
REMOTE DEPTH SURVEY OF THE CHARLES RIVER BASIN

BY

EVAN A. KARLIK

SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2007

©2007 Evan A. Karlik. All rights reserved.

The author hereby grants to MIT permission to reproduce
and to distribute publicly paper and electronic

copies of this thesis document in whole or in part
in any medium now known or hereafter created.

Signature of Author:
Department of Mechanical Engineering

11 May 2007

Certified by: . --- I

Accepted by: I-

Franz S. Hover
Princ(Asearch Engineer, Center for Ocean Engineering

Thesis Supervisor

John H. Lienhard V
Professor of Mechanical Engineering

Chairman, Undergraduate Thesis Committee

WAC4SASE1TS 9ISMUTITE
OF TECHNOLOGY

S IBRARI 2200ES

LIBRARIES
ARCHNvES

m | -- Nomp-i I I

REMOTE DEPTH SURVEY OF THE CHARLES RIVER BASIN

by

EVAN A. KARLIK

Submitted to the Department of Mechanical Engineering
on May 11, 2007 in partial fulfillment of the

requirements for the Degree of Bachelor of Science in
Mechanical and Ocean Engineering

ABSTRACT

Unmanned vehicles may provide more time- and cost-effective methods of gathering
hydrographic survey data when compared to traditional, manned survey vessels. A
remote-controlled unmanned surface vehicle (USV) was outfitted with a depth transducer
for the purpose of conducting a depth survey of the Charles River Basin. Two windsurfer
fins were added to the stem of the USV kayak for directional stability without significant
drag, permitting a maximum vessel speed of 4.4 knots. A total of 1485 latitude-longitude
GPS points with corresponding depth measurements were taken. Charles Basin data was
plotted with ArcGIS software and used to create depth contours and three-dimensional
surface plots of the river bottom. This prototype survey USV displays promise and could
become readily feasible with further development and autonomy.

Thesis Supervisor: Franz S. Hover
Title: Principal Research Engineer, Center for Ocean Engineering

I. INTRODUCTION

Charts documenting the features of navigable waterways have been created and used by

mariners for thousands of years, though the use of acoustic methods to measure water

depth began after the sinking of the Titanic in 1912.1 A hydrographic survey may be

conducted to support a variety of goals: nautical charting, dredging and harbor

maintenance, environmental studies of beaches and erosion, and bottom construction of

piers, platforms, cable networks, and pipelines.2 While details such as sediment types

and thicknesses or bottom vegetation coverage can be included in a hydrographic survey,

the one data type common to all surveys is depth.

Remote sensing is a prevalent, efficient method for collecting information on a subject

without physical or intimate contact. While imaging satellites and seismographs

passively capture electromagnetic radiation or motions from seismic activity,

respectively, acoustic depth sounding is considered active remote sensing, in which a

type of energy is directed at an object and the reflection received by a passive sensor. A

depth sounder emits an acoustic pulse into the water; the time elapsed before the pulse

returns can be used to find the range to the bottom and hence water depth.

Figure 1 - The NOAA hydrographic survey ship Rainier, equipped with a 55-person crew.

Hydrographic survey ships, such as the NOAA vessel Rainier, are specially equipped to

measure depth and bottom characteristics. Unmanned vehicles may provide more time-

and cost-effective methods of gathering similar data. Remote operated vehicles have

been used for decades in the marine industry to explore shipwrecks, lay transocean

cables, and inspect offshore oil platforms. A fleet of small, unmanned surface vehicles,

controlled and tended by a larger, manned vessel, could cover a larger area in a shorter

time at a fraction of the cost when compared to a traditional survey vessel.

This research aims to investigate the performance of an unmanned surface vehicle

(USV), designed to carry out depth surveys while its human operator provides

instructions from a remote location (Figure 2). The conclusion of this paper will evaluate

the feasibility of using unmanned vessels similar to the prototype for large-scale

hydrographic surveys.

Figure 2 - The unmanned surface vehicle (USV) on the Charles River Basin. The vessel was equipped
with a depth transducer for conducting hydrographic surveys. The Boston skyline is in the background.

II. VESSEL OVERVIEW

The USV hull is a plastic, 3.7 meter long Wilderness Systems Pungo 120 kayak; Table I

gives its specifications as listed by the manufacturer. The kayak features a multi-chine

hull with a full-length keel line for both maneuverability and stability.

Table 1 - Pungo 120 Specifications

Length 3.7 m

Beam 0.74 m

Draft 0.15 m

Max Loading 147 kg

The kayak was first augmented by the students in the 13.017/13.018 ocean engineering

capstone design course in 2005, who outfitted the kayak with a trolling motor, servo

motor, and two emergency stop buttons. The following year, the students in 2.017/2.109

added their own powering system, electronic compass, GPS, wireless modem, and

Tattletale Model 8 computer. At the conclusion of the Fall 2006 term, the kayak was

capable of following thrust and steering instructions sent via a 900 MHz wireless link,

logging GPS positions and compass headings, and steering a line of specified heading

through implementation of a feedback control routine. A complete description of this

system is contained in the 2.019 Design of Ocean Systems final paper.3

III. DEPTH SOUNDER
plastic housing

A commercial off-the-shelf depth sounder was used in

this project. Specifications of the Airmar DT800 P17

depth and temperature transducer are listed in Table

2.4,5

The DT800 was mounted through the kayak hull
and sldewalof housifig

approximately 2 cm from the keel line, for the lowest
Figure 3 - Profile view of DT800

possible deadrise, and approximately two-thirds of the following installation.

total length from the bow, to distance it from any turbulence or bubbles produced by the

motor. The installation procedure is thoroughly described in instructions from the

manufacturer: after drilling a 1/8" pilot hole a 2" hole saw was used to create an opening

in the hull.6 The inside of the opening was sanded and cleaned before applying a layer of

marine sealant around the rim of the hole as well as on the interior and exterior hull

surfaces surrounding the opening. The transducer housing was inserted into the hole; a

rubber washer was slid onto the housing from inside the hull after which the hull nut was

tightened. After the sealant cured, the insert containing the transducer was placed into

the housing, the cap nut tightened, and the safety wire attached. Figure 3 diagrams the
Table 2 - DT800 Specifications DT800 after complete installation.

The depth transducer was powered by the

vessel's 12V bus while ground and shield were

connected to the boat power ground. The

transducer NMEA+ output has a quiescent

state of OV with signals at approximately 4.5V,

as observed on an oscilloscope. The Tattletale

digital inputs require a 5V quiescent state with

signals jumping to OV; accordingly, the DT800

output was inverted with an LM324 op-amp

(Figure 4).

TO TT8

+12V

LM324

GND

Figure 4 - Electrical schematic of the op-amp used to invert the depth transducer output.

Height 12.4 cm

Diameter 7.5 cm

Frequency 235 kHz

Beam Width at -3dB 140

Rated RMS Power 200 W

Weight 0.6 kg

Output NMEA 0183

4800 baud

Hull Deadrise 0-12' optimum

20' maximum

Depth Range 0.5 to 100 m

NMEA+

+12V

POT

GND

=

The depth transducer NMEA+ output was used as the op-amp inverting input, while a

potentiometer provided an adjustable non-inverting input in order to position the output

to the Tattletale in the correct voltage range.

The DT800 outputs the following three NMEA strings once per second at 4800 baud:

$SDDPT, 2.7,*7C
$SDDBT, 9.3,f,2.7,M,1.5,F*0D
$YXMTW, 26.3, C*15

Depth (meters)
Depth (feet, meters, fathoms)
Temperature (QC)

The Tattletale C++ function designed to read DT800 NMEA strings checks for the

character 'P' as the fourth character after the '$.' It reads the following value as the

depth in meters; the other two NMEA lines are ignored (see the Software Appendix for

the full code). Figure 5 illustrates how the depth transducer is integrated with the host of

other electronic sensors and actuators on board the kayak.

Figure 5 - Signal flow paths, illustrating how the navigation instruments, wireless hardware, and
motors interface with the TT8 control system.

IV. DIRECTIONAL STABILITY

During~ nrevious field testing. a 5 kg: metal

elbow joint was towed behind the stern of the

kayak on the end of an approximately 1.7 m

line. The added drag provided a pivot point that

enabled the boat to maintain directional stability

when running into the wind as well as across

and downwind. In an effort to improve the

vessel's maximum speed, the elbow joint was

removed and two Mistral windsurfer fins were

bolted to the stern of the kayak (Figure 6). A

generous amount of marine sealant was used to

treat the exterior of the bolts, washers, and nuts,

followed by butyl rubber tape. The inside of the

kayak where the bolts penetrated was covered in

butyl rubber tape and spray foam insulation to Figure 6 - Two windsurfer fins were bolted t
the stern of the kayak to provide directional

prevent flooding into the interior of the kayak. stability without significant drag.

With a significant source of drag removed, the

vessel was predicted to exhibit a higher maximum speed and thus be able to cover a

larger survey area on limited battery capacity. GPS logging indicated a maximum vessel

speed of 2.28 m/s, compared to a maximum speed of 1.49 m/s using the metal elbow joint

- a significant improvement.

o

V. OPERATION AND FIELD TESTING

Vessel launching and initialization greatly parallels the procedure outlined in the 2.019

final report. The 12V marine batteries would be removed to improve ease of launching.

Figure 7 - The kayak interior before the spray skirt is spread over the cockpit. Key: A) bilge pump; B)
Pelican box housing Tattletale, GPS, and inverter/voltage divider circuits; C) PICservo board; D) 12V
battery; E) wireless modem and 9V voltage divider; F) second 12V battery, for providing 24V to the
servo motor; G) 12V battery for running lights and bilge pump; H) main power switch; I) DT800 depth
transducer; J) emergency stop button.

After the kayak had been placed in the water and secured to the Sailing Pavilion dock, the

two batteries for boat power were connected and covered. A smaller, independent 12V

battery for powering the lights and bilge pump and the 9V battery for GPS were also

connected. The boat power switch was turned on and the Tattletale, connected by a serial

cable to a laptop running the CrossCut serial interface program, was restarted. The

thruster propeller would gradually accelerate, but typing the name of the remote control

routine at the PicoDOS> prompt stopped the motor. At this stage, the TT8 would wait

for a command line from the wireless modem.

The laptop's serial cable was then connected to the PICservo output and the operator

started the NMCtest program to initialize the servo motor. The operator should select

Position mode, press "GO," and clear the position error. Under I/O Mode, gains entered

were Kp = 10, Kd = 1000, K1 = 5, and IL = 1000. Under servo parameters, deactivate

switch action, set output mode to PWM and direction, and enable step and direction

mode. Then press "Stop" and disconnect from the PICservo board. Applying a slight

force to turn the servo motor gear by hand should be met with resistance from the motor,

indicating the servo motor is functional. It is critical to ensure that the thruster motor is

pointed directly towards the bow before initializing the servo motor.

The kayak's spray skirt was spread across the cockpit to protect the electronic

components from chop and "green water" that might splash up onto the hull. The boat

was then untied and pointed away from the dock to ensure it proceeded out into the open

river upon power-up of its thruster.

MaxStream's X-CTU wireless terminal was used to command the vessel. Each motor

command line is preceded by the character 'r,' to clear the buffer in the event it had been

partially filled by erroneous characters. Six characters were then entered, corresponding

to percentage of motor thrust (0-100%) and motor angle. The character 'e' approves the

command for execution.

For example:

r070-30e Set motor thrust to 70%, motor angle to -300.

r100+70e Set motor thrust to 100%, motor angle to +700.

In the event of a typo, the user can press 'r' and reenter the correct command line. While

typing 'r' will inform the program to wait for the complete command line, pressing any

other keyboard character, such as another letter or the spacebar, will log the time,

latitude, and longitude from GPS, the heading from the electronic compass, and the water

depth from the DT800 depth transducer. The Tattletale keeps two separate data files,

data. txt for hydrographic data, and motor. txt for a record of motor commands.

Field testing was conducted over two days out of the MIT Sailing Pavilion on the Charles

River for a total of 1485 data points. The kayak was commanded from the dock by a

laptop, XStream-PKG wireless modem connected to a USB port, and 1.7-meter Antenex

long-range antenna, as well as from an outboard motorboat with the addition of a 12V

battery and inverter to provide power to the laptop. Wireless commands were

successfully executed even with the kayak on the opposite side of the Charles Basin, at a

distance of approximately 500 meters.

The vessel's two marine 12V batteries experienced a voltage decrease of 0.29V over a

1.72 hour run period, corresponding to a voltage decay of 0.16V/hour. The calculated

average power consumption ranges from 600 to 840 W, assuming the thruster is running

at full power (50 A) and the servo motor runs between zero and full power (10 A).

VI. HYDROGRAPHIC DATA

The latitude-longitude data from GPS and corresponding depths were imported into

ArcMap GIS software and overlaid onto images of the Charles River, local roads, and the

footprints of Cambridge buildings (Figure 8). Despite efforts to keep the kayak

proceeding on straight courses using corrective commands, it proved difficult to create a

vessel track suggestive of the "lawnmower" pattern, used in surveys for its efficiency at

covering a specified area in an organized manner without significant overlap. Wind, a

slight offset in motor angle (on the order of several degrees) stemming from servo motor

initialization, and yaw resulting from unbalanced windsurfer fins at the stern are liable to

contribute to the difficulties of maintaining a straight-line course. A heading controller

was successfully demonstrated during November 2006 testing (see feedback loop

diagram and accompanying analysis in Section 6.5 of the 2.019 final report). The on-

board electronic compass would require relocation, recalibration, or other refinement in

order to run a pattern that requires 180-degree turns; it was observed that while the

compass reports a 1600 heading when facing out from the Sailing Pavilion, turning it

gradually in a 1800 arc causes the heading to decrease as appropriate until it erroneously

returns to approximately 1600 heading while facing northwest.

C -

o -o o
Hd *a

-e

* o

nc~
0 ~

C 0 ~

r=o -Ik

0 -1

0-70

ctl -~

C D
es ~ u

O 0
o -~ ~

-aa~

S,z
0L

E

('1

C,

0j

To create depth contours, inverse distance weighted interpolation (IDW, Figure 9a) and

Kriging interpolation (Figure 9b) were applied to the collected data.

QO

0

Figure 9 - Depth contours from interpolated data. a. IDW interpolation. b. Kriging interpolation.
Darker shades of blue indicate deeper water; see key. Note these ArcGIS algorithms make no
distinction of where the Charles River boundaries are situated. "Kriging is a geostatistical
interpolation technique that considers both the distance and the degree of variation between known
data points when estimating values in unknown areas."' IDW considers only distance; farther
points have less influence. Both contour sets are similar, though IDW includes more small,
isolated patches where depth differs from the surrounding region.

Lastly, ArcGIS software was used to create a triangulated integrated network (.TIN) file

for three-dimensional plotting; data points are linked by triangles to create an

approximate representation of the Charles Basin's bottom surface (Figure lOa-b).

Figure 10 - Exaggerated three-dimensional surface plots from the triangulated integrated network.
The TIN file is used to create an elevation mesh for the surface plot. Notice the deeper channel that
appears to wind its way along the southern (Boston) side of the Charles Basin.

-14

VII. CONCLUSIONS

The purpose of this project was to complete a depth survey of the Charles River Basin

using a prototype USV to evaluate whether such technology could be used successfully in

large-scale hydrographic surveys conducted by government or industry. Using a laptop

and simple wireless communications equipment, a human operator, from both a dock by

the shore and on an embarked motorboat, was successfully able to direct the kayak to

make thrust and course adjustments and to collect depth data. The collected data and

three-dimensional surface plots suggest a basin located approximately halfway between

the MIT Sailing Pavilion and the opposite bank, and a deeper channel running along the

Boston shore. Such information is in general agreement with data collected by the

Odyssey series of autonomous underwater vehicles (AUVs) in the 1990s and by prior

depth surveys by motorboat (see the ocean engineering PhD work of A. Bennett, 1995-8).

USVs can certainly be incorporated into the hydrographic survey missions, as they can

collect reliable data while offering significant cost and time savings over large, manned

survey vessels.

Manual, remote direction of the kayak to hold a steady course was challenging, most

likely because of environmental factors and the difficulty of attaining and keeping proper

directional trim. Field tests carried out in November 2006 and reported in the 2.019 final

paper demonstrate the ability of the kayak to maintain a constant compass heading using

feedback control of the servo motor. Such feedback control should permit more uniform

collection of data points, improving the accuracy of depth contours and surface plots. An

even higher degree of autonomy could be implemented, to direct the vessel in a complete

"lawnmower" pattern that includes the straight-line runs as well as turns. A marketable

USV for surveys should also be capable of conducting longer missions through use of

higher-capacity batteries, such as lithium-polymer which delivers four times the capacity

per unit weight, or solar recharging. With the present batteries rated at 80 amp-hours, a

mission can last only about 1.5 hours before the batteries require recharging.

Table 3 summarizes important vessel characteristics, and Figure 11 depicts the kayak

leaving dock to conduct a survey mission.

Table 3 - General Vessel Specifications

Maximum Speed 2.28 m/s; 4.4 knots

Average Power Consumption 600 - 840 W

Calculated Maximum Mission Time 1.3 - 1.6 hours

Calculated Maximum Mission Distance 10.6 - 13.1 km

Precision of Depth Measurements + 0.2 m

Depth Range 0.5 - 100 m

Figure 11 - Kayak departing the MIT Sailing Pavilion dock for a depth survey mission. The Boston
skyline is seen in the distance, across the Charles River.

VIII. REFERENCES

1. National Oceanographic and Atmospheric Administration. "Hydrographic Survey
Techniques." 12 December 2006.
http://celebrating200years.noaa.gov/breakthroughs/hydro_survey/welcome.html#met
hods

2. National Ocean Service. "Hydrography and Hydrographic Surveys." 17 April 2007.
http://chartmaker.ncd.noaa.gov/hsd/hydrog.htm

3. Chan, N., Clark, S., Gomez, C., Karlik, E., Sannino, J., and Young, N. "RoBoat:
Design and Field Testing of an Autonomous Surface Vessel and Acoustic Tracking
System." 2.109 Design of Ocean Systems. 13 December 2006.

4. Airmar. "Technical Data Catalog: 235 kHz - G."
http://www.airmartechnology.com/uploads/CeramicDesignation/235G.pdf

5. Airmar. "D800 DT800 Series."
http://www.airmartechnology.com/CatalogInter.asp?PageNo= 11

6. Airmar. "Owner's Guide and Installation Instructions." 2003.
http://www.airmartechnology.com/uploads/installguide/17-395-01%20r01 %20ps.pdf

7. "Kriging Interpolation."
http://lazarus.elte.hu/hun/digkonyv/havas/mellekl/vm25/vma07.pdf

IX. ACKNOWLEDGEMENTS

The author would like to express his gratitude to the following individuals and
organizations:

* Dr. Franz Hover, who served as thesis advisor and also helped troubleshoot
especially perplexing electronics issues.

* Christiaan Adams, who offered assistance numerous times for field testing,
Tattletale maintenance, and GIS help.

* Victor Polidoro and James Morash of MIT Sea Grant.
* MIT Sea Grant, the MIT Center for Ocean Engineering, and the MIT Department

of Mechanical Engineering.
* Fran Charles and the staff of the MIT Sailing Pavilion for storage space,

motorboat access, and cheerful help in launching the kayak.
* Christina Gomez for help with electronics and James Sannino for assistance with

launching and field testing.
* The students and staff of 13.017/13.018 (2005) and 2.017/2.019 (2006) for

developing the kayak up to the stage at the start of this project.

X. APPENDIX - SOFTWARE

/* w wwwwww www*wwf*w*w wwwwwwwwwwwwwwwwwwww

pd8main.c Tattletale Model 8 Starter C File with PicoDOS Support

Copyright 1994-2002 ONSET Computer Corp. All rights reserved.

** Evan Karlik, senior thesis Spring 2007
** Remote Control Depth Survey rxxx+xxe or rxxx-xxe for thrust and motor angle
** spacebar or other key for GPS and depth logging
**

<TT8.h>
<tat332.h>
<sim332.h>
<qsm332.h>
<tpu332.h>
<dio332.h>
<tt8pic.h>

Tattletale Model 8 Definitions
68332 Tattletale (7,8) Hardware Definitions
68332 System Integration Module Definitions
68332 Queued Serial Module Definitions
68332 Time Processing Unit Definitions
68332 Digital I/O Port Pin Definitions
Model 8 PIC Parallel Slave Port Definitions

#include <tt8lib.h>
#include <userio.h>

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

// definitions and prototypes for Model 8
// common convenient user I/O routines

<assert.h>
<ctype.h>
<errno.h>
<fcntl.h>
<float.h>
<limits.h>
<locale.h>
<math.h>
<setjmp.h>
<sgtty.h>
<signal.h>
<stat.h>
<stdarg.h>
<stddef.h>
<stdio.h>
<stdlib.h>
<string.h>
<time.h>
"pwm.h"

#include <PicoDOS8.h> // PicoDOS Interface definitions for Persistor CF8

/ **********************in*************
** main
+++++++++++++++++++wwwww******w*wwwwetwwwwwwwwwwkwwwwwwwwwww

#define GPS CHAN
#define GPSTSBUFSIZ

CUE CHAR
TARGET OFFSET TIME
TARGET OFFSET LAT

TARGET OFFSET LONG
TARGET OFFSET SOG
TARGET OFFSET COG
TARGET LENGTH TIME
TARGET LENGTH LAT
TARGET LENGTH LONG
TARGET LENGTH SOG
TARGET LENGTH COG

4
128

,$,
7
16
28
45
52
6
9
10
6
5

//GPS channel on TT8

//start of
//location
//location
//location
//location
//location
//length
//length
//length
//length
//length

DEPTH CHAN 5
DEPTH TSBUFSIZ 64
TARGET OFFSET DEPTH HEADER
TARGET LENGTH DEPTH HEADER

TARGET OFFSET DEPTH 7

data string
of time data
of latitude data
of longitude data
of speed over ground
of course over ground
time data
latitude data
longitude data
speed over ground
course over ground

//depth sounder channel on TT8

//location of header SDDPT

//location of depth data

#include
#include
#include
#include
#include
#include
#include

library

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

#define TARGET LENGTH DEPTH 5

PWM CHAN
DIR CHAN
PULSE CHAN

SERCHAN
TSBUFSIZ
TARGET OFFSET
TARGET LENGTH

//function declarations
void gps(void);
void depth(void);

void main()

i

int j = 0;
int q = 0;
char c[TSBUFSIZ];
char holder;
bool error = 0;
int thrust = 0;
int angle = 0;
int current angle = 0;
int move = 0;

ulong tcrl
int percent ;
int steps;
int i;
float xperiod, xtimehi ;
float Pwm period ;
float Pwm timehi ;

FILE *fout ;

// clears the files
fout = fopen("data.txt","w") ;
fprintf(fout," ");
fclose(fout) ;

fout = fopen("motor.txt","w");
fprintf(fout," ");
fclose(fout) ;

//opens data file
//prints space
//closes

//opens data file
//prints space
//closes

(GPS and depth)

(motor commands)

STANDARD TATTLETALE MODEL 8 LIBRARY & HARDWARE INITIALIZATION

InitTT8(NO_WATCHDOG, TT8 TPU); // setup Model 8 for running C programs

// STANDARD PICODOS KERNEL INITIALIZATION

InitCF8(CF8StdCS, CF8StdAddr); // always follows the InitTT8() call
if (errno != 0) // look out for No Hardware (100) or No Media (101)

printf("\n\n!!! InitCF8 failed, error %d !!!\n\n", errno);
if (errno == -1 (I errno == PiDosNoHardware) // no PicoDOS/Persistor !

Reset(); // any future PicoDOS calls would crash the TT8
TSerOpen(SERCHAN,

MiddlePrior,
INP,
malloc (TSBUFSIZ+TSERMINMEM),
TSBUFSIZ,
9600, 'N',8,1);

thrust = 0;
percent=(int)(.60*(float)thrust); //The output of the TPU channel will be 5V, but

//because the motor cannot be given more than
//3V, the multiplier is .60

#define
#define
#define

#define
#define
#define
#define

//length of depth data

if (percent>60) //precationary line to make sure TT8 does not
percent=60; //output more than 60%, which would be 3V.

if (percent<0) //also precautionary code
percent=0;

Pwm_period = 4000.*1; /* 1 ms period */
/* (factor of 4000 is for 4MHZ clock) */

Pwm_timehi = 4000.*l*((float)percent*.01)

tcrl = TPUGetTCRI();
xperiod = (float) tcrl * (float) Pwmperiod / le6;
xtimehi = (float) tcrl * (float) Pwm timehi / le6;

TPUSetPin(PWM_CHAN, 0);
TPUSetupPWM(PWM_CHAN, xtimehi, xperiod, MiddlePrior);

printf("Set TPU Channel %d to %d duty cycle.\n", PWMCHAN, percent)

while (I)

holder = 'q';
while(holder != 'r')

if(holder != '\n')
{
depth ();
gps();

holder = TSerGetByte(SERCHAN);
printf("\nHolder is: %c ",holder);

I
for (j=0;j<8;j++)

{
holder = TSerGetByte(SERCHAN);
printf("\nHolder is: %c ",holder);
if(holder == 'r')

{
j = -1;

else

if (holder == 'e')

printf("\nGot execute character.\n");
error = 0;
thrust = (c[0]-'0')*100+(c[l]-'0')*10+(c[2]-'0');
angle = (c[4]-'0')*10+(c[5]-10');
if(c[31=='-')

angle *= -1;

//check for errors
if(thrust>100 11 thrust<0)

error = 1;
printf("\n Thrust error!");

I
if(angle>90 1 angle<-90)

error = 1;
printf("\n Angle error!");

if(!error)

move = angle - current_angle;

//INSERT THRUST COMMAND HERE arg(int move)

percent=(int) (.60*(float)thrust);

if (percent>60)
percent=6(

if (percent<0)
percent=0

//precationary line

//also precautionary code

Pwm period = 4000.*1; /* 1 ms period */
/* (factor of 4000 is for 4MHZ clock) */

Pwm timehi = 4000.*l1*((float)percent*.01)

tcrl = TPUGetTCR1();
xperiod = (float) tcrl * (float) Pwm_period / le6;
xtimehi = (float) tcrl * (float) Pwm timehi / le6;

TPUSetPin(PWM CHAN, 0);
TPUSetupPWM(PWMCHAN, xtimehi, xperiod, MiddlePrior);

printf("Set TPU Channel %d to %d duty cycle.\n", PWM CHAN, percent)

currentangle = angle;

//INSERT SERVO COMMAND HERE arg(thrust 0-100)

// setting the direction to go forward or backward

if (move>0)
TPUSetPin(DIR CHAN, 0);

else
TPUSetPin(DIR CHAN, 1);

// number of steps to move
steps = 60*abs(move); //Measured steps
for (i=0; i<steps; i++)

per degree from 017

TPUSetPin(PULSE CHAN, 0);
//DelayMilliSecs (40000);
TPUSetPin(PULSE CHAN, 1);
// DelayMilliSecs (40000);

//END OF SERVO COMMAND

printf("\n\n Thrust: %d Angle: %d Moved: %d\n",thrust,angle,move);
fout = fopen("motor.txt","a"); //open data file
fprintf(fout,"\n %d %d %d ",thrust,angle,move);
fclose(fout);
//depth();
//gps();

else

I
c[j] = holder;
printf("Got char: %c",holder);

//set all in buffer to zero
for(q = 0; q<TSBUFSIZ;

c[q] = '0';

//printf("\nSet to zero.\n\n");

q++)

TSerClose(SERCHAN);
printf("\n\nSerial channel successfully closed. ") ;

//
// STANDARD TATTLETALE MODEL 8 PROGRAM EXIT
//

// main() //

// DEPTH SOUNDER

void depth(){

long int i ;
long int imark=0;
char data;
char p[TARGET_LENGTHDEPTH_HEADER];
char q[TARGET_LENGTHDEPTH];
FILE *fout ;
double depth;
int got_depth;
long int depth_whole; //depth hundreds
long int depth dec;//depth tenths
char c[DEPTHTSBUFSIZ]; //data string

printf("Depth sounder input port opened: %d (check: should be %d)\n",
TSerOpen(DEPTH_CHAN,

MiddlePrior,
INP,
malloc(TSBUFSIZ+TSER MIN MEM),
TSBUFSIZ,
4800,'N',8,1
tsOK);

//read from depth sounder
got_depth = 0;
while(got_depth != 1)

for (i=O;i<DEPTH_TSBUFSIZ && gotdepth != l;i++)

data = TSerGetByte(DEPTH_CHAN);
printf(" %c ",data);

c[i] = data; //reads in data string to c

if (c[i] == '$')//finds start of string, marked by $

imark = i;

if (i>=imark+TARGET OFFSET DEPTH HEADER && i<imark+TARGET OFFSETDEPTH HEADER +
TARGETLENGTHDEPTH-HEADER)

p[i-imark-TARGET_OFFSET DEPTH HEADER]=cli]; //depth header

if (i>=imark+TARGETOFFSETDEPTH && i<imark+TARGETOFFSETDEPTH+TARGETLENGTHDEPTH)

q[i-imark-TARGET_OFFSETDEPTH]=c[i]; //depth
I

if(i == imark+TARGETOFFSETDEPTH+TARGET LENGTH_DEPTH)I

if(p[0] == 'P'){

got_depth = 1;
fout = fopen("data.txt", "a"));

depth whole = 0; depth_dec = 0;

if(q[2] == '.') //depth < 99.9

//open data file

depth_whole += (long int)(q[01]-'O')*0;
depth whole += (long int) (q[l]- 0');
//skip decimal
depth dec += (long int) (q[3]-'0');

if(q[3] == '.') //depth < 999.9

else

depthwhole += (long int)(q[0]- 0')*100;
depth whole += (long int) (q[l]-'O')*0;
depth whole += (long int)(q[2]-0');
//skip decimal
depthdec += (long int) (q[4]-'0');

//depth < 9.9

depth_whole += (long int)(q[0]-'O');
//skip decimal
depth dec += (long int)(q[2]-'0');

I
depth = (float)depth whole+((float)depth dec/10.);
fprintf(fout,"\n %lf ",depth); //write to file
printf("The depth is: %if meters ",depth);//write to screen
fclose(fout) ; //close data file }

TSerClose(DEPTH CHAN);

// GPS LOGGING

void gps(){

long int i ;
int j;
long int imark=0;
char data;

long int
long int
long int

long int
long int
long int

ilat_deg;
ilat min;
ilat mindec;

ilong_deg;
ilong_min;
ilongmindec;

long int ic;
long int ic dec;
char c[GPSTSBUFSIZ];
char d[TARGET_LENGTH TIME]
char e[TARGET_LENGTH_LAT];
char f[TARGET LENGTH_LONG]
char g[TARGET_LENGTH_SOG];
char h[TARGET_LENGTH COG];
double lat min;
double long min;

//latitude degrees
//latitude minutes
//decimal minutes

//longitude degrees
//longitude minutes
//decimal minutes

//data string
//time string
//latitude string
//longitude string
//speed string
//course string

double time;

double R = 6371000; //mean Earth radius
double boat lat;
double boat_long;
//coordinate in middle of Charles River:
double goal_lat = 42.356633;
double goal long = 71.087611;
double range; //range (m) to GPS waypoint
double delta lat;
double deltalong;
double delta x;
double delta y;
double theta; //bearing to GPS waypoint

float voltage; float heading;

FILE *fout ;

// clear the file
fout = fopen("data.txt","a"); //opens data file

//closes

printf("Serial input port opened: %d (check: should be %d)\n",
TSerOpen(GPSCHAN,

MiddlePrior,
INP,
malloc(GPSTSBUFSIZ+TSER MIN MEM),
GPSTSBUFSIZ,
9600,'N',8,1
tsOK);

printf("TIME LAT LONG RANGE BEARING
COMP RAW COMP HEADING\n");

for(j=0;j<l;j++)
{

for (i=0;i<GPSTSBUFSIZ;i++)

data = TSerGetByte(GPS_CHAN);
//printf("\nGot char: %c",data);

c[i] = data; //reads in data string to c

if (c[i] == '$')//finds start of string, marked by $

imark = i;

if (i>=imark+TARGET OFFSET TIME && i<imark+TARGET OFFSET TIME+TARGET LENGTH TIME)

d[i-imark-TARGETOFFSETTIME]=c[i]; //time

if (i>=imark+TARGETOFFSETLAT && i<imark+TARGET OFFSET LAT+TARGET LENGTH LAT)

e[i-imark-TARGETOFFSET LAT]=c[i]; //latitude

if (i>=imark+TARGET OFFSET LONG && i<imark+TARGET OFFSET LONG+TARGET LENGTH LONG)
I
f[i-imark-TARGETOFFSET LONG]=c[i]; //longtitude

if (i>=imark+TARGETOFFSETSOG && i<imark+TARGETOFFSETSOG+TARGETLENGTHSOG)

g[i-imark-TARGET_OFFSET_SOG]=c[i]; //speed over ground

if (i>=imark+TARGET OFFSET COG && i<imark+TARGET OFFSET COG+TARGET LENGTH COG)

h[i-imark-TARGET_OFFSET_COG]=c[i]; //course over ground

if(i == imark+TARGETOFFSETCOG+TARGET LENGTH COG)

//calculates time (sec)
ic = 0; ic dec = 0;
ic += (long int) (d[0]-'O')*3600*10;
ic += (long int)(d[l]-'0')*3600;
ic += (long int)(d[2]-'0')*60*10;
ic += (long int) (d[3]-'0')*60;
ic += (long int)(d[4]-'0')*10;
ic += (long int) (d[5]-'0');
//skip decimal
ic dec = 0;
ic dec += (long int)(d[7]-'0');

//printf("Time: %ld seconds.\n ",ic);
time = (float)ic+((float)ic dec/10.);
fprintf(fout,"%lf ",time); //write to file
printf("%lf ",time); //write to screen

//calculates latitude
ilat deg = 0;
ilatdeg += (long int) (e[0]-'0')*10;
ilat deg += (long int)(e[l]-'O')*l;
ilat min = 0;
ilat min += (long int) (e[2]-'0')*10;
ilat min += (long int)(e[3]-'0')*l;
ilat mindec = 0;
ilat mindec += (long int) (e[5]-'0')*10000;
ilat mindec += (long int)(e[6]-'0')*1000;
ilat mindec += (long int)(e[7]-'0')*100;
ilat mindec += (long int)(e[8]-'0')*10;
ilat mindec += (long int)(e[9]-'0')*l;
lat min = (float)ilat min+((float)ilatmindec/100000.);
fprintf(fout, "%ld %lf ", ilat_deg, lat_min); //write to file
printf("%ld o %lf' N ", ilat_deg, lat_min); //write to screen

//longitude
ilong deg = 0; ilongmin = 0; ilong_mindec = 0;
ilong_deg += (long int) (f[0]-'0')*100;
ilong_deg += (long int)(f[l]-'0')*10;
ilong deg += (long int)(f[2]-'0')*l;
ilong_min += (long int) (f[3]-'0')*10;
ilong_min += (long int)(f[4]-'0')*l;
//skip 5, decimal
ilongmindec += (long int) (f[6]-'0')*10000;
ilong_mindec += (long int) (f[7]-'0')*1000;
ilongmindec += (long int)(f[8]-'0')*100;
ilongmindec += (long int)(f[9]-'0')*10;
ilong_mindec += (long int)(f[9]-'0')*l;
long min = (float)ilong_min+((float)ilong_mindec/100000.);
fprintf(fout, "%ld %lf ",ilong_deg,long_min); //write to file
printf("%ld o %lf' W ",ilong_deg,long_ min); //write to screen

boat_lat = (float)ilat_deg+latmin/60.;
boat long = (float)ilongdeg+longmin/60.;

delta lat = goal lat - boat lat;
delta long = goal_long - boat_long;
delta y = delta_lat*60*1852;
delta_x = delta long*60*1852*cos(boatlat);

range = sqrt (deltax*deltax+delta_y*delta y);
theta = atan2(delta_y,delta_x);
theta = theta*180/3.14159265; //convert to degrees
theta = 90 - theta; //convert to compass bearing

fprintf(fout, "%lf %lf ",range,theta);

printf("%lf %if ",range,theta);

voltage = AtoDReadMilliVolts(7);
heading = voltage/1000.*92.3;
printf ("%f %f\n\n",voltage,heading);
fprintf(fout, "%f %f",voltage,heading);
fclose(fout) ; //close data file

//printf("\n");

TSerClose(GPSCHAN);

//
// STANDARD TATTLETALE MODEL 8 PROGRAM EXIT

// main() //

#include "pwm.h"

/************************************** *
** TPUSetupPWM
Modulation
**

Setup TPU channel for Pulse-Width

Notes:
w~m eor - eriod4, in tcrl c le [.,~1]nn-ni ~ ~ .&,~

** pwmhi = time high in tcrl cycles
** priority = LowPrior, MiddlePrior, or HighPrior [defined in tpu.h]
** read about value limitations in the TPU Reference Manual

void TPUSetupPWM(short chan, short pwmhi, short pwmper, short priority)
{
CHANPRIOR(chan, Disabled); /* stop what its doing */
if (priority == Disabled) /* just shutting it down */

return;
CIER &= -(1 << chan); / don't want interrupts enabled */
FUNSEL(chan, PWM); /* channel function select */
PRAM[chan] [0] = OutputChan I NoChangePAC I (pwmhi ? ForceHigh : ForceLow);
PRAM[chan] [2] = pwmhi; /* time hi */
PRAM[chan] [3] = pwmper; /* period */

HOSTSERVREQ(chan, 2);
CHANPRIOR(chan, priority);
while (HOSTSERVSTAT(chan) & 3)

/* issue request */
/* set channel priority */
/* await reply */

/* TPUSetupPWM() */

#ifndef PRECOMPHDRS
#include <TT8.h>
#include <tat332.h>
#include <sim332.h>
#include <tpu332.h>

#include
*/

/* Tattletale Model 8 Definitions */
/* 68332 Tattletale (7,8) Hardware Definitions
/* 68332 System Integration Module Definitions
/* 68332 Time Processing Unit Definitions */

/* definitions and prototypes for Model 8 library<tt8lib.h>

#include <stdio.h>
#include <stdlib.h>

<TT8.h>
<tat332.h>
<sim332.h>
<qsm332.h>
<tpu332.h>
<dio332.h>
<tt8pic.h>
<tt8lib.h>
<userio.h>
<assert.h>
<ctype.h>
<errno.h>
<fcntl.h>
<float.h>
<limits.h>
<locale .h>
<math.h>
<setjmp.h>
<sgtty.h>
<signal.h>
<stat.h>
<stdarg.h>
<stddef.h>
<stdio.h>
<stdlib.h>
<string.h>
<time.h>

<pdos8.h>
<PicoDCF8.h>

/* Tattletale Model 8 Definitions */
/* 68332 Tattletale (7,8) Hardware */
/* 68332 System Integration Module */
/* 68332 Queued Serial Module */
/* 68332 Time Processing Unit */
/* 68332 Digital I/O Port Pin */
/* Model 8 PIC Parallel Slave Port */
/* Model 8 library */
/* Others ... */

/* if this fails, try PicoDCF8.h */
/* if this fails, try pdos8.h */

#include <userio.h>
#endif

PWM CHAN

ForceHigh
ForceLow
NoChangePAC
OutputChan

0x01
0x02

0x10
0x80

void TPUSetupPWM(short chan, short pwmhi, short pwmper, short priority);

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include.
#include
#include
#include
/*#include
#include

#define

#define
#define
#define
#define

