
An Integrated Methodology for the Performance and
Reliability Evaluation of Fault-Tolerant Systems

by

Alejandro D. Dominguez-Garcia

Ingeniero Industrial
Universidad de Oviedo, Spain (2001)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May2007 [~ Af 2OO1

Massachusetts Institute of Technology, MMVII. All rights reserved.

Author-J
Deparment of Electrical Engineering and Computer Science

/ May 2007

Certified by-'-,~
John G. Kassakian

Professor of Electrical Engineering and Computer Science
6{ --Thesis Supervisor

Certified by
Joel E. Schindall

Bernard M. Go on Profesand C uter Science
esis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOCX

AUG 16 2007 ARCLA S

LIBRARIES

An Integrated Methodology for the Performance and Reliability Evaluation of
Fault-Tolerant Systems

by
Alejandro D. Dominguez-Garcia

Submitted to the Department of Electrical Engineering and Computer Science
on May 2007, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis proposes a new methodology for the integrated performance and reliability evaluation
of embedded fault-tolerant systems used in aircraft, space, tactical, and automotive applications.
This methodology uses a behavioral model of the system dynamics, similar to the ones used by con-
trol engineers when designing the control system, but incorporates additional artifacts to model the
failure behavior of the system components. These artifacts include component failure modes (and
associated failure rates) and how those failure modes affect the dynamic behavior of the compo-
nent. The methodology bases the system evaluation on the analysis of the dynamics of the different
configurations the system can reach after component failures occur. For each of the possible system
configurations, a performance evaluation of its dynamic behavior is carried out to check whether its
properties, e.g., accuracy, overshoot, or settling time, which are called performance metrics, meet
system requirements. Markov chains are used to model the stochastic process associated with the
different configurations that a system can adopt when failures occur. Reliability and unreliability
measures can be quantified, as well as probabilistic measures of performance, by merging the val-
ues of the performance metrics for each configuration and the system configuration probabilities
yielded by the corresponding Markov model. This methodology is not only used for system eval-
uation, but also for guiding the design process, and further optimization. Thus, within the context
of the new methodology, we define new importance measures to rank the contributions of model
parameters to system reliability and performance.

In order to support this methodology, we developed a MATLAB/SIMULINK@ tool, which also
provides a common environment with a common language for control engineers and reliability
engineers to develop fault-tolerant systems. We illustrate the use of the methodology and the capa-
bilities of the tool with two case-studies. The first one corresponds to the lateral-directional control
system of an advanced fighter aircraft. This case-study shows how the methodology can identify
weak points in the system design; and point out possible solutions to eliminate them; compare dif-
ferent architecture alternatives from different perspectives; and test different failure detection, iso-
lation, and reconfiguration (FDIR) techniques. This case-study also shows the effectiveness of the
MATLAB/SIMULINK® tool to analyze large and complex systems. The second case-study com-
pares two very different solutions to achieve fault-tolerance in a steer-by-wire (SbW) system. The
first solution is based on the replication of components; and the introduction of failure detection,
isolation, and reconfiguration mechanisms. In the second solution, a dissimilar backup mechanism
called brake-actuated steering (BAS), is used to achieve fault-tolerance rather than replicating each
component within the system. This case-study complements the flight control system one by show-
ing how the performance and MATLAB/SIMULINK@ tool can be used to compare very different
architectural approaches to achieve fault-tolerance; and therefore, how the methodology can be
used to choose the best design in terms of performance and reliability.

Thesis Supervisor: John G. Kassakian
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Joel E. Schindall
Title: Bernard M. Gordon Professor of the Practice

- 3-

To Cristina and my parents, Vicenta and Angel

Acknowledgements

This acknowledgments not only include the people that have been directly involved in my
work for the last four years and a half, but also people who were instrumental in shaping
me as an individual and indirectly make this moment happen.

First, I want to thank both my advisors John Kassakian and Joel Schindall for guiding me
through my Ph.D years. One of the things that I most appreciate is the freedom they both
gave to do my work and find my own way. I am grateful to John for believing in me by
offering my the opportunity to work with him when I arrived to MIT. I am really grateful
to Joel for being a real mentor; for teaching me all those skills, not written in any book,
any researcher needs to manage his/her own research; for listening to me and give me
excellent advise in all matters.

I want also to thank my thesis committee: Phil Babcock, George Verghese and George
Apostolakis. Phil is the person that most supported me when I started working on fault
tolerance and I did not know anything about it. He managed to find the time, and had the
patience to teach me even before he was involved in my thesis. He saw a lot of potential
in the work I was doing and managed to make Draper fund it for three consecutive years.
Even if George Verghese was not directly advising me, I felt he was doing so several times.
He found the time to sit week after week with me and discuss my research. He even al-
lowed me to attend and present my work at his networks group meetings, which was very
important at the time. Finally George Apostalakis, even if he is in a different department,
did not hesitate on being in my committee and helping me out, not only in my research,
but also when I was exploring my post-graduation options.

I am also in debt with Jeff Zinchuk at the Charles Stark Draper Laboratory. Although
he is not in the thesis committee, he was the one that met with me week after week and
discussed my work, and gave me feedback. He is being extremely involved with my Ph.D.,
not only technically but listening to me when I was going through hard times. There are
other people at Draper that I also want to thank for supporting me in different matters.
These are Rob Hammett, Nick Borer, Jean Avery and Piero Miotto.

Special thanks go to my great friend and colleague Ivan Celanovic. He was the "unofficial"
third advisor. He was the one that listened to me in the toughest moments. He was the one
to share with me the joyful moments and the crazy nights at Middlesex. In summary, he
was a true mentor to me. I also want to thank my friends and colleagues at LEES, specially
Laura Zager and Jeff Lang.

5-

Acknowledgements

Thanks also to my friends for the great moments we shared. They have names: Nenad,
Mara, Velimir, Ivana, Nebojsa, Mauro, Fred, Joe, Neal, Bonna, Eric, Ashley, Shawdee,
Laura Humpreys. It has been the most exciting of my life and you contributed big to
make them a lot of fun.

I would also like to acknowledge the sponsors that funded this research; the Charles Stark
Draper Laboratory and the MIT/Industry Consortium on Advanced Electrical/Electronic
Components and Systems. I also want to thank the Society of Presidential Fellows at MIT,
who provided me with a fellowship for my first year in the Ph.D. program.

I also want to thank several people I worked with during my summer internships in Ger-
many and England. First, I want to thank Marcus Abele, Wolfgang Mueller, Norbert Hoff-
mann, and the rest of the people at Bosch; it was a real pleasure to work with you. Second,
I want to thank Peter Miller and Ben Sewell at Ricardo. Some of the ideas of Chapter 4
were developed in collaboration with them. Finally, I want to thank Doug Milliken at Mil-
liken Research Associates for being so kind and helpful when I was learning about vehicle
dynamics. He provided us with a free licence of their vehicle dynamics MATLAB@ sim-
ulator. We did not end up going in that direction, but it was really fun to learn all those
things about vehicle dynamics.

I am also in debt with two people that were instrumental in making this moment happen.
The first one is Javier Gomez-Aleixandre Fernandez. He was the one that made me feel
passionate about electric engineering, a great professor, a great educator, a great friend and
a great mentor. The second person is Miguel Angel Sanz Martinez. He was the one that
really encouraged me to apply to MIT in the first place. He was the one that made me see
it was possible and helped me to make it happen.

My family deserve more than a simple "thank you". Specially my parents, Vicenta and
Angel, who provided me with a great education, who supported me in all my endeavors
and adventures: from buying me my first guitar to support me in the decision of emigrat-
ing to the USA for continuing my education and for pursuing my career. My brothers Juan,
Ernesto, Vicente, and Victor; and sister Elena were fundamental in my education. Being
the youngest I always looked at them as models to follow.

The final mention if for my fiancee Cristina, who has being a continuous support for me
during the last four years. Thanks for all the things we shared. Thanks for all the things
that we will we sharing very soon. All my love to her.

- 6-

Contents

1 Introduction 16

1.1 Problem Statement . 16

1.2 Background and Related Work . 18

1.2.1 State-of-the Art in Probabilistic System Reliability Evaluation 19

1.2.1.1 Reliability Block Diagrams (RBD) 19

1.2.1.2 Fault-Trees . 22

1.2.1.3 Markov Models . 28

1.2.1.4 Other System Reliability Evaluation Techniques 33

1.2.2 Dynamic Probabilistic Risk Assessment (DPRA): Removing the Sub-
jectivity of Qualitative Functional Description Based Methodologies 34

1.3 Thesis Summary and Organization . 36

2 On Markov Reliability Modeling: An Automotive Power Net Case-Study 41

2.1 Introduction .. 41

2.2 Dual Battery Power Net Architecture 42

2.3 System Reliability Model 44

2.3.1 System Level Failure Modes and Effects Analysis (FMEA)44

2.3.2 Markov Model 47

2.4 Results Analysis ... 49

2.5 Conclusions 54

3 On the Integration of System Performance and Reliability Evaluation 56

3.1 Introduction .. 56

3.2 System Dynamics Behavioral Model 58

3.2.1 Com ponents 58

-7-

Contents

3.2.2 Configurations . 60

3.3 Performance Metrics, Requirements Definition, and System Evaluation . . . 63

3.4 System Stochastic-Behavior Model . 66

3.4.1 On the Computation of Failure Coverage Probabilities 69

3.5 A Series RL Circuit Example . 74

3.6 Probabilistic Measures of Performance and Reliability 78

3.7 Differences Between DPRA and the New Methodology 80

3.8 Conclusions . 82

4 InPRESTo -SIMULINK@ Toolbox for Integrating Performance and Reliability 84

4.1 Introduction .. 84

4.2 Functionality ... 85

4.3 Defining the Inputs to InPRESTo 87

4.3.1 System Dynamics Behavioral Model Definition 87

4.3.2 Performance Metrics Definition and Requirements Specification . .. 90

4.3.3 Evaluation Parameters 91

4.4 Invoking InPRESTo 91

4.5 Analysis Results Visualization . 93

4.5.1 Reliability and Probabilistic Measures of Performance 93

4.5.2 Performance of Individual System Configurations 95

4.6 Program Flow ... 96

4.7 Further Development 99

5 Lateral-Directional Flight Control System Case-Study 102

5.1 Introduction .. 102

5.2 Design Goals 103

5.3 System Performance Metrics Definition and Associated Requirements . . . 103

5.4 Dual Channel Architecture: Pure Redundancy 104

5.4.1 Performance and Reliability Evaluation 107

5.5 Enhanced Dual Channel Architecture: Introducing Failure Self-Detection in
the PFCs . 114

-8-

Contents

5.5.1 Performance and Reliability Evaluation 115

5.6 Dual-Dual Channel Architecture: Introducing Lock-Step Processors 118

5.6.1 Performance and Reliability Evaluation 120

5.7 Architecture Comparisons . 121

5.8 Conclusions . 122

6 Steer-by-Wire/Brake-Actuated-Steering System Case-Study 124

6.1 Introduction . 124

6.2 Fault-Tolerant Steer-by-Wire System . 125

6.2.1 Performance Metrics Definition and Associated Requirements 127

6.2.2 Results Analysis . 128

6.3 Steer-by-Wire/Brake-Actuated-Steering System 130

6.3.1 Results Analysis . 133

6.4 SbW-SbW/BAS Comparison . 138

6.5 Conclusions . 140

7 Towards Probabilistic-Informed Design 142

7.1 Introduction . 142

7.2 Existing Techniques for Probabilistic Informed Design 143

7.2.1 Existing Importance Measures . 144

7.2.2 Sensitivity Analysis . 145

7.3 Further Discussion and Open Research Questions 146

7.3.1 On the Functional Dependence of the Reliability Function 147

7.3.2 On the Functional Dependence of the Coverage Probability 150

7.4 Conclusions . 151

8 Concluding Remarks 153

8.1 Thesis Summary and Highlights of Major Contributions 153

8.2 Conclusions . 155

-9-

Contents

A Basic Concepts and Definitions 158

A.1 Basic Definitions 158

A.2 Continuous-Time Markov Chains 159

B InPRESTo Subroutines 161

C Component Behavioral Models for the Flight Control System Case-Study 202

C.1 Primary Flight Computer 202

C.1.1 Voter .. 202

C.1.2 Roll Control Law 202

C.1.3 Yaw Control Law 203

C.2 Actuation Subsystem 204

C.2.1 Ailerons 204

C.2.2 Rudder 204

C.3 Mechanical Combiner 205

C.3.1 Ailerons 205

C.3.2 Rudder 205

C.4 Control Surfaces 205

C.4.1 Ailerons 205

C.4.2 Rudder 206

C.5 Inertial Measurement Unit 206

C.6 Control Surfaces Position Sensor 207

C.6.1 Ailerons 207

C.6.2 Rudder 207

C.7 Linear Lateral-Directional Aircraft Dynamics 208

D Component Behavioral Models for the SbW/BAS Case-Study 211

D.1 Steer-by-wire Computer 211

D.1.1 Voter .. 211

D.1.2 Steering Rack Position Controller for the lock-step processors archi-
tecture ... 211

-10 -

Contents

D.1.3 Steering Rack Position Controller for the SbW/BAS architecture . . . 212

D.2 Brake-Actuated-Steering Computer . 213

D.2.1 Voter . 213

D.2.2 Longitudinal Force Tires Controller 213

D.3 Steering Rack Actuation Subsystem . 214

D.4 Mechanical Combiner . 214

D.5 Caliper Actuation Subsystem . 214

D.6 Road Wheel Angle Sensor . 215

D.7 Steering Wheel Angle Sensor . 215

D.8 Linear Single-Track Vehicle Dynamics . 216

D.9 Linear Two-Track Vehicle Dynamics . 216

D .10 Rack . 217

Bibliography 219

-11 -

List of Figures

1.1 Energy transmission circuit system functional description and reliability block dia-
gram m odel . 20

1.2 Electric energy transmission system fault-tolerant architecture in its failure-free op-
erational m ode. 22

1.3 Fault-tolerant electric energy transmission system functional description and fault-
tree. 23

1.4 Fault-tolerant electric energy transmission system functional description and dy-
nam ic fault-tree. 26

1.5 Fault-tolerant electric energy transmission system functional description and state-
transition diagram . 29

2.1 Dual battery power net architecture. 43

2.2 Markov model for the power supply of the dual battery power net architecture of
Figure 2.1. 46

2.3 System configurations contributions to the total system dependability rate A(T)
sorted by number of components failed. 50

2.4 Contributions to the dependability rate A(T) for system configurations with one
and two components failed. 51

2.5 Dependability rate A(T) sensitivity to the failure rates of the electronic control unit

AECU, the sensors As, and the switches Asw; and to the detection probability D. . . 53

3.1 Series RLC Circuit Example. 62

3.2 Two-dimensional example for <ik, 0'k, and Qik(i4k). 65

3.3 Stochastic behavior of the non-failed system configuration (i, k) when a fail-
ure occurs in component m. 67

3.4 Bounding ellipsoid Og!(t 1 " and region 4'' of the state-space that contains the
states that meet the functional performance requirements of the system for a two-
dimensional for the case when ' (oo) C 4<',1, and Ql"(tl" is such that cI 3 = 1. . 72

3.5 Bounding ellipsoid fiN4(tl,1 and region <b of the state-space that contains the
states that meet the functional performance requirements of the system for a two-
dimensional for the case when QI 1(oc) C <b1 and the value of ci' given by 3.31.. 73

-12-

List of Figures

3.6 Bounding ellipsoid Qx(t1 and region <D", of the state-space that contains the
states that meet the functional performance requirements of the system for a two-
dimensional for the case when ((< . 74

3.7 Series RL Circuit. 75

3.8 Series RL Circuit current evolution for I < 76
eq

3.9 Series RL Circuit current evolution after R1 fails open circuit for Q, R 1, R2 ,

and imax such that V 2< im < V .. 77

3.10 State transition diagram associated with the Markov reliability model for
the series RL circuit case-study. 78

4.1 Basic functionality of InPRESTo. 86

4.2 SIMULINK® Control Surface Position Sensor Model. 88

4.3 SIMULINK® library browser displaying a library called InPRESTo that includes
predefined failure models and performance metrics models. 89

4.4 SIMULINK@ performance metric model definition. 90

4.5 Snapshot of the MATLAB® command window when invoking InPRESTo. 92

4.6 A snapshot of an EXCEL® spreadsheet results file showing the results for one of
the sets of sequences of failures of the same size. 93

4.7 Snapshot of an EXCEL@ spreadsheet results file showing system reliability and
unreliability values, the failure-free configuration probability, and the probabilistic
measures of performance associated with each performance metric. 94

4.8 Definition of the system variables whose dynamic behavior is to be displayed. . . 95

4.9 Visualization of the behavior corresponding to the lateral-directional flight control
system case-study presented in Chapter 5. 96

4.10 Functional flow diagram. 97

5.1 Reference aircraft response to a 0.2rad, 0.1Hz square wave in the roll command
0c. Sideslip response 3, roll rate response Pb, yaw rate response rb, and roll angle
response, for the system in its nominal configuration. 105

5.2 Lateral-directional flight control system fault-tolerant architecture. 106

5.3 Dual channel architecture performance in response to a 0.2 rad, 0.1 Hz square wave
in roll command 0. Aircraft roll angle response # compared to reference aircraft
model response Or, for different single failure modes in the left (or right) aileron,
and a failure injection time tf = 4 s. 109

-13 -

List of Figures

5.4 Dual channel architecture performance in response to a 0.2 rad, 0.1 Hz square wave
in roll command #c. Aircraft roll angle response 4 compared to reference aircraft
model response #b, for different single failure modes in one of the left (or right)
aileron actuation subsystems, and a failure injection time tf = 4 s. 110

5.5 Dual channel architecture performance in response to a 0.2 rad, 0.1 Hz square wave
in roll command 0,. Aircraft roll angle response # compared to reference aircraft
model response 0,, for different single failure modes in one of the primary flight
computers, and a failure injection time tf = 4 s. 111

5.6 1)ual channel architecture performance in response to a 0.2 rad, 0.1 Hz square wave
in roll command c. Aircraft roll angle response # compared to reference aircraft
model response #5 , for different single failure modes in the rudder, and a failure
injection time tf = 4 s. 112

5.7 IDual channel architecture performance in response to a 0.2 rad, 0.1 Hz square wave
in roll command #,. Aircraft roll angle response 0 compared to reference aircraft
model response 0k, for different single failure modes in one of the rudder actuation
subsystems, and a failure injection time tf = 4 s. 113

5.8 Enhanced dual channel architecture performance in response to a 0.2 rad, 0.1 Hz
square wave in roll command c. Aircraft roll angle response 0 compared to ref-
erence aircraft model response #r, for different single failure modes in one of the
primary flight computers, and a failure injection time tf = 4 s. 117

5.9 Enhanced dual channel architecture performance. Aircraft roll angle response #
compared to reference aircraft model response 0,, for different failure sequences
initiated by an omission failure mode in the PFC-SD circuit, and followed by dif-
ferent failure modes in one of the PFCs. 118

5.10 Dual-dual channel architecture performance in response to a 0.2 rad, 0.1 Hz square
wave in roll command 0. Aircraft roll angle response # compared to reference air-
craft model response 0r, for different single failure modes in one of the processors
of a primary flight computer, and a failure injection time t1 = 4 s. 121

6.1 SbW design: steer-by-wire system with replicated components and failure detec-
tion, isolation, and reconfiguration mechanisms to achieve fault-tolerance. 126

6.2 SbW design performance in response to a 10 deg, 0.5 Hz sinusoidal steering wheel
input at 70 km/h vehicle speed. Steering wheel angle J, compared to road wheel
angle (scaled to steering wheel angle SRS) under failure conditions, and vehicle
heading angle T, with a mechanical steering system compared to the vehicle (with
the SbW design) heading angle response T, under failure conditions. Both perfor-
mance comparisons shown for two failure modes of the rack actuation subsystem,
and for a failure injection time tf = 1 s. 129

-14 -

List of Figures

6.3 SbW design performance in response to a 10 deg, 0.5 Hz sinusoidal steering wheel
input at 70 km/h vehicle speed. Steering wheel angle 6, compared to road wheel
angle (scaled to steering wheel angle SR6) under failure conditions, and vehicle
heading angle T, with a mechanical steering system compared to the vehicle (with
the SbW design) heading angle response T, under failure conditions. Both perfor-
mance comparisons shown for the steering rack failing by getting stuck at a certain

position, and for a failure injection time tf = 1 s. 130

6.4 SbW/BAS design: steer-by-wire system with a dissimilar backup mechanism (brake-
actuated steering) to achieve fault tolerance. 132

6.5 SbW/BAS design performance in response to a 10 deg, 0.5 Hz sinusoidal steering
wheel input at 70 km/h vehicle speed. Steering wheel angle 6, compared to road
wheel angle (scaled to steering wheel angle SR3) under failure conditions, and ve-
hicle heading angle T, with a mechanical steering system compared to the vehicle
(with the SbW/BAS design) heading angle response I, under failure conditions.
Both performance comparisons shown for different single failure modes in the rack
actuation subsystem, and for a failure injection time tf 1 s. 135

6.6 SbW/BAS design performance in response to a 10 deg, 0.5 Hz sinusoidal steer-
ing wheel input at 70 km/h vehicle speed. Steering wheel angle 6& compared to
road wheel angle (scaled to steering wheel angle SRJ) under failure conditions,
and vehicle heading angle T, with a mechanical steering system compared to the
vehicle (with the SbW/BAS design) heading angle response xL, under failure con-
ditions. Both performance comparisons shown for different single failure modes
in the steer-by-wire computer failure detection circuit SbWC-FD, and for a failure
injection time tj = 1 s. 136

6.7 SbW/BAS design performance in response to a 10 deg, 0.5 Hz sinusoidal steer-
ing wheel input at 70 km/h vehicle speed. Steering wheel angle 6" compared to
road wheel angle (scaled to steering wheel angle SR3) under failure conditions,
and vehicle heading angle T, with a mechanical steering system compared to the
vehicle (with the SbW/BAS design) heading angle response T, under failure con-
ditions. Both performance comparisons shown for different single failure modes in
the steer-by-wire computer, and for a failure injection time t1 = 1s. 137

6.8 SbW/BAS design performance in response to a 10 deg, 0.5 Hz sinusoidal steering
wheel input at 70 km/h vehicle speed. Steering wheel angle J& compared to road
wheel angle (scaled to steering wheel angle SR6) under failure conditions, and ve-
hicle heading angle T, with a mechanical steering system compared to the vehicle
(with the SbW/BAS design) heading angle response T, under failure conditions.
Both performance comparisons shown for the steering rack failing by getting stuck
at a certain position, and for a failure injection time tf = 1 s. 138

B.1 Subroutines flow diagram. 162

-15-

List of Tables

2.1 System level FMEA for single component failures. 45

2.2 System level FMEA for sequences of two component failures. 46

2.3 Component failure rates and detection probabilities used in the development of the
simplified Markov model for the power net of Figure 2.1 (from [1] and [2]). 49

5.1 Component failure model parameters. 107

5.2 Dual channel architecture: single points of failure and unreliability for different
levels of truncation and an evaluation time of 500 h. 108

5.3 Enhanced dual channel architecture: primary flight computers' self-detection cir-
cuits failure model parameters. 116

5.4 Enhanced dual channel architecture: single points of failure and unreliability for
different levels of truncation and an evaluation time of 500h. 116

5.5 Dual-dual channel architecture: primary flight computers' dual-comparator cir-
cuits failure model parameters. 119

5.6 Dual-dual channel architecture: single points of failure and unreliability for differ-
ent levels of truncation and an evaluation time of 500h. 120

5.7 Results comparison . 120

6.1 Component failure model parameters. 127

6.2 SbW design: unreliability for an evaluation time of 6000h. 128

6.3 Component failure model parameters for the additional components of the SbW/BAS
architecture. 133

6.4 SbW/BAS design: unreliability for an evaluation time of 6000h. 134

6.5 Reliability estimates for the SbW and the SbW/BAS designs at the end of vehicle
lifetim e (6000 h). 138

6.6 Degraded performance comparison between the SbW and the SbW/BAS. 140

-16-

Chapter 1

Introduction

In this introductory chapter, we state the necessity of developing a new methodology for

analyzing the reliability and performance of fault-tolerant systems used in aircraft, space,

tactical, and automotive applications. In order to put this research in the appropriate con-

text, a review of classical reliability evaluation methodologies and tools is provided, as

well as some work relevant to this research. To facilitate the reading process, and highlight

the main contributions of this thesis, the chapter ends with a summary of the research,

in which the structure of the document and the main contributions of each chapter are

provided.

1.1 Problem Statement

The safety-critical/mission-critical nature of embedded systems used in aircraft, space,

tactical, and automotive applications, mandates that the systems' functionality for which

they are designed be performed even in the presence of component failures 1. Thus, safety-

critical/mission-critical systems must have the capability to adapt and compensate for

component failures in a planned, systematic way [3]. These types of adaptable systems are

known as fault-tolerant systems2 .

Designing an effective fault-tolerant system requires a through and comprehensive analy-

sis to fully understand and quantify potential failures and assess the effectiveness of failure

'According to Laprie [4], a failure occurs when the delivered service no longer complies with the agreed
description of the component's expected function and/or service.

2The concept of fault-tolerance was originally formulated by Avitignis in the field of computers [5]. How-
ever, the concept of fault-tolerant systems is much broader than the computer field. There are several examples
of fault-tolerant systems, e.g., aircraft, aerospace, defense, in which computers are just part of the system, but
there are other equally important components or subsystems, e.g., actuators, sensors, valves, or generators.
Therefore, we prefer the definition given in [3], which states fault-tolerance as the ability of a system to adapt
and compensate in a planned, systematic way to random failures of their components that can cause a system
failure.

-17-

detection, isolation, and reconfiguration (FDIR) mechanisms. There are well-developed

techniques to support the reliability 3 evaluation of conventional systems (see section 1.2).

However, all these techniques can yield ambiguous and/or incomplete results as they

base the analysis on a qualitative description of the system's functionality. This functional

description describes how components and subsystems are interconnected to fulfill the

functions they are designed for, and may include how component failures can propagate

to other components through their interconnections and affect the system functionality

[6, 7, 8]. For conventional systems, this approach is valid, as it is possible to evaluate

how a system can fail to perform the function for which it was designed by using this

high-level qualitative system's functionality description. However, this is not the case for

large-complex systems or embedded software-intensive systems.

The introduction of software to control engineering systems results in increased flexibil-

ity in the design of fault-tolerant systems. With this flexibility it is possible to perform a

complete system reconfiguration to accommodate failures, i.e., not only compensate for

hardware failures by substituting for the failed elements, but also by reconfiguring the

control software 4 . However, as pointed out by Leveson in [9], the introduction of software

in engineering systems, and the large numbers of components and subsystems (and the

interconnections among these) has greatly increased the complexity of engineering sys-

tems. Thus, for large-complex systems or embedded software-intensive systems, typical of

fault-tolerant systems, the additional complexity introduced by:

" the software controlling (and reconfiguring) the system; and

" the large number of interconnected components

makes it nearly impossible to fully understand the system performance -and thus deter-

mine its reliability, in the presence of hardware failures or software malfunctions, by only

using a qualitative description of the system's functionality and components' failure be-

havior.

3There are different ways to define reliability. We will use the one given in [10], which states reliability as
the ability of an item to perform a required function under stated conditions for a stated period of time.

4To illustrate this, on its return to Earth on May 41h, 2002 from the International Space Station (ISS), a
Soyuz TMA-1 spacecraft recovered from a module failure by reconfiguring itself to perform a backup re-entry
maneuver known as ballistic mode [11]. The problem, which caused the Soyuz TMA-1 to perform the re-entry
in ballistic mode was a failure in the BUSP-M guidance system, which is necessary in order to carry out a
controlled re-entry. The system responded to this failure by engaging higher control functions to take the
BUSP-M system out of the control loop and convert to an entirely different (ballistic) re-entry mode.

-18 -

IntroductionChapter I

Introduction

Therefore, the main goal of this thesis is to develop a new methodology to analyze the per-

formance and reliability of fault-tolerant systems; minimizing the subjectivity introduced

in the system analysis due to incompleteness of current modeling techniques. Thus, rather

than using a qualitative description of the system's functionality, this methodology uses

a model of the system dynamics plus additional features to model component failure be-

havior. These features include component failure modes (and associated failure rates) and

how these failure modes affect the behavior of the component. All reliability-related eval-

uation activities will be based on this quantitative system behavioral model, thus reducing

the possible ambiguity that always arises when using qualitative models to analyze system

reliability.

1.2 Background and Related Work

The IEEE Standard Dictionary of Electrical and Electronics Terms defines reliability as the abil-

ity of an item to perform a required function under stated conditions for a stated period

of time [10]. For a conventional system, with no redundancy or backup mechanism to ac-

count for component failures, it is natural to think that the system will deliver its function

only if all the components are operational. This is not the case in a fault-tolerant system,

which implements additional components and subsystems to account for component fail-

ures, thus delivering its function despite the presence of certain failures. Therefore, in

a fault-tolerant system, reliability will be dictated by the combinations of components at

any time. Furthermore, the ordering in which these combinations of failed components is

achieved may be important in some systems. Thus, the sequences of component failures

leading to system failure give a qualitative measure of system reliability. However, if a

quantitative measure of system reliability is required, knowing only the sequences of com-

ponent failures leading to system failure is not enough. Since the failure behavior of single

components is often modeled as a random process, i.e., the time to failure of the compo-

nent is regarded as random [6], it is natural to quantify system reliability as the probability

of the system delivering the function for which it was designed, for a period of time, e.g.,

system lifetime.

-19-

Ch1apter I

1.2.1 State-of-the Art in Probabilistic System Reliability Evaluation

In this section, we present a thorough literature review of probabilistic system reliabil-

ity evaluation techniques; highlighting the attractive features of each technique to model

fault-tolerant systems reliability; but also pointing out its shortcomings. The use of each

technique is illustrated with an example. Additionally, the use of Markov chains for reli-

ability modeling is further illustrated with a case-study in Chapter 2. Discussions of ad-

vanced reliability evaluation techniques are also included, some of which are very relevant

to this research. This is the case for a technique called Dynamic Probabilistic Risk Assess-

ment (DPRA), as we will further detail in Chapter 3, when we introduce the mathematical

framework of the methodology proposed in this thesis for the integrated performance and

reliability evaluation of fault-tolerant systems.

1.2.1.1 Reliability Block Diagrams (RBD)

System Model. This is a graphical representation of the system's structure function5 in

the form of a success-oriented network [6]. Thus, each component within the system is

represented by a two-terminal box. The components are connected through their termi-

nals to form a two-terminal network. Each component can be failed or non-failed. If the

component is non-failed then there is path between its two terminals, otherwise there is no
path. The system will fulfill its function (in the presence of component failures) whenever

there is a path between the two terminals of the network. If the system has more than one

function, and the necessary components to fulfill each function are different, then separate

RBDs will be developed for each function.

To illustrate how an RBD is developed, consider the parallel circuit for energy transmission

displayed in Fig. 1.1(a). Let's assume that the system function is to deliver a constant

output voltage V2 for an input voltage V. Let's assume that the components can only fail

open circuit. Then for the system to deliver its function, the existence of a path between

the circuit ends is necessary. Thus, the two electric lines Li and L2 will be represented
in parallel in the RBD, while the two busbars B1 and B2 will be represented as series

components. The resulting RBD is displayed in Fig. 1.1(b). Note that in this case, the

5The system structure function O(xi, X2, . ., XN) is a binary function, where each xi is an indicator variable
that takes value 0 when the component failure event associated with xi occurred and 1 otherwise (the associ-
ated component did not fail). The system structure function #(Xi, X2, . .., XN) will take value 1 whenever the
system is functional for a given (Xi, 2 . X.. XN) and zero whenever the system failed.

-20-

IntroductionChapter 1'.

Introduction

I Elecric line L, L

vv - B1 B2 --

Busbar B, Electric line L2 Busbar B2

(a) Architecture functional description. (b) RBD for voltage V2 delivery.

Figure 1.1: Energy transmission circuit system functional description and reliability block diagram
model.

resulting RBD has a structure similar to the system functional description. This is usually

the case when modeling reliability of static networks, e.g., electric circuits with a fixed

structure..

Model Evaluation. System reliability is obtained by quantifying the probability of ex-

istence of a path between the RBD ends. As mentioned before, an RBD is a graphical

representation of the system's structure function. Thus, in order to build the structure

function associated with the system RBD, it is necessary to first compute the minimal cut-

sets6 . For the parallel circuit RBD example, Fig. 1.1(b), the minimal cut-sets are: {B 1 fails

open circuit}, {B 2 fails open circuit}, and {Li fails open circuit, L2 fails open circuit}. The

resulting structure function is given by:

$(xi, X2, X3, x4) = X1x2(x3 + X4 - x3x4) (1.1)

where x1 is the indicator variable associated to the {B 1 fails open circuit} event, x2 is the
indicator variable associated to the {B 2 fails open circuit} event, X3 is the indicator variable
associated to the {Li fails open circuit} event, and x4 is the indicator variable associated
to the {L 2 fails open circuit} event. Then, the system reliability R can be computed as the
expectation of the structure function [6]. By assuming independence of the simple events:

R = E[0(x1, x 2 , X3 , x 4)] =

P(xi = 1)P(x2 = 1)P(X3 = 1) + P(x1 = 1)P(x2 = 1)P(x4 = 1) -

P(x1 = 1)P(x2 = 1)P(x3 = 1)P(x4 = 1). (1.2)

If the time to occurrence of each simple event is considered to be exponentially distributed,

then the system reliability can be computed as a function of time t. Let \ be the rate of

6A minimal cut-set is defined as a minimal-size set of simple events that cuts any path between the RBD
ends [6]. Minimal-size implies that any set resulting from eliminating any simple event of the original cut-set
is no longer a cut-set.

-21 -

Chapter 1.

occurrence for event i = 1, 2, ... 4, then

P(X, = 1) = 1 - e . (1.3)

By substituting the expression for each component yielded by (1.3) into (1.2), an expression

for the system reliability R as a function of time is obtained.

Shortcomings. RBDs are static structures, i.e., there are no time-dependencies between

events within the RBD. Thus, an RBD is a snapshot of the components that must be oper-

ational at any time for the system to deliver its function. Therefore, this means that RBDs

are not suitable to model systems where the order of component failure is important, i.e., at

a given time, two combinations of failed components which are reached in different order

may result in two different outcomes.

To illustrate this, consider the parallel parallel circuit for transmitting energy displayed in

Fig. 1.2. In the system failure-free operational conditions, Electric line L, is engaged; and

Electric line L2 is disengaged. When the voltage sensor VS detects a voltage drop, then

it sends a command to the Switch SW, and then Electric line L, is disengaged and Elec-

tric line L2 engaged. Now, let's consider two different sequences of component failures

involving the same events. Let's consider that the system is working in its nominal opera-

tion conditions and the Electric line L1 fails open circuit first. Then, the voltage sensor will

detect a voltage drop, and send a signal to the switch SW which will disengage Electric

line L, and engage Electric line L 2 . After Electric line L2 is in operation, let the voltage

sensor VS fail to detect voltage drops. In this case, since the system is already operating

with Electric line L2 , the sensor failure will not affect the energy transmission. Now con-

sider the inverse order in the failure events: the system is operating with Electric line L1

the voltage sensor VS fails first to detect voltage drops. In this scenario, the system will

keep its operation with Electric line L1 , but no voltage drop detection is possible. Then

let the Electric line L1 fail open circuit. In this conditions, the switch does not receive any

voltage drop warning from the sensor VS since this one is already failed. Thus the Electric

line L2 will not be engaged and thus the system will fail to transmit energy. It is clear that

in this case, the different events-ordering result in very different outcomes.

RBDs also can not capture other important features that may be important for modeling

fault-tolerant systems. It is not possible to model repair processes that may be triggered to

replace some components that may have failed without causing the system to fail. RBDs

are also not suitable to model failure coverage. Failure coverage refers to the ability of a

fault-tolerant system to recover from a component failure and stay operational. There are

-22-

ChI9apter 1 Introduction

Electric line L,

Voltage
sensor VS

Electric line L, Switch SW

Figure 1.2: Electric energy transmission system fault-tolerant architecture in its failure-free opera-
tional mode.

cases in which there is no uncertainty on the system recovery after a failure occurred, i.e.,

the system will always recover (perfect-coverage) or it never recovers (no-coverage). How-

ever, there might be cases in which depending on the system operational conditions at the

time of failure, the system may recover or may not, i.e., there is uncertainty (imperfect-

coverage) with respect to whether the system will survive the failure. RBDs can handle

perfect-coverage or no-coverage situations. However, they are not suited to modeling sys-

tems with imperfect-coverage situations. Finally, state-dependent failures are another im-

portant feature of fault-tolerant conditions, i.e., the likelihood of certain component fail-

ures depends on the the components that are already failed. RBDs can not handle this

important feature either.

Despite these limitations, RBD modeling is an appropriate technique to assess the reliabil-

ity of networks with static structures7 , in which each component can only have two states:

operational or failed. In this sense, RBDs are appealing because, unlike fault-trees (as we

show next), the RBD structure resembles the network physical structure. Thus, it is easy to

understand the system failure behavior when components have failed, and furthermore, it

is possible to automatically build the RBD from the functional block diagram description.

1.2.1.2 Fault-Trees

System Model. This is a graphical representation of the system's structure function in

the form of a fault/success-oriented logical diagram [6]. Thus, the top event of the tree

represents the conditions that must be met in order for the system to fail/not-fail to deliver

the function for which it was designed. The events that lead to the top event occurrence are

obtained through combinations of simple events (component failures), and are graphically

represented in the tree using logical AND and OR logical gates.

7Pioneering work on developing reliable electrical networks was published in 1956 by Moore and Shannon
[12].

-23-

IntroductionChapter 1

Chapter 1 Introduction

Electric ine Lj
V[V 2

Busbar B, Electric line L2 Busbar B2

(a) Architecture functional description.

0 AND gate Output voltage

QOR gate 1 V2 dropsI

d Ls B'al B Lf fais

drops ~~L B,~ fal f0B2falss0

cicutciit cr~

B, fails B ajls BL fails B fails
circit CirCt cirtt cicit

(b) Fault-tree for voltage V2 drop top-event.

Figure 1.3: Fault-tolerant electric energy transmission system functional description and fault-tree.

To illustrate how a fault-tree is built, consider the same parallel circuit used to illustrate

the construction of an RBD, Fig. 1.3(a). Let's assume that the system function is to deliver

a constant output voltage V 2 for an input voltage V1. Now, we assume that each element

within the circuit can fail either short or open circuit. Under these assumptions, the result-

ing fault-tree is displayed in Fig. 1.3(b).

Model Evaluation. System reliability is obtained by quantifying the probability of occur-

rence of the the fault-tree's top-event. The simple events (component failure events) are

assumed to be independent events. Thus, the calculation of the top-event's probability

boils down to computing the probability of unions and/or intersections of simple events.

However, for large fault-trees, this can be a daunting and error-prone task. Thus, there

are techniques that simplify the calculation of the top-event probability. One of these tech-

niques consist on computing the minimal cut-sets8 . To illustrate this, let's compute the

minimal cut-sets for the parallel circuit example, Fig. 1.3(b). In this example, the cut-sets

are: {V drops}, {B 1 fails open circuit}, {B 1 fails short circuit}, {B 2 fails open circuit}, {B 2

fails short circuit},{Li fails short circuit}, {L 2 fails short circuitl, {Li fails open circuit, L 2

fails open circuit}.

8In Fault-Trees, a minimal cut-set is defined as a minimal-size set of simple events that leads to the occur-
rence of the top-event [6].

-24 -

IntroductionChapter 1.

Introduction

The resulting structure function is given by:

$(x 1 , X2, X3, X4 , X5, X6, X7, X8, X9) = X1 X2X 3 X4X 5 X6X7(X8 + X9 - X8X9), (1.4)

where xi is the indicator variable associated with the {V 1 drops} event, x 2 is the indica-

tor variable associated with the {B 1 fails open circuit} event, X3 is the indicator variable

associated with the {BI fails short circuit} event, x4 is the indicator variable associated
with the {B 2 fails open circuit} event, x5 is the indicator variable associated with the {B 2

fails short circuit} event, X6 is the indicator variable associated with the {Li fails open cir-

cuit} event, X7 is the indicator variable associated with the {L1 fails short circuit} event,

x8 is the indicator variable associated with the {L 2 fails open circuit} event event, and x9

is the indicator variable associated with the {L 2 fails short circuit} event. As mentioned
before, each of these indicator variables will take the value 0 whenever the event occurs,
and 1 otherwise. Then, the system reliability R can be computed as the expectation of the
structure function. As mentioned before, by assuming independence of the simple events:

R = E[(xi,x2,x 3,x 4 ,X5 ,X6 ,X7 ,X8 ,Xg) -=

P(i = 1)P(x2 = 1)P(X3 = 1)P(X4 = 1)P(X5 = 1)P(X6 = 1)P(X7 = 1)P(Xs = 1) +

P(X1 = l)P(X2 = l)P(x3 = 1)P(X4 = 1)P(X5 = 1)P(X6 = 1)P(X7 = 1)P(X9 = 1) -

P(Xi = 1)P(x2 = l)P(X3 = l)P(X4 = l)P(X5 = 1)P(X6 = 1)P(X7 = l)P(X8 = l)P(Xg = 1).

(1.5)

As for RBDs, if the time to occurrence of each simple event is considered exponentially

distributed, then it is possible to compute the system reliability as a function of time t.

Shortcomings. One advantage of fault-trees is that, unlike in RBDs, different failure modes

can be considered for the same component. However, fault-trees have shortcomings simi-

lar to those exposed for RBDs:

* Fault-trees are static structures. Therefore, fault-trees are not suitable for modeling sys-

tems where the order of component failure is important.

* Fault-trees are not suited to modeling repair processes.

* Fault-trees can not handle imperfect failure coverage.

Another shortcoming of fault-trees (and in general of any classical reliability evaluation

technique) is the difficulty of generating the fault-tree in a systematic and objective way

from the functional description of the system and the component failure description. Quot-

ing from [13] "Fault-tree has at present, though, a number of drawbacks. It is an art, rather

-25-

Chapter 1.

than a science. If two people analyze a system, the results are never the same". Further-

more, as pointed out in the introduction, for very large complex systems, it is impossible to

understand how a system behaves in the presence of component failures by using only a

description of the system functionality. This makes the development of the fault-tree even

more difficult.

Advanced Fault-Tree Techniques

In the remainder of this section, several advancements in fault-tree analysis techniques

will be presented. These techniques solve some of the shortcomings mentioned above.

However, there are still several important features of fault-tolerant systems that these tech-

niques cannot handle.

Dynamic Fault-Trees. Priority logical gates were introduced in order to solve the event

time-dependency problem [14], which conventional logical gates can not handle. Later on,
logical gates were incorporated into fault-trees for the analysis of fault-tolerant computer

system [151, and thus the concept of a dynamic fault-tree was introduced [16]. The dynamic

fault-tree solved the problem of reliability modeling of systems where time-dependencies

of simple events are relevant.

To illustrate the use of dynamic fault-trees for reliability modeling, let's consider the same

parallel circuit example presented to show the inability of conventional fault-trees to han-

dle sequence-dependencies. The system functional description is displayed in Fig. 1.4(a).

As explained before, the system is operating with electric line L, in nominal conditions,
when L1 fails (open or short circuit), the voltage sensor VS will detect a voltage drop in V2

and will switch over the operation to electric line L 2 . The switch SW can fail open or short

circuit, causing the system to fail. The voltage sensor can fail to detect voltage drops in V2.

As mentioned before, if the voltage sensor VS fails when electric line L, is in operation, a

subsequent failure of L, will not be detected, causing the system to fail. On the contrary,
if the voltage sensor VS fails after the line L 1 failed, and operation was already switched
to line L2, the system will remain operational. The resulting dynamic fault-tree to describe
the system behavior in the presence of failures is displayed in Fig. 1.4(b).

There is a new element in this model that enables sequence-dependence modeling -the
priority-AND gate [141. This logical gate will yield a true value if all the inputs occurred
in the order they go into the gate, starting from left to right. Several other priority logical

-26-

Chapter 1 Introduction

Electric line Li

Voltage
sensor VS

Electric line L2
Switch SW

(a) Architecture functional description.

Priority-AND gate Output voltage

OR gate V2 dropsI

d La fails after VS L2 fails after L, SW fails

L, fails L2fails S SW
fils fails

fails c ruit circuit

L, fails L fails L ias L f~
circuit tcurcu circ it circuit

(b) Dynamic fault-tree for voltage V2 drop top-event.

Figure 1.4: Fault-tolerant electric energy transmission system functional description and dynamic
fault-tree.

gates (functional-dependency gate, cold-spare gate, sequence-enforcing gate) were intro-

duced in [16], allowing other more complex sequence-dependencies to be modeled.

Although dynamic fault-trees solve the sequences-dependency problem, there are still sev-

eral features of fault-tolerant systems that dynamic fault-trees can not properly handle,

e.g., repair processes, failure coverage, and state-dependent failures. Furthermore, unlike

fault-trees, which have algorithms to directly quantify the top-event probability, there are

no direct evaluation techniques for dynamic fault-trees. It is necessary to first convert

the dynamic fault-tree into an equivalent Markov model, and then solve this associated

Markov model to compute the top-event probability [171.

Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS). HiP-
HOPS is a methodology that allows the development of fault-trees from architecture func-

tional block diagrams in which local failure models for each component within the system
are defined [8]. It also supports system Failure Modes and Effects Analysis (FMEA) auto-
matic construction [18]. The component failure models are defined as collections of logical

expressions that relate deviations of the component output (called output deviations) to

-27-

Chapter I Introduction

deviations of the component input nominal behavior (called input deviations) and com-

ponent internal failures (called basic events). The architectural connections between com-

ponents (data connections, energy connections) allow the interconnection of the logical ex-

pressions of each local failure model, and thus, the development of a collection of system

fault-trees (or a system FMEA). The top-event of each fault-trees that HiP-HOPS generates

corresponds to a component output deviation.

The HiP-HOPS methodology is conceptually very similar to previous work developed by

Taylor in the context of electronic systems and software [13, 19]. Taylor also attempted to

automatically build fault-trees from a set of "transfer statements"; each of them describing

how a component output event can result from a component internal change (a failure), or

from an input event passed by another component output event [191. This clearly indicates

the similarity between HiP-HOPS and the work by Taylor.

Although HiP-HOPS (and the seminal work of Taylor) attempts to fill the gap between

the system functional description (augmented with component failure descriptions) and

the construction of the fault-tree, it still has several shortcomings. In these methodologies,

the output deviations due to input deviations or internal failures are based on the logical

expressions defined in the component local failure model. This failure model is based on

the analyst's skills in understanding the component failure behavior, and therefore it is

subjective. One peculiarity of the HiP-HOPS (and Taylor's) approach is that when two

components are connected, the output deviations of the first component must match the

input deviations of the second component [19, 20], which requires caution when defining

the local failure models and limits the input deviations of a component to the set of output

deviations of the previous component for cascading connections.

HiP-HOPS (and Taylor's approach) has the same problem as any other methodology based

on static failure models, it can not capture failure sequences. This is easy to understand

since the resulting failure model it is either a fault-tree (or an FMEA built from a fault-tree),
and fault-trees can only capture combinations of component failures as mentioned before.

Finally, both methodologies allow the component output deviations to be related to simple

event occurrences. However, it is still the task of the analyst to determine if those devia-

tions can cause the system to totally fail to perform its function, or to just cause a degraded

system performance which is acceptable in some situations. Thus, these methodologies do
not allow us to understand the overall system performance in the presence of component

failures.

-28-

Chapter 1 Introduction

1.2.1.3 Markov Models

Among all the mathematical formalisms to model random process, continuous time Markov

chains has proven to be a powerful approach to quantify the reliability of fault tolerant

systems. This is due to the fact that many important features of fault-tolerant systems are

naturally captured by a continuous-time Markov chain [21, 22]. Examples are: sequences

of failures in which the order of component failures matters, different repair strategies,

failure coverage, common mode failures, and state-dependent failure rates. In Chapter 2

the Markov reliability modeling principles presented in this section are illustrated with a

case-study. A brief introduction to continuous-time Markov chains (CTMC) is provided in

Appendix A. The reader is referred to [23, 24] for a more rigorous treatment of Markov

processes.

System Model. This is a graphical representation, in the form of a state-transition dia-

gram, of the system status (failed or operational) for each system configuration reached

after a unique sequence of component failures. The system is said to be in its failure-free

configuration when all the components within the system are non-failed. The system can

evolve from the failure-free configuration to other configurations depending on the status

(failed or operational) of the components within the system.

The nodes of the state-transition diagram represent the status (operational or failed) of

each system configuration, and the edges represent transitions between configurations

triggered by component failures (or repair processes). There are two types of nodes: ab-

sorbing nodes and non-absorbing nodes. The system will fulfill its function whenever it

is in a non-absorbing node. The system will fail to deliver the functions for which it was

design whenever it transitions to an absorbing node. Even if the system must deliver more

than one function, only one model is necessary. In this case, the non-absorbing states are

associated with system configurations in which maybe one of the functions is not available,

but the system is still operational. If the system is to operate in different mission phases,
then several several state-transition diagrams are to be developed; one per mission phase.

We will use the same parallel circuit used before, Fig. 1.5(a), to illustrate two of the most

important capabilities of Markov reliability models for modeling fault-tolerant systems:
sequence-dependencies and failure coverage. The state-transition diagram corresponding

to the Markov reliability model is displayed in Fig. 1.5(b). The absorbing states (displayed
in red) correspond to system configurations declared as failed, while the states displayed
in blue (transient states) correspond to the system configurations declared as non-failed.

-29-

Chapter 1 Introduction

Introduction

Electric line Li

Voltage
sensor VS

Electric line L2 Switch SW

(a) Architecture functional description.

(L, fails open circuit}

{ L2 fails short circuit t (L fails open circuit)

tL fails open circuit}
d VnSfails}u (Lo tfails short circuitf

{ V, drops} { V, drops}

AL2 fails open cirit}

{ L, fails short circuit 2 fails short aircuit}i (L2 fails open circuit}
covered}

at a, failure as ct c as fo t e { L2 fails short circuit} e

t od red d a drops} { V, drops}

{ Vo drops} { L, fails open circuit}

uL, fails short circuit}
I VS fails}

{ V, drops}I

(b) State-transition diagram for the function of delivering a
constant V2.

Figure 1.5: Fault-tolerant electric energy transmission system functional description and state-

transition diagram.

Note that sequence-dependencies are naturally included: states { 3, 2}1' and { 9, 2} are two

different sequences of the same failed components failed, with different results; the same

applies to states { 7, 2} and { 10, 2}1.

As mentioned before, failure coverage refers to the ability of a fault-tolerant system to

recover from a component failure and stay operational. There might be cases in which,

depending on the system operational conditions, the system may recover or not, i.e., there

is uncertainty (imperfect-coverage) with respect to whether the system will recover or not

after a failure has occurred. In this case, for the { L, short circuit} event, it may be the

9Each state of the Markov model is labeled with a double index { i, k}, where k = 0, 1,. ... represents the
number of component failures, and i = 1, 2,... is a counter for the Markov states reached after sequences of
failures of size k.

-30-

Chapter 1

Introduction

case that the short circuit path is not a direct contact to ground (there is some resistor

in the path). It may happen that the voltage sensor VS is not able to detect this failure,

and depending on the system operational conditions, this may cause the system to fail to

deliver its functionality. This has an impact on the system reliability model; when the line

L1 fails short circuited, it will generate two states in the state-transition diagram instead

of one. The first of these states {2, 1} will correspond to the case where L, fails short

circuited and the system recovers from this failure. The second one {3, 1} corresponds to

the uncovered short circuit failure of L 1, which results in a system failure.

Model Evaluation. System reliability R is quantified by calculating the probability that

the system will be in any of the non-absorbing states at a given time given that the sys-

tem was in the failure-free state {1, 0} at time t = 0 with probability 1. The transitions

between configurations occur stochastically and are triggered by random failures within

the system components. Each of these failures have an associated coverage probability.

We assume the system evolves between configurations in a Markovian fashion, i.e., the

system configurations (dictated by component status) at future times will only depend on

the configuration at the present time. Therefore the Chapman-Kolmogorov equations (see

Appendix A) can be used to compute the configuration status probabilities.

To illustrate the evaluation process, let's build the Chapman-Kolmogorov equations corre-

sponding to two of the states of the state-transition diagram of Fig. 1.5(b). Let A7'(SC) be

the failure rate for open circuit (short circuit) failure mode of component L 1 (L 2). Let AVS
be the failure rate for the component VS, and Av, the rate associated with voltage drops

in V1. Let CLsc be the coverage probability of L, short circuit failure. Then, the Chapman

Kolmogorov equations for states { 1, 0} and {2, 1} are given by

d t = -(AOC + ASC + Av, + AVS)pi 0,(t), (1.6)
dp it = csAf iot)- (Af+ Aff + Avi + Avs)p 2,1(t), (1.7)

dt CLSCAL 1P1,O(t)- (ALoC +AS V V)

where pi,o(t) is the probability that no failure has occurred at time t, given that pi,o(0) = 1,
and P2,1 (t) is the probability that the system is operating with electric line L2 at time t (due

to the fact that L1 failed covered), given that pi,0(0) = 1 . Similar differential equations

can be obtained for the remaining states of the Markov model. Then, after solving the

resulting set of differential equations, the system reliability R at time t can be computed as

the probability of being in a non-absorbing state of the Markov model:

R(t) =pi,0 (t) +pi,1(t) +p2,1(t) +p5,1(t) +p3,2(t) +p7,2(t). (1.8)

-31-

Chapter 1

Shortcomings. Markov reliability modeling allows us to include, in a natural and intuitive

way, other important features of fault-tolerant systems, such as different repair strategies,

failure coverage, common mode failures, and state-dependent failure rates when these are

constant. However, there are some limitations in the time-varying case. For example, let us

consider a component with different failure rates when in standby and when operational.

We will assume that the failure rate when the component is operational increases with

time; and that its initial value depends on the time the components is brought on-line.

Thus, the configuration status probabilities depend not only on the time the system is

operational, but also on the time components remain operational, i.e., two different time

scales. The effect of this additional time scale violates the Markov property, i.e., visits to

future states do not depend on visits to past states, only on the state visited at the present

time. Therefore, Markov models cannot be used to model component state-dependent

time-varying failure rates [25].

Another important drawback to the use of Markov reliability modeling is that the state

space grows exponentially with the number of components. Therefore, for large fault-

tolerant systems, it is necessary to apply model truncation techniques to control the state

space explosion [21, 26]. However, when truncating the analysis, it is necessary to assess

the impact of the truncation on the system reliability and unreliability estimates.

A technique to truncate the analysis consists of assuming that all system configurations

with kmax or more failed components are declared as failed. Upper and lower bounds in

the system reliability R, and unreliability Q, can be obtained by using [27]:

Qkmax < Q < Qkmax + Pakmax, (1.9)

Rkmax R < Rkmax + Pa,kmax, (1.10)

where Qkmax is the probability of being in an absorbing state associated with a configu-

ration with less than kmx components failed; Rk..ax is the probability of being in a non-

absorbing state associated with a configuration with less than kmax components failed; and

Pakmax is the probability of the system having exactly kmax components failed, which corre-

sponds to the probability of being in an absorbing state reached from all the non-absorbing

states associated with configurations with kmax - 1 components failed. The lower bound

in (1.9) is never achieved; the system will fail eventually for a sequence of component fail-

ures of size bigger than kmax. A similar conclusion can be reached for the upper bound in

(1.10), which can never be achieved.

-32-

Chapter 1 Introduction

Finally, the main shortcoming of Markov reliability modeling (true for most reliability eval-

uation techniques, as mentioned before) is the difficulty of generating the Markov model

from the functional description of the system and the component failure descriptions. For

large complex systems, this can be a daunting and error-prone task. Chapter 2 introduces

a technique to overcome this problem by building several system level FMEAs, which col-

lect the different failure sequences and their effects on the system functionality. This gives

a systematic solution for exploring all possible sequences of failures and their effects on

the system operation. However, it is still a manual task.

Advanced Markov Modeling Techniques: Computer Aided Markov Evaluator (CAME)

In the remainder of this section, we present a technique that addresses the main problem of

Markov reliability modeling techniques - the gap between the system functional model

and the reliability model. It was developed in the form of a computer tool, named the

Computer Aided Markov Evaluator (CAME), at the Charles Stark Draper Laboratory in

the mid '80s [27, 28]. The tool was developed to analyze the reliability of fault-tolerant

systems encountered in avionics and space applications, but it can be used to analyze the

reliability of any engineering system.

Although the name might suggest that CAME is merely a computer tool to evaluate Markov

models, CAME is the computer implementation of an advance methodology to evaluate

the reliability of complex fault tolerant systems. This methodology automatically gener-

ates a Markov reliability model from the following:

" A description of the components within the system. For each component, it includes:

its failure rate (the component is only regarded as failed or non-failed), the component

failure coverage probability, and the component operational dependencies, i.e., which

other components or subsystems within the system must be operational for the compo-

nent to be operational.

" A system operational description, which captures the components that must be func-

tional at any time for the system to be operational, and how the system reconfigures

itself to account for component failures, thus modifying the system operational descrip-

tion.

The methodology implemented in CAME tried to fill the gap between the system func-

-33-

Chapter 1 Introduction

Introduction

tional description and the system reliability model -the same way as the advanced fault-

tree techniques previously discussed. One of the advanced features introduced with CAME

is the automatic modeling of system reconfigurations, which are extremely important in

fault-tolerant systems. However, there are still several problems that the methodology

implemented in CAME cannot handle. CAME cannot model different component failure

modes or time-dependent failure rates. The failure rate associated with each component

is assumed constant. The system operational description still relies on the subjective judg-

ment of the analyst to determine the necessary components for the system to deliver its

functionality.

1.2.1.4 Other System Reliability Evaluation Techniques

Although the techniques discussed previously are the most common ones to quantify the

reliability of fault-tolerant systems, there are other techniques, some of which we briefly

discuss in this section. Although these techniques might be appropriate to model and

quantify the reliability of specific types of systems, they have the same common short-

coming as those already presented: the difficulty of generating the reliability model in a

systematic and objective way from the functional descriptions of the system and the com-

ponent failures (apart from the advancements in this matter introduced by HiP-HOPS and

CAME).

Reliability Graphs. They are extensively used to model network reliability [29]. Reliabil-

ity graphs are a graphical representation, in the form of directed graphs, of the system's

structure function. The edges of the graph represent component failure events. There are

two special nodes called the source node and the sink node. The source node has no in-

coming edges, and the sink node has no outgoing edges. The system will be functional

whenever there is a connection between the source and the sink nodes. Reliability graphs

are equivalent to reliability block diagrams [30]. Therefore, they have the same shortcom-

ings, as RBDs for modeling fault-tolerant systems.

Event-Trees. They were developed during the WASH - 1400 study lead by Norman Ras-

mussen to assess the accident risk in nuclear power plants in the US [311. Event-trees are a

graphical representation, in the form of decision tree, of the outcomes that can result from

an initiating event.

Nuclear power plants are designed with a philosophy called "defense-in-depth" which

-34-

Chapter 1

refers to (among other things) a set of safety systems that provide multiple barriers of de-

fense between a hazard and the public [32]. Event-trees are a powerful tool to quantify the

effectiveness of these different safety system swhen an undesirable event occurs. That is,

to estimate the likelihood that, given an initiating event that perturbs the nominal opera-

tion of the plant, the multiple safety systems will bring the plant back to normal operation

or safely shut it down.

Although, unlike fault-trees and RBDs, they cannot include repair processes event-trees al-

low modeling sequence-dependencies and imperfect failure coverage. Despite this, event-

trees are not really suited to model the reliability of the class of fault-tolerant systems

treated in this thesis, i.e., aircraft, space, and automotive systems. Event trees are suited to

analyzing the consequences of a single initiating event, whereas the fault-tolerant systems

used in the aforementioned applications are usually designed to withstand sequences of

more than one initiating event. Furthermore, due to constraints on weight, cost, and vol-

ume, the "defense-in-depth" methodology is not employed in the design of this type of

fault-tolerant systems. Usually only one, or at most two additional systems are put in

place to compensate for component failures.

1.2.2 Dynamic Probabilistic Risk Assessment (DPRA): Removing the Subjec-

tivity of Qualitative Functional Description Based Methodologies

One of the most important ideas introduced so far, the shortcoming of most current reli-

ability evaluation techniques, is the difficulty of generating an objective reliability model

from the functional description of the system and the components failure description. That

is, to understand how the system behaves in the presence of failures. A methodology

named Dynamic Probabilistic Risk Assessment (DPRA), developed in the nuclear engi-

neering field, attempts to solve such a problem. It was developed to assess the likelihood

of different accident sequences in a nuclear reactor [33, 34, 35].

The main difference (and most appealing feature) of DPRA with respect to the other reli-

ability evaluation techniques described previously resides in the system description used

to generate the reliability model. Rather than using a system qualitative functional model,

DPRA bases the system reliability evaluation on quantifying the behavior of the system

dynamic variables x,(t), for each possible configuration {i, k} adopted by the system after

the occurrence of a given sequences of k component failures. Thus, the ultimate objective

of DPRA is to find the probability Pi,k (x, (t), t).

-35-

IntroductionChapter 1

System Model. The system model is a collection of dynamic system models, each of which

represents the system dynamic behavior for each possible configuration attained by the

system [35]. Let {i, k} be a configuration adopted by the system after a unique sequence

of k component failures. The dynamics of this configuration is defined by

i 8 (t) = fsjk(x(t),w(t)),

y8t)= ~k(Xs9(t), W(t)), (.1

where k is the number of component operational mode transitions leading to system con-

figuration {i, k} from any of the initial system configurations {i, 0}, x,(t) is the vector of

system state variables, w(t) is the vector of system input variables, y,(t) is the vector of

system instantaneous outputs, foi'k(.) is the system state evolution function (for the {i, k}

configuration), and g,'k(.) is the system instantaneous output function (for the {i, k} con-

figuration).

Model Evaluation. The system reliability evaluation results from quantifying the sys-

tem dynamic behavior to check whether or not some sequences of events cause the sys-

tem dynamic variables xs(t) to exceed some predetermined values. Assuming that the

system state dynamic variables behave in a Markovian fashion, i.e., x,(t + dt) only de-

pends on xs(t) and not on previous values of x. [35], the probability distribution function

Pi,k(Xs (t), t) can be computed by solving the set of partial differential equations given by

aPi,k(Xs(t),t) + div(f,k (X (t), w (t))p,k (X (t), t)) =
at

Ai,k (Xs(0), OApik (Xs(t), 0) +-E A' k,_1(Xs(t), OAp, k_ 1(),) (1.12)
i.k-1

where Aj,k(x(t), t) results from adding all the individual transition rates that can trigger a

system transition out of configuration {i, k} and it depends on the system state variables

XS(t). A'_1 (Xs (t), t) is the transition rate associated with the operational mode transition

that causes the system to go from configuration {i, k - 1 } to system configuration {i, k}
and it depends on the system state variables x. (t) as well.

It might be possible to find analytical solutions to (1.12) for very simple systems [35]. How-

ever, the large number of components involved in the type of systems addressed by DPRA

(nuclear power plants) makes an analytical solution untractable for (1.12). Thus, numerical

methods (Monte Carlo simulation is one of them) are usually used to solve the problem. A
comprehensive review of these methods can be found in [36].

-36-

%Ch1apter 1 Introduction

Introduction

Shortcomings. In nuclear power plants, the stochastic transitions between configurations

and system state dynamic variables cannot be decoupled [37]. Thus, as discussed before,
an analytical solution is untractable for (1.12) for very large systems. Numerical solutions

are computationally very expensive. To illustrate this, let's take Monte Carlo simulation,
which is one of the numerical methods proposed to solve the problem [38]. With Monte

Carlo, random sequences of component failures are generated for the system operational

time, and the system dynamic evolution is simulated (for each sequence of events) until

meaningful reliability measures are obtained. For very reliable systems, only a few of these

simulations will lead to system failure; e.g., in a system designed to have a reliability of

10-6, there will be only one simulation out of one-million simulations resulting in system

failure[21]. Therefore it is necessary to carry out a larger number of simulations to obtain a

meaningful reliability result. Since component failures are regarded as rare events, achiev-

ing completeness in the possible sequences of failures is difficult [36]. However, there

has been some work done to try to overcome the computational problems associated with

DPRA. A good review of the main developments in this arena, as well as new work, can be

found in [39]. Finally, unless there is only one operational point in nominal conditions (no

failures), it is necessary to carry out the analysis for each possible plant initial operating

point, which increases the computational burden even further.

1.3 Thesis Summary and Organization

The main shortcoming of current reliability evaluation techniques has been clearly iden-

tified -the incompleteness of the system models used to analyze the system behavior in

the presence of failures. Thus, the main goal of this thesis is to introduce a new model-

ing and evaluation methodology for fault-tolerant systems addressing this problem. This

methodology ought to minimize the subjectivity introduced in the system analysis due to

incompleteness of current system modeling techniques.

Rather than using a qualitative description of the system's functionality (as in current tech-

niques), the methodology proposed in this thesis will use a quantitative model of the sys-

tem dynamic behavior (with no failures) plus additional features to model component

failure behavior as well. These features include component failure modes (and associated

failure rates) and how these failure modes affect the dynamic behavior of the component,

thus reducing the ambiguity that might arise from the use of qualitative models to analyze
system reliability.

-37-

Chapter 1

The new methodology is based on the following principles:

1. Starting from the failure-free configuration, the system can evolve to different configu-

rations, depending on which components failed, how these components failed, and the

order in which the components failed (when more than one failed).

2. For each of these possible configurations, a system model that quantifies the system

dynamic behavior is developed. This model will be used to determine whether or not

the system delivers the performance for which it was designed. This is where the main

difference with current techniques lies: the effect of component failures on the system

dynamic behavior is modeled and quantified.

3. After the system transitions into a new configuration due to a component failure, two

outcomes are possible. Either the system state variables remain within some predefined

region dictated by the system performance requirements at all times, then the configura-

tion is declared as non-failed (the failure is covered); or there are transient or permanent

excursion outside this region, then the configuration is declared as failed (the failure is

not covered).

4. The coverage probability (the probability of declaring a configuration as non-failed) will

be computed as a function of the system state variables at the time of failure and the

predefined region dictated by the system performance requirements.

5. The transitions between configurations occur stochastically, and the system is assumed

to evolve between configurations in a Markovian fashion.

The other key aspect of the new methodology is that not only quantitative measures of

reliability will result from the analysis, but also quantitative measures of dynamic perfor-

mance. This is possible because the system behavior is quantified for each system config-

uration, and thus certain performance metrics of interest can be measured, e.g., the power

consumption, the latency of certain signals, or the overshoot of certain system dynamic

variables response. This allows the full integration of system reliability with dynamic per-

formance evaluation, enabling a unified probabilistic-informed design framework, that

will help to:

e identify weak points in a design so they can be improved in subsequent iterations of
the design, and

-38-

Chapter 1 Introduction

* Compare different system architecture alternatives to help identifying the optimal one

in terms of performance and reliability.

This will guide the system design towards optimal system dynamic performance, robust-

ness, reliability, and fault tolerance. In the remainder of this section, the structure of the

subsequent chapters of the thesis is detailed, explaining the contents of each chapter and

main contributions

Chapter 2. Markov reliability models are used in the new methodology to model the sys-

tem behavior due to component failures. Thus, the main purpose of this chapter is to make

the reader familiar with the principles of Markov reliability modeling, and to introduce

some of the terminology that will be used in the remainder of the thesis. To accomplish

this, a case-study of a power net architecture for automotive safety-critical applications is

presented.

The main contribution of this chapter is the development of a technique to systematically

build system-level Failure Modes and Effects Analysis (FMEA) for each level of failure.

This allows a direct mapping to the Markov reliability model, thus alleviating its construc-

tion. Most of the work presented in this chapter was published in [40].

Chapter 3. The mathematical foundations of the new integrated methodology for evalu-

ating the performance and reliability of fault-tolerant systems is presented in this chapter.

As mentioned before, the main advantage of the methodology is that, rather than using

a qualitative description of the system's functionality, it uses a quantitative model of the

system dynamic behavior (with no failures) plus additional features to model component

failure behavior as well.

The main contributions of this chapter are:

" The rigorous definition of a generalized component behavioral model, which is a key

part of the methodology.

" A rigorous approach for computing failure coverage probabilities, which is key to de-

veloping the system stochastic-behavior model due to component failures. In this re-

gard, analytical solutions for the coverage probability in LTI systems are provided, as

well as a methodology, based on Monte Carlo simulations, to compute these coverage

probabilities in non-linear systems.

-39-

Chapter 1 Introduction

Chapter 4. One of the key features of fault-tolerant systems is complexity The methodol-

ogy presented in Chapter 3 attempts to solve some of the problems associated with com-

plexity when analyzing the reliability of fault-tolerant systems. However, this methodol-

ogy is useless if the analysis is not automated with the help of a computer. This chap-

ter presents a MATLAB/SIMULINK@ tool to support the methodology introduced in

Chapter 3 -InPRESTo, an acronym for Integrated Performance and Reliability Evaluation

SIMULINK® Toolbox.

The basic functionality is presented in this chapter. The automated analysis provided by

InPRESto is not the only important contribution of the tool. InPRESTo also provides a

common environment with a common languages for control engineers and reliability en-

gineers to develop fault-tolerant systems. The InPRESTo developed as part of this thesis is

being also used by the Systems Engineering and Evaluation Division at the Charles Stark

Draper Laboratory for the evaluation of space and tactical systems.

Chapter 5. The purpose of this chapter is to show how the new methodology (and its sup-

porting tool InPRESTo) can be used to: identify weak points in the system design; guide

the design, pointing out to possible solutions to eliminate the uncovered weak points;

compare different architecture alternatives from different perspectives; and test different

failure detection, isolation, and reconfiguration (FDIR) techniques. To accomplish this, we

present a case-study of a fault-tolerant architecture for a fighter aircraft lateral-directional

flight control system [41].

This case-study proves the scalability of the tool to analyze large systems. Part of the this

work was published in [42].

Chapter 6. This chapter illustrates how the new methodology (and its supporting tool) can

be used -to compare conceptually very different architectural approaches to achieve fault-

tolerance. For this purpose, two different solutions to achieve fault-tolerance in a steer-by-

wire (SbW) system are presented. The first solution is based on component redundancy

and the introduction of failure detection, isolation, and reconfiguration mechanisms. In the

second solution, a dissimilar backup mechanism called brake-actuated steering (BAS), is

used to achieve fault-tolerance rather than replicating each component within the system.

This chapter complements Chapter 5 by showing how the performance and reliability eval-

uation SIMULINK @ toolbox -InPRESTo- can be used in a different way from that shown

in Chapter 5. BAS is part of our earlier research in steer-by-wire and it was published in

[43].

-40-

IntroductionChapter 1

Introduction

Chapter 7. The purpose of this chapter is to discuss the new methodology as the en-

abler of a unified system probabilistic-informed design framework. Existing probabilistic-

informed decision making importance measures for system design will be reviewed. Def-

initions of new importance measures will be proposed within the framework of the new

methodology. This chapter also discusses open questions and future research directions in

the context of system probabilistic-informed design.

Chapter 8. The final chapter of the thesis collects the main conclusions extracted from this

research. It summarizes the advancements of the new methodology with respect to exist-

ing ones, and highlights the fact that this research enables a new approach to probabilistic-

informed design for fault-tolerant systems.

-41-

Chapter 1

Chapter 2

On Markov Reliability Modeling: An

Automotive Power Net Case-Study

The purpose of this chapter is to illustrate the principles of Markov reliability modeling

when a block diagram of the system functionality (with no quantitative information of the

component dynamic behavior) is used to understand the system behavior in the presence

of component failures, and thus develop the Markov reliability model. In this context, a

case study of an automotive power net architecture for automotive safety-critical applica-

tions is presented. Several system level Failure Modes and Effects Analysis (FMEA) will

be developed from this block diagram, identifying the different sequences of component

failures, helping the construction of the Markov reliability model. Sensitivity analysis will

be used to understand the influence of perturbations in the model parameters. This will

help to determine the robustness of the reliability estimate with respect to parameter un-

certainty, and it will also help to improve the design. Most of the work presented in this

chapter appears in [40].

2.1 Introduction

In automotive power nets, power for traditional loads is provided by a battery, an alterna-

tor, various switches, fuses or circuit breakers, and wiring. If any of these fails, there is a

chance that the power net voltage will collapse and no actuation of any electrical system

will be possible. Although this is a problem from the driver comfort point of view, the

safety-critical systems of the car, such as conventional steering and braking systems are

not electrical, and still function. However, with the introduction of steer-by-wire (SbW)

and brake-by-wire (BbW), a loss of the power supply is no longer acceptable. Loss of elec-

tric power would mean loss of control of the vehicle, resulting in a dangerous situation for

the driver. Considerable attention has been focused on the development of highly reliable

SbW and BbW systems [1, 44, 45, 46], but only [1] and [46] talk about the fact that the power

-42-

Chapter 2 On Markov Reliability Modeling: An Automotive Power Net Case-Study

supply also has to be highly reliable and fault-tolerant, and even here, the authors' work is

not focused on this issue. Current fault-tolerant power net designs are not reliable enough

for use in safety-critical applications [47]. Therefore, it is important to develop new power

net architectures and carry out a reliability analysis of these architectures to validate them

for use in safety-critical applications. Some work has been done in this regard. In 1994,

and anticipating the needs for future electrical loads in vehicles, [47] proposed alternative

electrical distribution system architectures, already addressing the reliability issue of these

new architectures. In [48], the requirements of vehicle power supply architectures were

identified and, although some solutions were proposed, no further reliability analysis was

done to validate them for their use in safety-critical applications.

In this chapter, a power net architecture based on one of the solutions given in [48] is pro-

posed. It is not necessarily the optimal solution for the power net in terms of reliability, but

it is complex enough to illustrate the use of Markov models for the reliability evaluation

of Fault-Tolerant systems. To carry out the reliability analysis of the power supply for the

proposed power net, several system level FMEAs are developed to identify the different

sequences of component failures that can be reached from the failure-free configuration.

A Markov model to quantify system reliability is constructed based on the FMEAs previ-

ously developed. The parameters of this model include time-dependent failure rates, and

failure-coverage probabilities.

The power net architecture used in the study is defined in Section 2.2. Section 2.3 presents

the system reliability model, including the different system level FMEAs, and the sub-

sequently developed Markov reliability model. Section 2.4 presents the analysis results,

including a sensitivity analysis of the reliability estimate with respect to some model pa-

rameters. Concluding remarks are presented in Section 2.5.

2.2 Dual Battery Power Net Architecture

The proposed power net architecture, shown in Fig. 2.1, consists of the following elements:

" Alternator G, which generates energy for the electric loads and for charging the battery.

" Main battery B 1, which provides energy for the electric loads.

" Backup battery B 2, which is in cold standby and only switched on in case of a failure of

-43 -

Chapter 2 On Markov Reliability Modeling: An Automotive Power Net Case-Study

the alternator G, or the main battery B 1 . The backup battery B2 will be chosen to have

the same capacity as the main battery B 1.

* Voltage and current sensors SV and SA, which measure the voltage of the power supply

and the current flowing through the main battery B1 and alternator G.

" Switches SW1, SW 2 and SW3.

" Electronic control unit ECU, which receives signals from the voltage and current sen-

sors Sv and SA, and sends signals to the switches SW1, SW2 and SW3 in case a failure

occurs.

" Main wire harness MWH, which links the power supply with the fuse box.

" Fuses F, for short circuit protection.

" Wire harness H.

" Steer-by-Wire channels SbW and SbW 2 .

* Conventional electric loads L.

Power supply subsystem

ECU -
H

F
SWW SWS

---- 2 - BSbWj Sb

F

W2

F

L L L

Figure 2.1: Dual battery power net architecture.

The primary difference between the proposed and conventional power nets is the backup

battery B 2, and the detection and isolation system (composed of the electronic control
unit ECU, the voltage and current sensors Sv and SA, and the switches SW1 , SW2 and

SW3). If a fault is detected in the alternator G or the main battery B 1, the detection and

-44 -

Chapter 2 On Markov Reliability Modeling: An Automotive Power Net Case-Study

isolation system switches off the faulty element and switches on the backup battery B2.
Additionally, the backup battery is also switched on if there is a voltage drop in the power

supply, even when no fault has been detected in the alternator G or the main battery B 1.

No failure annunciation system is considered for non-failed configurations with one failed

component, which means that the system must work for the stated period of time without

maintenance.

2.3 System Reliability Model

The reliability analysis will be focused on how failures in the power supply subsystem

components affect the power delivery to the electrical loads. Thus, the analysis is restricted

to the alternator G, main battery B 1, backup battery B2, voltage and current sensors Sv

and SA, switches SW1 , SW 2 and SW 3, electronic control unit ECU, and main wire harness

MWH.

The process of building the system reliability model starts with a qualitative description of

the system's functionality, Fig. 2.1. It describes how components and subsystems are in-

terconnected to fulfill the functions the system was designed for. Additionally, component

failure modes (and associated failure rates), and how these component failures can affect

the system functionality are required. Then, based on this information, several system

level FMEAs are developed, which collect the system configurations reached after one or

more components failed; and if these configurations result in system failure, or the system

is still operational. Finally, a Markov model is built from the information collected in the

FMEAs, and system reliability measures can be obtained.

2.3.1 System Level Failure Modes and Effects Analysis (FMEA)

In order to quantify the reliability of a fault-tolerant system, it is necessary to build a

Markov model. However this can be tedious and error-prone process for large systems.

Thus, in order to alleviate this task, several system level FMEAs are usually first devel-

oped, which help in the subsequent construction of the Markov model. The first FMEA

will help to identify first component failures in the system, which yield both failed and

non-failed system configurations. From the non-failed system configurations with one

component failed, a second FMEA will be developed. This second FMEA will identify

-45-

Chapter 2 On Markov Reliability Modeling: An Automotive Power Net Case-Study

failed and non-failed system configurations after two components have failed. The pro-

cess will end when all the system configurations are declared as failed. To construct the

system level FMEA, several simplifying assumptions are introduced:

" The backup battery B 2 has zero failure rate while it is in the standby condition.

" The main battery B1 and the backup battery B2 have equal failure rates when they are

working.

* Since no annunciation system is considered in this architecture, repair processes for

component failures that do not result in a failed configuration are not considered.

" The failure detection and isolation system is comprised of the ECU; the switches SW1,

SW2 , SW3 ; and the sensors S1, S2 , S3 .

" If a failure occurs in any of the elements of the failure detection and isolation system,

this element will be disabled, and additional failures of any of its components will not

affect the rest of the system.

" The failure detection and isolation system is disabled once a fault has been successfully

detected and isolated.

Table 2.1: System level FMEA for single component failures.

Failure-free configuration State Failure mode Transition rate System configurations after one System sta- State
failure tus

Bi Delivering energy, and G {1, 0} B, fails covered cA \B B 2 delivering energy, and Non-failed {1, 1}
generating energy, and DS G generating energy, and
monitoring the system, and M W H transporting energy
M W H transporting energy B1 fails uncovered (1 - C)A B - Failed {2, 1}

G fails covered cA G B, delivering energy, and Non-failed {3, 1
B 2 delivering energy, and
MW H transporting energy

G fails uncovered (1 - c)AG Failed {4, 1}
DS fails A-ECU + 3ASW + 3AS Pi delivering energy, and Non-failed {5, 1}

G generating energy, and
MW H transporting energy

MWH fails AMWH - Failed {6, 1}

Table 2.1 corresponds to the FMEA for single component failures in the system. The first

column of this table lists the system failure-free configuration (no component failures). The

second column associates the failure-free configuration with state {1, 0} of the Markov re-

liability model developed in the next section. The third column describes all possible com-

ponent failure modes. The fourth column lists the transition rates from the failure-free

configuration {1, 0} to the new configurations. The fifth column describes the new sys-

tem configurations resulting after the component failures described in the third column

occurred. Column six describes the resulting configuration as failed or non-failed. Fi-

nally, column seven associates each new resulting configuration with a state in the Markov

-46-

Chapter 2 On Markov Reliability Modeling: An Automotive Power Net Case-Study

model -absorbing states for the failed configurations, and transient states for the non-

failed configurations. Table 2.2 corresponds to the FMEA for sequences of two component

failures. The first column of this table corresponds to the non-failed configurations re-

ported in column five of Table 2.1. The remaining columns of Table 2.2 are obtained in the

same way as for Table 2.1.

Table 2.2: System level FMEA for sequences of two component failures.

Non-failed system configurations af- State Failure mode Transition rate System configurations after two System sta- State
ter one componentfailed failures tus
B2 delivering energy, and {1, 1} B2 fails. AB 5 - Failed f1, 2}
G generating energy, and G alls. - Failed 2,2
MWH transporting energy MWH fails. AMWH - Failed {3,2

B 1 delivering energy, and {3,1} B 1 fails. AB 1 - Failed {4, 2}
B2 delivering energy, and B 2 tails. AB9 - Failed {5, 2}
MWH transporting energy M W H tails. AMWH - Failed {6, 2}

B 1 delivering energy, and {5, 1} BI fails. A 1 - Failed {7, 2}
G generating energy, and G fails. A7G -Faled J8, 21
M WH transporting energy M W H tails. A MWH - Faded {9, 2}

AB2

C ABI AG

AMW H

(1-0) ABI

C ABl

(1-c) AGMWH

ECU 3SW 3S ABI

AG

AMWH AMWH

Figure 2.2: Markov model for the power supply of the dual battery power net architecture of
Figure 2.1.

-47-

Chapter 2 On Markov Reliability Modeling: An Automotive Power Net Case-Study

2.3.2 Markov Model

Based on the system level FMEA developed in the previous section, it is possible to con-

struct a Markov model that represents the stochastic behavior of the system due to compo-

nent failures. Figure 2.2 displays the state-transition diagram associated with the Markov

model. State {1, 0} represents a system configuration with no failures. States {1, 1}-{6, 1}

represent the status of system configurations reached after one failure. Finally, states {1, 2}-

{ 9, 2} represent the status of system configurations after two failures.

Each coefficient aij of the state-transition matrix A is obtained by combining the compo-

nent failure rates (which trigger the transitions between system configurations) and the

coverage probabilities (column 4 in Tables 2.1 and 2.2), resulting in

a, 1

a 2 ,1

a 3 ,1

a 4 ,1

a5 ,1
a6 ,1
a7,1
0
0
0
0
0
0

0

0
0

0
a2,2

0
0
0
0
0

a8,2
a9 ,2

a10,2
0
0
0
0
0
0

0
0
0

a4,4

0
0
0
0
0
0

ali,4

a12,4

a 13 ,4

0
0
0

0
0
0
0
0

a6 ,6
0
0

0

0

0
0
0

a 14 ,6
a 15 ,6
a1 6 ,6

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

(2.1)

The coefficients of the state-transition matrix A are given by:

* al,1 = -AB 1 - AG - AECU - 3ASW - 3AS - AMWH,

" a2,1 = CAB 1, a3,1 (1 - c)AB1,

* a4,1 = CAG, a5,1 (1 -c)AG

* a6,1 = AECU + 3ASW + 3As,
* a7,1 = AMWH,

* a2,2 = -AB 2 - AG - AMWH,

* a8,2 = AB 2, a9,2 = AG,

-48-

On Markov Reliability Modeling: An Automotive Power Net Case-Study

* a10,2 = AMWH, all,4 = AB 1,

* a4,4= -AB 1 - AB 2 - AMWG,

* a12,4 = AB 2 , a13 ,4 = AMWH,

" a 6,6= -AB 1 - AG - AMWG,

* a14,6 = AR 1 al 5 ,6 = AG,

* a16 ,6 = AMWH,

with AB 1 the battery B 1 failure rate, AB 2 the battery B 2 failure rate, AG the alternator G

failure rate, AMWH the main wire harness MWH failure rate, AECU the electronic control

unit ECU failure rate, ASW the switch SW failure rate, As the sensor S failure rate, and c

the failure coverage probability.

Component Failure Rates

The failure rates for the main battery AB 1, the backup battery AB 2 , the alternator AG, and the

main wire harness AMWH are considered to be time-dependent and Weibull distributed:

A(t) = aAo(Aot)"- 1, (2.2)

where a is called the shape parameter, Ao is the scale parameter and t is the time [6].

The values of a and A0 for each component (alternator, main and backup batteries, and

main wire harness) were obtained from field data provided by the Allgemeiner Deutscher

Automobil Club [2], and are displayed in Table 2.3.

The failure rates for the rest of the components, i.e., ECU, sensors Sv and SA, and switches

SW, are assumed to be constant and were chosen based on typical data for automotive

components [1]. Since the values of the failure rates for the ECU, the sensors Sv and

SA, and the switches SW are assumed, a sensitivity analysis will be carried out for each of

these components to see how a change in its failure rate affects the reliability of the system.

Failure Coverage Probability

As stated in Appendix A, the failure coverage probability depends on the ability of the

system to detect and isolate a failure, and reconfigure itself in order to keep delivering

its functionality. Detection depends on the detection algorithm successfully detecting a

-49 -

Chapter 2

On Markov Reliability Modeling: An Automotive Power Net Case-Study

Table 2.3: Component failure rates and detection probabilities used in the development of the
simplified Markov model for the power net of Figure 2.1 (from [1] and [2]).

Component Description a Ao (/h) A (/h) D
Alternator G 2.68 0.32 -10- 5 5.14. 10-15 .t6 8 0.99
Main battery/backup battery B1/B 2 3.56 0.21. 10-4 7.69. 10-17 t 2 .16 0.99
Main wire Harness MWH 1.95 0.32- 10-6 4.28. 10-13 t.9 -

Electronic control unit ECU 1 5 .10- 7 5. 10-7
Voltage and current sensors SV/SA 1 10-7 10-7
Switches SW1 /SW 2/SW 3 1 10-6 10-6

failure, and the voltage and current sensors Sv and SA, and the electronic control unit

ECU working on demand. Thus the probability of detecting a failure when it occurs is

given by

P(D/F) = DP(X S' =)P(X^ = O)P(XA = O)P(XtECU = 0), (2.3)

where D is the detection probability given in Table 2.3. A successful failure isolation and

reconfiguration occurs when there is no failure in the components involved in the isola-

tion and reconfiguration mechanism, which are the switches SW1, SW 2, and SW3. Thus

the probability of failure isolation and reconfiguration, given a failure occurred and was

detected, is given by

P(I n R/F n D) = P(Xswl = O)P(XW2 = 0)P(X;w3 = 0). (2.4)

Therefore, considering that all the switches have the same failure rate Asw, and the sensors

having, as well, the same failure rate As, the failure coverage probability can be computed

using

c = De-(AECU+3Asw+
3As)t. (2.5)

2.4 Results Analysis

A vehicle lifetime of 15 years and an average of 400 working hours per year was considered

for the simulations, which gives an evaluation time T of 6000 h. The Dependability rate

A(T) (defined in A.5 in Appendix A as the ratio of the system unreliability Q(T) to time

T) will be used as the system reliability measure. Using the parameters of Table 2.3, which

correspond to the assumed nominal failure rate values, and the failure coverage probabil-

-50-

Chapter 2

Chapter 2 On Markov Reliability Modeling: An Automotive Power Net Case-Study

7.OOE-09

iE 6.OOE-09 0 Configurations with one
5.00E-09 failed component

4.OOE-09 U Configurations with two
3.OOE-09 failed components

2.V E-09 El Total

1.00E-09

0.OOE+00

Figure 2.3: System configurations contributions to the total system dependability rate \(T) sorted
by number of components failed.

ities given by substituting the corresponding values in (2.5), the dependability rate A(T)

yielded by the Markov model is 6.1 - 10-9 failures/hour. In the remainder of this section,

further analysis, displayed in Figures 2.3 - 2.5, is carried out to gain more insight to:

" contributions of system failed configurations (sorted by number of components failed)

to the system dependability rate A(T);

" contributions to the system dependability rate A(T) of the last failed component within

failed configurations (sorted by number of components failed); and

" the influence on the estimate of the dependability rate A(T) of perturbations in some of

the model parameters.

Dependability Rate Breakdown by Number of Failed Components

Figure 2.3 shows the distribution of system configurations declared as failed after one

and two components failed. It is important to note that the most important contribution,

amounting to 66% of the total system dependability rate A(T) estimate, is given by failed

system configurations reached after one component failed, which corresponds to uncov-

ered failures of the main battery B1 and alternator G, and the failure of the main wire

harness MWH.

- 51 -

Chapter 2 On Markov Reliability Modeling: An Automotive Power Net Case-Study

1.00E-08

1.00E-09
. Main battery

aL 1 E Alternator
- 1.'E' tl Main wire harness

L.00E-12 E- Total

1 .ai E-13

.00E-14

(a) Component contributions to the dependabil-
ity rate of system configurations with one compo-
nent failed.

E &-.00E-09
4 5 IOOE-09

El Main battery1 titlE-ItI
I.00E-12 0 Backup battery

T I.OE- 13
I U Main wire harness

O~ ~OE- 14

I .00F_16

(c) Component contributions to the dependabil-
ity rate of system configurations with a second
component failed, after the alternator G failed
first.

V

.C

U

1.00E-08
1.00E-09
I OOE-10
.00E-I t

1.00E-12

1.00E-14
L titE-ti

V .ilE- 16

E Backup battery

* Alternator

0 Main wire harness

(b) Component contributions to the dependabil-
ity rate of system configurations with a second
component failed, after the main battery B1 failed
first.

1.00E-08

& .00F_10
1.00hE-tO2

1 .0OE-t13

1 .OOE- 14o 3

t.00E-15

L.00E-16

E Main battery

M Alternator

0 Main wire harness

(d) Component contributions to the dependabil-
ity rate of system configurations with a second
component failed, after the DS failed first.

Figure 2.4: Contributions to the dependability rate \(T) for system configurations with one and
two components failed.

Impact of Individual Component Failures on the Dependability Rate

For a better understanding of individual impact, Figure 2.4 displays the contributions to
the dependability rate A(T) of the last failed component for failed system configurations
with one and two failed components. Thus, Fig. 2.4(a) displays the single contributions
of uncovered single failures in the main battery B 1, alternator G, and main wire harness

MWH. In this case, the main contribution to system failure, being 3 -10-9 failures/hour,
comes from the main battery B 1.

Figures 2.4(b) - 2.4(d) display the individual contributions of the last failed component
within system configurations declared as failed after two component failures. It is inter-
esting to note the influence of the main wire harness MWH, depending on the number of
failed components. For system configurations with one component failed, Fig. 2.4(a), the

-52-

Q
A

On Markov Reliability Modeling: An Automotive Power Net Case-Study

contribution of the MWH failure is of the same order of magnitude as the other contribu-

tors. However, after each first failure, the contribution of the main wire harness is always

the least important, at one or two orders of magnitude less than the other contributors. For

example, after a covered failure in the main battery, the contribution of the backup battery

is 3.7. 10-12 failures/hour and the alternator contribution is 1.2-10-12 failures/hour, while

the main wire harness contribution is 2 - 10-13 failures/hour. The failure coverage prob-

ability is responsible for this behavior. For single failures, the transition rate out of the

nominal configurations for uncovered failures of B1 and G is obtained by multiplying the

corresponding component failure rate by 1 - c, where c is the coverage probability. It is

expected that c will be close to one. Thus, even for failure rates in B1 and G one or two

orders of magnitude bigger that the MWH failure rate, the uncovered failures of B1 and G

contribute in a similar amount to that corresponding to the MWH. For system configura-

tions with two failures, the failure coverage probability is not present, thus the difference

between the MWH failure rate, and the B1 and G failures rates is no longer attenuated

by the factor 1 - c, resulting in the one or two order of magnitude difference observed in

Figures 2.4(b)- 2.4(d).

Sensitivity Analysis

The purpose of running a sensitivity analysis with respect to the the model parameters is

twofold:

" Highlight the influence of the assumed failure rates of ECU, voltage and current sen-

sors, Sv and SA, and switches SW on the dependability rate A(T).

" Determine how sensitive the dependability rate A(T) is with respect to the detection

probability D. This will help to establish how good the detection algorithm must be.

The procedure followed to estimate the influence of the failure rate parameters was to per-

turb the value of each component failure rate, one at a time; then recompute the depend-

ability rate for each perturbed parameter to determine how this perturbations affected the

nominal solution [49]. The parameter multipliers used were 0.1 and 10 for all components.

Figure 2.5(a) displays the sensitivity analysis results. The influence of changes in ECU and

voltage and current sensor, Sv and SA, failures rates, although difficult to see in the figure,

is almost the same, and it is small in comparison with the effect of changes in the switch

- 53-

Chapter 2

Chapter 2 On Markov Reliability Modeling: An Automotive Power Net Case-Study

3.50E-08 .80E08 -

3.OOE-08 16E0

-*-ECU 1.20E-08
2.00-08 1.00E-08 - Detection

ASwens *8 8.OOE-09 probability

Parameter multiplier Detection probability D

(a) Sensitivity analysis to changes in the ECU, the (b) Sensitivity analysis to changes in the detection
switches SW and the sensors S failure rates. probability D.

Figure 2.5: Dependability rate \(T) sensitivity to the failure rates of the electronic control unit
AECU, the sensors As, and the switches Asw; and to the detection probability D.

SW failure rates. The switches SWs are the components of the detection and isolation

system that most influence the dependability rate, i.e., an increase in the failure rate of the
switches translates to a one order of magnitude increase of the dependability rate. The rest

of the failure rate changes keep the dependability rate within the same order of magnitude

as that obtained using the nominal failure rates.

A similar procedure to the one explained above was used for determining the influence

of the detection probability D. The results are displayed in Fig. 2.5(b). This analysis
shows that the influence of the detection and isolation system in the overall dependability
rate is very important. As seen, the dependability rate strongly depends on the detection

probability D when it is less than 0.99. Above D = 0.99, the dependability rate estimate is
insensitive to the detection probability.

The results reported in this section suggest that one way to improve the dependability
of this architecture, would be to improve the detection and isolation system by improving
the detection algorithm. Thus, achieving a detection probability D of 0.99 or greater, which
would make the dependability rate insensitive to this parameter. Another way to improve
the dependability would be by redesigning the link between the power supply and the
main fuse box, i.e., the main wire harness in the previous design. This would prevent sin-

gle failures in the main wire harness from making the system fail despite the redundancy
introduced by the second battery.

-54-

Chapter 2 On Markov Reliability Modeling: An Automotive Power Net Case-Study

2.5 Conclusions

The case-study presented in this chapter illustrates the steps commonly applied to evaluate

the reliability of a system. The process requires a qualitative evaluation of a functional de-

scription of the system in the presence of failures. For conventional systems, this approach

is valid, as it is possible to infer the system behavior (under component failure conditions)

without using a quantitative model of the system. However, for more complex systems, it

is very difficult to understand the system behavior in the presence of component failures.

For example, in this case-study, components were only regarded as failed or operational,

without specifying in which sense they have failed. we could have considered, for exam-

ple, the battery failing open or short circuit, or the alternator excitation system partially

failing. In these cases, it is much more difficult to understand the system behavior; thus, it

is very difficult to assess if these failures cause the system to stop delivering power to the

loads. Furthermore, with a qualitative system description it is not possible to quantify sys-

tem degraded operational modes, i.e., the system might be delivering enough power for

some loads, but not for all of them. In the next chapter, we introduce a new methodology

for evaluating system reliability that bases all the analyses on a quantitative model of the

system to be evaluated.

Notation Used in this Chapter

A :
BbW:

B1(:)

C :

DS:
ECU:
F :
FMEA:
G:
H:
L:
MWH:
P(D/F), D:
P(I n R/F n D):

SA:
Sv:
SbW:
SbW 1 :

Markov reliability model state transition matrix
Brake-by-wire
Main (Backup) battery
Failure coverage probability
Detection and isolation system
Electronic control unit
Fuse
Failure Modes and Effects Analysis
Alternator
Wire harness
Conventional electrical loads
Main wire harness linking the power supply with the fuse box
Probability of failure detection given a failure has occurred
Probability of failure isolation and reconfiguration given a failure has occurred, and it has been detected
Current sensor
Voltage sensor
Steer-by-wire
Steer-by-Wire channel 1

-55-

Chapter 2 On Markov Reliability Modeling: An Automotive Power Net Case-Study

SbW 2 : Steer-by-Wire channel 2
SW1 : Main battery switch

SW2 : Alternator switch

SW3 : Backup battery switch

t :Time

T :System global evaluation time
XECU : Number of failures in ECU for an operating time oft hours
Xj^A Number of failures in EA for an operating time of t hours
XSV Number of failures in

5
v for an operating time of t hours

XSW : Number of failures in SW 1 for an operating time of t hours
XSW2 Number of failures in SW 2 for an operating time of t hours
X; :Number of failures in SW3 for an operating time of t hours
a : Shape parameter of the Weibull distribution
A : Failure rate
ABI lAB2 : Battery failure rate

AG : Alternator failure rate

AECU: Electronic control unit failure rate
As : Sensor failure rate
Asw : Switch failure rate
AO: Scale parameter of the Weibull distribution
,\(T) :Dependability rate

-56-

Chapter 3

On the Integration of System Performance and

Reliability Evaluation

In this chapter, we propose a methodology for integrating the evaluation of system per-

formance and reliability. The methodology uses a behavioral model of the system dynam-

ics, similar to the ones used by control engineers when designing the control system, but

with additional features to model different failure behaviors of the component. The per-

formance evaluation is based on the system dynamic behavior when component failures

occur within the system. The proposed methodology allows one to assess not only sys-

tem reliability, but other important dynamic performance metrics that might be relevant

in the design of a fault-tolerant system. The system stochastic behavior due to component

failures is modeled by using Markov models. In this context, a rigorous approach for com-

puting failure coverage probabilities is presented, providing analytical solutions for LTI

systems, and a Monte-Carlo based methodology for non-linear systems. Several examples

are developed to illustrate the concepts introduced in the chapter.

3.1 Introduction

The analysis of system behavior in the presence of component or subsystem failures and

therefore system reliability, availability, and safety, is usually carried out using a qualitative

description of the system's functionality. It describes how components and subsystems are

interconnected to fulfill the functions for which they are designed, and how component

failures can propagate to other components through their interconnections and affect the

system functionality [6,7,8]. For conventional systems this approach is valid, as it is possi-

ble to evaluate how a system can fail to perform its function without paying attention to its

dynamics. However, this is not the case for large complex systems or embedded software-

intensive systems, which are characteristic of fault-tolerant systems [9]. For these kinds of

systems, it is very difficult, if not impossible, to understand how the system behaves in

-57-

On the Integration of System Performance and Reliability Evaluation

the presence of hardware failures or software malfunctions without using a model of the

system dynamics to quantify its performance under failure conditions.

In this chapter, we propose a methodology that integrates performance and reliability eval-

uations of fault-tolerant systems. Rather than using a qualitative description of the sys-

tem's functionality, this methodology uses a model of the system dynamics which is aug-

mented with additional features to model component failure behavior. These features in-

clude component failure modes (and associated failure rates) and how these failure modes

affect the dynamic behavior of the component.

Starting from thefailure-free configuration, the system will evolve to different system config-

urations, depending on which components fail, how these components fail, and the order

in which the components fail (when more than one fail). For each of the possible system

configurations, an evaluation of the system dynamic behavior performance is carried out

to check whether some of its properties, called performance metrics, meet some predefined

operational requirements. After all system configurations have been evaluated, the values

of the performance metrics for each configuration and the probabilities of going from the

nominal configuration to any other configuration are merged into a set of probabilistic mea-

sures of performance.

As discussed in Chapter 1 (see Section 1.2.2), the idea of using a dynamic model of the

system under control was first proposed in the nuclear engineering field and the result-

ing methodology is commonly known as Dynamic Probabilistic Risk Assessment (DPRA).

However, as will be discussed in Section 3.7, there are certain aspects of the problems that

DPRA addresses that make DPRA differ substantially from the methodology proposed in

this chapter.

Section 3.2 introduces the mathematical framework for modeling the dynamic behavior of

the system to be evaluated. Section 3.3 explains how to define the performance metrics

(and associated requirements) that will be used to evaluate the dynamic performance of

the system. In Section 3.4, the mathematical model associated with the system stochastic

behavior due to component failures is presented. Section 3.5 provides an example of how

the present methodology can be used to analyze a series RL circuit. Section 3.6 presents

different probabilistic measures of performance, which are used to evaluate the overall

system performance. Section 3.7 compares the new methodology with DPRA. Concluding

remarks are presented in Section 3.8.

- 58-

Chapter 3

On the Integration of System Performance and Reliability Evaluation

3.2 System Dynamics Behavioral Model

The system dynamics behavioral model will emerge from the interaction of the behav-

ioral models of each individual component within the system. We understand the term

behavioral model as understood in circuit simulation - a set of mathematical expressions

that models the component external behavior (manifested through its connections to other

components), without necessarily modeling the real physical processes involved in such

behavior. A component behavioral model will define not only the component behavior

under failure-free conditions, but also under different failure conditions (failure modes).

3.2.1 Components

In classical reliability analysis, the concept of failure mode is used to define a component

operational behavior under specific internal failure conditions. Similarly, the concept of

the failure-free mode of operation is used to define the component behavior under failure-

free conditions. We will use the expression operational mode to refer to both failure and

failure-free modes. Thus, we define a component behavioral model by:

" A list of the component variables of interest relevant to each component operational

mode definition and a set of mathematical expressions, termed behavioral equations,

that constrain those variables.

* A stochastic model that describes the transitions between different operational modes

triggered by component-internal failure conditions, or by component-external events.

The mathematical expressions constraining the component variables can be of very differ-

ent natures, depending on the component to be modeled, e.g., algebraic equations, differ-

ential equations, difference equations, logical expressions, and/or combinations of those.

In the remainder of this section, we will focus on defining component models for a class of

systems in which the variables of interest evolve as a function of time -dynamic systems.

Thus, differential (or difference) equations can be used to describe the constraints among

these variables. In particular, the state-space description form of a dynamic system will be

used to define each mode of operation (both failure and failure-free).

- 59 -

Chapter 3

On the Integration of System Performance and Reliability Evaluation

Behavioral Equations

Let a component ci have k operational modes. The j operational mode behavioral equa-

tions for j = {0, 1,... k} are defined by

xcs(t) = fi(xcM(t),UC (0)

yci(t) = gci (t), Uc (0) (3.1)

where xc (t) is the vector of component state variables, u,, (t) is the vector of component

input variables, yc, (t) is the vector of component instantaneous outputs, fc () is the com-

ponent state evolution function (for the j operational mode), and gJ (.) is the component

instantaneous output function (for the j operational mode).

The transitions between different operational modes occur stochastically and can be trig-

gered by internal failure conditions or by external events. Let U, (t) be a random variable

that can take values in the set Bc2 = {0, 1, ... k}, representing the component ci instan-

taneous component operational modes. Assuming the transitions between different op-

erational failure modes occur in a Markovian fashion, we can define the instantaneous

transition rate Am(t) between any two component operational modes 1 and m by

Alm(t) = Pc.(t+dt)-mUc (t)=I) (3.2)

where 1 = 0, 1,. .. k and m = 0, 1, ... k.

Sensor Behavioral Model Example

To illustrate the process introduced above, the behavioral model for a sensor ci will be

defined. The sensor has four operational modes:

* Failure-free mode (N): bandwidth T-, resolution R, latency of -ir, gain G.

" Output-omission failure mode (0): regardless of the sensor input reading, its output

is set to zero, i.e, gain 0 and other properties the same as in the failure-free mode.

" Gain-change failure mode (G): bandwidth Tr, resolution R8 , latency of Ti, gain Cs.

" Bias failure mode (B): bandwidth T8 , resolution R., latency of Ti, gain G, and output

biased by a factor B,.

-60-

Chapter 3

On the Integration of System Performance and Reliability Evaluation

Under the above conditions, the behavioral equations for each operational mode of the

sensor are defined by

Uc, (t) = 0 (failure - free),

(t)= - c1 (t) + Luci(t); yci(t) = G, ; (3.3)
R,

Uc1 (t) = 1 (output omission),

&Ci(t) = -xci (t) + -c M(t); yc1 (t) = 0; (3.4)

Ucj (t) = 2 (gain change),

c (t) = -Xc 1 (t) + uci (t); yc (t) = ; (3.5)
ks

Uc1 (t) = 3 (bias),

= -L -c 1 (t) + -uc 1 (t); yc1 (t) = Gs - - + B8. (3.6)
R,

Transitions from the failure-free mode to each failure mode can occur, as well as transitions

from the gain-change and the bias failure modes to the output-omission failure mode (op-

erational modes do not coexist). Thus, the instantaneous transition rates are defined by

= P(U~c, (t+dt)=1IUc

ANB(t) = P(Uc1 (t+dt) 3U 1 (t)=O)

AGO(t) = P(Uc1 (t+dt)=1jUc1 (t)=2)

ANG M =dt

ABO(t) = P(Uc1 (t+dt)=1Uc1 (t)=3)P(, tdi1 ()3 (3.7)

3.2.2 Configurations

In a component behavioral model, a single component can exhibit different operational

modes depending on its internal failure conditions and on external events. Similarly, a

system will adopt different configurations depending on the the status of its components

[39], i.e., which component operational modes are active. Thus, the system is said to be

in its failure-free configuration if all its components are in their failure-free modes. The

system may evolve from its failure-free configuration to another dynamic configuration

if a component transitions from its failure-free mode to one of its possible failure modes.

Under these conditions, a system model is defined by:

-61 -

Chapter 3

On the Integration of System Performance and Reliability Evaluation

" A set of component models and how they interact with each other. Depending on the

components' operational modes, the system will adopt different configurations.

" A stochastic model that describes the transitions between different system configura-

tions triggered by component operational mode transitions.

In the previous section, we focused on defining component behavioral models for dynamic

systems, adopting the state-space description for their definition. In this section, we will

use the same formalism; we will assume that the systems of interest are composed of inter-

connected dynamic systems, and therefore a state-space description will be used to define

each system configuration.

Configuration Dynamics Equations

Let k be the number of component operational mode transitions leading to the system

configuration {i, k} from the initial system configuration {1, 0}, and let i > 1 index the set

of system configurations which have k > 0 components failed. The dynamics of the {i, k}

system configuration reached after a unique sequence of k component operational mode

transitions be represented by

dx, (tik) fikx(t'kwik)
dti,k - S:: fse,(st~)Wt~

y(ti k) = gik(X5(tik), W(ti~k))

xs(oi'k) E i,k(oi,k)

w(ti'k) C Qw(ti,k), (3.8)

where x8 (ti'k) is the vector of system state variables, w(tisk) is the vector of system input

variables, y 8(ti'k) is the vector of system instantaneous outputs, fik(-) is the system state

evolution function for the {i, k} configuration, and g,'k(-) is the system instantaneous out-

put function for the {i, k} configuration. The time variable ti'k is also indexed in order to

highlight the fact that two different system configurations cannot coexist, therefore their

time-axis must be different.

The set Q' k(0 ik) represents the possible value of the system state variables at the time the

system transitions into configuration {i, k}. Similarly, QiOl(ti'k) represents the set of possi-

ble values for the system control inputs at time tik from the transition into the {i, k} config-

uration. Thus, even if each system configuration {i, k} is defined by a unique sequence of

-62-

Chapter 3

On the Integration of System Performance and Reliability Evaluation

component operational mode transitions, there is uncertainty regarding the system states

and the system inputs at the time of failure. This uncertainty will play a very important

role in defining the failure coverage probability (see Section 3.4 for details) and thus the

system stochastic behavior due to component failures, as will be explained in Section 3.4.

R1 Ll 0)

+ VW ZRL C ,

r 3 e Cict E

Figure 3.1: Series RLC Circuit Example.

Series RLC Circuit Example

To illustrate the concepts introduced in this section, let's consider the circuit displayed in

Fig. 3.1, which results from interconnecting two impedances: ZRL (corresponding to a

resistor of value R1 in series with an inductor of value L1) and ZC (corresponding to a

capacitor of value C1). Impedance ZRL has an associated failure mode that results in a

short-circuit in the resistor's terminals. Impedance ZC can fail by modifying the value of

the capacitor from C1 to C2. Thus, the dynamics of the failure-free configuration {1, 0} can

be described by

_ __ F Li L~ i F Li ti 1
d (ti'0) I i(t '0) v(t0)

dt'6 c(t1'0) 0 I I (t '0) 0

x(0 1'0) = [i(0 1'0), vc(t 1'0)]' E Q,0(01,0)

V(ti'0) E QV(t1,0). (3.9)

The system configuration {1, 1} after the impedance ZRL fails (the resistor's terminals are

short-circuited) can be described by

d F i(t '1) 1 0 - i(t ') 1 i 1 j)
c(ti) 0 C (t j) 0 I

X(0111) = [i(01'l), oc(t)]' E X J (0 ')

V(tl") E Qv(tl"). (3.10)

-63-

Chapter 3

On the Integration of System Performance and Reliability Evaluation

The system configuration {2, 1} after the impedance Zc (the capacitance goes from C1 to

C2) fails can be described by

d [i(t 2'1) 1 F 492 ,1) 1 [Li

&U [vC(t2) L 0 ve(t2j) 0
X(0 2'1) = [i(0 2'1), Vc(t2)' q a7 1(02,1)

V(t2j) E jv(t2j). (3.11)

For sequences of failures of size k = 2, there are two options: Z. fails after ZRL (cor-

responding to configuration {1, 2}); or ZRL fails after ZC corresponding to configuration

{2, 2}). In both cases, the dynamics is described by the same differential equation, how-

ever the set of initial state-variables 12 (01,2) (for configuration {1, 2}); and Q 22(02,2) (for

configuration {2, 2}) may be different; thus

i{t1(2),2) R1 1 i1(2),2) __L1 Vtl2)
d___ - L i L i L 1(2)'2 (2) ,2J

dt 1(2),2 Vc (t1(2),2) 2 0 V c(t(2),2)

X(01(2),2) =[i(01(2),2), VC(t1(2),2]/ E 1(2),2(01(2),2)

V(t1(2),2) Evt1(2),2). (3.12)

3.3 Performance Metrics, Requirements Definition, and System
Evaluation

The system evaluation process is a forward search in the sense that the evaluation starts

with the system in its failure-free configuration. Then single failures are introduced in

the components and the resulting system configurations are evaluated to check if certain

system dynamic properties, termed Performance Metrics, meet some predefined criteria,

termed Performance Requirements. The configurations reached after a sequence of failures

that do not meet the performance requirements are declared as failed, and no other sys-

tem configurations can be reached from them. The configurations declared as non-failed

meet the performance requirements, meaning that the system is still operational and can

still perform the function for which it was designed. Other system configurations (after

subsequent component failures) can be reached from them.

-64-

Chapter 3

On the Integration of System Performance and Reliability Evaluation

Performance metrics

Performance metrics are a set of m system-related properties, denoted by Z1, Z 2 , ... , Zm,

that, for each system configuration {i, k}, can be computed by using the system dynamic
equations (3.8). Performance metrics will quantify how well a system performs the func-
tion for which it was designed.

The performance metrics chosen to evaluate a system depend on the nature of the system.
For example, in a tracking system, dynamic-related properties may be important, e.g., the
tracking error, the overshoot, the settling time, or the pole and zero locations if the system
is linear. If the system to be evaluated is a power system, performance metrics of inter-
est may be the instantaneous (or the average) power consumption within the system, the
maximum power delivered by a single power element, or the maximum current flowing
through some components.

Performance Requirements

Performance requirements are defined through sets <15,DI ... , <D, and represent the
values that the performance metrics are allowed to take on each non-failed system config-
uration. For each system configuration {i, k} reached after a sequence of failures of size
k, the values of the performance metrics Z1 , Z 2 , ... , Zm will be checked to see if they are
within the predefined performance requirements 4Di, <DZ, ,k .

Taking the circuit of Fig. 3.1 as an example, two performance metrics that may be relevant
for assessing the performance of the system are the instantaneous power in resistor R1

and the voltage across capacitor C1, denoted by vc(t*), where we are using t* as a generic
time-axis notation for any configuration. Let Pnax be the maximum instantaneous power
allowed in resistor R 1, and Vma, the maximum allowed voltage across capacitor C. For
any non-failed system configuration

p(t*) Pmax

vc(t*) Vmax. (3.13)

-65-

Chapter 3

On the Integration of System Performance and Reliability Evaluation

Dynamic Performance Evaluation

ik I ik i~k
To evaluate the system performance, it is necessary first to map the sets (z, Z2*, . ..

defining the performance requirements onto the regions of the state space in which the

system states must remain at any time in order to meet these requirements. It is important

to note that sometimes is not straightforward to map sets of requirements onto the state

space, particularly when the requirements depend on the system input, e.g., settling time.

Let (1)i* 4)*z --- 4 zm) be the regions of the state-space when the system is in config-

uration {i, k}, in which the requirements for the performance metrics Z1, Z2 ,. . ., Zm (de-

fined by the sets P , , . . ., 'tig) are satisfied. Let x(Z - 4 i) (Z2) n ... n (zm

Let si,k(ti'k) be an indicator variable that takes value 1 when the configuration {i, k} is

declared as non-failed, and 0 otherwise. Then

1,if Xs(ti') E 4D,k
si,k (ti,k) _

0, otherwise, (3.14)

where x8 (tik) is the vector of system state variables. It is important to clarify the dif-

ference between t, which denotes the global evaluation time, i.e, the time the system may

remain operational (system lifetime, preventive maintenance period or mission time), and

the individual configuration time-axis ti'k, which is a subset of t (ti'k C t). The shape of
ik ik ik i ein heA

(Pj depends on the sets ,' ..2 ., * that define the performance requirements. An

example of this for a two-dimensional case is shown in Fig. 3.2, where 4)x is defined as a

rectangular box.

XT2 r ---------- 1 -

ask~ooil)

Qk (Oi k)

Figure 3.2: Two-dimensional example for j,k' e~ik, and Qihk(0t~k)

-66-

Chapter 3

On the Integration of System Performance and Reliability Evaluation

3.4 System Stochastic-Behavior Model

The transitions between configurations occur stochastically and are triggered by random

operational mode transitions within the system components. After the system randomly

transitions into configuration {i, k} (from configuration {j, k - 1} due to a component fail-

ure) two outcomes are possible. As stated before, if the system state variables remain

within the allowed region <ik dictated by the performance requirements at all times, then

the configuration is declared as non-failed; if there are transient or permanent excursions

outside these regions, then the configuration is declared asfailed. The probability of declar-

ing configuration {i, k} non-failed or failed is a function of the failure coverage probability,

i.e., the probability that the system will be able to detect and isolate the failure, and recon-

figure itself so the system state variables remain within the region <I.

Failure Coverage Probability Definition

The coverage probability is defined as the ratio of the volume of the subset of possible

initial conditions that results in trajectories which are contained in the set of "acceptable"

states to the volume of the set of possible initial conditions (i.e., the conditions at the time

of transition). Let kik(0 i4k) define the set of possible state variable values at the time of

failure when the system transitions from configuration {j, k - 1} into configuration {i, k}.

Let eink C -ik(0i'k) such that if X8 (Oi'k) E),k, then X,(ti'k) E Di,k for all tik > 0 (an

example of e' and Xk(Oi'), for a two-dimensional case is shown in Fig. 3.2). Then, the

coverage probability c'_ 1 when the system is in configuration {j, k - 1} and transitions

to configuration {i, k} is defined by

i,k _ vol(eik)
j,k-1 V(ik (0i,k (3.15)

Stochastic Behavior of Configuration {i, k}

It is important to note that each system configuration {i, k} generates two states in the

Markov model. One of these states is transient ({2i-1,k}), and corresponds to the configu-

ration {i, k} being declared as non-failed, where the other one ({2i,k}), which is absorbing,

corresponds to the same configuration {i, k} being declared as failed.

-67-

Chapter 3

On the Integration of System Performance and Reliability Evaluation

Let X(t) denote the system configuration at time t. Let p2i-1,k(t) be the probability that,

at any time t > 0, the configuration {i, k} is declared as non-failed, conditioned on the fact

that the system was in the failure-free configuration {1, 0} at t = 0 (with probability 1).

Then

(3.16)P2i-1,k(t) = P(X(t) = {i, k}, si,k(ti'k) = 1|X(0) = {1, 0}).

Similarly, let p2i,k(t) be the probability that, at a time t > 0, the configuration {i, k} is de-

clared asfailed, conditioned on the fact that the system was in the failure-free configuration

{1, 0} at t = 0. Then

(3.17)P2i,k(t) = P(X(t) = {i, k}, i,k(ti'k) = 0|X(0) = {1, 0}).

From (3.16) and (3.17), it follows that:

P(X(t) = {i, k}Isi,o(0) = 1) = P2i-1,k(t) + P2i,k(t). (3.18)

Let ' be the failure coverage probability when the system is in configuration {j, k - 1}

and transitions to configuration {i, k}. Let A'_ be the transition rate (associated with the

transition rate between two component operational modes) that causes the system to go

from from configuration {j, k - 1} to configuration {i, k}.

C.'k-1 ,Jk-1

i,k i,k

1 -Cj,k--1 j,k-1

k jk-1

AI'+>'
m

Figure 3.3: Stochastic behavior of the non-failed system configuration (i, k) when a failure

occurs in component m.

-68-

Chapter 3

On the Integration of System Performance and Reliability Evaluation

We assume that the system evolves between configurations in a Markovian fashion, i.e.,
the system configurations at future times will only depend on the configuration at the
present time. Therefore the Chapman-Kolmogorov equations can be used to compute the
probabilities of each system configuration status (failed or non-failed). Then the stochastic
behavior of system configuration {i, k}, displayed in Fig. 3.3, can be represented by

0 0 --
P2j-1,k-1 P2j-1,k-1

d~ cilk ik -\ m,k+l ~ Pi1k(.9
dt P2i-1,k Cj,k-13,k-1 k 0 P2i-1,k (3.19)

P 2ik ik ik P 2i,k

- (1 - c _)Aj._k 1 0 0 -J

The state-transition matrix associated with the Markov model that governs the transitions

between all system configurations is obtained by assembling the blocks (3.19) correspond-

ing to each configuration {i, k}. Let A be the state-transition matrix associated with the

transitions between all system configurations. Then the system configurations' probability

vector P(t), can be computed by solving

dP(t) - AP(t)

P(O) = [1 0 0 ... 0]'. (3.20)

Each component P2i-1,k(t) of P(t) corresponds to the probability that the system is in con-

figuration {i, k} and it has been declared non-failed, given that the system was in configu-

ration {1, 0} at time t = 0. Similarly, P2i,k(t) corresponds to the probability that the same

configuration {i, k} is declaredfailed, given that the system was in configurations { 1, 01 at

time t = 0 with probability pi,o(0) = 1.

The state-transition matrix A is a random matrix with the following properties:

1. It is a lower triangular matrix.

2. The columns add up to zero.

3. The diagonal elements are negative or zero.

4. The off-diagonal elements are zero or positive.

5. It is a diagonally-dominant matrix.

-69-

Chapter 3

On the Integration of System Performance and Reliability Evaluation

6. The columns and rows of A can be rearranged to obtain an equivalent matrix A* [241:

A* =[MR 0 (3.21)
MQ 0

where matrix MR is associated with the transient states and MQ is associated with the

absorbing states.

3.4.1 On the Computation of Failure Coverage Probabilities

As mentioned before, the probability of declaring configuration {i, k} non-failed or failed

depends on the failure coverage probability. In this section, methods for computing the

failure coverage probability are introduced. First, its computation through Monte-Carlo

simulation is discussed. This technique can be applied to any system. Then analytical

techniques for computing the failure coverage probability in LTI systems are introduced.

This approach is based on the definition of non-failed configuration, which states that a

configuration {i, k} is declared as non-failed when the system state variables remain at all
i~ktime within the "allowed" region <Vj of the state-space dictated by the performance re-

quirements. Thus, the coverage probability will be defined by the set of reachable state

variables at the time of transition Qik (0i'k), and by a subset of that set of initial conditions

Ex This subset eX is such that, if the system state variables are contained inside, then

the trajectories followed by the system are to remain, at all times, within the "allowed"

region <bik dictated by the performance requirements.

Failure Coverage Probability Computation Through Simulation

To compute the coverage probability c _1 when the system transitions from configuration

{j, k - 1} to configuration {i, k}, it is necessary to obtain the set of possible state variable

values Qijk (Oik) at the time of transition, and also the "acceptable" set of initial conditions
i~k

Set of possible state variable values gki(0 ik) at the time of transition. Let jk-1 (

define the steady-state set of reachable states when the system is in the configuration {j, k-
1} and this configuration was declared as non-failed. This set defines the set of possible

-70-

Chapter 3

On the Integration of System Performance and Reliability Evaluation

initial conditions _?'k(0ik) for system configuration {j, k}:

Qi~koi~k) =Qjikl(0). (3.22)

"acceptable" set of initial conditions E)k. This set can be mapped through Monte-Carlo

simulation by randomly taking initial conditions x,(0i'k) from the the set of possible state

variables at the time of transition Q$k(oik). This technique has been used before to map

domains of attraction in non-linear systems [21]. The principles are the same, except that
i~k

in this case the attractor is replaced by the "acceptable" region of the state-space <Di . Thus,

for every x,(0i'k) E e'k

xS(ti'k) E Njk v ti'k > 0. (3.23)

It is important to note that for computing Q k(0 i'k), it is necessary to know Qk-1 (0)
Qik-(0 ki) exk Qik(0 i~k)ad k

(which is computed from and '-. Therefore (5)and En" can be

obtained by recurrence given that Q O'(01o0) is known.

Analytical Calculation of Failure Coverage Probability in LTI Systems

For LTI systems, it is possible to analytically obtain bounds on the coverage probability.

This is possible due to the fact that for each system configuration {i, k}, it is possible to

analytically obtain bounding ellipsoids for Qik(oi'k) and EOk. In the remainder of this

section, we will illustrate the process of obtaining the failure coverage probability for a

configuration reached after one component failure, i.e., a configuration with index { 1, 1}.

Let the dynamics of a system in the failure-free configuration {1, 0} be represented by

dx(0'0) = F1'0x(t 1'0) + G1'0w(t 1'0)

x(01 '0) E Qx(01'0), with Qx(01,0) = {x : x'(I1,0)-1x < 11

w(t1 '0) c Qw(t 1 ,0), with Qw(t 1 ,) {w w'Q-1 w < 1}, (3.24)

where F1'0 is the system state-transition matrix, and G1,0 is the system input matrix, both

for configuration {1, 0}. Ti0 and Q are positive definite matrices and the matrix inequali-

ties in (3.24) define ellipsoids.

Let <b1'0 be the region of the state-space that contains the states that meet the functional

performance requirements of the system. Let QI0(tl,0) denote the set of reachable states,

such that Q1'0(t1'0) 9 <bx 1 '0 . A bounding ellipsoid Q 1 (tl'o) = {x : x'(I1 '0 (t1 '0))-x 1},

-71-

Chapter 3

On the Integration of System Performance and Reliability Evaluation

such that QV,0(t 1 ') C Og(tO) C Q1', can be computed by solving [50]

dF"r(t 1 'o) = F1 0F(tl O) + F1 0 (t1'0)(F 1'0)' + 0 1'0F' 0(t6 0) + 1 G'Q(G')'dt+11,

F(0 1' 0) = I (3.25)

with 0 < #31'0 < 1. Let iL0 denote the steady-state value of F1'0 (t '0), thus Q0 (oo) = {x

x(FL9)-1 x 1}, where F 0 can be computed by solving

0 = F1'oF0 + F1(F,0)' + 01,ofl'o + 1 G' 0Q(G 1'0)'. (3.26)

Q (oo) contains the set of reachable states after the "initial transient" settles. This "initial

transient" has nothing to do with possible transients of x within the system dynamics due

to changes in the input w(t1 '0), i.e., Qx (oc) takes into account these transients of x.

Decoupling Assumption. It is assumed that the system dynamics time constants are much

smaller that the time constants dictated by the failure rates. In this scenario, the likelihood

of two components failing within a time on the order of magnitude of the system dynamic

time constants is negligible relative to the likelihood of just one component failing. There-

fore, the steady-state set of reachable states Q1r0 (oo) 9 G (oc) is reached before another

failure occurs.

Under the above assumption, another failure occurs within the system, and thus the sys-

tem transitions from configuration {1, 0} to configuration {1, 1}. The dynamics of the new

configuration is defined by

dx(t"') = F1'1x(t1'l) + G1't w(t1-1)

x(01,1) E 1'1 (01,), with " 'l(01'1) = Q1 0 (oo)={x : '(F 0)- 1x < 1}

w(t1 l') E Qw(t1 l'), with Qw(t"'1) = {w w'Q-'w < 1}, (3.27)

where F1'1 is the system state-transition matrix, and G1' is the system input matrix, both

for configuration {1, 1}. As before, FL and Q are positive definite matrices. It is extremely

important to note that the new set of initial conditions Qx' (011) is defined by the bounding

ellipsoid Q1 for the steady-state of reachable states before the transition.

Let Q '(t 1 '1) denote the new set of reachable states at time t 1 . A new bounding ellipsoid

Q (t) = {x : x'F'1 (t1'1) 1x < 1}, such that i',l(t1'l) C Q'1(61), can be computed by

-72-

Chapter 3

On the Integration of System Performance and Reliability Evaluation

solving

drl(t") = F1',1rJl(t 1'1) + + 0(t'1)1' (F1')'+ +1'1 '(t') + G'Q(G'l)'

F1, 1(o1,1) = Fr (3.28)

with 0 < 01 1. Let P1' be the region of the state-space that contains the states that meet

the functional performance requirements of the system in this new configuration after the

failure has occurred. Then, depending on Q 1(t' 1) and 41', we have the following cases:

1. If Q1(oo) ' 1' ,, the coverage probability is:

vol(Ql (t,'l) n Ql,1(01'1))
C ', =b ' ' (3.29)

1'0 vol(1 "(01'"))

where ti'j > 0 is such that Q 1(t1') C (1' Vt1'1 > t"'. The following extremes cases

are possible:

(i) if t' 1 = 0, then the coverage probability is:

ci'=1. (3.30)

In this case, the set of reachable states at any time is fully contained within the

state-space region defined by the performance requirements. Therefore, the system

always survives this failure. This situation can be visualized in Fig 3.4 for a two-

dimensional case and two different situations. The ruled area represents the region

of the set of all possible initial conditions Q 1 (01,1) that will result in trajectories

fully contained in the set 41 defined by the performance requirements.

X2 11

(a) o,(t"1) C Q'(oo) Vt>1 1 (0 (b) Q"'(t1) (01(oc)

Figure 3.4: Bounding ellipsoid Q 4(t1 '1 and region g " of the state-space that contains the states

that meet the functional performance requirements of the system for a two-dimensional for the case

when Gy(oc) C @i, and 04(t"'1 is such that c" 1.

- 73 -

Wlm go ; _ - - - - Ww"dia- - E ' " -

Chapter 3

On the Integration of System Performance and Reliability Evaluation

(ii) if t'l is very large, a lower bound of the coverage probability is:

1 -vol(QG'(oo))
C I' = ' . (3.31)

1,0 vol(Q1'(O')) (.

In this case, although the set of reachable states may not be fully contained within

the state-space region defined by the performance requirements at all times, the

steady-state set of reachable states is. The steady-state set of reachable states is an

invariant set with respect to the system dynamics [51]. Therefore, the trajectories

with initial conditions within the steady-state set of reachable states will remain

within this set. This situation is depicted for a two-dimensional case in Fig. 3.5,

where the ruled area (the region of the set of all possible initial conditions Q1'1(O11)

that will result in trajectories fully contained in the set <b' defined by the perfor-

mance requirements) is now Q1'"(00).

Q2 1, 1

' 0b (00')

X1

Figure 3.5: Bounding ellipsoid Q1'(t l and region <D " of the state-space that contains the states

that meet the functional performance requirements of the system for a two-dimensional for the case

when Q4',(oo) c <DI and the value of cl given by 3.31.

2. If Q1'1(oo) 4 ', then:

(i) if Q',4(oo) n <P4'1 = 0, the coverage probability is

10 0. (3.32)

In this case, the steady-state set of reachable states is outside the state-space region

defined by the performance requirements. Therefore, the system never survives

this failure. This situation is depicted for a two-dimensional case in Fig. 3.6(a),

where it can be seen that there is no overlap between Q1'"(oo) and <D"'.

-74-

.

Chapter 3

On the Integration of System Performance and Reliability Evaluation

(ii) if QG'j(oo) n (b'l $ 0, a lower bound for the coverage probability is

vol(,$',' n Q"'(01'1))
C 1' = ' .~ (3.33)

',0 vol(Qi' ((0'i))
1,1 x,b

where 411 is the largest invariant set with respect to the dynamics of configuration

{1, 1}, such that -$X" C Q1'1(oc)nf1' 1. This is the most difficult case, as it is difficult

to find 44k. Analytical techniques for computing invariant sets with respect to LTI

systems are discussed in [51]. This situation is depicted in Fig. 3.6(b).

-IX

X1

\Q (oo)

X

(a) Qxlb(oo) n <b? = 0.

Figure 3.6: Bounding ellipsoid Q ,1(t,1 and region <D'" of the state-space that contains the states

that meet the functional performance requirements of the system for a two-dimensional for the case

when Qi',(oo) X <121.

3.5 A Series RL Circuit Example

The purpose of this section is to illustrate the concepts introduced in previous sections of

this chapter. Let's consider the series RL circuit displayed in Fig. 3.7, and let's assume that:

1. The analysis is constrained to the effect of resistor failures on the current flowing through

the inductor.

2. The resistors can only fail open circuit with a failure rate of AR, and AR 2 , respectively.

3. The initial current i(0) flowing through the circuit is unknown, but it is such that Ii(0)1 <

. T1/2c

4. The voltage source v (t) is unknown, but it is such that I v(t)| <;: Q 1/2.

-75-

X2

\ (x
x1b ()

1

ra gaipw - ___ __ , - _- -

Chapter 3

(b) Q ,, (oo) n <D, 54 0.

On the Integration of System Performance and Reliability Evaluation

5. The maximum current that resistors R1 and R 2 can process is iR1 and iR2 , respec-

tively, and once this current is reached the resistors fail open.

6. Q, R 1, R 2 , ilax, and iR2 are such that -Q< iR < , and imi > ,eQ' where

is the maximum DC current that can flow through the circuit when both resistors

are operational. Similarly, F is the maximum DC current that can flow through the

circuit when resistor R1 is failed.

7. The system fails with probability 1 if both resistors fail open.

R,

Vi~t)

_ R2 L

Figure 3.7: Series RL Circuit.

Failure-Free Dynamic Behavior

Before any failure, the current i(t'1 0) can be computed by solving

di(t'_ -) jRvit1 0)

i(01 -0) E Qi(O 1'0), with Q'0(010) f{i(0 1,0) :i(1,0) 1/ 2

v(t 1'0) E QG,(t 1,0), with Q_ (t1 '0) - {v(t, 0) : 1v(t 1,0)1 /2 (3.34)

where Req = RR 2 . Let <,"O = {i(t1 '0) : Ii(t1'0)I 5 i 1 2x} be the set of acceptable cur-

rent flowing through the circuit, where ibiax is the maximum current flowing through the

circuit such that the current flowing through each resistor is less that its maximum al-

lowed current. Let QGjO(t1'a) denote the set of all possible current at time t10 , such that

Q1'0(t',O) 9 4D1,'. A bounding ellipsoid Q1r0(t 1'0) = {i : i'F1 0 (t1 0)- 1 i < 1}, such that

-76-

Chapter 3

On the Integration of System Performance and Reliability Evaluation

1,'0(ti'0) c Q1(t 0) C D'", can be computed by solving

dr1______0 = RqL'O1 + 03F
1 '0(t1 '0) + RegQ

d-
1 0

L 1,0 (1,0,

0(010)= '. (3.35)

where F1 '0 (t1 '0) is a positive number, and 0 < 01'1 < 1. By taking 1,0 Req/L, which is

the value that minimizes Fsls [50], the solution to (3.35) is given by

1,0(ti'0) = Q + ('i - R)e- ', (3.36)IF--2 q Rq

and the steady-state Fis value is given by

-,0 = ri 0(oo)= (3.37)
eq

Figure 3.8 represents the evolution of the interval in which lies the current flowing through

the circuit. It is important to note that F = < il02x. Thus, even if there is uncer-

tainty in the value of i(t), it will always be within the maximum limits requirement.

t 1 ,0 _ 00 j 1 , 0 -+ 0

I I I I I I
i,o 0 [1,o (t)

max -T V 'Rti max
eq eq

Figure 3.8: Series RL Circuit current evolution for T < .

Failure Coverage Probability Computation

Now, let's assume Qi b(oo) has been reached and resistor R1 fails open circuit. The current

flowing through the circuit is now governed by

di(tl) __= _R 1~t,1 ,
______ L +

i(01,1) E Qi(01'), with Q 'R0(()1/21eq

v(t 1'1) E QV(t" with Q_(t 1 '1) = {v(t 1' 1) : Iv(t1 ')I <K Q1/ 2 1. (3.38)

It is important to note that the new initial condition for Q (01) is the steady-state value

Q1 '0 (oo) before the failure occur.

-77-

Chapter 3

Chapter 3 On the Integration of System Performance and Reliability Evaluation

Let (D" - {i(t'1 ") :Ii(t' 1')I ! i'l with i 1'x = ilx< i 1,0
e <D 'a ma max, be the new set that contains

the acceptable current flowing through the circuit. It is easy to understand why the maxi-

mum current flowing through the circuit is smaller now: there is only one resistor in series

with the inductor. Let Q1 1(t11) denote the new set of reachable states.

A new bounding ellipsoid Qi (t) = {i : iTF'(t ')>i 1}, such that Qfl(tll) 9

Ql'(t 1 "), is given by

Q R2 Q - (3-39)
l (t1') = (R - 2)e (

0000

Fig rei mr a x ma =Re q- t

Figure 3.9: Series RL Circuit current evolution after R1 fails open circuit for Q, R 1, R 2, and

imax such that < imax < eq

By assumption (6), we have that < iiLL < /Q. Figure 3.9 represents this situation._R_ 27eq

If i(01' 1) takes values within the intervals in red, then the system will fail; on the contrary, if

i(0 1' 1) takes values within the interval in blue, the circuit will survive the failure of resistor

R 1. In this case, this is always true because of the dissipative nature of this system. One of

the underlying assumptions is that the reachable currents before and after the failure are

uniform distributed. Thus, the computation of the coverage probability is as follows:

1,1x - (-ilL) . __1F1

ci,o = = a (3.40)

e ,q eq

Similarly, the following coverage probabilities are obtained:

1,0c-1 (3.41)

c1' 0, (3.42)

C22 = 0. (3.43)

The state transition diagram associated with the Markov reliability model is displayed in

Fig. 3.10, and can be described by

-78-

On the Integration of System Performance and Reliability Evaluation

P1,0

P1,1

P2,1

P3,1

P2,2

P4,2

-AR 1 -AR
2

FiR~
'nax AR

(1 - iax Q,)AR1

AR
2

0
0

0

-AR
2

0
0

AR
2

0

0

0

0

0
0
0

AR,

0

0

0

0

-AR
1

0
AR1

0

0

0

0
0

0

0

0

0

0

0
0

P1,0

P1,1

P2,1

P3,1

P2,2

P4,2

(3.44)

0

Figure 3.10: State transition diagram associated with the Markov reliability model for the
series RL circuit case-study.

3.6 Probabilistic Measures of Performance and Reliability

The performance metrics Z 1 , Z 2,. . .Zm are useful in determining whether each individual

system configuration is declared as failed or non-failed, and the Markov model given by

(3.20) allows the probabilities of declaring each configuration as non-failed or failed to be

computed. However, it is necessary to define other sets of measures to quantify the system

as a whole, i.e., aggregated measures for all the possible system configurations. System

Reliability R and unreliability Q are examples of these aggregated measures. The defini-

tion of these aggregated measures is very important since they will be used to compare

different system architectures, and to find weak points in a design.

- 79 -

d
dt

Chapter 3

On the Integration of System Performance and Reliability Evaluation

In order to define these aggregated measures, we will make use of Markov reliability mod-

els (MRM) [52, 53], which have been used extensively to quantify the performability of

computer systems [54]. Every aggregated measure, including System Reliability and Un-

reliability, will be derived from the general MRM formulation [30], which is defined by:

1. a Markov chain X = {X(t) : t > 0}, indexed in time by [0, oo[, and taking values in

some countable set C = {1, 2,. . . N}; and

2. a reward function r : C -* IR, where the reward associated with each i E C is denoted

by r(i).

System reliability R can be obtained by using the indicator function defined in (3.14)

(which takes value 1 when the configuration {i, k} is declared as non-failed, and 0 oth-

erwise) to define the reward model, thus rs(2i - 1, k) = 1 and rs(2i, k) = 0. Then, system

reliability is computed as

R = E(rs) = [rs(i, k)pi,k(T). (3.45)
i,k

Similarly, system unreliability Q can be computed by defining the reward function r7(2i -

1, k) = 0 and rs(2i, k) = 1, thus

Q = E(rg) rg(i, k)pi,k(T). (3.46)
i,k

Aggregated measures of performance can also be computed for each performance metric

Z, with j = 1, 2, ... m, by defining a reward function as

rzj (i, k) = hj(Zj) V j = 1, 2,.... m (3.47)

where h (-) is a real function. For example, if the Zj performance metric considered is the

electrical power consumption, it is possible to obtain the system average power consump-

tion among all possible non-failed operational conditions by defining ry(2i - 1, k) = zj (i, k)

and rp(2i, k) = 0, thus the average power consumption P, when the system is in a non-

failed configuration, can be computed as

P = E(r7) = 2 rp(i, k)pi,k(t). (3.48)
i,k

-80-

Chapter 3

On the Integration of System Performance and Reliability Evaluation

3.7 Differences Between DPRA and the New Methodology

The methodology proposed in this chapter is similar to DPRA in the sense that it makes

use of a dynamic (behavioral) system model, with additional information to model com-

ponent behavior. It also makes use of a Markov chain to model the stochastic transitions

between system configurations that take place when components fail. However, there are

certain aspects to the kind of problems that DPRA tries to solve that make the mathemati-

cal formulation of DPRA much more complex than the formulation of our methodology.

In aerospace and automotive problems the decoupling assumption stated in Section 3.4.1

holds. The system dynamic time constants are on the order of seconds; therefore, when a

component failure occurs, the system either recovers within a short transient period (on the

order of seconds), reaching a new state within the "acceptable" region of the state-space

dictated by the performance requirements, or it quickly diverts towards a state outside the
"acceptable region". In this scenario, the likelihood of two components failing within a

time on the order of magnitude of the system dynamic time constants is negligible relative

to the likelihood of just one component failing. Therefore, the system stochastic behavior

due to component failures can be be modeled as a process independent of the system dy-

namics. Thus, the resulting model is formulated in terms of just the probability of declar-

ing a system configuration non-failed or failed after a sequence of component failures has

occurred.

This is not the case in nuclear power plants, where it is not possible to decouple the stochas-

tic transitions between configurations and system state dynamic variables [37]. In nuclear

power plants, the time constants of the transitions from one configuration to another are

large enough that the likelihood of another failure happening before the system reaches a

new steady-state is relevant. Thus, in DPRA the stochastic model is formulated in terms of

the probability of the system dynamic variables in a given configuration at a given time.

Component Model Definition in DPRA

In the context of DPRA, Amendola proposed a methodology called Logical Analytical

Methodology (LAM) to quantitatively model a component with the following steps [33]:

1. An input-output scheme of the involved physical variables.

-81-

Chapter 3

On the Integration of System Performance and Reliability Evaluation

2. A set of equations describing the component nominal behavior.

3. A component failure modes and effect analysis (FMEA).

4. Parametric operators for FMEA synthesis

5. A component logical-analytical model, which analytically describes the component be-

havior in all its possible states.

There are similarities between this modeling method and the operational modes modeling

technique introduced in this chapter. However, there are several aspects that makes the

new modeling approach more general. First, the logical-analytical model described in step

5 is just a parametric representation of the nominal model described in step 2. The pa-

rameters of this logical-analytical model are changed according to the FMEA. In contrast,

the new approach is more general because the non-nominal operational modes models

are not necessarily related to the component failure-free behavior. Second, in the LAM

approach, only transitions from the nominal behavior to the different failure modes are

allowed (according to the linear structure of the FMEA). As mentioned before, the new

approach allows us to define transitions between any behavioral modes. Finally, and most

importantly, unlike the new modeling formalism, the LAM modeling formalism does not

include the stochastic model that governs the transitions among behavioral modes.

System Stochastic Behavior Formulation in DPRA

The stochastic model associated with DPRA is formulated in terms of the probability of the

system dynamic variables in a given configuration at a given time pi,k(x,(t), t). Therefore

the formulation of the Chapman-Kolmogorov equations becomes much more complicated

[35]:

0Pk(X-(t),t) + div(fik(Xs(t), w(t))pik(xS(t), t)) =

-Ai,k (Xs (t), t)Pik (Xs (t), t) + E A' _ (Xs (t), t)Pik-1(x8 (t), t) (3.49)
i,k-1

where Ai,k(x(t), t) results from adding all the individual transition rates that can trigger a

system transition out of configuration {i, k} and it depends on the system state variables

x8 (t). A'k_,(x, (t), t) is the transition rate associated with the behavioral mode transition

that causes the system to go from configuration {i, k - 1} to system configuration {i, k} and

it depends on the system state variables x,, (t) as well. The added complexity in (3.49) with

-82-

Chapter 3

Chapter 3 On the Integration of System Performance and Reliability Evaluation

respect to (3.19) resides in the additional divergency div term on the left side of (3.49) and

the fact that the transition rates depend on the system state variables x, (t). Thus, unlike

the proposed methodology, to obtain an analytical solution in DPRA becomes untractable

for even simple problems. Thus several techniques based on discretization of time and

state variables, and Monte Carlo simulation have been proposed to obtain a solution [36].

3.8 Conclusions

The methodology presented in this chapter uses a quantitative mathematical model of the

behavior of the system to be analyzed. The model includes not only the system nominal

behavior (no component failures), but also degraded behaviors due to failed components.

This is an important feature of the methodology, since the system evaluation in the pres-

ence of failures no longer relies on the judgment of the analyst to assess whether or not a

sequence of component failures will cause the system to fail or not. Furthermore, by using

a quantitative system behavioral model, it is possible to evaluate degraded system opera-

tional modes, i.e., the analysis is not "system fails or not", the analysis now allows one to

assess the "degree of failure" of a system.

Notation Used in this Chapter

A: Markov model state-transition matrix
B, : Bias factor

c ' _k : Failure coverage probability for a transition from configuration {j, k - 1} to {i, k}
ci : Component i
c, r: Markov reward model parameters

C1, C 2 : Capacitor values in RLC circuit example
DPRA: Dynamic Probabilistic Risk Assessment
ESCS: Event Sequences and Consequences Spectrum
FMEA: Failure Modes and Effects Analysis
f(-, (,-) : State evolution function for the j behavioral mode of component ci

fai'k (., .) : State evolution function for system configuration {i, k}
Fi'k (.,.) : State-transition matrix for system configuration {i, k}
g , (-,-): Output function for the j behavioral mode of component ci

gk (-,-): Output function for system configuration {i, k}
Fik (.,.) : Control matrix for system configuration {i, k}
G, 9 : Sensor behavioral model example gain change factor
hj (-) : Reward model function for performance metric j
i(t) : Current through RLC circuit example

-83-

Chapter 3 On the Integration of System Performance and Reliability Evaluation

LAM: Logical Analytical Methodology
Li : Inductance value in RLC circuit example

Pi,k (t): Probability that the system configuration is in configuration {i, k} at time t given that at t = 0 is in {1, 0}
P(t) :System configurations probability vector
Q : System unreliability, Positive semi definite matrix associated to the system input uncertainty
rz, : Reward model associated with performance metric Z,
rs Reward function associated to the reliability measure computation
ry : Reward function associated to the unreliability measure computation
ry : Reward function associated to the power aggregated performance measure example
R1 : Resistor value in RLC circuit example
R, : Sensor behavioral model example resolution

Si, (k : Indicator function for the status of configuration {i, kI
t : System global evaluation time
ti,k : Configuration {i, k} time-axis
W(t) :System input
uc1 (t): Sensor behavioral model example input
uc, (t): Component ci input
Uc, (t): Component ci operational modes random variable
v(t) : Voltage source in RLC circuit example
x, 1 (t) : Sensor behavioral model example state variables
xci (t) : Component ci state variables
x, (t) : System state variables
X(t): Random variable associated to the status of a Markov chain

y" (t): System output
Yc (t): Sensor behavioral model example output
yc (t) : Component ci output
Zj : Performance metric j
Amn.: m-to-n component behavioral mode transition rate

ANO : Nominal-to-omission behavioral mode transition rate for sensor behavioral model example

ANG: Nominal-to-gain-change behavioral mode transition rate for sensor behavioral model example
ANB : Nominal-to-bias behavioral mode transition rate for sensor behavioral model example

AGO: Gain-change-to-omission behavioral mode transition rate for sensor behavioral model example

ABO : Bias-to-omission behavioral mode transition rate for sensor behavioral model example
Aim: Transition from operational mode i to operational mode m
\ ' :_ Transition rate from system configuration {j, k - 1} to configuration {i, k)

a,-1 (.) : r -shift operator
TI: Sensor behavioral model example latency
-r : Inverse of sensor behavioral model example bandwidth

.'k (ttk) : Set of reachable states for configuration {i, k}

((tik) : Set of possible system inputs
i~k. Set that defines the performance requirements of performance metric Z, for configuration {i, k}

: State-space region dictated by the performance requirements set of performance metric Zj

for configuration {i, k}
4X : State-space region dictated by the intersection of the performance requirements sets for

configuration {i, k}
e : A subset of the set QX' (otk) such that, if the system state variables are contained inside,

then the trajectories followed by the system are to remain, at all times, within 4)'
qli,k :Positive semi definite matrix associated with the uncertainty of the initial conditions when

the system transitions to configuration {i, k}
i,k (ti,k) : Positive semi definite matrix associated with the system states evolution uncertainty when

the system is in configuration {i, k}
r., : Steady-state value of ri k(ik)

-84 -

Chapter 4

InPRESTo -SIMULINK@ Toolbox for

Integrating Performance and Reliability

This chapter presents a MATLAB/SIMULINK@ tool that supports the methodology intro-

duced in Chapter 3 -InPRESTo, an acronym for Integrated Performance and Reliability

Evaluation SIMULINK® Toolbox. An overview of the tool structure and capabilities will

be presented. The definition of system behavioral models in the SIMULINK@ environ-

ment will be explained in detail, as well as the system performance metrics definition and

their associated requirements. The basic functionality of the tool will also be presented, as

well as an explanation of the tool structure. Appendix B contains the tool subroutines flow

diagram and the MATLAB@ source code

4.1 Introduction

The methodology presented in Chapter 3 can be used to evaluate the reliability and perfor-

mance of a system architecture and help identify weak points in the system. This allows

for improvements in subsequent iterations of the system design. It can also be used in

a slightly different way to compare different architecture alternatives to help identify the

optimal design in terms of reliability and performance. However, these tasks can be daunt-

ing if performed manually, due to the large number of components that a fairly complex

system may have. Therefore, in order to make the application of the methodology feasible,

a MATLAB/SIMULINK@ based tool -InPRESTo- was developed. This tool automates

the evaluation process of a system defined in the SIMULINK@ environment.

The ability of InPRESTo to analyze different complex systems has been shown in several

case-studies. In Chapter 5, a lateral-directional flight control system case-study will be pre-

sented to illustrate how the toolbox can be used to identify weak points in a system design

and how they can be improved thorough different design iterations. Chapter 6 presents

-85-

Chapter 4 InPRESTo -SIMULINK@ Toolbox for Integrating Performance and Reliability

a steer-by-wire case-study that shows how to use InPRESTo for comparing two conceptu-

ally very different architectural approaches for achieving fault tolerance. InPRESTo is now

also being used by the Systems Engineering and Evaluation Division at the Charles Stark

Draper Laboratory for the evaluation of space and tactical systems.

The purpose of the chapter is to explain the toolbox structure and main features, and also

point to ways in which the tool could be improved. Section 4.2 presents the functionality

of InPRESTo. Section 4.3 explains how to define the necessary inputs to perform a system

analysis, i.e., the system dynamics behavioral model, the system performance metrics and

their associated requirements, and the evaluation parameters. Section 4.4 explains how

to run an analysis. Section 4.5 explains how to visualize the analysis results. Section 4.6

presents an overview of the tool structure. Finally, Section 4.7 highlights further develop-

ment that could be done to improve InPRESTo's functionality.

4.2 Functionality

InPRESTo provides an environment for integrating system performance and reliability

evaluation. The toolbox helps the analyst to:

" thoroughly evaluate system behavior in the presence of component failures;

" evaluate the effectiveness of failure detection, isolation, and reconfiguration mecha-

nisms (FDIR);

" uncover weak design points, i.e., single points of failure and common modes of failure;

* quantify the main contributors to system unreliability;

" quantify the advantages of using a specific architecture among different alternatives.

The basic functionality of InPRESTo is displayed in Fig. 4.1. The inputs to InPRESTo are:

* The system dynamics behavioral model defined in the SIMULINK® environment. The

component failure behavior can be built into each component model by "drag and drop"

from a SIMULINK® library called Failure Models. This library can be accessed from the

SIMULINK® GUI, and contains several failure models.

- 86-

Chapter 4 InPRESTo -SIMULINK@ Toolbox for Integrating Performance and Reliability

" System performance metrics and their requirements, which are defined within the SIMULINK®
system behavioral model. There is a library called Performance Metrics with predefined

performance metrics models from which the analyst can "drag and drop" as well.

" Evaluation parameters, which are additional parameters needed to run the analysis.

O1u1801W Fae rmftnn emmtro Oonof c"oda setlt

-00 can be mwutat e9, W6;S att W.Oapeot, eq 0e69 a- 7t^72,

* 0Nayn Look Tomo
* 0 Mdo

2dSFae&S Oodad Omis00, am dwonm
* Aokato 3 WSn rad- katIa*

*t0niWaentks

e~~hokm 3

SIMULINK® library browser

EVALUATION PARAMETERS

eGlobal evaluation time

-Configuration evaluation time

HO

-- 2

SIMULINK* system dynamics behavioral model,
performance metrics (and their requirements)

InPRESTo
* Failure sequences performance evaluation

* Reliability/Unreliability calculations

-Probabilistic measures of performance calculations

-Sensitivity analysis

Figure 4.1: Basic functionality of InPRESTo.

-87-

I
Output of PFC1 Processor stuck at the last correct value outputted

03-
--Aircraft response

0.25 -. Reference model,

- -Roll command #
4 0.2 -- -

a 0,15-

0.05

Time [s]

Results visualization

I

Chapter 4 InPRESTo -SIMULINK@ Toolbox for Integrating Performance and Reliability

InPRESTo will use the evaluation engine described in 4.6, which was coded as a collec-

tion of MATLAB@ functions. The tool can perform exhaustive analyses of all possible

sequences of component failures that can yield a system failure, or the analysis can be

truncated when sequences of component failures of a certain size are reached. In the latter

case, bounds on the reliability and unreliability are calculated to estimate the error intro-

duced by truncating the analysis. InPRESTo can also calculate probabilistic measures of

performance.

All the analysis results are automatically collected in several excel spreadsheets similar to

the system level FMEAs shown in Section 2.3.1. The tool also allows the user to analyze

and visualize the system behavior for chosen sequences of component failures. All the

data analysis is also collected in several MATLAB@ data files, and the information they

contained can be retrieved any time after the evaluation is finished.

4.3 Defining the Inputs to InPRESTo

This section explains in detail how to define the three inputs necessary to carry out a sys-

tem performance and reliability evaluation.

1. System dynamics behavioral model, which is constructed in the SIMULINK® environ-

ment;

2. Performance metrics and their associated requirements which are defined, as well,
within the SIMULINK@ system behavioral model; and

3. Evaluation parameters, which are defined through the MATLAB@ Command Window.

4.3.1 System Dynamics Behavioral Model Definition

The system dynamics behavioral model is defined in SIMULINK®. As mentioned in Chap-

ter 3, the system configurations are one of the main elements of the methodology. Theo-

retically it is necessary to have all the system configurations beforehand in order to carry

out the analysis. In practice, the system failure-free configuration ({1, 0} in equation (3.8))
is modeled in SIMULINK® by interconnecting the nominal models of each component,

-88-

Chapter 4 InPRESTo -SIMULINK@ Toolbox for Integrating Performance and Reliability

ae s1/0 1 l input output -
input s samDe yR u ,,,, Output

Transfer Fcn DlyRslto
Failure

Fadue moes misson, ainchaneaiaed mask F dt ie w e on Fwnat Toobs H*b

the factor specfed in "gakn change actor Blasedfaure mode sets the output
to the ssevaue as theiroatbased bythe actor speate os"Blastactor.
Thetalke rates specileforeach mode can be constant e g., 14, or
tkno-depersnt e g., 1e-6+ e-71t2.

Uf

Parameaters ------

Falrje rate for oOnisiion outpu
2.W8l3 1 eb-(tW. Ie5)^1.68 _i -0
Faibe rate torbgasncag149-G7 Omission u

Fa raefwasGain change facto -213e-7

Gain change factor

sSwitch

Figure 4.2: SIMULINK® Control Surface Position Sensor Model.

and afterwards augmenting each component nominal model with a corresponding fail-

ure behavior model. The realization of the remaining system configurations is carried out

through simulation by injecting different sequences of component failure modes.

To illustrate how a system model is defined, we will show how to model one of the com-

ponents within a model. The complete system model will emerge after connecting all the

component models. Fig. 4.2 shows a SIMULINK® model for one of the control surface

position sensors of the case-study presented in Chapter 5.

The mathematical model from which this example was developed is also shown in Section

3.2.1. On the upper part of Fig. 4.2, the elements labeled Transfer Fcn, Delay, and Reso-

lution are common SIMULINK® blocks that allow the sensor functional properties to be

modeled.

The block on the upper-right of Fig. 4.2, named Failures, is the component failure behavior

model. The content of the Failures block is displayed on the right bottom of Fig. 4.2. The

failure behavior of the sensor depends on the Switch control input Up, which is controlled

automatically by the MATLAB® evaluation engine (Section 4.6). For Uf = 0, the Switch

-89-

Chapter 4 InPRESTo -SIMULINK@ Toolbox for Integrating Performance and Reliability

File Edit View Help

Omission: Failure model implementation. Omission failure mode sets the output
block to zero regardless the input value. The failure rates specified for each failure
mode can be constant, e.g., 1 e-6; or time-dependent, e.g., 1 e-6+1 e-7*t^2.

N Fuzzy Logic Toolbox
* InPRESTo

Failure models - Omission, and random
±H Actuators Omission, random, stuck at last value,
N Processors and delayed

Sensors F 1 Stuck at zero, and stuck at one
N Performance metrics

a Link for ModelSim

Ready

Figure 4.3: SIMULINK@ library browser displaying a library called InPRESTo that includes pre-
defined failure models and performance metrics models.

block input 0 is passed to the output, meaning the sensor is failure-free. When the Switch

control input Uf is set to 1, 2, or 3, the inputs 1, 2,3 of the Switch block are passed to the

output, modeling, respectively, Omission, Gain-Change and Bias failure modes. Several

failure models have been predefined and can be inserted in the model by "drag and drop"

from a SIMULINK@ library called Failure models, displayed in Fig. 4.3. This library can

be accessed from the SIMULINK@ GUI. Failure models are available for actuators, pro-

cessors, and sensors, and new categories could be created if considered necessary by the

user. The failure models within the library have been created using SIMULINK@ masked

subsystems and can be modified by the user.

The bottom-left of Fig. 4.2 shows the GUI through which the user interfaces with the

Failures block, allowing the definition of failure rates for each failure mode. In this case, we

have used Omission, Gain-change, and Bias. It is possible to define constant failure rates

and time-dependent failure rates if component wear-out mechanisms are to be modeled.

The Failures block GUI allows other parameters of the component failure model to be

defined. In this case, the Gain-change factor and the Bias factor. The component can only

go from the non-failed status to any of the failed statuses defined by the failure modes, but

-90-

Chapter 4 InPRESTo -SIMULINK@ Toolbox for Integrating Performance and Reliability

/

Ouput of evaluated system

Reference

Performance metric

Perfonance meWn: error (mask)-
The performance metnc is the error between the output of the
system to evauate and some reference Requrerements are
defined through the "Upper bound" and "Lower bound"

Ppareters --------

Upper bound
0.15
Lower bound

F 0.15

X t

OK J[pI Rey

FPe Edit View Smuation Format Tooks Help

Q R y X * .I n 100 Norma vIE *

*valua eds y=em Performance_metic

Reference

up±r--# ppe~und

lower wrbun

i123% lde45

Figure 4.4: SIMULINK® performance metric model definition.

once it is in a failed status, it remains there, it cannot fail in a different mode.

4.3.2 Performance Metrics Definition and Requirements Specification

The performance metrics, as well as their requirements, are defined within the SIMULINK®

system behavioral model. Figure 4.4 illustrates how to define a performance metric. The

content of the Performance metric block is displayed on the right bottom of Fig. 4.4, which

defines the performance metric as the difference between the output of the system under

evaluation and a reference, e.g., the output of the system under evaluation with no fail-

ures. The bottom-left of the figure shows the GUI through which the user interfaces with

the Performance metric block, allowing the definition of requirements (in the form of upper

and lower bounds).

There are several performance metrics models predefined in the SIMULINK@ InPRESTo

library, Fig. 4.3, that can be inserted in the model by "drag and drop". The user can add new

-91 -

W05 A

Chapter 4 InPRESTo -SIMULINK@ Toolbox for Integrating Performance and Reliability

performance metrics models to this library, and modify the existing ones.

4.3.3 Evaluation Parameters

There are several parameters that need to be defined before a system evaluation can be

carried out. These are:

" Global evaluation time T(h). This is the time that will be used for evaluating the

Markov reliability model. Depending on the system, it can be the lifetime, or the mis-

sion time, or the time between scheduled maintenance actions.

" Truncation level kmax. If system evaluation truncation is enabled, the truncation level

kma, is the maximum size of failure sequences that will evaluated, i.e., the maximum

number of failed elements within a sequence of failures.

* Configuration evaluation time tc(s). The total time for simulating a system configu-

ration reached after a sequence of component failures occurred. It is assumed that the

analyst will pick t, several times larger than the system's largest time constant.

* Failure rates factor for sensitivity analysis. If sensitivity analysis is required, this is

the factor by which each component failure rate value will be multiplied and the result

added to the nominal failure rate value.

4.4 Invoking InPRESTo

InPRESTo is invoked from the MATLAB@ command window. Figure 4.5 shows a snapshot

of the this window when invoking InPRESTo. As can be seen, the parameters mentioned

in Section 4.3.3 are entered through the MATLAB® command window.

Before invoking InPRESTo, make sure that the SIMULINK@ model of the system to be

evaluated is opened; and that the MATLAB@ path is set to the system SIMULINK® model

directory. Then follow these steps:

1. Type Inpresto in the MATLAB@ command window.

-92-

Chapter 4 InPRESTo -SIMULINK@ Toolbox for Integrating Performance and Reliability

FhleEdit DebugDeeiW Window Help
D esarch W \ Te A rform Ea tuto quences exampl I
Shortcuts Z How to Add 2] What's New

>> Inpresto
Enter model name: modelname
Global evaluation time T (h) : 500
Truncate evaluation (yki): y
Truncation level k-max : 3
Configuration evaluation time t c (s): 20
Sens"vty analysis (yin): y
Failure rates factor sensitvty analysis: 0.1
xis file name for report: results_file_namel

Start Wakting for spat

Figure 4.5: Snapshot of the MATLAB® command window when invoking InPRESTo.

2. Enter the name of the SIMULINK@ model without including the mdl extension, e.g., if

the model file name is mode l_name .mdl, then just type mode l_name.

3. Enter the global evaluation time T in hours.

4. If truncation of system evaluation is to performed, then type the command y, otherwise

type the command n.

5. If truncation was chosen, then enter the truncation level kmax.

6. Enter the configuration evaluation time t, in seconds.

7. If sensitivity analysis is to be performed, then enter the command y, otherwise enter n.

8. If sensitivity analysis was required in step 7, then enter the failure rates factor for sensi-

tivity analysis.

9. Enter the name of the EXCEL® result s_file_name . xis, in which the evaluation

results are to be collected.

-93-

Chapter 4 InPRESTo -SIMULINK@ Toolbox for Integrating Performance and Reliability

4.5 Analysis Results Visualization

The analysis results are collected in an EXCEL® spreadsheet and all the relevant variables

created during the evaluation are stored in several MATLAB® data files: mat r i x__model . mat,

which stores the Markov reliability model state-transition matrix, and model_r esults . mat,
which stores the rest of the variables created during the analysis. It is possible to visual-

ize the dynamic behavior of the performance metrics for individual system configurations

after all the analyses are completed.

2 3 iM1 dossiwn 4.00E-07 2 1.98E-04 1 0.00 7.42188E-05 1.99483E-05 1.68163E
3 gMU 1/ga ng 3.00E-07 3 1.48E-04 1 0.00 7.48947E-05 2.10584E-05 1.12532E-
4 UIMU-Isft ed 3.00E-07 4 1.48E-04 1 0.00 8.29901E-06 1.94346E-06 2.49379E-
S tIUU2lonilein 4.00E-07 5 1.98E-04 1 0.00 0.00012368 3.6851E-05 2.31461E-0
8 EIMU Zgshtciange 3.00E-07 6 1.48E-04 1 0.00 .0000040483 0.000205018 7.05636E-0
7 EU 2iblesed 3.DOE-07 7 1 48E-04 1 0.00 0.000357817 9.4008E-05 3.13578E-
8 MU 3t0msuion 4.00E-07 8 1.98E-04 1 0.00 0.000143525 3.60362E-05 3.44865E-
9 'U S ae hange 3.00E-07 9 1.48E-04 1 0.00 0.000587915 0.000152003 8.82899E-
101W 3biesed 3.00E-07 10 1.48E-04 1 0.00 0.000551228 0.000140491 0.00012441

J11 Loft A# stoW k 1.00E-08 11 4.94E-06 1 0.00 0.090693004 0.022211862 0.03181874
12 teO Aerodralna 1.00E-08 12 4.97E-06 0 0.01 0.268275841 0.065598262 0.4774018
13,. akron acniow-N svs1m 1/onission 1.00E-06 13 4.94E-04 1 0.00 0.07477481 0.019173096 0.01371412
14 riL sroIt a..sidw.y tstuck 1.00E-06 14 4.94E-04 1 0.00 0.074108232 0.019099321 0.01367397
5lat ikroui O acn ubWyOstiM2IoisuIw, 1.00E-06 15 4.94E-04 1 0.00 0.074036315 0.019145809 0.01367551

16 'Le*.sisroieotiuution uihslesymstuck 1.00E-00 _ 18 4.04E-04 1 0.00 0.073845662 0.018918724 0.0136820
17 t kgm sf e sensor llmlmsion 4.00E-07 17 1.98E-04 1 0.00 0.000113769 2.78478E-05 2.5983E-

18* en o&.snde sensor O9ig chenab.0 _ 3.00E-07 18 1.48E-04 1 0.00 0.000206535 5.34952E-05 3.26203E-0
l9iLSO aisron wide senwor l~ibived 3.00E-07 19 1.48E-04 1 0.00 0.000153807 3.72926E-05 4.10742E-
2011 ite Iurousang Sensor 2oeisiln 4.00E-07 20 1.98E-04 1 0.00 5.71708E-05 1.65456E-05 9.64845E
21L [LeRan end. sfetoshr dain cange _ 3.00E-07 21 1.48E-04 1 0.00 3.33222E-05 1.14571E-05 9.98221E-M
22.Let ..5bn Ui sduwor. .2Mssed 3.00E-07 22 1.48E-04 1 0.00 5.82479E-05 1.36384E-05 1.75061E-0
23 L.LkrLW dS sensor 3Jomlsulcn 4.00E-07 23 1.98E-04 1 0.00 2.30811E-05 5.47208E-06 2.47751E-
2414j"&.dron anie sensor SIn chage 3.00E-07 24 1.48E-04 1 0.00 3.99201E-05 1.00396E-05 3.36192E-
26 seron .wie sensor 3blesed 3.00E-07 25 1.48E-04 1 0.00 5.81523E-05 1.5841E-05 1.52571E-
26.j I slecimnssnn 1.00E-08 26 4.94E-00 1 0.00 0 0
274 ~ IP setowculckuleisson 1.00E-08 27 4.94E-06 1 0.00 0.001540666 0.000480324 0.00028201
28fitesssr in PFCVIomISnon 2.00E-07 28 9.88E-05 1 0.00 0.001572444 0.000399104 0.00039285
29 Processorhin PFC Ikandiom 1.00E-07 29 4.97E-05 0 1.44 50.40476842 12.09089022 11.70053
30 4Prceseor. k PFC Ituck 1.00E-07 30 4.97E-05 0 0.04 1.272589707 0.309425407 0.298246105
34TPoessor ah PFC 1fdelwysd 1.00E-07 31 4.97E-05 0 106867293.47 10808825436 2350186736 4101743520
32 4fC-2se helnissIen 1.00E-08 32 4.94E-06 1 0.00 0 0
33 ePFC 2 ! Wf nission 1.00E-08 33 4.94E-06 1 0.00 0.001305999 0.000340124 0.000217391
34 f iesw i PFC- 2omsimn 2.008-07 34 9.88E-05 1 0.00 0.002848358 0.000930791 0.00056593
35j6Procesor l PFC 2ksidom 1.00E-07 35 4.97E-05 0 1.44 50.55230016 12.13423327 11.7340249
3 :Proessor in PFC 2stick 1.00E-07 36 4.97E-05 0 0.04 1.254608307 0.30505028 0.2941188§g

Figure 4.6: A snapshot of an EXCEL® spreadsheet results file showing the
sets of sequences of failures of the same size.

results for one of the

4.5.1 Reliability and Probabilistic Measures of Performance

The performance and reliability analysis results are collected in several sheets of the same
EXCEL® spreadsheet. Each row of the EXCEL® spreadsheet shown in Fig. 4.6 is associated

with a system configuration, and it includes the following information:

* Column A: Failed components. The sequence of component failures leading to a unique
system configuration.

-94-

Chapter 4 InPRESTo -SIMULINK® Toolbox for Integrating Performance and Reliability

" Column B: Failure rate. The failure rate value associated with the last component to

fail in the sequence displayed in Column A.

" Column C: State. An identifier that maps each system configuration into a state of the

Markov reliability model.

" Column D: Probability. The probability of being in that system configuration at the

global evaluation time T.

* Column E: Status. A binary variable that will take the value 1 if the configuration

reached after the sequence of component failures displayed in Column A is declared

non-failed, and 0 otherwise.

" Columns F, G, H, I,...: Performance metrics. The performance metrics' values in that

system configuration.

A BC E

2 st I L 1.21E-02 3.13E-04
3 9.88E-01 LevWl 2 6.43E-05 7.12E-06
4 0.00 Level 3 1 .D0E+00 2.39E-07

6 o Ye rt.mos 0 Leve 6
7 Rol I&elhms OLomul6
8

10 . fwacy l)~aI 6.39E-06 3.27E-04 8.61E-05 6.08E-05
11 wy absokte vas drmun mectd I 6.39E-06 3.27E-04 8.61 E-05 6.08E-05
12
13
14 1 em R I 1.OOE+00 1.OOE+00 2.39E-07
_ I eUlab5v 3.20E-04 3.20E-04 2.39E-07

Figure 4.7: Snapshot of an EXCEL@ spreadsheet results file showing system reliability and unre-
liability values, the failure-free configuration probability, and the probabilistic measures of perfor-
mance associated with each performance metric.

Additionally, system reliability and unreliability values, the failure-free configuration prob-

ability; and the probabilistic measures of performance associated with each performance

metric are collected in a separate sheet of the EXCEL® spreadsheet results file. Figure 4.7

shows a snapshot of this sheet, which includes the following information:

" Column B; rows 2-7: System with no failures. The Probability of being in the failure-

free configuration at the global evaluation time T; and the performance metrics' values

for the nominal configuration.

" Column D, and E; rows 2-7: Probabilities per failure level. For each failure level

(system configurations with the same number of failed components), the probability of

having declared a configuration as non-failed, or as failed.

-95-

Chapter 4 InPRESTo -SIMULINK@ Toolbox for Integrating Performance and Reliability

* Column B, C, D, E, ... ; rows 10-11: Probabilistic measures of performance. For each

performance metric, different probabilistic measures of performance can be computed,

i.e., expected value, or expected value of the absolute value deviation with respect to

the nominal behavior.

* Column B, C, D ... ; rows 14-15: Reliability and unreliability. System reliability and

unreliability. If the evaluation is truncated, lower and upper bounds for those are dis-

played, as well as the error in their estimation.

4.5.2 Performance of Individual System Configurations

When the system evaluation is completed, it is possible to visualize the dynamic behavior

of one or more system variables. This option allows the analyst to inspect the system

transient behavior for the last component failure for any given sequence of component

failures.

Variables to be displayed

Outport

Mux

Figure 4.8: Definition of the system variables whose dynamic behavior is to be displayed.

Before invoking the plotting subroutine, it is necessary to define, in SIMULINK@, which

system variables are to be plotted. The steps to define the variables to be displayed, Fig.

4.8, can be summarized as:

* From the SIMULINK@ library browser, drag an Outport block into the top level of the

SIMULINK@ system model.

* From the SIMULINK® library browser, drag a Mux block into the top level of the SIMULINK®

system model and connect it to the Outport.

* Modify the number of inputs that go into the Mux block to accommodate the number of

system variables to be displayed.

-96-

Chapter 4 InPRESTo -SIMULINK@ Toolbox for Integrating Performance and Reliability

. Connect each system variable to be displayed to an input of the Mux block.

0.25

0.2-

0.15F

0.1-

0.05-

0 5 10
Time [S]

15 20

Figure 4.9: Visualization of the behavior corresponding to
system case-study presented in Chapter 5.

the lateral-directional flight control

After the variables to be displayed are defined as explained above, InPRESTo's plotting

subroutine is invoked by typing the command Inpresto-plot in the MATLAB@ com-

mand window. Then, the MATLAB® prompt will request the failure injection time tf,

which is the time when a failure is initiated after the simulation of each configuration is

running, with tf < t. The MATLAB@ prompt will then request which system configu-

ration dynamic behavior is to be displayed. By typing the identifier of each configuration

as it appears in column C of the EXCEL® spreadsheet, Fig. 4.6, the required system con-

figuration dynamic behavior will be plotted. Figure 4.9 shows a dynamic behavior plot

corresponding to the lateral-directional flight control system for the case-study presented

in Chapter 5.

4.6 Program Flow

InPRESTo will simulate each possible system configuration to check whether or not the

performance requirements are met, until all possible sequences are exhausted or until the

analysis is truncated. As the performance of the system is evaluated for each sequence

of component failures, the state-transition matrix associated with the Markov reliability

model is built. The functional flow diagram of InPRESTO is displayed in Fig. 4.10, and

-97-

Aircraft response $
Reference model $r

- Roll command $

..
..

Chapter 4 InPRESTo -SIMULINK@ Toolbox for Integrating Performance and Reliability

the functions performed in each box of the flow diagram are explained in the remainder of

this section. Appendix B contains a more detailed flow diagram, as well as the subroutines'

MATLAB@ source codes.

SIMULINK system

onyist Analysis of the system behavioral model,

Markov states with no failures performance metrics,
and requirements

Construction of
-(k+n)-level Markov M

states

V NO

Analysis of failure
sequences of size k is Truncation Has k n YES

level kbhvo been reached?

Are all sequences of NO Truncate Markov

failure ca tastrophic? model at kh level

YES

Calculation of Reliability Sniiiy N
and PerformanceSestvy

measuresanls?
YES

Sensitivity analysis

Results
visualization

(END

Figure 4.10: Functional flow diagram.

Analysis of the system with no failures

The SIMULINK@ system model is simulated to obtain the system's nominal behavior, i.e.,

its behavior with no failures.

Construction of first-level Markov states

1. States for all possible system single failures Ni are constructed, where N, is the sum of

-98-

Chapter 4 InPRESTo -SIMULINK@ Toolbox for Integrating Performance and Reliability

failure modes of all the system components.

2. For each system single-failure constructed in step 1 a new entry is added to the Markov

model state-transition matrix.

Analysis of failure sequences of size 1

1. Each possible system single-failure is injected in the SIMULINK@ model, resulting in

the realization of N1 new system configurations.

2. The behavior of the N1 single-failure configurations is simulated for a period of time t,

(configuration evaluation time) and for a given system control input w(t). At the beginning

of the simulation period, the system state variables x, (t) are set to their values at the

end of the simulation period for the system with no failures.

3. The simulation of each configuration is carried out for 9 different equidistant failure

injection times t', i.e., t' = 1i for i = 1,..., 9. For each failure injection time tf, the

performance metrics are checked. If they do not meet requirements, the configuration

is declared as failed (for the particular injection time). If the performance requirements

are met, then the configuration is declared as non-failed (for the particular injection

time).

4. The failure coverage probability is computed as the ratio of the number of runs that

meet performance requirements in step (3) and the total number of runs 9.

After the analysis of single-failure configurations is carried out, the operations listed below

take place until all the sequences of component failures result in failed system configura-

tions, or the analysis is truncated.

Construction of (k + 1)-level Markov states

1. The sequences of component failures of size k > 1 resulting in configurations with non-

zero failure coverage probability are used to construct the remaining sequences with

(k + 1) failed elements.

2. For each (k + 1)-failure sequence a new entry is added to the Markov model state-

transition matrix.

-99-

Chapter 4 InPRESTo -SIMULINK@ Toolbox for Integrating Performance and Reliability

Analysis of failure sequences of size k + 1

1. Each possible (k + 1) failure sequence is injected in the SIMULINK@ model, resulting

in the realization of Nk+1 new system configurations.

2. The behavior of the Nk+1 configurations (with (k + 1) components failed) is simulated

for a period of time t, (configuration evaluation time) and for a given system control input

w(t). At the the beginning of the simulation period, the system state variables x,(t)

are set to their values at the end of the simulation period for the configuration with the

sequence of k failures that generated the new k + 1 failures sequence.

3. The simulation of each configuration is carried out for 9 different equidistant (failure

injection times) t', i.e., t' = { i for i = 1, ... , 9. For each failure injection time, the

performance metrics are checked. If they do not meet requirements, the configuration

is declared as failed (for the particular injection time). If the performance requirements

are met, then the configuration is declared as non-failed (for the particular injection

time).

4. The failure coverage probability is computed as the ratio of the number of runs of step

(3) that meet the performance requirements in step (3) and the total number of runs 9.

Once all possible sequences of component failures are analyzed and the state-transition

matrix is built, the following steps take place in order to compute reliability and perfor-

mance measures.

Calculation of reliability and performance measures. The set of differential equations

associated with the Markov reliability model is automatically solved, and reliability, unre-

liability and other probabilistic measures of performance are automatically obtained.

Sensitivity Analysis. In order to understand the influence of component failure rates, it

is possible to carry out a sensitivity analysis on the system reliability and performance

measures solution.

4.7 Further Development

Although InPRESTo has proved to be a very powerful tool for the performance and reliabil-

ity evaluation of fault-tolerant systems, it needs further development. In order to make it

-100 -

Chapter 4 InPRESTo -SIMULINK@ Toolbox for Integrating Performance and Reliability

more user-friendly, development of a GUI would facilitate the data input, post-evaluation

results handling and visualization.

As shown in Section 4.3.1, the component behavioral models are built in such a way that

the failure model only modifies the nominal output of the component. This is a powerful

approach since the system nominal model (no component failure behavior models) can be

developed first. It is possible then to add the failure models to each component tp obtain

the complete system behavioral model. This approach to modeling component failure be-

havior is sufficient in most cases. However, there might be cases where this approach is not

sufficient. Therefore, an improvement to the tool would be to implement the more general

component modeling approach presented in Section 3.2.1. In this approach, the compo-

nent behavior is modeled as a collection of dynamic models; each of them representing a

different component failure behavior.

In terms of the stochastic model that governs the failure behavior of the components, the

current implementation only allows the component to fail from its failure-free operational

mode to each of the predefined failure modes. Once these are reached, no other transitions

are allowed. To make the stochastic model more general, it would be necessary to modify

the tool so transitions between different operational modes and even back to the failure-

free operational mode would be possible, to allow modeling transient component failures.

Regarding the component failure rates, time-dependent failure rates can be defined, which

is a big advantage to modeling wear-out mechanisms. However, to improve further the

component failure models, it would necessary to be able to define state-dependent failure

rates.

The current implementation of InPRESTo only considers one predefined system input sig-

nal to carry out the analysis. For time-varying inputs, the uncertainty at which time the

failure occurs is taken into account in the computation of the failure coverage probabil-

ity, as explained in Section 4.6. However, considering only one predefined input signal is

not enough to cover all the possible values that the control input can take. Therefore, it

is necessary to implement a simulation strategy to choose random values from the set of

possible system control inputs. As a result of this, it will be necessary to implement the

Monte-Carlo approach to compute failure coverage probabilities as discussed in Section

3.4.1.

-101-

Chapter 4 InPRESTo -SIMULINK@ Toolbox for Integrating Performance and Reliability

Notation Used in this Chapter

T : Global evaluation time
kmax: Truncation level
te: Configuration evaluation time
tf Failure injection time
w(t): System input
Uf: Component failure model switch control input
x(t) System state variables

- 102 -

Chapter 5

Lateral-Directional Flight Control System

Case-Study

In this chapter, we present a case-study of a fault-tolerant architecture for a fighter aircraft

lateral-directional flight control system. The purpose of this case-study is to show how

the performance and reliability evaluation SIMULINK@ toolbox -InPRESTo- presented

in Chapter 4 can be used to identify weak points in the system design, guide the design

pointing out to possible solutions to eliminate the uncovered weak points, compare differ-

ent architecture alternatives from different perspective, and test different failure detection,

isolation, and reconfiguration (FDIR) techniques. Part of the the work presented in this

chapter appears in [42].

5.1 Introduction

Most modern fighter aircrafts make use of fly-by-wire technology, i.e., there is no mechan-

ical linkage between the stick or the pedals, and the control surfaces. Therefore, there is a

need for a control system, including sensors, actuators and a computer, to transform the

pilot inputs into commands for the control surfaces. There are two main reasons for the

use of fly-by-wire technology: the lack of mechanical linkages reduces the weight of the

aircraft; and the use of a computer to control the aircraft allows an aerodynamically unsta-

ble design that results in increased maneuverability. Thus, in order to fly and maintain the

aircraft controllability, the control system must work at any time. Therefore, it is clear that

a fault-tolerant control system is needed in order to prevent losing the aircraft, aborting a

mission, or endangering the pilot's life if a failure occurs in the control system.

In this chapter, a case-study for the lateral-directional flight control system of a fighter

aircraft is presented. This case-study shows how to use InPRESTo to guide the design pro-

cess of aircraft avionics systems. In Section 5.2, the design goals that must be achieved are

-103 -

set forth. Section 5.3 defines the performance metrics and their associated requirements

that will be used to conduct the system performance evaluation. Section 5.4 presents a

first architectural alternative, called the dual channel architecture (DCa), in which only

pure redundancy is used as a vehicle to achieve fault-tolerance. The analysis results of

this first alternative will show that redundancy is not enough to achieve the design goals.

This analysis also uncovers the weak design points, and gives guidance to improving the

architecture. In Section 5.5 an improved design of the dual channel architecture, called

enhanced dual channel architecture (EDCa), is presented and thoroughly analyzed. The

analysis will show that this architecture does not meet all the design goals either, and will

also show how this design can be further improved. Section 5.6 presents a further im-

proved architecture, called dual-dual channel architecture (DDCa). The three architectural

alternatives are compared in Section 5.7. Concluding remarks are presented in Section 5.8.

5.2 Design Goals

For the system under consideration, the design goals are threefold:

1. The system must tolerate any single component failure, i.e, it must be single fault-

tolerant.

2. The system must be able to operate without any maintenance for 500 h.

3. The system dependability rate \(T) (as defined in (A.5)) must not exceed 10-6 fail-

ures/hour.

From (2) and (3), a system unreliability Q at the end of the maintenance period of 5 -10-4

results.

5.3 System Performance Metrics Definition and Associated Re-
quirements

The first step in carrying out the analysis of any system is to establish its performance

metrics and associated requirements. In this case, the performance metrics chosen are the

-104 -

Chapter 5 Lateral-Directional Flight Control System Case-Study

aircraft state variables: the sideslip 0(t), the body axis roll rate pb(t), the body axis yaw

rate rb(t), and the body axis roll angle 0(t). Thus:

Z= 0(t), (5.1)

Z2= pb(t), (5.2)

Z3= rb(t), (5.3)

Z4 =q(t). (5.4)

The dynamic behavior of a reference aircraft [41] (see Appendix C for the model details)

will be used to define the performance metrics requirements. This reference aircraft state

variables are denoted by the sub index r, i.e., the sideslip is denoted by r (t), the body axis

roll rate by Pb, (t), the body axis yaw rate by rb, (t), and the body axis roll angle by 0r (t).

Thus, the performance metrics requirements are defined as

{zi = {0(t) E JR / 0| (t) - f3r(t) icc < r,3}, (5.5)

QZ2 = {pb(t) E IR I IP(t) - Pr(tI|O rb }, (5.6)

Qz3 = {rb(t) E JR / 11 rb(t) - rb,(t)lo 5 rl6}, (5.7)

Qz4 = {(t) E JR /I OM(t) - qr(t) Ioo < rg}, (5.8)

where r3 = 0.15rad, rP = 0.45rad/s, rrb = 0.45rad/s, and r4, = 0.15rad.

As mentioned in Chapter 4, when using InPRESTo for the analysis of any system, it is nec-

essary to define the system control inputs that will be used to evaluate each configuration.

In this case, a 0.2rad, 0.1Hz square wave in the roll command 5c was chosen, which is

displayed in Fig. 5.1 together with the reference aircraft dynamic response.

5.4 Dual Channel Architecture: Pure Redundancy

The proposed dual channel architecture (DCa), Fig. 5.2, is based on the use of pure redun-

dancy. No FDIR mechanisms are implemented, except for voting algorithms for the triple

redundant measurements. The architecture is composed of two redundant primary flight

computers (PFC1 and PFC 2) that receive information about aircraft attitude from three re-

dundant inertial measurement units (IMU 1, IMU 2 and IMU 3) cross strapped to both com-
puters; and also information about the control surface position from triple redundant posi-

tion sensors for the rudder (RPS1, RPS2 and RPS3), left aileron (LAPS1, LAPS2 and LAPS3),

- 105 -

Chapter 5 Lateral-Directional Flight Control System Case-Study

Chapter 5 Lateral-Directional Flight Control System Case-Study

0.2
0.

0.1
0.

0.0.

-0.0

-0.1

-0.

-0.2

5 -ol cmm -d

5-

2
5

0-
5 - Sideslip

-Roll rate p

5 - Yaw rate r

Roll angle$
2- Yaw commnand 8
5- -- Roll commrand$

0 5 10 15 20
Time [s]

Figure 5.1: Reference aircraft response to a 0.2rad, O.1Hz square wave in the roll command #c.
Sideslip response 3, roll rate response Pb, yaw rate response rb, and roll angle response, for the
system in its nominal configuration.

and right aileron (RAPS1, RAPS2 and RAPS3) also cross strapped to both computers. Both

PFCs have a voting algorithm implemented to compute the actual aircraft attitude from the

triple redundant IMUs measurements, and voting algorithms for each set of triple LAPSs,

RAPSs, and RPSs measurements. Both PFCs have also implemented control laws for com-

puting the appropriate commands for the control surface actuation subsystems based on

the IMUs measurements and the pilot inputs through the stick and the pedals. Each con-

trol surface is actuated by two redundant actuation subsystems, LAAS 1, and LAAS 2 for

the left aileron; RAAS1 , and RAAS2 for the right aileron; and RAS,, and RAS2 for the rud-

der. The outputs of each pair of actuation subsystems are mechanically combined to pro-

duce the appropriate command for the corresponding control surface. Each element of the

control-surface-actuation-subsystem pair is commanded independently from each PFC.

Therefore, there are three actuation subsystems per PFC, commanding both left and right

ailerons, and the rudder. Each actuation subsystem is composed of a current-controlled

electric motor. When any of the above mentioned hardware components fails, it remains

in the control loop, and the additional redundant units are supposed to compensate for the

failure.

To complete the system behavioral model, a linear lateral-directional aircraft dynamics

model [55], [56] interacting with the avionics architecture model described above is in-

cluded. The state variables of this model are the sideslip #, the body axis roll rate pb, the

body axis yaw rate rb, and the body axis roll angle 4. The control surface commands are

both left and right aileron angles 61 and r,, and the rudder angle 6r. The complete state-

space representation of the aircraft lateral-directional dynamics is shown in Appendix C.

-106 -

Chapter 5 Lateral-Directional Flight Control System Case-Study

Primary Flight
Computer PFC,

Stick

Pedals

I L
Uomputer FrrC 2

Cross strapping point

Mechanical combiner

Left Aileron Actuation
Subsystem LAAS,

Rigt Air Atua"in
Subsyte RAAS,

Legt Aileron Actuation
Subsystem RA AS2

Rigt Aileron Actuation

Subsystem RA AS,

Left Aileron Position Sensors
LAPS,, LAPS2, LAPS 3 H

Right Aileron Position Sensors
RAPS,, RAPS2, RAPS 3

Inertial Measurement Units

'MUN'U-', 'MU3

Primary Flight

-0

~J1

'.4

~'1

'.4

1±

Lateral-Directional Flight Control System Case-Study

The component behavioral models for each hardware and software component, i.e., pri-

mary flight computers (PFC), voting algorithms, control laws, inertial measurements units

(IMU), rudder position sensors (RPS), left and right aileron position sensors (LAPS and

RAPS), rudder actuation subsystems (RAS), left and right aileron actuation subsystems

(LAAS and RAAS) rudder (R), left aileron (LA), and right aileron (RA) are described in

Appendix C.

Table 5.1: Component failure model parameters.

Component Failure modes Description U1 A(/h)
PFC 1, PFC2 Omission Output set to zero 1 2- 10-

Random Random output between -5 and 5 2 10-'
Stuck Output stuck at last correct value 3 10-7
Delayed Output delayed 0.2 s 4 10-7

LAAS1, LAAS 2, RAAS 1 Omission Output set to zero 1 10-6
RAAS2, RAS1, RAS2 Stuck Output stuck at last correct value 2 106

R, LA, RA, Omission Output set to zero 1 10-8
Trailing Output commanded by the aircraft 2 10-1

dynamics

IMU 1 , IMU 2, IMU3 Omission Output set to zero 1 4 -10-
Gain change Output scaled by a factor of 1.5 2 3. 10-7
Biased Output biased by a factor of 0.3 3 3- 10-7

LAPS1, LAPS2, LAPS3, Omission Output set to zero 1 4. 10-7
RAPS1, RAPS2, RAPS3, Gain change Output scaled by a factor of 1.5 2 3. 10-7
RPS1, RPS2, RPS3 Biased Output biased by a factor of 0.3 3 3. 10-7

Table 5.1 collects information corresponding to the failure models of the different hard-

ware components. The possible failure modes of each component are listed in column 2,

while column 3 is an explanation of the effect of each failure mode on the component be-

havior. U1 in column 4 is the variable that assigns the corresponding failure mode to the

component behavioral model equations (see Appendix C). The last column of the table

collects the failure rates A associated with each failure mode, which are necessary to build

the state-transition matrix associated with the Markov reliability model.

5.4.1 Performance and Reliability Evaluation

The system evaluation was carried under specific conditions. The aircraft is considered to

be in a cruising phase with forward velocity V = 178 m/s, pitch angle ao = 0.216 rad and
a cruising altitude of 10, 668 m. Under these conditions, the aircraft time constants dictate

a configuration evaluation time t, = 20 s.

-108 -

Chapter 5

Lateral-Directional Flight Control System Case-Study

Table 5.2: Dual channel architecture: single points of failure and unreliability for different levels
of truncation and an evaluation time of 500 h.

Truncation Unreliability Unreliability Single points # of system
level lower bound upper bound of failure configurations
2 5.12- 10-4 5.82. 10-4 11 64
3 5.20. 10-4 5.20. 10-4 11 3088

Table 5.2 shows he number of single points of failure and the probability of system failure

(unreliability) at the end of the maintenance period for different levels of truncation. This

design does not meet the single fault-tolerance requirement as there are 11 single points

of failure. Truncating after three component failure events yields a system unreliability of

5.20. 104, which is slightly larger than the design requirement (Q < 5 - 10-4).

There is a trade-off between achieving a higher accuracy in estimating reliability and com-

putational time for performing the evaluation. By truncating the evaluation at the second

level, only 64 system configurations are evaluated, and the evaluation takes less than 4

minutes. If the truncation is done at the third level, 3088 possible configurations are ana-

lyzed and the evaluation takes 2 hours and 46 minutes. The computation was carried out

on a machine with a 2.1 GHz Pentium@ M processor, and 1.5Gb of RAM.

For clarity, in the remaining results analysis, only the response of one performance metric

- the aircraft roll angle # - will be analyzed. For several single failures, the aircraft roll

angle response # will be plotted together with the reference aircraft model response 0r, for

a 0.2rad, 0.1Hz square wave roll command #.

Single aileron failures

Figure 5.3(a) shows the roll angle aircraft response 0, and reference model response #r,

for a single failure in the left aileron, in which it fails by getting stuck at the position it

was in when the failure occurred. Although the system performance is degraded, the

performance metrics (i.e., the aircraft state variables) remain within their requirements.

Fig. 5.3(b) shows the aircraft response for another failure of the left aileron. The failure

mode is such that the aileron is now commanded by the aircraft dynamics, i.e., the aileron

trails. In this case, the failure is catastrophic. It can be seen that 4s after the failure occurs,

rapidly increases. This means that the aircraft is rolling without any control.

109 -

Chapter 5

Chapter 5 Lateral-Directional Flight Control System Case-Study

- Roll command 4) -- Roll command$
0.25 - Reference model response 4) 0.25 Reference model response$

Aircraft response Aircraft response
0.2 - 0.2

0.15\ 0.15
1e'

0.1 .

0.05 0.05-

-0.05- -0.05

-0.!-
0 5 10 15 20 0

Time[s] Time[s]

(a) Stuck failure mode. (b) Trailing failure mode.

Figure 5.3: Dual channel architecture performance in response to a 0.2 rad, 0.1 Hz square wave in
roll command 4. Aircraft roll angle response 0 compared to reference aircraft model response 0,.,
for different single failure modes in the left (or right) aileron, and a failure injection time tf = 4 s.

In these cases, there are not many things that can be done to improve the system per-

formance (in the stuck-failure-mode), or to keep the aircraft stable (in the trailing-failure-

mode), since the aileron is non-redundant, and when it fails, it affects the aircraft aero-

dynamics. However, as reported in [57], NASA developed a system, called propulsion

controlled aircraft (PCA), to compensate for failures in the control surface by reconfigur-

ing the engines thrust control system, enabling the use of differential thrust to maneuver

the aircraft. This could be an example of how to achieve fault-tolerance in a system in

which is not possible to use redundancy.

Single aileron actuation subsystem failures

For any of the left aileron actuation subsystems, Fig. 5.4 displays the aircraft behavior for a

failure-by-omission, Fig. 5.4(b), and a failure-by-stuck, Fig. 5.4(a), i.e, the actuation subsys-

tem acts as a load of constant torque for the remaining healthy actuation subsystem. In this

condition, the roll angle response # does not perfectly match the reference model response

o,., thus a degraded performance behavior results. Nevertheless, the system is stable and

the performance metrics lie within the requirements. Therefore this configuration is de-

clared as non-failed. In this case, having pure redundancy is enough to compensate for

any failure in the left (or right) aileron actuation subsystems.

- 110 -

Chapter 5

0.2

0

0.1

0.

0.0

Lateral-Directional Flight Control System Case-Study

0.2

0

0.1

0

0.

0 5 10 15 20 0 5 10 15 20
Time[s] Time[s]

(a) Output omission failure mode. (b) Stuck failure mode.

Figure 5.4: Dual channel architecture performance in response to a 0.2 rad, 0.1 Hz square wave
in roll command 0,. Aircraft roll angle response 0 compared to reference aircraft model response
0., for different single failure modes in one of the left (or right) aileron actuation subsystems, and
a failure injection time tf = 4 s.

However, there are ways to improve the performance of the aircraft when failures in the

left (or right) aileron actuation subsystems occur. An example is to introduce some sort of

FDIR mechanism to detect and isolate (some, or all) failures within the actuation subsys-

tem, and if necessary, reconfigure the control laws in the remaining actuation subsystem

to account for those failures.

Single primary flight computer failures

Figure 5.5 shows the aircraft behavior for different failure modes in any of the primary

flight computers. It can be seen that despite the presence of another primary flight com-

puter in command of half of the system, any failure will cause the aircraft to become un-

stable. For a failure-by-output-omission, Fig. 5.5(a), one of the channels in the forward

loop (Primary flight computer, left and right aileron actuation subsystems, and rudder ac-

tuation subsystems) is effectively removed, i.e., the computer stops sending any command

to the actuation subsystems, therefore these stop commanding the control surfaces. This

result in an alteration of the closed-loop dynamics that makes the system become unstable.

In the case of a linear system, the effect of removing one channel of the control-loop would

result in the relocation of the system poles, some of them moving to the right-half-plane,

which would make the system unstable. A similar explanation can be given for the failure-

by-stuck-output, 5.5(b). In this case, the computer output is set to a constant. Therefore the

-111 -

- Roll command

Reference model response $r

Aircraft response $
.2

5

5 -
1OU

5- - Roll command $

-Reference model response

-- Aircraft response $
.2

5 -

5 0{

Chapter 5 Lateral-Directional Flight Control System Case-Study

0.3 - 0.3

0.2 0.2 4

0.1 0.1

0 0)

0.1 -0.1 -

-0.2- -- Roll command $ -0.2 -- Roll command$

-Reference model response $ Reference model response $r

-0.3 - --- Aircraft response -0.3 Aircraft response 0

0 5 10 15 20 0 5 10 15 20
Time[s] Time[s]

(a) Output omission failure mode. (b) Random output between -5 and +5 failure
mode

-0.2 - Roll commandO $- -. 2 -RollcommandO $

Reference model response $ - Reference model response $
0.3 - Aircraft respme 0.3- Aircraftresponse $

0 5 10 15 20 0 5 10 .2 20

Time[sl Trme[s]

(c) Output stuck failure mode. (d) Output delayed failure mode.

Figure 5.5: Dual channel architecture performance m response to a 0.2 rad, 01 Hz square wave

in roll command #. Aircraft roll angle response 4 compared to reference aircraft model response

q,, for different single failure modes in one of the primary flight computers, and a failure injection

time tf = 4 s.

control surface actuation subsystems commanded by the faulty computer set their outputs

to a constant value, acting as a load for the actuation subsystems in the other channel. This

causes the same effect as before: an alteration of the closed-loop dynamics that makes the

system become unstable. The effect of the other two failure modes is even more dramatic

as can be seen in Fig. 5.5(c) for the failure-by-delayed-output, and in Fig. 5.5(d) for the

failure-by-random-output.

The most important conclusion extracted from the effect of primary fight computer fail-

ures on the aircraft response is that using redundancy alone is not sufficient to achieve

fault-tolerance; unlike the case of failures in the control surface actuation subsystems,

- 112 -

Lateral-Directional Flight Control System Case-Study

where redundancy alone was sufficient. The results analyses also point to possible solu-

tions to overcome the problems shown. First, failure detection and isolation is not enough;

reconfiguration of the control laws in the second computer is also necessary. The reason

for this can be understood if the failure-by-output-omission is analyzed. The effect of this

failure on the system behavior is equivalent to the effect of detecting any failure in the pri-

mary flight computer and isolating the failure by shutting the computer down. Looking at

Fig. 5.5(a) is enough to understand that this strategy will not work. Thus, it is necessary

to do something else: to reconfigure the control laws in the remaining computer after the

failed computer is shut down.

0.3- Roll command 0 -- Roll command$
Reference model response Reference model response

-. 2Aircraft response $ -- Aircraft response$
0.20.

- 0.1 - 01

.0

IV

-0.2 -0.2

0 5 10 15 20 0 5 10 15 20
Time[s] Time[s]

(a) Stuck failure mode. (b) Trailing failure mode.

Figure 5.6: Dual channel architecture performance in response to a 0.2 rad, 0.1 Hz square wave in
roll command 0,. Aircraft roll angle response $ compared to reference aircraft model response #r,
for different single failure modes in the rudder, and a failure injection time tf = 4 s.

Single rudder failures

Figure 5.6 shows the aircraft response for failures in the rudder. Similar to the aircraft

behavior displayed for failures in the left (or right) ailerons, Fig. 5.6(a) corresponds to a

failure-by-stuck of the rudder, which degrades the aircraft performance, but the perfor-

mance metrics are still within requirements. Figure 5.6(b) corresponds to a trailing failure

of the rudder, which results in a system failure.

As mentioned for failures in left and right ailerons, this is not a problem that can be solved

using redundancy, since there is only one rudder in the aircraft. Perhaps this can be solved

using the propulsion controlled aircraft approach already mentioned, and reported in [57].

-113 -

Chapter 5

Lateral-Directional Flight Control System Case-Study

t5 - -- Roll command

-- Reference model response $r

Aircraft response $)
.2

5

S\

0
0 5 10 15 2

Time[s]

(a) Output omission failure mode.

0.2

0

0.1

0

0.0

0

5.-- Roll command $)

Reference model response $r
- Aircraft response $

.2

5-

5 -

0
0 5 10 15 2

Time[s]

(b) Stuck failure mode.

Figure 5.7: Dual channel architecture performance in response to a 0.2 rad, 0.1 Hz square wave in
roll command 0,. Aircraft roll angle response # compared to reference aircraft model response 0,.,
for different single failure modes in one of the rudder actuation subsystems, and a failure injection
time tf = 4 s.

Single rudder actuation subsystem failures

Figure 5.7 shows the effect of failures in any of the rudder actuation subsystems. As shown

in Fig. 5.4, any failures in the actuation subsystems for left and right ailerons affected the

system performance, but did not cause the aircraft to become unstable. This is the same

effect that failures in one of the rudder actuation subsystems cause in the system: degraded

performance, but not instability.

As mentioned for the case of failures in the left or right ailerons, the aircraft performance

could be improved by introducing failure detection, isolation, and reconfiguration (FDIR)

mechanisms to - partially or completely - detect and isolate failures within the rudder

actuation subsystem; and if necessary, reconfigure the control laws in the remaining rudder

actuation subsystem to account for those failures.

-114 -

Chapter 5

0.2

0

i 0.1

0

0.0

0

5.5 Enhanced Dual Channel Architecture: Introducing Failure Self-

Detection in the PFCs

In the dual channel architecture presented in Section 5.4, every component, except the

control surfaces, is duplicated or triplicated in order to achieve fault-tolerance. The de-

tailed analysis of this architecture shows that redundancy was not enough to achieve fault-

tolerance in some cases. In this section, and based on the results analysis of the dual chan-

nel architecture, an enhanced dual channel architecture is proposed.

The main conclusions extracted from the analysis of single failures in the dual channel

architecture were:

1. Some failures in the control surface cause the system to become unstable which cannot

be overcome using conventional fault-tolerant techniques.

2. Failures in the control surface actuation subsystem cause degraded performance but do

not cause the aircraft to become unstable.

3. Despite the presence of two primary flight computers, any single failure in a computer

will cause the aircraft to become unstable.

As mentioned before, it may be possible to solve each of the problems listed above. How-

ever, it is not the purpose of this chapter to design sophisticated FDIR mechanisms, but

only to illustrate how the methodology can be used to uncover weak design points, how

these can be improved, and how the effectiveness of different FDIR strategies can be tested.

Therefore, only the issues related to the third item listed above, i.e., how to compensate

failures in any of the PFCs, will be treated.

Focusing on the PFC failures, from the results analysis of the dual channel architecture it

was concluded that failure detection and isolation is not sufficient, but reconfiguration of

the control laws in the remaining computer is also necessary. As explained before, the ef-

fect of a failure-by-output-omission in the computer is equivalent to the effect of detecting

any failure in the primary flight computer and isolating the failure by shutting the com-

puter down. Figure 5.5(a) shows that this strategy would not work. It is also necessary to

reconfigure the control laws in the remaining computer after the failed computer is shut

down.

-115-

Chapter .5 Lateral-Directional Flight Control System Case-Study

The proposed enhanced dual channel architecture (EDCa) is very similar to the dual chan-

nel architecture presented in Fig. 5.2 in the sense that it has the same components con-

nected in a very similar way. The three main differences are: within each PFC, there is a

failure self-detection circuit (PFC, -SD and PFC2-SD) that will be the core of the FDIR mech-

anism described later. Each PFC exchanges information of its status (failed or operational)

with the other PFC. The control laws within the processors of each PFC are reconfigurable

depending on the status of the other PFC. These additional components and features allow

the implementation of an FDIR mechanism with the following features:

* Detection. The self-detection circuit PFC-SD implemented in each PFC checks the range

of the output signals of the PFC processor, and if they are within a certain range, then

they are considered valid, otherwise the self-detection circuit reports a failure. Addi-

tionally, the rate of change of the outputted signals is checked, and if the self-detection

circuit detects no rate of change, then a failure is reported.

* Isolation. Once the self-detection circuit detects a failure, the main PFC processor is

shut down.

" Reconfiguration. Once the self-detection circuit detects a failure, a reconfiguration sig-

nal is sent to the remaining PFC to double the gain of the control surface actuation sub-

systems controllers. This reconfiguration strategy should compensate for the fact that

only the control surface actuation subsystems commanded by the remaining computer

are operational.

The proposed FDIR candidate should handle failure-by-output-omission, failure-by-stuck-

output, and failure-by-random-output. It is not clear whether failure-by-delayed-output

will be handled effectively by this FDIR. This will be explored further in the next section.

Table 5.3 collects the information corresponding to the failure models of the PFC-SDs in-

troduced in the enhanced dual channel architecture - the self-detection circuits for each

PFC. The failure models parameters for the rest of the components are the same as for the

pure redundancy architecture, Table 5.1.

5.5.1 Performance and Reliability Evaluation

The conditions under which the enhanced dual channel architecture was evaluated are

the same as the ones used to evaluate the pure redundancy architecture, i.e., the aircraft

- 116 -

Chapter 5 Lateral-Directional Flight Control System Case-Study

Lateral-Directional Flight Control System Case-Study

Table 5.3: Enhanced dual channel architecture: primary flight computers' self-detection circuits
failure model parameters.

Component Failure modes Description Uf A(/h)
PFC 1-SD, PFC2-SD Omission Output set to zero regardless of input 1 10-8

Commission Output set to one regardless of input 2 10-1

cruising at an altitude of 10,668 m with forward velocity V = 178 m/s, pitch angle ao =

0.216 rad, same control input, and the same configuration evaluation time (t, = 20 s) as for

the evaluation of the dual channel architecture.

Table 5.4 shows the number of single points of failure and the probability of system fail-

ure (unreliability) at the end of the maintenance period for different levels of truncation.

Truncating at the third level of failure yields a system unreliability of 1.17 -10-4, which

meets the unreliability design requirement (Q < 5 -10-4). This design still does not meet

the single fault-tolerance requirement as there are still 5 single points of failure.

Table 5.4: Enhanced dual channel architecture: single points of failure and unreliability for differ-
ent levels of truncation and an evaluation time of 500h.

Truncation Unreliability Unreliability Single points # of system
level lower bound upper bound of failure configurations
2 1.14. 10-4 1.87- 10-4 5 68
3 1.17. 10-4 1.17. 10-4 5 3924

Single primary flight computer failures

With the FDIR mechanism, it can be seen that except for the failure-by-delayed-output, Fig.

5.8(d), which causes the system to fail; the other PFCs failures are detected and isolated,

and the aircraft stays stable after the control laws in the remaining PFC are reconfigured,

Fig. 5.8(a) - Fig. 5.8(c). Additionally, the aircraft behavior is almost unaffected for a

failure-by-output-omission, Fig. 5.8(a); and for a failure-by-stuck-output, Fig. 5.8(c). For a

failure-by-random-output, there is a small transient after the failure occurs, as can be seen

in Fig. 5.8(b), but the aircraft recovers in less than 2s.

- 117 -

Chapter 5

Lateral-Directional Flight Control System Case-Study

) 5 10 15
Timets]

(a) Output omission failure mode.

20

- Roll command$5
Reference model response$ -

Aircraft response$

5 10 15
Time[s]

(c) Output stuck failure mode.

0.

0

I

I
4.-

0.

V

0.

-0.

-0

Time[s]

(b) Random output between -5 and +5 failure
mode

0.2

0.15

0.1

0.05

0

-0.05

-0.1

20

- Roll command

Reference model response $r
Aircraft response$

0 5 10 15
Timets]

(d) Output delayed failure mode.

20

Figure 5.8: Enhanced dual channel architecture performance in response to a 0.2 rad, 0.1 Hz square
wave in roll command #. Aircraft roll angle response # compared to reference aircraft model
response 0,, for different single failure modes in one of the primary flight computers, and a failure
injection time tf = 4 s.

Primary flight computer failures after failures in the PFC-SD

Although not shown here, single failures in a PFC-SD do not affect the aircraft performance

at all. In the case of a single failure-by commission of a PFC-SD, the computer which has
the PFC-SD will be shut down despite the fact that the computer did not fail itself, and

the control laws in the remaining computer will be reconfigured. Although these failures

will not cause the system to fail, if not announced, they can create a dangerous situation

in which the system is believed to have both computers operational. This last problem
becomes obvious when analyzing the results shown in Fig. 5.9. A first failure-by-omission
in a PFC-SD circuit followed by a failure in its own PFC will cause the system to fail.

-118 -

Chapter 5

25

.2

15-

05-

0--

05- -
- Roll command $C

. - --- Reference model response$
Aircraft response$

0 5 10 15 2

- Roll command

Reference model response $
--- Aircraft response$

0.2

0.15

0.1

0.05

0

-0.05

-0.1

0.25

0.2

0.15

0.1

0.05

10

-0.05

-0.1

mzi

u

0

Chapter 5 Lateral-Directional Flight Control System Case-Study

0.3- 0.3-

0.2 0.2-

A 0-0.1 -0.1

-0.2 - Roll command -0.
2

- Roll command$

-Reference model response $ Reference model response
. --- Aircraft response -0.3 -- Aircraft response $

0 5 10 15 20 0 5 10 15 20
Time[s] Time[s]

(a) PFC-self check circuit omission failure (b) PFC-self check circuit omission failure
mode followed by an output omission failure mode followed by a random output between
mode. -5 and +5 failure mode

0.3- 0.3 -

0.2 0.2

;.! / \ . 0.1 /

0 \ 4

-0.2 - Roll com..and $ 02 - Rollcommand I
-- Reference model response $-Reference model response$

-0.3- Aircraft response$ -- Aircraft res nse $

0 5 10 15 20 0 5 10 15 20
Time[s] Time[s]

(c) PFC-self check circuit omission failure (d) PFC-self check circuit omission failure
mode followed by an output stuck failure mode followed by an output delayed failure
mode. mode.

Figure 5.9: Enhanced dual channel architecture performance. Aircraft roll angle response q com-
pared to reference aircraft model response 0,., for different failure sequences initiated by an omis-
sion failure mode in the PFC-SD circuit, and followed by different failure modes in one of the PFCs.

5.6 Dual-Dual Channel Architecture: Introducing Lock-Step Pro-

cessors

The FDIR mechanism introduced in the previous section improves the system overall per-

formance in the sense that unreliability is smaller and several single failures have been

removed. However, it is not perfect since it is not capable of detecting failure-by-delayed

output in the PFCs. In this section, an improved FDIR mechanism will be introduced,

which will handle all the failures within the PFCs.

- 119 -

Lateral-Directional Flight Control System Case-Study

The proposed further improved architecture, called dual-dual channel architecture (DDCa)

is very similar to the EDCa architecture. The main difference is that now each PFC will con-

tain a pair of lock-step processors receiving the same inputs and doing exactly the same

computations. Additionally, a dual-comparator circuit PFC-DC will compare their out-

puts. As in the EDCa design, each PFC exchanges status information (failed or operational)

with the other PFC. The control laws within the processors of each PFC are reconfigurable

depending on the status of the other PFC. With these additional elements the FDIR has the

following features:

9 Detection. The dual-comparator circuit within each PFC will check whether the outputs

of the processor pair agree or not. If the outputs disagree, the dual-comparator reports

a failure.

* Isolation. Once the dual-comparator circuit detects a failure, both lock-step processors

within the failed computer are shut down.

e Reconfiguration. Once the dual-comparator circuit detects a failure, a reconfiguration

signal is sent to the remaining PFC to double the gain of the control surface controllers

on each lock-step processor.

The use of lock-step processors requires the introduction of an additional processor in each

PFC, thus increasing its complexity and cost. However, the use of lock-step processors

should result in a perfect detection, isolation, and reconfiguration of any failure within a

PFC, thus removing all the PFC-related single points of system failure.

Table 5.5: Dual-dual channel architecture: primary flight computers' dual-comparator circuits
failure model parameters.

Component Failure modes Description Uf A(/h)
PFC1-DC, PFC2 -DC Omission Output set to zero regardless the input 1 108

Commission Output set to one regardless the input 2 10--

Table 5.5 displays the failure model information for the dual-comparator circuits within

each PFC. The failure model parameters for the rest of the components is the same as for

the dual channel architecture, Table 5.1.

- 120 -

Chapter 5

Lateral-Directional Flight Control System Case-Study

5.6.1 Performance and Reliability Evaluation

The dual-dual channel architecture was evaluated under the same conditions as the dual

channel architecture and the enhanced dual channel architecture, see Section 5.4.1 for the

details. Table 5.6 shows shows the number of single points of failure and the system un-
reliability estimates. Truncating at the third level of failure yields a system unreliability of

1.51 10-5 and a truncation error of 2.76 - 10-7. This is an improvement of one order of
magnitude with respect to both the dual architecture and the enhanced dual architecture.

Table 5.6: Dual-dual channel architecture: single points of failure and unreliability for different
levels of truncation and an evaluation time of 500h.

Truncation Unreliability Unreliability Single points # of system
level lower bound upper bound of failure configurations
2 1.49. 10-5 9.47. 10-5 3 76
3 1.51 . 10-5 1.51 . 10-5 3 4640

This design still does not meet the single fault tolerance requirement. However, as will be
shown, the single failures are exclusively control surface related. Therefore, this design is
a potential candidate to fulfill the single fault tolerance requirement if appropriate control

strategies are implemented without making any other architectural modifications; e.g.,
adding more redundancy.

Figure 5.10 completes the analysis of the dual-dual architecture. It shows the aircraft be-
havior for all possible single failures of one of the PFC processors. As can be seen, the
aircraft performance is not altered by any of these failures, thus the FDIR provided by the
lock-step processors scheme is satisfactory. Although not shown here, single failures in the
PFC-DC cause problems similar to those mentioned in the analysis of the enhanced dual
channel architecture for single failures in any PFC-SD. Thus, for reasons similar to those
given in section 5.5.1, a failure-by-omission or by-commission in a PFC-DC will not affect
the system performance.

Table 5.7: Results comparison.

Architecture Unreliability PFC-originated single Control-surface-originated
points offailure single points offailure

DCa 5.20. 10-4 8 3
EDCa 1.17. 10- 4 2 3
DDCa 1.51. 10- 5 0 3

-121 -

Chapter 5

Lateral-Directional Flight Control System Case-Study

Tim[s]

Output omission failure mode.

0.2

0

0.1

0

0.0

(b) Random output
mode

Time[s]

between

D

-5 and +5 failure

5 -- Roll command OC
Reference model response 0,

-- Aircraft response $
.2

5 - -

.1-

(N
0 5 10 15 2

Time[m d

(c) Output stuck failure mode.

0.2

0

0.1

0

0.C

5- Roll command $
.Reference model response $I

- Aircraft response $
.2

5/

.1 -
II f

15

01
0 5 10 15 21

Time[si

(d) Output delayed failure mode.

Figure 5.10: Dual-dual channel architecture performance in response to a 0.2 rad, 0.1 Hz square
wave in roll command #,. Aircraft roll angle response # compared to reference aircraft model
response 0,, for different single failure modes in one of the processors of a primary flight computer,
and a failure injection time tf = 4 s.

5.7 Architecture Comparisons

Table 5.7 summarizes the main analysis results for the three architectural solutions. The

unreliability of both the DCa and the EDCa designs is very similar; however, the EDCa

design removed 75% of the single points of system failure due to PFC failures with respect

to the DCa design. The introduction of the lock-step processors in the DDCa design made

a huge impact on the results. Its unreliability is one order of magnitude smaller than in

the other two designs, and all the single points of system failure due to PFC failures were

effectively removed.

-122 -

Chapter 5

0.2

0

0.1

0

0.

(a)

5 - Roll command

-Reference model response $1
Aircraft response $

.2 A

5 - -

/
t V

0 /
S 5 10 15 21

5 - - Roll command$

.Reference
model response $,

Aircraft response 0
.2

L/

5 / - 1'

.1!

(

0 5 10 15 2

0.2

0

0.1

0.

0.C

0

However, it is important to note that the DCa design is the less complex one in terms of

operation, i.e., there is no need for detecting, isolating or reconfiguring the system, and

in the number of components. These two issues make this architecture less expensive to

produce and to maintain. On the other hand, the DDCa design is much more complex than

the other two: more components, and more complex operation, which makes this design

more expensive to produce and to maintain. However, the impact on reliability and fault-

tolerance is very important. Therefore, it is the work of the designer to make trade-offs

between complexity and cost, and among performance, reliability, and fault-tolerance.

5.8 Conclusions

This chapter illustrated the power of the methodology presented in Chapter 3 (and its

supporting tool InPRESTo) for guiding the design process of a fault-tolerant system by

uncovering weak design points and pointing out possible ways to improve the system de-

sign. It also showed how important FDIR is to achieve fault-tolerance, and how InPRESTo

can be used to test the effectiveness of different FDIR strategies. Finally, it also showed

how to compare different architectural solutions from different points of view: reliability,

performance, and fault-tolerance.

The analysis shown in this chapter opens up further research questions. The design im-

provement shown here was done manually, analyzing the results for each iteration and

using expert judgment to guide the changes in the design. Guiding the design in a struc-

tured and automatic way is a challenging problem worthy of exploring, i.e., how to extend

the methodology to automatically determine where the problems that most impact a de-

sign are, and how they could be discussed. These issues are further addressed in Chapter

7.

-123 -

Chapter 5 Lateral-Directional Flight Control System Case-Study

Lateral-Directional Flight Control System Case-Study

FDIR:
IMUl, IMU 2, IMU3 :
LA:
LAAS 1, LAAS 2:
LAPS 1, LAPS2 , LAPS 3 :
PCA:
PFC 1, PFC 2:
PFC1-SD, PFC2-SD:
PFC1 -DC, PFC2-DC:

Pbr
R:
RAS1, RAS2 :
RPS1, RPS2 , RAPS3 :
RA:
RAAS1, RAAS2 :
RAPS1, RAPS2, RAPS3 :
rb:

rbr :
t :
tc :
tf

T:

Uf:
V:

Z1 :

Z 2 :

Z3:
Z4:

Sr:
A :

Liz1 :
Qz 2

Qz 4 :
42:

4 :

Failure detection, isolation, and recovery
Inertial measurement units
Left aileron
Left aileron actuation subsystems
Left aileron position sensors
Propulsion controllred aircraft
Primary flight computers
Primary flight computers failure self-detection circuits
Primary flight computers dual-comparator circuits
Roll rate
Reference model roll rate
Rudder
Rudder actuation subsystems
Rudder position sensors
Right aileron
Right aileron actuation subsystems
Right aileron position sensors
Yaw rate
Reference model yaw rate
Time
Configuration evaluation time
Failure injection time
System global evaluation time
Behavioral modes random variable
Forward velocity
Sideslip angle performance metric
Roll rate performance metric
Yaw rate performance metric
Roll angle performance metric
Pitch angle
Sideslip angle
Reference model sideslip angle
Left and right aileron angles
Yaw command
Rudder angle
Failure rate
Set of requirements for performance metric Z1

Set of requirements for performance metric Z1
Set of requirements for performance metric Z1

Set of requirements for performance metric Z,
Roll angle
Roll command
Reference model roll angle

- 124 -

Chapter 5

Notation Used in this Chapter

Chapter 6

Steer-by-Wire/Brake-Actuated-Steering

System Case-Study

In this chapter, two conceptually very different designs to achieve fault-tolerance in a steer-

by-wire (SbW) system are presented. The first one -referred as SbW design, is based

on the replication of components and the introduction of failure detection, isolation, and

reconfiguration mechanisms. In the second design -referred as SbW/BAS design, a dis-

similar backup mechanism, called brake-actuated steering (BAS), is used to achieve fault-

tolerance rather than replicating each component within the system. This chapter comple-

ments Chapter 5 by showing how the performance and reliability evaluation SIMULINK

@ toolbox -InPRESTo- can be used to compare very different architectural approaches to

achieve fault-tolerance.

6.1 Introduction

Safety-critical systems in a car, for example, hydraulic brakes and power steering, require

a secondary or backup activation mechanism to prevent catastrophic failure. In a conven-

tional power assisted steering system, the mechanical connection between the driver and

the steering rack serves as the secondary steering mechanism [44]. In a SbW system the

secondary steering mechanism cannot rely on a mechanical link (e.g., the steering column

connection to the pinion) between the steering wheel and the steering rack since the goal

of SbW is to eliminate such a mechanical connection. Lacking this connection, SbW design

efforts have focused on developing fault-tolerant systems based on redundancy, i.e., the

duplication of components and modules at all levels [1], [44], [45], [46]. This solution is

widely applied in aircraft, but it adds a significant amount of complexity and cost. There-

fore, it is important to explore alternatives to classical redundancy for achieving system

integrity.

-125 -

Steer-by-Wire/Brake-Actuated-Steering System Case-Study

In this chapter, a case-study of a steer-by-wire system is presented. Two different ap-

proaches to achieve fault tolerance are presented, analyzed, and compared. The first ap-

proach is based on the use of redundancy and failure detection, isolation, and reconfig-

uration (FDIR) mechanisms, as in the flight control system presented in Chapter 5. The

second approach is basically a single-string system for the computing and actuation ele-

ments dedicated to traditional steering. The fault-tolerance is achieved by using brake-

actuated-steering [43] as a backup mechanism to overcome component failures in the SbW

that otherwise would have catastrophic consequences. Brake-actuated-steering utilizes

the already-existing selective wheel braking capability provided by the antilock-braking-

system (ABS), and electronic stability programs (ESP) to actuate the steering mechanism.

As mentioned in Chapter 5, similar approaches have been proposed by NASA, in order

to develop the technology for future aircraft designs for emergency flight control, using

engine thrust to augment or replace the flight control system [57]. Both approaches will

be analyzed, and the advantages and disadvantages of using each one will be highlighted.

Section 6.2 presents a detailed analysis of the first solution in which classical redundancy

and FDIR are used to achieve fault tolerance. The steer-by-wire system with the dissimilar

backup mechanism, SbW/BAS, is introduced and analyze in Section 6.3. The comparison

of both solutions is presented in Section 6.4. Concluding remarks are presented in 6.5.

6.2 Fault-Tolerant Steer-by-Wire System

The proposed SbW architecture, Fig. 6.1, is based on the fault-tolerant architecture in-

troduced in Section 5.6 for the lateral-directional flight control system, which proved to

be an appropriate solution to achieve a high level of fault-tolerance. The architecture is

composed of two redundant steer-by-wire computers (SbWC1 and SbWC 2) that receive

information about the vehicle road wheel angle 6 from triple redundant road wheel angle

sensors (RWAS1, RWAS 2 and RWAS3) cross strapped to both computers; and also receive

information about the driver steering wheel command 6, from triple redundant steering

wheel angle sensors (SWAS1, SWAS 2 and SWAS 3), also cross strapped to both comput-

ers. Each SbWC has a voting algorithm to compute the vehicle road wheel angle from the

redundant RWASs measurements and the driver command from the redundant SWASs

measurements. Both SbWCs have control laws that, based on the RWASs measurements

and the driver command measured by the SWASs, compute the appropriate commands

for two redundant rack actuation subsystems (RaAS1 and RaAS2), which are responsible

for positioning the steering rack (SRa). Each rack actuation subsystem is commanded in-

-126 -

Chapter 6

Steer-by-WirelBrake-Actuated-Steering System Case-Study

Cross strapping point

W Steering Wheel
Angle Sensors

SWAS1, SWAS2'
Steering SWAS 3wheel ____pS, WA 2

Steer
Co
S

Steer
(7o

S

Front wheels

-by-Wire
mputer
bWC, Rack Actuation

Subsystem RaAS,

Steerin
Rack Sa

Rack Actuation

-by-Wire Subsystem RaAS,

mputer
bWC2

Road Wheel Angle Sensors
RWAS, RAWS2, RAWS3

Figure 6.1: SbW design: steer-by-wire system with replicated components and failure detection,
isolation, and reconfiguration mechanisms to achieve fault-tolerance.

dependently by each SbWC (not cross strapped). Each actuation subsystem is composed

of a current-controlled electric motor. When one of the rack actuation subsystems fails, it

remains within the control loop (connected to the SRa), and the other actuation subsystem

must accommodate any impacts the failed one may have on moving the rack.

To have perfect computer failure detection of random failures, each SbWC is internally

redundant. Each SbWC is made up of a pair of lock-step processors receiving the same

inputs and doing exactly the same computations. A dual-comparator circuit within each

SbWC (SbWC1 -DC and SbWC2-DC) compares the outputs from both lock-step processors

in its SbWC. If the outputs disagree, a failure has been detected, and an isolation and

reconfiguration process starts. The isolation is accomplished by the dual comparator cir-

cuit sending a signal to the power management system to shut down the processors in

the faulty SbWC. The reconfiguration starts when the dual-comparator within the faulty

computer sends a signal to the remaining SbWC to reconfigure the control laws that are

implemented in both of its lock-step processors to accommodate the extra loads of the

(now uncommanded) RaAS.

- 127 -

Chapter 6

Steer-by-WirelBrake-Actuated-Steering System Case-Study

The component behavioral models for each component are described in Appendix D. The

component failure model parameters are collected in Table 6.1. Column 2 lists the possible

failure modes for each component, column 3 is an explanation of each behavioral model

mode. U1 in column 4 is the variable that assigns the corresponding failure mode to the

component behavioral model equations (see Appendix D). The failure rate A associated

with each failure mode is collected in the last column of the table.

Table 6.1: Component failure model parameters.

Component Failure modes Description Uf A(/h)
SbWC 1, SbWC 2 Omission Output set to zero 1 2. 10-r

Random Random output between -5 and 5 2 10-7
Stuck Output stuck at last correct value 3 10-7
Delayed Output delayed 0.2 s 4 107

SbWC1 -DC, SbWC2-DC Omission Output set to zero regardless the in- 1 10-8
put

Commission Output set to one regardless the in- 2 10-8
put

RaAS1 , RaAS2 Omission Output set to zero 1 1 0 -6

Stuck Output stuck at last correct value 2 10-6
SRa Stuck Road wheel angle stuck at last cor- 2 10-7

rect position
RWAS1, RWAS2, RWAS3, Omission Output set to zero 1 4. 10-
SWAS 1 , SWAS 2, SWAS 3 Gain change Output scaled by a factor of 1.5 2 3. 10-

Biased Output biased by a factor of 0.3 3 3- 10-7

A linear single-track vehicle dynamics model [58], interacting with the architecture de-

scried above, completes the system behavioral model. The models inputs are the road

wheel angle 6, and the state variables are the sideslip f, and the yaw rate rb. See Appendix

D for a detailed description of the linear single-track vehicle dynamics model.

6.2.1 Performance Metrics Definition and Associated Requirements

The performance metrics chosen are the vehicle state variables: the sideslip 0(t), the yaw

rate rb, and the heading angle ,. Thus

Z1 = (t),

Z2 = rb(t),

Z3 = XF(t).

(6.1)

(6.2)

(6.3)

- 128 -

Chapter 6

Steer-by-WirelBrake-Actuated-Steering System Case-Study

The dynamic behavior of a reference vehicle will be used to define the performance metrics

requirements. This reference vehicle state variables are denoted by the sub index ,, i.e., the

sideslip is denoted by 3,3(t), the yaw rate by rb, (t), and the heading angle by Tr(t). Thus,

the performance metrics requirements are defined as

{zj = {0(t) E JR / 01/(t) - Or(t)IOo r 8}, (6.4)

Qz2= {rb(t) E JR / I rb(t) - rb, (t)I oc rr } (6.5)

£z3 = {I'(t) C JR / I F(t) - Tr (t) oo ! r}, (6.6)

where rfl = 0.25 deg, rrb = 0.6 deg/s, and r = 0.5 deg.

A 10 deg, 0.5 Hz sinusoidal steering wheel angle input 6, will be used as system control

input to evaluate each configuration.

6.2.2 Results Analysis

The system was evaluated for a vehicle speed (of center of gravity) V = 70 km/h. The

vehicle time constants dictate a configuration evaluation time t, = 6 s. A vehicle lifetime

of 15 years and an average of 400 working hours per year was considered for the reliability

evaluation, which gives an evaluation time T = 6000 h.

Table 6.2: SbW design: unreliability for an evaluation time of 6000h.

Truncation Unreliability Unreliability # of system
level lower bound upper bound configurations
3 1.10. 10-3 1.13- 10-3 1716

Table 6.2 shows the probability of system failure (unreliability) at the end of the vehicle life-

time. Truncating after three component failure events yields a system unreliability upper

bound of 1.13 -10- and a lower bound of 1.10 - 10-3

The remaining analysis will display the vehicle behavior for different component compo-

nent failure modes, i.e, the road wheel angle 6 scaled by the steering ratio SR, the vehicle

heading angle response x[(and the vehicle heading angle response X1, of a vehicle with a

conventional mechanical steering system as a reference), for a 10 deg, 0.5 Hz sinusoidal

steering wheel angle input 6m. Figure 6.2 shows the vehicle behavior for the two pos-

sible failure modes of either rack actuation subsystem. In both cases, failure-by-output-

- 129 -

Chapter 6

Steer-by-Wire/Brake-Actuated-Steering System Case-Study

10

10

0 -
Steering wheel angle 8.

0 Scaled road wheel angle SR8

0 1 2 3 4 5 6
Time [I

1.5 , i
o I

0.5-

0
-0.5 -- Conventional vehicle response 4r'

1 - SbW vehicle mpneV
0 1 2 3 4 5 6

Tim Is]

(a) Rack actuation subsystem output failing to
provide commanding torque for the rack.

10
S 0-

-10- Steering wheel angle 8
--- Scaled road wheel angle SR8

1.5
o- -

0.5-

0-
-0.5 - - Conventional vehicle response 4'

-0 - SbW vehicle res se 9

0 1 2 3 4 5 6
Timne [s]

(b) Rack actuation subsystem failing stuck, and
thus providing a constant torque for the rack.

Figure 6.2: SbW design performance in response to a 10 deg, 0.5 Hz sinusoidal steering wheel
input at 70 km/h vehicle speed. Steering wheel angle 6, compared to road wheel angle (scaled
to steering wheel angle SR6) under failure conditions, and vehicle heading angle T, with a me-
chanical steering system compared to the vehicle (with the SbW design) heading angle response IF,
under failure conditions. Both performance comparisons shown for two failure modes of the rack
actuation subsystem, and for a failure injection time tf = 1 s.

omission, Fig. 6.2(a), and failure-by-stuck-output, Fig. 6.2(b), the vehicle performance is

almost unaffected. The difference between the heading angle response T and the head-

ing angle reference response T, is less than 0.1deg in both cases. Although there is no

FDIR mechanism to account for single failures in one of the actuation subsystems, the

fault-tolerance is provided by having a redundant rack actuation subsystem.

The component failure of interest in the analysis, for the reasons explained in the Section

6.3, corresponds to a steering rack failure where it is stuck, Fig. 6.3. In this case, the steering

rack gets stuck at a fixed position and the steering rack actuation subsystem is not able to

position it according to the driver's command. Thus, the vehicle heading angle does not

track the model reference heading angle. This is considered a catastrophic failure because

the driver is not able to control the vehicle direction. However, the same would occur with

a conventional mechanical steering system

Although not displayed here, any failure in any of the lock-step processors within each

computer does not affect the vehicle performance at all. The dual-comparator circuit will

detect every disagreement between processors within the pair, shutting down the pair,

and reconfiguring the control law within the remaining computer to account for this fail-

ure. The same occurs when any of the steering wheel angle sensors, or the road wheel

-130 -

Chapter 6

0 1 2 3 4 5 6
Time [s]

Chapter 6 Steer-by-Wire/Brake-Actuated-Steering System Case-Study

-10-
S0/

- Steering wheel angle
CIO -20 Scaled road wheel an Ie SRS

0 1 2 3 4 5 6
Tim [s]

1.5

0.5

-0.5 Conventional vehicle response 4r
1 -- SbW vehicle roe '

0 1 2 3 4 5 6
Tim [s]

Figure 6.3: SbW design performance in response to a 10 deg, 0.5 Hz sinusoidal steering wheel
input at 70 km/h vehicle speed. Steering wheel angle 6. compared to road wheel angle (scaled
to steering wheel angle SR3) under failure conditions, and vehicle heading angle T,. with a me-
chanical steering system compared to the vehicle (with the SbW design) heading angle response
1Q, under failure conditions. Both performance comparisons shown for the steering rack failing by
getting stuck at a certain position, and for a failure injection time tf = 1 s.

angle sensors fail: the voting algorithms implemented in the computers will disregard the

measurement yielded by the faulty sensor. Failures by omission, or by commission in the

dual-comparator circuit do not affect the vehicle performance. In the case of a failure-by-

commission (a false alarm that shuts down the computer) of the self-detection circuit, the

computer with the faulty dual-comparator circuit will be shut down despite the fact that

it did not fail, and the control laws in the remaining computer will be reconfigured. In the

case of the failure-by-omission, although the system will not fail after this failure occurs, if

not announced, it can create a dangerous situation. This is due to the fact that the system is

believed to have both computers operational, when they are not. Therefore, a first failure-

by-omission in the dual-comparator circuit of an SbWC, followed by a failure in the same

SbWC, will go undetected causing the system to fail.

6.3 Steer-by-Wire/Brake-Actuated-Steering System

In this section, a substantially different architectural solution from the one in Section 6.2 is

presented. This approach implements brake-actuated-steering (BAS) as a means to achieve

fault tolerance, thus reducing the amount of component redundancy. This will result in

a less complex steer-by-wire system, which may result, as well, in a less expensive sys-

tem. Furthermore, the additional components that are necessary for implementing BAS

-131 -

Chapter 6 Steer-by-WirelBrake-Actuated-Steering System Case-Study

Steer-by-Wire/Brake-Actuated-Steering System Case-Study

are already present in the vehicle as part of other safety systems, such as anti-lock brak-

ing system (ABS) or electronic stability programs (ESP). Additionally, in the steer-by-wire

architecture in Section 6.2, despite the presence of component redundancy and FDIR to

achieve fault-tolerance; it was shown that a stuck failure of the steering rack would result

in a single point of failure. To overcome this, a SbW/BAS architecture will be presented

that implements a skid steering algorithm.

The proposed SbW/BAS architecture is showed in Fig. 6.4. The only elements common to

both SbW and BAS are the road wheel angle sensors RWASs and the steering wheel angle

sensors SWASs. Therefore these elements are triple redundant (with their correspond-

ing voting algorithms within the steer-by-wire computer SbWC and the brake-actuated-

steering computer BASC) to avoid common modes of failure in both SbW and BAS. Un-

like the previously discussed fault-tolerant SbW architecture, there is only one SbWC with

a single processor inside; and there is only one rack actuation subsystem (RaAS). There-

fore, fault-tolerance cannot be achieved with these elements alone. The way this system

achieves fault tolerance is by using selective wheel braking to steer the vehicle when the

main SbW functionality is lost. When a failure results in disagreement between the steer-

ing wheel angle 6, and the road wheel angle 6, the failure detection circuit (SbWC-FD)

implemented in the SbWC shuts down the processor inside the SbWC, and thus, disables

the main SbW functionality. Then, the SbWC-FD sends a reconfiguration signal to the

brake-actuated-steering computer (BASC), which is in hot-standby, and the BAS computer

starts sending commands.

The BAS computer has two different control laws implemented: one for brake-actuated

steering, and one for skid steering. The BAS controller kicks in after a failure in the main

SbW has been detected, and first attempts to steer with brake-actuated steering command-

ing both front left and right caliper actuation subsystems (FLCAS and FRCAS). This will

produce the appropriate longitudinal braking forces in the front left and right tires, en-

abling the vehicle to be steered according to the steering wheel angle command and the

rack position. Thus the BAS overcomes the dangerous situation produced by the failure of

the main SbW functionality.

Additionally, if the steering rack gets stuck, the BAS computer will detect a disagreement

between the steering wheel angle 6, and the road wheel angle 6; and the BAS computer

can no longer position the rack with the BAS control law. Therefore, it will switch to the

skid-steering control law. In the skid-steering mode, the BAS computer commands all four
wheel caliper actuation subsystems (FLCAS, FRCAS, RLCAS, and RRCAS) to produce ap-

- 132 -

Chapter 6

(D (D

,9 .

- I

S

Rear Right
Caliper Actuation
Suhs stem RR(AS

Yawrate gyros
YRG1, YRG 2, YRG3

Front wheels

I ront Left
+ Caliper Actuation

Steer-IyN-WNi re Stj-s-te F1(7k --

Computer -
SbWC

Rack Actuati on
Subsystem RaAS

Brake-
Aetuated-
Steerig

Computer Fron Right
li A -- Caliper Actualion

-suibsYstem FRCAS

M Rad Wheel Angle Sensors L
RWASI, RAWS 2, RAWS3

Cross strapping point

Brake Caliper

& Center of gravity

Rear wheels
axle

Rear Left Caliper
Atuatimni

Rbsys1stem RlCAS

Steering Wheel
Angle Sensors

SWASI,SWAS 2 ,
Steering SWAS 3wheel

(JJ

ra SRA

Steer-by-Wire/Brake-Actuated-Steering System Case-Study

propriate front and rear differential longitudinal braking forces to steer the vehicle. Since

the steering rack position is no longer a valid measurement to determine the vehicle head-

ing, three redundant yaw rate gyros (YRG 1, YRG2 , YRG 3) will measure the vehicle yaw

rate.

Table 6.3: Component failure model parameters for the additional components of the SbW/BAS
architecture.

Component Failure modes Description Uj A(/h)
BASC Omission Output set to zero 1 2. 10-7

Random Random output between -5 and 5 2 10-7
Stuck Output stuck at last correct value 3 10-
Delayed Output delayed 0.2 s 4 10-1

SbWC-FD Omission Output set to zero regardless the in- 1 10-8
put

Commission Output set to one regardless the in- 2 10-8
put

FLCAS, FRCAS, Omission Output set to zero 1 10-8
RLCAS, RRCAS Stuck Output stuck at last correct value 2 10-8
YRG 1, YRG2, YRG 3 Omission Output set to zero 1 4 -o-7

Gain change Output scaled by a factor of 1.5 2 3 -10-
Biased Output biased by a factor of 0.3 3 3. 10-7

The component behavioral models for the additional components introduced in this archi-

tecture, i.e., the brake-actuated-steering computer (BASC), the front left (and right) caliper

actuation subsystems (FLCAS and FRCAS), and the rear left (and right) caliper actuation

subsystems (RLCAS and RRCAS) are described in Appendix D. The component failure

model parameters of these additional components, as well as the failure detection circuit

implemented in the SbWC, are collected in Table 6.3. A linear two-track vehicle dynamics

model [43], interacting with the architecture descried above, completes the system behav-

ioral model. The models inputs are the road wheel angle 6 and the the differential longi-

tudinal forces at the front and rear tires. The state variables are the sideslip (3, and the yaw

rate rb. See Appendix D for the description of the two-track vehicle dynamics model.

6.3.1 Results Analysis

The SbW/BAS system was evaluated for the same vehicle speed as before V = 70 Km/h,

the same configuration evaluation time t, = 6s, and the same global evaluation time T of

6000 h. The performance metrics definition (and associated requirements), as well as the

control system input chosen to evaluate the SbW/BAS are the same as the ones used to

- 134 -

Chapter 6

Steer-by-Wire/Brake-Actuated-Steering System Case-Study

evaluate the SbW design.

Table 6.4 displays the system unreliability results at the end of the vehicle lifetime for a

truncation level of three. A system unreliability upper bound of 8.01 . 10-4 and a lower

bound of 7.02 -10-4 result. Although a comparison of the SbW and the SbW/BAS architec-

tures will be carried in the next section, it is very interesting to note that the unreliability

upper bound for the SbW/BAS architecture is smaller than the unreliability lower bound

of the SbW architecture. This means that without taking the analysis to a further level of

truncation, it can be concluded that the SbW/BAS is predicted to have better reliability

than the SbW architecture.

Table 6.4: SbW/BAS design: unreliability for an evaluation time of 6000h.

Truncation Unreliability Unreliability # of system
level lower bound upper bound configurations
3 7.02 -10-4 8.01- 10-4 2215

For the remainder of this section, the SbW/BAS system performance will be shown for

different component failure modes. In each case, the vehicle road wheel angle 6 scaled

by the steering ratio SR will be compared to the steering wheel angle 6m, and the vehicle

heading angle response T will be compared to the heading angle response T, of the ref-

erence vehicle model (a vehicle with a conventional mechanical steering system). These

output responses will be displayed when a 10deg, 0.5Hz sinusoidal input is applied to the

steering wheel. In order to show small errors between I and T,, different scales has been

used to display the comparison between 6, and SR6; and between , and xh.

As shown in Fig. 6.5, the two possible steering rack actuation subsystem failure modes

cause a similar effect in the vehicle response. When the failure occurs at t = 1 s, the

road wheel angle starts diverting from its reference value. When the absolute value of the

difference between the steering wheel angle 6, and the road wheel angle scaled by the

steering ratio SR6W hits 2 deg, the failure detection circuit with the SbW computer sends

a reconfiguration signal to the BASC computer. At this instant the BAS controller kicks in,

taking over the control of the vehicle after the SbWC is shut down. The most important

consequence after this failure is that the vehicle heading angle XI starts diverting from the

vehicle reference response by a value of 0.23 deg for the failure-by-omission, and 0.11 deg

for the failure-by-stuck, both considered acceptable to keep the vehicle on its heading path.

A model of the driver has not been included in the system model, but in reality, the driver

would remove this heading error.

-135 -

Chapter 6

Steer-by-Wire/Brake-Actuated-Steering System Case-Study

'~10-

0

04 -10
- Steering wheel angle 8.

-20. - Scaled road wheel angle SRS

0 1 2 3 4 5 6
Time [s]

1.5

~.0.5-
S 0

-0.s; Conventional vehicle response 'Pr
- ShW vehicle e'

0 1 2 3 4 5 6
Time [s]

(a) Rack actuation subsystem output failing to
provide commanding torque for the rack.

S0

-- _ -- l Steering wheel angle 8w
___Scaled read whneel ngle R

0.5-

-0.5 Conventional vehicle response 'I'
-- SbW vehicle res se

0 1 2 3 4 5 6
Tirne [s]

(b) Rack actuation subsystem failing stuck, and
thus providing a constant torque for the rack.

Figure 6.5: SbW/BAS design performance in response to a 10 deg, 0.5 Hz sinusoidal steering
wheel input at 70 km/h vehicle speed. Steering wheel angle J, compared to road wheel angle
(scaled to steering wheel angle SRJ) under failure conditions, and vehicle heading angle T, with
a mechanical steering system compared to the vehicle (with the SbW/BAS design) heading angle
response T, under failure conditions. Both performance comparisons shown for different single
failure modes in the rack actuation subsystem, and for a failure injection time tf = 1 s.

Figure 6.6 displays the vehicle performance when failures occur in the failure detection

circuit within the SbW computer. In this case, for a failure-by-omission (i.e., the detection

circuit does not report a failure), Fig. 6.6(a), the vehicle response is completely unaffected.

This is expected -a failure-by-omission will disable the detection of second failures, but

it will not cause a degraded system behavior. In contrast, a failure-by-commission will

cause a degraded system performance. In this case, the failure detection circuit sends a

false alarm to the BASC computer, thus, the brake-actuated-steering controller takes over

the control of the vehicle, resulting in the vehicle response displayed in Fig. 6.6(b).

The vehicle behaviors corresponding to different failure modes in the steer-by-wire com-

puter are displayed in Fig. 6.7. A failure-by-omission, as displayed in Fig. 6.7(a), will

cause a transient in the road wheel angle 6, but the vehicle heading angle * is almost

unaffected. In this case, when the computer stops sending commands out, the steering

rack actuation subsystem stops commanding the steering rack for a few instants until the

SbWC-FD detects the anomaly and switches control to the the BAS controller. In this sce-

nario, the steering rack time constants are much smaller than the vehicle time constants,

therefore the vehicle heading is almost unaffected. A similar behavior takes place when

a random output failure occurs in the SbW computer, Fig. 6.7(b), There is a transient in

the road wheel angle 6, but the heading angle * is barely affected. The explanation in this

-136 -

Chapter 6

-20 - A
0 1 2 3 4 5 6

Time [s]

Steer-by-Wire/Brake-Actuated-Steering System Case-Study

'1010

S 0

- Steering wheel angle 6.
0 Scaled road wheel onle SR8

0 1 2 3 4 5 6
Time [s)

1.5

U I
5.0.5-

ec 0

-0.5 -- -Conventional vehicle response T, -
SbW vehicle rEseonse 4

0 1 2 3 4 5 6
Time [sJ

(a) Omission failure mode, i.e., the SbWC-FD fails
to report a failure in the SbWC.

,~10-

o~ 0

U 10
-- Steering wheel angle 86

0 Scaled road wheel angle SR8

0 1 2 3 4 5 6

1.5

5.0.5-

0

5'-0.5 - Conventional vehicle response IFr-
SbW vehicle renponse T

0 1 2 3 4 5 6
Time [s]

(b) Commission failure mode, i.e. the SbWC-FD
reports a false alarm in the SbWC.

Figure 6.6: SbW/BAS design performance in response to a 10 deg, 0.5 Hz sinusoidal steering
wheel input at 70 km/h vehicle speed. Steering wheel angle 6, compared to road wheel angle
(scaled to steering wheel angle SR6) under failure conditions, and vehicle heading angle IQ, with
a mechanical steering system compared to the vehicle (with the SbW/BAS design) heading angle
response T, under failure conditions. Both performance comparisons shown for different single
failure modes in the steer-by-wire computer failure detection circuit SbWC-FD, and for a failure
injection time tf = 1 s.

case is slightly different: the computer starts sending random commands to the steering

rack actuation subsystem, which will try to position the rack accordingly. The actuation

subsystem time constants are much smaller than the rack time constants; therefore, the

steering rack only perceives the command as a random noise, which has an effect similar

to not having commanded at all (as in the previous case). The essentially uncommanded

steering rack is centered by the self-centering forces of the front wheels. The SbW-FD will

detect the anomaly, and switch control to the BAS controller. Again, the vehicle dynamics

are much slower than the rack dynamics, therefore the vehicle heading is almost unaf-

fected.

When the SbWC fails stuck, the vehicle behavior diverts from its nominal behavior as dis-

played in Fig. 6.7(c). In this case, the computer is sending a constant command to the rack

actuation subsystem, which will try to position the rack accordingly. The SbWC-FD will

detect the anomaly after a short transient and the BAS mechanism will take over; however

the actuation subsystem acted long enough on the rack, causing the vehicle heading angle

[to divert from its nominal behavior response by 0.25 deg. A similar effect takes place

when the output of the SbW computer gets delayed, Fig. 6.7(d). In this case, the steering
rack actuation subsystem is receiving its command delayed, thus delaying the correct posi-

- 137-

Chapter 6

Steer-by-WirelBrake-Actuated-Steering System Case-Study

tioning of the rack. By the time the SbWC-FD detects the failure and the control is handed

to the BAS controller, the vehicle heading has been modified from its nominal path by

0.40 deg. Both diversions are consider small

heading path.

-10
~o 0

-~-10

-20 Steering wheel angle 8w .
Scaled road wheel angle SR8

0 1 2 3 4 5 6
Time [s]

8-0.5-

o 0

-0.5 Conventional vehicle response '1 .
- SbW vehicle res nse V

0 1 2 3 4 5 6
Time [s]

(a) SbWC output omission failure mode.

'~10-

S 0

Steering wheel angle S
20 - Scaled road wheel angIn 5R8

0 1 2 3 4 5 6
Time [sI

8-

8-

0.5-

0

-0.5 - - _Conventional vehicle response IF,
..- --- SbW vehicle rsnse -

0 1 2 3 4 5 6
Time [s]

(c) SbWC output stuck failure mode.

enough to keep the vehicle on an acceptable

-10
-20 Steering wheel angle 8

Scaled road wheel angle SR

0 1 2 3 4 5 6
Time [s]

8-0.5-

-0.5 -- Conventional vehicle response T,
- -- SbW vehicle resp nse T

0 1 2 3 4 5 6
Time [s]

(b) SbWC random output between -5 deg and +5
deg failure mode

S10-

S 0

1--- Steering wheel angle 8
-20 - Scaled road wheel angle SRS

0 1 2 3 4 5 6
Time [s]

1.5

0.5 -

0

-0.5 - Conventional vehicle response 'P
--- SbW vehicle respnse T

0 1 2 3 4 5 6
Time [s]

(d) SbWC output delayed failure mode.

Figure 6.7: SbW/BAS design performance in response to a 10 deg, 0.5 Hz sinusoidal steering
wheel input at 70 km/h vehicle speed. Steering wheel angle 6, compared to road wheel angle
(scaled to steering wheel angle SRS) under failure conditions, and vehicle heading angle T, with
a mechanical steering system compared to the vehicle (with the SbW/BAS design) heading angle
response T, under failure conditions. Both performance comparisons shown for different single
failure modes in the steer-by-wire computer, and for a failure injection time tf = 1s.

Up to this point in the analysis of the SbW/BAS, there is nothing that has been achieved

using BAS that could not be achieved with a fault-tolerant SbW architecture as presented

in Section 6.2. Furthermore, for the failure modes analyzed in this section so far, better

performance was achieved with the SbW architecture.

- 138 -

Chapter 6

Steer-by-WirelBrake-Actuated-Steering System Case-Study

-10

S 0

-10 - Steering wheel angle 8,

S20 Scaled road wheel angle SR8

0 1 2 3 4 5 6

Time [s]

5.0.5-

-0.5 - Conventional vehicle response 1, .

- - SbW vehicle resLone an

0 I 2 3 4 5 6
Tinve [s]

Figure 6.8: SbW/BAS design performance in response to a 10 deg, 0.5 Hz sinusoidal steering
wheel input at 70 km/h vehicle speed. Steering wheel angle 6" compared to road wheel angle
(scaled to steering wheel angle SR3) under failure conditions, and vehicle heading angle T, with
a mechanical steering system compared to the vehicle (with the SbW/BAS design) heading angle
response T, under failure conditions. Both performance comparisons shown for the steering rack
failing by getting stuck at a certain position, and for a failure injection time tf = 1 s.

The main advantage of the SbW/BAS architecture is displayed in Fig. 6.8, which shows

the vehicle dynamic behavior when the steering rack gets stuck. In this case, the SbWC-FD

will detect the anomaly, switching the control to the BAS computer. The brake-actuated-

steering control law kicks in first, trying to control the vehicle, without success. The skid-

steering controller will take control after it is detected that steering rack is not moving,

despite the fact that the steering wheel angle is not constant. It can be seen that the heading

angle , error is small enough, 0.22 deg, for the driver to keep control of the vehicle and

bring it to a safe stop.

Table 6.5: Reliability estimates for the SbW and the SbW/BAS designs at the end of vehicle lifetime
(6000 h).

Unreliability
lower bound

Unreliability
upper bound

Single points
offailure

SbW 1.10. 1O- 1.13. 10- 1
SbW/BAS 7.02. 10-4 8.01 .10-4 0

6.4 SbW-SbW/BAS Comparison

The system unreliability estimates for both the SbW and the SbW/BAS systems are dis-

played in Table 6.5. These results were obtained by truncating the analysis at the third

- 139 -

Chapter 6

Steer-by-Wire/Brake-Actuated-Steering System Case-Study

level of failure. As can be noted from the results, the estimated unreliability intervals do

not overlap. This means that without the need of taking the analysis to a further level of

failure it can be concluded that the SbW/BAS has a better reliability estimate than the SbW

architecture. Furthermore, with the SbW architecture it is not possible to achieve complete

fault-tolerance at the first level of failure since a failure-by-stuck of the steering rack will

cause the system to fail. In contrast, the SbW/BAS has a skid controller implemented

to overcome this problem, and when the steering rack gets stuck the vehicle can still be

steered and brought to a safe stop. Thus the SbW/BAS is single fault tolerant.

To achieve fault tolerance, the SbW architecture implements redundancy in each compo-

nent within the system: the computers are duplicated, and furthermore, each computer has

two internal processors in lock-step; the rack actuation subsystems are duplicated as well;

and the road wheel and steering wheel angle sensors are triply redundant. The SbW/BAS

uses only redundancy for the road wheel and steering wheel sensors, which are the only

elements common to SbW and BAS. Instead of having two computers with lock-step pro-

cessor pairs, the SbW/BAS uses two single-processor computers, one for the SbW func-

tionality, and the other for the BAS functionality (which is expected to already be present

in the vehicle for ABS or ESP). The steering rack actuation subsystem is not duplicated

either. As explained before, the fault-tolerance is achieved by using the functionality pro-

vided by the ABS/ESP system elements. The SbW/BAS implements an additional triple

redundant set of gyro units, which are necessary for the skid steering control. Although

ESP systems usually include a gyro unit, thus providing the necessary vehicle yaw rate

measurement for the skid controller, it is not usually redundant.

So far, it seems that it is more advantageous to use the SbW/BAS: a better reliability esti-

mate; no single points of failure; less redundancy, and therefore less complexity and cost;

and use of already-implemented elements to achieve fault-tolerance. However, there are

other important aspects, such as the vehicle performance, that must be analyzed to obtain

a fair comparison between SbW and SbW/BAS. In the first place, it must be noted that

BAS must only be be used as an ultimate safety mechanism to bring the vehicle to a safe

stop when a failure disables the main SbW functionality. This means that although the

SbW/BAS architecture introduced here is single fault-tolerant in the sense that any sin-

gle failure will not cause a catastrophic loss-of-control system failure, once a failure in the

SbW causes the BAS to kick in, the vehicle must be brought to a safe stop. This is not

the case in the SbW fault-tolerant architecture -any first failure, except for a rack failure,

does not degrade the system performance substantially, and therefore, the vehicle can still

be driven for a period until repaired. Table 6.6 displays the number of possible system

- 140 -

Chapter 6

Steer-by-Wire/Brake-Actuated-Steering System Case-Study

configurations after a single failure, together with the number of those that are required to

prevent a loss of vehicle control. As can be seen, not a single failure at the first level for

the SbW needs immediate action (the car is brought to a safe-stop, it cannot even be driven

for a warning period). On the contrary, 8 out of 48 single failures in the SbW/BAS need

immediate action, which represents 17% of the total number of first level of failures.

Table 6.6: Degraded performance comparison between the SbW and the SbW/BAS.

of operational first # of configurations resulting in a degraded
failure configurations mode requiring the vehicle to stop

SbW 42 out of 43 0
SbW/BAS 48 out of 48 8

6.5 Conclusions

This chapter has illustrated how the methodology developed in Chapter 3, and its sup-

porting tool - InPRESTo (presented in Chapter 4) -, can be used to evaluate the pros

and cons of two very different architectural approaches to achieving fault tolerance. Fur-

thermore, from the case-study presented in this chapter, it is clear that the methodology

presented in this thesis does not only address the integration of system performance and

reliability, it also provides new insights (the designs comparison discussed in Section 6.4)

that were not possible to obtain before.

Focusing on the case study, it has been shown how a dissimilar backup mechanism -
brake-actuated steering - can be used successfully to reduce the amount of redundant

elements in a fault-tolerant system and to remove single points of failure that cannot be

remove by just adding redundancy (such as a stuck steering rack failure). Although the

BAS technology looks promising to achieve fault tolerance in SbW, BAS enables bringing

the vehicle to a safe stop after a failure has occurred, as opposed to allowing the vehicle to

be driven for a long period of time after the failure. The BAS technology could be thought

of as the ultimate safety net in a classical-redundancy-based SbW design (such as the one

discussed in Section 6.2) to accommodate very unlikely events. For example, an additional

failure between the first failure and the time the vehicle is brought into the repair shop, or

the stuck steering rack failure - a failure that even in a conventional mechanical steering

system will cause the system to fail catastrophically.

- 141 -

Chapter 6

Steer-by-Wire/Brake-Actuated-Steering System Case-Study

ABS:
BAS:
BASC:
ESP:
FDIR:
FLCAS, FRCAS:
rb:

rb,:

RaAS:
RaAS1 , RaAS2 :
RLCAS, RRCAS:
RWAS1, RWAS2, RWAS3 :
SRa:
SbW:
SbWC:
SbWC 1, SbWC 2 :
SbWC 1-DC, SbWC2 -DC:
SbWC-FD:
SWAS 1 , SWAS 2 , SWAS 3 :
t :
tc :
ty :
T:

Uf:
V:
YRG 1 , YRG 2, YRG 3 :
Z1 :

Z2 :

3:
0 :
Or :
6 :

A:

Liz2 :

'Q :
q'r :

Antilock braking system
Brake-actuated-steering
Brake-actuated-steering computer
Electonic stability program
Failure detection, isolation, and recovery
Front left and right caliper actuation subsystems
Yaw rate
Reference model yaw rate
SbW/BAS design rack actuation subsystem
SbW design rack actuation subsystem
Rear left and right caliper actuation subsystems
Road wheel angle sensors
Steering rack
Steer-by-wire
SbW/BAS design computers
SbW design computers
SbW design computers dual-comparator circuits
SbW/BAS design computers failure detection circuits
Steering wheel angle sensors
Time
Configuration evaluation time
Failure injection time
System global evaluation time
Behavioral modes random variable
Forward velocity
SbW/BAS yaw rate gyros
Sideslip angle performance metric
Yaw rate performance metric
Heading angle performance metric
Sideslip angle
Reference model sideslip angle
Road wheel angle
Steering wheel angle
Failure rate
Set of requirements for performance metric Z1
Set of requirements for performance metric Zi
Set of requirements for performance metric Z1
Heading angle
Reference model heading angle

- 142 -

Chapter 6

Notation Used in this Chapter

Chapter 7

Towards Probabilistic-Informed Design

The purpose of this chapter is to discuss the use of the modeling and evaluation methodol-

ogy introduced in this thesis as the enabler of a probabilistic-informed design framework

for fault-tolerant systems. The discussion begins with a review of existing probabilistic-

informed decision-making importance measures for system design. Sensitivity analysis

techniques in the context of probabilistic-informed design will be also discussed. How-

ever, these techniques only scratch the surface of the problem. To understand the extent

of the problem, the remainder of the chapter focuses on the issue of investigating how

reliability is affected by the system dynamic behavior. In this context, we propose new

importance measures that have the potential to be used as part of a probabilistic-informed

design framework within the context of the new methodology. The Chapter concludes

with a discussion of the monotonic behavior and the functional dependencies of the sys-

tem reliability function, and the main open questions on this matter. Its purpose is to fully

enable probabilistic-informed design within the framework of the modeling and evalua-

tion methodology introduced in this thesis.

7.1 Introduction

In Chapter 5, we showed how the methodology presented in this thesis (and its supporting

tool InPRESTo) can be used to guide the design of a fault-tolerant system to meet certain

goals. Thus, if a given design does not meet these goals, it is necessary to extract cer-

tain information from the system evaluation analysis in order to improve its design. This

information includes identifying the weakest design points (for example single points of

failure), and the components and subsystems that are driving the system performance and

reliability.

The design goals for the case-study presented in Chapter 5 were to achieve single fault-

tolerance and a minimum reliability estimate. Thus, improving the design was a matter

-143 -

of identifying and eliminating any single point of failure and meeting the reliability goal.

The first proposed design was already very close to meeting the reliability goal. Therefore

we focused on eliminating the single points of failure. It turned out that once all the single

points of failure were eliminated, the reliability also improved an order of magnitude with

respect to the original goal. Thus, in this case, extracting the relevant information from the

analysis to improve the system design was not a difficult task.

However, extracting this relevant information might not be an easy task in other situations.

Taking the same flight control system, let's assume that even after removing all single

points of failure, the resulting design does not meet the reliability goal. In this case, the

analyst must find those parts of the system that are driving the reliability estimate and

modify them with the hope of meeting the reliability goal as well.

The problem becomes even more acute when the design goals also include probabilis-

tic performance goals, e.g., the average power consumption among all possible non-failed

operational conditions. In this case, perhaps the architectural modification that could im-

prove reliability might also harm the performance goals. Therefore, it is necessary to in-

vestigate appropriate techniques to extract the information relevant to improving a design

to optimize performance and reliability.

The purpose of this chapter is to discuss some existing techniques for this purpose, and

also discuss open questions and future research directions. Section 7.2 discusses several

existing techniques, such as importance measures and sensitivity analysis, used to rank

the impact of system parameters on reliability. Section 7.3 discusses the work we have

done in probabilistic-informed design, defining a new importance measure in the context

of the methodology proposed in this thesis. This section also discusses several open ques-

tions and future research directions within the context of probabilistic-informed design.

Concluding remarks are presented in Section 7.4.

7.2 Existing Techniques for Probabilistic Informed Design

In the framework of the nuclear industry, without focusing on a particular reliability/risk

modeling methodology, several importance measures have been proposed to quantify

which plant normal operation disturbing events, and which component failure modes

have the greatest impact on a particular risk metric in case of an accident. Focusing on

-144 -

Chapter 7 Towards Probabilistic-Informned Design

Chapter 7

Markov reliability models, sensitivity analysis has also been proposed to rank the com-

ponents that most influence the reliability estimate yielded by the Markov model. In this

section, all these techniques will be discussed.

7.2.1 Existing Importance Measures

The definition of the common importance measures used in the nuclear industry has been

adapted to the framework of this research. The reader is referred to [59] and [60] for their

definition in the context of the nuclear industry. Thus, the most commonly used impor-

tance measures for ranking the importance of the m failure mode of component 1 are

Risk Achievement Worth:
Qi(m)+RAW(m) = ; (7.1)

Q

Risk Reduction Worth:

RRWi(m) - _ (7.2)
Q((.)2

Fussell-Vesely:
Q -- (73))FV(m) = ; (7.3)

where Q is the system unreliability (as defined in Appendix A), Qi (m)+ is the system unre-

liability when the transition to the m failure mode of component 1 occurs with probability

one, and Q, (m) - is the system unreliability when the transition to the m failure mode of

component I occurs with probability zero.

These measures can only be used to compute the importance of single events; and except

for Fusell-Vesely, they cannot be applied to parameters, e.g., failure rates, or coverage prob-

abilities [61]. Furthermore, to compute any of these importance measures, it is necessary

to compute Q, (m)+ and Q, (m)- separately; i.e., it is not possible to obtain them directly

from Q.

- 145 -

Towards Probabilistic-Informed Design

7.2.2 Sensitivity Analysis

Focusing on Markov reliability modeling, sensitivity analysis has been proposed to rank

the influence of changes in the model parameters on the system reliability (or unreliability)

[62], [63], [64]. For each parameter a3 , with j = 1, 2, ... , K, of the state-transition matrix

A, it is necessary to solve

P(t) A 0 ... 0 P(t)
8P(t) -A 0 aP(t)

8
9iaA 5a-,

d aP(t) _ e9 0 0 P
Tt aa2 - a2 aa2

aP(t) DA 0 A aP(t)
L -aK . - aaK . . aK

[P(0)' . ._._] - [Pa1 U' U'
[P O) ai 4ja2 9. aK O

OQ(t) = P2i+1,k(t); Vj = 1, 2, ... ,K (7.4)
i,k ea

where Po = [1 0 0 ... 0]', 0 = [0 0 0 ... 0]', and p2i,k(t) are the components of vector P(t)

corresponding to the absorbing states.

The main advantage of using sensitivity analysis is that the ranking of the most influencing

effects on the system unreliability is done at the parameter level. However, the computa-

tional cost of using sensitivity analysis is expensive, since the set of differential equations

(7.4) is of size N x K, where N is the number of states of the Markov model, and K is the

number of parameters of the state-transition matrix.

It is possible to break the system of differential equations into K systems of size N and

obtain an exact solution for the sensitivity. In this case, although the size of the problems

to solve is of size N rather than of size N x K, there is still need to solve K of them. To

alleviate the computational burden, approximate solutions to (7.4) have been proposed

[64].

Another approach to solving the sensitivity problem is to perturb each parameter ai of

the state-transition matrix A, solve the K resulting systems, and then rank the parameters

according to the unreliability yielded by each ai-perturbed system. With this approach it

is again necessary to solve K sets of differential equations to obtain the sensitivity solution

[49]. This technique is illustrated in the analysis of the case-study presented in Chapter 2.

- 146 -

Towards Probabilistic-Informed DesignChapter 7

The Differential Importance Measure

In the context of sensitivity analysis as a technique to rank the influence of each system

parameter aj, an importance- measure, called the Differential Importance Measure (DIM),

is proposed in [60]. DIM is defined as:

__dai
DIM(aj) = . (7.5)

0 a Q d a j '

The computation of DIM exhibits the same shortcomings as those discussed for sensitivity

analysis techniques. In fact, the solution proposed in [60] to compute DIM relies on the

same techniques used in [49] to solve the sensitivity problem; i.e., to perturb each param-

eter aj, and use the perturbed results together with the unperturbed solution to compute

an approximation of (7.5).

7.3 Further Discussion and Open Research Questions

So far, we presented some of the existing techniques, such as importance measures and

sensitivity analysis, to extract the information relevant to improving the design of a sys-

tem for optimal performance and reliability. However, these techniques only scratch the

surface of the problem. To understand the extent of the problem, we will focus on one

aspect of integrating performance and reliability, which is how reliability is affected by

system performance, and, therefore, how reliability is affected by the system dynamics of

each configuration.

In the remainder of this section, we will discuss the work we have done in this area,

proposing a new importance measure that has the potential to be used as part of a probabilistic-

informed design framework within the context of the new methodology. Its main advan-

tage is that it can be computed using only the nominal solution of the Markov model. The

purpose of this measure is not to rank only the importance of component failures, but also

the importance of the different system performance metrics. Several related issues which

are still unsolved will be also discussed.

- 147 -

Ch-.1apter 7 Towards Probabilistic-Informed Design

Towards Probabilistic-Informed Design

7.3.1 On the Functional Dependence of the Reliability Function

The system reliability is a function of the component failure rates and the coverage proba-

bilities:

R = F(A, e, t), (7.6)

where A is a vector containing the individual component failure rates, 6 is the vector of

failure coverage probabilities, and t represents time.

On the Monotonicity of the Reliability Function with respect to time

The first question that must be answered is how the system reliability function behaves

with respect to time. Usually reliability requirements must be met for a certain system

evaluation time, e.g., the system life-time or the maintenance period. This makes sense as
the reliability function is monotonically decreasing with time, and, therefore, by fixing a

reliability requirement for some time T, we ensure that this requirement is met at any time

t < T.

Lemma. Let R = F(A, 6, t) be the reliability function of a system, then R is monotonically

decreasing with t.

Proof. It is sufficient to prove that 1R is non-positive for any value of t. The result follows

from (3.21) and the following properties of the state-transition matrix A associated with
the Markov reliability model (3.20): the diagonal elements are negative or zero, the off-

diagonal elements are zero or positive, and A is a diagonally-dominant matrix.

Importance of the Component Failure Modes

The natural issue that arises now is to find the component failures that are driving the
system reliability. As stated in Chapter 3, each system configuration {i, k} is determined
by a unique sequence of component failure mode transitions. Thus, some transitions be-

tween certain component failure modes will be driving the system reliability/unreliability.
Therefore, identifying those transitions will allow us to modify the components with the
largest possible impact on the system reliability.

- 148 -

Chapter 7

Towards Probabilistic-Informed Design

Let s kbe an indicator function that takes value 1 when the sequence of component fail-

ures that yields system configuration {i, k} includes a transition to failure mode m of com-

ponent 1, and 0 otherwise. Then the importance measure for failure mode m of component

1 is defined by

Ii,m(t) =1 - Q + SI'rP2i,k(t), (7.7)
i,k

where p2i,k(t) is the probability that, at a time t > 0, the system is in configuration {i, k},

and it is being declared as as failed, conditioned on p1,0(0) = 1.

This importance measure can be interpreted as the contribution of the failure mode m of

component j to the total system unreliability Q. The following cases are possible:

" I,m (t) = 1 means that the m failure mode of component 1 is present in each sequence of

component failures that contributes to the system unreliability.

* If Ii,m(t) < 1 means that the m failure mode of component 1 is not present in at least one

of the sequences of component failures that contributes to the system unreliability.

* If Ii,m(t) = 1 - Q means that the m failure mode of component 1 is not present in any of

the sequences of component failures that contribute to the system unreliability.

Therefore the largest value of the importance measure I,m indicates the component 1 (and

its associated failure mode m) that most influences the system reliability.

On the Monotonicity of the Reliability Function with respect to failure rates and cover-

age probabilities

Once the component failures that most affect the reliability are identified, the natural ques-

tion that arises is how the system reliability function behaves with respect to changes in

the failure rates of those components.

We could think that a way to improve the system reliability is by improving the com-

ponent failure rates. However, the reliability function R = F(A, 6, t) is not, in general,

monotonic with respect to each entry Ai of the vector of component failure rates A. There-

fore, it might be the case that by making a component more reliable, the system reliability

is being harmed.

- 149 -

Chapter 7

Towards Probabilistic-Informed Design

As an example of this kind of behavior, let a system with three components C1, C2 and C3

be arranged as follows:

" The system will be functional if C1 or C3 are operational, operating with component Ci

before any failures has occurred.

" When C1 is in operation C3 can not fail.

* C1 needs component C2 to work, if C2 fails while Ci is in operation, the system fails.

" If C1 fails, 03 is brought on-line and can perform its function without C2, i.e, C2 does

not affect the function of the system when C3 is operational.

Under the above assumptions, the state-transition matrix A of the resulting Markov relia-

bility model is given by:

-Ac, - Ac2 0 0 0

Aci -Ac0 0 0
Ac2 0 0 0

0 Ac 0 0

The Reliability function corresponding to this system is given by:

R(t) = -(Acl+AC2)t + Aci (e-(ACi+Ac 2)t - e-\ACt) (7.9)
Ac 3 - (Ac, + Ac2)

For Ac, = 2 - 10-6 failures/h, AC 2 = 3. 10-6 failures/h, AC, = 10-6 failures/h, and

t = 1000h, R 1(1000) = 0.99700648951303. Now making Ac, = 2.5. 10-6, R 2 (1000) =

0.99700698760028. It is clear that R1(1000) < R 2 (1000). Thus, by making C1 less reliable,

i.e., increasing Acl, the system Reliability at t = 1000 increases.

Therefore, this is one of the research problems that must be further explored, i.e., under

what conditions the system reliability function is monotonic with respect to component

failure rates. In this context, we will pose a hypothesis that if proven right, could be a

powerful technique for identifying weak points in the design. Although not discussed

here, similar ideas apply to the coverage probabilities. Thus, we state the following hy-

pothesis, which is something to be proven by further work.

-150-

Chapter 7

Hypothesis. If a system reliability function R = F(A, e, t) is not monotonic decreasing

with respect to each entry Ai of the vector of component failure rates A, there is a weak

point in the design that can be identified by finding the Ai's for which R = F(A, 6, t) does

not exhibit monotonic behavior.

7.3.2 On the Functional Dependence of the Coverage Probability

The coverage probabilities are a function of the performance metrics and their require-

ments, and also of the system dynamics, therefore

E = G(2 ,<DZ, f(.), p(.)), (7.10)

where 2 represents the system performance metrics, and <b2 represent the associated re-

quirements to those performance metrics. The functions f(-) and p(-) represents the dy-

namics of the different system configurations.

Performance Metrics Dependence

As stated before, the performance metrics 2 are system-related properties that will quan-

tify how well a system performs the function for which it was designed. Therefore, even

if the coverage probability depends on them, there is not much we can do to improve the

coverage probability, as they cannot be changed. However, by identifying the performance

metric that most often violates its requirements, we are identifying the system properties

that are driving the system reliability; and, therefore, the system design could be modified

accordingly.

Let s, be an indicator function that takes value 1 whenever the system configuration {i, k}

is declared as failed due to performance metric Z failing to meet its requirements. Then

the importance measure for performance metric Zj is defined by

Izj (t) = 1- Q + E sjp2i,k(t), (7.11)
i,k

where P2i,k(t) is the probability that, at a time t > 0, the system is in configuration {i, k},

and it is being declared asfailed, conditioned on p1,0(0) = 1.

- 151 -

Towards Probabilistic-Informned DesignChapter 7

Towards Probabilistic-Informed Design

The following cases are possible:

" Iz, (t) = 1 means that the Z performance metric is always violated whenever a system

configuration is declared asfailed.

* If Izj (t) < 1 means that the Zj performance metric is not violated in at least one of the

system configuration declared asfailed.

" If Iz (t) = 1 - Q means that the Zj performance metric is never violated whenever a

system configuration is declared asfailed.

Therefore, the largest value of the importance measure Iz, indicates the performance met-

ric that most influences the system reliability.

Requirements Dependence.

The requirements Q2 associated with the performance metrics constrain the values these

can take; therefore there is not much we can do about them either. However, it might be

the case that the reliability is very sensitive to certain performance requirements. Thus, as

with the performance metrics, if we could identify the requirements to which reliability

is more sensitive, we would be able to identify the system properties that are driving the

system reliability.

System Dynamics Dependence.

The most challenging issue related to the functional dependence of the coverage probabil-

ities is related to the system dynamics f(.), p(-) adopted by the system for every sequence

of failures. Thus it is necessary to investigate the behavior of the coverage probability with

respect to changes in f(-), g(-).

7.4 Conclusions

In this chapter, we discussed the use of the methodology introduced in this thesis as the

enabler of a probabilistic-informed design framework for fault-tolerant systems. Exist-

-152-

Chapter 7

ing probabilistic-informed decision making importance-measures and sensitivity analy-

sis techniques were reviewed. We also discussed the work we have done in the area of

probabilistic-informed design, proposing a new importance measure that has the poten-

tial to be used within the framework of the new methodology. The discussion was com-

pleted with open questions and suggestions for future research directions in probabilistic-

informed design. Although this chapter poses more questions than answers, the challeng-

ing issues brought up here are crucial for enabling probabilistic-informed design within

the context of the methodology developed in this thesis.

Notation Used in this Chapter

a: j parameter of the Markov model state-transition matrix
A: Markov model state-transition matrix
DIM(aj) : Differential Importance Measure for parameter aj

1() : Vector of system configurations state evolution functions
FV(m): Fussell-Vesely importance measure for the m failure mode of component I
X(-) : Vector of system configurations output functions

Iim : Importance measure for the m failure mode of component 1

Izj :Importance measure for performance metric Z3

P2i,k(t) : Probability that the system configuration i, k is declared as failed at time t given that at t = 0 is in {1, 0}
P(t): System configurations probability vector
Q : System unreliability

Q+ (m): System unreliability when the transition to the m failure mode of component 1 occurs with probability one
Q, (m): System unreliability when the transition to the m failure mode of component 1 occurs with probability zero

R : System reliability
RAW, (m): Risk achievement worth importance measure for the m failure mode of component I
RRW (m): Risk reduction worth importance measure for the m failure mode of component 1

s i Indicator function for the operational status of component I when the system is in configuration {i, k}

s : Indicator function for the Zj performance metric when the system failed after reaching configuration {i, k}

t :Time

2 :Vector of system performance metrics
<1) : Set of sets of system performance requirements
A : Vector of component failure rates
A: Failure rate
c : Vector of system failure coverage probabilities

- 153 -

Towards Probabilistic-Informed DesignChapter 7

Chapter 8

Concluding Remarks

This last chapter presents a summary of the thesis, highlighting its main contributions to

the disciplines of system reliability analysis and system design. It concludes by discussing

the observations the author has made over four years of research in the fields of reliability

theory, dynamic system theory, and system design theory.

8.1 Thesis Summary and Highlights of Major Contributions

Chapter 1 stated the necessity of developing a new methodology for analyzing the relia-

bility and performance of fault-tolerant systems for aircraft, space, tactical, and automo-

tive applications. The main shortcoming of current reliability evaluation techniques was

clearly identified in this chapter as: the incompleteness of the system models used to analyze the

system behavior in the presence of component failures. Thus, the main goal of this thesis was

set forth: the development of a new methodology for evaluating fault-tolerant systems. The main

concern this methodology would address would is the gap between the system model be-

havior and the reliability model. That is, to minimize the subjectivity introduced in the

analysis clue to incompleteness of current methodologies. In order to put this thesis in the

appropriate context, we reviewed classical reliability evaluation methodologies and tools,

as well as related work in the field of Dynamic Probabilistic Risk Assessment (DPRA).

Chapter 2 illustrated the application of Markov models for system reliability evaluation, as

Markov modeling is used to model the system stochastic behavior in the framework of the

new methodology presented in Chapter 3. A case-study of an automotive power net archi-

tecture for automotive safety-critical applications was presented. The main contribution

of this chapter was the development of a technique to systematically build a system-level

Failure Modes and Effects Analysis (FMEA) that allows direct mapping to the Markov reli-

ability model, thus making its construction easier. Sensitivity analysis (discussed in details

in Chapter 7) was used to understand the influence of perturbations in the Markov model

-154-

Concluding Remarks

parameters. The results of the sensitivity analysis helped to determine the robustness of

the reliability estimate with respect to parameter uncertainty, and also helped to improve

the design in terms of reliability. Most of the work presented in this chapter was published

in [40].

Chapter 3 introduced the mathematical foundations of the new modeling and evaluation

methodology proposed in the thesis. This methodology introduced the use of behavioral

models of the system dynamics, similar to the ones used by control engineers when de-

signing the control system, but with additional features to model the dynamic behavior of

the component in the presence of different failures. The performance evaluation is based

on the system dynamic behavior when component failures within the system occur. The

proposed methodology allows one to assess not only system reliability, but other impor-

tant dynamic performance metrics that might be relevant in the design of a fault-tolerant

system. The system stochastic behavior due to component failures is modeled by using

Markov models. In this framework, a rigorous approach for computing failure coverage

probabilities was presented; providing analytical solutions for LTI systems, and a Monte-

Carlo based methodology for non-linear systems. Several examples were developed to

illustrate the concepts introduced in this chapter.

Chapter 4 presented a MATLAB/SIMULINK@ based tool that was developed in order to

make the application of the new methodology feasible. This tool automates the evalua-

tion process of a system defined by the analyst using the SIMULINK@ environment. The

tool is called InPRESTo, an acronym for Integrated Performance and Reliability Evaluation

SIMULINK® Toolbox. The functionality, structure, and main futures of InPRESTo were ex-

plained in detail in this chapter. This chapter is also a succinct user manual, which includes

explanations on how to define the necessary inputs to perform a system analysis, and how

to visualize the analysis results. A testament to InPRESTo's importance is the fact that it

is being used by the Systems Engineering and Evaluation Division at the Charles Stark

Draper Laboratory for the evaluation of space and tactical systems.

Chapter 5 explained how the new performance and reliability modeling and evaluation

methodology introduced in Chapter 3 and its supporting SIMULINK® toolbox -InPRESTo-

can be used to: identify weak points in the system design; guide the design by pointing to

possible solutions to eliminate the uncovered weak points; compare different architecture

alternatives from different perspectives; and test different failure detection, isolation, and

reconfiguration (FDIR) techniques. To demonstrate this, a case-study of a fault-tolerant ar-

chitecture for a fighter aircraft lateral-directional flight control system was presented and

- 155 -

Chapter 8

Chapter 8 Concluding Remarks

analyzed in detail. This case-study proved the scalability of the tool to analyze large sys-

tems.

Chapter 6 illustrated how the new methodology (and its supporting tool) can be used to

compare conceptually very different architectural approaches to achieve fault-tolerance.

For this purpose, two different designs to achieve fault-tolerance in a steer-by-wire (SbW)

system were presented, analyzed, and compared in terms of performance, reliability, and

fault-tolerance. The first design was based on redundancy of components, and the in-

troduction of failure detection, isolation, and reconfiguration mechanisms. In the second

design, a dissimilar backup mechanism called brake-actuated steering (BAS), was used to

achieve fault-tolerance. This chapter complements Chapter 5 by showing how the new

modeling and evaluation methodology (and its supporting SIMULINK@ toolbox) can be

used to compare very different architectural approaches to fault-tolerance design.

Chapter 7 discussed the use of the modeling and evaluation methodology introduced in

this thesis as the enabler of a probabilistic-informed design framework for fault-tolerant

systems. This chapter posed more questions than gave answers. However, the challenging

issues brought up here are crucial for developing a probabilistic-informed design frame-

work based on the methodology presented in this thesis. To understand the extent of the

problem, we focused the discussion on the issue of investigating how reliability is affected

by system performance, and therefore, how reliability is affected by system dynamics. In

this context, we proposed new importance measures that have the potential to be used as

part of a probabilistic-informed design framework within the context of the new method-

ology. The chapter concluded with a discussion of functional dependencies of the system

reliability function and the main open questions in this matter.

8.2 Conclusions

The design of an effective fault-tolerant system requires a thorough and comprehensive

analysis to fully understand and quantify potential failures and assess the effectiveness

of failure detection, isolation, and reconfiguration (FDIR) mechanisms. The literature

abounds with well-established techniques that support the system reliability evaluation

during its design phase.

Unfortunately, all these techniques have a common shortcoming: the difficulty of generat-

- 156 -

Chapter 8 Concluding Remarks

ing the reliability model in a systematic and objective way from the functional descriptions

of the system and the component failures, i.e, there is a gap between the system functional

model description and the system reliability model. For some conventional systems, this

shortcoming can be overcome, as it might not be very difficult to generate an objective and

complete reliability model from the system functional description, and from expert judg-

ment to assess the impact of component failures on the system functionality. However, this

is not the case for large complex systems or embedded software-intensive systems, typical of

fault-tolerant systems. For the analysis of these systems, all these techniques can yield

ambiguous and/or incomplete results, as it is virtually impossible to fully understand the

system behavior in the presence of failures -and thus, to determine its reliability- by

only using a qualitative description of the system's functionality and expert judgment.

We postulated that an excellent way to fill the gap between the system functional and

reliability models would be to use a behavioral model of the system dynamics, similar to

the ones used by control engineers when designing the control system, but with additional

features to model different failure behaviors of the components. The reliability model is

thus based on the system dynamic behavior when component failures within the system

occur. In this context, Markov models are the perfect formalism to model the stochastic

behavior due to component failures of fault-tolerant systems.

One of the most important challenges when formulating the mathematical foundations

of the new methodology was to link the system dynamic behavioral model and the sys-

tem reliability model. The way we approached and solved this problem was by introduc-

ing failure coverage probabilities in the stochastic model. We defined these probabilities

through the set of possible initial conditions at the time of failure, and a subset of possible

initial conditions that result in trajectories which are contained in some predefined set of

"acceptable" states. This resulted in the integration of system dynamic performance and

reliability, which enabled a completely new way of analyzing fault-tolerant systems, and

provided new insights from the analysis that were not possible to obtain before. Exam-

ples of these are the way the testing of FDIR effectiveness can now be incorporated into

the system performance and reliability analysis, and the multiple ways conceptually very

different architectural approaches to the same application can now be compared.

This thesis is a culmination of four years of research and development in the area of fault-

tolerant systems evaluation and design. The main contribution of this thesis is bringing

control theory, reliability theory, and system design a step closer to a unified systems sci-

ence discipline. In addition, this thesis bridges the gap between the system model behavior

-157-

Chapter 8 Concluding Remarks

and the reliability model, thus integrating dynamic performance and reliability evalua-

tion into one framework. The thesis covers many aspects of fault-tolerant systems design,

yet one of its major contributions is to provide a rigorous mathematical framework that

will enable future researchers to develop a fully integrated probabilistic-informed design

framework.

-158-

Chapter 8 Concluding Remarks

Appendix A

Basic Concepts and Definitions

A.1 Basic Definitions

The purpose of this appendix section is to define some basic concepts that appear in this

thesis. This section is by no means an extensive collection of reliability concepts and defi-

nitions. The reader is referred to [6, 65] for other reliability-related definitions.

Failure Rate. Let T 'j be a random variable that represents the time-to-failure-mode-j for

component i. The failure rate for failure mode j of component i is defined as

P(t < T'3 < t + At | T" > t)
Aq M) = limAt-o . (A.1)

It is frequently assumed that the failure rate follows the general shape of a bathtub curve

[6]. Most reliability analyses consider only the flat part of the curve, therefore assuming

a constant failure rate. This is not very realistic in applications where the system lifetime

is large enough to make component wear-out effects important. It is possible to model

wear-out effects using time-dependent failure rates.

Repair Rate. Let T '3 be a random variable that represents the time-to-repair for failure

mode j of component i. The repair rate for failure mode j of component i is defined as

SP(t < T|'i < t + At | T)'3 > t)

Failure Coverage Probability. A component is said to failed covered when a failure event

that occurs within the component, affecting its performance, can be detected, isolated, and

the system reconfigured to compensate for that failure [21]. Thus, the failure coverage

probability c is defined as the probability that given a failure event has occurred, it can be

detected, isolated, and the system reconfigured to compensate for the failure (in order to

keep delivering its function) before an unrecoverable transient occurs.

-159-

Point-Wise Reliability R(t). The point-wise system reliability R(t) is defined as the prob-

ability that the system is in a non-failed configuration at time t and can be computed as

R(t)dt = SpFC(t) (A.3)

where S [1 1 1 ... 1]' is a vector of ones and size m (the number of transient states), and

PFC corresponds to the transient states probabilities.

Point-Wise Unreliability Q(t). The point-Wise Unreliability Q(t) is defined as the proba-

bility that the system is in a failed configuration at time t and can be computed by

Q(t) = 1 - R(t). (A.4)

Dependability Rate (T). The dependability rate A(T) is defined as the ratio of the point-

wise unreliability Q(T) to the global system evaluation time T:

\ Q(T) (A.5)
T'

where T is the system evaluation time, e.g., system lifetime, or mission time. It has been

adopted from the Federal Aviation Administration (FAA) regulations [66]. It can be thought

of as an average failure rate for the system at time T.

A.2 Continuous-Time Markov Chains

Let the random process X = {X(t) : t > 0} be a family of random variables which take

values in some countable set C = {1, 2, ... N}, called the state space and indexed by [0, oo[.

The process X is called a continuous time Markov chain if it satisfies the Markov condition,

stated by

P(X(tn) = j X(t) = i, ... , X(_1) = in1) = P(X(tn) = j I X(tn_1) = in-1)

for all n > 1 and all j, ii, ..., in- 1 E S and any sequence ti < ... < tn. (A.6)

Denoting tn_ 1 by t and tn by t + At, with At -> 0, it is possible to write

P(X(t + At) = j I X(t) = i) = Aij(t)At, (A.7)

where A (t) is known as the transition rate from state i to state j.

-160 -

Basic Concepts and DefinitionsAppendix A

Appendix A Basic Concepts and Definitions

By using the Chapman-Kolmogorov equations, we obtain the set of differential equations

dpk(t) = Ak (t)pk (t) + EjJk Ajk (t)pj(t) with j, k {1, 2, ... N}

[P1(0) P2(0) ... PN(0)] = PO,

where P (t) is the probability of being in the state k E C at time t, given the

probability density function po, Ajk(t) is defined by

(A.8)

states initial

Ajk(t) = lim~t--o,
P(X(t + At) = k I X(t) = j)

At

and Ak(t) is the transition rate out of state k, and it is defined as

limAt-oP(X(t + At) = k I X(t) = k) = limAt.o(1 - Ak(t)At).

Equation (A.8) can be written in matrix form as

dt = AP(t)

P(O) = Po,

where P(t) = [p1(t) p2(t) ... pN(t)]' and A is called the generator of the chain (or the state-

transition matrix), and it is built using the transition rates Ak(t) and Ajk(t).

Notation Used in this Chapter

Markov chain state-transition matrix
Probability of being in state k at time t, given the states initial probability density function

Point-wise system unreliability
Point-wise system reliability
Time
System global evaluation time
Time-to-failure-mode-j for component i

Time-to-repair for failure mode j for component i
Transition rate out of state k
Transition rate from state j to state k
Failure rate for failure mode j of component i

Dependability rate
Repair rate for failure mode j of component i

System non-failed configurations probability vector

- 161 -

(A.9)

(A.10)

(A.11)

A:

Pk ():
Q(t) :
R(t)

T :

T;:

Ak:

Ajk

Xi :

(T)

pFC(t) :

Basic Concepts and DefinitionsAppendix A

Appendix B

InPRESTo Subroutines

Subroutines Description

Inpresto InPRESTo main script. All the subroutines, except Inpresto-plot are called from

this script.

failure-information searches in the Simulink model for the failure information of each

block.

init-evaluation will evaluate the initial behavior of the system when no failures has oc-

curred.

metrics-assessment will check whether the requirement specifications are met.

sequences-first-level will create the failure sequences to inject at the first level of failure.

evaluation This function will evaluate each sequence of failures at the k level.

sequences-separation This function will return the failed and non-failed sequences at each

level of failure

sequences-k-level This function will create the failure sequences to inject at the k level of

failure.

matrix helps establishing the state-transition matrix.

truncate-matrix truncates the state transition matrix at truncation level k-level after the

system was evaluated at k-level-1

markov-model-solver Script to solve the system of differential equations associated to the

Markov model.

metrics-models-evaluation This function will analyze the results of the evaluation.

sensitivity-analysis Similar to the previous one, when sensitivity is carried out.

-162 -

Appendix B InPRESTo Subroutines

results-analysis This function will collect the results in an excel spreadsheet.

Inpresto-plot This function will plot some of the the results of the evaluation.

SIMULINK system
behavioral model,

sequencesirstevel -nit_evaluation +-failure nformation performance metrics,
and requirements

initmatrix

evaluation

sequences-separation NO

sequences-k-level Truncation H as k. YE S

level k. been reached?

matrix

Are all sequences of NO truncate-matrix

failure catastrpi?
N

YES

....... e.it vity N O
markov model solver metrics models evaluationi anaLyss

YES

sesiiity-analysis

YES Plot individual
plot-solution failure results-analysis

sequences?

NO Analysis results

END spreadsheet report

Figure B.1: Subroutines flow diagram.

- 163 -

InPR ESTo SubroutinesAppendix B

Appendix B InPRESTo Subroutines

InPRESTo's Main Script

%%
% Alejandro D. Dominguez-Garcia

% aledan@MIT.EDU

% Laboratory for Electromagnetic and Electronic Systems

% Massachusetts Institute of Technology

% Created: October 20, 2005

% Modified: April 19, 2006

% Main script of the Performance Evaluator. Type Evaluator to invoke it.

% Make sure the Simulink model to be analyzed is opened.

%%%

function Inpresto

clear all

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% INIT VARIABLES %%%%%%%%%%%%%%%%%%%%%%%%%

% Init variables and global variables declaration

states-perjfailurelevel=l; % Only one possible state when

% no components have failed

system states.metrics=[]; % Metrics to assess the system

% performance

system states.stateof-the-system=[]; % Vector of zeros and ones

% representing if the system

% exhibitis some performance

system states.previous-state=[]; % Previous system state

systemstates.xfinal=[]; % Final states that will be used

% as initial conditions for the

% next sequence

system states.currentfailuremode=[]; % Current component failure mode

global stoptime;

global injection;

global time; % Row vector with the

% information regarding the time

% at which a failure occurs

global failure-modes; % Row vector with the

% information regarding each

% component failure mode

global symjmatrix; % It will be used by several

% subroutines

-164-

InPRESTo Subroutines

global P;

global sensitivity

global zimearr;

global levelnumber;

global sensanalysis;

global sensitivity-factor;

global truncation;

time_arr=[];

% Markov model state-transition

% matrix

% Structure to store the

% sensitivity matrices

% Number of failure levels

%%%%%%%%%%%%%%%%%%%%%%%%% ANALYSIS PARAMETERS INPUT %%%%%%%%%%%%%%%%%

modeljname=input('Enter model name: ' , 's');

evaluationtime=input('Global evaluation time T (h) :

truncation=input('Truncate evaluation (y/n): ', 's');

if truncation=='y'

t_level=input('Truncation level kmax :

else

t_level=le6;

end

stoptime=input('Configuration evaluation time tc (s): ');

injection=input('Failure injection time (between 0 and 1) :

sensanalysis=input('Sensitivity analysis (y/n): ', 's');

if sens-analysis=='y'

sensitivityfactor=...

input('Failure rates factor sensitivity analysis: ');

else

sensitivityfactor=0;

end

filename=input('xls file name for report: ' , 's');

tic

%%%%%%%%%%%%%%%%%%%%%%%%%%%% MODEL PREPARATION %%%%%%%%%%%%%%%%%%%%%%%%%

%tic

% Obtain the failure information included in the model.

[components information,failurejinfo,num-ofcomponents,...

failuremodesvector,metricsinformation,lambda,lambdasym]=...

failureinformation(modelname);

%disp(['Time taken to gather data and prepare model: ' num2str(toc)]);

%%%%%%%%%%%%%%%%%SYSTEM EVALUATION AND MARKOV MODEL CONSTRUCTION %%%%%%%

%tic

% Initial performance of the system

signals=[0 zeros(l,num-of-components) 1 0 0];

-165-

Appendix B

Appendix B InPRESTo Subroutines

evaluatedstatescounter=O;

[system states,evaluatedstates-counter,state ofthesystem]=...

initevaluation(modelname,signals,evaluated statescounter,...

numofcomponents,system-states);

% First set of signals for failure modes injection

[signals,statecounter,failurejlevelcounter]=...

sequences-firstlevel(failuremodesvector);

% First column of the state-transition matrix from the original set of

% signals.

[P sensitivity]=init-matrix(signals,failurejinfo,lambda,lambdasym);

while ((sum(state_of_thesystem)~=O) & (failurelevelcounter+l)<=(t_level))

states-perfailurejlevel=[statesper_failurejlevel ; size(signals,1)];

[system-states,evaluated statescounter,state ofthesystem]=...

evaluation(modelbname,signals,evaluatedstatescounter,...

numofcomponents,system states);

[nonfailure-sequences,failure-sequences]=...

sequences-separation(state_ofthe-system,signals);

if (failurelevelcounter+l)<=(tlevel)

[signals,statecounter,failurejlevelcounter]=...

sequences_k_level(non-failuresequences,...

failuremodes-vector,state_counter,failurelevel counter);

[P sensitivity]=matrix(signals,failureinfo,lambda,lambdasym);

end

evaluatedstatescounter

end

if ((failurejlevelcounter)==(t_level) & (sum(stateofthe-system)~=O))

[P,sensitivity]=truncatematrix(evaluatedstatescounter);

system-states(evaluatedstatescounter+l).metrics=O;

system-states(evaluatedstatescounter+l).stateofthe-system=O;

system-states(evaluatedstatescounter+l).previous state=[];

system-states(evaluatedstatescounter+l).xfinal=[];

system-states(evaluatedstates-counter+l).currentfailuremode=[];

statesper-failurejlevel=[states-perfailurelevel ; 1];

end

disp(['Time taken to evaluate system and build Markov model: ' num2str(toc)]);

disp(['Size of the Markov model transition matrix: ' num2str(size(P,1))]);

%tic

save matrixmodel P

save lambdamatrix lambda

disp(['Time taken to save the Markov model: ' num2str(toc)]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MARKOV MODEL SOLVER %%%%%%%%%%%%%%%%%%%%

tic

-166-

Appendix B InPRESTo Subroutines

[t,p,pstates] = markovmodelsolver(evaluationtime,lambda);

disp(['Time taken to solve the Markov model: ' num2str(toc)]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% METRICS EVALUATION %%%%%%%%%%%%%%%%%%%%%%%

tic

[non-functionalmetricsmeasures,...

nonfunctionalmetricsmeasureslevels,...

probabilistic-performance measures]=...

metricsmodelsevaluation(system-states,statesper-failurelevel,t,p);

disp(['Time taken to evaluate metrics: ' num2str(toc)]);

%%%%%%%%%%%%%%%%%%%%%%%%%%% SENSITIVITY ANALYSIS %%%%%%%%%%%%%%%%%%%%%%%

if sens-analysis=='y'

[sensitivitymeasures sensitivity-driver driver]=...

sensitivity-analysis(system states,t,pstates,...

components-information);

else

sensitivitymeasures=[];

sensitivity-driver=[];

driver=[];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ANALYSIS RESULTS %%%%%%%%%%%%%%%%%%%%%%%%%

tic

results-analysis(components information,system-states,...

states-per failure_level,t,p,non-functionalmetrics measures,...

nonfunctionalmetricsmeasureslevels,...

probabilistic-performance measures,sensitivitymeasures, ...

driver,filename)

disp(['Time taken to analyze results: ' num2str(toc)]);

disp(['Time taken to evaluate the system: ' num2str(toc)]);

%%%%%%%%%%%%%%%%%%%%%%%%% SAVE IMPORTANT RESULTS %%%%%%%%%%%%%%%%%%%%%%%

save modelresults modelname evaluationtime stop-time ...

injection filename lambda system-states t p numofcomponents

-167-

Appendix B InPRESTo Subroutines

failure-information

%%
% Alejandro D. Dominguez-Garcia

% aledan@MIT.EDU

% Laboratory for Electromagnetic and Electronic Systems

% Massachusetts Institute of Technology

% Created: October 21, 2005

% Modified: February 08, 2006

% This script searches in the Simulink model for the failure information

% of each block.

% INPUTS:

% -modelname: name of the Matlab Simulink model we want to search for

% failure

% information.

% OUTPUTS:

% -components-information: an array variable with the following fields:

% -name: name of the component with associated failure information

% -failureinfo: an array variable with the the following fields:

% -failuremodes: component failure modes

% -failurerates: failure rates associated to each failure mode

% listed in the failuremodes field.

% -failureinfo: componentsinformation.failureinfo. This is necessary

% to pass to the matrix subroutine.

% -num-of-components: variable that returns the number of components in

% the system

% -failuremodesvector: a vector of dimension the number of components

% with associated failure information. Each elements has an integer

% thatrepresents the number of failure modes associated to the

% component.Each element has an integer that represent the number of

% failure modes considered for each component.

% -lambda: a matrix with as many rows as components and columns equal to

% the number of failure modes of each component.

% COMMENTS:

% This function is able to reado both symbolic and numerical data from

% the simulink failure blocks information. It is possible to introduce

% time-dependent failure rates or constants to carry out sensitivity

% analysis later on.

%%

-168 -

Appendix B InPRESTo Subroutines

function [components information,failure info,num-ofcomponents,...

failuremodesvector,metrics information,lambda,lambdasyml=...

failureinformation(modelname)

%Init

components information.name=[];

componentsinformation.failureinfo=[];

failureinfo.failuremodes=[];

failureinfo.failure_rates=[];

failureinfo.failurerates-sym=[];

failureinfo.lambda=[];

failuremodesvector=[];

metricsinformation.name=[];

syms lambda-sym;

syms t;

%%%%%%%%%%%%%%%%%%%%% COMPONENTS INFORMATION %%%%%%%%%%%%%%%%%%%%%%%%%%%

% It breaks the links with all the libraries so it is possible to modify

% the library blocks

save_system(modelname,model_name, 'BreakLinks');

% Look for the components with associated failure information.

failureblocks=...

findsystem...

(model_name,'LookUnderMasks','all','Regexp', 'on','Name','Failures');

failuremodestag=...

find-system...

(model_name,...

'LookUnderMasks','all','Regexp', 'on','Name','Failuremode');

for i=l:size(failureblocks,l)

% We label each block with the right index

set-param...

(char(failuremodes-tag(i)), 'Time', ['time(' num2str(i) ')'],...

'After', ['failuremodes(' num2str(i) ')']);

% look for the last two field of the string

failurestag=regexp(char(failureblocks(i)),' (\w*)/Failures','match');

% look for the name of the component with failure information

component-name=regexp(char(failures-tag),'(\w*)/','match');

componentsinformation.name=...

[components_information.name ; component-name];

% Look for all the variables withing the mask

failurevariables=getparam(char(char(failure blocks(i))),'MaskNames');

% look for the different values of the mask

failurerates=getparam(char(failure-blocks(i)),'MaskValues');

for j=l:size(failure variables,1)

-169-

Appendix B InPRESTo Subroutines

% it only takes the information regarding failure modes

if size(char(failurevariables(j)),2)>l

failureinfo.failuremodes=...

[failureinfo.failure_modes ; failurevariables(j)];

failureinfo.failurerates=...

[failure_info.failurerates; sym(char(failurerates(j)))];

lambda(i,j)=eval(sym(char(failure rates(j))));

lambdasym(i,j)=['lambda(' num2str(i) ',' num2str(j) ')'];

failurerates-sym=['lambda(' num2str(i) ',' num2str(j) ')'];

failureinfo.failure-rates-sym=...

[failureinfo.failurerates-sym ; sym(failure rates-sym)];

end

end

componentsjinformation.failureinfo=...

[componentsinformation.failure_info ; failure_info];

% Empty the auxiliary variables for the next iteration

failureinfo.failure-modes=[];

% Empty the auxiliary variables for the next iteration

failureinfo.failure rates=[];

% Empty the auxiliary variables for the next iteration

failureinfo.failurerates_sym=[];

end

% We will be passing only the failureinfor portion to the matrix

% subroutine

failureinfo =componentsinformation.failureinfo;

numof-components=size(failure-info,1);

% Failure modes vector. It is a row vector with as many elements as

% system components. Each element has an integer that represent the number of

% failure modes considered for each component.

for i=l:size(failure_info,l)

failuremodesi=size (failureinfo(i).failuremodes,1);

failuremodesvector=[failuremodesvector failuremodes_i];

end

%%%%%%%%%%%%%%%%%%%%% METRICS INFORMATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

metricsblocks=...

find-system(model-name,'LookUnderMasks','all','Regexp', 'on',...

'Name','Metrics');

for i=l:size(metricsblocks,l)

% look for the name of the metrics

metricsinformation(i).name=get-param(metrics-blocks(i),'VariableName');

end

-170-

Appendix B InPRESTo Subroutines

init-evaluation

%%

% Alejandro D. Dominguez-Garcia

% aledan@MIT.EDU

% Laboratory for Electromagnetic and Electronic Systems

% Massachusetts Institute of Technology

% Created: January 24, 2005

% Modified: April 19, 2006

% This function will evaluate the initial behavior of the system when no

% failures has occured.

% INPUTS:

% -modelname: name of the Matlab Simulink model we want to analyze.

% -signals: matrix with failure sequences information. Each row

% represents a sequence of failures. The first column is an index

% associated with the

% element that has failed. Columns 2 to numofcomponents+l represents

% the state of each component. If the element signals(2,3) has a value

% of k=4, means that element 1 in the third possible failure sequence

% failed in failure mode with index 4. If k=0, it means normal

% operation of the component.

% -evaluatedstatescounter: index representing the highest state

% already evaluated by the algorithm.

% -num-of-components: variable that returns the number of components in

% the system.

% -systemstates: an array with the following fields:

% -metrics: metrics to assess the system performance.

% -stateofthe-system: vector of zeros and ones representing if the

% system exhibitis some performance.

% -previous-state: previous system state.

% -currentfailuremode: current component failure mode. It has two

% sub-fields:

% -component: index to represent which component has failed

% -componentfailuremode: index to represent the corresponding

% failure mode.

% OUTPUTS:

% -systemstates: see above.

% -evaluated states counter: see above.

% -stateofthe-system: column vector with zeros and ones. A one

% represent the system exhibiting some performance.

%%

-171-

InPRESTo Subroutines

function [system states,evaluatedstates-counter,stateof-the-system]=..

initevaluation(modelname,signals,evaluated statescounter,...

numofcomponents,system-states)

global stoptime;

global time;

global failure-modes;

global levelnumber;

levelnumber=O;

stateofthesystem=[];

y=[];

time=zeros(l,num of_components);

failuremodes=signals(2:numof_components+l);

options=[];

% Final conditions for this sequence of failures that will be passed to

% the next sequence of failures

[timearr,x,yout]=sim(model_name, [0 stoptime],options);

xfinal=x(size(x,l),:);

%%

% This is just to get an steady-state picture of the system response

xinitial=xfinal;

[timearr,x,yout]=sim(model_name, [0 stoptime],options);

%%

[stateofthesystemji,metrics]=...

metricsassessment(Performance metrics,upper-bound,lowerbound);

stateofthesystem= [stateofthe-system ; stateofthesystemji];

systemstates(evaluatedstatescounter + 1).metrics=metrics';

systemstates(evaluatedstatescounter + 1).stateof_thesystem=...

stateofthe-system-i;

systemstates(evaluatedstatescounter + 1).previousstate=...

signals(size(signals,2) - 1);

systemstates(evaluatedstatescounter + 1).xfinal=xfinal;

currentfailuremode.component=signals(1,1);

currentfailuremode.component-failure mode=signals(signals(1)+1);

systemstates(evaluatedstatescounter + 1).currentfailuremode=...

currentfailure_mode;

evaluatedstates-counter=evaluatedstatescounter+size(signals,1);

%%%%%%%%%%%%%%%%%%%%%%% AUXILIARY FUNCTION %%%%%%%%%%%%%%%%%%%%%%%%

function [stateofthesystemji,metrics]=...

metricsassessment(Performancemetrics,upper-bound,lowerbound)

metrics=[];

% Metrics definition for each of the performance metrics.

for i=l:size(Performancemetrics,2)

-172-

Appendix B

Appendix B InPRESTo Subroutines

metrics (i)=norm(Performancemetrics (:,i) ,inf);

end

%%%%%%%%%%%%%%%%%%%%%% AUXILIARY FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if max((metrics(:)>upper-bound(:) I metrics(:)<lowerbound(:)))==1;
stateofthe-systemji=O;

else

stateofthe-systemji=l;

end

end

- 173 -

Appendix B InPRESTo Subroutines

sequences-first-level

%%

% Alejandro D. Dominguez-Garcia

% aledan@MIT.EDU

% Laboratory for Electromagnetic and Electronic Systems

% Massachusetts Institute of Technology

% Created: October 20, 2005

% Modified: October 20, 2006

% This function will create the failure sequences to inject at the first

% level of failure.

% INPUTS:

% -failuremodesvector: a vector of dimension the number of components

% with associated failure information. Each elements has an integer

% that represents the number of failure modes associated to the

% component.

% OUTPUTS:

% -signals: a matrix with as many rows as the sum of failure modes

% of all the components and many columns as components plus 4. The

% first column is an index to represent the failed component. The last

% column represents the component that failed just before. The one

% before the last and the one before the one before the last is the

% state number.

% -statecounter: it counts the number of states.

% -failurelevel: it counts the levels of failure.

%%%

function [signals,statecounter,failurejlevelcounter]=...

sequencesfirstlevel(failuremodesvector)

% Init

statecounter=l;

signals=sparse ([]);

failurelevelcounter=l;

- 174 -

Appendix B InPRESTo Subroutines

% Create signals

for i=l:size(failuremodesvector,2)

failuremodesi=failuremodes vector(i);

signals-aux=...

[i*ones(failure modesji,1) ...

zeros(failuremodes_i,size(failuremodesvector,2))...

statecounter*ones(failuremodes_i,l)+[1:1:failure-modes_i]' ...

ones(failuremodes_i,1) zeros(failure_modes_i,1)];

signalsaux(:,i+l)=[1:1:failure modes_i]';

signals=[signals; signalsaux];

statecounter=statecounter+failuremodesi;

end

-175-

InPR ESTo SubroutinesAppendix B

init-matrix

%%

% Alejandro D. Dominguez-Garcia

% aledan@MIT.EDU

% Laboratory for Electromagnetic and Electronic Systems

% Massachusetts Institute of Technology

% Created: October 24, 2005

% Modified: April 19, 2006

% This script helps establishing the state-transition matrix.

%%

function [P sensitivity]=...

init_matrix (signals, failureinfo,lambda, lambdasym)

global symmatrix;

global sensitivity;

for i=l:size(signals,l)

if symmatrix=='n'

lambdai=lambda(signals(i,l),signals(i,signals(i,l)+l));

elseif symmatrix=='y'

lambdai=lambda-sym(signals(i,l),signals(i,signals(i,l)+1));

end

% State transition matrix

P(signals(i,size(signals,2)-2),signals(i,size(signals,2)-1))=...

lambda_i;

aux=-lambda_i;

P(signals(i,size(signals,2)-1),signals(i,size(signals,2)-1))=...

P(signals(i,size(signals,2)-1),signals(i,size(signals,2)-1))+aux;

% Sensitivity matrices

k=signals (i, 1) ;

l=signals(i,signals(i,1)+1);
m=signals(i,size(signals,2)-2);

n=signals(i,size(signals,2)-1);

sensitivity(k,l).matrix(m,n)=sparse(l);

sensitivity(k,l).matrix(n,n)=sparse(-1);

end

P=sparse (P);

- 176 -

Appendix B InPR ESTo Subroutines

Appendix B InPRESTo Subroutines

evaluation

%%
% Alejandro D. Dominguez-Garcia

% aledan@MIT.EDU

% Laboratory for Electromagnetic and Electronic Systems

% Massachusetts Institute of Technology

% Created: October 24, 2005

% Modified: February 08, 2006

%% This function will evaluate each sequence of failures at the k level

%% INPUTS:

% -modelname: name of the Matlab Simulink model we want to analyze.

% -signals: matrix with failure sequences information. Each row

% represents a sequence of failures. The first column is an index

% associated with the element that has failed. Columns 2 to

% num of components+l represents the state of each component.

% If the element signals(2,3) has a value of k=4, means that element 1

% in the third possible failure sequence failedin failure mode with

% index 4. If k=0, it means normal operation of the component.

% -evaluatedstatescounter: index representing the highest state

% already evaluated by

% the algorithm.

% -num-of-components: variable that returns the number of components in

% the system.

% -systemstates: an array with the following fields:

% -metrics: metrics to assess the system performance.

% -stateofthe-system: vector of zeros and ones representing if the

% system exhibitis some performance.

% -previousstate: previous system state.

% -currentfailuremode: current component failure mode. It has two

% sub-fields:

% -component: index to represent which component has failed

% -componentfailuremode: index to represent the corresponding

% failure mode.

% OUTPUTS:

% -systemstates: see above.

% -evaluated states counter: see above.

% -stateofthe-system: column vector with zeros and ones. A one

% represent the system exhibiting some performance.

%%%

-177-

Appendix B InPRESTo Subroutines

function [systemstates,evaluatedstatescounter,state ofthe-system]=...

evaluation(modelname,signals,evaluatedstates counter,...

num-of components,system-states)

global stop-time;

global injection

global time;

global failure-modes;

stateof-the-system=[];

global levelnumber

options=[];

levelnumber=levelnumber+l;

for i=l:size(signals,l)

time=zeros(1,num-of-components);

time(signals(i,1))=injection*stop-time;

failuremodes=signals(i,2:num-of-components+l);

xinitial=system states(signals(i, size(signals,2) - 1)).xfinal;

%options=simset('InitialState',xinitial);

[timearr,x,yout]=sim(model_name, [0 stoptime],options);

% Final conditions for this sequence of failures that will be passed

% to the next sequence of failures

xfinal=x(size(x,1),:);

[state_ofthesystemji,metrics]=...

metricsassessment(Performance_metrics,upper-bound,lowerbound);

stateofthe-system= [state-of-thesystem ; state_of_thesystemji];

systemstates(evaluatedstatescounter + i).metrics=metrics';

systemstates(evaluatedstatescounter + i).stateofthe-system=...

stateof-the-systemji;

systemstates(evaluatedstatescounter + i).previousstate=...

signals(i, size(signals,2) - 1);

systemstates(evaluatedstatescounter + i).xfinal=xfinal;

currentfailuremode.component=signals(i,1);

currentfailuremode.component-failure_mode=signals(i,signals(i)+l);

end

evaluatedstatescounter=evaluatedstatescounter+size(signals,l);

-178-

InPR ESTo SubroutinesAppendix B

Appendix B InPRESTo Subroutines

%%%%%%%%%%%%%%%%%%%%%%% AUXILIARY FUNCTION %%%%%%%%%%%%%%%%%%%%%%%%

function [stateofthe_systemi,metricsV= ...

metrics_assessment (Performancemetrics, upper-bound, lower-bound)

metrics=[];

% Metrics definition for each of the performance metrics.

for i=l:size(Performancemetrics,2)

metrics (i)=norm(Performancemetrics (:,i) ,inf);

end

%%%%%%%%%%%%%%%%%%%%%% AUXILIARY FUNCTIONS %%%%%%% %%%%%%%%%%

if max((metrics (:)>upper-bound(:) I metrics (:)<lower_bound(:)))==l;

state_of_the-systemji=O;

else

state_of_the-systemji=l;

end

end

- 179 -

InPR ESTo SubroutinesAppendix B

Appendix B InPRESTo Subroutines

sequences-separation

%%
% Alejandro D. Dominguez-Garcia

% aledan@MIT.EDU

% Laboratory for Electromagnetic and Electronic Systems

% Massachusetts Institute of Technology

% Created: July 5, 2005

% Modified: July 5, 2005

% This function will return the failed and non-failed sequences at each

% level of failure

%%

function [non-failure-sequences,failuresequences]=...

sequences-separation (state-of-the-system, signals)

% Init of auxiliary variables

aux2=[];

aux4=[];

% Augmented matrix with the last row including the state of the system

signals-aug=[state-ofthe-system signals];

% The number of columns and rows is needed for following calculations

[m,n]=size(signalsaug);

for i=l:m

% we will compute the sequences of failures that are not

% catastrophic

if signalsaug(i,l)==l

auxl=signals-aug(i,2:n);

aux2=[aux2; auxl];

else

aux3=signals-aug(i,2:n);

aux4=[aux4; aux3];

end

end

nonfailuresequences=aux2;

failure-sequences=aux4;

-180-

Appendix B InPRESTo Subroutines

sequences-k-level

%%

% Alejandro D. Dominguez-Garcia

% aledan@MIT.EDU

% Laboratory for Electromagnetic and Electronic Systems

% Massachusetts Institute of Technology

% Created: October 20, 2005

% Modified: October 20, 2005

% This function will create the failure sequences to inject at the k

% level of failure.

% INPUTS:

% -nonfailure-sequences: the sequences of failures corresponding to the

% states at level k-l that did not produce a system failure.

% -failuremodesvector: vector of dimension the number of components

% with associated failure information. Each elements has an integer

% that represents the number of failure modes associated to the

% component.

% -statecounter: it counts the number of states.

% -failurelevel: it counts the levels of failure

% OUTPUTS:

% -signals: a matrix with as many rows as the sum of failure modes

% of all the components and many columns as components plus 4. The

% first column is an index to represent the failed component. the last

% column represents the component that failed just before. The one

% before the last and the one before the one before the last is the

% state number.

% -statecounter: see above.

% -failurelevel: see above.

%%

function [signals,state-counter,...

faiLurelevel-counter]=sequences k_level(non-failuresequences,. ..

failuremodesvector, state counter, failurelevelcounter)

% Init signals

- 181 -

Appendix B InPRESTo Subroutines

signals=sparse([]);

% Increases the failure level counter

failurelevelcounter=failurelevel_counter+l;

for j=l:size(non-failure-sequences,1)

single-sequence=non failure-sequences(j,:);

for i=2:size(failuremodesvector,2)+l

if single-sequence(i)==O;

failuremodesi=failuremodes vector(i-1);

new-sequences-aux-j=...

[ones(failuremodes_i,1)*singlesequence];

new-sequences-aux-j(:,i)=[1:1:failure-modesji]';

new-sequences-aux-j(:,l)=i-1;

new-sequences-aux_j(:,size(failuremodesvector,2)+3)=...

single-sequence(size (failuremodes-vector,2)+2);

new-sequences-aux-j(:,size(failuremodesvector,2)+2)=...

statecounter*ones(failuremodes i,l)+[1:1:failuremodes i]';

new-sequencesaux_j(:,size(failuremodesvector,2)+4)=...

single-sequence(1);

state-counter=statecounter+failuremodesi;

signals=[signals ; new-sequencesaux_j];

end

end

end

-182-

Appendix B InPRESTo Subroutines

matrix

%%

% Alejandro D. Dominguez-Garcia

% aledan@MIT.EDU

% Laboratory for Electromagnetic and Electronic Systems

% Massachusetts Institute of Technology

% Created: October 24, 2005

% Modified: April 19, 2005

% This script helps establishing the state-transition matrix.

%%

function [P sensitivity]=matrix(signals,failure_info,lambda,lambdasym)

global symmatrix;

global ?;

global sensitivity;

for i=l:size(signals,l)

if symmatrix=='n'

lambdai=lambda(signals(i,l),signals(i,signals(i,l)+l));

elseif symmatrix=='y'

lambdai=lambda-sym(signals(i,l),signals(i,signals(i,l)+l));

end

P (signals (i, size (signals, 2) -2) ,signals (i, size (signals, 2) -1)) =...

lambdai;

aux=-lambdai;

P (siLgnals (i, size (signals, 2) -1) ,signals (i, size (signals, 2) -1)) =...

P(signals(i,size(signals,2)-1),signals(i,size(signals,2)-1))+aux;

% Sensitivity matrices

k=signals (i, 1);
l=s:Lgnals (i, signals (i, 1)+1);

m=s:gnals (i, size (signals, 2) -2);

n=signals (i, size (signals, 2) -1);

sensitivity (k, l) .matrix (m, n)=sparse (1);

sensitivity(k,l) .matrix(n,n)=sparse(-l);

end

-183 -

Appendix B InPRESTo Subroutines

truncate-matrix

%%
% Alejandro D. Dominguez-Garcia

% aledan@MIT.EDU

% Laboratory for Electromagnetic and Electronic Systems

% Massachusetts Institute of Technology

% Created: February 10, 2006

% Modified: April 19, 2006

% This script truncates the state transition matrix at truncation level

% tlevel after the system was evaluated at tlevel-1.

%%

function [P, sensitivity]=truncatematrix(evaluated_states_counter);

global P;

global sensitivity;

% Truncate transition matrix

P = [P(1:evaluatedstatescounter, :) ;

sum(P((evaluated_states_counter+l) :size(P, 1), :),l)];

% Truncate sensitivity matrices

for i=l:size(sensitivity,l)

for j=l:size(sensitivity,2)

if size(sensitivity(i, j) .matrix, l)>evaluated_states_counter
sensitivity(i, j) .matrix= ...
[sensitivity(i,j) .matrix(l:evaluatedstatescounter, :) ;

sum(sensitivity(i, j).matrix(...

evaluatedstatescounter+l) :size (sensitivity(i, j) .matrix, 1), :),l) 1;
end

end

end

-184 -

Appendix B InPRESTo Subroutines

markov-model-solver

%%
% Alejandro D. Dominguez-Garcia

% aledan@MIT.EDU

% Laboratory for Electromagnetic and Electronic Systems

% Massachusetts Institute of Technology

% Created: August 23, 2005

% Modified: April 19, 2006

% Script to solve the system of differential equations associated to the

% Markov model.

% INPUTS:

% -evaluationtime: time for which we want to analyze the system under

% study information.

% OUTPUTS:

% -t: column vector with the times corresponding to each row of the

% matrix p

% -p: matrix with as many columns as system states. The number of

% columns is equal to the number of time steps taken by the solver to

% solve the system.

%%

%%%%%%%%%%%%%%%%%% NEW IMPLEMENTATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This is a very fast algorithm that only works for Sparse numerical

% matrices. It has implemented the inline evaluation of matrices for

% time-dependent coefficients, but this is not compatible with sparse

% matrices, therefore, only sparse connstant matrices can be solved

function [t,p,p_states] = markovmodelsolver(evaluationtime,lambda)

global P;

global A;

global sensitivity

global symmatrix;

global Lambdaij;

global sensitivity-factor;

global sensanalysis;

% Number of equations

[N,M]=size(P);

P=[P sparse (N,N-M)];

-185 -

Appendix B InPR ESTo Subroutines

Appendix B InPRESTo Subroutines

% Time span for simulation

tspan=[O,evaluationtime];

% Initial conditions

p_0=zeros(N,1);

p-0(1)=l;

% To check if the matrix is purely numerical. In this case, a faster

% evaluator will be used

syms t

if sym-matrix=='y'

A=eval(P);

else

A=P;

end

options=odeset('RelTol',l.e-4);

whoslambda=whos('lambda');

if length(whos_lambda.class)==3

A=inline (P);

[t,p]=ode23(@jacobiantime,tspan,pO,options);

else

[t,p]=ode23(@jacobian-constant,tspan,p_0,options);

end

%%%%%%%%%% SENSITIVITY ANALYSIS WITH RESPECT TO EACH FAILURE RATE %%%%%%

if sens-analysis=='y';

for i=l:size(sensitivity,1)

for j=l:size(sensitivity,2)

[a,b]=size(sensitivity(i, j).matrix);

aux=sparse([sensitivity(i,j).matrix ; zeros(N-a,b)]);

DeltaLambdajij=[aux zeros(N,N-b)];

Lambda-ij=P+sensitivity-factor*lambda(i, j)*Delta_Lambda_ij;
[t,ps]=ode23(@jacobian-sensitivity,tspan,pj,options);

p_states(i, j).p=ps;

end

end

else

p_states=[];
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%% AUXILIARY FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%

function dpdt=jacobiantime(t,p)

global A

dpdt=A(t)*p;

end

-186-

Appendix B InPRESTo Subroutines

function dpdt=jacobianconstant (t,p)

global A

dpdt=A*p;

end

function dpdt=jacobian-sensitivity(t,p)

global Lambda_ij

dpdt=Lambdai j*p;

end

- 187 -

Appendix B InPRESTo Subroutines

metrics-models-evaluation

%%

% Alejandro D. Dominguez-Garcia

% aledan@MIT.EDU

% Laboratory for Electromagnetic and Electronic Systems

% Massachusetts Institute of Technology

% Created: November 2, 2005

% Modified: March 21, 2006

% This function will analyze the results of the evaluation.

% INPUTS:

% -systemstates: an array with the following fields:

% -metrics: metrics to assess the system performance.

% -stateofthe-system: vector of zeros and ones representing if the

% system exhibitis some performance.

% -previous-state: previous system state.

% -currentfailuremode: current component failure mode. It has two

% sub-fields:

% -component: index to represent which component has failed.

% -componentfailuremode: index to represent the corresponding

% failure mode.

% -states-per-failurelevel: row vector with as many elements as levels

% per failure. Each element is an integer representing the number of

% each states at that level.

% -t: column vector with the times corresponding to each row of the

% matrix p

% -p: matrix with as many columns as system states. The number of

% columns is equal to the number of time steps taken by the solver to

% solve the system.

%%

function [non-functionalmetricsmeasures, ...

nonfunctionalmetricsmeasureslevels, ...

probabilistic-performancemeasures =...

metrics_modelsevaluation(system-states,statesper-failurelevel,t,p)

level=[];

global -:runcation;

- 188 -

Appendix B InPRESTo Subroutines

if isempty(systemstates(size(systemstates,2)).currentfailuremode)==O

%%%%%%%%%%%%%%%%%%%%%% NON-FUNCTIONAL METRICS MEASURES %%%%%%%%%%%%%

%%% NOMINAL VALUES (UNALTERED FAILURE RATES) %%%%%%%%

% Reliability

system state=[system states.state_ofthe-system];

state-probability=p(size(t,1),:);

reliability-lower bound=system state*state-probability';

reliability-upper-bound=reliability_lower bound;

nonfunctionalmetricsmeasures(l).name='System Reliability';

nonfunctionalmetricsmeasures(l).value=...

[reliability_lowerbound reliability-upper-bound];

nonfunctionalmetricsmeasures(l).error=O;

% Unreliability

unreliabilityjlowerbound=...

(ones(l,size(systemstate,2))-systemstate)*state-probability';

unreliability-upperbound=unreliabilityjlower-bound;

nonfunctionalmetricsmeasures(2).name='System Unreliability';

nonfunctionalmetricsmeasures(2).value=...

[unreliability_lowerbound unreliabilityupperbound];

nonfunctionalmetricsmeasures(2).error=O;

%%%%%%%%%%%%%%%%%%%% PROBABILISTIC PERFORMANCE METRICS %%%%%%%%%%%%%

% Expected value model

metricj=[system-states.metrics];

evacc=metricl*(state-probability'*size(metric_1,1));

probabilistic-performancemeasures(1).name='Accuracy Expected Value';

probabilistic-performancemeasures(1).value=evacc;

% Expected value of the deviation absolute value model

devmetricl=...

metric_l-[system-states(1).metrics ...

zeros(size(metric_1,1),size (metric_1,2)-1)];

evaccabsval-dev=...

abs(devmetricl)*(stateprobability'*size(metric_1,1));

probabilistic-performancemeasures(2).name=...

'Accuracy absolute value deviation expected value';

probabilistic-performancemeasures(2).value=evaccabs-val_dev;

else

%%%%%%%%%%%%%%%%%%%%%% NON-FUNCTIONAL METRICS MEASURES %%%%%%%%%%%%%

% Reliability

system state=[systemstates.stateofthesystem];

state-probability=p(size(t,1),:);

reliability-lower-bound=system state*state-probability';

reliability-upper-bound=...

-189-

InPRESTo Subroutines

system state*state-probability'+...

state-probability(size(stateprobability,2));

nonfunctionalmetrics measures(1).name='System Reliability';

non-functionalmetricsmeasures(1).value=[reliabilitylowerbound ...

reliability-upperjbound];

nonfunctionalmetricsmeasures(1).error=[state-probability(size...

state-probability,2))];

% Unreliability

unreliabilityjlowerbound=...

(ones(1,size(system-state,2)-l)-system-state(1,1:(...

size(system-state,2)-l)))*stateprobability(1,1:(...

size(system-state,2)-1))';

unreliability-upper-bound=(ones(...

1,size(system-state,2))-system-state)*stateprobability';

nonfunctionalmetricsmeasures(2).name='System Unreliability';

nonfunctionalmetricsmeasures(2).value=...

[unreliability_lowerbound unreliabilityupperbound];

non-functionalmetricsmeasures(2).error=...

[stateprobability(size(state-probability,2))];

%%%%%%%%%%%%%%%%%%%% PROBABILISTIC PERFORMANCE METRICS %%%%%%%%%%%%%

% This is the new probabilistic performance measure in which only the

% non-failed states are considered.

% Expected value model

metricl=...

[systemstates(1,1:size(system states,2)-l).metrics zeros(...

size(system-states(1).metrics,1),1)];

evacc=...

metric_1*((1/reliabilityjlowerbound)*system state.*state-probability)';

probabilistic-performancemeasures(1).name='Accuracy Expected Value';

probabilistic-performancemeasures(1).value=ev-acc;

% Expected value of the deviation absolute value model

devmetricl=metricj-[system states(l).metrics ...

zeros(size(metric_1,1),size(metric_1,2)-1)];

evaccabsvaldev=...

abs(devmetric_1)*((l/reliability_lower-bound)*...

systemstate.*state-probability)';

probabilistic-performancemeasures(2).name=...

'Accuracy absolute value deviation expected value';

probabilistic-performance measures(2).value=evaccabsval_dev;

end

for i=2:size(states-perfailurejlevel,1)

initialstatelevel i=sum(states-perfailurelevel(l:i-1)) + 1;

-190-

Appendix B

Appendix B InPRESTo Subroutines

finalstate_leveli=sum(states-per-failure-level(l:i));

reliability-i=...

system-state(initial_state_level_i:final_state_level_i)* ...

state_probability(initial_state_level_i:finalstate_level_i)';

unreliability-i...

=(ones(l,finalstate_level_i-initial_state_level_i+l)-...

system-state(initial_state_level_i:final_state_level_i))* ...

state-probability(initial_state_level_i:final_state_level_i)';

level_i=[reliability-i unreliability_i];

level=[level ; level_i];

end

nonfunctionaltmetricsmeasureslevels=level;

- 191 -

Appendix B InPRESTo Subroutines

sensitivity-analysis

%%
% Alejandro D. Dominguez-Garcia

% aledan@MIT.EDU

% Laboratory for Electromagnetic and Electronic Systems

% Massachusetts Institute of Technology

% Created: April 19, 2006

% Modified: April 19, 2006

% This function will carry out the sensitivy analysis

% system.

%%

function [sensitivity measures sensitivity-driver driver]= ..

sensitivity-analysis(system-states,t,pstates,components-information)

sensitivity measures . driver= [];

sensitivity measures.value-lower-bound=[];

sensitivity measures.value-upperbound=[];

sensitivity-driver=[];

if isempty(systemstates (size(systemstates,2)) .current_failuremode)==0

%%%%%%%%%%%%%%%%%%%%%% NON-FUNCTIONAL METRICS MEASURES %%%%%%%%%%%%%

system state=[system states.state_of_thesystem];

for i=l:size(pstates,1)

for j=l:size(p_states(i),2)

state-probability=p_states(i,j) .p(size(t,l), :);

unreliability-ij=...

(ones (l,size(system-state,2))-systemstate) *state-probability' ;

sensitivitymeasures (i, j) .driver= ...
{[cell2mat(components_information.name(i)) ...

cell2mat(...

componentsinformation.failure_info(i) .failuremodes (j))] };

sensitivitymeasures (i, j) .value_lower_bound=unreliabilityjij;
sensitivitymeasures (i, j) .value-upper-bound=unreliability-ij;
sensitivity-driver(i, j)=[unreliability-ij];

end

end

[drivervalue_i driver_index_i]=max(sensitivitydriver');

[drivervaluej driver_indexj]=max(drivervaluei);

-192 -

InPR ESTo SubroutinesAppendix B

Appendix B InPRESTo Subroutines

driver={[cell2mat(componentsinformation.name(driverindex_i)) ...

cell2mat(components_information.failureinfo(...

driverindexji).failurejnodes(driverindex-j))]};

else

%%%%%%%%%%%%%%%%%%%%%% NON-FUNCTIONAL METRICS MEASURES %%%%%%%%%%%%%

% Reliability

system state=[system states.stateofthe-system];

for i=l:size(pstates,1)

for j=l:size(p_states(i),2)

state-probability=pstates(i,j).p(size(t,1),:);

unreliability-ijlowerbound=...

(ones(1,size(system-state,2)-1)-...

system-state(1,1:(size(system-state,2)-l)))*state-probability(1,1:(...

size(system-state,2)-i))';

unreliability-ijupperbound=...

(ones(1,size(system-state,2))-systemstate)*state-probability';

sensitivity-measures(i, j).driver={[cell2mat(...
componentsinformation.name(i)) ...

cell2mat(components_information.failurejinfo(i).failuremodes(j))]};

sensitivity-measures(i, j).valuelowerbound=unreliability-ijjlower-bound;

sensitivity-measures(i, j).valueupper-bound=unreliability-ij-upper-bound;

sensitivity-driver(i, j)=[unreliability-ij-upper-bound;];

end

end

[drivervaluei driverindexji]=max(sensitivitydriver');

[drivervaluej driverindex-j]=max(driver value_i);

driver={[cell2mat(componentsinformation.name(driver_index i)) ...

cell2mat(...

componentsinformation.failure_info(...

driverindexji).failure-modes(driver_indexj))]I;

end

-193-

InPR ESTo SubroutinesAppendix B

Appendix B InPRESTo Subroutines

results-analysis

%%%%%%%:%%%
% Alejandro D. Dominguez-Garcia

% aledan@MIT.EDU

% Laboratory for Electromagnetic and Electronic Systems

% Massachusetts Institute of Technology

% Created: October 26, 2005

% Modified: February 08, 2006

% This function will analyze the results of the evaluation.

% INPUTS:

% -components-information: an array variable with the following fields:

% -name: name of the component with associated failure information

% -failureinfo: an array variable with the the following fields:

% -failuremodes: component failure modes

% -failurerates: failure rates associated to each failure mode

% listed in the failuremodes field.

% -systemstates: an array with the following fields:

% -metrics: metrics to assess the system performance.

% -stateofthe-system: vector of zeros and ones representing if the

% system exhibitis some performance.

% -previous-state: previous system state.

% -currentfailuremode: current component failure mode. It has two

% sub-fields:

% -component: index to represent which component has failed.

% -componentfailuremode: index to represent the corresponding

% failure mode.

% -states-per-failurelevel: row vector with as many elements as levels

% per

% failure. Each element is an integer representing the number of each

% states at that level.

% -t: column vector with the times corresponding to each row of the

% matrix p

% -p: matrix with as many columns as system states. The number of columns

% is equal to the number of time steps taken by the solver to solve the

% system.

% -filename: name of the *.xls file where the analysis will be stored.

%%%

-194-

InPRESTo Subroutines

function results-analysis(components-information,system-states,...

states-per-failure_level,t,p,nonfunctional metricsmeasures,...

nonfunctionalmetricsmeasureslevels,...

probabilistic-performance measures,...

sensitivity-measures,driver,filename)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MAIN ANALYSIS %%%%%%%%%%%%%%%%%%%%%%%%%%%

% Init variables

sequence=[];

failurelevel-info=[];

metrics=[];

nonfunctionalmetricsinfo=[];

probabilistic-performance measures_info=[];

probabilistic-performance measures_value=[];

drivers=[];

valuelowerbound=[];

value-upper-bound=[];

global sensanalysis;

% Copy the template analysis file into the file entered for outputing the

% results

copyfile('results-analysis.xls', filename,'f');

% Initial state, system with no failures

state-probabilityO=p(size(t,1),l);

metricsjl=systemstates(l).metrics;

failurelevelinfo = [state-probabilityO ; metrics_l];

xlswrite(filename, failure_levelinfo,

['Failure Level 0 and Metrics'], 'B3');

failurelevelinfo=[];

% Subsequent states, system with one, two, ... , n failures

for i=2:size(states-perfailurelevel,1)-l

% Initial state label at level i

initialstate-leveli=sum(states-perfailurelevel(l:i-1)) + 1;

% Final state label at level i

finalstateleveli=sum(states-per-failurelevel(l:i));

for j=initialstateleveli:finalstatelevel_i

currentfailuremode=system-states(j).currentfailure-mode;

% Sequence of failures at the first level

if i==2

sequence(j).aux={[cell2mat(componentsinformation.name(...

currentfailure-mode.component)) cell2mat(...

componentsinformation.failure_info(...

currentfailuremode.component).failuremodes(...

currentfailuremode.componentfailure-mode))]};

- 195 -

Appendix B

InPRESTo Subroutines

% Sequence of failures after the first level

else

sequence(j).aux=...

{[cell2mat(sequence(system-states(j).previousstate).aux) ...

'->' cell2mat(components_information.name(...

currentfailuremode.component)) ...

cell2mat(components_information.failure_info(...

currentfailuremode.component).failuremodes(...

currentfailuremode.component-failure-mode))]};

end.

% Sequence of failures yielding to the current state,

% including the current failure mode

sequence-j=cell2mat(sequence(j).aux);

% Failure rate for the last failure mode

failureratei=char((components-information.failure_info(...

currentfailuremode.component).failure_rates(...

currentfailuremode.component-failure-mode)));

% State number

state_index=j;

% State probability at the end of the evaluationtime

state-probability-j=p(size(t,l),j);

% System metrics for each state

metrics-j=system-states(j).metrics';

% State of the system (failed or operational)

stateofthe-system=system-states(j).state_ofthesystem;

failurelevelinfo = ...

[failure_level_info ; {sequencej, failure_rate_i, ...

state_index, state-probability_j, ...

stateof-the-system};

metrics=[metrics; metricsj];

end

% Failure level information

xlswrite(filename, failure_level_info,

['Failure Level ' num2str(i-l)], 'A2');

% Performance metrics

xlswrite(filename, metrics, ['Failure Level ' num2str(i-l)], 'F2');

failurelevelinfo=[];

metrics=[];

end

%This is to write the last level of failure%%%

i=size(statesperfailure_level,1);

% Initial state label at level i

- 196 -

Appendix B

InPRESTo Subroutines

initialstateleveli=sum(states-perfailurejlevel(l:i-1)) + 1;

% Final state label at level i

finalstateleveli=sum(states-per-failurelevel(l:i));

% The system has more than one component

if initialstateleveli<=finalstatelevel_i

if isempty(system-states(...

initialstateleveli).currentfailure mode)==O

for j=initialstateleveli:finalstatelevel_i

currentfailuremode=system-states(j).current_failure-mode;

% The system is not single string

if initialstateleveli>2

sequence(j).aux=...

{[cell2mat(sequence(system-states(j).previousstate).aux) '->'

cell2mat(componentsinformation.name(...

currentfailuremode.component)) ...

cell2mat(components_information.failure_info(...

currentfailuremode.component).failuremodes(...

currentfailuremode.componentfailure mode))]};

else

% All the failure modes are at the first level

sequence(j).aux=...

f[cell2mat(components-information.name(...

currentfailuremode.component)) ...

cell2mat(componentsinformation.failure_info(...

currentfailuremode.component).failuremodes(...

currentfailuremode.component-failurejmode))]};

end

% Sequence of failures yielding to the current state,

% including the current failure mode

sequence-j=cell2mat(sequence(j).aux);

% Failure rate for the last failure mode

failureratei=char((components-information.failure_info(...

currentfailuremode.component).failure_rates(...

currentfailuremode.component-failure-mode)));

% State number

state_index=j;

% State probability at the end of the evaluationtime

state-probability-j=p(size(t,l), j);

% System metrics for each state

metrics-j=system-states(j).metrics';

% State of the system (failed or operational)

stateofthe-system=system-states(j).state_ofthesystem;

-197-

Appendix B

Appendix B InPRESTo Subroutines

failurelevelinfo = [failurelevel_info ; ...

{sequencej, failure_rate_i, ...

state_index, state-probability-j, state_of_thesystem}];

metrics=[metrics; metricsj];

end

% Failure level information

xlswrite(filename, failure_level_info,....

['Failure Level ' num2str(i-1)], 'A2');

% Performance metrics

xlswrite(filename, metrics, ['Failure Level ' num2str(i-1)], 'F2');

failurelevel-info=[];

else

stateindex=initialstatelevelJi;

state-probability-j=p(size(t,l),initial_state_level_i);

failurelevelinfo = [failurelevel_info ; {'ABSORBING STATE', 'N/A',

state_index, state-probability-j, 'N/A', 'N/A'}];

% Failure level information

xlswrite(...

filename, failure_levelinfo, ['Failure Level ' num2str(i-1)], 'A2');

failurelevelinfo=[];

metrics=[];

end

end

state-probability_0=p(size(t,1),l);

metrics=system-states(1).metrics;

failurelevel_info = [stateprobability_ ; metrics];

xlswrite(filename, failure_level_info, ['Failure Level 0 and Metrics'], 'B3');

failurelevel_info=[];

%%%%%% NON-FUNCTIONAL METRICS RESULTS %%%%%%%%%%%%%%%%%%%

for j=l:size(nonfunctionalmetricsmeasures,2)

nonfunctionalmetricsinfo=[non_functionalmetrics_info

[nonfunctional-metrics measures(j).value non_functionalmetricsmeasures(j...

).error]];

end

xlswrite(filename,...

nonfunctionalmetrics_info, 'Failure Level 0 and Metrics','E7');

xlswrite(filename, ...

nonfunctionalmetricsmeasures_levels, ...

'Failure Level 0 and Metrics','E12');

for j=l:size(probabilistic-performance-measures,2)

probabilistic-performancemeasuresinfo=...

[probabilistic-performance measures_info ; ...

-198-

InPR ESTo SubroutinesAppendix B

{probabilisticperformancemeasures(j).name}];

probabilistic-performance measuresvalue=...

[probabilistic-performancemeasuresvalue ; ...

probabilistic-performancemeasures(j).value'];

end

xlswrite(filename, probabilistic-performance measures_info,

'Failure Level 0 and Metrics','D2');

xlswrite(filename, probabilistic-performance measures-value,

'Failure Level 0 and Metrics','E2');

%%%%%%%%%%%%%%%%% SENSITIVITY ANALYSIS RESULTS %%%%%%%%%%%

if sensanalysis=='y'

for j=l:size(sensitivity measures,1)

drivers=[drivers ; {cell2mat(sensitivity measures(j).driver)}];

valuelowerbound=...

[value_lower_bound ; sensitivity measures(j).valuelower_bound];

value-upperbound=...

[value-upper-bound ; sensitivity measures(j).value_upperbound];

end

xlswrite(filename, drivers, 'Failure Level 0 and Metrics','A25');

xlswrite(filename, valuelowerbound, ...

'Failure Level 0 and Metrics','B25');

xlswrite(filename, value-upper-bound, ...

'Failure Level 0 and Metrics','C25');

xlswrite(filename, driver, 'Failure Level 0 and Metrics','E25');

end

% Open xls file with report

winopen(filename);

- 199 -

Appendix B InPR ESTo Subroutines

Appendix B InPRESTo Subroutines

Inpresto-plot

%%
% Alejandro D. Dominguez-Garcia

% aledan@MIT.EDU

% Laboratory for Electromagnetic and Electronic Systems

% Massachusetts Institute of Technology

% Created: February 09, 2005

% Modified: May 23, 2006

% This function will plot some of the the results of the evaluation.

%%

function Inpresto-plot

% We need to load the results in the workspace in order to be able to

% plot any dynamic behavior

load modelresults

global stop-time;

global time;

global injection

global failure-modes;

plotting=' y';

while plotting=='y'

state=input('Introduce the state number (spreadsheet column C): ');

failuremodes=zeros(l,num-ofcomponents);

time=zeros(1,num-of-components);

currentfailuremode=system-states(state).current_failuremode;

[time_arr,x,yout]=sim(model_name, [0 stoptime]);

%%

% This is just to get an steady-state picture of the system response

xinitial=x(size(x,1),:);

options=simset('InitialState',xinitial);

[time_arr,x,yout]=sim(modelname, [0 stoptime],options);

y-l=[time-arr yout];

-200-

%%

if system-states (state) .previousstate ~=0

time (currentfailure_mode.component)=injection*stoptime;

previous=system-states (state) .previousstate;

previous failure-mode=systemstates (state) .currentfailuremode;

while previous~=0

failuremodes(previous failuremode.component)=...

previous failuremode.component-failure mode;

previous_failuremode= ...

system-states (previous) .currentfailuremode;

previous=systemstates (previous) .previous_state;

end

xinitial= ...

systemstates (system-states (state) .previousstate) .xfinal;

options=simset('InitialState',xinitial);

[timearr,x,yout]=sim(model_name, [0 stoptime],options);

y_k=[timearr,yout];

else

[timearr,x,yout]=sim(model_name, [0 stoptime],options);

%%

yk=[timearr,yout];

end

%%%%%%%%%%%%%%%%%%%%%% FcS case study Chapter 5 %%%%%%%%%%%%%%%%%%%%%%%%

figure (state) ;

plot(y_k(:,1),y_k(:,2),'-','LineWidth',l); hold

plot(yk(:,1),y_k(:,3),'g--','LineWidth',l)

plot(yk(:,1),yk(:,4),'r:','LineWidth',1)

set(gca,'fontsize',16,'fontname','times new roman');

xlabel('Time[s]','fontsize',16,'fontname','times new roman');

ylabel('\phi-c [rad], \phir [rad], \phi [rad]','fontsize',16,...

'fontname','times new roman');

legend('Roll command \phi_c','Reference model response \phi-r',...

'Aircraft response \phi')

axis([0 stop-time -0.25 0.25]);

hold off

%%%%%%%%%%%%%%%%%%%%%% SbW case study Chapter 6 %%%%%%%%%%%%%%%%%%%%%%%

figure (state) ;

subplot (2,1,1)

plot(yk(:,l),yk(:,2),'b-','LineWidth',l); hold

plot(y_k(:,1),y_k(:,3),'r-','LineWidth',1)

- 201 -

Appendix B InPR ESTo Subroutines

InPRESTo Subroutines

set(gca,'fontsize',14,'fontname','times new roman');

xlabel('Time [s]','fontsize',16,'fontname','times new roman');

ylabel('\delta-w [deg], SR\delta [deg]','fontsize',16,...

'fontname','times new roman');

legend('Steering wheel angle \delta-w',...

'Scaled road wheel angle SR\delta')

axis([0 stop-time -20.5 13.5]);

subplot (2,1,2)

plot (yk (:,1),y_k(:,4),'b-','LineWidth',l); hold

plot (yk,(:,1),y_k(:,5),'r-','LineWidth',1);

set(gca,'fontsize',14,'fontname','times new roman');

xlabel('Time [s]','fontsize',16,'fontname','times new roman');

ylabel('\Psir [deg], \Psi [deg]','fontsize',16,...

'fontname','times new roman');

legend('Conventional vehicle response \Psir', 'SbW vehicle response \Psi')

axis([0 stop-time -0.85 1.5]);

hold of:'

plotting.=...

input('Do you want to plot some of the performance solutions? (y/n): ','s');

end

-202-

Appendix B

Appendix C

Component Behavioral Models for the Flight

Control System Case-Study

C.1 Primary Flight Computer

C.1.1 Voter

61 = IU1 - U21

E2= IU1 - U31

E3= JU2 - U31

u - max{ui} - min{ui},

NIL,

if E i,j = 1, 2,3 / e + ej < 2e

if i = 1, 2,3

otherwise (C.1)

where c = 0.1rad.

C.1.2 Roll Control Law

Rr(S) KrO/c(S)+ Kr 2 Rb(S) + Kr3 Pb(s)

(=(Pr + L + Drs)(Rr (s) ±Kra (s))

- 203 -

Component Behavioral Models for the Flight Control System Case-Study

5Ilr)(t) = f 6o (t), for r =
2A5 (t), for r = 1

2V(), for U1 = 0

0, for Uf = 1

-(rand(l, u), for U1 = 2

61 (r) (r), for Uf = 3

og (Oa)(t)), for U1 = 4 (C.2)

where Kr1 = 0.66, Kr2 = -0.145s, Kra = 2.16s, zr = 11.1s- 1 , pr 25s-1, Pr 0.45A,

Ir = 6A/s, Dr = 0.OlAs, and Kr = -1.33 were taken from [41]; and 1 = -5A, u = 5A

r,= 0.2s, and r is the time at which the computer gets stuck.

C.1.3 Yaw Control Law

Ry (s) = Ky cc(s) + 2K 2 Rb(s) + Ky3 Pb(s))

6r-(s) = (Py + + Dys) (Ry (s) + Kycr (s))

6r,(t) = { 6r (t), for r = 0

26r-(t), for r = 1

6r,(t), for Uf = 0

0, for Uf = 1

6r,(t) = rand(l, u), for Uf = 2

6r,(T), for Uf = 3

OaI(Orr(t)), for U1 = 4 (C.3)

where Ki =0.001, Ky2 = -0.7816s, KY3 = 0. 172s, zY1 -0.00125s-2, zY2 = -0.001875s-1,

py = 1.5s- 1, Py = 0.45A, I, = 6A/s, Dy = 0.OlAs, K. = -1.33, were taken from [41]; and

1 = -5A, u = 5A T- = 0.2s, and r is the time at which the computer gets stuck.

- 204 -

Appendix C

Appendix C Component Behavioral Models for the Flight Control System Case-Study

C.2 Actuation Subsystem

C.2.1 Ailerons

G(s) = iT (+(s+L)(s+)

T (r) = k G (s) 1(r)(+
1l(2) = k21+G(s)(arS)

T 2)(t), for Uf = 0

(t) = 0, for Uf = 1

T (r), for Uf = 2 (C.4)

where k, = 5000s 2, k2 50, T= 10s, Tm = 10s, Ti = 4s, T2 = 10s, T3 = 100s, and r is the

time at which the actuation subsystem gets stuck.

C.2.2 Rudder

(s+')(s+a)
(s) = k (s

Trl2 (S) = k21I+ -G(s) 6r (S)

Trl(2, for Uf = 0

Trl(2) (t) = 0 for Uj = 1

Tr (2)(T), for Uf = 2 (C.5)

where k, = 5000s 2, k 2 = 50, Tc = 10s, Tm = 10s, Ti = 4s, T2 = 10s, T3 = 100s, and T is the

time at which the actuation subsystem gets stuck.

- 205 -

Component Behavioral Models for the Flight Control System Case-Study

C.3 Mechanical Combiner

C.3.1 Ailerons

Ta' = Ga, ali + £a2) (C.6)

where G, = 0.5.

C.3.2 Rudder

Tr = Gr(tri + tr) (C.7)

where Gr = 0.5.

C.4 Control Surfaces

C.4.1 Ailerons

. 1,r 1 Ir __ ra =--xa+ Tl,r
Xa)Ta Ta a
61l(r) = 0'r,(Xa)

6a(r)

l(r) = (T),

ao,

for U1 = 0

for Uf = 1

for U1 = 2 (C.8)

where -re, = 0.04s and r, = 0.11s, ao = 0.216rad, were taken from [41]. r is the time at

which the aileron gets stuck.

- 206 -

Appendix C

Component Behavioral Models for the Flight Control System Case-Study

C.4.2 Rudder

Xr = -X ±x+Tr
Tr Tr

6r=0'r1 (Xr)

where r, = 0.05s and Ti = .ls were taken from

stuck.

for Uf = 0

for Uf 1

for U1 = 2 (C.9)

[41]. T is the time at which the rudder gets

C.5 Inertial Measurement Unit

Ximu(t + At) = ximu(t) + randn(0, o 1 - e-2At/r)

ximu(0) = 0 ss

yimu(t +

[M1 + M 2 + I]

randn(0,

Mi = Ki 0
0

M2 = K2 -ran

rand

At) Ximu(t + At) +

[Pb 1 randn(b, Ob)

qb + randn(Pb, Ob)

rb J [randn(Pb, Jb)
1) 0 0

randn(0, 1) 0

0 randn(0,

0 0 0

dn(0, 1) 0 0

n(0, 1) 0 -randn(0, 1)

- 207 -

I

Appendix C

Component Behavioral Models for the Flight Control System Case-Study

yimu, for Uf = 0

0, for Uf = 1

{yimu+=YiU Gyimu, for Uf = 2

yimu + B, for Uf = 3 (C.10)

where o, = 3.15 - 10-6, At = 0.01s, -r = 100s, yb = 4.85 - 10- 6 rand(0, 1), 9b = 2.09 - 10-5,

K1 = 10-4, K 2 = 9.7. 10-5, G = 1.5, and B = 0.3deg.

C.6 Control Surfaces Position Sensor

C.6.1 Ailerons

.1(r) = _1 X1(r) 1 Xl(r)
XSa 7. Sa a

1(r)r=
YSa1

(y(r) for f= 0
y07), for Uf =I

Sa Gyl[) for Uf =2

yr) + B, for Uf = 3

where Ts = 0.01s, ,r = 0.001s, R = 0.001, G = 1.5, and B = 0.3deg.

C.6.2 Rudder

(C.11)

' S -~s,+± 6r
X 0sr (X rsSr T1

Ysr

- 208 -

Appendix C

Appendix C Component Behavioral Models for the Flight Control System Case-Study

YS,, for Uf = 0

0, for Uf 1

YS GyS for Uf = 2

yo, + B, for Uf = 3 (C.12)

where r, = 0.01s, Tj = 0.001s, R = 0.001, G = 1.5, and B = 0.3deg.

C.7 Linear Lateral-Directional Aircraft Dynamics

) -O sin ao - cos ao g cos o)
Pb _ LO Lp Lr 0 Pb

7b No Np Nr 0 rb

L 0 1 tan c0 0 J

0 0 YS 1
N61 N6' Ng a

+ a a Nr (C.13)
LSt L6, LS, a

0 0 0

where Y3 = -50.69m/s 2, V = 178m/s, ao = 0.216rad, g = 9.81m/s 2, Lj3 -32.3s 2,

LP = -0.374s- 1 Lr = 2.40s- 1, N3 = 1.06s 2 , NP = -0.0406s 1 Nr = -0.0809s 1, Y6, =

0.0179s- 1, N6 = -3.175s- 2, N6r = 3.175s- 2 , N6, = 6.66s- 2, Li = -0.855s- 2, Lsr =

0.855s- 2, and LSr = -1.18S- 2, were taken from [67].

Notation Used in this Appendix

B: Bias factor for IMUs and control surface position sensors

g :Acceleration of gravity

G: Gain change factor for IMUs and control surface position sensors

Ga: Left and right mechanical combiner gain
G, : Rudder mechanical combiner gain
LO: Dimensional variation of rolling moment about X, with 3

LP: Dimensional variation of rolling moment about X, with p
Lr: Dimensional variation of rolling moment about X, with r

Li :Dimensional variation of rolling moment about X, with 3i

- 209 -

Component Behavioral Models for the Flight Control System Case-Study

N, :
N, :
N 51

N 6 '-:

N 6,-:
Nb, : (S
pb, Pb(s) :
r :

R :
rb, Rb(s)

t:

Tr

1(21)
Taa

Tr (2), r I)

U1/U, Ua:
f3 :
USr:d

V :

1,r:
Ximu :

T
r:

yiMU, Iyimu :

-i 8 r

[*]

k1, :2 - 1 T2 3

) : n

r , a , :

br,*, 6r, I r,,:

Ta:
7r:

-r :

rand(l, u) :
randn(p, a-) :
ki , k2, Tj , T2, T3,

Tc, 1 M :

- 210 -

Appendix C

Dimensional variation of rolling moment about X, with 5'
Dimensional variation of rolling moment about X8 with 6 r

Dimensional variation of yawing moment about Z, with /
Dimensional variation of yawing moment about Z, with p
Dimensional variation of yawing moment about Z, with r
Dimensional variation of yawing moment about Z. with Sa
Dimensional variation of yawing moment about Z with 5j
Dimensional variation of yawing moment about Z with Sr
Roll rate
Primary Flight Computers reconfiguration signals
Control surface position sensors resolution
Yaw rate
Laplace transform variable
Time

Left (right) aileron torque command

Left (right) aileron actuation subsystem torque output

Rudder torque command
Rudder actuation subsystem torque output

Voter inputs
Voter output
Component failure model switch control input
Forward velocity
Left (right) aileron state variable
Inertial measurement unit state variables
Rudder state variable

Left (right) aileron position sensor state variable
Rudder position sensor state variable
Inertial measurement output

Left (right) aileron position sensor output
Rudder position sensor output
Dimensional variation of Y-force with /
Dimensional variation of Y,-force with 5r
Pitch angle
Sideslip angle
Yaw command

Left (right) aileron angle
Rudder angle

Roll control output

Yaw control output
Voter tolerance error
Roll angle
Roll command
r1 -shift operator
Heading angle
Inverse of aileron bandwidth
Inverse of rudder bandwidth
Inverse of left, right, and rudder position sensors bandwidth
Ceiling function
Uniformly distributed random generator between I and u
Gaussian distributed random generator with mean p and standard deviation a

Left, right, and rudder actuation subsystem parameters

Component Behavioral Models for the Flight Control System Case-Study

K 1, K 2 , At,T, 7Ab,

resa, O-b :

KrI, Kr2 , Kr3 ,

Zr,Pr, Pr, Ir,

Dr, Kr :

Kyl ,KY2, KY3 ,

Iy, Dy, Ky :

IMU parameters

Roll control law parameters

Yaw control law parameters

Appendix C

- 211 -

Appendix D

Component Behavioral Models for the

SbWIBAS Case-Study

D.1 Steer-by-wire Computer

D.1.1 Voter

El = JUl - U21

E2 =|U1 - U31

E3 = 1U2 - U31

ui - max{ui} -

U2 + U3

NIL,

where c = 0.1rad.

min{ui},

if I i= 1,2, 3 /ci < E

otherwise

D.1.2 Steering Rack Position Controller for the lock-step processors architec-

ture

T,.(s) = (P1 + + Dis)(y6, - y6)

- 212 -

(D.1)

if 2 ij = 1, 2, 3/cis+ Ej < 2c

Appendix D Component Behavioral Models for the SbWIBAS Case-Study

Tr, M= T (t),

2T- (t),

Trr (t),

0,

Tr,(t) = rand(l,u),

-(T()),

where PI = 60A, I, = 7A/s, Di = 15As, 1 = -5A,

which the computer gets stuck.

for r = 0

for r = 1

for Uf = 0

for U = 1

for Uf = 2

for U = 3

for U = 4 (D.2)

u = 5A -r = 0.2s, and r is the time at

D.1.3 Steering Rack Position Controller for the SbW/BAS architecture

Tr,(s) = 2(P 2 + L2+ D2s)(y6,s - kly s)

Trr(t) = { T

Tr(t),

0,

Tr,(t) = rand(l, u),

Trr(r),

0-1 (T,(0)), 1

where P2 = 15A, 12 = 15A /s, D2 = 3As, k, =1.23, 1

time at which the computer gets stuck.

for r = 0

for r = 1

for U1 = 0

for U1 1

for Uf = 2

for U1 = 3

for U = 4 (D.3)

= -5A, u = 5A ri = 0.2s, and r is the

- 213 -

Appendix D Component Behavioral Models for the SbW1BAS Case-Study

Component Behavioral Models for the SbWIBAS Case-Study

D.2 Brake-Actuated-Steering Computer

D.2.1 Voter

El = Jul

E2 = Jul

63 = IU2

- U21

- U31

- U31

3

Zui - maxfui I - minjui },
i= 1

Ui + Uj12
NIL,

if] i,j = 1,2,3 / c +Ej < 2e

if 3i = 1,2,3/ci < E

otherwise

where e = 0.1rad.

D.2.2 Longitudinal Force Tires Controller

FlfI*(s) = -FIf*(s) = }(P2 + + D 28)(ye5w - k6y 2)

F1! i(r),(t) = {~f~)()
,Flf(r) (t),

0,

Fifl(r)r(t) = rand(l, u),

FIfl(r) (r),

0- (FfI,),(t)),

where P3 = 60A, 13 = 1OA/s, D3 7As, k2 =1.07, 1 =

time at which the computer gets stuck.

for r = 0

for r = 1

for Uj = 0

for Uj = 1

for Uf = 2

for U = 3

for Uf = 4 (D.5)

-5A, u = 5A Tj = 0.2s, and T is the

- 214 -

(D.4)

Appendix D

Component Behavioral Models for the SbWBAS Case-Study

D.3 Steering Rack Actuation Subsystem

G(s)= k
1(S+))(s+ ')(s+)

Tr (s)) =Sg r (s)

Tr1 ()(t) = 0,

Trl(2 (W),

for Uf = 0

for U1 = 1

for U1 = 2 (D.6)

where kI = 5000s 2 , kr = 1 for the lock-step processor architecture, and kr = 11.3 for the

SbW/BAS architecure, rcr = 10s, rf, = 10s, rr = 4s,4rr = 10s, rr = 100s, and r is the time

at which the actuation subsystem gets stuck.

D.4 Mechanical Combiner

Tr = (Trl + Tr 2) (D.7)

where SR = 17.

D.5 Caliper Actuation Subsystem

G(s) = k(s+)(s±4)
(s+-)(s+g)

Fl fl(r (s) =k +(s) F (s)F1!l~)(S =2 1+G(s) lf l(r)r(S

Flfi(r),

FIfl(r)(t) = 0,

Flfl(r) (-r),

for U1 = 0

for Uj = 1

for U1 = 2 (D.8)

-215-

Appendix D

Appendix D Component Behavioral Models for the SbWIBAS Case-Study

where k' = 0.5s 2, k' = 0.1, Tg = 10s, rC = 10s, Tf = 4s, r2 = 0.Is, and r is the time at

which the actuation subsystem gets stuck.

D.6 Road Wheel Angle Sensor

--3+ 167
5 Ts

y6 Gs -1--

yJ, for Uf = 0

0, for Uf = 1

Gy, for Uf = 2

yj + B, for Uf = 3 (D.9)

where Ts = 0.01s, Ti = 0.001s, R = 0.001, G, = 17.85, G = 1.5, and B = 0.3deg.

D.7 Steering Wheel Angle Sensor

&J. IX. +±i6W
OW Ts

0
W Ts

-6 For 1,(X6w)-A
RIY6"' for Uf =0

0, for Uf = 1
= Gyjw, forUf=2

y 3w + B, for Uf = 3 (D.10)

where rs = 0.01s, r = 0.001s, R = 0.001, G = 1.5, and B = 0.3deg.

- 216 -

Appendix D Component Behavioral Models for the SbW/BAS Case-Study

D.8 Linear Single-Track Vehicle Dynamics

-F
1.

Cf +C,
mV

aCf -bC,

.0

aC -bCr - 1
mV

2

a 2
Cf+b 2

C, 0 bv.
1 0 T

1+
FafI = Ff, = f(0 + 1 - 6)

-[mV
-aC1

0

I~
(D.11)

where a = 1.046m, b = 1.712m, Cf = -1090N/deg, m = 1741.6 Kg, J = 3007 Kgm2, and

V = 70 km/h, correspond to a medium-size Ford® vehicle.

D.9 Linear Two-Track Vehicle Dynamics

-F
1Z

-FCf+C,
mV

aCf -bC,
J

0

aCf-bCr - -
mV

2 i
a 2

Cf+b2
Cr 0l

1 0i

-0 0 -~ iAFif

+J 2J AFir
0 0

0/

rb

T,

I+ ['il
mV

-aCf
J

0

I
Fii + Ffr + FrI + Fir= 0

F F5 =f, = Cf (0B + a _ Fsfi = Ffr =(V -6 2)

Fsr =Fsrr =!r (03 -) (D.12)

where a = 1.046m, b = 1.712m, Cf = -1090N/deg, Cr = -1090N/deg, m = 1741.6 Kg,

J = 3007 Kgm 2, and V = 70 km/h, correspond to a medium-size Ford® vehicle.

-217-

Component Behavioral Models for the SbW1BAS Case-StudyAppendix D

Appendix D Component Behavioral Models for the SbWBAS Case-Study

D.10 Rack

J6+B6= S(Flfl -tnfr)+T(Fsfl+Fsfr) +Tr, for -4wr <6<47r

= 0, for 6 = 4r

6 = 0, for 6 = -41r

where J, = lOKgm 2 , B, = 0.lNms, S = -0.02m, and T = 0.025m.

Notation Used in this Appendix

a:
b :
B:
B,:
Cf
Cr:

G:

Fif , Ffr, P;f1, PIf
Fqf I, Faf, :
Flff1,, Fif 1,, if G,., Elfr* , Flfrr ,lfrr
G, :
JC:

kk, r, rg, r , r , r :1~ 2
7

,29Th'3
7

m
k, k', r, -r, -, 4r,, -r4:
M :

P1, I1, D1 :

P2, 12, D2, ki :

P3, 13, D3,k3:
r :

R :
rb :
5 :
S:
SR:
t :
R :
Tr:

Tr(2), trI(:2)

Tr ,Tr,* Ir, :
U1, U2, U3 :

Distance from center of gravity to front axle
Distance from center of gravity to rear axle
Bias factor for road wheel angle and steering wheel angle sensors
Steering rack and actuation motors combined viscous coefficient
Front axle equivalent cornering stiffness
Rear axle equivalent cornering stiffness
Gain change factor for road wheel angle and steering wheel angle sensors
Longitudinal forces acting on the front left and right tire
Side forces acting on the front left and right tire
Longitudinal force tires controller output
Road wheel angle sensors gain
Yaw inertia
Steering rack and actuation motors combined inertia
Steering rack actuation subsystem parameters
Caliper actuation subsystem parameters
Mass
Steering rack position controller parameters for the lock-step processors architecture
Steering rack position controller parameters for the SbW/BAS architecture
Longitudinal force tires controller parameters for the SbW/BAS architecture
Primary Flight Computers reconfiguration signals
Control surface position sensors resolution
Yaw rate
Laplace transform variable
Scrub radius
Steering ratio
Time
Mechanical trail
Steering rack torque command
Steering rack actuation subsystem torque output
Steering rack position controller output
Voter inputs

- 218 -

(D.13)

Appendix D Component Behavioral Models for the SbW/BAS Case-Study

f : Voter output
V :Center of gravity speed
X6 :Road wheel angle sensor sensor state variable

x6W :Steering wheel angle sensor sensor state variable

y6, y6 Road wheel angle sensor sensor output

y, Steering wheel angle sensor sensor output
/3: Sideslip angle
3 : Road wheel angle

Steering wheel angle
Voter tolerance error

' : Heading angle
og-~ (r) : w-shift operator

Inverse of road wheel angle and steering wheel angle sensors bandwidth

[] : Ceiling function
rand(l, u): Uniformly distributed random generator between I and u

-219-

Bibliography

[1] R. Hammett and P. Babcock, "Achieving 10' dependability with drive-by-wire sys-
tems," SAE Technical Paper Series, no. 2003-01-1290, 2003.

[2] M. Abele, "Modellierung und bewertung von fehlertoleranzmassnahmen in kfz-
energiebordnetzen fr sicherheitsrelevante verbraucher," Master's thesis, Unikassel
Versitat, Kassel, Germany, 2004.

[3] E. Gai and M. Adams, "Measures of merit for fault-tolerant systems," The Charles
Stark Draper Laboratory, Cambridge, MA, Tech. Rep. CSDL-P-1752, 1983.

[4] J. Laprie, Ed., Dependability: Basic Concepts and Terminology. New York, NY: Springer-
Verlag, 1991.

[5] A. Avizienis, "Design of fault-tolerant computers," in Proceedings of the Fall Joint Com-
puter Conference, AFIPS Conference, Washington, DC, 1967, pp. 733-743.

[6] A. Hoyland and M. Rausand, System Reliability Theory. New York, NY: John Wiley
and Sons, 1994.

[7] Y. Papadopoulos, J. McDermid, R. Sasse, and G. Heiner, "Analysis and synthesis of
the behavior of complex programmable electronic systems in conditions of failure,"
Journal of Reliability Engineering and System Safety, vol. 71, no. 3, pp. 229-247, Mar. 2001.

[8] Y Papadopoulos, D. Parker, and C. Grante, "Model-based automated synthesis of
fault trees from matlab-simulink models," in Proceedings of the International Conference
on Dependable Systems and Networks, Gothenburg, Sweden, 2001, pp. 77-82.

[9] N. Leveson, Safeware: System Safety and Computers. Boston, MA: Addison-Wesley
Publishing Company, 1995.

[10] IEEE Standard Dictionary of Electrical and Electronics Terms, IEEE Std. 100-1996, 1996.

[11] E. S. Agency. (2002) New Soyuz TMA spacecraft cleared for next mission with ESA
astronaut. [Online]. Available: http://www.esa.int/esaCP/Pr_13_2003_iEN.html

[12] E. Moore and C. Shannon, "Reliable circuits using less reliable relays, parts I & II,"
Journal of the Franklin Institute, vol. 262, pp. 191-208 and 281-297, Sept./Oct. 1956.

[13] J. Taylor, "An algorithm for fault-tree construction," IEEE Transactions on Reliability,
vol. 31, no. 2, pp. 219-254, June 1982.

- 220 -

BIBLIOGRAPHY

[14] J. Fussel, E. Aber, and R. Rahl, "On the quantitative analysis of priorty-and failure
logic," IEEE Transactions on Reliability, vol. 31, no. 2, pp. 219-254, June 1982.

[15] J. Dugan, S. Bavuso, and M. Boyd, "Fault trees and sequence dependencies," in Pro-
ceedings of the Annual Reliability and Maintainability symposium, Los Angeles, CA, 1990.

[16] -- , "Dynamic fault fault-tree models for fault-tolerant computer systems," IEEE
Transactions on Reliability, vol. 41, no. 3, pp. 363-377, 1992.

[17] R. Manian, J. Dugan, D. Coppit, and K. Sullivan, "Combining various solution tech-
niques for dynamic fault tree analysis of computer systems," in Proceedings of the Third
IEEE International High-Assurance Systems Engineering Symposium, Washington, DC,
1998.

[18] Y. Papadopoulos, D. Parker, and C. Grante, "A method and tool support for model-
based semi-automated failure modes and effect analysis of engineering designs," in
Proceedings of the 9 th Australian Workshop on Safety Critical Systems, Brisbane, Australia,
2004.

[19] J. Taylor, "An integrated approach to the treatment of design and specification errors
in eletronic systems and software," in Proceedings of the Fifth European Conference on
Electrotechnics, Copenhagen, Denmark, 1982.

[20] Y. Papadopoulos, D. Parker, M. Walker, U. Pertersen, R. Hamann, and Q. Wu, "Auto-
mated failure modes and effects analysis of systems on-board ship," in Proceedings of
the International Conference on Marine Research and Transportation, Ischia, Italy, 2005.

[21] P. Babcock, "An introduction to reliability modeling of fault-tolerant systems," The
Charles Stark Draper Laboratory, Cambridge, MA, Tech. Rep. CSDL-R-1899, 1987.

[22] A. Reibman and M. Veeraraghavan, "Reliability modeling: An overview for system
designers," IEEE Computer, vol. 24, no. 4, pp. 49-57, Apr. 1991.

[23] G. Grimmett and D. Stirzaker, Probability and Random Processes, 3rd ed. Oxford, UK:
Oxford University Press, 2001.

[24] J. Kemeny and J. Snell, Finite Markov Chains. New York, NY: Springer-Verlag, 1983.

[25] M. Shooman, Probabilisitic Reliability: An Engineering Approach. Malabar, FL: Robert
E. Krieger Publishing Company, 1990.

[26] J. Dugan, M. Veeraraghavan, M. Boyd, and N. Mittal, "Proceedings of the eighth sym-
posium on reliable distributed systems," in Proceedings of the Third IEEE International
High-Assurance Systems Engineering Symposium, Seattle, WA, 1989.

[27] P. Babcock, G. Rosch, and J. Zinchuk, "An automated environment for optimizing
fault-tolerant systems design," in Proceedings of the Reliability and Maintainability Sym-
posium, Orlando, FL, 1991, pp. 360-367.

- 221 -

BIBLIOGRAPHY

[28] M. Hutchins, P. Babcock, and G. Rosch, "An introduction to the came program via
example," The Charles Stark Draper Laboratory, Cambridge, MA, Tech. Rep. CSDL-
R-2082, 1987.

[29] M. Malhotra and K. Trivedi, "Power-hierarchy of dependability model types," IEEE
Transactions on Reliability, vol. 43, no. 3, pp. 493-502, 1994.

[30] R. Sahner, K. Trivedi, and A. Puliafito, Performance and Reliability Analysis of Computer
Systems. Boston, MA: Kluwer Academic Publishers, 1996.

[31] "Reactor safety study," U.S. Nuclear Regulatory Commission, Washington, DC, Tech.
Rep. NUREG 75/014 (WASH-1400), 1975.

[32] K. Fleming and F. Silady, "A risk informed defense-in-depth framework for existing
and advanced reactors," Journal of Reliability Engineering and System Safety, vol. 78,
no. 3, pp. 205-225, December 2002.

[33] A. Amendola, "Event sequences and consequence spectrum: A methodology for
probabilistic transient analysis," Nuclear Science An Engineering, vol. 77, no. 3, pp.
297--315, 1981.

[34] T. Aldemir, "Computer-assisted markov failure modeling of process control systems,"
IEEE Transactions on Reliability, vol. R-36, no. 1, pp. 133-144, Apr. 1987.

[35] J. Devooght and C. Smidts, "Probabilistic reactor dynamics-I: The theory of continuos
event trees," Nuclear Science and Engineering, vol. 111.

[36] P. Labeau, C. Smidts, and S. Swaminathan, "Dynamic reliability: Towards an inte-
grated platform for probabilistic risk assessment," Journal of Reliability Engineering and
System Safety, vol. 68, no. 3, pp. 219-254, June 2000.

[37] J. Devooght and C. Smidts, "Probabilistic dynamics as a tool for dynamic psa," Relia-
bility Engineering and System Safety, vol. 52, no. 3, pp. 185-196, June 1996.

[38] C. Smidts and J. Devooght, "Probabilistic reactor dynamics-II: A monte carlo study
of a fast reactor trasient," Nuclear Science and Engineering, vol. 111.

[39] Y. Flu, "A guided simluation methodology for dynamic probabilistic risk assessment
of complex systems," Ph.D. dissertation, University of Maryland, College Park, MD,
2005.

[40] A. Dominguez-Garcia, J. Kassakian, and J. Schindall, "Reliability evaluation of the
power supply of an electrical power net for safety-relevant applications," Journal of
Reliability Engineering and System Safety, vol. 91, no. 5, pp. 505-514, May 2006.

[41] D. McRuer, T. Myers, and P. Thompson, "Literal singular-value-based flight control
system design techniques," AIAA Journal of Guidance, vol. 12, no. 6, pp. 913-919, 1989.

- 222 -

BIBLIOGRAPHYBIBLIOGRAPHY

[42] A. Dominguez-Garcia, J. Kassakian, J. Schindall, and J. Zinchuk, "On the use of behav-
ioral models for the integrated performance and reliability evaluation of fault-tolerant
avionics systems," in Proceedings of DASC 2006, Portland, OR, 2005.

[43] -- , "A backup system for automotive steer-by-wire, actuated by selective braking,"
in Proceedings of PESC 2004, Aachen, Germany, 2004.

[44] W. Harter, W. Pfeiffer, P. Dominke, G. Ruck, and P. Blessing, "Future electrical steering
systems: Realizations with safety requirements," SAE Technical Paper Series, no. 2000-
01-0822, 2000.

[45] R. Isermann, R. Schwarz, and S. Stolzl, "Fault-tolerant drive-by-wire systems," IEEE
Control Systems Magazine, vol. 22, no. 5, pp. 64-81, Oct. 2002.

[46] P. Dominke and G. Ruck, "Electric power steering,the first step on the way to steer-
by-wire," SAE Technical Paper Series, no. 1999-01-0401, 1999.

[47] K. Afridi, R. Tabors, and J. Kassakian, "Alternative electrical distribution system ar-
chitectures for automobiles," in Proceedings of Power Electronics in Transportation, Dear-
born, MI, 1994, pp. 33-38.

[48] H. Brinkmeyer, "Architecture of vehicle power supply in the throes of change," in
Proceedings of Automobile Electronics Congres, Stuttgart, Germany, 2002.

[49] P. Babcock and J. Zinchuk, "Fault-tolerant design optimization: Application to an
autonomous underwater vehicle navigation system," in Proceedings of the Symposium
on Autonomous Underwater Vehicle Technology, Washington, DC, 1990, pp. 34-43.

[50] F. Schweppe, Uncertain Dynamic Systems. Englewood Cliffs, NJ: Prentice-Hall Inc.,
1973.

[51] F. Blanchini, "Set invariance in control," Automatica, vol. 35, pp. 1747-1767, 1999.

[52] K. Trivedi, M. Malhotra, and R. Fricks, "Markov reward approach to performability
and reliability analysis," in Proceedings of the Second International Workshop on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems, Durham, NC, 1994,
pp. 7-11.

[53] A. Reibman, "Modeling the effect of reliability on performance," IEEE Transactions on
Reliability, vol. 39, no. 3, pp. 314-320, Aug. 1990.

[54] J. Meyer, "On evaluating the performability of degradable computing system," IEEE
Transactions on Computers, vol. C-29, no. 8, pp. 720-731, Aug. 1980.

[55] D. McRuer, I. Ashekenas, and D. Graham, Aircraft Dynamics and Automatic Control.
Princeton, NJ: Princeton University Press, 1973.

[56] J. Roskan, Flight Dynamics of Rigid and Elastic Airplanes. Lawrence, KS: The University
of Kansas, 1972.

- 223 -

BIBLIOGRAPHYBIBLIOG RAPHY

BIBLIOGRAPHY

[57] T. Tucker, "Touchdown: the development of propulsion controlled aircrafts at nasa
dreyden," NASA, Monograph in aerospace history no. 16, 1999.

[58] W. Milliken and D. Milliken, Race car vehicle dynamics. Warrendale, PA: Society of
Automotive Engineers, 1995.

[59] M. Cheok, G. Parry, and R. Sherry, "Use of importance measures in risk-informed
regulatory applications," Journal of Reliability Engineering and System Safety, vol. 60,
no. 3, pp. 213-226, June 1997.

[60] E. Borgonovo and G. Apostolakis, "A new importance measure for risk-informed de-
cision making," Journal of Reliability Engineering and System Safety, vol. 72, no. 2, pp.
193--212, May 2001.

[611 E. Borgonovo, G. Apostolakis, S. Tarantola, and A. Saltelli, "Comparison of global
sensitivity analysis techniques and importance measures in psa," Journal of Reliability
Engineering and System Safety, vol. 79, no. 2, pp. 175-185, February 2003.

[62] J. Blake, A. Reibman, and K. Trivedi, "Sensitivity analysis of reliability and performa-
bility measures for multiprocessor systems," in Proceedings of ACM Sigmetrics, Santa
Fe, NM, 1988.

[63] A. Gandini, "Importance and sensitivity analysis in assessing system reliability," IEEE
Transactions on Reliability, vol. 39, no. 1, pp. 61-70, April 1990.

[641 E. Borgonovo, G. Apostolakis, S. Tarantola, and A. Saltelli, "Approximate sensitivity
analysis for acyclic markov reliability models," IEEE Transactions on Reliability, vol. 52,
no. 2, pp. 175-185, June 2003.

[65] R. Barlow and F. Proschan, Mathematical Theory of Reliability. New York, NY: John
Wiley and Sons, 1965.

[661 U.S. Federal Air Regulations 25.1309 and the supporting advisory circular AC-25. 1309.

[67] D. McRuer and T. Myers, "Advanced piloted aircraft flight control system design
methodology volume I: Knowledge base," NASA, Langley, VA, Contractor Report
181726, 1988.

- 224 -

BIBLIOGRAPHY

