.970

-0.251
-2.745
4.803

-1.376
-0.498
0.796
0.378

-1.212
-0.260
-0.635
0.100

p-value

0.000
0.332
0.802
0.006
0.000
0.169
0.618
0.426
0.705
0.226
0.795
0.525
0.920

Z

97.743
0.676

-1.013
-0.811

p-value

0.000
0.499
0.311
0.417



FXD3 (2)
STDAGE
STDPTA
STDCC
VGEXP
FXD8 (1)
FXD8 (2)
FXD9 (1)
FXD9 (2)

9. LDIMX

Variable

INTERCEPT
GROUP
GENDER
FXD3(1)
FXD3(2)
FXD4(1)
FXD4(2)
FXD4(3)
FXD4(4)
FXD4(5)
FXD4(6)
FXD4(7)
VGEXP(1)
SETCAMS(1)
STDAGE
STDCC
STDPTA
FXD10(1)
FXD10(2)
FXD11(1)
FXD11(2)

10. LDIMZ

Variable

-0.002
-0.011
-0.089
0.017

-0.054
-0.012
-0.003
-0.023
0.014

Estimate

0.455
0.021
0.038
0.089
0.157

-0.089
-0.112
-0.509
0.029
0.025
0.356
0.247

-0.052
-0.007
-0.013

0.012
-0.060
-0.051

0.035
-0.030
0.044

Estimate

INTERCEPT 0.455
GROUP 0.044
GENDER 0.027
FXD3(1) -0.069
FXD3(2) -0.168
FXD4(1) -0.139
FXD4(2) 0.095
FXD4(3) -0.546
FXD4(4) -0.110
FXD4(5) -0.092
FXD4(6) 0.357
FXD4(7) 0.347
VGEXP(1) -0.033
SETCAMS(1) -0.008
STDAGE -0.003

0.018
0.026
0.028
0.027
0.027
0.018
0.018
0.018
0.018

Standardized
Error

0.025
0.025
0.027
0.022
0.022
0.040
0.054
0.041
0.040
0.043
0.040
0.040
0.026
0.025
0.027
0.026
0.026
0.022
0.022
0.022
0.022

Standardized
Error

0.024
0.023
0.025
0.024
0.024
0.042
0.042
0.068
0.048
0.042
0.042
0.042
0.024
0.023
0.026
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-0.123
-0.420
-3.116
0.623

-2.031
-0.663
-0.160
-1.279
0.797

Z

0.902
0.675
0.002
0.533
0.042
0.507
0.873
0.201
0.425

p-value

0.000
0.397
0.162
0.000
0.000
0.026
0.036
0.000
0.459
0.557
0.000
0.000
0.046
0.795
0.640
0.642
0.023
0.019
0.107
0.164
0.043

18.039
0.846
1.397
4.059
7.151

-2.225
-2.092

-12.450
0.740
0.588
8.987
6.249

-1.992
-0.260
-0.468
0.465

-2.281
-2.354
1.610

-1.393
2.019

Z

18.815
1.888
1.064

-2.845
-7.111
-3.338
2.261

-8.071
-2.267
-2.161
8.565
8.335

-1.340
-0.348
-0.136

p-value

0.000
0.059
0.288
0.004
0.000
0.001
0.024
0.000
0.023
0.031
0.000
0.000
0.180
0.728
0.892



0.025
0.025
0.024
0.023
0.024
0.023

STDCC
STDPTA

FXD10 (1)
FXD10 (2)

FXD11 (1)
FXD11 (2)

11. LDIMY

Variable

INTERCEPT

GROUP

GENDER
FXD3(1)
FXD3(2)

FXD4(1)
FXD4(2)

FXD4(3)
FXD4(4)

FXD4(5)
FXD4(6)

FXD4(7)
VGEXP(1)

SETCAMS(1)
STDAGE
STDCC
STDPTA
FXD10(1)

FXD10(2)

FXD11(1)

FXD11(2)

0.846
-2.002
-0.147
0.520

-1.919
0.913

Z

9.566
1.169
0.565
4.464

-1.043
-5.432
2.762
0.746
2.581

-0.801
3.823
1.360

-1.382
0.966
0.457
0.072

-1.770
-0.994
1.437

-1.036
-0.091

Standardized
Error Z

0.014
0.014
0.015
0.010
0.009
0.014
0.014
0.015
0.014
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.015
0.010
0.009
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120.983
0.751
1.958
5.320

-5.038
-1.880
0.719
0.886

-0.356
-1.424
1.914

-9.268
-0.619
1.663
4.149
6.214

-1.401
-1.501
2.047

0.398
0.045
0.883
0.603
0.055
0.361

Standardized
Error

0.036
0.036
0.039
0.023
0.014
0.051
0.044
0.044
0.045
0.046
0.047
0.046
0.037
0.036
0.039
0.038
0.038
0.025
0.024
0.025
0.024

0.021
-0.049
-0.004
0.012

-0.045
0.021

Estimate

0.341
0.042
0.022
0.104

-0.014
-0.274
0.123
0.033
0.115

-0.037
0.178
0.062

-0.052
0.035
0.018
0.003

-0.067
-0.025
0.035

-0.026
-0.002

p-value

0.000
0.243
0.572
0.000
0.297
0.000
0.006
0.456
0.010
0.423
0.000
0.174
0.167
0.334
0.648
0.942
0.077
0.320
0.151
0.300
0.927

13. LTAX

Variable

INTERCEPT

GROUP

GENDER

FXD3(1)

FXD3(2)

VGEXP

SETCAMS

STDAGE

STDCC
FXD8(1)

FXD8(2)

FXD8(3)

FXD8(4)

FXD8(5)

FXD8(6)

FXD8(7)

STDPTA

FXD10(1)

FXD10(2)

Estimate

1.654
0.010
0.029
0.051

-0.047
-0.027
0.010
0.013

-0.005
-0.025
0.034

-0.163
-0.011
0.029
0.073
0.110

-0.020
-0.014
0.019

p-value

0.000
0.453
0.050
0.000
0.000
0.060
0.472
0.375
0.722
0.154
0.056
0.000
0.536
0.096
0.000
0.000
0.161
0.133
0.041



FXD11 (1)
FXD11 (2)

14. LTANG

Variable

INTERCEPT

GROUP
GENDER

FXD3(1)

FXD3(2)

VGEXP

SETCAMS

STDAGE

STDCC
FXD8(1)
FXD8(2)
FXD8(3)

FXD8(4)
FXD8(5)

FXD8(6)
FXD8(7)

STDPTA

FXD10(1)

FXD10(2)

FXD11(1)

FXD11(2)

0.010
0.009

Standardized
Error

0.022
0.022
0.024
0.020
0.020
0.023
0.023
0.025
0.024
0.037
0.037
0.037
0.037
0.037
0.037
0.037
0.024
0.020
0.020
0.020
0.020

15. LAXOFFS

Standardized
Error

0.046
0.046
0.050
0.019
0.019
0.048
0.046
0.051
0.049
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.049
0.019
0.019
0.019
0.019

-2.268
1.885

0.023
0.059

-0.022
0.018

Estimate

1.339
0.043

-0.031
0.091

-0.081
-0.081
-0.033
-0.009
0.057

-0.173
-0.008
-0.158

0.099
0.199
0.324
0.043

-0.116
-0.041
0.020

-0.008
0.011

Z

60.012
1.928

-1.298
4.573

-4.120
-3.468
-1.442
-0.385
2.408

-4.691
-0.231
-4.296
2.697
5.385
8.809
1.165

-4.900
-2.066
1.016

-0.421
0.566

p-value

0.000
0.054
0.194
0.000
0.000
0.001
0.149
0.700
0.016
0.000
0.817
0.000
0.007
0.000
0.000
0.244
0.000
0.039
0.309
0.673
0.571

Variable

INTERCEPT

GROUP

GENDER

FXD3(1)
FXD3(2)

VGEXP
SETCAMS

STDAGE

STDCC

FXD8(1)

FXD8(2)

FXD8(3)

FXD8(4)
FXD8(5)
FXD8(6)

FXD8(7)

STDPTA

FXD10(1)

FXD10(2)

FXD11(1)

FXD11(2)

Estimate

-1.665
0.021
0.087
0.009
0.008
0.039

-0.016
0.017

-0.081
-0.080
0.159

-0.049
0.107

-0.150
-0.035
0.112
0.022
0.022
0.014

-0.007
-0.021

Z

-36.319
0.468
1.753
0.490
0.421
0.815

-0.336
0.335

-1.654
-2.308
4.550

-1.418
3.068

-4.292
-1.002
3.206
0.448
1.166
0.772

-0.372
-1.121

p-value

0.000
0.640
0.080
0.624
0.674
0.415
0.737
0.738
0.098
0.021
0.000
0.156
0.002
0.000
0.316
0.001
0.654
0.244
0.440
0.710
0.262
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16. LANGOFFS

variable Estimate

INTERCEPT 0.401
GROUP 0.030
GENDER 0.107
FXD3(1) 0.020
FXD3(2) -0.007
VGEXP 0.028
SETCAMS 0.047
STDAGE 0.046
STDCC -0.094
FXD8(l) -0.045
FXD8(2) 0.001
FXD8(3) -0.050
FXD8(4) 0.013
FXD8(5) 0.059
FXD8(6) -0.024
FXD8(7) 0.012
STDPTA -0.009
FXD10(1) 0.009
FXD10(2) 0.007
FXD11(1) -0.023
FXD11(2) -0.033

Standardized
Error Z

0.029
0.029
0.031
0.020
0.020
0.030
0.029
0.032
0.030
0.037
0.037
0.037
0.037
0.037
0.037
0.037
0.031
0.020
0.020
0.020
0.020

13.972
1.044
3.450
1.001

-0.368
0.918
1.618
1.456
-3.095
-1.205
0.015

-1.330
0.349
1.582

-0.635
0.325

-0.298
0.428
0.364

-1.152
-1.673

17. LROLLOFFS

Variable

INTERCEPT
GROUP
GENDER
FXD3(1)
FXD3 (2)
VGEXP
SETCAMS
STDAGE
STDCC
FXD8(1)
FXD8(2)
FXD8(3)
FXD8(4)
FXD8(5)
FXD8(6)
FXD8(7)
STDPTA
FXD10(1)
FXD10(2)
FXD11(1)
FXD11(2)

Estimate

0.608
-0.043
0.167
0.092

-0.038
-0.005
0.108
0.135

-0.216
-0.032
0.203

-0.065
0.117
0.098
0.112
0.140

-0.047
-0.001

0.027
0.026

-0.049

Standardized
Error

0.059
0.059
0.063
0.043
0.042
0.061
0.059
0.064
0.062
0.079
0.079
0.079
0.079
0.079
0.079
0.079
0.062
0.043
0.042
0.043
0.042

Z

10.364
-0.728
2.642
2.145

-0.900
-0.082
1.833
2.095

-3.490
-0.407
2.573

-0.819
1.484
1.240
1.415
1.775

-0.745
-0.028
0.643
0.610

-1.153

19. L_TCONF

106

p-value

0.000
0.297
0.001
0.317
0.713
0.359
0.106
0.145
0.002
0.228
0.988
0.184
0.727
0.114
0.525
0.745
0.766
0.669
0.716
0.249
0.094

p-value

0.000
0.466
0.008
0.032
0.368
0.935
0.067
0.036
0.000
0.684
0.010
0.413
0.138
0.215
0.157
0.076
0.456
0.978
0.520
0.542
0.249



Variable Estimate

INTERCEPT 0.651
GROUP -0.011
GENDER -0.039
FXD3(1) 0.013
FXD3(2) -0.008
VGEXP -0.050
SETCAMS 0.049
STDAGE 0.011
STDCC 0.030
FXD8(1) -0.086
FXD8(2) -0.014
FXD8(3) 0.029
FXD8(4) -0.045
FXD8(5) 0.140
FXD8(6) -0.015
FXD8(7) -0.003
STDPTA -0.051
FXD10(1) -0.017
FXD10(2) 0.036
FXD11(1) -0.009
FXD11(2) 0.008

PSvv

1. LTTASK

Variable

INTERCEPT
GROUP
GENDER
FXD3(1)
FXD3(2)
VGEXP
SETCAMS
STDAGE
STDCC
FXD8(1)
FXD8(2)
FXD8(3)
FXD8(4)
FXD8(5)
FXD8(6)
FXD8(7)
STDPSVV
FXD10(1)
FXD10(2)
FXD11(1)
FXD11(2)

Estimate

2.172
-0.004
0.012
0.078

-0.048
-0.031
-0.012
-0.001
0.021

-0.054
0.022

-0.134
0.033
0.080
0.215
0.041

-0.014
-0.027
0.023

-0.011
0.000

Standardized
Error Z

0.024
0.024
0.026
0.014
0.014
0.025
0.024
0.026
0.025
0.025
0.026
0.026
0.026
0 .026
0.041
0.026
0.026
0.026
0.014
0.014
0.014
0.014

Standardized
Error

0.024
0.030
0.031
0.012
0.012
0.025
0.032
0.029
0.028
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.041
0.012
0.012
0.012
0.012

27.020
-0.474
-1.502
0.917

-0.576
-2.018
2.026
0.436
1.199
-3.342
-0.550
1.120
-1.741
3.378
-0.594
-0.114
-2.007
-1.243
2.521
-0.648
0.557

Z

89.404
-0.141
0.387
6.710

-4.130
-1.214
-0.372
-0.034
0.762

-2.515
1.024

-6.205
1.505
3.700
9.970
1.888

-0.341
-2.218
1.984

-0.951
0.040
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p-value

0.000
0.636
0.133
0.359
0.565
0.044
0.043
0.663
0.230
0.001
0.582
0.263
0.082
0.001
0.553
0.909
0.045
0.214
0.012
0.517
0.578

p-value

0.000
0.888
0.699
0.000
0.000
0.225
0.710
0.973
0.446
0.012
0.306
0.000
0.132
0.000
0.000
0.059
0.733
0.027
0.047
0.342
0.968



2. L_TOBS

Variable Estimate

INTERCEPT 0.608
GROUP -0.040
GENDER 0.046
FXD3(1) 0.066
FXD3(2) -0.027
VGEXP 0.002
SETCAMS 0.020
STDAGE 0.108
STDCC -0.064
FXD8(1) 0.303
FXD8(2) 0.232
FXD8(3) 0.263
FXD8(4) 0.275
FXD8(5) 0.149
FXD8(6) -1.585
FXD8(7) 0.223
STDPSVV -0.006
FXD10(1) -0.011
FXD10(2) 0.022
FXD11(1) 0.013
FXD11(2) -0.001

Standardized
Error

0.035
0.043
0.044
0.013
0.013
0.037
0.045
0.041
0.040
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.059
0.013
0.013
0.013
0.013

3. LTCOLL

Standardized

Error

0.048
0.054
0.050
0.042
0.042
0.058
0.049
0.051
0.067
0.044
0.044
0.044
0.044

5. T_PCMOTIQN

Variable Estimate

INTERCEPT 0.818

GROUP 0.023
GENDER 0.029

Standardized
Error

0.018
0.022
0.023
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Z

17.469
-0.926
1.047
5.068

-2.074
0.059
0.430
2.612
-1.601
12.601
9.663

10.950
11.428
6.183

-65.908
9.254

-0.101
-0.820
1.663
0.937

-0.091

p-value

0.000
0.354
0.295
0.000
0.038
0.953
0.667
0.009
0.109
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.919
0.412
0.096
0.349
0.928

Variable

INTERCEPT
GROUP
GENDER
FXD3(1)
FXD3(2)
STDAGE
STDCC
VGEXP
STDPSVV
FXD8(1)
FXD8(2)
FXD9(1)
FXD9(2)

Estimate

0.314
0.031

-0.016
0.023

-0.103

-0.021
0.012
0.046

-0.082
0.009

-0.043
-0.082
0.015

Z

6.500
0.563

-0.314
0.552

-2.477
-0.354
0.239
0.904

-1.215
0.198

-0.995
-1.853
0.347

p-value

0.000
0.574
0.754
0.581
0.013
0.723
0.811
0.366
0.224
0.843
0.320
0.064
0.728

Z

45.242
1.035
1.252

p-value

0.-000
0.300
0.211



FXD3 (1)
FXD3 (2)
VGEXP
SETCAMS
STDAGE
STDCC
FXD8(1)
FXD8(2)
FXD8(3)
FXD8(4)
FXD8(5)
FXD8(6)
FXD8(7)
STDPSVV
FXD10(1)
FXD10(2)
FXD11(1)
FXD11(2)

6. T_DOFAX

Variable

INTERCEPT
GROUP
GENDER
FXD3(1)
FXD3(2)
STDAGE
STDCC
VGEXP
STDPSVV
FXD8(1)
FXD8(2)
FXD9(1)
FXD9(2)

7. T_DOFANG

Variable

INTERCEPT
GROUP
GENDER
FXD3(1)
FXD3(2)
STDAGE
STDCC
VGEXP
STDPSVV
FXD8(1)
FXD8(2)
FXD9(1)
FXD9(2)

-0.012
-0.010
-0.002

0.018
0.028

-0.026
-0.032
-0.014
-0.034
-0.017
-0.014
-0.000

0.033
-0.011
-0.007

0.004
-0.010
0.005

Estimate

0.257
-0.003
-0.020
-0.028
0.048

-0.002
0.024
0.000

-0.052
-0.017
-0.001
-0.019
0.003

Estimate

1.072
0.001

-0.003
-0.006
-0.000
0.004

-0.004
-0.025
-0.025
-0.012
-0.003
-0.017
-0.002

0.006
0.006
0.019
0.024
0.022
0.021
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.031
0.006
0.006
0.006
0.006

-1.941
-1.726
-0.132
0.764
1.282

-1.263
-2.883
-1.233
-3.101
-1.588
-1.304
-0.010
2.974

-0.366
-1.080
0.746

-1.576
0.771

Standardized
Error Z

0.017
0.019
0.017
0.010
0.010
0.020
0.017
0.018
0.023
0.010
0.010
0.010
0.010

Standardized
Error

0.018
0.020
0.019
0.011
0.011
0.022
0.018
0.019
0.025
0.011
0.011
0.012
0.012

15.363
-0.184
-1.156
-2.813
4.983

-0.097
1.422
0.016

-2.246
-1.658
-0.129
-1.835
0.324

Z

59.812
0.053

-0.173
-0.541
-0.043
0.187

-0.240
-1.326
-0.992
-1.089
-0.293
-1.503
-0.187
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0.052
0.084
0.895
0.445
0.200
0.207
0.004
0.218
0.002
0.112
0.192
0.992
0.003
0.714
0.280
0.456
0.115
0.441

p-value

0.000
0.854
0.248
0.005
0.000
0.923
0.155
0.987
0.025
0.097
0.897
0.066
0.746

p-value

0.000
0.957
0.862
0.588
0.966
0.852
0.810
0.185
0.321
0.276
0.769
0.133
0.852



9. LDIMX

Variable Estimate

INTERCEPT 0.455
GROUP 0.002
GENDER 0.045
FXD3(1) 0.091
FXD3(2) 0.158
FXD4(1) -0.090
FXD4(2) -0.110
FXD4(3) -0.511
FXD4(4) 0.029
FXD4(5) 0.028
FXD4(6) 0.355
FXD4(7) 0.247
VGEXP(1) -0.048
SETCAMS(1) -0.016
STDAGE 0.005
STDCC 0.006
STDPSVV -0.036
FXD10(1) -0.061
FXD10(2) 0.035
FXD11(1) -0.053
FXD11(2) -0.003

10. LDIMZ

Variable

INTERCEPT

GROUP

GENDER

FXD3(1)

FXD3(2)
FXD4(1)

FXD4(2)

FXD4(3)

FXD4(4)

FXD4(5)

FXD4(6)

FXD4(7)

VGEXP(1)

SETCAMS(1)

STDAGE

STDCC
STDPSVV
FXD10(1)

FXD10(2)

FXD11(1)

FXD11(2)

Estimate

0.453
0.021
0.022

-0.068
-0.168
-0.139

0.095
-0.546
-0.110
-0.092
0.357
0.347

-0.033
-0.025
0.014
0.023

-0.054
-0.017
0.017

-0.063
0.018

Standardized
Error

0.027
0.034
0.034
0.022
0.022
0.040
0.053
0.041
0.040
0.043
0.040
0.040
0.028
0.035
0.032
0.031
0.046
0.022
0.023
0.022
0.023

Standardized
Error

0.025
0.030
0.031
0.024
0.024
0.042
0.042
0.067
0.048
0.042
0.042
0.042
0.025
0.031
0.029
0.028
0.041
0.025
0.024
0.024
0.024
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Z

16.660
0.055
1.311
4.169
7.190

-2.243
-2.060

-12.524
0.724
0.664
8.991
6.246

-1.703
-0.451
0.157
0.179

-0.781
-2.733
1.539

-2.367
-0.112

p-value

0.000
0.956
0.190
0.000
0.000
0.025
0.039
0.000
0.469
0.507
0.000
0.000
0.089
0.652
0.875
0.858
0.435
0.006
0.124
0.018
0.911

Z

18.170
0.696
0.731

-2.801
-7.103
-3.342
2.259

-8.101
-2.278
-2.166
8.594
8.363

-1.330
-0.802
0.479
0.829

-1.315
-0.662
0.688

-2.588
0.755

p-value

0.000
0.487
0.465
0.005
0.000
0.001
0.024
0.000
0.023
0.030
0.000
0.000
0.184
0.423
0.632
0.407
0.189
0.508
0.492
0.010
0.450



11. L_DIMY

Variable Estimate

INTERCEPT 0.340
GROUP 0.003
GENDER 0.011
FXD3(1) 0.105
FXD3(2) -0.014
FXD4(1) -0.272
FXD4(2) 0.122
FXD4(3) 0.033
FXD4(4) 0.115
FXD4(5) -0.038
FXD4(6) 0.177
FXD4(7) 0.063
VGEXP(l) -0.052
SETCAMS(1) 0.005
STDAGE 0.048
STDCC 0.010
STDPSVV -0.086
FXD10(1) -0.030
FXD10(2) 0.036
FXD11(1) -0.032
FXD11(2) 0.006

Standardized
Error

0.037
0.046
0.046
0.023
0.014
0.050
0.044
0.044
0.045
0.046
0.047
0.046
0.038
0.048
0.044
0.042
0.062
0.025
0.025
0.025
0.025

13. L_TAX

Variable

INTERCEPT
GROUP
GENDER
FXD3(1)
FXD3(2)
VGEXP
SETCAMS
STDAGE
STDCC
FXD8(1)
FXD8(2)
FXD8(3)
FXD8(4)
FXD8(5)
FXD8(6)
FXD8(7)
STDPSVV
FXD10(1)
FXD10(2)
FXD11(1)
FXD11(2)

14. LTANG

Estimate

1.658
0.018
0.048
0.052

-0.047
-0.020
0.024
0.010

-0.019
-0.025
0.034

-0.163
-0.011
0.029
0.073
0.110
0.019

-0.020
0.023

-0.029
0.013

Standardized
Error

0.014
0.018
0.018
0.010
0.009
0.015
0.018
0.017
0.016
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.024
0.010
0.010
0.010
0.010

Standardized
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Z

9.231
0.060
0.244
4.532

-1.014
-5.391
2.760
0.743
2.579

-0.834
3.804
1.371

-1.341
0.100
1.105
0.237

-1.375
-1.191
1.447

-1.257
0.216

p-value

0.000
0.952
0.807
0.000
0.311
0.000
0.006
0.457
0.010
0.404
0.000
0.170
0.180
0.920
0.269
0.813
0.169
0.234
0.148
0.209
0.829

Z

116.805
1.022
2.660
5.463

-5.006
-1.363
1.288
0.618

-1.161
-1.428
1.919

-9.293
-0.621
1.668
4.160
6.230
0.799

-2.014
2.342

-2.943
1.358

p-value

0.000
0.307
0.008
0.000
0.000
0.173
0.198
0.537
0.246
0.153
0.055
0.000
0.535
0.095
0.000
0.000
0.424
0.044
0.019
0.003
0.175



Variable Estimate

INTERCEPT 1.346
GROUP 0.008

GENDER -0.010
FXD3(1) 0.091
FXD3(2) -0.081
VGEXP -0.065
SETCAMS -0.045
STDAGE 0.021
STDCC 0.042
FXD8(1) -0.172
FXD8(2) -0.008
FXD8(3) -0.158
FXD8(4) 0.099
FXD8(5) 0.199
FXD8(6) 0.324
FXD8(7) 0.043
STDPSVV -0.072
FXD10(1) -0.042
FXD10(2) 0.019
FXD11(1) -0.004
FXD11(2) -0.001

Error

0.030
0.037
0.038
0.020
0.020
0.032
0.039
0.036
0.035
0.037
0.037
0.037
0.037
0.037
0.037
0.037
0.051
0.020
0.020
0.021
0.021

Z p-value

44.463
0.222

-0.265
4.552

-4.126
-2.065
-1.135
0.589
1.217

-4.689
-0.230
-4.293
2.697
5.376
8.806
1.166

-1.408
-2.049
0.948

-0.175
-0.054

0.000
0.824
0.791
0.000
0.000
0.039
0.256
0.556
0.224
0.000
0.818
0.000
0.007
0.000
0.000
0.244
0.159
0.040
0.343
0.861
0.957

15. LAXOFFS

Standardized
Error

0.046
0.057
0.059
0.019
0.019
0.048
0.060
0.055
0.053
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.078
0.019
0.019
0.019
0.019

16. LANGOFFS

Standardized
Error
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Variable

INTERCEPT
GROUP
GENDER
FXD3(1)
FXD3(2)
VGEXP
SETCAMS
STDAGE
STDCC
FXD8(1)
FXD8(2)
FXD8(3)
FXD8(4)
FXD8(5)
FXD8(6)
FXD8(7)
STDPSVV
FXD10(1)
FXD10(2)
FXD11(1)
FXD11(2)

Estimate

-1.668
0.027
0.083
0.011
0.009
0.035

-0.014
0.012

-0.078
-0.080
0.159

-0.049
0.107

-0.150
-0.035
0.112
0.016
0.021
0.009

-0.010
-0.028

Z

-36.163
0.483
1.412
0.566
0.460
0.714

-0.229
0.212

-1.468
-2.309
4.552
-1.419
3.070
-4.295
-1.003
3.207
0.198
1.091
0.455

-0.505
-1.421

p-value

0.000
0.629
0.158
0.572
0.646
0.475
0.819
0.832
0.142
0.021
0.000
0.156
0.002
0.000
0.316
0.001
0.843
0.275
0.649
0.613
0.155

p-valueVariable Estimate Z



INTERCEPT
GROUP
GENDER
FXD3(1)
FXD3(2)
VGEXP
SETCAMS
STDAGE
STDCC
FXD8(1)
FXD8(2)
FXD8(3)
FXD8(4)
FXD8(5)
FXD8(6)
FXD8(7)
STDPSVV
FXD10(1)
FXD10(2)
FXD11(1)
FXD11(2)

17. LROLLOFFS

Variable Estimate

INTERCEPT 0.610
GROUP -0.060
GENDER 0.172
FXD3(1) 0.091
FXD3(2) -0.038
VGEXP 0.000
SETCAMS 0.099
STDAGE 0.149
STDCC -0.219
FXD8(1) -0.032
FXD8(2) 0.203
FXD8(3) -0.065
FXD8(4) 0.117
FXD8(5) 0.098
FXD8(6) 0.112
FXD8(7) 0.140
STDPSVV -0.037
FXD10(1) 0.001
FXD10(2) 0.022
FXD11(1) 0.016
FXD11(2) -0.021

19. LTCONF

Variable

INTERCEPT
GROUP
GENDER
FXD3(1)

Estimate

0.660
-0.002
-0.002
0.013

Standardized
Error

0.060
0.074
0.075
0.043
0.042
0.062
0.078
0.070
0.069
0.079
0.079
0.079
0.079
0.079
0.079
0.079
0.101
0.044
0.043
0.044
0.044

Standardized
Error

0.026
0.032
0.033
0.014
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0.392
0.001
0.079
0.022

-0.006
0.016
0.015
0.065

-0.075
-0.045

0.001
-0.050
0.013
0.059

-0.024
0.012

-0.061
0.002
0.002

-0.036
-0.026

0.028
0.034
0.035
0.020
0.020
0.029
0.036
0.033
0.032
0.038
0.038
0.038
0.038
0.038
0.038
0.038
0.047
0.021
0.021
0.021
0.021

14.244
0.034
2.264
1.073

-0.320
0.573
0.429
1.997

-2.368
-1.203

0.015
-1.328
0.349
1.580

-0.634
0.325

-1.309
0.083
0.119

-1.735
-1.253

0.000
0.972
0.024
0.283
0.749
0.567
0.668
0.046
0.018
0.229
0.988
0.184
0.727
0.114
0.526
0.745
0.190
0.934
0.905
0.083
0.210

Z

10.222
-0.818
2.291
2.127

-0.910
0.007
1.281
2 .121

-3.193
-0.408
2.569

-0.820
1.481
1.237
1.412
1.771

-0.363
0.034
0.516
0.356

-0.477

p-value

0.000
0.413
0.022
0.033
0.363
0.995
0.200
0. 034
0.001
0.683
0.010
0.412
0.139
0.216
0.158
0.077
0.717
0.973
0.606
0.722
0.633

Z

25.289
-0.063
-0.046
0.926

p-value

0.000
0.950
0.963
0.354



FXD3 (2)
VGEXP
SETCAMS
STDAGE
STDCC
FXD8(1)
FXD8(2)
FXD8(3)
FXD8(4)
FXD8(5)
FXD8(6)
FXD8(7)
STDPSVV
FXD10(1)
FXD10(2)
FXD11(1)
FXD11(2)

-0.007
-0.035
0.072
0.010
0.004

-0.086
-0.015
0.028

-0.045
0.143

-0.016
-0.003
0.026

-0.025
0.043

-0.034
0.029

0.014
0.027
0.034
0.031
0.030
0.025
0.025
0.025
0.025
0.041
0.025
0.025
0.044
0.014
0.014
0.014
0.015

-0.521
-1.275
2.135
0.317
0.136

-3.384
-0.573
1.107

-1.772
3.486

-0.618
-0.135
0.586

-1.755
2.987

-2.383
1.990

0.602
0.202
0.033
0.751
0.892
0.001
0.566
0.268
0.076
0.000
0.537
0.893
0.558
0.079
0.003
0.017
0.047
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Influence of Perspective-Taking and Mental Rotation

Abilities in Space Teleoperation
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ABSTRACT
Operator performance during Space Shuttle and International
Space Station robotic arm training can differ dramatically among
astronauts. The difficulty making appropriate camera selections
and accurate use of hand controllers, two of the more important
aspects for performance, may be rooted in a problem mentally
relating the various reference frames used by the displays, hand
controllers and robot arm. In this paper, we examine whether the
origin of such individual differences can be found in certain
components of spatial ability. We have developed a virtual
reality simulation of the Space Station Robotic Workstation to
investigate whether performance differences can be correlated
with subjects' perspective-taking and mental rotation abilities.
Spatial test scores were measured and correlated to their
performance in a docking robotic task. The preliminary results
show that both mental rotation strategies and perspective-taking
strategies are used by the operator to move the robot arm around
the workspace. Further studies must be performed to confirm
such findings. If important correlations between performance and
spatial abilities are found, astronaut training could be designed
in order to fulfill each operator's needs, reducing both training
time and cost.

Categories and Subject Descriptors
H. 1.2 [User/Machine Systems]: Human factors.

General Terms
Performance, Experimentation, Human Factors.

Keywords
Space teleoperation, robotic arm, perspective-taking, mental
rotations, spatial ability.

1. INTRODUCTION
1.1 Space Teleoperation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HRI '07, March 9-11, 2007, Washington, DC, USA.
Copyright 2007 ACM 978-1-59593-617-2/07/0003... $5.00.

Teleoperation is used in a wide variety of areas such as
medicine, underwater exploration and space activities to perform
tasks in environments that are hazardous or inaccessible to
human beings. In the case of space activities, the Shuttle and
International Space Station (ISS) Remote Manipulator Systems
(RMS) are the main teleoperation systems currently being used.
Both systems provide a set of camera viewpoints that are used by
the operators to complete the task while avoiding any collisions
with the surrounding structure of the Shuttle or Space Station.
On the Shuttle, operators also have a direct view of the arm
through a flight deck window facing onto the payload bay.

Figure 1. ISS Robotic Workstation. The operator has only
three camera viewpoints that provide visual feedback when

controlling the robot arm.

Many operational difficulties arising from the current space

manipulator systems have been reported. Typically, operators can
have problems determining clearance from structure because the

fixed camera locations generally do not provide "optimal" views
of the work space [12]. Only three camera viewpoints are seen at

any moment, although more viewpoints are available for display,
and the location of these cameras must be memorized by the
operator. These additional views also likely increase the mental
workload during operations. Thus, current procedures require a
second operator to provide additional monitoring of the scene to
avoid collisions during the task. Because of the danger of a

collision with structure or a payload, arm movements are made at
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slow velocities and after the operators have established spatial

awareness of the situation. These spatial difficulties are also one
reason that multi-arm operations have not been performed during
a spaceflight.

1.2 RMS Training and Performance
Assessment
NASA astronauts begin their initial teleoperation training using a
generic robot arm simulation called BORIS, or the Basic
Operational Robotics Instructional System. This simulation
consists of a 6 degrees-of-freedom robot arm located in a cubic
room and with different camera views available. As in the
Shuttle and Space Station systems, the manipulation of the arm
is performed using three camera views and two hand controllers.
Candidates are taught to choose the ideal camera views based on
clearance visualization, as well as to correctly use the hand
controllers while avoiding collisions and singularities.

Teleoperation performance is evaluated by a group of instructor
astronauts based on standard criteria covering all aspects of
operations. Each aspect of operation is given a different weight

depending on its importance to achieving mission success. The
criteria given the most importance during evaluation include:
spatial/visual perception (i.e., proper camera selection and real
time tracking, end position and attitude correctly visualized),
situational awareness (i.e., collision and singularity avoidance),
and appropriate input of the controls (i.e., ability to control
multi-axis movements, motion smoothness). Astronauts that do
not reach the proscribed level of skill must go through additional
training and practice. Often, different trainers are assigned to

help, each providing their own "personal" strategies for
visualizing the workspace and accomplishing the training
exercises, with the hope that one of these suggestions will enable
the astronaut to succeed. (J. Young, personal communication)
These strategies are likely based on the spatial skills of the
trainer, and perhaps when a trainer and astronaut of similar
spatial skills are matched the strategies are more readily learned.

Astronauts in robotics training exhibit significant differences in
their final level of performance after initial training as well as
the rate at which they acquire the necessary skills. The initial
level of skill during training is not a reliable predictor of a
trainee's final level of performance [S. Robinson, personal
communication].

1.3 Spatial Abilities
Spatial ability can be defined as our ability to generate, visualize,
memorize, remember and transform any kind of visual
information such as pictures, maps, 3D images, etc. This ability
is divided into several subcomponents, which relate specifically
to each of the different mental functions for image processing.

The subcomponents of spatial ability that are most relevant to

teleoperation are perspective-taking and mental rotations.

Perspective-taking (also known as spatial orientation) is the

ability to imagine how an object or scene looks from perspectives
different to the observer's. Mental rotations (also known as

spatial relations), refers to the ability to mentally manipulate an

array of objects. While these two abilities are logically
equivalent, the critical difference lies in the coordinate frame
which is manipulated to obtain the final view. Perspective-taking

requires a change in the egocentric reference frame within a

fixed world coordinate frame, whereas mental rotations and
spatial visualization of objects occur within a fixed egocentric
reference frame. Recent work by Kozhenikov and Hegarty [10]
and Hegarty and Waller [9] have shown a measurable distinction
between mental rotation and perspective-taking, although
performance is also highly correlated.

Spatial visualization is among other subcomponents of spatial
ability, and is defined by Ekstrom [5] as "the ability to
manipulate or transform the image of spatial patterns into other
visual arrangements." Carroll [2] includes other factors such as

closure speed (ability to rapidly access representations from
long-term memory), flexibility of closure (ability to maintain the
representation of an object in working memory while trying to
distinguish it in a complex pattern), perceptual speed (ability to

rapidly compare or find symbols or figures), and visual memory
(ability to remember the spatial distribution of objects or
figures). Recently, a separate set of factors, dynamic spatial
performance, has been suggested [3, 15], where the abilities to
perceive and extrapolate real motion, predict trajectories and
estimate the arrival time of moving objects are assessed. These
factors are not considered in this paper.

Many tests have been developed in order to measure these
various factors of spatial ability. Many widely used tests such as
the Cube Comparisons test (mental rotation), Paper Folding test
(spatial visualization), and Spatial Orientation test can be found
in the Kit of Factor-Referenced Cognitive Tests (ETS, Princeton,
NJ) [6]. Among the perspective-taking tests are the Perspective-
Taking Ability (PTA) Test, a computer-based test developed
from the work described in [10], and the Purdue Spatial
Visualizations test: Visualization of Views (PSVV), a paper-and
pencil test found in [8]. A three-dimensional version of the PTA

test, called the Pictures test, was used in [9] but has not been
validated with a large population of subjects.

1.4 Spatial Abilities in Teleoperation
Indirect evidence that spatial abilities contribute to teleoperation
performance comes from experiments that have manipulated the
display and control reference frames during teleoperation. Lamb
and Owen [11] evaluated the differences in space teleoperation
performance when using egocentric (end effector) and exocentric
(world) frames of reference, concluding that higher performances
were obtained when an egocentric frame of reference was used.
DeJong, Colgate, and Peshkin [4] also showed that reducing the
number of rotations between the different reference frames can
lead to improved performance. Some of the manipulations to
eliminate frame rotations, such as physically moving displays,

are not practical in RMS operations, because camera views can

be changed during the course of the task.

The relationship between spatial abilities and teleoperation has
been studied in a few previous studies. Eyal and Tendick [7]
studied the effect of spatial ability when novice subjects learned
to use an angled laparoscope, a medical form of teleoperation.

They measured spatial ability with the Card Rotation, Paper
Folding, and Perspective-Taking tests and found significant

correlations of laparoscopic performance with all three measures
of spatial ability. Lathan and Tracey [13] found a correlation
between spatial abilities and mobile robot teleoperation
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performance when navigating a maze using a single camera for
visual feedback. Spatial ability was measured with four tests: the
Complex Figures and Stumpf Spatial Memory Tests, which
gauge spatial recognition, and the Block Rotation and Stumpf
Cube Perspective Tests, which measure spatial manipulation
ability. Tracey and Lathan [17] examined the effect of spatial
ability on the transfer of training from simulation to a real
teleoperation task and found subjects with lower spatial scores
showed increased transfer of training. Spatial ability was
measured by the Paper Folding tests and Stumpf's Cube
Perspectives Test. All three of these tasks differ from RMS
operations, in that they only provide a single view of the
workspace.

We believe that both perspective-taking and mental rotation
abilities play a major role in the astronaut's performance of RMS
tasks. Mental rotation ability is used to understand the individual
movements of the arm/payload that is seen in a single view.
Perspective-taking ability is probably used when mentally
imagining the different camera perspectives displayed when
selecting an appropriate view of the space; it is also likely
engaged when integrating the multiple viewpoints into a single
representation.

This paper presents a first effort to investigate the correlation
perspective-taking and mental rotation spatial abilities with
teleoperation performance. By manipulating the spatial distance
between camera views shown to the operators, we hope to show
that operators with higher perspective-taking test scores produce
better performance on our simulated task. If our hypothesis can
be supported and space teleoperation performance can be
predicted to some extent, astronaut training could perhaps be
tailored to each astronaut's spatial needs, making the learning
process more efficient.

2. METHODS
2.1 Environment
We created a simulated RMS workspace similar in nature to the
BORIS training software using the Vizard VR development
package (WorldViz, Santa Barbara, CA). It consisted of a 6
degrees-of-freedom (DOF) PUMA-like robotic arm of similar
dimension to the Shuttle RMS mounted on one end of a fixed
truss. The kinematics were computed using the RRG Kinematix
v.4 software library (Robotics Research Group, Univ. of Texas)
as a plug-in module for Vizard. A simulated cargo module and
ISS node were created as the objects for grasping and docking.
(Figure 2) The dynamics of the arm and other objects were not
modeled in this simulation.

The arm and working environment could be viewed from up to
three camera viewpoints at a time displayed on three separate
monitors. The simulation was run on two Windows computers
using Vizard's networking capabilities. The main simulation
server (1.5GHz Pentium4 PC with dual head nVidia GeForce
6600 graphics) performed the kinematic calculations, graphics
processing and hand controller I/O. The second computer
(550MHz Pentium3 PC with nVidia GeForce3 graphics)
rendered the third camera viewpoint.

The subjects controlled the robotic arm using two 3DOF
joysticks in a manner similar to that used in spaceflight. A

translational hand controller was custom built in the lab from a
2DOF joystick, a linear potentiometer and USB controller card to
provide three DOF control of translation. A Logitech Sidewinder
3DOF USB joystick was used as the rotational hand controller.
Throughout the experiment, operators moved the end effector
position using velocity control in a fixed world coordinate frame,
similar to the "external frame mode" of actual RMS operations.
End effector rotations were made with respect to a reference
frame fixed to the end effector.

Figure 2. A view of the simulated teleoperation environment
showing the robotic arm, truss, a module near the free end of

the arm and the node.
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Figure 3. The three cameras are positioned along a
circumference (black contour) tilted 450 from the horizontal
plane. Camera configurations a, P and y are defined by the

angular distance between cameras 1 and 3.

For this experiment, three configurations (a, s, y) were created,
each consisting of three camera views. In all three configurations,
the three cameras were located at the same distance from and
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pointed toward the shoulder joint of the robot arm. The central
camera (#2) was placed just above the truss and was pointed in a
direction along the truss. The other two cameras (#1 and #3)
were placed along a line tilted 45* from the XZ plane (Figure 3).
These two cameras were separated by 600 (measured from the
shoulder joint) in camera configuration a and 120 0 in camera
configuration p. The third camera configuration, y, was the same
as configuration a but rotated 180* about the base of the robot.
This rotation produced similar camera views as configuration a
but with a left-right reversal of the scene.

2.2 Task
On each trial, subjects had to manipulate the arm to capture the
module then dock it onto the node. The module was
automatically captured when the end effector touched any point
of the capture port (Figure 4, left). Docking the module to the
node required the subject to align and overlap both docking ports
and press the space bar when the final position of the module
was considered to be properly aligned. The ideal docking
position was defined as when both ports were coaxial and in
contact. The axial separation between the docking ports was not
considered to be an accuracy factor.

The initial pose of the arm as well as the position and orientation
of the node was the same in each trial. The cargo module was
initially located in one of four possible positions (location and
orientation). Each starting position was used four times, resulting
in 16 trials for one camera configuration. The four initial
positions were distributed in the workspace to balance their
relative locations with respect to the base of the arm (right/left,
front/back, up/down).

Figure 4. Capture of the module (left) and docking with the
node (right)

Before starting the trials, subjects were reminded to avoid

collisions between the arm and any of the structural elements in

the space (e.g, node, truss) and singularities. No feedback was

given to the subjects in the case of a collision and the number

and type of collision was not collected at the time of the

experiment. Subjects were also reminded to avoid moving the

arm beyond its full extension of the arm, which would cause the

simulation to crash. This condition required a restart of the

simulation and the trial was repeated.

2.3 Spatial Ability Metrics
Spatial ability of the subjects was measured using the Cube

Comparisons (CC) test, the Perspective-Taking Ability (PTA)

test, and the Purdue Spatial Visualization of Views test (PSVV).

Subjects were shown pairs of labeled cubes and asked if the

cubes could be identical. The test required mentally rotating one

of the cubes to make the comparison. It was completed in 2
three-minute sessions, each with 21 pairs of cubes. Test scores
were calculated as the number of correct answers minus incorrect
answers. The PTA test was administered on a Windows PC.
Subjects were shown a top-down plan view of seven objects
distributed in a circular space; they were instructed to imagine
they were visualizing one of those objects, and to imagine the
object array from that perspective. They then had to indicate the

direction to another target object in the array in their local
reference frame. The test consisted of 58 trials and scores were
based on direction accuracy and response time. In the PSVV test,
subjects were shown a three dimensional object at the center of a
"glass" cube. The task was to determine which one of five
alternative views corresponded to the designated viewpoint,
shown by a black dot at a specific comer of the cube. The

original test is self-paced, however, a five-minute constraint was
set for this experiment, in order to assign some weight to the

response time, and avoid the development of strategies different
to perspective-taking. The test had 30 trials and the scores were
calculated as the number of correct answers minus one fifth of
the number of incorrect answers.

2.4 Task Performance Metrics
The data acquired from each trial included instantaneous location
and orientation of the end effector, time to capture (to coincided

with the beginning of the trial), and time to dock. From these
data, we calculated the following performance metrics listed in
Table 1. These metrics were selected from a larger set described

in [1] that characterized operator performance in the BORIS
training system.

Table 1. A description of the task performance metrics used
in the experiment.

Metric Description

Observation Time between to and the first hand controller
time (tobs) input

Total time (tot.g) Time required to complete the task

%Motion Percent of ttrsk during which the end effector
was moving

Axial DOF input Average of simultaneous use of axial
(DOFAx) degrees of freedom (DOF) during ttak

(DOFx=I if the subject never moved on
more than one axis at a time; DOFm=3 if
the subject moved on the three axes every
time throughout the task)

Angular DOF Average of simultaneous use of angular

input (DOFmg) DOF during tlak

Docking- Distance between the axes of the two
position offset docking ports (Figure 5, top)
(YZ offset)

Docking-attitude Angle between the axes of the two docking
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offset (angular ports (Figure 5, bottom)
offset)

2.5 Subjects
Seven subjects, three female and four male, participated in the
experiment. Their ages ranged from 23 to 33, and all had an
Aerospace Engineering background. On average, they spent the
same daily amount of time in front of the computer (7.6 hrs) and
on videogames (0.5 hrs), however their past gaming experience
varied from 2 to 10 hours a week. They did not receive any
monetary compensation.

AL

A) g

C:e

Figure 5. Performance metrics: (Top) docking position offset
(YZ offset) and (Bottom) docking angular offset (O+T)

2.6 Procedure
The experiment involved three sessions completed on separate
days. During the first session (one hour maximum), subjects
were given a questionnaire to obtain data such as gender, age,
background, previous gaming experience, and current use of
computer. Then subjects completed the Cube Comparisons test
followed by the Perspective-Taking Ability test. The second
session (from two and a half hours on average, four hours in one
case) started with a Powerpoint presentation providing
theoretical training about the main elements of the simulation
(e.g. the hand controllers) and the instructions for the experiment
task. After the theoretical training, the subjects completed a
practical training session where they performed similar tasks to
the ones in the experiment, but with a different set of objects
than the module and the node. The eight training trials were
designed to help the participants learn how to manipulate the
arm, to capture objects, and to dock them. No feedback was
provided during training. Subjects were instructed to do the task
as fast and accurately as possible, avoiding any kind of collisions
or singularities. Astronauts in actual robotics training are

similarly evaluated on their ability to avoid arm singularities [J.
Young, personal communication].

After the training, subjects began the main experiment. A total of
48 trials was divided into three blocks of 16 trials. Within each
block, only a single camera configuration was used and four
repetitions of each starting location of the module were
completed. The order of starting locations of the module was
balanced to reduce any effects of order. The subjects were
randomly divided into two groups to examine any effects of the
order in which the camera configurations were seen. Group A
(n=4, 2m, 2f) performed the experiment using the configurations
in the order a-p-y, whereas Group B (n=3, 2m, If) followed the
sequence a-y-p. Subjects were allowed a short break between
blocks. Finally, a post-experiment questionnaire was given to
assess the possible discomforts caused by the test, and to get
feedback on the subjects' strategies to perform the tasks.

During a third session, subjects completed the Purdue Spatial
Visualization test. This test was given in a separate session
because it was added after the main experiments had been
completed.

3. RESULTS
3.1 Spatial Ability Test Scores
The Cube Comparisons test (CC) scores ranged from 23 to 42
(mean: 34.43, SD: 7.18). However, these scores were clearly
separable into two groups. Three subjects' scores were above the
mean (40 to 42) and four subjects' scores were below (23 to 33).
Interestingly, all the female subjects were in the low-scoring
group while three of the four male subjects were in the high-
scoring category. This result is consistent with previous findings
that women's spatial visualization abilities are weaker than
men's [14].

The scores for the Purdue Spatial Visualizations test ranged from
7.2 to 23.4 (mean: 17.29, SD: 6.82). These scores were
bimodally distributed with two subjects scoring very low (7.2
and 7.8) and five subjects scoring above the mean.

The scores for the Perspective-Taking Ability test ranged from
20.6 to 27.4 (mean: 23.11, SD: 2.59). The scores were
unimodally distributed about the mean. No obvious difference
between genders was apparent for PSVV or PTA.

Two male subjects had high scores for all three tests, whereas
one female scored below the mean on all three tests. No
significant correlation was found between CC and PTA scores
(R2 = 0.022), or between CC and PSVV scores (R2=0.0831).
PTA and PSVV scores were found to be correlated with
R2=0.5940.

3.2 Task Performance Results
We used a mixed regression model (Systat v.11) to statistically
analyze the relationship between spatial scores and task
performance. The fixed effects considered were: test score,
camera configuration (a, p, y), group (A, B), the cross effect of
group and camera configuration. The only random effect was
subject. No effects were found to be significant due to age, daily
hours of computer use nor daily hours of gaming. For the
regression analysis, in order to fit the model assumptions of
comparable variance and normal distribution of the residuals, the
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time and accuracy data were transformed to their logarithms, the
%Motion and DOF data were transformed by arcsin(sqrto),
transformation often used for percentages [18].

The data show an effect of the camera configurations on the total
time for a trial (t, 1tai), observation time (tt 0 ), %Motion and axial
degrees of freedom (DOFa). On average, ttoai was lower while
using configuration P (cameras 1 and 3 separated by 1200) than

with either configuration a (60* separation) or y (60 "left-right
reversed"). This pattern is consistent for both the time to capture
the module and the time to dock it to the node. The average tabs

needed by the subjects in both groups remained approximately
constant between configurations a and P, and increased on

configuration y. The high total and tab, obtained for configuration
y was an expected result, given the left-right reversal in the
camera views. %Motion and DOFax were higher for
configuration P. The order of the camera configurations in which
the subjects completed the task did not significantly affect their
p e r f o r m a n c e

PTA scores did not show any effect on performance different
from PSVV; this is not surprising given the narrow distribution
of test scores with our limited set of subjects. The data were
consequently grouped by the subjects' CC and PSVV test scores
into high scoring and low scoring groups, relative to the means.

When grouped by CC scores (Figure 6, left), the average ttota and

tabs (not shown) for the high scoring group are statistically shorter
than for the low scoring group across all three camera

configurations (ttotal: p=0.007; tob,: p=0.003).. Even if not
significant, differences between the CC score groups are also
evident for the %Motion and angular docking offset measures,
although not consistently across the camera configurations. The
high scoring group generally kept the arm in motion during a
greater portion of the trial (configurations p and y) and showed
better angular docking performance except in configuration y. No

differences between the CC score groups were evident for the
remaining performance metrics.

Cube Corparisons test Purdue Spatial Visualizations test
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Figure 6. Average task performance per trial grouped by
subjects scoring low (solid lines) or high (dashed lines) on the

Cube Comparison and Purdue Spatial Visualization tests.

When task performance is grouped by PSVV scores (Figure 6,
right), a clear difference in the average DOFIg score is apparent
across the three camera configurations. Surprisingly, the high
PSVV score group had a significantly lower DOFang score
(p=0.002), indicating that they tended to rotate the end effector
around one axis at a time. The high PSVV score group also
showed longer t1t0w in configuration a, higher %Motion in
configuration y, and showed better angular docking performance
for configurations p and y. Differences between PSVV score
groups were not evident for the remaining performance
measures.

Comparing task performance for each repetition of a trial
provided some insight into the learning curve for the subjects.
There was a significant learning trend across repetitions, with
decreasing tttai and tobs, and increasing %Motion and DOFax
(p=0.0005, all), the effect being similar for both high and low
CC score groups. Low scoring subjects on the PSVV test showed
a big decrease in angular accuracy, a %Motion decrease and a

slight YZ offset increase in the two last trial repetitions for the
last two repetitions. Performance for other metrics show very

small changes over repetitions.

3.3 Post-experiment Questionnaire Summary
Subjects reported low levels of mental fatigue (1.8 out of 5),
disorientation (1.5), and eye strain (2.5) despite the length of the

experiment. They reported that translating the end effector was
generally intuitive, but they often resorted to trial and error to
determine how to control the rotation. A general task strategy
(five subjects) was to move in only one axis at a time and mainly
use the central camera (#2) for general movement control and the

other two cameras for depth information and final alignment.
Subjects moved the arm slowly and tried to watch all three views

to avoid collisions, although two subjects reported ignoring
between the module and arm.

Finally, subjects were requested to describe and sketch the
location of the cameras in the three configurations. One subject
could not recall any of the camera configurations. All other
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subjects correctly recalled configuration y, but only one subject
correctly identified a difference between configurations a and P.
They also properly described the central position of camera 2.
Three subjects correctly matched the right/left location of
cameras #1 and #3 in configuration y, and two of them in a.
Finally, only one subject mentioned the up/down location of
cameras 1 and 3, but incorrectly recalled that both cameras were
above camera 2.

4. DISCUSSION AND FUTURE WORK
Our primary goal was to determine if a correlation between
human spatial abilities and space teleoperation performance
could be established. Our data does suggest a link between
spatial ability and performance, and also provides some
important insights into the separate aspects of the tasks and
spatial tests. However, with only seven subjects, we must be
cautious of the conclusions drawn from the study. For example,
the distribution of subjects' PTA scores was markedly different
from the bimodal distributions of the CC and PSVV scores. The
difference could simply be due to the small number of subjects
and nature of our subject population, although it could be
reasonably argued that the aerospace background of the subjects
is comparable to many current astronauts. Another possible
explanation is based on the nature of the spatial ability being
tested. The PTA test is performed in a two dimensional space,
which is typical for Earth-bound navigation, but less
representative of the 3D environments in space teleoperation.
Since we all have lifelong experience with 2D navigation,
differences in this type of perspective-taking are much smaller
across the population. Subjects may utilize other learned
strategies from their experience to perform the task - a common
problem with spatial tests. The PSVV test, in contrast, tests
perspective-taking in three dimensions, which is probably a less
frequently utilized skill so scores may reflect an individual's
innate spatial ability. Further experiments with a larger subject
population are clearly needed.

Our data indicate that CC, PTA and PSVV test scores may be
predictive of performance measured by the total and observation
times, but this was not true for the docking accuracy or DOF
metrics. The Perspective-Taking Ability test scores were found to
be significantly correlated to the use of angular degrees-of-
freedom. A trend for higher PSVV scorers to require longer total
and observation times, as well as to use less angular DOF and
higher %Motion was also identified. The fact that the two spatial
abilities do not present significant effects on the same
performance metrics is somewhat surprising since Hegarty and
Waller [9] found perspective-taking and mental rotation abilities
to be highly correlated, while also dissociable.

The fact that high CC test scorers required shorter total and
observation times to perform the task whereas high perspective-
taking ability scorers required longer times suggests that subjects
with better perspective-taking ability dedicate more time to
analyze the workspace from the multiple viewpoints before
manipulating the robotic arm. Subjects with weaker perspective-
taking ability would have more difficulty integrating the
viewpoints, so like the subjects in [16], they might use only one
display and simply begin moving the arm.

Subjects did not change their use of angular degrees of freedom
throughout the experiment, which could be explained by their

minimal training with the rotational hand controller and resulting
lack of mastery. This is supported by the fact that many subjects
reported using trial and error as their main strategy to rotate the
end-effector. Astronauts spend over 30 hours for basic robotic
arm training but this is also not practical. Spending a preceding
day solely on training, such as in [1] could be sufficient to train
subjects performance to a sufficient level. It is interesting to note,
however, that high perspective-taking scorers consistently used
single axis rotation movements more often than the low scorers.
It could reflect a trial-and-error strategy for the low PSVV score
subjects, or their greater lack of proficiency controlling the arm.
The measurement of arm-object collisions or direction reversals
in future experiments could help distinguish these possibilities.

The different experiment camera configurations were chosen on
the assumption that subjects with better perspective-taking
ability would be better able to integrate highly disparate views
and thus complete the task faster and more accurately, but this
effect was not found. Quite possibly the camera views in
configuration P (1200 separation) were not sufficiently different
to force the operator to use their perspective-taking ability, so no
effect was seen. Instead, operators might have simply relied on
mental rotations of the objects to understand the relationship
between the three displays. The suggestion is supported by the
significant effect of CC test score on total time, and by the fact
that subjects could not report the particular camera locations of
configuration P. Thus the improvement in total time or %Motion
performance for this camera setting was simply a learning effect.
The similarity of the effect between the two CC score groups
suggests that the effect of mental rotation ability was the same
for all three camera configurations. For our next series of
experiments, we plan to investigate camera configurations that
are more widely dispersed around the working environment. An
experiment examining operator performance when selecting
appropriate camera views might be more likely to show a
correlation of performance with perspective-taking ability tests.
As mentioned in the Introduction, this is one of the criteria used
to evaluate operator performance during RMS training.

Angular docking accuracy was higher for subjects with superior
spatial abilities, and it decreased from configuration a to
configurations P and y for poor perspective-takers. This could be
explained by a speed-accuracy trade-off that also led to a
decrease in %Motion score and a slight YZ offset increase in the
two last trial repetitions. Results of angular docking error
between configurations suggest that with camera configurations,
such as a, which do not provide much depth information and are
relatively simple to understand, only mental rotation ability is
used to perform the docking. With a configuration that provides
more depth cues (p), either mental rotation or perspective-taking
can be utilized; finally, with a hard camera setting, such as y,
subjects only rely on their perspective-taking ability. Although
this result need to be confirmed with a greater pool of subjects, it
may imply that operators would need strength in both spatial
abilities in order to guarantee high accuracy in teleoperation
involving a wide set of cameras.

Further research to understand the spatial skills that underlie
teleoperation task performance could be helpful in improving
current training procedures for astronauts. Training programs
could be individualized according to their spatial skill set, and
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overall training time might even be shortened. Knowledge of the
mechanisms that support spatial reasoning could also have a
direct impact on improving the design of interfaces for human-
robotic interaction. For example, Trafton, Cassamatis, Bugjajska,
Brock, Mintz and Schulz [18] applied the concept of perspective-
taking to improve the interaction with autonomous robots, such
as NASA's Robonaut. Understanding individual differences in
spatial ability may suggest guidelines or new methods for
displays that can be customized to support the spatial abilities of
users, or to lead to insights that improve the training methods for
robotic systems.

5. CONCLUSIONS
This study investigated the influence of spatial abilities on space
teleoperation performance We have identified a number of task
performance metrics that seem to be correlated with our chosen
measures of both mental rotation and perspective-taking ability.
More specifically, the total task time and observation time were
clearly correlated with mental rotation ability, but were inversely
correlated with perspective-taking ability. Rotational control
behavior of the end-effector also seems to change according to
perspective-taking ability, with high scoring subjects exhibiting
more single axis control movements. Finally, subjects with
higher spatial ability seemed to keep the arm in motion for a
higher percentage of time during the task, perhaps reflecting
better awareness of the robotic arm in the workspace. Further
studies involving a larger subject population are needed to
confirm these results.
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