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Abstract
Quantum error correction (QEC) is an essential concept for any quantum information
processing device. Typically, QEC is designed with minimal assumptions about the
noise process; this generic assumption exacts a high cost in efficiency and performance.
We examine QEC methods that are adapted to the physical noise model. In physical
systems, errors are not likely to be arbitrary; rather we will have reasonable models
for the structure of quantum decoherence. We may choose quantum error correcting
codes and recovery operations that specifically target the most likely errors. This can
increase QEC performance and also reduce the required overhead.

We present a convex optimization method to determine the optimal (in terms
of average entanglement fidelity) recovery operation for a given channel, encoding,
and information source. This is solvable via a semidefinite program (SDP). We de-
rive an analytic solution to the optimal recovery for the case of stabilizer codes, the
completely mixed input source, and channels characterized by Pauli group errors.
We present computational algorithms to generate near-optimal recovery operations
structured to begin with a projective syndrome measurement. These structured op-
erations are more computationally scalable than the SDP required for computing the
optimal; we can thus numerically analyze longer codes. Using Lagrange duality, we
bound the performance of the structured recovery operations and show that they are
nearly optimal in many relevant cases.

We present two classes of channel-adapted quantum error correcting codes specif-
ically designed for the amplitude damping channel. These have significantly higher
rates with shorter block lengths than corresponding generic quantum error correcting
codes. Both classes are stabilizer codes, and have good fidelity performance with
stabilizer recovery operations. The encoding, syndrome measurement, and syndrome
recovery operations can all be implemented with Clifford group operations.
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Chapter 1

Introduction

"Many authors have what appears to be a suspicious fondness for the depolarizing

channel..."

-Michael Nielsen and Isaac Chuang in [38]

1.1 Overview

Quantum error correction (QEC) is an essential component of quantum information

processing. To realize its ground-breaking potential, a quantum computer must have

a strategy to mitigate the effects of noise. QEC protects information from noise by

including redundancy in a manner analogous to classical error correction. In this way,

the effects of noise are reduced at the cost of extended overhead.

The noise suppression vs. overhead tradeoff creates quite a conundrum as neither

comes cheaply; these are two of the principal obstacles to a physical quantum com-

puter. Experimentalists have demonstrated several physical systems that exhibit the

quantum effects necessary for quantum computing, but each suffers from decoherence

and scalability issues. It is one challenge to shield a quantum system from the envi-

ronment and thus reduce noise. It is yet another to construct an architecture which

scales to process a large number of quantum bits (qubits).

Since overhead is so expensive, it behooves us to seek out the most efficient means

of performing QEC. To this end, we explore the concept of channel-adaptation. QEC



was developed with an intentionally generic model for the noise - indeed the early tri-

umph of the Shor code was the demonstration of an encoding and decoding procedure

which could correct for an arbitrary error on a single qubit [44]. The subsequent de-

velopment of CSS codes [8,46] and the even more general stabilizer codes [6,7,23,25]

are all based on the concept of arbitrary qubit errors. In essence, the only assump-

tion is that errors would affect each qubit independently. This assumption has aided

greatly in connecting QEC to the mature field of classical error correcting codes. Fur-

thermore, the general applicability of QEC has enabled beautiful extensions to fault

tolerant quantum computing [14,24, 25,31,32,43].

The generic approach has its drawbacks, however. Most notably, quantum codes

impose a severe amount of overhead to correct for arbitrary errors. As an example,

the shortest block code that corrects an arbitrary qubit error embeds one qubit into

five [3,36]. The overhead tradeoff involved in QEC is steep when the code and recovery

are designed for arbitrary errors.

QEC can be made more efficient if we no longer seek to correct arbitrary er-

rors [37]. Any physical implementation of a quantum computer will interact with

the environment in a specific way; this imposes a definite structure on the observed

decoherence of the quantum state. By designing the error correcting procedure to

protect from such structured noise, we may improve efficiency and thus reduce the

required overhead. We will refer to this concept as channel-adapted quantum error

correction, the subject of this dissertation.

Channel-adapted QEC was introduced as 'approximate' quantum error correction

by Leung et. al. in [37]. The name approximate was appropriate as the code did not

perfectly satisfy the quantum error correcting conditions derived in [3,33]. Instead,

analogous approximate conditions were shown to apply without significant loss in

performance. The key criterion was the fidelity of the corrected state to the input

- how well the encoding and recovery protect the information from the noise. In

the conclusion to [37], the authors state, "It would be especially useful to develop a

general framework for constructing codes based on approximate conditions, similar

to the group-theoretic framework now used to construct codes that satisfy the exact



conditions." Such results have been elusive. Instead, channel-adapted QEC has

recently found more traction when cast as an optimization problem [22,34, 40,49].

Both encodings and recoveries can be designed by numerical methods that seek to

maximize the overall fidelity.

While our research will be detailed in this dissertation, we feel compelled to note

complementary work in channel-adapted QEC, particularly those focused on QEC via

optimization methods. In [34] and [40], encodings and decodings were iteratively im-

proved using the performance criteria of ensemble average fidelity and entanglement fi-

delity, respectively. A sub-optimal method for minimum fidelity, using a semi-definite

program (SDP), was proposed in [49]. An analytical approach to channel-adapted re-

covery based on the pretty-good measurement and the average entanglement fidelity

was derived in [2]. (The various flavors of fidelity will be discussed in Sec. 1.3.2). The

main point of each scheme was to improve error correction procedures by adapting

to the physical noise process.

1.2 Organization

In the remainder of this chapter, we introduce some of the mathematical tools and

notation to be used in the remainder of the dissertation. We also lay out the channel

models and quantum error correcting codes that will be used as examples in various

subsequent sections.

Chapter 2 explores channel-adaptation by considering a fixed encoding operation

and computing the recovery operation that maximizes average entanglement fidelity.

In this form, the optimization problem turns out to be convex and has an efficient

solution. Several examples are given, which illustrate some of the performance gains

available via channel-adaptation. We derive the Lagrange dual of the optimum recov-

ery operation and use the dual function to prove sufficient conditions for the generic

QEC recovery operation to be optimal.

Chapter 3 explores quantum error recovery operations where we have imposed

additional constraints. The recoveries have nearly optimal fidelity performance, but



are structured in either physically simple or intuitively instructive forms. The con-

straints also serve to enable the processing of higher dimensional channels, thus al-

lowing channel-adaptation of longer quantum codes. We present a general class of

recovery operations that begin with projective error syndrome measurements as well

as several specific algorithms that generate such recovery operations.

Chapter 4 uses the Lagrange dual to certify the near-optimality of the recovery

operations from chapter 3. We derive a numerical technique to generate dual feasible

points given a structured recovery operation. We show that the structured recovery

operations are asymptotically optimal for the examples given.

Chapter 5 takes a closer look at channel-adapted QEC for the amplitude damping

channel. We begin with an analysis of the [4, 1] approximate code of [37]. We conclude

that approximate is a bit of a misnomer, as in fact the code can perfectly correct a set

of errors that approximate qubit dampings. Furthermore, both the encoding and a

good recovery operation can be understood in terms of the stabilizer formalism. This

discovery leads to two general classes of channel-adapted codes for the amplitude

damping channel.

1.3 Mathematical Notation and Background

It is beyond the scope of this dissertation to provide an introduction to quantum com-

putation or quantum information processing. We presume familiarity with quantum

states in both the bra-ket and density matrix representations. We refer readers who

desire a more comprehensive introduction to the first two chapters of [38]. This section

will, however, state succinctly some of the notation conventions used throughout the

dissertation. Furthermore, we will review the topics of quantum operations, channel

fidelity metrics, and the classical optimization routine of semidefinite programming

in more detail, as these will be of particular value throughout the remainder of the

dissertation.

Pure quantum states will be denoted with the ket notation I). These are elements

of a Hilbert space, which we will generally denote 7i or IC. Bounded linear operators



on this space are elements of £(7-). A bounded linear operator that maps R to K: is

an element of £(H7-, K). Density matrices represent either a pure or a mixed quantum

state; if the pure quantum state lives in R-, then the density matrix is an element of

C£('). We will generally refer to density matrices as p, or some operation acting on

P (i.e. A(p)).

1.3.1 Quantum operations

A quantum operation must be a completely positive trace preserving (CPTP) linear

map [35]. This constraint arises as valid quantum states input to the operation must

emerge as valid quantum states. As either the input or the output of such an operation

can be mixed, the map is defined as acting on density matrices and can be given (for

example) as A : £(Ht) -H (KI).

A map A : £(H7) -4 £1(K) is CPTP if and only if it can be represented by a set
operators {Ak} e (7-, K) such that Zk AkAk = I. The input-output relation is given

by A(p) = Ek AkpAt. The operators {Ak} are referred to equivalently as operator

elements or Kraus operators. The operator elements of a mapping are not a unique

representation; any unitary recombination of the operator elements ({AX = >j uijAj}

where Ek Ui*kUkj = 5ij) yields an equivalent operation A.

The Kraus operator representation of quantum operations is the most common,

but its many-to-one nature will be inconvenient for some of our purposes. In such

cases, we will use an alternate description, in which a CPTP operation A : £(7-) -

£(K) is given in terms of a positive semidefinite (p.s.d.) operator XA E (K: 0 7N*)

[9, 11-13,27]. XA is often called the Choi matrix.

To derive the Choi matrix, we will make use of a convenient isomorphism in which

bounded linear operators are represented by vectors and denoted with the symbol I-)).

While there are several choices for this isomorphism [12,27], including most intuitively

a "stacking" operation, we will follow the conventions of [47] (also [49]) which results

in an isomorphism that is independent of the choice of basis. For convenience, we

will restate the relevant results here.



Let A = -ij aj li) (jl be a bounded linear operator from 7 to K: (i.e. A E L£(", K),

where {li)} and {Ij)} are bases for K: and 7-I, respectively. Let 7-* be the dual of 7-.

This is also a Hilbert space, generally understood as the space of bras (j(. If we

relabel the elements as Ij) = (jj, then we represent A as a vector in the space K: 0 7-*

as

IA)) = aij i Ij)-. (1.1)
ij

It is useful to note the following facts. The inner product ((AIB)) is the Hilbert-

Schmidt inner product trAtB. Also, the partial trace over KIC yields a useful operator

on 7-*:

trcIA))((BI = ABt. (1.2)

Finally, index manipulation yields the relation

A BIC)) = IACBt)), (1.3)

where B is the conjugate of B such that B I|b) = B [1) for all 4').

The Choi matrix is calculated from the Kraus elements {Ak } of A as

XA = Z IAk))((AkI. (1.4)
k

(We will refer to XA as the Choi matrix for A, although most derivations do not

use the basis-free free double-ket of (1.1).) The operation output is given by A(p) =

trw(I 90 )XA and the CPTP constraint requires that XA > 0 and trKXA = I.

1.3.2 Channel fidelity

In classical discrete communications, it is quite simple to describe the idea of 'correct

transmission' or, inversely, the probability of error. As symbols are drawn from a

discrete set, there is no fundamental barrier to observing what is sent and what is

received and declaring success if the two match (and error if they do not). The

classical concept is essentially trivial.



Transmission metrics for quantum information are trickier. The superposition

principle for quantum states implies a continuum of states for a quantum system; if

we defined an error for any output that did not exactly match the input, then we

must classify an infinitesimal rotation of R(e) about some axis to be an error, despite

the fact that the resulting state is essentially identical to the desired state. Obviously,

declaring errors in this manner is neither practical nor useful; we require an alternate

metric for successful quantum communication analogous to 'correct transmission.'

Standard QEC results provide one such metric, which essentially returns to the

classical definition. The triumph of QEC is the ability to perfectly correct arbitrary

errors on a single qubit. The continuous errors are 'discretized' by the syndrome

measurement and the system is restored exactly to its initial quantum state. We

may declare the probability of successful transmission as the probability of observing

a correctible error, i.e. an error on a single qubit. For any channel model and a

standard QEC operation, this probability is readily calculable.

Despite its simplicity, the standard QEC definition for the probability of error

is too restrictive to enable channel-adaptivity. As mentioned above, we intuitively

understand that receiving R(c) 1,0) as the output when I1V) is the input should be

considered a successful transmission. To account for this, we will rely upon the

concept of the fidelity of a quantum state.

For pure states I41) and 102), the fidelity has a perfectly natural form with a cor-

responding physical intuition: F(I0 1), 102)) = I(014 I2) 12. (The fidelity is sometimes

defined as the square root of this quantity.) As this is the inner product squared of

two unit length vectors, the fidelity is the cosine squared of the angle between [01)

and 402). If the second state is mixed, it is straightforward to see that this quantity

becomes F(1• 1) , p2) = ('1 I P2 I01). When both states are mixed, the fidelity has been

generalized to be [30]

F(pi, p2) = (tr VýPP2P )2 . (1.5)

This quantity is consistent with the pure state definition of the fidelity, is symmetric

in pl and P2, takes values between 0 and 1, is equal to 1 if and only if pl = p2, and is



invariant over unitary rotations of the state space.

While (1.5) provides a measure of similarity between two states, what we really

require is a channel fidelity that will determine how well a noisy operation A : 7R- H -

preserves a quantum state. For any given quantum state 1,), the natural extension

to (1.5) is the quantity F(10) (01, A(I,) (01)). This input-output relation measures

how well the specific state 1,) is preserved by A. While this may be sufficient, it is

quite possible that A could successfully protect one quantum state from noise, while

another is easily corrupted. We would prefer a measure that more fully characterizes

the behavior of A.

We define the minimum fidelity of A as the worst case scenario over all input

states 10):1

Fmin(A) = min F(1j) (0 ,A(IP) () )). (1.6)
10)

By virtue of the minimization over I'), one need not assume anything about the input

state. This was the metric of choice in [33] first establishing the theory of QEC, and

translates nicely to the idea of perfectly correcting a set of errors. The disadvantage

arises through the complexity of the metric; indeed computation requires minimizing

over all inputs. This drawback makes minimum fidelity a difficult choice for opti-

mization based channel-adaptation. Efficient routines that have been developed for

channel-adaptation using (1.6) are sub-optimal [49].

Entanglement fidelity and ensemble average fidelity both provide more tractable

metrics for A. To use them, we must make some assumption about the ensemble

of input states. We may define an ensemble E consisting of states pi each with

probability pi. The ensemble average fidelity is naturally defined as

F(E, A) = ZpiF(pi, A(pi)). (1.7)

When pi are pure states, P is linear in A.

Entanglement fidelity [42] is defined for a mixed state p in terms of a purification

10One might suppose we should have to minimize over all mixed states p. In fact, it is sufficient
to minimize over pure state inputs [38].



to a reference system. Recall that p can be understood as an ensemble of quantum

states, p = E•p ii. If 10>) E RR®- (where -R is a reference system) is a purification

of p, then p = trnR 10) (01. The purification captures all of the information in p. The

entanglement fidelity is the measure of how well the channel A preserves the state

I4), or in other words, how well A preserves the entanglement of the state with its

reference system. We write the entanglement fidelity as

Fe(p,A) = (9IZ0 A(10) (41) 41), (1.8)

where 2I is the identity map on £(HR). We have used the fact that 14) is pure to

express (1.8) in a more convenient equation for the fidelity than the generic mixed

state form of (1.5). The entanglement fidelity is linear in A for any input p, and is a

lower bound to the ensemble average fidelity for any ensemble E such that Ej Pipi = p.
The linearity of both ensemble average fidelity and entanglement fidelity in A

is particularly useful for channel-adapted QEC. It enables the use of the convex

optimization problems called semidefinite programs, which will be summarized in

the next section. As all of the optimization problems in this dissertation could be

performed using either metric, we will follow the lead of [2] and derive based on the

average entanglement fidelity, given by

Fe(E, A) piFe(pi,A). (1.9)

By so doing, all of the algorithms can be trivially converted to either entanglement

fidelity or ensemble average fidelity with pure states, as both are special cases of

average entanglement fidelity.

While the derivations will be in average entanglement fidelity, most examples will

assume an ensemble E of the completely mixed state p = I/ds with probability 1. In

essence, this will assume the minimum about the information source and apply the

strictest fidelity condition.

The definition of entanglement fidelity given in (1.8) is intuitively useful, but



awkward for calculations. An easier form arises when operator elements {Ai} for A

are given. The entanglement fidelity is then

Fe(p, A) = tr(pAi)j2. (1.10)

From (1.10), we may derive a calculation rule for the entanglement fidelity when the

channel A is expressed via the Choi matrix. Recalling the definition of the Hilbert-

Schmidt inner product, we see that trAmp = ((plAi)). Inserting this into (1.10), we

obtain the entanglement fidelity in terms of XA:

Fe(p,A) = E((p|IA))(( AIp))
i

= ((pIXAp)). (1.11)

It is trivial to extend this expression to average entanglement fidelity given an en-

semble E:

Fe(E, A) = EPk (plkXA pk)). (1.12)
k

1.3.3 Semidefinite programming

The choice of average entanglement fidelity provides a measure of performance that is

linear in the operation A. The linearity is a particularly useful feature, as it enables

many problems in channel-adapted QEC to be cast as a convex optimization problem

called a semidefinite program (SDP). Semidefinite programming is a useful construct

for convex optimization problems; efficient routines have been developed to numeri-

cally evaluate SDP's. The theory of SDP's is sufficiently mature that the numerical

solution can be considered a 'black-box routine' for the purposes of this dissertation.

We will here concisely state the definition of a SDP and refer the interested reader to

the review article [48] for a more extensive treatment.

A semidefinite program is defined as the minimization of a linear function of the



variable x E RN subject to a matrix inequality constraint:

min CTx, such that F(x) > 0, (1.13)

where F(x) = Fo + ENN=l xFn for Fn E Rnxn. The inequality Ž in (1.13) is a matrix

inequality that constrains F(x) to be positive semidefinite. The SDP is convex as

both the objective function and the constraint are convex: for F(x) > 0 and F(y) _ 0,

we see that

F(Ax + (1 - A)y) = AF(x) + (1 - A)F(y) _ 0, (1.14)

for all A E [0, 1]. Convex optimization is particularly valuable, as the problem is

guaranteed to have a unique global minimum and is not troubled by the multiple

local minima that often arise in non-convex optimization.

We will show in Chapter 2 that the CPTP constraint for quantum operations

can be understood as a semidefinite constraint, thus leading to the SDP. (the Choi

matrix representation of a CPTP map makes this particularly plain to see.) SDP's

have been applied to several quantum information topics including distillable entan-

glement [5,15, 16, 39], quantum detection [17-20,29], optimizing completely positive

maps (including channel-adapted QEC) [1,22,34,49], and quantum algorithms for the

ordered search problem [10].

1.4 Channel Models

We are interested in adapting an error correction scheme to a physical noise process.

To do so, we must choose relevant models to describe the form noise may take. For

an experimental procedure, the model for the noise will be governed by the observed

decoherence process of the physical apparatus. In such cases, the noise model will be

chosen to best match the physical realities. This dissertation is not tied to any specific

physical process; we seek instead channel models that will illustrate the principles of

channel-adapted QEC.



We prove in Sec. 2.7 that only some channels lead to effective channel-adaptation.

Specifically, in the case of a stabilizer code and channel operator elements that are

members of the Pauli group, a maximum likelihood recovery after projecting onto

code stabilizers is the optimal recovery operation. Most of the time, this recovery is

indeed the generic QEC recovery without any channel-adaptation. We are therefore

interested in quantum channel models whose operator elements cannot be written as

scaled members of the Pauli group.

The remainder of this section will briefly describe the channel models of interest

in the remainder of this dissertation. The numerical techniques described throughout

will be applied to each of these channels. The results will be presented in the main

body of the dissertation if they illustrate a particular principle; the remainder will be

presented in App. A.

1.4.1 Amplitude damping channel

The first channel for consideration is the amplitude damping channel, which we will

denote E,. Amplitude damping was the example used in [22] to illustrate optimal

QER, as well as the example for channel-adapted code design of [37]. The channel is

a commonly encountered model, where the parameter y indicates the probability of

decaying from state I1) to 10) (i.e. the probability of losing a photon). For a single

qubit, 9a has operator elements

Eo = and El = (1.15)E o VTr: o o
00 0 0

The amplitude damping channel is both physically relevant and conceptually sim-

ple. In that way, it is perhaps the best choice for illustrating channel-adapted QEC.

We will often cite our results in terms of the amplitude damping channel, though it is

important to point out that the numerical routines presented in this dissertation do

not require such a simple channel model. Channel-adapted QEC for the amplitude

damping channel will be examined quite closely in Chapter 5.



1.4.2 Pure states rotation channel

We will next consider a qubit channel that is less familiar, though with a straightfor-

ward geometric description. We will call this the 'pure states rotation' channel and

label it as Sps. To describe the channel, we define a pure state by its angle in the

xz-plane: 19) = cos 9 10) + sin 0 1). The channel mapping is defined by its action on

two pure states an angle 9 apart, symmetric about the z-axis. When 1+9/2) is input

to the channel, the result is 1±(8 - 0)/2), also as a pure state. Thus, these two states

are rotated toward each other by q. Any other state input to the channel will emerge

mixed. The operator elements for this channel can be written as[ cos sin 2 cos cos o o 0SS a 2 2 2 2 cos
Ssin z.sin2 sin cos•o 0 sin (1.16)

J L_ sin -

where a and a are constants chosen to satisfy the CPTP constraint.

It is worth taking a closer look at the operators in (1.16). The first two operators

have the form 1+(8 - 0)/2) (FT + r/2I. If we think of 109/2) as the states targeted for

rotation by ¢/2, then 1wBO + r/2) are states orthogonal to the targets. We understand

the first operator as projecting onto all states orthogonal to 19/2) and mapping each

to 1-(9 - 0)/2). The second operator performs the same function for 1-0/2). The

third operator E3 is constrained such that E3 190/2) oc ji+( - 0)/2).

The pure states rotation channel has multiple parameters which characterize its

behavior. 0 indicates the initial separation of the targeted states. 0, the amount of

rotation, clearly parameterizes the 'noise strength' as 0 = 0 indicates no decoherence

while 0 = 0 is strong decoherence. Furthermore, we have chosen the target states

to be symmetric about the z-axis, but this is only for clarity in stating the channel;

any alternate symmetry axis may be defined. Furthermore, a similar channel with

asymmetric rotations 01 and q2 may be defined. This, however, corresponds to a sym-

metric channel followed by a unitary rotation. While less physically motivated, the

pure state rotation channel model provides an extended set of qubit channels which

are not represented with Pauli group operator elements. We will look at examples of



this channel where 0 = 5r/12 and 7r/4. There is no particular significance to these

choices; they merely illustrate well the principles of channel-adapted QEC.

1.5 Quantum Error Correcting Codes

In many cases, we will choose to analyze channel-adapted QEC beginning with known

and established quantum error correcting codes. To that end, we will describe briefly

each code of interest. We will make use of the stabilizer formalism to describe each,

which we will summarize. A reader preferring a more detailed introduction to quan-

tum error correction is referred to the good introductory article [26].

In standard terminology, a quantum code is referred to as an [n, k, d] code indi-

cating that k logical qubits of information are encoded into n physical qubits. (The

third entry d indicates the distance of the code, where d > 2t + 1 is necessary to

correct t arbitrary qubit errors. We will not make much use of code distance in our

discussions, and will often omit it when describing a code.) We will refer to H-(s as the

'source space,' or the space of logical qubits emerging from a source of information,

which has dimension ds = 2k. After encoding, the quantum state lies in a subspace

of R7-c which has dimension dc = 2". The subscript C is chosen to indicate 'code,'

but it should be noted the 7Ic is the larger Hilbert space of n qubits in which the

encoded state lies, not the code subspace.

1.5.1 The quantum error correction conditions

Before discussing quantum codes, it is useful to understand the conditions that must

be met for standard QEC [33]. We define Pc E C£(-lc) as a projector onto the

code subspace. Let {E2 J} E £(lc) be a set of error operations. There is a recovery

operation 1R that perfectly corrects these errors if and only if

PcE!EjPc = aijPc (1.17)



X= Y= oi  Z oZS1 0 L 0 0 -1

Table 1.1: The Pauli matrices.

for some complex scalars aij. (1.17) is known as the quantum error correction condi-

tions. The conditions are more easily understood by noting the following two facts.

First, if {Ei) satisfy the error correcting conditions, then any linear combination of

{Ei} also satisfy the error correcting conditions. Using this fact, we arrive at the sec-

ond observation: for {Ei} that satisfy (1.17), we can always derive a set of operators

{Ei} such that

PcE tE Pc = aiGj3Pc. (1.18)

(We can compute {E(} by noting that aij is a Hermitian matrix and therefore unitarily

diagonalizable. See [38] for details.)

We can gain an intuitive picture of how QEC works through (1.18). When the

errors {Ei} act on a state in the quantum code, the state is rotated into an orthogonal

subspace. The rotation is uniform across the subspace. Furthermore, each of the

errors rotates into a distinct subspace. The recovery operation may be constructed

as a projection onto each of these error subspaces whose result specifies an error

syndrome. Depending on the syndrome measurement, we can rotate the resulting

state back into the code subspace. In this way, the original state is perfectly preserved.

It is useful to consider the case when the errors {Ei} are given by the Pauli

matrices of Table 1.1. It is not hard to see that the Pauli matrices, together with the

identity operator I, form a basis for £(2/2), the linear operators on a single qubit.

Imagine now the set {I®n, Xi, Yi, Zi} E £(12(~n), which are operators on n qubits. The

subscript i indicates that the Pauli operator acts on the ith qubit and the identity acts

on the others. If {I®n, Xi, Yi, Zi} satisfy (1.17), then an arbitrary operation restricted

to a single qubit is also correctible. In this way, we can design quantum codes that

can correct for an arbitrary error on a single qubit.



1.5.2 The stabilizer formalism

We will make use of the stabilizer formalism [6, 7, 23, 25] to describe quantum error

correcting codes, and their generic recovery operations. The Pauli group on 1 qubit

is given by 91 = {+I, ±iI, ±X, fiX, ±Y, ±iY, ±Z, fiZ}, where X, Y, and Z are the

Pauli matrices. The multiplicative constants ±1 and ±i are included so that G1 is

closed under multiplication, and thus a proper group. The stabilizer formalism for

an [n, k] code works with the Pauli group over n qubits 9n, the n-fold tensor product

of g1. We will use two equivalent notations for an element of .n: Z 1X 2 refers to a Z

on qubit 1 and an X on qubit 2; ZXIIIII indicates the same operation, where it is

evident that we refer to an element of 97. It is worth noting that any two elements

gi,gj E g~ either commute or anti-commute (i.e. [gi, gj] = 0, or {gi,gj} = 0).

A group G can be specified in a compact form by defining its generator set

(gj,...,gi) where [gi,gj] = 0. Then any g E G can be written as a product of

the generators (in any order, since they commute). We connect back to error correc-

tion by noting that a group G C ~n can specify a subspace C(G) on 7-2ln , the space

of n qubits. A state I0) is in the subspace if and only if |I) = g I*) for all g E G. We

note two useful facts: to show that 4I) E C(G), we need only check the generators of

G. Also, if -I E G, then the subspace is trivial, with only the multiplicative identity

0 e C(G).

We may specify an [n, k] quantum code by providing a set of n - k generators in

Gn, which in turn determine the 2k dimensional code subspace. It is also very useful

to create a structured set of operators to characterize the states of the code subspace.

To do so, we define Zi and Xi, i = 1,..., k which act as logical Pauli operators.

These are elements of the normalizer of G, denoted N(G) which means that they

commute with all of the generators of g. Thus, they transform states within the code

subspace. To fulfill the function of logical Pauli operation, we require the following



five properties:

[t,g]= [X, g] = 0 for all g CG, (1.19)
[Z ,Z3] = 0, (1.20)

[X4,X,] = 0, (1.21)
[Z7,Xj] = 0, for i 4 j, (1.22)

and {ZJ,X•} = 0. (1.23)

We can then define the logical codeword with the logical Pauli matrices as

lil ... ik) = 21i' Z k i l ... ik) . (1.24)

The syndrome measurement typically associated with a stabilizer code is to mea-

sure each generator gi. As the generators commute, this can be done in any order.

This is a projective measurement onto the +1 and -1 eigen-space of each generator.

If the state 14) is in the code subspace C(G), then each generator will measure 1.

Suppose instead the state was corrupted by an error E that anti-commutes with a

generator, say gl. Then we see that the state g1E |1) = -Egl I1) = -E 14) lies in

the -1 eigen-space of gl and the measurement will so indicate. If this is the only

error, the syndrome measurement will detect it, and we will be able to apply Et to

recover the state.

Problems arise when an error E commutes with all of the generators but is not

itself in the group G. This will corrupt the state in a way that cannot be detected.

In this case E is in the normalizer of G, N(G). Furthermore, if two distinct errors E1

and E2 both yield the same error syndrome, the recovery operation will not be able

to correct both. In that case EIE 2 e N(G) - G. In fact, this is the error-correcting

condition for stabilizer codes: a set of errors {Ei) C G, are correctible if and only if

EEj% E N(G) - G for all i,j. Furthermore, any error that is a linear combination

of {Ei} is also correctible - the syndrome measurement will 'discretize' the error by

projecting onto one of the syndromes.



[9,1] Shor code

Name Operator

g9 Z Z IIIIIII
g2 IZZ IIIIII
g3 IIIZZIIII
g4 IIIIZZIII
95 IIIII IZZ
g6 IIIIIIIZZ
97 XXXXXXI II
98 IIIXXXXXX
2 XXXXXXXXX
X ZZZZZZZZZ

[7, 1] Steane Code
Name Operator

91 IIIXXXX
92 IXXIIXX
93 XIXIXIX
g4 IIIZZZZ
95 IZZIIZZ
g6 ZIZIZIZ
2 ZZZZZZZ
x XXXXXXX

[5,1] Code
Name Operator

91g XZZXI
g2 IXZZX
93 XIXZZ
94 ZXIXZ
2 ZZZZZ
X XXXXX

Table 1.2: Generators and logical operations of the Shor code, Steane code, and five
qubit code.

The generic QEC recovery operation for a stabilizer code consists of the error

syndrome measurement of measuring each generator, followed by the appropriate

recovery operation. By appropriate, we mean the most likely element of the Pauli

group go that returns the observed syndrome to the code subspace C(G). In general,

it is assumed that the most likely correction will be the minimum weight (i.e. smallest

number of non-Identity terms) element of gn.

We will now state several of the quantum error correcting codes, each in terms of

the stabilizer formalism. We will refer to each of these codes at various times in the

dissertation.

1.5.3 Shor code

The Shor code [44] was the first example of a quantum error correcting code. It is

a [9, 1] code that is the quantum equivalent to the repetition code. In the classical

case, a logical 0 is represented by the three bit codeword 000, and logical 1 as 111.

This protects from a single bit flip error when decoding is performed via majority

voting. The Shor code works in a similar manner, but in this case, one must protect

from both bit flip (Pauli X) and phase flip (Pauli Z) errors. The stabilizers for the

quantum code are provided in Table 1.5.3, but in this case the actual logical code



words are also revealing:

0)L -= -W (I000) + 111)) 0 (1000) + 111i)) 0 (1000) + 1111)) (1.25)

1(1.26)I1)L = (1000) - 1111)) ® (1000) - 111)) 0 (1000) - 1111). (1.26)

It is instructive to talk through the stabilizer measurements, as this may provide

further intuition on the recovery procedure. We can see that the first three qubits

have the form 1000) ± 111) which protect against bit flips. Consider measuring the

stabilizer Z 1Z2 (i.e. Pauli Z on the first and second qubits). This will yield a +1 if

the state is in the code space, and a -1 if the first and second bit are not aligned

(e.g. 1010) ± 1101)). A measurement of Z2 Z3 tests the second and third bits. If both

of these measurements is -1, we know the middle bit was flipped. If only one of the

first or second measurements results in a -1, that will indicate a flip of the first or

the third bit, respectively.

Consider now the three blocks of three qubits. We notice that the sign of the

i111) terms are aligned when the state is in the code subspace. Thus, we can measure

X 1X 2X3 X 4X5 X 6 and X4X5 X6 X7X8 X 9 and determine if the phases match. In a

manner equivalent to the bit flips discussed above, we can determine if one of the

blocks needs to have a Pauli Z applied. Notice that Z1, Z2, or Z3 will all transform

to the same state. This is because the Shor code is a degenerate code, and each of

these errors yields the same syndrome and can be corrected by the same recovery.

The final note is that the Shor code can correct for both a X error and a Z error,

which if they occur on the same qubit yield a fiY error. The code can thus correct

for any of the single qubit Pauli operators, and thus can correct an arbitrary qubit

error as the Pauli's, together with the identity, form a basis for qubit operators.

1.5.4 Steane code

The Steane code is a [7, 1] code of the CSS class of codes [8,46]. CSS codes come from

classical codes that are self-dual, which allows an elegant extension to quantum codes.



The Steane code is created from the classical [7,4] Hamming code, a linear, self-dual

code. The Hamming code has several nice properties, especially the ease with which

decoding can be performed. While CSS codes are interesting in themselves, they are

a subclass of the stabilizer codes, and it will be sufficient for our purposes to give the

stabilizers for the Steane code in Table 1.5.3. We will, however, note that CSS codes

are particularly valuable in fault tolerant quantum computing, as encoding circuits

and encoded logical operations have a simple form. For this reason, the Steane code

is a popular, though costly in overhead, choice of experimentalists.

1.5.5 Five qubit stabilizer code

The five-qubit code was independently discovered by [3] and [36]. We will here follow

the treatment in [38] and specify the code via the generators {gl, g2, g3, 94) and the

logical Z and X operations given in Table 1.5.3. The code subspace C is the two-

dimensional subspace that is the +1 eigenspace of the generators gi. The logical

states 10)L and I1)L are the +1 and -1 eigenkets of Z on C. The five qubit code is

the shortest block code that can correct for an arbitrary error on a single qubit.

1.5.6 Four qubit [4,1] 'approximate' amplitude damping code

We turn now to a code developed in 1997 on principles of channel-adapted QEC.

In [37], a [4,1] code and recovery operation was presented which was adapted specifi-

cally for the amplitude damping channel. By channel-adaptation, the [4,1] code can

duplicate the performance of a generic block code while only utilizing four physical

qubits.

Leung et. al. label their code as an 'approximate' code, as it does not exactly

satisfy the quantum error correction conditions. Instead, they derive a set of approx-

imate error correcting conditions, and show that their code achieves them. The code

maintains a high minimum fidelity for small values of -y, and in fact approximates the

performance of the five qubit stabilizer code.
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Figure 1-1: Leung et.al. recovery circuit for the four qubit approximate code. (A) is
the circuit for error syndrome detection. Measurement results (M2, M4) determine
the recovery operation Wk to be performed. If the result (M2, M4) is 00, 10, or
01, use circuits (B), (C), or (D), respectively. The angles 0 and 0' are given by
tan 0 = (1 - y)2 and cos 0' = 1 - y. The rotation gate with angle 9 is understood to
perform the operation exp(iGY).

The logical states of the code are given by

|o)L

11)L

- -(I0000) + 11111))

= (Io0011) + 11100)),

(1.27)

(1.28)

and the recovery operation is specified by the circuits in Fig. 1-1 which is a recreation

of Fig. 2 of [37]. We note that the recovery operation depends explicitly on the

parameter y. We revisit this recovery operation in Sec. 5.1.

(A)





Chapter 2

Optimum Channel-Adapted QEC

Standard quantum error correction is closely related to classical digital error correc-

tion. Codes, errors, syndromes, and recovery operations are all derived from their

classical counterparts. Errors are either perfectly corrected or not corrected at all.

Standard QEC components are classical ideas extended to function in the Hilbert

space of quantum systems.

In general, channel-adapted QEC is not so tidy. The principles of error correction

are unchanged, but we now explore more purely quantum effects. To gain a full

picture of the potential benefits of channel-adaptation, we depart from the classical

analogues and explore the full space of quantum operations.

Rather than determining successful QEC through a binary question of corrected

and uncorrected errors, we consider the fidelity of the composite operation. More

specifically, we consider the encoder, channel, and recovery operation as a single

quantum channel and evaluate its performance in terms of the average entanglement

fidelity. In so doing, we utilize the computational power of semidefinite programming

to establish the power of optimal channel-adapted QEC.

2.1 Quantum Error Recovery (QER)

The block diagram for quantum error correction is quite simple, as can be seen in

Fig. 2-1. An isometry Uc encodes the information in the quantum state p into the
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Figure 2-1: Quantum error correction block diagram. For channel-adapted recovery,
the encoding isometry Uc and the channel £' are considered as a fixed operation C
and the recovery 1Z is chosen according to the design criteria.

Hilbert space h-c of dimension dc. This encoded state is corrupted by the noisy

channel 8', after which the recovery operation 1R attempts to correct the state.

The design of a QEC system consists of the selection of the encoding isometry

Uc and the recovery operation 7Z. The common practice is to select Uc and 7R

independent of the channel 8', assuming only that errors are localized to individual

qubits and occur independently. Channel-adapted QEC selects Uc and 17 based upon

the structure of the channel 8'.

It is intuitive and correct to presume that channel-adaptation can be effective on

both the choice of encoding and recovery operation. However, we shall see that the

optimization problem is greatly simplified when one of the two is held as fixed. For

most of this chapter, we assume a fixed choice of encoding isometry Uc and optimize

the choice of R. In this way, we will discover many of the principles of channel-

adaptation and take advantage of the favorable optimization properties. Thus, we

define the channel E : L£(s) - £(L c) as the composition of the encoding isometry

Uc and the noisy operation 8'. When the recovery operation is adapted for a fixed

encoding and channel, we will declare the process channel-adapted Quantum Error

Recovery (QER).

o E(pi,)



2.2 Optimum QER via Semidefinite Programming

(SDP)

To determine an appropriate recovery operation 7, we wish to maximize the fidelity

of the input source to the the output of R o 6. We will make use of the average

entanglement fidelity described in Sec. 1.3.2, declaring the source to be an ensemble

E of states Pk with probability Pk. The optimization problem becomes

n* = arg max Fe(E, R o 6), (2.1)

where {•R} is the set of all CPTP maps from £(Rc) H -£( 1-(s) and arg refers to the

element of {R} that achieves the maximum.

The problem given by (2.1) is a convex optimization problem, and we may ap-

proach it with sophisticated tools. Particularly powerful is the semidefinite program

(SDP), discussed in 1.3.3, where the objective function is linear in an input con-

strained to a semidefinite cone. Indeed, the power of the SDP is a primary motiva-

tion in choosing to maximize the average entanglement fidelity, which is linear in the

quantum operation R.

Using the expression for the average entanglement fidelity in (1.9), we may now

include the constraints in (2.1) to achieve an optimization problem readily seen to be

a semidefinite program. To do this, we must consider the form of the Choi matrix

for the composite operation R o : L£(7) ' £(7-i). If the operator elements for

the recovery and channel are {Ri} and {Ej }, respectively, then the operator X'Ro is

given by

Xooe = R I~Ej))((R4Ej|. (2.2)

Applying (1.3), this becomes

= Z(I E)X(I® Et). (2.3)
3



The average entanglement fidelity is then

Fe(E, RoE) = pk((pk(I® EJ)Xz(I Ej)IPk))
jk

= trXCEE, (2.4)

where

CE,E =I PkIkEjPk))((Pk IITE,

= ZPkIPkEjt)(PkEjI. (2.5)
jk

We may now express the optimization problem (2.1) in the simple form

X* = arg max tr(XCE,E)

such that X > 0, trhsX = I. (2.6)

This form illustrates plainly the linearity of the objective function and the semidefinite

and equality structure of the constraints. Indeed, this is the exact form of the opti-

mization problem in [1], which first pointed out the value of the SDP for optimizing

quantum operations.

We should reiterate the motivation for using the average entanglement fidelity

over an ensemble E. The key attributes that lead to a semidefinite program are the

CPTP constraint and the linearity of the objective function. As both entanglement

fidelity and ensemble average fidelity (when the states are pure) are linear in the

choice of recovery operation, both can be solved via an SDP. By deriving the SDP for

average entanglement fidelity, it is trivial to convert to either entanglement fidelity

or ensemble average fidelity. In the former case, we simply define the ensemble E as

the state p with probability 1. For ensemble average fidelity, we define E as a set of

pure states { fIk) } with probability Pk.

The value of an SDP for optimization is two-fold. First, an SDP is a sub-class of

convex optimization, and thus a local optimum is guaranteed to be a global optimum.



Second, there are efficient and well-understood algorithms for computing the optimum

of a semidefinite program. These algorithms are sufficiently mature to be widely

available. By expressing the optimum recovery channel as an SDP, we have explicit

means to compute the solution for an arbitrary channel S. In essence, the numerical

methods to optimize an SDP are sufficiently mature that we may consider them as a

black box routine for the purposes of this dissertation.

2.2.1 Optimal diversity combining

Let us pause and consider the size of the optimization problem above. We are opti-

mizing over XR, which is an element of C£(Ns 0 K*) and thus has d2ds = 4n+k matrix

elements for an [n, k] code. It is not surprising that the size grows exponentially with

n, since the Hilbert space Rc has dimension 2". However, the fact that the growth

goes as 4" makes the SDP particularly challenging for longer codes. This will be

addressed in Chapter 3.

The dimensional analysis of the optimization problem motivates our choice of

convention for R. Often, recovery operations are not written as decodings; instead

of mapping £(Rc) - C£(Rs), it is common for R to be written £(7-c) ý £(CFc).

The structure of such an R is carefully chosen so that the output state lies in the

code subspace. This description of a non-decoding recovery operation is particularly

valuable in the analysis of fault tolerant quantum computing, where the recovery

operations restore the system to the code subspace but do not decode. Were we to

follow a similar convention, the number of optimization variables would grow as 16n .

Fortunately, this is not necessary. We can calculate a decoding recovery operation

and easily convert it back into a non-decoding operation by including the encoding

isometry: Uc o R.

The convention choice of S : £( ~s) H £(?C c) and 7 : £(Nc) - £(7-{s) makes

QER analogous to a common classical communications topic. We may interpret 8

as a quantum spreading channel, a channel in which the output dimension is greater

than the input dimension. The recovery operation is an attempt to combine the

spread output back into the input space, presumably with the intent to minimize



information loss. The recovery operation is then the quantum analog to the classical

communications concept of diversity combining.

Classical diversity combining describes a broad class of problems in communi-

cations and radar systems. In its most general form, we may consider any class

of transmission problems in which the receiver observes multiple transmission chan-

nels. These channels could arise due to multi-path scattering, frequency diversity

(high bandwidth transmissions where channel response varies with frequency), spa-

tial diversity (free-space propagation to multiple physically separated antennas), time

diversity, or some combination of the four. Diversity combining is a catch-all phrase

for the process of exploiting the multiple channel outputs to improve the quality of

transmission (e.g. by reducing error or increasing data throughput).

In a general description of classical diversity, the input signal is coupled through

the channel to a receiver system of higher dimensionality. Consider a communication

signal with a single transmitter antenna and N receiver antennae. Often, the desired

output is a signal of the same dimension as the input, a scalar in this case. Diversity

combining is then the process of extracting the maximum information from the N-

dimensional received system. In most communications systems, this combining is

done at either the analog level (leading to beam-forming or multi-user detection) or

digital level (making the diversity system a kind of repeater code). Thus, the natural

inclination is to equate diversity combining with either beam-forming or repeater

codes. The most general picture of diversity combining, however, is an operation

that recombines the channel output into a signal of the same dimension as the input.

Thus, it is appropriate to consider a quantum spreading channel to be a quantum

diversity channel, and the recovery operation to be a quantum diversity combiner.

Diversity combining provides extra intuition about the value of channel-adaptation.

Many routines to improve classical diversity combining begin with efforts to learn or

estimate the channel response. Channel knowledge greatly improves the efficacy of

diversity combining techniques. Analogously, information about the quantum noise

process should allow more effective recovery operations.



2.3 Examples

We illustrate the effects of channel-adapted QER by looking at the optimal recovery

for the five qubit stabilizer code. We consider the amplitude damping channel in

Fig. 2-2 and the pure state rotation channel with 0 = 5r/12 in Fig. 2-3. We consider

an ensemble E that is in the completely mixed state p = 1/2 with probability 1.

This simple ensemble is the minimal assumption that can be made about the source.

The optimal QER performance is compared to the non-adapted QEC performance.

We also include the average entanglement fidelity of a single qubit passed through

the channel. This indicates a baseline performance that is achieved when no error

corrective procedure (encoding or recovery) is attempted.

Figures 2-2 and 2-3 illustrate the potential gains of channel-adapted QEC. We

first note that the optimal recovery operation outperforms the non-adapted recovery

by a non-trivial amount. This confirms the intuition about the benefit of channel-

adaptation and the inefficiency of non-adapted recovery.

To emphasize the benefits of channel-adaptation, consider respectively the high

noise and low noise cases. As the noise increases, moving to the right on the hori-

zontal axis, we see the point where the recovery performance curve crosses the single

qubit performance. This threshold defines the highest noise for which the error cor-

rection scheme is useful; for noise levels beyond the threshold, the error correction

procedure is doing more harm than good. Notice that for a fixed encoding, channel-

adaptation can significantly extend this threshold. In the case of the amplitude

damping channel, QEC performance dips below the baseline around -y 1/4; opti-

mal channel-adaptation crosses the baseline at nearly -y 1/2. The effect is even more

pronounced for the pure state rotation channel; the q where channel-adapted QER

falls below the baseline is more than triple the cross-over threshold for non-adapted

QEC. (It is important to point out that this cross-over threshold is not directly re-

lated to the fault tolerant quantum computing (FTQC) threshold. A much more

extensive analysis is needed to approximate a channel-adapted FTQC threshold. See

Sec. 6.3.1.)



Now consider the effect of channel-adapted QER as noise levels asymptotically

approach 0. This is particularly relevant as experimental methods for quantum com-

putation improve the shielding of quantum systems from environmental coupling. In

both the amplitude damping and pure state rotation examples, the optimal channel-

adapted performance is significantly greater than the non-adapted QEC.

We see this numerically by calculating the polynomial expansion of Fe(p, R o 9)

as y goes to zero. For the amplitude damping channel, the entanglement fidelity for

the optimum QER has the form Fe(p, 1 o ) a 1 - 1.166- 2 + O(y3). In contrast,

the QEC recovery is Fe(p, 7 o E) o 1 - 2.5-y2 + (y 3). For the pure state rotation

channel with 0 = 57r/12, the entanglement fidelity for the optimum QER has the

form Fe(p, 1 o 8) - 1 - .13¢ - 5.280 2 + 0(0 3). In contrast, the QEC recovery is

Fe(p, R o 8) . 1 - 1.240 - 6.020 2 + 0(¢3).

2.4 QER Robustness

Channel-adapted QEC is only useful if the model used for adaptation is a close match

to the actual physical noise process. This is an intuitively obvious statement - channel-

adapting to the wrong noise process will be detrimental to performance. If we are

quite uncertain as to the form of the noise, a reasonable strategy is to stay with the

generic QEC. Consider instead a small amount of uncertainty; perhaps we know the

form of the noise but are uncertain as to the strength. How robust is the optimal

QER operation to such an error?

We can answer this question anecdotally with the example of the amplitude damp-

ing channel. We channel adapt to the amplitude damping channel with y = .1. Figure

2-4 shows the entanglement fidelity performance of this recovery operation for other

values of y. While the performance degrades as the actual parameter departs from

y = .1, we see that the degradation is not too severe unless the parameter is badly

underestimated. Even in those circumstances, the channel-adapted recovery opera-

tion outperforms the generic QEC.



We note in Fig. 2-4 (B), that when we have significantly overestimated -/, the

channel-adapted recovery can performance worse than the generic QEC. As 7 ap-

proaches 0 (as the probability of error goes to 0), channel-adapting to 7 = .1 results

in errors. We conclude from this, that the optimal channel-adapted recovery does not

have an operator element that simply projects onto the code subspace. (We discuss

this phenomenon in more detail in Sec. 5.1.2.

The formulation of the SDP can be adjusted to account for uncertainty in the

channel. Consider a channel SA that can be parameterized by a random variable A

with density fA(A). We can write the output state (to be corrected by R) as

SA(P) = f dAfA(A),A(p) (2.7)

due to the linearity of quantum operations. The linearity carries through the entire

problem treatment and we can write the same optimization problem of (2.6) as

X* = arg max tr(XCE,E,A)

such that X > 0, tr-HX = I, (2.8)

where

CE,E,A /dlfA(A) Zpk IpkE t)K(pkE ( . (2.9)
jk
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Figure 2-2: Average entanglement fidelity vs. y for the five qubit stabilizer code
and the amplitude damping channel -5y. 7 refers to the damping parameter of the
channel. The performance of optimal channel-adapted QER is compared to non-
adapted QEC. Entanglement fidelity for a single qubit and no error correction (i.e.
Fe(p, Ea)) is included and may be considered a baseline performance where no error
correction is attempted.
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Figure 2-3: Average entanglement fidelity vs. -y for the five qubit stabilizer code and
the pure state rotation channel with 0 = 57r/12, SEg. 0 refers to the amount by
which the angle between pure states is reduced. As 4 increases, the channel may be
considered noisier. The performance of optimal channel-adapted QER is compared
to non-adapted QEC. Entanglement fidelity for a single qubit and no error correction
(i.e. Fe(p, Ep)) is included and may be considered a baseline performance where no
error correction is attempted.
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Figure 2-4: Robustness of QER to y for the amplitude damping channel and five qubit
code. The optimal QER operation is computed for y = .1. This recovery operation
is then applied for channels E for 0 < 7y .5 in (A) and 0 < y < .2 in (B). For
comparison purposes, we include the optimal QER, standard QEC, and single qubit
performance for each y.



2.5 Channel-Adapted Encoding

We have focused so far on the channel-adapted behavior of recovery operations while

holding the encoding operation fixed. This was done to exhibit the benefits of channel-

adaptation within the framework of convex optimization. It is also intuitive to think

of an alternate recovery for a known encoding, whereas the reverse is less intuitive. It

should be pointed out, however, that there is no mathematical barrier to optimizing

the encoding operation while holding the recovery operation fixed. In this case, a

SDP can again be employed to solve the convex optimization.

We can derive the optimum encoding for a fixed recovery operation just as we did

in Sec. 2.2. Let C : £(hs) ý £(C(c) be the encoding operation given by elements

{Ck} and now define the operator elements of £' to be {Ej}. We can write the

composite Choi matrix as

XoeRoc = RE CCk))((RiE CkI (2.10)
ijk

= ZRiEj IICk)((Ck kERtR( ® I (2.11)
ijk

= (RE' 9 I)Xc(El Rt 0 I). (2.12)

We now write the average entanglement fidelity as

Fe(E, Ro' oC) = Zpkp((pkJX7ZoeocPk)) (2.13)
k

= trDE,Z,C'Xc, (2.14)

where

DE,R,' = ZpkE tR 0 Ipk ))pkPiE 1 (2.15)
ijk

= PkpkE R'Pk)•(E RPkI. (2.16)
ijk



We write the optimization problem for the optimum encoding problem:

XC = arg max tr(XDE,R,C,)

such that X > 0, tr(1-(c)X = I. (2.17)

We should point out that we are merely constraining the encoding operation C to be

CPTP. Intuitively, we know that the encoding will be an isometry Uc; the result of

the SDP yields encodings of this form even.without the constraint.

From (2.17), a simple iterative algorithm is evident. For a fixed encoding, we may

determine via the SDP the optimum recovery. Holding the recovery operation fixed,

we may determine the optimum encoding. The procedure is iterated until convergence

to a local maximum is achieved. We can only claim a local maximum as the overall

optimization of both C and R is no longer convex.

Iterative optimization of error correcting codes has been suggested and applied by

several authors in recent years. The idea was suggested in the context of calculating

channel capacities in [45], though without discussion of the form of the optimization

problem. An iterative procedure based on eigen-analysis was laid out in [40]. We de-

rived the convex optimization of optimal QER and pointed out the equivalent problem

of optimal encoding in [22], and suggested an iterative procedure. Independently, the

same results were derived by [41] and [34].

2.5.1 The [4,1] 'approximate' amplitude damping code

Channel-adapted encoding need not be limited to iteratively derived codes. Consider

the [4,1] code of [37] described in Sec. 1.5.6. While the authors labelled their code an

'approximate' code, we may easily interpret it as a channel-adapted code.

The code was designed specifically for the amplitude damping channel, and even

the proposed recovery operation is dependent on the parameter y. The code main-

tains a high minimum fidelity for small values of y, and in fact approximates the

performance of the five qubit stabilizer code. We illustrate the accuracy of this ap-

proximation and also demonstrate that by channel adapting the recovery operation



from the one proposed, we may even duplicate the five qubit code's optimal QER

performance.

We compare the recovery of Leung et. al. (which for consistency we will still

call the QEC recovery) with the optimum QER computed according to (2.1), once

again assuming the completely mixed input density p = 0IO)LL(O + I1)LL(1|. The

numerical comparison for various values of 7 is provided in Fig. 2-5. As y goes to zero,

the entanglement fidelity for the optimum QER is numerically determined to have

the form Fe(p, R o 9) e 1 - 1.25y 2 + O(-y3 ). In contrast, the Leung et. al. recovery is

Fe(p, R o &) , 1 - 2.7572 + 0(y 3).
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Figure 2-5: Entanglement fidelity vs. y for the 4 qubit code of Leung et. al. [37] and
the amplitude damping channel Sa4. The performance of both the channel-adapted
optimum QER and the non-adapted QEC are compared with the equivalent perfor-
mance of the five qubit stabilizer code. Entanglement fidelity for a single qubit and
no error correction (i.e. Fe(p, Sa)) is included as a performance baseline.



The approximate code and channel-adapted recovery illustrate the potential of

channel-adaptation to improve QEC. Consider that the approximate code reduces

the overhead by 1 qubit (which halves the size of the Hilbert space -tc), and achieves

essentially equivalent performance. The equivalent performance continues when both

codes are used together with channel-adapted recovery operations. We will further

explore the mechanism of the channel-adapted QER for this case in Chapter 5.

2.6 The Dual Function for Optimum QER

Every optimization problem has an associated dual problem [4]. Derived from the

objective function and constraints of the original optimization problem (known as

the primal problem), the dual problem optimizes over a set of dual variables often

subject to a set of dual constraints. The dual problem has several useful properties.

First of all, the dual problem is always convex. In many cases, calculation of the

dual function is a useful method for constructing optimization algorithms. Most

important for our purposes, the dual function provides a bound for the value of the

primal function. We define a dual feasible point as any set of dual variables satisfying

the dual constraint. The dual function value for any dual feasible point is less than

or equal to the primal function at any primal feasible point. (We have implicitly

assumed the primal function to be a minimization problem, which is the canonical

form.)

We use the bounding feature of the dual problem in both this chapter and in

Chapter 4. In this chapter, after deriving the dual function, we construct a proof of

the optimal channel-adapted recovery for a class of codes and channels. The dual

function for channel-adapted recovery was derived in [34]; we will re-derive it here in

a notation more convenient for our purposes.

The primal problem as given in (2.1) can be stated succinctly as

mmin -trXCE,E, such that X > 0 and trwsX = I. (2.18)
X



The negative sign on the trXCE,s terms casts the primal problem as a minimization,

which is the canonical form. The Lagrangian is given by

L(X, Y, Z) = -trXCE,g + trY(trNsX - I) - trZX, (2.19)

where Y and Z > 0 are operators that serve as the lagrange multipliers for the

equality and generalized inequality constraints, respectively. The dual function is the

(unconstrained) infimum over X of the Lagrangian:

g(Y, Z) = inf L(X, Y, Z) (2.20)
x

inf -trX(CE, + Z - I 0 Y) - trY, (2.21)

where we have used the fact that tr(YtrnsX) = tr(IOY)X. Since X is unconstrained,

note that g(Y, Z) = -oo unless Z = I 0 Y - CE,E in which case the dual function

becomes g(Y, Z) = -trY. Y and Z > 0 are the dual variables, but we see that the

dual function depends only on Y. We can therefore remove Z from the function as long

as we remember the constraint implied by Z = I 0 Y - CE,E. Since Z is constrained

to be positive semidefinite, this can be satisfied as long as I 0 Y - CE,E > 0.

We now have the bounding relation -trXCE,c > tr - Y for all X and Y that are

primal and dual feasible points, respectively. If we now reverse the signs so that we

have a more natural fidelity maximization, we write

Fe(E,7 o S) = trXRCE,E < trY, (2.22)

where 1 is CPTP and I 0 Y - CE,E > 0. To find the best bounding point Y, we

solve the dual optimization problem

min trY, such that I 0 Y - CE,E > 0. (2.23)
Y

Notice that the constraint implies that Y = Yt. Note also that Y £(c (7).



2.6.1 Optimality equations

Semidefinite programming is a convex optimization routine, which provides several

useful results relating the primal and dual problems. As suggested by their names, the

primal and dual problems are essentially the same optimization problem in different

forms; a solution to one provides the solution to the other. This fact is numerically

exploited in the routines for a computational solution, but we will not concern our-

selves with such details. Instead, we will provide formulae that relate the optimal

primal and dual points X* and Y*.

We utilize two characteristics of X* and Y*. First, the optimal primal and dual

function values are the same, so trX*CE,E = trY*. This condition is called strong

duality and it is true for most convex optimization problems. Second, we have the

complementary slackness conditions which can be derived for optimization problems

that are strongly dual, as is true in this case. We derive complementary slackness for

our context; a general derivation may be found in [4].

We defined the dual function in (2.20) as the infimum of the Lagrangian L(X, Y, Z)

over all X. This implies an inequality when we include the optimal points X* and

Y* in the definition of the Lagrangian given in (2.19):

g(Y*, Z) < -trX*CE,e + trY*(tr7 sX* - I) - trZX*. (2.24)

Since X* is a primal feasible point, tr-sX* - I = 0 so trY*(tr-sX* - I) = 0. We also

know that X* > 0 and Z > 0, so we can upper bound the right hand side of (2.24)

with -trX*CE,E. On the left hand side of (2.24), we note that the dual function value

at Y* is -trY* = -trX*CE,E. Thus,

-trX*CE,E < -trX*CE,E - trZX* < -trX*CE,E (2.25)

which implies that trZX* = 0. Furthermore, since Z and X* are positive semidefinite,

ZX* is positive semidefinite. The only positive semidefinite matrix with trace 0 is

the 0 operator, so ZX* = 0.



Let's include the definition of Z = I 0 Y - CE,g and state succinctly the two

conditions that X* and Y* satisfy due to strong duality:

trY* = trX*CE,e (2.26)

(I 0 Y* - CE,)X* = 0. (2.27)

We use (2.26) and (2.27) to provide a means of constructing Y* given X*. (The

reverse direction is given in [34].) We write (2.27) as a set of equations in the eigen-

vectors {IR*))} of X*:

I Y*IR)) = CE,eIR*)) €: (2.28)

IRkY*) = p) i iE)) ((pi E IR*k) (2.29)

R;Y* = -pipiEttrEjpiR .  (2.30)

Recalling that Zk RktRk = I, we left multiply by Rkt and sum over all k to conclude

Y*= pjRR*tpjiEtrEjpR*. (2.31)
ijk

The form of (2.31) is interesting given what we know about dual feasible points

Y. First of all, we know that Y is Hermitian, which is not at all obvious from (2.31).

Inserting an arbitrary CPTP map specified by {Rk} into the right hand side of (2.31)

does not in fact always yield a Hermitian result. Furthermore, it is not hard to

see that the trace of the right hand side is always the average entanglement fidelity

Fe(E, 7Z o 8) whether R is optimal or not. But when R? is the optimal recovery, the

constructed Y is not only Hermitian, but is a dual feasible point. We concisely state

this result as an optimality condition. The operation given by operator elements {Rk}

is the optimal recovery if and only if

I0® ZpR*tpiEjtrEjpiR* - CE,E 0. (2.32)
ijk



2.7 Stabilizer Codes and Pauli Group Channels

We have shown several examples where channel-adapted QER has higher fidelity

than the standard QEC recovery operation. To further our understanding, we now

present sufficient conditions for the non-adapted QEC to be the optimal QER recovery

operation. Strictly speaking, we analytically construct the optimal recovery for a class

of codes, channels, and input ensembles; in most cases, this constructed recovery will

be identical to the QEC recovery operation. The cases where this is not the QEC

recovery operation are intuitively clear by construction. We prove optimality by

constructing a dual feasible point where the dual function value equals the average

entanglement fidelity.

We can construct the optimal recovery operation for a stabilizer code when the

channel 8' is characterized by Pauli group errors and the input ensemble is the com-

pletely mixed state. That is, E is given by p = I/ds with p = 1 and the channel

can be represented by Kraus operators {E1 } where each Ej is a scaled element of the

Pauli group. (Notice that this does not require every set of Kraus operators that

characterize E' to be scaled elements of the Pauli group, since unitary combinations

of Pauli group elements do not necessarily belong to the Pauli group.)

Let us pause for a moment to consider the interpretation Pauli group channels.

A Pauli group channel on n qubits can be described as {pigei} where ej E n, and

>i pi = 1. We can describe this channel as having the error ei occur with probability

pi. The depolarizing channel

£dp(P) = (1 - 3p)p + p(XpX + YpY + ZpZ) (2.33)

is a Pauli group channel. Another example is a channel in which bit flips and phase

flips (X and Z) occur independently on each qubit. These are the two primary

channels considered for standard QEC, since an ability to correct these errors for one

qubit implies the ability to correct arbitrary errors on that qubit.

With a stabilizer code and Pauli group errors, the situation is essentially classical.

The information is initially embedded in the +1 eigenspace of the code generators



(g1,.. . , gn-k). With probability pi, the Pauli group operation ei is performed. Since

ei either commutes or anti-commutes with the generators gj, the resulting state lies

in a syndrome subspace of the code. That is, ei rotates the state into the union of

the +1 eigenspaces of the generators gj.

The output of the channel S' is an ensemble of states lying in the stabilizer syn-

drome subspaces. It is thus intuitive that the first stage of the optimal recovery

operation will be to perform the standard projective syndrome measurement. The

standard QEC recovery operation performs the minimum weight operation that trans-

forms from the code subspace to the observed syndrome subspace. For the optimal

recovery, instead of the minimum weight Pauli operation, we choose the most likely

error operation, given the observed syndrome. In many cases, this will be the same as

the minimum weight operator (which is the reason for the choice in standard QEC).

Let us establish this construction more formally. To do so, we carefully define the

syndrome measurement subspaces and the Pauli group operators that connect the

subspaces. We must do this in a way to consistently describe the normalizer operations

of the code. Consider an [n, k] stabilizer code with generators (gl,...,gn-k) and

logical 2 operators Z1,... Zk such that {g1 ,..., gn-k, Z1,... Zk} form an independent

and commuting set. Define logical X operators such that [i, gj] = [xi, x] = 0 V

i,j, [Xi, 2j] = 0 for i 4 j and {9i, i} = 0.

The syndrome subspaces correspond to the intersection of the +1 eigenspaces of

each generator. Accordingly, we label each space Sq where q = 0, 1,...,2n- k - 1,

where So corresponds to the code subspace. Let Pq be the projection operator onto

S,. Let {lili 2 ... ik)q} form a basis for Sq such that

Z1Z 2 2 Zki1 2 .. ik)q = ( 1)( )2 .. .( )iklii 2 . ik)q, (2.34)

where ij E {0, 1}. In this way, we have a standardized basis for each syndrome

subspace which can also be written as {jm)q}, m = 0,... ,2 k - 1.

Let us recall the effect of a unitary operator on a stabilizer state. If IV) is stabilized

by (g,.... ,gn-k), then U IV) is stabilized by (Ug1Ut,... , UgnkUt). What happens



if U E Go, the Pauli group on n qubits? In that case, since U either commutes or

anti-commutes with each stabilizer, U I4V) is stabilized by (1g 1,..., 9-g_,k) where the

sign of each generator gj is determined by whether it commutes or anti-commutes

with U. Thus, a Pauli group operator acting on a state in the code subspace So will

transform the state into one of the subspaces Sq.

We have established that the Pauli group errors always rotate the code space onto

one of the stabilizer subspaces, but this is not yet sufficient to determine the proper

recovery. Given that the system has be transformed to subspace Sq, we must still

characterize the error by what happened within the subspace. That is to say, the error

consists of a rotation to a syndrome subspace and a normalizer operation within that

subspace.

Let us characterize these operations using the bases { Im)}. Define Wqq,

Em m)q,,(m| as the operator which transforms Sq - Sq, while maintaining the order-

ing of the basis. Define the encoding isometry Uc - "m In)os(nl where In)s E Hs,

the source space. Further define Ucq - WqUc, the isometry that encodes the qth

syndrome subspace. We will define the 4k code normalizer operators as

A, X 2Xk .. lZk 2 .. Z .2 Zk (2.35)

where p is given in binary as ili2 ... ikjlj2 ' " k. Notice that if a similarly defined A s is

an element of the Pauli group gk E £(H-ts) with generators (Xs, .... , ZXS,..., Zk) ,

we can conclude ApUc = UcAs .

The preceding definitions were chosen to illustrate the following facts. First, we

can see by the definitions that [Wqq,, Ap] = 0. That is, Wqq, characterizes a standard

rotation from one syndrome subspace to another, and Ap characterizes a normalizer

operation within the subspace. These have been defined so that they can occur in

either order. Second, let £' be a quantum channel represented by operator elements

that are scaled members of the Pauli group Gn. Then the composite channel £ which

includes the encoding isometry Uc can be represented by operator elements of the



form

{Ep, = apqApWqUc = apApUcq}, (2.36)

where the CPTP constraint requires E- law12 = 1.

We can understand the amplitudes apq by noting that with probability lap, 2, the

channel & transforms the original state to Sq and applies the normalizer operation

A,. To channel-adaptively recover, we project onto the stabilizer subspaces {S,} and

determine the most likely normalizer operation for each syndrome subspace Sq. Let

p, = arg max, lapq2, and let iq, = apqq. With these definitions in place, we can state

the following theorem:

Theorem 1. Let E be a channel in the form of (2.36), i.e. a stabilizer encoding and a

channel with Pauli group error operators. For a source in the completely mixed state

p = I/ds the optimal channel-adapted recovery operation is given by R - {UqAPq},

which is the stabilizer syndrome measurement followed by maximum likelihood nor-

malizer syndrome correction.

Proof. We prove Theorem 1 by constructing a dual feasible point Y such that the

dual function value trY is equal to the entanglement fidelity Fe(p, R o 0).

We begin by calculating Fe(p, 1 0o ). For later convenience, we will do this in

terms of the Choi matrix CE,E from (2.4):

CE,C = lapql21pUq Ap )) ((pUA Apl , (2.37)
pq

Following (2.4), we write the entanglement fidelity in terms of the recovery operator

elements I UqAp,):

Fe(p, 1 o 6) = trXRCE,E (2.38)

= 5((U ,Apq, ICE,&IUtq, A, p)) (2.39)



To evaluate (2.39), we note that

((pUtApI Ut Ap,)) = trApUcqpUtq,Apq,

= trApWUcpUWt W,A,,

= qtrApWUcpUtApq,

= 6qq,ttrAcpA ,.

We have used the commutation relation [Wqq,, Ap] = 0 to arrive at (2.42) and the

facts that Wt,W, = 6q,APo and PoUc = Uc to conclude (2.43). Since p

trACA , = 6 q,ds, we see that trACpAS, = 6p3,. Thus,

((pU qA, I U C q, Ap Pq,)) = bppq', qq,.

Using (2.45), it is straightforward to evaluate (2.39):

= lapql21((pUt qApljU, ,Ap))I12

pqq'

pqq'

= E I•q2 .

We now propose the dual point Y = -q 1qI2P-q/ds. Since

= laq 2triP/ds

= I/ds and

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

= 5la 12

= Fe(p, Ro E),

we complete the proof by demonstrating that

I ® Y - CE, > 0, (2.52)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

trY

F,(p, oI )



i.e. Y is a dual feasible point. We show this by demonstrating that I 0 Y and CE,E

have the same eigenvectors, and that the associated eigenvalue is always greater for

I0 Y.

By the same argument used for (2.45), we note that

((pU~qApIpU,,Ap,)) = pp'Sqq,,/d. (2.53)

This means that IpUCqAp)) is an eigenvector of CE,E with eigenvalue japl 2/ds. We

normalize the eigenvector to unit length and apply it to I 0 Y:

I YIpUAp/ds)) = Iaqq,|2P IdsIpU ,AP/ds) (2.54)

1= laq 2|pUtAPq'/ds)) (2.55)
ds1

1 1 aAlpU lqds)). (2.56)

Thus we see that IpU~qAp)) is an eigenvector of I 0 Y with eigenvalue I|q|2/ds _

aP,(2/ds V p. Thus I Y - CE,e Ž 0 and Y is a dual feasible point. O

As mentioned above, this theorem is an intuitive result. Stabilizer codes, like

virtually all quantum error correcting codes, are designed to correct arbitrary single

qubit errors. Since the Pauli matrices X, Y, and Z together with I constitute a

basis for all qubit operations, the codes are designed to correct all of those errors.

Essentially, the code is optimally adapted to the channel where these errors occur

with equal probability. For a Pauli error channel, the QEC recovery only fails to be

optimal if the relative probabilities become sufficiently unequal. For example, if X

and Z errors occur independently with Px = .01 and pz = .2, we see that a term such

as Z1Z 2 is more likely than X1 and the recovery operation should adapt accordingly.

We may conclude from this section that numerically obtained channel-adaptation

is useful only when the channels are not characterized by Pauli errors. This was

asserted when we introduced our emphasis on channels such as the amplitude damping

channel and pure state rotation channel. When the channel is, in fact, a Pauli error



channel, channel-adaptation is relatively trivial. In most cases, the optimal recovery

will be the standard QEC result of the minimum weight. When this is not best, one

should be able to quickly determine the appropriate alternative.



Chapter 3

Near-Optimal Quantum Error

Recovery

The optimal quantum error recovery results of Chapter 2 demonstrate the utility

of channel-adaptivity. Such efforts show that quantum error correction designed for

generic errors can be inefficient in the face of a particular noise process. Since overhead

in physical quantum computing devices is challenging, it is advantageous to maximize

error recovery efficiency.

The optimal recovery operations generated through semidefinite programming suf-

fer two significant drawbacks. First, the dimensions of the optimization problem grow

exponentially (4n) with the length of the code, limiting the technique to short codes.

Second, the optimal operation, while physically legitimate, may be quite difficult to

implement. The optimization routine is constrained to the set of completely positive,

trace preserving (CPTP) operations, but is not restricted to more easily implemented

operations. In addition to these fundamental drawbacks, the SDP provides little

insight into the mechanism of channel adaptivity, as the resulting operation is chal-

lenging to interpret.

In this chapter, we describe efforts to determine near-optimal channel-adapted

quantum error recovery procedures that overcome these drawbacks of optimal recov-

ery. While still numerical procedures, we have developed a class of algorithms that

is less computationally intensive than the SDP and which yields recovery operations



of an intuitive and potentially realizable form. While the imposed structure moves

us a small amount from the optimum, in many ways the resulting operations are of

greater use both physically and intuitively.

3.1 EigQER Algorithm

To achieve a near-optimal QER operation, an algorithm must have a methodology

to approach optimality while still satisfying the CPTP constraints. Furthermore, to

ease implementation of such a recovery, we can impose structure to maintain relative

simplicity.

Let us begin by considering the structure of a standard QEC recovery operation.

QEC begins by defining a set of correctable errors, i.e. errors that satisfy the quantum

error correction conditions. To correct this set, we construct the recovery operation

by defining a projective syndrome measurement. Based on the detected syndrome,

the appropriate unitary rotation restores the information to the code space, thereby

correcting the error. This intuitive structure, projective measurement followed by

unitary syndrome recovery, provides a simple geometric picture of error correction.

Furthermore, it is a relatively straightforward task to translate such a recovery oper-

ation into a quantum circuit representation.

Let us impose the same constraint on the channel-adapted recovery operation.

We construct an operation with operator elements that are a projective syndrome

measurement followed by a classically controlled unitary operation. Thus the operator

elements can be written {Rk = UkPk} where Pk is a projection operator. While we

could merely constrain Uk to be unitary, we will instead continue with the convention

from Chapter 2 that the recovery operation performs a decoding: R : £(H-c)

£(7s). Under this convention, Uk E £C(1-c, Rls) and UWUk = I. In words, both Uk

and Rkt are isometries.



The CPTP constraint

I = - RR (3.1)

E Pk k Pk (3.2)
k

= Pk (3.3)
k

can be satisfied if and only if the projectors span 7Hc. This provides a method to

construct a recovery while satisfying the CPTP constraints. {Pk} partitions 'Hc into

orthogonal subspaces, each identified with a correction isometry' Uk.

Since the {Pk} project onto orthogonal subspaces, we see that R Rk = 6jkPk.

From this we conclude that {IRk) } are an orthogonal set and thus are eigenvectors

of the Choi matrix XR. The eigenvalue Ak associated with IRk)) is the rank of Pk and

is thus constrained to be an integer. Furthermore, since Uk restores the kth syndrome

to '7 s, Ak < ds.

We can conceive of a 'greedy' algorithm to construct a recovery operation R.

The average entanglement fidelity can be decomposed into the contributions of each

individual operator element as ((Rk CE, IRk)). We can construct R by successively

choosing the syndrome subspace to maximize the fidelity contribution. As long as each

syndrome is orthogonal to the previously selected subspaces, the resulting operation

will be CPTP and will satisfy our additional constraints. In fact, this greediest

algorithm has no immediate method for computation; the selection of the syndrome

subspace to maximize the fidelity contribution has no simple form. We propose

instead a greedy algorithm to approximate this procedure.

We motivate our proposed algorithm in terms of eigen analysis. Let us assume for

the moment that the rank of each syndrome subspace is exactly ds which is the case

for QEC recoveries for stabilizer codes. By such an assumption, we know that there

will be dc/ds recovery operator elements. Consider now the average entanglement

'In fact, Uk is the isometry. For ease of explication, we will refer to Uk as an isometry as well.



fidelity, in terms of the eigenvectors of Xn:

dc/ds

F(p, 1 o E) = ((RkICE,EIRk)). (3.4)
k=1

If we were to maximize the above expression with the only constraint being a fixed

number of orthonormal vectors IRk), the solution would be the eigenvectors associ-

ated with the dc/ds largest eigenvalues of CE,E. In fact, the actual constraint differs

slightly from this simplification, as we further must constrain RM to be an isometry

(i.e. RkRt = I). The analogy to eigen-analysis, however, suggests a computational

algorithm which we dub 'EigQER' (for eigen quantum error recovery). We use the

eigenvectors of CE,E to determine a syndrome subspace with a large fidelity contribu-

tion.

The algorithm proceeds as follows:

1. Initialize C, = CE,E

For the kth iteration:

2. Determine IXk)), the eigenvector associated with the largest eigenvalue of Ck.

3. Calculate Rk, the isometry 'closest' to Xk via the singular value decomposition.

Call Rk an operator element of 1R.

4. Determine Ck+1 by projecting out of Ck the support of Rk.

5. Return to step 2 until the recovery operation is complete.

The EigQER algorithm is guaranteed to generate a CPTP recovery operation, and

will satisfy the criterion that it can be implemented by a projective syndrome mea-

surement followed by a syndrome dependent unitary operation.

Steps 2 and 3 in the above algorithm require further exposition. Given an operator

X E £(2 (c, Is), what is the closest isometry Rk? A straightforward answer uses the

norm derived from the Hilbert-Schmidt inner product where IA 112 = trAtA. We will



now allow the rank of kth subspace to be dk • ds.2 Thus RkRt = Idk where Idk is a

diagonal operator where the first dk diagonal matrix elements are 1 and the rest are

0. We have the minimization problem

mintr(X - Rk)t(X - Rk) such that RkR = Idk (3.5)
Rk

We will state the solution as the following lemma.

Lemma 2. Let X be an operator with singular value decomposition X = UEVt. The

rank d isometry R that minimizes the Hilbert-Schmidt norm difference IIX - RII is

given by R = UId,Vt.

Proof. Let Ud be the set of rank d isometries; that is Ud = {UIUtU = Id}. We wish

to find the Rt E U that minimizes tr(X - R)t(X - R). Since this can be written as

tr(X - R)t(X - R) = trXtX + trRtR - tr(XtR + RtX) (3.6)

and trRtR = d, an equivalent problem is

max tr(XtR + RtX) = max tr(VEUtR + RtUEVt), (3.7)
REU REU

where we have replaced X with its singular value decomposition.

We can simplify the above expression by noting that Ct = UtR E U. We can thus

2Inclusion of reduced rank subspaces may seem unnecessary or even undesirable - after all, such
a projection would collapse superpositions within the encoded information. We allow the possibility
since such operator elements are observed in the optimal recovery operations of Chapter 2. We will
discuss the phenomenon further in Chapter 5.



equivalently maximize the following expression over Ct E U:

tr(VECt + CEVt) = trE(CtV + VtC) (3.8)
d

= Z a(civ i + v ci) (3.9)
i=l

d

= 2Z Re{vtci} (3.10)
i=1

d

< 2Eoi |vtci (3.11)
i=1

d

< 2Z I aIviIIci (3.12)
i=l

d

= 2Ei. (3.13)
i=1

In (3.9), ai is the ith largest singular value of X and vi and ci are the ith columns

of V and C, respectively. We have used the fact that E is a diagonal matrix of the

singular values in descending order. The inequality is saturated when cj = vi, which

also implies that C = VId =* R = UIdVt. [0

One item not mentioned above is the determination of the desired rank dk. In our

implementation of EigQER, this is accomplished by setting a relatively high threshold

on the singular values of X. We only considered singular values such that a2 > .05.

This ad hoc value was chosen as it led to acceptable numerical results in the examples.

We turn now to step 3 of the EigQER algorithm. Recall that the CPTP constraint

as written in (3.3) requires that the syndrome subspaces are mutually orthogonal.

Thus, the syndrome measurement for the kth iteration must be orthogonal to the first

k - 1 iterations: PkPi = 0 for i < k. We satisfy this constraint by updating the data

matrix Ck-1.

To understand the update to Ck-1, recall that the first step of the kth iteration

is the computation of the dominant eigenvector Xk)). To satisfy the constraint, we

require that

XkPi = 0 4| IXkPi)) = I ® PlXk)) = 0 (3.14)
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Figure 3-1: Fidelity contribution of EigQER recovery operators for the amplitude
damping channel and the Shor code. Notice that the QEC performance is equaled
with only 9 operator elements, and the relative benefit of additional operators goes
nearly to zero after 30.

for i < k. All IX)) for which this is not satisfied should be in the nullspace of Ck.

Thus, after each iteration we update the data matrix as

Ck = (I - I Pk-1)Ck-(I - I Pk-1). (3.15)

The algorithm terminates when the recovery operation is complete, i.e. Zk RkRk =

Ek Pk = I. Given the structure of the recovery operations, this can be determined

with a simple counter that is increased by dk at each step k. When the counter

reaches dc, the recovery is complete.
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In fact, the greedy nature of EigQER allows early termination of the above al-

gorithm. Each Rk contributes ((RklCE,EIRk)) to the average entanglement fidelity.

Since the algorithm seeks to maximize its gain at each step, the performance return

of each Rk diminishes as k grows. This is illustrated in Fig. 3-1, where we show the

cumulative contribution for each recovery operator element with the Shor code and

the amplitude damping channel. The greedy construction results in simplifications in

both computation and implementation. When the contribution ((Rk lCE,E IRk passes

below some selected threshold, the algorithm may terminate and thus reduce the

computational burden. This results in an under-complete recovery operation where

•,k R~Rk I. An under-complete specification for the recovery operation may sig-

nificantly reduce the difficulty in physically implementing the recovery operation. In

essence, an under-complete recovery operation will have syndrome subspaces whose

occurrence is sufficiently rare that the recovery operation may be left as a 'don't care.'

Before we consider examples of EigQER recovery performance, we should say a few

words about the algorithm complexity when channel adapting an [n, k] code. Recall

that the SDP of Chapter 2 had 4 n+k complex optimization variables constrained to

a semidefinite cone with a further 4 k equality constraints. From [4], an SDP with n

variables and a p x p semidefinite matrix constraint requires O(max{np3 , n 2p2, n3 })

flops per iteration (with typically 10-100 iterations necessary). For our case, this

yields 0( 25(n+k)) flops per iteration.

For the EigQER operation, the dominant computation is the calculation of IXk),

the eigenvector associated with the largest eigenvalue of Ck. Ck is a 2n+k x 2n+ k

dimensional matrix, but the eigenvector has only 2n+k dimensions. Using the power

method for calculating the dominant eigenvector requires 0( 22(n+k)) flops for each

iteration of the power method. While both problems grow exponentially with n, the

reduced size of the eigenvector problem has a significant impact on the computational

burden.

We should note that the eigenvector computation must be repeated for each op-

erator element of 7R. If we were to compute all of them, not truncating early due

to the diminishing returns of the greedy algorithm, this would require iterating the



algorithm approximately dc/ds = 2n-k times. In fact, we have a further reduction

as the algorithm iterates. At the jth iteration we are calculating the dominant eigen-

vector of Cj which lives on a (dc - jds)ds = 2k(2" - j 2k) dimensional subspace. We

can therefore reduce the size of the eigenvector problem at each iteration of EigQER.

3.1.1 EigQER examples

To demonstrate the value of the EigQER algorithm, we consider several channels and

codes. We look at the same channels as in Chapter 2, but can now consider channel-

adapted QER for longer codes. We compare the EigQER recovery performance to the

optimal channel-adapted recovery performance for the 5 qubit stabilizer code [3,36].

We also compare the EigQER performance for the 5 qubit code, the 7 qubit Steane

code [8,46], and the 9 qubit Shor code [44]. All comparisons consider an ensemble E

of qubit states that are in the completely mixed state p = 1/2.

Figure 3-2 compares the performance of the EigQER algorithm to the optimal

QER recovery for the case of the five qubit stabilizer code and the amplitude damping

channel. Also included are the generic QEC recovery and the entanglement fidelity

of a single qubit acted upon by 94 (i.e. no error correction performed). From this

example we observe that the EigQER performance nearly achieves the optimum,

especially for the values of y below .4. For higher 7, the EigQER performance begins

to diverge, but this is less important as that region is one in which even the optimal

QER lies below the fidelity of a single qubit obtainable with no error correction.

Figure 3-3 compares EigQER and optimal QER for the five qubit stabilizer code

and the pure state rotation channel with 0 = 57r/12. We see again that the EigQER

algorithm achieves a recovery performance nearly equivalent to the optimum, espe-

cially as the noise level approaches 0.

Figure 3-4 demonstrates the performance of several codes and the amplitude

damping channel. We compare the EigQER performance for the five, seven, and

nine qubit codes, contrasting each with the generic QEC performance. Notice first

the pattern with the standard QEC recovery: the entanglement fidelity decreases with

the length of the code. The five qubit stabilizer code, the Steane code, and the Shor
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Figure 3-2: EigQER and Optimal QER for the amplitude damping channel and the
five qubit stabilizer code. EigQER nearly duplicates the optimal channel-adapted
performance, especially for lower noise channels (small y).
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code are all designed to correct a single error on an arbitrary qubit, and fail only if

multiple qubits are corrupted. For a fixed -y, the probability of a multiple qubit error

rises as the number of physical qubits n increases.

The QEC performance degradation with code length is a further illustration of the

value of channel adaptivity. All three codes in Figure 3-4 contain one qubit of infor-

mation, so longer codes include more redundant qubits. Intuitively, this should better

protect the source from error. When we channel adapt, this intuition is confirmed

for the Shor code, but not for the Steane code. In fact, the EigQER entanglement

fidelity for the Steane code is only slightly higher than the generic QEC recovery

for the five qubit code. From this example, it appears that the Steane code is not

particularly well suited for adapting to amplitude damping errors. We see that the

choice of encoding significantly impacts channel-adapted recovery. We will return to

the channel-adapted performance of the Steane code in Chapter 5.

The effect is even more dramatically (and puzzlingly) illustrated in the pure state

rotation channel. Figure 3-5 compares the EigQER recoveries for the five qubit,

Steane, and Shor codes with 0 = 57r/12. It is interesting to see that the five qubit code

outperforms each of the others, despite less redundancy to protect the information.

Furthermore, both the standard QEC and channel-adapted recoveries for the Steane

code perform worse than the generic recovery of the Shor code! This suggests that

the five qubit code is particularly well suited to adapt to errors of this type, while

the Steane code is particularly ill-suited. (We suspect that the Shor code with QEC

recovery outperforms the Steane due to its degenerate structure.)

3.2 Block SDP QER

The recovery operation generated by the EigQER algorithm of the preceding section

is one of a broader class of quantum error recoveries. The class is characterized by an

initial projective syndrome measurement, followed by a syndrome-specific recovery

operation. The projective measurement partitions HFc and provides some knowledge

about the observed noise process.
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Figure 3-4: EigQER and standard QEC recovery performance for the five, seven,
and nine qubit codes and the amplitude damping channel. Note that generic QEC
performance decreases for longer codes, as multiple qubit errors become more likely.
While the EigQER performance for the nine qubit Shor code is excellent, the seven
qubit Steane code shows only modest improvement, with performance similar to the
generic five qubit QEC recovery.
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Figure 3-5: EigQER and standard QEC recovery performance for the five, seven, and
nine qubit codes and the pure state rotation channel with 0 = 57r/12. Despite the
least redundancy, the five qubit code has the best channel-adapted performance. The
Steane code appears particularly poor for this channel: both the generic QEC and
the adapted recovery have lower fidelity than the other codes.



Projective Channel-adapted Algorithm

Figure 3-6: Two stage diagram for design of a projective channel-adapted algorithm.
The first stage selects a projective syndrome operator Pk. The second determines the
corrective action necessitated by Pk.

Projective syndrome measurements for quantum error correction are tricky to

design. We wish to learn as much as possible about the error while learning as little

as possible about the input state, so as not to destroy quantum superposition. The

EigQER algorithm aggressively designs the syndrome measurement, as the Rk = UkPk

structure of the operator elements implies a finality about the syndrome selection.

The outcome of the syndrome measurement completely determines the correction

term Uk.

We can conceive of a less aggressive projective measurement. If we projected onto

larger subspaces of 7Rc, we would learn less about the noise but perhaps have less

chance of destroying the superposition of the input state. We could consider this an

intermediate syndrome measurement, a preliminary step to further error correction.

To design a recovery operation of this type, we must have a strategy to select a

projective measurement. Given the outcome Pk, we must further design the syndrome

recovery operation Rk. This general framework is illustrated in Fig. 3-6.

Consider the projective syndrome measurement operator Pk. For the EigQER

algorithm, Pk = R'Rk always projects onto a subspace of dimension less than or

equal to the source space: rank(Pk) < ds. This is an aggressive condition that

arises from constraining the subsequent syndrome recovery to be a unitary operator.

We will relax this constraint and allow an arbitrary syndrome recovery Rk for the

kth syndrome measurement. It turns out that we can determine the optimum such



recovery ~opt via semidefinite programming, just as in Chapter 2. The intermediate

syndrome measurement Pk reduces the dimension of the SDP, and thus the technique

is still applicable to long codes where computing the global optimum recovery is

impractical.

We will demonstrate how the optimum syndrome recovery Rk can be calculated via

a semidefinite program. Let {Pk K)=1 be a set of projectors such that Ek Pk I E

that constitute an error syndrome measurement. Let Sk be the support of Pk with

dimension dk; it is clear that S 1  S32 D ... SK = -lc. Given the occurrence of

syndrome k, we must now design a recovery operation Rk :Sk Sý- s. Rk is subject

to the standard CPTP constraint on quantum operations, but only has support on

Sk. We may calculate the recovery Rk that maximizes the average entanglement

fidelity using the SDP in a structure identical to that of (2.6) while accounting for

the reduced input space:

X1k = arg maxtrX(CE,C)k, (3.16)
x

such that X > 0, trHsX = I E Sk

Here, (CE,E)k = I PkCE,EI 0 Pk is the data matrix projected into the kth subspace.

Notice that Xsk and (CE,E)k are operators on Rs 9 S*. In contrast to CE,&, which

requires d2sd2 matrix elements, (CE,E)k is fully specified by d d2k matrix elements. By

partitioning R-Lc into subspaces {Sk} through a careful choice of a syndrome measure-

ment {Pk}, we may apply semidefinite programming to high dimensional channels

without incurring the full computational burden of computing the optimal recov-

ery. In the following sections we discuss two strategies for determining the syndrome

measurement.

3.2.1 Block EigQER

The first step of an iteration of EigQER computes the dominant eigenvalue and

corresponding eigenvector of CE,E. This eigenvector corresponds to the operator that

maximizes the average entanglement fidelity gain at a single step. While such an



operator may violate the CPTP constraint for the recovery operation, it serves to

identify an important subspace onto which we may project. Indeed, the success of

the EigQER algorithm rests on the successful identification of syndrome subspaces

via eigen-analysis.

An intuitive extension of this concept is to use multiple eigenvectors to specify

a higher-dimension subspace. If { IXm))~)= are the eigenvectors corresponding to

the M largest eigenvalues of CE,&, then it is reasonable to define the subspace S 1

as the union of the support of the operators {Xm}. We define the corresponding

projector P1 and calculate the syndrome recovery R1 via the SDP of (3.16). As in

the EigQER algorithm, we update the data matrix C by projecting out the subspace

S1, at which point we select another set of eigenvectors. We will refer to this algorithm

as BlockEigQER.

How many eigenvectors should be selected to define a block? A simple solution is

for a fixed block size, say M, to be processed until the recovery is complete. For M =

1, BlockEigQER is identical to EigQER. For M = dsdc, BlockEigQER computes

the optimal recovery operation, as the syndrome measurement is simply the identity

operator. For values in between, one would expect to trade off performance for

computational burden. While there is no guarantee that performance will improve

monotonically, we would anticipate improved performance as M increases.

We illustrate the performance for several choices of M in fig. 3-7. We use the

pure state rotation channel (9 = 57r/12) and the five qubit code with block sizes of

2, 4, and 8. The expected improvement as M increases is evident, though the gain

is quite modest for noise levels of interest (below the cross-over with the single qubit

recovery) and is not strictly monotonic. The variations in performance , including

the non-monotonicity, are likely the result of syndrome measurements that collapse

the input superpositions. While the eigenvectors of CE,E that identify the syndrome

subspace generally avoid collapsing the input state, the mechanism is imperfect.

While BlockEigQER outperforms EigQER in the [5, 1] code, we see in (B) of

3-7 that the improvement is less than 5% within the ¢ of interest. We see more

significant gains when we encode multiple qubits. Consider a random [6, 2] encoding
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Figure 3-7: BlockEigQER performance for the five qubit code and the pure state
rotation channel with 0 = 57r/12. BlockEigQER is computed with fixed block lengths
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nearly indistinguishable performance from EigQER. In (B), we compute the fidelity
relative to the EigQER recovery and show that the fidelity improves by less than 4%
for the displayed region. We can note, however, that longer block lengths tend to
better performance.
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Figure 3-8: BlockEigQER for the amplitude damping channel and a random [6,2]
code. We compare the BlockEigQER algorithm for block sizes of 2,4, and 8 with
EigQER algorithm. We see significant performance improvement for larger block
sizes, at the cost of computational and recovery complexity. Baseline in this case is
the entanglement fidelity for two qubits input to the channel without error correction.



for the amplitude damping channel, shown in Figure 3-8. In this case we see a distinct

performance gain as M increases and the difference is non-trivial.

Fixing the block size M ignores some of the inherent symmetries in the channel

and encoding. In particular, it is quite common for CE,E to have degenerate eigen-

values. By fixing the number of eigenvectors to simultaneously consider, one may

inadvertently partition such a degenerate subspace according to the numerical pre-

cision of the eigen-analysis software. To avoid this unwanted circumstance, we may

select a variable block size based on the magnitude of the eigenvalues. This approach

necessitates a strategy for parsing the eigenvalues into variable size blocks which can

be a tricky procedure. Due to the modest returns of such an attempt, we have not

pursued such a strategy.

While BlockEigQER shows modest performance improvements when compared

to EigQER, it has one significant drawback. Unlike EigQER, the recovery operation

from BlockEigQER is not constrained to a collection of isometries. Once the initial

projective syndrome measurement is performed, the subsequent correction terms are

arbitrary CPTP maps. This may complicate attempts to physically implement such

an operation. Furthermore, BlockEigQER does not provide much more intuition for

recovery design than EigQER. For this reason, we consider BlockEigQER a numerical

tool whose principal value is its incremental improvement approaching optimality. It

also prove useful for the performance bounds derived in Chapter 4.

3.2.2 OrderQER

We now consider a block QER algorithm that does provide intuition for error recov-

ery design. We are often interested in channels where each qubit is independently

corrupted; thus the overall channel is the tensor product of single qubit channels. We

can use this structure to design an intuitive projective measurement. We illustrate

using the classical bit flip channel with probability of error p. If a single bit of the

codeword is flipped, we label this a 'first order error' as the probability of such an

error is 0(p). If two codeword bits are flipped, this is a 'second order error', which

occurs with probability 0(p 2).



This intuition can easily yield a choice of syndrome subspaces {Sk}. Consider, for

example, the amplitude damping channel given in (1.15). Recognizing El as the 'error

event,' we declare first order errors to be of the form Ek = Eo0 ... E 1  Eo 0 - - - where

the error is on the kth qubit. In this case we can declare the first order syndrome

subspace to be

S1 = span({l E0OL), IEo nL) , IE10L), EIL ,... E,11L) }), (3.17)

where IOL) and 1L) are the logical codewords for an n-length code. We include the

'no error' term as numerical experience suggests that the code projector Pc is not

always an optimal syndrome measurement. By parallel construction, we can define

the second order syndrome subspace S2. While these two will probably not complete

the space Hlc, quite possibly we may neglect any higher orders. Alternatively we

can analyze the remaining subspace with either the SDP or the numerically simpler

EigQER algorithm. We will refer to this block SDP algorithm as OrderQER.

The SDP's for first and second order subspaces significantly reduce the dimension

from the full optimal SDP, though the effect is not as dramatic as BlockEigQER.

Consider the case of the amplitude damping channel which has only two operator

elements for the single qubit channel. For an [n, k] code, there is one 'no error'

operator and n first order error operators. This suggests that S1 has dimension

(n+ 1)ds = (n+ 1)2 k. The SDP then has (n + 1)224k optimization variables. Contrast

this n 2 growth with the 4" growth of the optimal SDP. For second order errors, there

are () P - error operators. The subspace 82 has approximate dimensions of

n22k- 1 and thus the SDP has n424k-2 optimization variables. For the [7, 1] Steane

code, computing the full optimal SDP requires an impractical 47. 4 = 65536 variables.

However, the first order SDP requires 8224 = 1024 variables and the actual second

order SDP has 422 - 4 = 7056 optimization variables. For contrast, the full SDP and

the five qubit code requires 1024 optimization variables. For the [9, 1] Shor code,

the second order SDP has an impractical 722 - 4 = 20736 optimization variables. We

therefore do not use OrderQER for the Shor code.
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Figure 3-9: OrderQER recovery for the seven qubit Steane code and the amplitude
damping channel. We compare the recovery fidelity of the 1st order error to the
standard QEC performance. The performance of the 1st and 2nd order recoveries
together are comparable to the EigQER recovery, especially as y approaches 0.



While the scaling of OrderQER grows quickly with n making its use challeng-

ing for codes as long as nine qubits, OrderQER results provide significant insight

into the mechanism of channel-adaptation. Consider the l st and 2"d order recovery

performance for the Steane code and the amplitude damping channel from Figure

3-9. We note that the fidelity performance for the recovery from Si is comparable

to the performance of standard QEC, especially as 7 approaches 0. This matches

the intuition that standard QEC is correcting single qubit errors which are almost

completely restricted to S1. For small y, the most likely syndrome measurement will

be a Pauli X or Y, as these characterize single qubit dampings. These same errors

are corrected by 1st order OrderQER. As y grows, the distortion from the 'no error'

term Eo0 ... Eo becomes more pronounced and the QEC outperforms 1st order

OrderQER.

We see that 1st and 2nd order recovery performance is quite comparable to the

EigQER performance. Thus, the performance gains observed for channel adapted

QER can be understood as corrections of higher order errors. Since S1 has dimension

significantly less than dc and yet approximates the QEC recovery performance, it

is only reasonable that the remaining redundancy of the code can be exploited to

protect from further error. We will further explore the consequences of this insight

for code and recovery design in Chapter 5.

3.3 Summary

Channel-adapted quantum error recovery is possible even with structured recovery

operations. We showed with the EigQER algorithm that high performing channel-

adapted QER can be achieved with projective syndrome measurements and syndrome-

dependent unitary operations. As this structure mirrors standard QEC recovery

operations and has simple physical interpretation, we can conceivably implement

such recovery operations. Furthermore, the imposed structure of EigQER as well as

the block SDP algorithms BlockEigQER and OrderQER allow numerical analysis of

longer codes. While all algorithms will necessarily scale exponentially with the code



length n, our structured QER algorithms are more scalable than the optimal SDP of

Chapter 2.



Chapter 4

QER Performance Upper Bounds

In Chapter 3, we imposed constraints on the recovery operations to provide structure

and aid computation. While the resulting channel-adapted recoveries out perform

the generic QEC recovery operation in all of the examples, the constraints essentially

guarantee sub-optimality. For the five qubit code (where computation of the optimal

QER operation is practical), we observe that the proposed algorithms (EigQER,

BlockEigQER, and OrderQER) closely approximate the optimal performance. This

anecdotal evidence, however, is hardly sufficient to justify the bold description in the

chapter title of 'near-optimal' channel-adapted QER. In this chapter, we more fully

justify the near-optimal label by deriving channel-adapted performance bounds.

We accomplish this by using the Lagrange dual function derived in Section 2.6.

Specifically, we will use the bounding properties of the dual function. Recall that

Y E L(7N ) is a dual feasible point if and only if I 9 Y - CE,C Ž 0. (As in preceding

chapters, the inequality is a generalized matrix inequality indicating that the left

hand side is positive semidefinite.) Recall from (2.22) that Fe(E,R o £) < trY for all

7Z if Y is dual feasible; Y is thus a certificate of convergence for a recovery operation.

To provide a good performance bound, it is desirable to find a dual feasible point

with a small dual function value. Indeed, the best such bound is the solution to (2.23),

that is to find the dual feasible point with the smallest trace. However, finding the

optimal Y is the equivalent of solving for the optimal recovery due to the strong

duality of the SDP. As this suffers the same computational burden as computing the



optimal recovery, we require an alternate method for generating useful dual feasible

points. We will establish methods to convert the sub-optimal recovery operations of

Chapter 3 into dual feasible points.

We need to determine a good dual feasible point beginning with one of the sub-

optimal recoveries computed by the EigQER, BlockEigQER, or OrderQER algo-

rithms. In Sec. 2.6.1, we established a method to construct the optimal dual Y*

given the optimal recovery RZ*. We might be tempted to apply the same construction

using the sub-optimal recovery operations. Unfortunately, the method suggested by

(2.31) relies upon the fact R* is known to be optimal and thus trXR*CE,c = trY*.

Applying (2.31) will only yield a dual feasible point if the input recovery is optimal.

We instead utilize the structure of the sub-optimal recovery operations to gener-

ate a dual feasible point. We present two methods that exploit the projective syn-

drome measurement to achieve performance bounds. The first bound is motivated

by the proof of Theorem 1 where the optimal dual feasible point is constructed for

Pauli group errors. Beginning with this construction and the recovery generated by

EigQER, we use the Geragorin disc theorem to generate a dual feasible point. The re-

sulting dual function we denote the Geragorin dual bound. The second construction

iteratively generates dual feasible points given an initial infeasible point. While it

is more computationally burdensome, it generates tighter bounds for the considered

examples. We begin with a trial dual variable that may or may not be feasible and

iteratively extend this point until it is feasible. We will call this construction the

iterative dual bound. We present several methods for providing an initial trial point.

Discussion of both bounding methods is facilitated by choosing an appropriate

basis for R-/s 0 -. Both methods begin with a recovery operation generated by

one of the sub-optimal methods of Chapter 3. As they all begin with a projective

measurement, the recovery provides a partition of 'Hc into subspaces Sq of dimension

dq described by projection operators {Pq} E (7-lc). We are interested in a basis

{v))}•=k where the first block of dsdo basis vectors span I ® S( and the qth block



spans I 9 S*. Let us define

(CE,C)qql I 0 PFCE,EI ®& P•- (4.1)

as we did in (3.16) and then write

(CE,e)o0 ... (CE,C)Oq ...

CE,E (4.2)
(CE,e)qo ... (CE,e)qq

in our defined basis. This block structure delineates the relationship of the data

operator CE,E on each of the subspaces Sq which will be useful when discussing dual

feasible points.

4.1 Geragorin Dual Bound

The first method for constructing dual feasible points imposes a convenient structure

on Y. In the proof of Theorem 1, the optimal dual feasible point has the form

Y = WqP, (4.3)
q

where Wq are a set of weights corresponding to the probability of the most likely error

resulting in the qth syndrome measurement. The form of (4.3) is appealing due its

simplicity, especially for the EigQER recovery operation where the rank dq of the Pq

is constrained to be < ds as is the case in Theorem 1. While we cannot necessarily

generate the optimal dual feasible point in this form, we can use similar methods to

generate a reasonable performance bound.

Before we state the Geragorin dual bound, we take a second look at the optimal

dual point of Theorem 1. For an [n, k] stabilizer code, recall that Htc is partitioned

into 2n-k syndrome subspaces Sq and we establish a basis {Im)q} for each subspace.



We also determined that IUtcqA,)) is an eigenvector of CE,E. Note that { I UcqAP)) p2-

span the space I 0 Sq.

If we write out the operator (CE,E)qq in this basis, we have

(CE,C)qq = a(2 ) 1  (4.4)

a(22k-1)q

which is diagonal because {Im),} are eigenvectors of CE,C. This also implies that all

of the off-diagonal blocks (CE,E)qq' where q / q' are also 0. We can now see that

Y = q iqPq where ~q = max, lapql is a dual feasible point since

&0I 0 ... 0

I 0 Y* = ill. 0 (4.5)

0 0 ... a2n-k-1

is diagonal in the chosen basis.

We return now to the general case. Unlike in the case of a Pauli error channel

and a stabilizer code, we cannot guarantee that CE,E will be either diagonal or block

diagonal in this basis. However, if our sub-optimal recovery 7R is generated from the

EigQER algorithm, then the subspaces Sq are selected based on the eigenvectors of

CE,C and we can expect CE,E to be approximately block diagonal when we partition

according to the subspaces I® S*. We say that CE,E is approximately block diagonal

in this basis if II(CE,,)qlII » II(CE,E)qq' I for q 4 q'.

To generate a dual feasible point of the form Y = Eq wqPq, we need to choose

wq so that I 0 Y - CE,E > 0. If CE,E were exactly block diagonal in this basis, we

could accomplish this by setting wq = Amax((CE,E)qq). Since the block terms off the

diagonal are not strictly 0, we must account for their contributions in the location of

the eigenvalues of CE,E.



We will make use of a linear algebra theorem known as the GerSgorin disc theorem.

This theorem provides bounds on the location in the complex plane of the eigenvalues

of an arbitrary matrix. As will be evident, the theorem is most valuable when the

matrix is dominated by its diagonal entries. We state the theorem as it is given in [28]

§ 6.1:

Theorem 3. Let A = [aij] E C n x n , and let

R'(A) S aij1I, 1 i <n (4.6)
j=1,j$i

denote the deleted absolute row sums of A. Then all the eigenvalues of A are located

in the union of n discs

U{z E C: Iz - ajl !5 Ra(A)} - G(A). (4.7)
i=l

Furthermore, if a union of k of these n discs forms a connected region that is disjoint

from all the remaining n - k discs, then there are precisely k eigenvalues of A in this

region.

Theorem 3 is particularly useful for proving the positivity of a matrix. The Ri(A)

are the radii of discs centered at the diagonal entries aii and the eigenvalues are

constrained to lie within the union of these discs. If A is a Hermitian matrix, then we

can be certain it is positive semidefinite if aii > Ri (A) for all i as all of the eigenvalues

would be constrained to lie to the right of the origin (or on the origin) on the real

line.

We can apply Theorem 3 to generating a dual feasible point structured as (4.3).

In this case we use the weights w, to ensure that the diagonal entries of I Y - CE,E

are greater than the deleted absolute row sums. Let cij denote the matrix elements

of CE,e in our defined basis and let the basis vector Ivi) lie in the subspace Sq. We

then the have the ith diagonal element [I 0 Y - CE,E]ii = Wq - ii and the ith deleted



absolute row sum is Eij cqj . We can assure non-negativity if

Wq _ 3 jcij, for all i such that Iv ) E Sq. (4.8)

Thus, we can guarantee a dual feasible point if wq is set to be the maximum absolute

row sum for all rows i such that Ivi) E Sq. We may express wq concisely in terms of

the induced oo-norm( [28] § 5.6.5), denoted I1' I|:

Wq = [(CE,E).q0 ' (C"E,) qq ... . (4.9)

= Il0 -7qCE,E1 Ioo. (4.10)

The Ger~gorin disc theorem is a computationally simple way to guarantee con-

struction of a dual feasible point given a partition of 7 'c into subspaces {S,}. Unfor-

tunately, the induced infinity norm does not provide a particularly useful performance

bound as can be seen in Figure 4-1. When we compare to the optimal recovery per-

formance for the five qubit code and the amplitude damping channel, we see that the

dual bound is far from tight. In fact, for many values of y, the bound is greater than

1, which is truly useless for upper bounding fidelities. While we have generated a

dual point Y that is guaranteed to be feasible, such a guarantee imposes too strict a

cost to have a useful bounding property.

The Geragorin dual bound provides useful insight for a tighter dual construction.

If we replace the induced infinity norm with the induced 2-norm, we generate a dual

point that is often dual feasible. That is, choose

Wq = iI®"•qCE,E1S2 (4.11)

= max((x• I ® PqCE,Elx)) (4.12)

= Umax (I ® PCE,E), (4.13)

where max(-) in (4.13) indicates the maximum singular value and is the computa-

tional method for the induced 2-norm. We will refer to this construction as the SVD
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Figure 4-1: Gerigorin and SVD dual bound for the amplitude damping channel and
the 5 qubit stabilizer code. The Gergogrin bound is clearly not very useful as in
some cases it is greater than 1. The SVD dual bound clearly tracks the optimal
performance, although the departure from optimal of the bound exceeds the EigQER
recovery.



(for singular value decomposition) dual point. The Y generated in this way is not

guaranteed to be dual feasible as was the case with the oo-norm, but has proven to be

dual feasible in all of the examples that we have tried. If for some circumstance the

SVD dual point is not feasible, it can be iteratively adjusted to become dual feasible

in a manner we present in the following section.

4.2 Iterative Dual Bound

We now present an iterative procedure to generate a dual feasible point given an initial

dual point Y(O) that is presumably not dual feasible. After presenting the algorithm,

we will discuss choices for the initial dual point.

At the kth iteration, we update the dual point to produce y(k) until we achieve

feasibility. For convenience we will define

Z(k) I ® y(k) _ CE,S. (4.14)

Let x and Ix)) be the smallest eigenvalue and associated eigenvector of Z(k). If x > 0,

we may stop, as y(k) is already dual feasible. If x < 0, we wish to update y(k)

a small amount to ensure that ((xIZ(k+1) z)) > 0. Essentially, we are replacing a

negative eigenvalue with a 0 eigenvalue. Given no constraints on the update, we

could accomplish this as Z(k+1) = Z(k) + xlx))((xI but we must instead update y(k)

with the tensor product structure implicit.

We determine the properly constrained update by means of the Schmidt decom-

position of the eigenvector:

Ix)) = ZAil~i)-HsIi)~. (4.15)

As we can only perturb Z(k) in the H-(* slot, we choose the smallest perturbation



guaranteed to achieve ((xlZ(k+1)lx)) > 0. Let

y(k+1) = y(k) + 1I ,) (411 . (4.16)

Then

Iz(k+l)Ix>> = X + XI((X I (I ® ]>1) X))x>> (4.17)

= x+ II 112  (4.18)

= 0, (4.19)

since x < 0. While we have not yet guaranteed that Z(k+1) > 0, Ix)) is no longer

associated with a negative eigenvalue. By repeatedly perturbing y(k) in this manner,

we iteratively approach a dual feasible point while adding as little as possible to the

dual function value trY(k).

As a final point, we demonstrate that the iterative procedure will converge to

a dual feasible point. Let's consider the effect of the kth iteration on the space

orthogonal to Ix)). Let ly)) E R-s 0 RC* be orthogonal to Ix)). Then, for Z(k+1) we see

that

((ylZ(k+l)ly)) = ((YIZ(k)ly)) + i1 ((y l(I ) (~1l)y)). (4.20)

But since I I~1) (,|I > 0 we see that

((ylZ(k+l)ly)) > ((ylZ(k)ly)) (4.21)

for all Iy)) E Rs 0 7-R*. We see that the update to y(k) moved one negative eigenvalue

to 0 while no new negative eigenvalues can be created. Thus the procedure will require

no more than m iterations where m is the number of negative eigenvalues for Z(°) .



4.2.1 Initial dual points

Having established a procedure to generate a dual feasible point given an arbitrary

intial point Y(O), we will now present initialization options. While we can start with

any Hermitian operator in L(7-(i) including 0, we do not recommend such an unstruc-

tured choice as each iteration is imperfect. Each iteration adds Ix /IA12 to the dual

function value. If JIAl is not close to 1, the iteration is not efficient. We will use more

educated initializations to begin closer to feasibility, thus minimizing the number of

iterations and improving the bounding properties of the resulting dual feasible point.

We have already presented one method for initialization with the SVD dual point.

In most cases we've seen, this point is already feasible and in fact is a relatively

loose bound. Its advantage lies in its easy computation, but other choices provide

better bounding properties. We would prefer an initial Y(O) such that Z (0) is non-

positive with eigenvalues very close to 0. If this is the case, we will require only small

perturbations (and thus a small dual function value) to achieve a positive semidefinite

Z(k).

Consider an initial Y(O) of the form given in (4.3). We choose an initial Y(0) in

the same way that was used in the proof of Theorem 1:

Wq = Amax((CE,E)qq). (4.22)

This is very simple to calculate, though it will not generally be dual feasible. This

is the logical choice when we begin with the EigQER recovery, as the only useful

information we have is the projective syndrome measurement. This initialization

often iterates to a better bound than the SVD dual point and requires no further

information than the partition {S,} provided by any of the sub-optimal QER methods

from Chapter 3. It has one drawback, however, in that Z (0) almost certainly has

eigenvalues much greater than 0. For the Ivi) associated with the largest eigenvalue

of (CE,E)qq, (viI Z (o) jvi) = 0. However, unless (CE,E)qq has only one distinct eigenvalue

there will be vectors Ix)) e Sq such that ((xIZ(O)Jx)) > 0, and perhaps quite large,

relatively. Such vectors indicate portions of the Hilbert space where Y(0) is already

100



greater than the optimal dual feasible point. While this likely cannot be avoided in

the iterations, it seems wasteful to begin at such a point if not necessary.

We have an alternative choice for Y(0) arising from the block SDP QER algorithms

of Sec. 3.2. These algorithms already provide information useful for generating a

dual feasible point. When solving the SDP on a subspace Sq one can simultaneously

generate the optimal dual function value Yq* E £(S*). This can be computed just

as in Sec. 2.6.1. Given such optimal subspace dual points, define the block diagonal

operator
Yo*

y(O) = (4.23)
Yq*

as the initial point. We know that I 0 Yq* - (CE,c)qq > 0, so there will be Ix)) for

which ((xIZ(0)Jx)) > 0. However, since Y,* is optimal within £(S*), we know that we

are not being overly wasteful with the initialization.

4.2.2 Iterated block dual

Let's consider the computational burden of the iterated dual bound. At each itera-

tion we must compute the smallest eigenvalue and associated eigenvector of Z(k), a

2"+k x 2n+k Hermitian matrix. (We can accomplish this by looking for the largest

eigenvalue of rlI - Z(k) where 2> 1 is an arbitrary offset to ensure positivity.) This

must be repeated at most 2n+k times to ensure dual feasibility, though there may

be significantly fewer iterations if the Z (0) is nearly positive semidefinite already. As

mentioned in Sec. 3.1, this can be accomplished in 0( 2 2(n+k)) flops by the power

method. This is very costly if we must repeat the iteration many times.

The block diagonal structure of the initial points suggests a slightly modified

alternative procedure with some computational advantage. Consider the optimal

dual points Yi and Yj in £(Si*) and £(S1). We can use the same iterative procedure

as before to compute a dual feasible Yij E £(Sf E S*) requiring only O(22k(di + dj) 2)
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flops per iteration with a maximum of 2k(di + dj) iterations. We can generate a dual

feasible point on the whole space L(H- ) by successively combining subspace blocks.

Eventually we will have to iterate over the full space, but we will have done most

of the work in the smaller blocks, and the full 2 n+k x 2n+k eigen decomposition will

require few iterations.

In the examples we have processed, the iterated block dual procedure created

nearly identical bounds (often within 10- 5 of each other and never more than 10- 4)

as the original algorithm. The computational burden is reduced by approximately

20%.

4.2.3 Examples

We provide several examples to demonstrate the utility of the iterated dual bound.

At the same time, we we illustrate the near optimality of the algorithms from Chapter

3. In Fig. 4-2, we show several bounds for channel-adapted QER for the amplitude

damping channel and the five qubit code. In this case, we know the optimal perfor-

mance and can see that the iterated dual bound, beginning with the BlockEigQER

with M = 2, is quite tight. This is in contrast to the SVD dual bound, which was

also shown in Fig. 4-1. We have included in Fig 4-2 the numerical channel-adapted

recovery and performance bound from [2]. We see that this bound is looser than even

the SVD dual bound for this example.

Figure 4-3 shows several dual bounds for the amplitude damping channel and the

nine qubit Shor code. While we cannot compute the optimum directly, we see that

the EigQER performance curve and the iterated bound derived from BlockEigQER

with M = 2 are essentially equivalent. We can conclude that EigQER operation is

essentially in this case. While not shown, iterations for BlockEigQER with M = 4

and M = 8 achieved essentially the same bound. Note that neither the SVD dual

bound nor the iterated bound beginning with the EigQER recovery operation are

tight, illustrating the importance of a good initialization for the dual iterations.

Our final example is the pure state rotation channel with 0 = 57r/12 and the

seven qubit Steane code. In Fig. 4-4, we can distinguish between several initialization
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Figure 4-2: Dual bound comparison for the amplitude damping channel and the five
qubit code. The iterated dual initialized with the Block EigQER algorithm with
M = 2 is essentially indistinguishable from the optimal recovery performance, thus
producing a very tight bound. Included for comparison are the EigQER performance,
the SVD dual bound, and both a channel-adapted recovery and associated bound
derived by Barnum and Knill in [2].
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Figure 4-3: Dual bound comparison for the amplitude damping channel and the nine
qubit Shor code. The iterated dual bound initialized with the BlockEigQER recovery
with M = 2 produces a bound that is tight to the EigQER recovery operation. This
demonstrates that the EigQER recovery operation is essentially optimal in this case.
Notice that the iterated bound initialized with the EigQER recovery operation does
not generate a tight bound.
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Figure 4-4: Dual bound comparison for the pure state rotation channel with 0 = 57r/12
and the seven qubit Steane code. Note that the iterated bounds are generally, though
not universally, better than the SVD dual bound. We also see that the shorter block
lengths for the BlockEigQER algorithm generally produce a tighter bound, despite
slightly poorer recovery performance.

methods for the dual iterative bound. We see that none of the recovery operations

approach the bound performance for large q, though the performance is relatively

tight as the noise level drops (0 -- 0). Notice that in general the iterative bounds are

better than the SVD dual bound, however there are points, especially for the Block-

EigQER algorithm with M = 8, where the iterated bound is poor. It is interesting

to note that the longer block lengths (larger M) usually generate better recovery

performance (which can be seen with slight improvement even in this case) yet of-

ten produce poorer bounds. Anecdotal experience suggests that the best iterative

starting point is the BlockEigQER recovery operation with M = 2.
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Finally, we should point out the gap for large ¢ between the recovery performance

and the dual bounds. Absent a better recovery operation or a smaller performance

bound, we have no way to know whether the bound or the recovery is further removed

from the optimal. However, this region is below the baseline performance for a single

unencoded qubit, and thus is not of serious concern.

4.3 Summary

The bounds presented in this chapter justify describing the recovery operations of

Chapter 3 as 'near-optimal.' We have demonstrated several numerical methods to

upper bound the channel-adapted QER performance using the dual function. In this

way we can certify the convergence of the constrained recovery operations EigQER,

BlockEigQER, and OrderQER. In the cases we have considered, the bounds suggest

that the structured recovery operations do not suffer serious performance losses com-

pared to the optimal. Examples of bounds and recovery performance for all of the

considered examples are included in Appendix A.
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Chapter 5

High Rate Channel-Adapted QEC

for Amplitude Damping

The primary assertion of this dissertation is that one can improve both the perfor-

mance and the efficiency of quantum error correction by adapting QEC procedures to

the physical noise process. To this point, we have developed and interpreted math-

ematical and algorithmic tools with general application. That is to say, given any

model for the noise process and an appropriately short code we can apply optimal

(Chapter 2) and structured near-optimal (Chapter 3) algorithms to provide channel-

adapted encoding and recovery operations.

It is important to note that the aforementioned tools are not, in themselves,

complete solutions to the problem of channel-adapted QEC. When designing an er-

ror correction procedure, there is more to consider than whether an encoding or a

recovery is physically legitimate. This motivated our exploration of near-optimal re-

covery operations, where we imposed a projective syndrome measurement constraint

on recovery operations. Even given such a constraint, to implement channel-adapted

QEC efficiently we need to design encoding and decoding procedures with sufficiently

simple structure to allow efficient implementation. Furthermore, while the optimiza-

tion routines focus on the entanglement fidelity and ensemble average fidelity due to

their linearity, we should still like to understand the minimum fidelity, or worst case

performance.
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To explore these issues in greater depth, we must depart from the construction

of general tools and consider channel-adapted QEC for a specific channel model.

We examine the amplitude damping channel, introduced in Sec. 1.4.1 and used as a

primary exampe throughout the dissertation. The amplitude damping channel is a

logical choice for several reasons. First of all, it has a useful physical interpretation:

it models the decay from an excited state to the ground state for a qubit. Second,

amplitude damping cannot be written with scaled Pauli matrices as the operator

elements; thus Theorem 1 does not apply. Finally, due to its structure, the amplitude

damping channel can still be analyzed with the stabilizer formalism, greatly aiding

analysis.

We begin with a qualitative understanding of the [4, 1] code and its optimal

channel-adapted recovery operation. We first interpret the recovery in terms of the

code words and then in terms of the code stabilizers. We see that we can understand

both the dominant errors and the recovery operation in terms of stabilizer operations.

The stabilizer interpretation permits a simple generalization for higher rate amplitude

damping codes and recovery operations. In particular, we define two classes of am-

plitude damping-adapted error correcting codes that can be derived and understood

with a simple stabilizer structure.

5.1 Qualitative Analysis of Channel-Adapted QER

for Approximate [4,1] Code

Let's consider the optimal channel-adapted recovery for the [4,1] 'approximate' code

of [37]. Described in Sec. 1.5.6, this is an example of a channel-adapted code, designed

specifically for the amplitude damping channel rather than arbitrary qubit errors. Its

initial publication demonstrated the utility of channel-adaptation (though without

using such a term) for duplicating the performance of standard quantum codes with

both a shorter block length and while achieving a higher rate. In [37], the authors

proposed a recovery (decoding) circuit and demonstrated its strong performance in
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Table 5.1: Optimal QER operator elements for the [4,1] code. Operators R 1 and R2
correspond to the "no dampings" term Eo05 where a and 3 depend on y. R3 - R
correct first order dampings. R7 - R10 partially correct some second order dampings,
though as only 10L) is returned in these cases superposition is not preserved.

minimum fidelity.

It is interesting to note that the recovery operation (described in quantum circuit

form in Fig. 1-1) is not a projective syndrome measurement followed by a unitary

rotation as is standard for generic codes; yet the optimal recovery does conform to

such a structure. Recall that the logical codewords are given by

1
10L) = -(10000) + 11111)) (5.1)

1
IlL) = (1I0011) + 11100)). (5.2)

The optimal recovery operation is given in Table 5.1. We will analyze each of the

operator elements in turn. For clarity of presentation, we begin with first and second

order damping errors and then we turn our attention to the recovery from the 'no

damping' term.
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5.1.1 Recovery from first and second order damping errors

Recall that the amplitude damping channel on a single qubit has operator elements

Eo = and El = (5.3)

neither of which is a scaled unitary operator. Let us denote a first order damping

error as E k), which consists of the qubit operator El on the kth qubit and the identity

elsewhere. Consider now the effect of El~) on the codewords of the [4, 1] code:

E1 ( I®3 OL) = V7 10111), (5.4)

El 0 3 I1L) = V/ 0100) (5.5)

We see that the code subspace is perturbed onto an orthogonal subspace spanned

by {10111), 10100)}. R 3 projects onto this syndrome subspace and recovers appro-

priately into the logical codewords. Recovery operators R4, R5, and R6 similarly

correct damping errors on the second, third, and fourth qubits. Notice that the first

order damping errors move the information into mutually orthogonal subspaces. It is

therefore not hard to see that the set of errors {1®4, E k) 4=1 satisfy the error correct-

ing conditions for the [4, 1] code. (That the [4, 1] code satisfies the error correcting

conditions for damping errors was pointed out in [25].)

Consider now the subspace spanned by {(1010), 10101), 10110), 11001)}. By exam-

ining the logical codewords in (5.1) and (5.2), we see that this subspace can only be

reached by multiple damping errors. Unfortunately, in such a case we lose the logical

superpositions as only OL) is perturbed into this subspace. Consider, for example

the two damping error 1)EE . We see that

E(1 E () 0L) = Y7 10101), (5.6)

E(1) • (3 ) IlL) = 0. (5.7)

While we cannot fully recover from such an error, we recognize that these higher
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order errors occur with probability y2. Furthermore, we see that operator elements

R7 - Rio do recover the 10L) portion of the input information. This contributes a

small amount to the overall entanglement fidelity, though would obviously not help

the minimum fidelity case. Indeed, R7 - R10 do not contribute to maintaining the

fidelity of an input IlL) state.

We should also note that only a subset of all second order dampings are partially

correctable as above. We reach the syndrome subspaces from R7 - Rio only when a

qubit from the first pair and a qubit from the second pair is damped, allowing the

O0L) state to be recovered. If both the first and second qubits (or both the third and

fourth qubits) are damped, the resulting states are no longer orthogonal to the code

subspace. In fact, these are the only errors that will cause a logical bit flip, recovering

10L) as IlL) and vice versa.

5.1.2 Recovery from the distortion of the 'no damping' case

We turn now to the recovery operators R 1 and R2. Together these project onto the

syndrome subspace with basis vectors {10000) , 1111) ,I1100), 10011) } which includes

the entire code subspace. We just saw that I®4 together with single qubit dampings

are correctable, but S04 does not have an operator element proportional to I®4.

Instead, the 'no dampings' term is given by E04 which depends on the damping

parameter 'y. Indeed, consider the effect of the no damping term on the logical code

words:

E14 IOL) (10000) + (1 - _)2 1111)) (5.8)

E4 I1L) 1 o+ 1100) + o11)). (5.9)

A standard recovery operation projects onto the code subspace. Consider the

effect of such a recovery on an arbitrary input state a IOL) + b ilL). The resulting

(un-normalized) state is

Y2
a(1 - - + -) IOL) + b(1 - ) 1iL) . (5.10)
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The extra term 2 distorts the state from the original input. While this distortion is2

small as y -- 0, both the original recovery operation of Fig. 1-1 proposed in [37] and

the optimal recovery seek to reduce this distortion by use of a '-dependent operation.

We analyze the optimal recovery operation for this term and compare its efficacy with

the simpler projection.

We see that R 1 projects onto a perturbed version of the codespace with basis

vectors {(a 10000) +3 0 1111)), (• 10011) + 1 1100))} where a and 0 are chosen to

maximize the entanglement fidelity. We can use any of the numerical techniques

of Chapters 2 and 3 to compute good values for a and /, but we would like an

intuitive understanding as well. a and P (where 131 = r1 - [a 2) adjust the syndrome

measurement P1 so that it is no longer OL) (OLI+ 1L) (1Ll, the projector onto the code

subspace. If we choose them so that (OLI P1 IOL) = (1Ll P1 I1L) then we will perfectly

recover the original state when syndrome Pi is detected for the no damping case. If

syndrome P2 is detected, the no damping state will be distorted, but for small y, the

second syndrome is a relatively rare occurrence. It could even be used as a classical

indicator for a greater level of distortion.

We can see in Fig. 5-1 that the benefit of the optimal recovery operation is small,

especially as 7 -- 0, though not negligible. Furthermore, the standard projection

onto the code space is a simple operation while the optimal recovery is both y-

dependent and relatively complex to implement. For this reason, it is likely preferable

to implement the more straightforward code projection, which still reaps most of the

benefits of channel-adaptation.

5.2 Amplitude Damping Errors in the Stabilizer

Formalism

The stabilizer formalism provides an extremely useful and compact description for

quantum error correcting codes. As we laid out in Sec. 1.5.2, code descriptions,

syndrome measurements, and recovery operations can be understood by considering
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Figure 5-1: Optimal vs. code projection recovery operations for the [4,1] code. We
compare the entanglement fidelity for the optimal recovery operation and the recovery
that includes a projection onto the code subspace. For comparison, we also include
the original recovery operation proposed in [37] and the baseline performance of a
single qubit. While the optimal recovery outperforms the code projector recovery, the
performance gain is likely small compared to the cost of implementing the optimal.
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the n - k generators of an [n, k] stabilizer code. In standard practice, Pauli group

errors are considered and if {Xi, Y, Zij}, errors can be corrected, we know we can

correct an arbitrary error on one of the qubits since the Pauli operators are a basis

for single qubit operators.

Let's consider the [4, 1] code in terms of its stabilizer group G = (XXXX, ZZII,

IIZZ). We can choose the logical Pauli operators X = XXII and Z = ZIZI

to specify the codewords in (5.1) and (5.2). We saw in Sec. 5.1 that E(i) damping

errors together with I®4 are correctable errors. Since each of these errors is a linear

combination of Pauli group members:

E -- •/--- (X + iYi), (5.11)

we might presume that {I, Xi, Yi}i! are a set of correctable operations and the

desired recovery follows the standard stabilizer syndrome measurement structure.

This is not the case. Consider that the operator X 1X 2 (or equivalently XXII) is in

the normalizer N(G) of the code stabilizer, and thus {X 1 , X 2} are not a correctable

set of errors.

How, then, can the [4, 1] code correct errors of the form Xi + iYi? Instead of

projecting onto the stabilizer subspaces and correcting Xi and Yi separately, we take

advantage of the fact that the errors happen in superposition and project accordingly.

As we saw, Xi + iYi and Xj + iYj project into orthogonal subspaces when i $ j and

we can recover accordingly. In fact, the correct syndrome structures can also be

described in terms of stabilizers; understanding these syndromes enables design and

analysis of other amplitude damping codes.

Let G = (gl,..., gn-k) be the generators for an [n, k] stabilizer code. We wish to

define the generators for the subspace resulting from a damping error Xi + iYi on the

i th qubit. First, we should note that we can always write the generators of G so that

at most one generator commutes with Xi and anti-commutes with Yi (corresponding

to a generator with an X on the ith qubit), at most one generator that anti-commutes

with both Xi and Yi (corresponding to a generator with an Z on the ith qubit), and
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P1 subspace 2nd subspace 3rd subspace 4 th subspace
-ZZI I -ZZII ZZI I ZZI I
IIZZ IIZZ -IIZZ -IIZZ
ZIII IZII IIZI IIIZ

Table 5.2: Stabilizers for each of the damped subspaces of the [4, 1] code.

all other generators commute with both operators. Let [i) E C(G) be an arbitrary

state in the subspace stabilized by G. If g E G such that [g, XA] = [g, Y2] = 0, then

(Xi + iY2) 1i) = (XA + iYi)g 9I1) = g(X2 + iY2) I) . (5.12)

From this we see that the ith damped subspace is stabilized by the commuting gen-

erators of G. Now consider an element of G that anti-commutes with Xi and Yi.

Then

(Xi + iY) 14) = (XA + iY2)g I|) = -g(X 2 + iY2) I) , (5.13)

so -g is a stabilizer of the ith damped subspace. Finally, consider a g which commutes

with Xi but anti-commutes with Yi:

(XA + iYD) 14) = (Xi + iY2)g 4) = g(X2 - iYD) 4'). (5.14)

We see that neither g nor -g is a stabilizer for the subspace. It is, however, not hard

to see that Zi is a generator:

Zi(Xi + i ) ) = (iY - i2X2 ) 4) = (X, + iyi) 1 ). (5.15)

In this manner, given any code stabilizer G, we can construct the stabilizer for each

of the damped subspaces.

Consider now the stabilizer description of each of the damped subspaces for the

[4, 1] code. These are given in Table 5.2. Recall that two stabilizer subspaces are

orthogonal if and only if there is an element g that stabilizes one subspace while -g

stabilizes the other. It is easy to see that each of these subspaces is orthogonal to
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the code subspace, as either -ZZII or -IIZZ is included. It is equally easy to see

that the first and second subspaces are orthogonal to the third and fourth. To see

that the first and second subspaces are orthogonal, note that -IZII stabilizes the

first subspace, while IZII stabilizes the second. Equivalently, -IIZI stabilizes the

fourth subspace, thus making it orthogonal to the third.

We can now understand the optimal recovery operation in terms of the code

stabilizers. Consider measuring ZZII and IIZZ. If the result is (+1, +1) then we

conclude that no damping has occurred and perform the non-stabilizer operations

of R 1 and R 2 to minimize distortion. If we measure (-1, +1) we know that either

the first or the second qubit was damped. We can distinguish by measuring ZIII,

with +1 indicating a damping on the first qubit and -1 a damping on the second.

If our first syndrome is (+1, -1), we can distinguish between dampings on the third

and fourth by measuring IIZI. If our first syndrome yields (-1, -1) we conclude

that multiple dampings occurred. We could simply return an error, or we can do

the partial corrections of R 7 - R10 by further measuring both ZIII and IIZI. It

is worth pointing out a feature of the stabilizer analysis highlighted by this multiple

dampings case. Each of the damping subspaces from Table 5.2 has three stabilizers

and thus encodes a 2 dimensional subspace. Consider applying El1) to the third

damped subspace, equivalent to damping errors on qubits 1 and 3. Note that there

is no generator with an X in the first qubit; the resulting subspace is stabilized by

(-ZZII, -IIZZ, IIZI, ZIII). (5.16)

As this has four independent generators, the resulting subspace has dimension 1. We

saw this in the previous section, where for multiple dampings the recovery operation

does not preserve logical superpositions but collapses to the 10L) state.

Stabilizer descriptions for amplitude damping-adapted codes are quite advanta-

geous. Just as in the case of standard quantum codes, the compact description

facilitates analysis and aids design. While the recovery operations for the amplitude

damping codes are not quite as neatly described as the standard stabilizer recovery,
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the stabilizer formalism facilitates the description. Furthermore, by considering sta-

bilizer descriptions of the [4, 1] code and its recovery operation, we may design other

channel-adapted amplitude damping codes. We will rely on stabilizers throughout

the remainder of the chapter.

5.3 Evidence for a [3,1] Amplitude Damping Code

In the previous section, we saw that the [4, 1] code, despite its original label of 'ap-

proximate,' perfectly corrects for the first order damping errors {I®4, Efk)}. While

correcting these errors is not the traditional choice for quantum error correcting codes,

this set accurately represents the amplitude damping channel to first order in y. Given

this fact, it is reasonable to look for other codes for which first order damping errors

satisfy the error correction conditions.

For an [n, k] code, there are n first order damping errors. One way to satisfy the

error correcting conditions is if each of these rotates the code subspace into mutu-

ally orthogonal subspaces of dimension 2 k without (significantly) distorting the code

subspace. We saw this to be the case with the [4, 1] code. For such an encoding

to exist, Ric must have dimension dc Ž 2k(n + 1) as each error, plus the I®4 op-

erator, must result in an orthogonal subspace. This is satisfied for the [4, 1] code

as dc = 16 > 2(4 + 1) = 10. This inequality holds with equality for a [3, 1] code:

de = 8 = 2(3 + 1), suggesting the existence of a good [3, 1] amplitude damping code.

This degrees of freedom argument is actually quite intuitive: we know of good [3, 1]

codes for both the bit flip and phase flip channels. (See [38]§10.1.) These channels

are similar to our treatment of the amplitude damping channel as there are only n

first order errors for an [n, k] code. As they both have good [3, 1] codes, this further

suggests the existence of a [3, 1] amplitude damping code.

As we mentioned in Sec. 2.5, several authors [21, 34, 40] have suggested iterative

methods to determine channel-adapted quantum codes. Given an initial choice for

an encoding isometry Uc, we can determine the optimal recovery operation R. If

we then hold 1R fixed, we can determine the optimal encoding Uc. In this way we
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Figure 5-2: Performance of iterated [3, 1] amplitude damping code. This code is de-
termined via iterative optimization of a random encoding. For comparative purposes,
we include various recovery performances for the [4, 1] code.

iteratively approach an encoding/recovery pair that is locally optimal.

Figure 5-2 shows the entanglement fidelity performance for [3, 1] codes determined

by optimizing random encodings for the amplitude damping channel. We see that

there are [3, 1] codes that are better than the baseline performance, though for small

7 the [4, 1] code has higher fidelity. It is interesting to see that for larger y, [3, 1] codes

continue to perform above the baseline even when the [4, 1] does not. This arises as

the {E(k)} are no longer representative of the first order errors. At this point, the

optimization procedure tunes to the correct representation of the channel, while the

[4, 1] codes do not as the encoding is not properly channel-adapted.

The numerically obtained [3, 1] codes are difficult to both analyze and utilize.
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First of all, the iterated optimization problem is not convex and has many local

optima. These optima have nearly identical performance, though no obvious similar

structure. We know that, due to the symmetry of the channel, swapping any of the

qubits of the code will not change its performance. Given all of the local solutions,

there appear to be other sources of ambiguity as well. We also note that numerically

obtained quantum codes are challenging to implement. With no clear structure, both

the encoding and recovery quantum circuits may require a large number of gates.

Finally, we should note that the iterated codes do not satisfy the quantum error

correcting conditions for first order dampings, though the damped subspaces are

approximately orthogonal.

To alleviate these issues, we would like to find a good [3, 1] stabilizer code. Unfor-

tunately, none exist which perfectly correct {E k)} errors. A [3, 1] code is stabilized

by a group G with two independent generators. We saw the effect of damping er-

rors on stabilizer subspaces in the previous section. For each damped subspace to

be mutually orthogonal and rank 2, the generators must satisfy several requirements.

First of all, for every qubit, there must be a g E G such that {g, Xi} = {g, Y} = 0.

In words, there must be a g with a Z on the ith qubit, for i = 1, 2, 3. If this is not

the case, then the damped subspace will not be orthogonal to the code subspace.

Second, for every qubit, we need a g with either an X or a Y on that qubit. If this is

not the case, then the damped subspace will have dimension 1, since the ith damped

subspace is always stabilized by Zi. To satisfy these requirements, the two generators

of G must anti-commute at each qubit; since there are three qubits, this means the

generators anti-commute which is a contradiction.

We can illustrate the impossibility of a good [3, 1] amplitude damping stabilizer

code by example. As there are a relatively small number of possibilities for [3, 1]

stabilizer code, it is a simple matter to compute the optimal recovery operation for

each encoding, given the amplitude damping channel. From such an exercise (for

small y), we determine that the best [3, 1] stabilizer code has the stabilizer group

(XYZ, ZZI). The first and second damped subspaces are stabilized by (-ZZI, ZII)

and (-ZZI, IZI). It is not hard to see that these are mutually orthogonal subspaces
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and are also orthogonal to the code subspace. When we look at the third damped

subspace, we see that it is stabilized by (-XYZ, ZZI, IIZ). As this has three gener-

ators, the stabilized subspace has only one dimension. If were to utilize this encoding

scheme, a damping on the third qubit would not be correctable as only half of the log-

ical space could be preserved. From a minimum fidelity standpoint, such an encoding

would be worse than no error correction procedure at all.

5.4 Generalization of the [4,1] Code for Higher

Rates

While we are unable to generate a [3, 1] stabilizer code for the amplitude damping

channel, it is still interesting to consider good channel-adapted codes of longer block

lengths with the same or higher rate. Fortunately, the stabilizer analysis for the [4, 1]

code provides a ready means to generalize for higher rate code. Consider the three

codes given in Table 5.3 (A). Each of these is an obvious extension of the [4, 1] code,

but with a higher rate. Indeed the general structure can be extended as far as desired

generating an [2(M + 1), M] code for all positive integers M. We can thus generate

a code with rate arbitrarily close to 1/2.

While the codes presented in Table 5.3 (A) have an obvious pattern related to

the [4, 1] code, we will find it more convenient to consider the stabilizer in standard

form as given in Table 5.3 (B). The standard form, including the choice of Xi and Zi,

provides a systematic means to write the encoding circuit. The change is achieved

through a reordering of the qubits which, due to the symmetry of the channel, has

no effect on the error correction properties.

Let's consider the form of the M + 2 stabilizer group generators. Just as with

the [4, 1] code, the first generator has an X on every qubit. The physical qubits are

grouped into M + 1 pairs; for each pair (i, j) there is a generator ZiZ3.

The structure of the stabilizers makes it easy to see that {I®2(M+1), E(k)2(M+l)

satisfy the error correcting conditions for the [2(M + 1), M] code. To see this, we
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Figure 5-3: Circuit to encode the arbitrary state of M qubits given in qubits ki ... kM
into 2(M + 1) physical qubits. This is the [2(M + 1), M] code in standard form.

will show that the damped subspaces are mutually orthogonal, and orthogonal to the

code subspace. Consider a damping on the ith qubit, where i and j are a pair. The

resulting state is stabilized by Zi, -ZiZy, and the remaining Z-pair generators. We

will call this the ith damped subspace. This subspace is clearly orthogonal to the code

subspace, due to the presence of the -ZiZj stabilizer. For the same reason, the ith

damped subspace is clearly orthogonal to the kth damped subspace for k = j. Finally,

the i th and jth damped subspaces are orthogonal as we see that Zi stabilizes the ith

and -Zi stabilizes the jth

By writing the [2(M + 1), M] codes in the standard form, it is easy to generate

an encoding circuit. The circuit to encode the arbitrary state I0) in the M qubits

kl ... kM is given in Fig. 5-3. The encoding circuit requires 3M + 1 CNOT operations

and one Hadamard gate.
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Let's write out the logical codewords of the [6, 2] code given the choice of Zi in

Table 5.3:

1
IOOL) = (1000000) + 1111111)) (5.17)

1
l01L) = (1001001) + 1110110)) (5.18)

o) = (1000110) + 1111001)) (5.19)
1

11L) = (Il110000) + 1001111)). (5.20)

Each codeword is the equal superposition of two basis states. We can see by inspection

that the damped subspaces are mutually orthogonal: E(k) will eliminate one of the

two basis states from each codeword and the resulting basis states do not overlap.

5.4.1 [2(M+1),M] Syndrome measurement

We begin the recovery by first measuring the Z-pair stabilizers. A -1 result on the

(i, j)-pair stabilizer indicates a damping of either the ith or jth qubit. This holds

true even if multiple Z-pair stabilizers measure -1. Such a result indicates multiple

damped qubits. Once we have identified the qubit pair, we perform an additional

stabilizer measurement to determine which of the qubits was damped. As an example,

if the (i, j)-pair was damped, we measure Zi, with a +1 result indicating a damping

on the ith qubit and a -1 indicating a damping on the jth qubit. We perform this

measurement for all pairs which measure -1.

If multiple stabilizers yield a -1 measurement then we have multiple damped

qubits. As before, this reduces by half the dimension of the subspace and we cannot

preserve all logical superpositions. For an example, examine the stabilizers for the

[6, 2] code when both the first and fifth qubits are damped:

(-ZZIIII, IIZIIZ, -IIIZZI, Z IIIII, IIIIZI). (5.21)

This subspace has 5 stabilizers and thus has 2 dimensions. Furthermore, combining
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[6, 2] code
XXXXXX
ZZIIII
IIZZI I
IIIIZZ

[8, 3] code
XXXXXXXX
ZZIIIIII
IIZZIIII
IIIIZZII
IIIIIIZZ

[10, 4] code
XXXXXXXXXX
ZZIIIIIIII
IIZZIIIIII
IIIIZZIIII
IIIIIIZZII
IIIIIIIIZZ

(A)

[6,2] standard form
XXXXXX
ZZIIII
IIZIIZ
IIIZZI

XI = IIIXXI
X2 = IIXI IX

= ZII IZI
2 = ZII I IZ

[8,3] standard form
XXXXXXXX
ZZIIIIII
IIZIIIIZ
IIIZIIZI
IIIIZZII

XI = II IIXXII
X2= IIIXIIXI IXI
X3 = IIXI II IX
g1 =ZIIIIZII
Z2= ZII I I IZI
3 =ZIIII I IZ

[10, 4] standard form
XXXXXXXXXX
ZZIIIIIIII
IIZIIIIIIZ
IIIZIIIIZI
IIIIZIIZII
IIIIIIZZIII

X= IIIIIXXIII
X2 = III IXI IXII
X3 = IIIXI II IXI
X4= IIXIIIIIIX
Z i=ZIIIIIZIII
Z2 = ZIIIIIZII
Z3 =ZIIIIIIIZI
4= ZII I I I I I IZ

(B)

Table 5.3: Stabilizers for [6, 2], [8, 3], and [10, 4] qubit amplitude damping codes. In
(A), these are written in a way to illustrate the connection to the [4, 1] code. In (B),
we present the code in the standard form, which we achieve merely by swapping the
code qubits and choosing the logical operators systematically. The standard form
provides a convenient description for generating quantum circuits for encoding.
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the last two stabilizers, we can see that ZIIIZI = 21 stabilizes the subspace, indicat-

ing that the remaining logical information is spanned by {101L), 00L)}. In general,

for a [2(M + 1), M] code, up to M + 1 dampings can be partially corrected as long

as the dampings occur on distinct qubit pairs. If m is the number of damped qubits,

then the resulting subspace has dimension 2M+1-m .

If all Z-pair measurements for the [2(M + 1), M] code return +1, we determine

that we are in the 'no dampings' syndrome and may perform some further operation

to reduce distortion as much as possible. As in the example of the [4, 1] code in

Sec. 5.1.2, we can choose to optimize this recovery with a 7-dependent recovery or we

can apply a stabilizer projective measurement. In the former case, we may calculate

an optimized recovery with a SDP or any of the near-optimal methods of Chapter

3. If we choose a stabilizer measurement, we simply measure XXXXXX where a

+1 result is a projection onto the code subspace. A -1 result can be corrected by

applying a IIIIIZ operation (in fact a Z on any one of the qubits will suffice). This

can be seen by noting that the -XXXXXX stabilizer changes the logical codewords

by replacing the + with a -.

5.4.2 [2(M+1),M] Stabilizer syndrome recovery operations

In the previous section, we described syndrome measurements to determine which

qubits were damped. We also explained the extent to which multiple qubit dampings

are correctable. We now present a straightforward set of Clifford group operations to

recover from each syndrome.

Consider a syndrome measurement in which we determine that m qubits i1,..., im

were damped, where m < M + 1. We recover from this syndrome via the following

three steps:

1. Apply a Hadamard gate Hi, on the il qubit.

2. With qubit il as the control, apply a CNOT gate to every other qubit.

3. Flip every damped qubit: Xi, ... Xi,.
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Figure 5-4: Syndrome measurement circuits for the [2(M + 1), M] code. Circuit (A)
measures each of the Z-pair stabilizers. If all of the measurements in (A) are +1,
we are in the 'no damping' syndrome and we perform the syndrome measurement in
(B). If the (i, j)-pair stabilizer measures -1, we perform the syndrome measurement
in (C).
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A

x

Figure 5-5: Syndrome recovery circuit for the [6,2] code with the first and third qubits
damped.

The procedure is illustrated as a quantum circuit for a two-damping syndrome and

the [6, 2] code in Fig. 5-5.

To see that this is the correct syndrome recovery for the [2(M + 1), M] code,

we need to examine the effect of the three gate operations on the damped subspace

stabilizers. In the syndrome where il,..., im are damped, we have three categories of

generators for the resulting stabilizer group: -Z-pair stabilizers for the damped pairs,

+Z-pair stabilizers for the non-damped pairs, and Zi,..., Zim for each damped qubit.

We need to see the effect of the recovery gate operations on each of these generators.

Fortunately, we can demonstrate all of the relevant cases with the example of the

[6, 2] code with the first and fifth qubits damped:

-ZZIIII -XZIIII -YYXXXX YYXXXX ZZIIII

I IZIIZ I IZIIZ I IZIIZ IIZIIZ IIZIIZ

-IIIZZI -+H -I IIZZI cNoTIs -IIIZZI +xXx5 III ZZI = IIIZZI

Z I I I I I XIIIII XXXXXX XXXXXX XXXXXX

I IIIZI I IIIZI Z IIIZI ZIIIZI ZII IZI
(5.22)

The final two sets of stabilizers are equivalent since ZZIIII is the product of XXXXXX

and YYXXXX. The first four generators of the resulting group are the code stabi-

lizer. The last generator is Z1 which, as we saw before, indicates that the recovered

information is spanned by {OL), 01L) } while the other two dimensions of informa-

tion have been lost.

While we have shown that the syndrome recovery operation returns the informa-
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tion to the code subspace, it remains to demonstrate that the information is correctly

decoded. We can demonstrate this by considering the syndrome recovery operation

on each of the Ze of the code. By showing that each of these is correctly preserved,

we conclude that the syndrome recovery operation is correct.

We have chosen the Z~ so that each has exactly two qubit locations with a Z while

the rest are I. There are, therefore, five cases of interest. In case 1, neither of the

damped qubits corresponds to a location with a Z. In case 2, the first damped qubit

(il) corresponds to a location with a Z. In case 3, one of the Z locations corresponds

to a damped qubit, but it is not il. In case 4, both of the Z locations correspond to a

damped qubit, but neither is il. Finally, case 5 is when both Z locations correspond

to damped qubits and one is il.

Without loss of generality, we can see the effect of each case by considering an

example using ZIIIZI and appropriately selected damped qubits. Consider case 1:

ZIIIZI -+H i1 ZIIIZI -
CN OTil's ZIIIZI •Xi... Xim ZIIIZI. (5.23)

Case 2:

-ZIIIZI ---HIq -XIIIZI _,CNOTil'" -YXXXYX -rX...xim YXXXYX. (5.24)

Notice that this last is equivalent to ZIIIZI as XXXXXX is in the stabilizer.

Case 3:

-ZIIIZI -~+I 1 -ZIIIZI "+C
N O T il's -ZIIIZI -_x...xi" m ZIIIZI. (5.25)

Case 4:

ZIIIZI -__+H ZIIIZI -CNOTilrS' ZIIIZI __xX...im ZIIIZI. (5.26)
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Case 5:

ZIIIZI -. Hi l XIIIZI -CN
OT i l

's YXXXYX _"...xjim YXXXYX. (5.27)

We see that in all cases, the recovery procedure correctly preserves the geometry

of the encoded information, even in the case of multiple qubit dampings. It is worth

emphasizing, however, that when multiple qubits are damped at least half of the

information dimensions are lost.

5.4.3 Performance comparison

It is useful to compare the performance of each of the [2(M + 1), M] codes in terms

of the damping parameter y. Consider a comparison between the [4, 1] code and the

[6, 2] code. To make a valid comparison, we need to establish a common baseline.

We do this by considering the encoding of two qubits with the [4, 1] code. For the

completely mixed state p = 1/2, this is the equivalent of squaring the single qubit

entanglement fidelity:

•e(p ® p, 1RoE ®Ro ) = F,(p, Ro E)2 . (5.28)

This comparison is given in Fig. 5-6 (A). To compare multiple codes, it is more

straightforward to normalize each to a single qubit baseline. This can be done by

computing p(1/k) for an [n, k] code. The normalized performance for the [4, 1], [6, 2],

[8,3] and [10, 4] codes is given in Fig. 5-6 (B).

It is very interesting to note how comparably these codes maintain the fidelity

even as the code rate increases. This is particularly striking when noting that each

code can still perfectly correct only a single damping error. Thus, the [4, 1]®4 can

correct 4 dampings (as long as they occur on separate blocks) while the [10, 4] code

can only perfectly correct 1. Yet we see that the normalized performance is quite

comparable.
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Figure 5-6: Performance omparison of generalized amplitude damping codes. In (A)
we compare the [6,2] code with the [4, 1] repeated twice. In (B), we compare the
[4, 1], [6,2], [8, 3] and [10, 4] codes. The entanglement fidelity has been normalized
as 1/k where k is the number of encoded qubits. Notice that despite the increasing
rates, the normalized entanglement fidelity maintains high performance.
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Gottesman [8, 3] code
XXXXXXXX
ZZZZZZZZ
IXIXYZYZ
IXZYIXZY
IYXZXZ I Y

Table 5.4: Stabilizers for the [8,3] code due to Gottesman [25].

We take a closer look at the performance of the [8, 3] code in Fig. 5-7. We see that,

while most of the entanglement fidelity is supplied by correcting no damping and E(i)

terms, a not insignificant performance benefit arises by partially correcting second

order damping errors. In the case of the [4, 1] recovery, we concluded that such

contributions improved the entanglement fidelity, but not the minimum fidelity as

I1L) was never preserved by such a recovery. This is not the case for the higher rates.

Two damping errors eliminate half of the logical space, but different combinations

of damping errors will divide the logical space differently. For example, an damping

error on the fifth and sixth qubits means the resulting space is stabilized by Z1Z2 thus

eliminating logical states 1OlxL) and 11OxL) (where x indicates either 0 or 1). On the

other hand, a damping on the fifth and seventh qubits results in a space stabilized

by 212 3 eliminating logical states IOx1L) and IlXOL). Thus, correcting second order

damping errors still contributes to minimum fidelity performance.

Given their identical rates, it is reasonable to compare the [8, 3] amplitude damp-

ing code presented here with the generic [8, 3] stabilizer code due to Gottesman [25].

The stabilizers for this code are presented in Table 5.4. This code can correct an arbi-

trary single qubit error, and thus can correct all first order amplitude damping errors,

as well as the less probable Z errors. These are corrected with 25 stabilizer syndrome

measurements (Pauli operators on each of the 8 qubits as well as the identity). This

leaves an additional 7 degrees of freedom to correct for higher order errors. While

typically these are not specified, since we know the channel of interest is the ampli-

tude damping channel, we can do a small amount of channel-adaptation by selecting

appropriate recovery operations for these syndromes. Since X and Y errors are the
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Figure 5-7: Fidelity contributions for each order error of the [8, 3] amplitude damp-
ing code. We see that the no damping, first, and second order recovery syndromes
contribute to the entanglement fidelity of the recovery operation.
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Figure 5-8: Comparison of the amplitude damping [8, 3] code and the generic rate
[8,3] code due to Gottesman. We include both the Gottesman recovery where no
attention is paid to second order recoveries, as well as a recovery where second order
syndromes are chosen to adapt to the amplitude damping channel.

most common, we choose operators with 2 X's or 2 Y's (or one of each).

The comparison between the rate 3/8 codes is given Fig. 5-8. Here we see that the

channel-adapted [8, 3] code outperforms the generic Gottesman code, but the effect is

minor. The attention to higher order syndromes is seen to improve the performance

of the [8, 3] code modestly. It should be pointed out that both recovery operations

can be accomplished with Clifford group operations, and neither is dependent on -y.
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[7, 3] linear code
IIIZZZZ
IZZI IZZ
ZIZIZIZ
XXXXXXX

Table 5.5: Amplitude damping channel-adapted [7,3] linear code. Looking at the
first three generators, this is clearly based on the classical Hamming code. The
fourth generator differentiates between X and Y syndromes.

5.5 Linear Amplitude Damping Channel Codes

The channel-adapted codes of the previous section have similar corrective properties

to the [4, 1] code: {I, E(')} are correctable errors while {Xi, Yi} are not. It is actually

quite simple to design channel-adapted codes that correct both Xi and Yi errors and

thus can correct {I, Ei ) } as well. Consider the [7, 3] code presented in Table 5.5. The

first three stabilizers can be readily identified as the classical [7, 4] classical Hamming

code parity check matrix (replacing 0 with I and 1 with Z). They are also three of the

six stabilizers for the Steane code. Measuring these three stabilizers, an Xi will result

in a unique three bit measurement syndrome (M1 , M2, M3 ). (In fact, a nice property

of the Hamming code is that the syndrome, replacing +1 with 0 and -1 with 1, is just

the binary representation of i, the qubit that sustained the error.) Unfortunately, a

Yi error will yield the same syndrome as Xi. We add the XXXXXXX generator to

distinguish the two, resulting in 14 orthogonal error syndromes for the {Xi, Yi}_l.

As in previous examples, we have a choice of recovery operations for the 'no damp-

ings' syndrome. We can minimize the 'no damping' distortion as was done in previous

cases by computing the optimal or EigQER recovery within this subspace. This will

result in a y-dependent recovery operation. Alternatively, we can simply measure

XXXXXXX with a +1 projecting onto the code subpsace and a -1 requiring a

correction of Zi. We compare these recovery operations in Fig. 5-10.

We see in Fig. 5-11 that the [7,3] code slightly outperforms the [8,3] code of

Sec. 5.4. The [7,3] code perfectly corrects first order dampings and does not correct

any second order dampings while the [8,3] code partially corrects for higher order
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Figure 5-9: Syndrome measurement circuit for the [7, 3] amplitude damping code.

dampings. The performance advantage of the [7,3] code arises from the decreased

length: the probability of a higher order damping error decreases as only seven phys-

ical qubits are needed.

Given its structure, it is logical to compare the [7,3] amplitude damping code to

the [7, 1] Steane code, as both are derived from the classical Hamming code. We saw

in Fig. 3-4 of Chapter 3 that the Steane code is not particularly well adaptable to

amplitude damping errors; despite its extra redundancy, the channel-adapted [5, 1]

code significantly outperforms the channel-adapted Steane code. This is particularly

unfortunate as the Steane code can be implemented with such efficiency, with par-

ticular value for fault tolerant quantum computing. The [7,3] code provides a useful

compromise position.

We see in Fig. 5-12 the performance comparison for [7, 3] code and the [7, 1] code

(with and without channel-adapted recovery). It comes as no surprise that the [7, 3]

code outperforms the [7, 1] with standard stabilizer recovery: each perfectly corrects

the first order damping errors, but the [7,3] code has done so while preserving the

times as much information. It is interesting to see how close the [7,3] performance

is to the channel-adapted [7, 1]. As we saw in Fig. 3-9, the channel-adapted [7, 1] at

least partially corrects some second-order damping errors while the [7, 3] does not.
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Figure 5-10: Optimal vs. code projection recovery operations for the [7,3] code. We
compare the entanglement fidelity for the optimal recovery operation and the recovery
that includes a projection onto the code subspace. For comparison, we also include
the baseline performance of three unencoded qubits. While the optimal recovery out-
performs the code projector recovery, the performance benefit is likely small compared
to the cost of implementing the optimal.
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Figure 5-12: Comparison of the [7, 1] Steane code and the [7, 3] amplitude damping
code, normalized by 1/k. We see that the [7,3] performance is very similar to the
EigQER optimized recovery for the Steane code.

This is mitigated by the higher rate of the [7, 3] code as again, three times as much

information is preserved.

The [7, 3] code is not the only high rate linear code for amplitude damping errors.

Consider any classical linear code that can correct 1 error for which codewords have

even parity. We can convert this code to a quantum amplitude damping code in the

same way as the [7, 3] code. If H is the parity check matrix for an [n, k] classical

linear code, then each row can be made a quantum code stabilizer replacing 1's with

Z and O's with I. To distinguish Xi and Y2 errors we include X®n as a generator.

Since the classical code has even parity, we know that this generator commutes with

the others. This construction yields a [n, k - 1] quantum amplitude damping code
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that corrects for single amplitude damping errors.

The [7, 3] code we have presented here follows the structure proposed in [25] for

amplitude damping codes; namely the code is a combination of an X-error correcting

code and a Z-error detecting code. It is not immediately clear how to generalize to

t error correcting linear codes. Instead of a single generator to distinguish Xi and Yi

errors, we require an extra t generators as we must distinguish Xi and Yi for each

corrected damping.

5.6 Amplitude Damping Errors and the Shor Code

We now turn our attention to the [9, 1] Shor code and its performance with a recov-

ery operation channel-adapted to amplitude damping errors. We saw through the

EigQER results in Fig. 3-4 that the Shor code provides remarkably good protection

from the amplitude damping channel. We also saw in Fig. 4-3 that the recovery

operation generated by EigQER is essentially optimal. Thus, in this case, the opti-

mal channel-adapted recovery operation can be described as a projective syndrome

measurement followed by a unitary operation. Given this intuitive structure, we can

analyze the amplitude damping channel-adapted recovery operation.

We begin by noting that first order errors {E(k)} are perfectly correctable. This

comes as no surprise, since the Shor code can correct an arbitrary single qubit opera-

tion. What may be surprising is that second order errors {EEJ)E k)} are also perfectly

correctable. This was pointed out in [23] and can be seen through the same kind of

stabilizer analysis of damped subspaces as we employed for the [2(M + 1), M] codes.

We see in Table 5.6 a few representative syndrome subspaces for damping errors

on the Shor code. From these subspaces, we surmise that the first step in making

a syndrome measurement is to measure the first 6 code stabilizers (each of which

has a pair of Z's). Depending on those outcomes, we can make a further stabilizer

measurement.

As an example, consider when the first stabilizer returns a -1 and the rest return

+1. In that case, we can conclude that either the first qubit was damped, or both
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Qubit 1 damped Qubits 2 & 3 damped Qubits 1 & 7 damped
-ZZII I I I I I -ZZII I I I I I -ZZIIIIIII
IZZI I I I I I IZZI I I I I I IZZIIIIII
IIIZZI III IIIZZI I I I IIIZZIIII
I I I I Z Z I I I I I I I Z Z I I I IIIIZZIII
IIII I IZZI I I I I I I Z Z I -IIIIIIZZI
IIII I I IZZ IIIIIIIZZ IIIIIIIZZ
I IXXXXXX IIIXXXXXX ZIIIIIIII

ZII I I I I I -ZI I I I I I I I IIIIIIZII

Table 5.6: Stabilizers for several damped subspace syndromes for the Shor code.

the second and third qubits were damped. These can be distinguished by measuring

Z 1 with a +1 indicating qubit one and a -1 indicating both qubits two and three.

It is interesting to note that in this case, we will have only measured 7 stabilizers,

and thus need one further measurement to achieve a 2 dimensional subspace. A natu-

ral choice would be to measure IIIXXXXXX; alternatively, this is an opportunity

for a y-dependent measurement instead. As before, such an operation can improve

performance at the cost of circuit complexity. In most of this chapter, we have leaned

toward the simpler operation, concluding that 7-dependent operations provide some

performance benefit but not enough to justify the added complexity. We will see

that in the case of the Shor code, the performance gain may be sufficiently large to

warrant a y-dependent operation.

Before this consideration, let's turn to another syndrome for multiple qubit damp-

ings. The Shor code is divided into three blocks of three qubits each; we already

examined an example where two qubits on the same block are both damped. The

third subspace in Table 5.6 is an example of two qubits damped from different blocks;

in this case the first and fifth stabilizers are both measured to be -1. While the most

likely cause of this syndrome is a two-qubit damping, we can further measure Z 1 and

Z7 to correct for a three or four-qubit damping occurrence.

The preceding discussion of stabilizer subspaces provides two options for a channel-

adapted recovery operation. Both begin with a projective syndrome measurement of

the first 6 code generators. At that point, we may either make a set of stabilizer

measurements to project onto the damped subspaces, or we may make a 7-dependent
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syndrome recovery to minimize this distortion. It turns out that the best 7-dependent

syndrome recovery has equivalent performance to the EigQER recovery operation and

is therefore essentially optimal. The stabilizer recovery, while simple to implement

with Clifford group operations, has significantly weaker performance. We compare

the two recovery operations for various values of 7 in Fig. 5-13.

How should we understand the extensive performance gains for the y-dependent

recovery? As we saw in Sec. 5.1.2, we may reduce the distortion introduced by

Eo even though it cannot be perfectly corrected. The y-dependent operation arises

when we have a remaining degree of freedom after determining the syndrome. For

the [2(M + 1), M] codes and the [7, 3] code, we only have such freedom in the 'no

damping' syndrome; in all of the damping syndromes, the syndrome measurement

requires a full set of stabilizer measurements. We saw that for the Shor code first

order dampings require only 7 stabilizer measurements to determine the syndrome,

leaving one extra degree of freedom. We also have an extra degree of freedom when

two qubits from the same block are damped. These constitute all of the first and

some of the second order syndromes, each of which can be optimized to minimize Eo

distortion.

5.7 Summary

We have developed several quantum error correcting codes channel-adapted for the

amplitude damping channel. All of the encodings can be compactly described in the

stabilizer formalism. While optimized 7-dependent recovery operations are possible,

a much simpler recovery operation using only stabilizer measurements and Clifford

group operations achieves nearly equivalent performance. The channel-adapted codes

have much higher rates (with short block lengths) than generic quantum codes.
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Chapter 6

Conclusion

Quantum error correction is an essential consideration for any quantum information

processing system, whether it be a quantum computer, quantum memory device, or

a quantum communication system. The standard approach is to design procedures

capable of correcting arbitrary single qubit errors. Indeed, the first fundamental

breakthrough in quantum error correction was the discovery that correcting Pauli

errors {I, Xi, Yi, Zi} on the ith qubit is equivalent to correcting an arbitrary error on

the i th qubit.

We began the introduction with a quote from [38] about quantum error correction:

"Many authors have what appears to be a suspicious fondness for the depolarizing

channel..." The authors' point, explained in the ensuing paragraphs, is the principle

of arbitrary qubit error correction. The depolarizing channel has operator elements

{(1- 3pI, /pZX, /p-Y, ViZ}, and by perfectly correcting these errors, we have a

procedure for arbitrary errors. While we do not dispute this point, we suggest that

such procedures are in some sense 'tuned' to the depolarizing channel.

QEC systems will exist in connection with a physical device which has been care-

fully designed to limit the effects of noise. Furthermore, it is quite reasonable to

expect errors to adhere to a specific form; the errors to be corrected are not arbitrary

but have a more defined structure. What we have shown in this dissertation is that

we can 'tune' or channel-adapt QEC to the structure of the noise.
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In essence, this tuning illustrates an important principle for QEC that is sometimes

obscured by the term 'arbitrary error:' all QEC schemes are approximate. For any

noise model, the QEC system protects against the most likely errors. For standard,

generic QEC, the highest order errors are presumed to be single qubit errors; standard

one-error correcting stabilizer codes protect against any arbitrary single qubit error

and fail when more than qubit is in error. The channel is approximated by single

qubit errors and protected accordingly. The approximate codes for the amplitude

damping channel make an alternate assumption about the most likely errors. By

assuming greater structure for the likely errors, we may design more efficient QEC

procedures. In both cases, the QEC will be effective only inasmuch as the physical

noise matches the assumed model.

To conclude this dissertation, we summarize the results of each of the preceding

chapters. We discuss our original contributions and how they connect to the existing

body of knowledge. We then lay out remaining open questions and the natural

extensions of channel-adapted QEC. We end with s few comments on the broader

impact of this work on the quantum computing community.

6.1 Chapter Summaries

We showed in Chapter 2 how to cast channel-adapted quantum error correction as

a solvable convex optimization problem. We evaluated QEC performance with the

average entanglement fidelity, which measures how well the procedure preserves quan-

tum information. Since the average entanglement fidelity is linear in the channel and

CPTP maps correspond to positive semidefinite operators, we can determine the op-

timal channel-adapted recovery operation using a semidefinite program (SDP). We

demonstrated that channel-adapted recoveries improve performance over generic re-

coveries for certain channels. By example, both the amplitude damping channel and

the pure state rotation channel allow improved performance via channel-adaptation.

We also proved the form of the optimal recovery operation for channels described

by scaled Pauli operators and a stabilizer encoding. The optimal recovery measures
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each generator and the most likely Pauli operation is the syndrome recovery; in many

cases this corresponds to the generic stabilizer code recovery operation.

The optimal channel-adapted recovery operation has several drawbacks that we

addressed in Chapter 3. First of all, computation of the optimal solution grows expo-

nentially and quickly becomes impractical for codes with block lengths greater than

five. Second of all, while the optimal recovery is physically legitimate, it is desirable

for implementation and interpretation purposes to further constrain recovery opera-

tions. We presented several methods to design channel-adapted recovery operations

constrained to begin with a projective syndrome measurement. These algorithms ap-

proach the optimal recovery operation and help us to understand the mechanism by

which channel-adaptation improves fidelity.

Chapter 4 derived performance bounds on the sub-optimal recovery operations

of Chapter 3. Each algorithm constructs a dual feasible point that upper bounds

the average entanglement fidelity. Using these methods, we showed that recovery

operations constrained to projective syndrome measurements approach the optimal

recovery, especially as noise levels approach 0.

In Chapter 5 we focused our attentions on the amplitude damping channel and

determined several classes of channel-adapted encodings and recoveries. We began

with an analysis of the optimal recovery operation of the channel-adapted encoding

of [37]. Concluding that this [4, 1] code perfectly corrects qubit damping errors, we

presented two classes of stabilizer codes with stabilizer recoveries that also correct

qubit damping errors. These codes have higher rates than the [4, 1] yet have com-

parable performance. We presented quantum circuit descriptions of the encodings,

syndrome measurements, and syndrome recovery operations. These have simple forms

with Clifford group operations.

6.2 Contributions

Researchers have known that channel-adapted QEC could yield more efficient pro-

cedures for some time. The subject, however, had few examples and few defined
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tools, whether computational or analytical. We first pointed out the utility of the

semidefinite program for optimal channel-adapted QEC in [21]. (It was contempo-

raneously understood though unpublished by [40] and [34]. Furthermore, the SDP

was used in [49] as a sub-optimal method using minimum fidelity as the performance

measure.)

The structured near-optimal recovery operations of Chapter 3 are a unique con-

tribution to the field. These are the first demonstration of good recovery operations

constrained for easier implementation. That they approach the optimal performance

despite the added constraints provides evidence that channel-adapted techniques have

utility in reasonable physical circumstances. These near-optimal techniques can be

used to numerically analyze longer codes, one of the serious criticisms of the SDP and

other optimal methods.

The Lagrange dual function is a standard method for bounding optimization prob-

lems. The bounds in Chapter 4, however, are the first use of such bounding techniques

for channel-adapted QEC. ( [2] presented a channel-adapted QEC bound which is not

based in Lagrange duality and which was looser than our numerical bounds in ev-

ery example.) We presented numerical techniques for the construction of apparently

tight bounds for every circumstance in which the near-optimal recovery techniques

are computationally tractable.

The channel-adapted amplitude damping codes of Chapter 5 are a significant gen-

eralization of the approximate code of [37]. Indeed, the numerical tools presented

earlier in the dissertation led to a better recovery operation for the [4, 1] code which

could be understood with the stabilizer formalism. The stabilizer formalism allows a

straightforward generalization to higher rate amplitude damping codes. We general-

ized the [4, 1] code to [2(M + 1), M] codes with simple quantum circuits for encoding

and recovery. We furthermore showed how an even-parity, one error correcting clas-

sical linear code can be converted into a channel-adapted amplitude damping code.
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6.3 Open Questions

6.3.1 Channel-adapted fault tolerant quantum computing

Quantum error correction, as we have treated it, operates under a benign set of

circumstances. In essence, the assumption is of a noisy communications channel

between perfect quantum computers. This model is quite useful as it illustrates

the principles of QEC, but it has limited physical reality. Perhaps its only direct

physical value is in the construction of quantum memory, where we can presume that

the decoherence is much more likely in the storage mechanism than in the retrieval

device. QEC is, however, an essential first step toward understanding the more

generally applicable fault tolerant quantum computing (FTQC).

The natural extension of channel-adapted quantum error correction is, therefore,

channel-adapted FTQC. The two operate under the same principles, but for FTQC,

the model is more stringent. Rather than perfect quantum computers on either side of

a noisy channel, we now must consider a quantum computer in which each component

is subject to noise. For fault tolerant operation, we apply an encoding and recovery

procedure that insulates our logical computation from the decoherence of each gate.

The basic premise of channel-adaptivity is still sound for FTQC; it is still reason-

able to suppose that errors will arrive with some known structure. If we adapt our

fault tolerant procedure to this structure, we will likely be able to improve perfor-

mance and/or reduce overhead.

The most useful results in FTQC have been the demonstration of error thresholds.

Gates are assumed to fail with some probability p. The threshold theorems have

shown that if p falls below some threshold then there are FT techniques that will

yield computation of arbitrarily high fidelity. The various threshold theorems provide

important research quests for both theorists and experimentalists. Theorists seek FT

constructions with ever higher thresholds; FT thresholds provide experimentalists

with device fidelity goals.

FT thresholds are obtained through the concept of concatenated QEC codes and

logical operations. Consider a quantum circuit designed to carry out some quantum
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algorithm where every gate is presumed to be perfect; this is the ideal logical op-

eration. As we must implement this operation with imperfect gates, we replace the

logical qubits with n physical qubits, using some QEC code. Each gate is replaced

with a set of gates to perform the same function on the encoded logical qubits. We

also include error correcting blocks that detect and recover from error syndromes;

presumably we add such a block after each of the logical gates. Just as is done in

the simpler QEC framework, we protect our computation from noise by encoding

redundancy into our system.

One may be troubled by the idea of adding noisy gates in order to protect from

noise. After all, each error correction block is also made up of imperfect quantum

gates. The remarkable results of FTQC thresholds indicate that such constructions

can indeed protect from noise. The intuitive picture (ignoring the technical details)

is that as long as the physical gates are reasonably good (p is below the threshold),

the error correction blocks result in logical operations that are less noisy than the

underlying physical operations.

Concatenated codes repeat the process. We can encode each of the logical qubits

(now consisting of n physical qubits) with yet another quantum error correcting code

and corresponding logical operations. As before, this procedure improves the fidelity

of each logical operation. In essence, this second level of error correction targets

the higher order errors ignored by the first layer of the code. The procedure can be

repeated until the computation has reached the desired fidelity.

Channel-adaptivity as a likely role at the lowest level of a concatenated code.

By measuring a physical noise process, we may choose an encoding and recovery

procedure that more efficiently targets the first order errors. We could choose to

determine the structure of the higher order errors passed along to the second level of

the concatenated code; for example, it is not hard to characterize the errors inherent

in the [2(M + 1), M] code after recovery. It is more likely, however, that the higher

levels of error correction will be more effective as generic QEC. While we will likely

have a good model for the physical noise process, such a model will never be perfect

and may characterize the noise only to the first order. In such a case it would be
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foolish to adapt QEC too completely to such an estimate. Instead, the arbitrary error

nature of generic QEC can be used.

The error correction blocks in a fault tolerant system have two basic requirements.

First, they must not allow errors to propagate. If an error occurs on one qubit, it must

not be allowed to corrupt other qubits. We must construct a universal set of quantum

gates such that errors do not propagate. Second, the error correction blocks must

be implemented in a relatively simple way. Stated simply, the more complicated the

quantum operation, the more it is subject to noise and error. Thus, a FT procedure

that is itself highly complex will not prove very effective at shielding a computation

from noise.

The results of Chapter 5 are quite encouraging for channel-adapted FTQC, at

least when considering the amplitude damping channel. Consider a noise model in

which the output of every quantum gate is subject to the amplitude damping channel.

Can we construct a fault-tolerant computational model using the amplitude damping

codes of Chapter 5? Does this result in a good FT threshold? How much improvement

do we see from each level of concatenation? Do channel-adapted methods improve

the computational fidelity with less overhead? These are the natural extensions of

the channel-adapted QEC presented in this dissertation.

6.3.2 Channel-adaptation with physical models

In the examples throughout this dissertation, we have examined two channel mod-

els. The first, the amplitude damping channel, is easily motivated by physical noise

processes. The second, the pure state rotation channel, is not. Both channels demon-

strate the performance gains that can be achieved through channel-adaptation. These

are, however, merely examples to demonstrate the principle of channel-adapted QEC;

for practical use, we must channel-adapt to a physically observed noise process.

There is an obvious connection to quantum process tomography. Given some

physical device, whether a quantum memory element or a computational gate, one

can measure the overall quantum operation. The departure of the observed operation
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from the ideal can be considered the physical noise in the operation which must be

corrected.

For a given noise process, how necessary is the arbitrary error model that underlies

generic QEC? Is there sufficient structure to the noise to justify channel-adapted

techniques? How well does the amplitude damping channel describe observed physical

noise? Is there a physical application for the channel-adapted amplitude damping

codes? Will a hybrid concatenation of a channel-adapted and a generic code provide

good protection from a physical quantum channel?

6.4 Broader Impact

The answer to these open questions will determine the impact of this dissertation

in the greater quantum computing community. It is our belief that we have demon-

strated a significant inefficiency within the generic QEC construction that can and

should be exploited. Generic QEC procedures have been monumentally important in

advancing the field of quantum computing: without the principles QEC and FTQC,

we would have little hope of building sufficiently noise-free quantum computers for

any interesting applications. As an engineering principle, however, the inefficiency of

generic QEC procedures may limit its utility.

We have presented valuable tools to understand the impact of channel-adapted

QEC. As we approach the construction of larger-scale quantum information devices,

these tools will aid in developing efficient error correction and fault tolerant proce-

dures. In this way, we are striving to connect the theoretical results of quantum error

correction with the observed realities of quantum devices.
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Appendix A

QER Figures and Tables

This appendix includes a more comprehensive collection of figures and tables de-

scribing the performance of each channel-adapted QER algorithm. Plots include the

performance curves for the optimal QER operation (where available), the EigQER

algorithm, the BlockEigQER algorithm with m = 2,4,8, and the OrderQER algo-

rithm (where available). We present the svd dual performance bound and the lowest

iterated performance bound. We also include the channel-adapted recovery operation

of Barnum and Knill [2], with the associated performance bound. These figures are

presented for the five, seven, and nine qubit codes and for the amplitude damping

channel and the pure state rotation channel with 0 = 57/12 and -r/4. Each scenario

also includes a table with a quadratic polynomial fit for small noise values.

70 7 2

Optimal QER 1 0 -1.19
Generic QEC 1 -.01 -2.21
EigQER 1 0 -1.22
EigQER2 1 0 -1.22
EigQER4 1 0 -1.21
EigQER8 1 0 -1.20
OrderQER 1 0 -1.22
Lowest Bound 1 0 -1.19

Table A.1: Asymptotic QER performance
the five qubit code.

for the amplitude damping channel and

151



0.9

0.8
O

0.7

0.6

05

Figure A-i:
code.

02 03

QER performance for the amplitude damping channel and the five qubit

Table A.2: Asymptotic QER performance for the pure state rotation channel with
0 = 51r/12 and the five qubit code.
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EigQER4
EigQER8

- OrderQER
Barnum-Knill
Barnum-Knill bound

---- Single Qubit
S- - svdDual Bound

' - Lowest Iterated Bound

Optimal QER 1 -.13 -5.27
Generic QEC 1.01 -1.24 -6.02
EigQER 1 -. 13 -5.73
EigQER2 1 -.13 -5.76
EigQER4 1 -.13 -5.64
EigQER8 1 -.14 -5.45
OrderQER 1 -. 12 -5.61
Lowest Bound 1 0 -1.19
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Figure A-2: QER performance for the pure state rotation channel with 0 = 57r/12
and the five qubit code.

Table A.3: Asymptotic QER performance for the pure state rotation channel with
0 = 7r/4 and the five qubit code.
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Standard QEC
Optimal QER
EigQER
EigQER2
EigQER4
EigQER8
OrderQER
Barnum-Knill
Barnum-Knill bound
Single Qubit
SVD Dual Bound
Lowest Iterated Bound

Optimal QER 1 -.06 -8.20
Generic QEC 1.01 -.24 -12.92
EigQER 1 -.05 -8.66
EigQER2 1 -.05 -8.66
EigQER4 1 -.05 -8.55
EigQER8 1 -.06 -8.45
OrderQER 1 -.05 -8.56
Lowest Bound 1 -.06 -8.09
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Figure A-3: QER performance for the pure state rotation channel with 0 = r/4 and
the five qubit code.

Table A.4: Asymptotic QER performance for the amplitude damping channel and
the seven qubit Steane code.
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Standard QEC
Optimal QER
EigQER
EigQER2
EigQER4
EigQER8
OrderQER
Barnum-Knill
Barnum-Knill bound
Single Qubit
SVD Dual Bound
Lowest Iterated Bound

-0 y -y2

Generic QEC 1 -.04 -4.00
EigQER 1 0 -1.68
EigQER2 1 0 -1.68
EigQER4 1 0 -1.68
EigQER8 1 0 -1.68
OrderQER 1 0 -1.68
Lowest Bound 1 0 -1.59
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Figure A-4: QER performance for the amplitude damping channel and the seven
qubit Steane code.

Table A.5: Asymptotic QER performance for
0 = 57r/12 and the seven qubit Steane code.

the pure state rotation channel with
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S. . SVD Dual Bound
* - I - Lowest Iterated Bound

Generic QEC 1.01 -2.47 -.87
EigQER 1.01 -2.04 -2.45
EigQER2 1.01 -2.04 -2.45
EigQER4 1.01 -2.07 -2.19
EigQER8 1.01 -2.07 -2.17
Lowest Bound 1.01 -2.01 -1.43
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Figure A-5: QER performance for the pure state rotation channel with 0 = 57r/12
and the seven qubit Steane code.

Table A.6: Asymptotic QER performance for the pure state rotation channel with
0 = 7r/4 and the seven qubit Steane code.
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Generic QEC 1 -.6787 -18.09
EigQER 1.01 -. 12 -12.62
EigQER2 1.01 -. 12 -12.62
EigQER4 1.01 -. 12 -12.62
EigQER8 1.01 -. 12 -12.62
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