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Abstract

Persistent conflicts over the momentum of light in media has led researchers to apply
an alternate approach to predicting the electromagnetic force on material. Direct ap-
plication of the Lorentz force to media allows for the computation of electromagnetic
forces while avoiding a priori assumptions for the form of optical momentum. In this
view, the forces exist everywhere in matter once the field is present. Because of this,
the approach can be computationally daunting, particularly when multiple particles
are surrounded by a medium with a dielectric or magnetic response to the fields. The
theory presented in this thesis represents a self-consistent formulation for efficiently
modeling optical momentum transfer to macroscopic media.

The Maxwell stress tensor and the distributed Lorentz force are first applied to
calculate forces on lossless media and are shown to be in excellent agreement. It is
shown that a normally incident plane wave pushes a slab in the wave propagation
direction, while it pulls a half-space toward the incoming wave. The Lorentz force
density is applied to the slab in a direct way, while the half-space is dealt with by
introducing a finite amount of loss. The losses have to be properly accounted for, oth-
erwise differing results are obtained. The momentum transfer to lossy dielectric and
magnetic media is derived from the Lorentz force density without prior assumption
of the momentum of light in media. A view of momentum conservation is devel-
oped which is rooted in the stress tensor formalism and is based on the separation
of momentum contributions to bound and free currents and charges consistent with
the Lorentz force density. The formulation is shown to be in agreement with known
observations of momentum transfer to media.

The electromagnetic wave momentum is derived for a Lorentz medium and ap-
plied to study the momentum transfer to stationary, isotropic left-handed material.
The model includes material dispersion and losses, which are necessary for a causal
medium with negative index of refraction. The results provide a rigorous proof for
the force on free currents in a lossy medium . The resulting electromagnetic wave mo-
mentum conservation theorem proves that the momentum flux of a monochromatic
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wave in an isotropic left-handed material is opposite to the power flow direction.
However, the momentum density in a lossy medium with negative index of refraction
may be parallel or antiparallel to the power flow. The results are applied to predict
the reversal of radiation pressure on free currents in a material with negative index
of refraction. Furthermore, conservation of momentum at a material boundary states
that the tangential component of the wave momentum is conserved.

The theory is applied to predict new experiments such a decrease in optical mo-
mentum transfer to Mie particles due to absorption, which contrasts the common
intuition based on the scattering and absorption by Rayleigh particles. Lossless di-
electric particles incident by multiple plane waves and a Gaussian beam are also
studied using Mie theory to model existing experiments of optical manipulation us-
ing lasers. The modeling of single particles is achieved by applying analytical field
calculations to infinite cylinders used to represent particles in two dimensions and to
spheres used to more closely model three dimensional experiments. The application of
electromagnetic wave momentum conservation via the stress tensor formalism allows
us to compute the experimentally observed dynamics of particles in solution while
reducing the computation by one dimension. For example, the force on a dielectric
sphere can be computed by either applying a volume integration of the Lorentz force
or by computing the surface integration of the Maxwell stress tensor.

The Mie theory and the FoldyLax multiple-scattering equations are applied to
compute the scattered field of an arbitrary number of infinite dielectric cylinders
of arbitrary size, subject to in-plane incidences. Binding forces are studied as a
function of particle size and separation. The formulation is applied to a system of
20 particles, and extends the capabilities of modeling particle interaction and optical
matter beyond the simple cases of the Rayleigh regime and two-particle systems.
Based on this approach, a new trapping regime is proposed, which is based on the
equilibrium between a scattering force and optical binding forces only. The trap is
realized from the interaction between a single plane wave and a series of fixed small
particles, and is efficient at trapping multiple free particles. The possibility of serially
guiding and sorting nanometer-sized particles without the use of any external control
is also demonstrated. The working principle is based on an equilibrium between
scattering and binding forces, the latter depending on the properties of the particles.
A configuration is proposed that utilizes this property and is shown to efficiently
sort small particles as function of their size. In order to understand the complex
interactions between dielectric particles, a simplified geometry consisting of identical
slabs subjected to normally incident plane waves is also studied.

Thesis Supervisor: Jin Au Kong
Title: Professor of Electrical Engineering

Thesis Supervisor: Tomasz M. Grzegorczyk
Title: Research Scientist
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Chapter 1

Introduction

In 2005, I began a study of optical momentum transfer to macroscopic media in

order to model the manipulation on colloidal particles with lasers. In March of that

year, my research supervisor, Dr. Tomasz M. Grzegorczyk, was personal witness to

the optical binding experiments of Professor Jean-Marc Fournier at the Swiss Fed-

eral Institute of Technology. Upon his return, Dr. Grzegorczyk described to me the

fascinating experiments that turned a collection of colloidal particles into an array

of optical matter in the presence of a laser field. It was around this time that Dr.

Grzegorczyk began developing an analytic multi-body scattering code that would

eventually be used to model the optical forces within a collection of particles. One of

the original goals of this modeling effort was to aid in the design of a laser trapped

mirror (LTM) that would use optical matter as a imaging reflector in space. I be-

gan my own investigation of this subject on my own accord in May 2005. It soon

evolved from mere curiosity to become my primary research focus while at MIT. By

September 2005, we officially began working on the NASA Institute for Advanced

Concepts (NIAC) Phase II LTM study along with Professor Fournier, principal in-

vestigator Professor Elizabeth McCormack of Bryn Mawr College, and former NASA

headquarters member, Dr. Robert Stachnik. It was an immediate goal to under-
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stand the complex nature of optical forces on colloidal particles and to theoretically

recreate the optical binding experiments. This dissertation reports the results of this

theoretical investigation and modeling effort.

1.1 Background

Electromagnetic wave theory was first applied by J. C. Maxwell to predict and calcu-

late radiation pressure of light [8]. This prediction was soon verified by the observation

of light pressure on reflectors in vacuum [9, 10]. In 1905, Poynting quantitatively val-

idated the theory with detailed measurements of radiation pressure [11]. Until the

invention of the laser, such experiments were relegated to scientific validation of the

electromagnetic wave theory.

1.1.1 Optical manipulation of colloidal particles

In 1970, the manipulation of small dielectric particles by laser light was first demon-

strated by Arthur Ashkin at Bell Labs when particles suspended in water were drawn

into the axis of a laser beam and accelerated in the direction of propagation [12]. The

original experiments were designed by applying a rough calculation for the radiation

pressure of a 1W laser focused upon spheres ranging from approximately 1A 0 to 5AO

in diameter, where A0 is the laser wavelength. In addition to radiation pressure, the

particles experienced a trapping force that pulled the particles into the laser beam.

The trapping force was reversed when the relative index of refraction was inverted.

That is, an air bubble with dielectric permittivity less than that of the surrounding

water was always seen to be pushed out of the beam, while the radiation pressure

remained in the beam propagation direction. The trapping force was explained using

ray optics, a technique that is generally reserved to describe scattering from bodies

much larger than the wavelength of light. This separation based on radiation pressure

and trapping force would continue for the next 30 years.
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Many experimental demonstrations followed, including optical levitation [13,14]

and radiation pressure on a liquid surface [15]. The use of lasers was also pro-

posed as an atom trap [16,17], and eventually realized to trap and cool atoms by

Steven Chu of Bell Labs [18-20], who became one of at least two Nobel Laureates

owing some acknowledgement to the use of optical trapping. The trapping force

and radiation pressure became to be known as the gradient force and the scattering

force, respectively, due to the separation based on the Rayleigh approximation for

a point scatterer [21]. The former force reduces to the gradient of incident field in-

tensity, and the latter is described simply by the scattering of incident momentum.

Mesoscopic dielectric particles were also trapped using a single highly focused laser

beam [22]. Such traps, termed optical tweezers, result when a the gradient force is

larger than the scattering force as predicted by application of the Rayleigh approxi-

mation [23, 24]. Optical manipulation has since found application in physics, biology,

chemistry, and medicine [25-27]. In fact, optical tweezers have become a necessary

tool for many researchers in microbiology. Besides manipulating living organisms

with lasers directly [28], researchers are also applying particles as handles to charac-

terize the mechanics of living cells. In this regard, there is a need to consider metal

particles [29, 30] and novel materials that may provide higher trapping efficiencies for

optical handles [31].

The description of optical manipulation was further expanded in 1989 when op-

tical binding was first observed [32]. Optical binding refers to the interaction forces

between multiple particles and can be used to create a lattice of dielectric particles

termed optical matter [33]. Optical binding was originally described by the interaction

of dipoles induced by an electromagnetic field incident on polarizable particles [34].

The binding force, scattering force, and gradient force then became the standard de-

scription for the optical manipulation of colloidal particles. Thus, while significant

experimental advances have been made in optical manipulation, modeling has, until

recently, remained in its infancy.

31



CHAPTER 1. INTRODUCTION

There are two primary issues responsible for this lack of theoretical development.

First, a fully developed model requires the solution of Maxwell's equations in the

near field region of many particles, which generally requires significant computing

resources. Second, once the electromagnetic fields are known, the force must be

calculated by either applying the Lorentz force directly or by computing the scattered

electromagnetic momentum. The first issue is treated in this thesis by applying

analytical field solutions to electromagnetic waves scattered by canonical particles

(e.g. cylinders and spheres). However, the primary focus of this work is in regard to

the second issue, which has historically been a controversial subject. It is necessary

to address the issue of electromagnetic momentum in matter since the particles are

typically immersed in a dielectric medium (water in most of the experiments).

1.1.2 Momentum controversy

The electromagnetic momentum in media has been debated throughout the previous

century with two leading candidates; D x P due to Minkowski [35] and coptoE x H

due to Abraham [36, 37]. Although the so-called Abraham-Minkowski controversy

originated out of relativistic formulations, the primary issue of the radiation pressure

exerted on the interface of a dielectric boundary can be studied independently of

material motion [38]. The momentum density vector derived from the macroscopic

electromagnetic wave theory [39] for a nonmagnetic medium is C = D x B = EopoE x

H + P x poH, where the wave momentum density is expressed as the sum of the

electromagnetic momentum density EopoE x H and a momentum density resulting

from the dielectric polarization P = D - c0E in the presence of a field [21]. The

debate of the radiation pressure of normally incident light from free space onto a

dielectric can be demonstrated by momentum conservation at the interface. The

difference in the radiation pressure resulting from either the Minkowski momentum

D x B or the Abraham momentum EopoE x H transmitted into the dielectric is

significant; an outward force results from the former, while an inward force results

32



1.1. BACKGROUND

from the latter [40].

In contrast to momentum conservation, the force on matter due to an electromag-

netic field can be computed directly via the Lorentz force. The Lorentz force has been

applied to bound and free currents to compute the radiation pressure on dielectric

media due to normal incidence at a planar boundary [41, 42], and the force on bound

charges has been included to model forces resulting from oblique incidence [43, 44].

While some researchers have recently applied the force calculations to derive a new

form of electromagnetic momentum in matter [43, 45, 46], others warn against the use

of momentum conservation theorems all together [41].

1.1.3 Summary of the most relevant experiments related to

momentum controversy

Several of experiments have been carried out over the last century in an attempt

to measure the momentum of light. In this section, a few of these experiments are

described. The experiments listed are limited to those optical or near infrared mea-

surements that are discussed within the body of this thesis. The descriptions present

what was measured and why the measurements are significant. For a detailed pre-

sentation of how a particular experiment was performed, the reader is referred to

the cited references. Reviews of many of these experiments can be found in the

literature [40, 47].

Tangential pressure of light In 1905, J. H. Poynting measured the tangential

force due to light obliquely incident on absorbing and reflecting surfaces [11]. The

tangential stress was carefully measured and reconciled with the electromagnetic wave

theory of Maxwell. This experiment demonstrated that the force tangential to the

surface of an absorbing material is proportional to the incident intensity and has

a maximum at an incident angle of 45'. Zero tangential force was also measured

for obliquely incident light upon a good reflector. This experiment represents the
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first quantitative comparison of carefully measured radiation pressure effects with

the electromagnetic wave theory.

Recoil of light against a source Using an analogy with the recoil of a gun, J.

H. Poynting and G. Barlow performed an experiment in 1910 designed to measure

the recoil force exerted by light against the source from which it originates [48]. The

premise of the experiment was to study the equilibrium forces exerted upon various

disks subject to steady illumination. The disks consisted of various permutations

of absorbing and reflecting surfaces on their two sides. One particularly interesting

result comes from the transient period of initial illumination upon the absorbing side

of a disk with a reflecting silver film deposited on the unilluminated side. As the

researchers remarked, "a strong suction always set in, and this suction, after reaching

a maximum, rapidly subsided, giving place finally to a pressure increasing to the

limiting value corresponding to the steady state." The effect was explained by the

expulsion of occluded gasses from the silver films. Since in this geometry the silver

film was on the unilluminated side of the disk, a back pressure was exerted upon the

disk as the gas was expelled from the disk into the surrounding vacuum.

Pressure on submerged mirrors In 1954, Jones and Richards measured the

deflection of reflectors as a function of refractive index of the submerging fluids [49].
The pressure exerted upon a submerged mirror in the Jones-Richards experiment was

determined to be directly proportional to the index of reflection n of the surrounding

medium. However, the experiment was unable to determine whether the observed

proportionality n was the conventional phase velocity refractive index or the group

velocity refractive index, due respectively to the ratio of phase velocity or group

velocity to the speed of light in vacuum. The invention of the laser allowed Jones and

Leslie in 1978 to improve upon the precision of the original experiment [50] and to

determine unambiguously the dependence of the pressure upon a mirror submerged

in a dielectric liquid on the phase velocity index of refraction (i.e. the measured
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pressure was proportional to n = c/vp where vp is the velocity of phase propagation

in the surrounding dielectric).

Scattering and gradient force on dielectric particles In 1970, Arthur Ashkin

at Bell Labs demonstrated that dielectric particles suspended in water could be drawn

into the axis of a laser beam and accelerated in the direction of propagation [12]. In

addition to radiation pressure, such particles experience a force transverse to the

propagation direction, the direction of which depends upon the dielectric contrast

between the particle and the surrounding liquid; dielectric particles that are optically

dense compared to the background medium are pulled into the high intensity axis of

the beam while less optically dense air bubbles were pushed out of the beam axis.

Photon drag The photon drag effect measured by Gibson et. al. is one of the most

direct observations of optical momentum in dielectric media [51]. The measured cur-

rent in a weakly absorbing semiconductor such as Germanium or Silicon is produced

by the absorption of an electromagnetic wave in the near infrared. The experiment

reveals the Minkowski momentum transferred to free carriers due to absorption of

electromagnetic energy. Since the absorbed photon momentum is greater than the

incident momentum by a factor of the refractive index n, it is deduced by momentum

conservation that an additional force on the bulk material must be directed toward

the incident wave.

Recoil momentum in a gas of atoms In 2005, the recoil momentum of single

atoms struck by light in an absorptive medium has been made by Gretchen Campbell,

Dave Pritchard, Wolfgang Ketterle and colleagues [52]. This experiment serves as the

most direct measurement of optical momentum in matter to date. The experiment

was performed by observing the change in momentum of single atoms in the lowest

momentum state due to the absorption of photons. It was determined that the recoil

of the momentum imparted to the atoms was directly proportional to the macroscopic
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refractive index of the gas. The experiment demonstrates that a single photon entering

a dilute gas is affected by the presence of all surrounding atoms.

Optical trap stiffness In 2005, A. Rohrbach provided the first quantitative agree-

ment between measured and calculated trap stiffness of optically trapped particles.

The trap stiffness represents a measurement of the linear restoring force in a par-

ticular direction. That is, if we model an optical trap as a potential well, the trap

stiffness is simply the proportionality constant relating the force to the displacement

distance due to small perturbation from the equilibrium position. The experiment

was performed using dielectric particles suspended in water. The theoretical calcu-

lations were based on an effective force with respect to the surrounding liquid. In

other words, the force was calculated as if the particle were in free space with the

free space index of refraction n 1 replaced simply by the index of refraction of

water n -+ 1.33. This calculated force on the particle is equivalent to calculating the

difference in incident and scattered Minkowski momentum.

1.2 Thesis work

The purpose of this thesis is to provide a theoretical framework for the modeling of

experiments. While some contributions have been made toward the understanding of

wave electrodynamics, the emphasis has been placed on deriving a theoretical frame-

work which may be applied to develop applications. Fundamentally, one could apply

the complete description of electrodynamics provided by Penfield and Haus [53]. How-

ever, such a description would greatly hinder efforts to model many particle systems

since the dynamics of both the particles and the background fluid must be taken into

account within the framework of moving media. The results presented here greatly

reduce the complexity and computation required to formulate the electrodynamics of

multiple particles by deriving and applying the concept of an effective electromagnetic

wave momentum.
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1.2.1 Scope and assumptions

The basis for the theory and calculations presented herein is the macroscopic electro-

magnetic wave theory [39]. The Maxwell-Minkowski equations

X - = (1.a)

V x + = 0 (1.1b)
at

V.- - 0 (1.1c)

V-D = p (1.Id)

make no distinction between field and matter contributions to the electromagnetic

wave theory since the electric field S, magnetic field H, electric flux D, and magnetic

flux 1 contain the response of matter via the constitutive relations. Throughout this

thesis, the materials considered are assumed to be isotropic, linear, and stationary.

The limitation to stationary media is not a severe restriction since the primary issue

of the radiation pressure on a material surface can be studied independently of mo-

tion [38]. The constitutive relations in the most general form for the purposes of this

thesis are

D j dE(t - T)E(T) = j dre(T)E(t - 7) (1.2a)

B = d TA(t - T)'(T) = j drp(T)N(t - T). (1.2b)

Furthermore, it is assumed that the media are homogeneous except for discrete spa-

tial discontinuities in the permittivity and permeability used to represent material

boundaries.

The Lorentz force density pS + f x 1 is assumed in Chapter 2 to represent the

force on electric charge p and electric current J and applied to model the momentum

transfer to lossless and lossy media. It should be noted that the form i x P is con-
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sistent with the most common form of the force on free currents found in many texts,

for example [39, 54, 55], and results from historical measurements of the deflection

of moving charged particles in a magnetic medium due to an applied magnetic field

(see [56] and references herein). However, various scholars have proposed that the

force on electric currents may be written instead as J x poK. In Chapter 3, a deriva-

tion of the wave momentum in a dispersive Lorentz medium is given and applied to

predict the reversal of wave momentum in left handed materials. It is shown that

both j x 13 and the force J x poN have interpretations of momentum transfer to

macroscopic media. That is, the form 5 x po7 represents part of the force density

exerted upon a material by the electromagnetic fields, while j x 13 gives the force on

free electric currents inside a material.

Throughout this thesis, complex notation is used to represent monochromatic

waves. The time domain fields, written in script font, are related to the complex

fields, written in straight font, by the relation E = RJ{Ee-iwt}, where w is the angular

frequency of the incident laser field and R denotes the real part. Because of (1.2),

the constitutive relations for the complex fields are

D =6E (1.3a)

B= pH. (1.3b)

Time-average quantities are denoted by brackets such as < S >= R{E x H*} and

* represents the complex conjugate operator. Vectors are given one bar E, tensors

have two bars T, and scalars like p are written without bars.

1.2.2 Theoretical framework

In order to precisely model experimental observations, it is necessary to outline a

theoretical framework for the application of energy and momentum conservation the-

orems. To accomplish this, the subsystem concept is introduced in a manor that is
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similar to the analysis of Penfield and Haus [53]. In general, we may write the energy

and momentum equations for a subsystem as

a
#y= --V.- $ tWy (1.4a)

at
ay= - -T t Cy, (1.4b)

where the subscripts denote the Jth subsystem. In (1.4), #b gives the energy trans-

ferred to and from other subsystems, 9j is the energy flux, W is the energy density,

fj is a force density representing the momentum transfer to or from other subsystems,

'Z' is the momentum flux, and GC is the momentum density. In order for momentum

and energy to be conserved, the overall system must be expanded such that the inter-

action terms are zero. That is, the energy and momentum of the system is conserved

if we include enough subsystems such that

q5= 0 (1.5a)

E j = 0. (1 .5b)

The meaning of (1.5) is that there is no energy or momentum leaving the expanded

system. The definition of a particular subsystem depends upon the equations ap-

plied to model the physics. It is certainly possible to combine subsystems into larger

subsystems or to rearrange terms from one subsystem to another. Because of this,

there are different subsystems which can be defined which include the electromag-

netic fields. Depending upon the formulation applied, different expressions for the

quantities in (1.4) will be obtained to represent the electromagnetic subsystem. The

difference between the energy and momentum equations for these subsystems funda-

mentally rests in how we separate the primary field from the response field of the

matter. In this regard, we may view an electromagnetic force density as being re-

lated to particular momentum flux and momentum density. In what follows, the
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Maxwell-Minkowski subsystem is studied within a stationary, unbounded medium.

The standard form of the Lorentz force density p5 + J x 8 gives the force on free

charge density p and free current density J due to the presence of electromagnetic

fields. According to the Maxwell-Minkowski equations given in (1.1) the dissipated

energy and Lorentz force are given by

pe+j x B

= - - - (V x i) -- (V x ).- (1.6a)at at +( )e(~)

= x8 + x D+(V x H) x B+ (V x S) xD (1.6b)
at at

+ (V.-)')-(+ (V.-D)S. (1.6c)

These equations can be written in the form of (1.4) by applying the appropriate

vector calculus identities. The resulting Minkowski energy and momentum equations

for a linear, isotropic, and non-dispersive medium are

-[ExX ] a I(P-E+B--q)] (1.7a)
at 2

1V ' -E+3 - - ) - = - 3H -- [ 8 1 - 7b
=2 -at(- + - ) - E - X[ x )(.bpS+jx B

where I is the identity dyad. Note that the limitation to non-dispersive media is

lifted in Chapter 3. In a lossless and source free region of an unbounded medium the

energy and momentum equations in (1.7) represent a closed system since J = 0

and pS + I x B = 0. However, if p # 0 and/or J # 0, the subsystem given

by (1.7) does not represent a closed system. Therefore, at least one other subsystem

must be added to close the system. The resulting force acts upon the charge carriers

inside the medium. It is useful to consider the experimentally observed force density

p(S + V x S) on a collection of charged particles with charge density p, mass density
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m, and velocity field V. Consider the dynamics of all charge carriers

- i mV -V (1.8a)Ot 12

- -x [M ], (1.8b)at

which closes the system when added to (1.7). In this closed system, the kinetic

energy of the particles 'mD - V and momentum of the particles mi) are altered by

the presence of the electromagnetic fields. Therefore, the dynamics of the system of

charged particles can be deduced either by evaluating the force density pS + j x B

or by applying the Minkowski momentum flux and momentum density in (1.7).

The preceding analysis raises a very important question regarding the remainder

of this thesis. It is assumed up front that the materials considered here are stationary.

However, imparting momentum to a material body implies that the momentum of

the material will change with time according to a(m)/at. For example, consider

the classic case of a monochromatic plane wave incident normally upon a perfect

electrical conductor (PEC) mirror from free space. The solution of this problem

assuming a stationary mirror shows that the energy of the wave is conserved, and

the momentum imparted to the mirror is twice the incident wave momentum [39].

To reconcile the fact that the momentum change will accelerate the mirror, thus

increasing it's kinetic energy, we must consider the moving boundary. In fact, the

reflection of incident electromagnetic momentum will cause the mirror to move away

from the incident wave such that the reflected wave is shifted in frequency. The

Doppler effect is responsible for the red shift in the reflected wave frequency and the

transfer of electromagnetic energy to the mirror [61].

To treat stationary media, the velocity of the material is not simply set to zero.

To account for the fact that the solutions seemingly violate conservation of energy,

a limiting process is applied. In the limit V -+ 0, the kinetic energy density mim - V

approaches zero faster than does the momentum density mV. Therefore, the limi-
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tation to stationary medium is actually the limit of very small velocity such that

smaller material velocity yields a better approximation. Thus, a finite momentum is

transferred to the material while the kinetic energy of the material is zero.

1.2.3 Toward reconciliation

In this thesis, I take the position that regardless of which calculation approach is

applied, all results must conform to the same predictions of experimentally observ-

able phenomena. In Chapter 2, which begins on page 45, the Lorentz force density

and momentum conservation equation are applied to equivalently predict the optical

forces on media. While the Lorentz force provides a means to calculate the force

density everywhere inside a material once the fields are present, the momentum con-

servation equation reduces the computation by describing the momentum transfer to

lossless media to a surface effect. Also, each method can equivalently distinguish the

momentum transfer to free currents due to the attenuation of the wave in a lossy

medium. In Chapter 3, which starts on page 79, the momentum of an electromag-

netic wave is derived for a lossy, dispersive Lorentz medium. The theory is applied to

calculate the reversal of wave momentum in an isotropic medium with negative index

of refraction. The optical manipulation of colloidal particles is treated in Chapter 4

starting on page 101. The concept of electromagnetic wave momentum developed in

the preceding chapters is applied to predict the behavior of particles suspended in a

background medium and subjected to various incident optical fields. Optical binding

is studied in Chapter 5 beginning on page 125. The equilibrium positions of multiple

cylindrical particles in an optical interference pattern are predicted by applying the

multi-scattering code implemented by Dr. Grzegorczyk to calculate the total fields

necessary for application of the Maxwell stress tensor. This approach is validated by

using a commercial field solver and integrating the Lorentz force over the surface of

the cylinders. A more basic description of optical binding is also provided by con-

sidering the interaction of multiple slabs incident by a plane electromagnetic wave.
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Finally, the conclusions are discussed in Chapter 6 starting on page 149.
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Chapter 2

Electromagnetic Theory of Optical

Forces

Recently, the radiation pressure exerted by an electromagnetic wave impinging

upon a dielectric body was derived by the direct application of the Lorentz law [43].

This method applies the Lorentz force to bound currents distributed throughout the

medium and bound charges at the surface of the medium. The approach allows for

the computation of force at any point inside a dielectric [43, 45, 46] and has been

shown applicable to numerical methods, such as the finite-difference-time-domain

(FDTD) [44, 57]. A similar approach was taken to study the radiation pressure on

a dielectric surface [41] and a semiconductor exhibiting the photon drag effect [42].

Direct comparison with the stress tensor divergence has not been done previously

in the regime of optical momentum transfer. Two important generalizations of the

method proposed in [43] are introduced that allow for the calculation of forces on lin-

ear, isotropic media. First, the force on bound and free magnetic currents and bound

magnetic charges are introduced to the distributed Lorentz force to model magnetic

materials. Including magnetization in the model is important because materials have

recently been developed with magnetic response into the Terahertz [58] and opti-
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cal [59] frequencies which offer hope for future experiments of optical momentum

transfer in magnetic media. The second generalization allows for the discrimination

of the force on free carriers so that experimental observation of momentum transfer

to lossy media can be modeled. This is an important contribution since all media is

inherently lossy. An equivalent view of momentum transfer is developed and formal-

ized via the Maxwell stress tensor. The viewpoints and physical predictions of the

two approaches are compared and contrasted.

2.1 Lorentz force and momentum conservation

The Maxwell-Chu equations for a time-harmonic field in a source free region

V x ft+ iw6oE = -iwP (2.1a)

V x E - iwpOH = iwpoM (2.1b)

V M = -V - poM (2.1c)

V cOE = -V-P (2.1d)

are deduced from the Maxwell-Minkowski equations by defining a polarization P =

D- 0 E and magnetization poiM = B-pOM to model stationary media. A momentum

conservation equation is obtained by adding (2.1a) cross multiplied by puoH*, (2.1b)

cross multiplied by coE*, (2.1c) multiplied by H*, and (2.1d) multiplied E*. After

taking one-half of the real part, the equation reduces to [53]

1
< f >= -- R V - T .(2.2)

2

In (2.2), < f > is the average Lorentz force on bound and free currents and charges

to be discussed shortly and

T =(co|E|2 + po l )I - EoEE- pHH* (2.3)
2
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takes the form of the free-space Maxwell stress tensor [55], where BE is a dyadic

product and I is the identity dyad. To calculate the total force < P > on a medium,

the force density < f > is integrated over the entire volume V occupied by the mate-

rial. Applying the divergence theorem allows the total force on a material medium to

be written as a surface integral of the free-space Maxwell stress tensor over an area

A enclosing the material body

< R dA [ -'}', (2.4)
2

A

where h is the outward pointing unit vector on A. The momentum transfer to a

material body surrounded by free space can be determined unambiguously since there

is no debate regarding the free space electromagnetic momentum.

Application of the Maxwell stress tensor provides the viewpoint that electromag-

netic waves posses momentum that may be transferred to material objects via scat-

tering. An alternate viewpoint states that the force exists everywhere in a medium

once the fields are present. The force density

< f >= -{(-V - P)E* + (-V - poM)It* - iwP x pof* + iwpoM x coE* } (2.5)
2

may be integrated over the entire region occupied by the material. It is interesting to

note that (2.5) gives the force on the equivalent electric current density Je = -iwP

as j x poft*, not je x B*. However, (2.5) may be written, with the replacements

cOE = D - P and po0 = B - poM, as

< f > = _R{(-V -P)E* + (-V -p-oM)H* - iWP x B* + iwpoM x D*

+ iwP x poI* - iwpoK[ x P*} (2.6)

It is obvious that the last two terms cancel due to the R operator. Thus, using (2.1c)
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and (2.1d), the force density is expressed as

<!f > = I{o(V E)E* + po(V ft)H* - iwP x B* + iwtoMt x D*}. (2.7)

The Lorentz force can be applied directly to bound and free currents and charges,

which are used to model lossy media with complex permittivity E = ER + iE, and

permeability y = UR+iPI in a free space background (60, po). The force on free electric

currents is separated based on the imaginary part of the dielectric constant [42]. Thus,

the electric current density -iwP = -iw(c - Eo)E is separated into a bound electric

current density -iw(ER - E0 )E and a free electric current density wEIE. A similar

separation is made for p so that the time-average Lorentz force density on bound

currents and charges is

< fA > - 6o(V -E)E* + /o(V -H)H*2

- 2W(ER - 60)E X f* + 2W(pI - ,o)1 X D*}. (2.8)

The leading two terms in (2.8) contribute via a surface force density on bound electric

and magnetic charges, while the final two terms represent the volume force density

on bound electric and magnetic currents. The reason for this is that both V - E and

V - H are zero everywhere except at the boundaries where the spatial derivatives

are undefined and need to be supplemented with boundary conditions. The force on

bound currents and charges is calculated by the integral of < fbulk > over the volume

of the medium plus the integral of < fsuf > over the surface of the medium, where

< fbui > =- iW(ER - 60 )E x E* + iW(pR - Po)H x D* (2.9a)
2

< fsurf > = 2R PEpa*vg + PhHla*vg (2.9b)

The bound electric surface charge density is pe = n - (Eo^t - Es)6o [43], and, similarly,
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the bound magnetic surface charge density is Ph = i - (Hout - Hi,)po. The fields

(Ein, Hin) and (Eot, Rout) are the total fields just inside the particle and outside the

particle, respectively, and the fields in (2.9b) are given by Eavg = (Eout + Ein)/2 and

Havg = (HoIt + Hin)/2. In addition to (2.8), the force density on free currents

< fc >= -R wiE x B* - wPH_ x D'*, (2.10)

extends the recent analysis of the photon drag effect [42] to include magnetization,

oblique incidence, and arbitrary polarization. Note that < > does not have a

surface force contribution since the trivial case of a perfect electrical conductor (PEC)

is not considered. The total time-average force on the material < P >=< F, >

+ < FP > results from integration of the time-average force densities over the entire

medium.

The connection of (2.8) and (2.10) to momentum conservation can be shown by

considering a normally incident electromagnetic wave with complex wavenumber k, =

kR + ikZk transmitted into a medium occupying the half-space z > 0. Substitution

of the transmitted field - = iEoe-kzIzeikzRZ into (2.8) and (2.10) yields

< Ib> = -zkz 1 [(CER - 60)1Ek2 + (AR - [o)IHI 2] (2.1la)

< fe > = kzR [6EIP 2 + p1 |fi 2 ]. (2.11b)

The negative sign leading the left-hand side of (2.11a) indicates that the force on

the bound currents is opposite to the incident wave propagation direction when the

medium is optically dense. The force density on free currents can be written as

1nw Irn
< Ic>= -- =e |E|2 M1_2V - ,(2.12)2 c 1IB +1171 ^2 c

where n = ckZR/w is the index of refraction, c is the speed of light in vacuum,

and S = E x H* is the complex Poynting vector resulting from the application of
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Poynting's theorem to the second equality. The result of (2.12) is interpreted for two

means of momentum transfer. First, the transfer of momentum at the boundary is due

entirely to Fb since electromagnetic power is conserved in the reflection/transmission

(i.e. R{V - S} = 0). Second, the transfer of momentum to free currents due to the

attenuation of the wave in the medium is given by the divergence of the momentum

p = nS/c in (2.12). Recent experiments confirm this result by showing that the

observed transfer of momentum to an atom in a dilute gas is directly proportional to

the macroscopic refractive index [52]. This dependence on n has also been observed

in the photon drag measurements [60] and was recently analyzed in [42,46]. It is

concluded that the direct dependence of absorbed momentum on the refractive index

n holds for both dielectric and magnetic media.

The connection of momentum transfer to bound and free currents is formalized

by applying the momentum conservation theorem via the Maxwell stress tensor. The

previous derivation for the momentum conservation equation in (2.4) may be repeated

using the Maxwell-Minkowski equations

V x f + iwD = j (2.13a)

Vx E-iwB = 0 (2.13b)

V*- = 0 (2.13c)

V D=p. (2.13d)

The resulting force density gives the force on free currents J and free charges p in

terms of the Maxwell stress tensor in matter [39]

1
T = (D -E* + B* - H)I - DE* - B*H. (2.14)

2

Also, the introduction of free magnetic charges and currents into (2.13c) and (2.13b),

respectively, does not change the form of (2.14). The tensor (2.14) can be applied to
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distinguish between < Pb> and < P, > by noting the relationship in (2.12).

60, I - 60,

(a) (b)

Figure 2-1: Integration path for (2.4) applied to a lossy particle with radius a and

(6, A) in a background of (60, p 0). (a) An integration path that completely encloses
the particle gives the total Lorentz force P. (b) The integration path just inside the
boundary gives the force on the free carriers F.

As an example, we consider the force calculation on a particle of radius a. The

total Lorentz force < F > on bound and free currents is found by integrating a surface

in (2.4) that just encloses the entire particle so that T is evaluated at r = a+ as shown

in Fig.2-1(a), and the tensor in (2.14) reduces to the free-space Maxwell stress tensor

in (2.3). In fact, it is only necessary that the integration path completely encloses

the particle, which is satisfied if r > a. The force on free currents < P, > is found

by integrating the stress tensor (2.14) along the interior of the particle boundary at

r = a- as shown in Fig.2-1 (b) such that all free currents are enclosed. The force on

bound currents and charges is < Fb >=< F > - < F, >. The choice of integration

paths for < F >, < P >, and < P, >, allow for the description of electromagnetic

forces in media consistent with the direct application of the Lorentz force in (2.8)

and (2.10).

2.2 Radiation pressure on dielectric and magnetic

media

In this section, the momentum transfer due to 1-D material inclusions is calculated by

integrating the Lorentz force density over the material and also by applying momen-
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tum conservation via the Maxwell stress tensor. The radiation pressure on a lossless

slab is calculated first as a simple application of the equations developed in the pre-

vious section. Then, the momentum transfer to an absorbing dielectric is found, and

the result is applied to reconcile conflicting reports of the radiation pressure on a

lossless dielectric half-space by taking the limiting case of zero absorption. The cal-

culations are shown to be in complete accord with relevant measurements, including

the deflection of mirrors immersed in a dielectric liquid.

2.2.1 Radiation pressure on a slab

The radiation pressure on a slab due to an incident TE plane wave Ej = Eeikozeikx

is calculated using the Lorentz force density and momentum conservation. The slab

shown in Fig. 2-2 is characterized by real permeability [ and permittivity e and is sur-

round by free space. The field solution is well known and is given in Appendix A. The

problem of a TM polarized wave can be solved by applying the duality principle [39].

60, Ao 60,1 0

Ej
Hi z d

Figure 2-2: TE plane wave incident upon a slab (e, p) surrounded by free space

(60, 0). The angle of incidence is Oi and the slab thickness is d.

First, the Lorentz force density on bound currents is applied to calculate the

radiation pressure on a dielectric slab due to a plane wave at normal incidence (i.e.

Oi = 0). The force density < f >= !R{-iwP x B*} results in only a z component

< fz >- - < I > and is plotted in Fig. 2-3 as a function of position inside the slab

for three cases. The force patterns are determined by the standing waves inside the

slab. Regions of high force density can be identified in the plots. Furthermore, it
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can be seen that parts of the slabs may be either in compression or in tension. For

example, Fig. 2-3 (b) shows that the two halves of a half wavelength slab are pulled

away from each other by equal amounts so that the total force on the slab is zero.

This observation is explored further in Chapter 5 as a explanation of the optical

binding. The radiation pressure on each slab is determined by integration over z.

Although the integration can be carried out analytically for this simple geometry,

it is implemented here numerically as is necessary with more complicated 2-D and

3-D scattering problems. The integration is given by simple discretization in the z

coordinate

d L

< Fz >= Jdz R{ - iwP x *} ~ Az2 R{-ipo(E - co)Ej x H1*}, (2.15)
0

where zi = 0, ZL = d, and the fields El and H, are evaluated at zj.

Momentum conservation can also be used to calculate the radiation pressure on a

slab due to oblique incidence. The Maxwell stress tensor is applied at the boundaries

of the slab. It is expected that the total radiation pressure results from the incident

and scattered (reflected and transmitted) momenta. Since there are no free currents,

the total force results completely from the force on bound currents. The force per

unit area on the slab of thickness d is, therefore, given by

1
< P>=-Rf -T (z = -) - -T (z = +) + 'T(z =d-) - 2 'Z(z =d+)}, (2.16)2

where T(z =zo) is the Maxwell stress tensor given by (2.14) evaluated at the point
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Figure 2-3: Force density inside a dielectric slab due to an in impinging electromag-
netic wave of unit amplitude. The electromagnetic wave is incident at Oi = 0 onto

a slab with permittivity c = 4co. The thickness of the slab is normalized to the

wavelength inside the material for (a) d = A/4, (b) d = A/2, and d = 3A/4.
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z = zo. The contributions from the fields inside the slab are restricted to the terms

= 0+) 2 - -Hz(Z = 0+)12)T (z = 0+) = s Ez,(z = 0+)12 + '(IH.(z

+ [-pHz(z = 0+)H,*(z = 0)]

2T(z = d-) = E,(z = d-)12 + "(|H(z

+ [ -pHz(z = d-)H,*(z = d-)]

I
(2.17a)

= d-) 2 - |Hz(z = d-)12)]

(2.17b)

By substitution of the fields in the slab, it can be easily shown that

z T(z = 0+) T(z = d-), (2.18)

which is expected since the force on free currents is zero. The radiation pressure on

the slab reduces to

- 1
< F >= -R{ -T(z = 0-) - T(z = d+)}.

2
(2.19)

Therefore, the force on a lossless slab can be computed solely from the knowledge of

the fields outside the slab. This is to be expected and can be generalized to media

of arbitrary geometry since the divergence of the stress tensor applied to continuous,

lossless media is zero. Simplification of (2.19) with knowledge of the reflected and

transmitted fields gives the closed form expression for force per unit area on the slab

< F >= 620 Ei|2cossOi [I + IRslab| 2 - Tslab|2],2 (2.20)

where Oi is the incident angle and Rlab and TsIab are the slab reflection and trans-

mission coefficients, respectively [39]. This analytic expression shows that the i-

component of the radiation pressure on a lossless slab is zero (F, = 0), regardless

of incident angle [55]. At normal incidence, the radiation pressure given by (2.20)
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can be written simply as the summation of force components L- , E|Rlab 12,

and -zgEllTsab 12 due to the incident, reflected, and transmitted wave momenta,

respectively.

Numerical integration of the Lorentz force in (2.15) is applied to calculate the

Lorentz force on the slab, and the results are compared with the analytical expression

of (2.20). Figure 2-4 shows excellent agreement between the two methods applied to

compute the force on a lossless dielectric slab ([ = to, 6 4EO). The maxima and

minima in the force are due to the periodic dependence of the reflection coefficient

Rslab and the transmission coefficient Tslab on the slab thickness. Minimum force is

observed for slab thicknesses equal to multiples of half wavelength m} and maximum

force is observed for slab thicknesses equal to odd multiples of quarter wavelength

(2m +1) , where A is the wavelength of the electromagnetic wave inside the slab and

m E [0, 1, 2, ... ]. For comparison, note that for d = A/4, < F, >= 3.182 [pN/m 2] is

calculated using (2.15) and < F, >= 3.184 [pN/m 2] is calculated by the application

of (2.20), which is in agreement with < F, >= 3.188 [pN/m 2] previously calculated

using FDTD and the Lorentz force density [44].

Figure 2-5 shows the radiation pressure on a permeable slab ([ = 4A0 , 6 = 60) as a

function of incident angle, measured from the surface normal. This example requires

the calculation of both magnetic currents from (2.9a) and magnetic surface charge

from (2.9b), which are used to compute the Lorentz force. As seen in Fig. 2-5, there is

excellent agreement between the two force calculation methods at all incident angles.

It is well know that a TM wave incident upon a dielectric surface at the Brewster

angle gives zero reflection. By duality, the Brewster angle for total transmission of a

TE incident wave is given by [39]

O3 - tan- 1 r ' (2.21)

and is calculated for this example to be 03 = 63.4'. This is evident in Fig. 2-5 by the
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Figure 2-4: Radiation pressure on a dielectric slab as a function of slab thickness. The
unit amplitude electromagnetic wave is incident onto a slab with permittivity 6 = 4co
and thickness d = A/4 at Oi = 0. The pressure is calculated from the divergence of
the Maxwell stress tensor (line) or numerical integration of the Lorentz force density

(markers). @ 2005 Optical Society of America, Inc. [1].

zero force at this particular angle.

The radiation pressure is shown as a function of dielectric constant E/o for a

lossless dielectric slab in Fig. 2-6. Again, there is excellent agreement between the

two force calculation methods. It is seen that the force goes to zero as expected when

the slab is impedance matched to free space E = co. For all positive permittivities,

including the region 0 < e/eo < 1, the force is in the positive .- direction, indicating

that the force is pushing the slab.

2.2.2 Momentum transfer to absorbing dielectrics

The two methods are applied to model known experiments by considering the general

solution of a TE electromagnetic wave obliquely incident on the surface of an infinite

nonmagnetic medium (p = po) occupying the region z > 0. The radiation pressure

on bound currents is found by integrating the Maxwell stress tensor in (2.14) along a
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Lorentz

- TensorL

Brewster Angle

20 40 60 80

Figure 2-5: Radiation pressure on a dielectric slab as a function of incident angle.

The TE polarized, unit amplitude electromagnetic wave is incident onto a slab with

permittivity E = 6o and permeability p = 4pao. The thickness of the slab is d = A/4.

The pressure is calculated from the divergence of the Maxwell stress tensor (line) or

numerical integration of the Lorentz force density (markers). @ 2005 Optical Society

of America, Inc. [1].

0
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Figure 2-6: Radiation pressure on a dielectric slab as a function of dielectric constant.

The unit amplitude electromagnetic wave is incident at 64 = 0 onto the dielectric slab

of thickness d = A/4. The pressure is calculated from the divergence of the Maxwell

stress tensor (line) or numerical integration of the Lorentz force density (markers).

@ 2005 Optical Society of America, Inc. [1].
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path that just encloses the boundary and, for a weakly absorbing dielectric, is

< >= 2Ez [ (1 + Rh2) cos 2  - 2 COS2, (2.22)
2 Th2 22 o 2 0

where Rh, is the reflection coefficient, Th, is the transmission coefficient, and 02 and Ot

are the incident and transmitted angles, respectively. Thus, the total force on bound

currents is normal to the surface and directed toward the incoming wave for CR > 60,

while the tangential component of wave momentum is conserved across the boundary

due to phase matching. To formally prove this assertion, it is necessary to consider

the tangential component of the Lorentz force density

x. < fb >= - (ER - 6o)k*Ei 2 |T 2e2kz1z}, (2.23)

which is due to the transmitted field E = EiTekzzzeikzRZeikxx. The tangential force

density on bound currents in (2.23) is zero when kx is real, yielding a normal pressure

on a half-space void of free currents. The total radiation pressure on an absorbing

half-space is found from (2.4) with the tensor integration extended to z -* 00

2 <F> = E (1 + R ) cos2oi (2.24a)

. < F > = EN (1 - IR12 ) cos 0i sin 0i, (2.24b)

which is in agreement with the Lorentz force density integrated over the region z E

[0, o0) as in [41, 43]. The result (2.24b) was originally demonstrated by Poynting

in 1905 [11], who observed a tangential force given by '-E2 sin Oi cos 0, for a nearly

perfect absorbing medium (R 0 and q, z 0) and zero tangential force for the

reflection from a mirror IR| = 1. Thus, the radiation pressure is normal to the

surface of a perfect reflector and is given by the force on free currents at the surface

< P >=< F, >= Eo|E|2 cos 2 0= 2 < Si > cos 2 01, where < Si >= R{Ei Hi} is

the average incident Poynting power.
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2.2.3 Radiation pressure on a lossless half-space

Calculation of the Lorentz force on a half-space is more involved than what might be

expected. For a lossless half-space, the fields propagate inside the medium without

attenuation. This poses a problem in finding the radiation pressure by integrating over

the Lorentz force from z = 0 to z -* oc. Previously, this issue has been sidestepped by

introducing a small amount of loss in the medium, applying the distributed Lorentz

force, and allowing the losses to approach zero after integration [41, 43]. The problem

with this approach is that the momentum transfer to free charges does not approach

zero in the lossless limit because of the assumption that the fields approach zero at

z -* 00. Some of the wave energy may be lost, such as ohmic losses in a conducting

medium, which must be considered when calculating the total force on a material

body. This problem will be addressed subsequently.

First, the Maxwell stress tensor is applied to derive the radiation pressure on a

dielectric and magnetic medium occupying the region z > 0 due to a TE polarized

plane wave incident from free space. The wave propagates in the free-space region

(po, Eo) with wave vector ko = ,k, + koz and in the material with wave vector

k = sk + kz. Because there are no losses anywhere, the Maxwell stress tensor can

be applied via (2.4) along any surface that includes a unit area of the boundary. Also,

since the problem is invariant in x and y, the radiation pressure can be calculated by

evaluating the stress tensor at discrete points as was done for the slab. The force per

unit area on the half space medium is given by

1
2
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The contributions on the two sides of the interface are

2 T(z = 0-) = [§|E,(z = 0~)2 + (|Hx(z = 0-)2 - H(z =0-)2

+ [--poHz(z = 0-)H*(z = 0-)] , (2.

61

26a)

2 T(z = 0+) = 2 [E,(z = 0+) 2 + I(I H(Z = 0+) 12
2 2

+ [-pHz(z = 0+)H*(z = 0+)],

and the force tangential to the boundary is seen to be

0+)12)]

(2.26b)

< Fx >= R - pioHz(z = 0 )H*(z = 0-) + pHz(z = 0+)H*(z = 0+) (2.27)

Upon substitution of the fields on both sides of the boundary, the tangential force

simplifies to

1 2 k R ( ko
2 zw 2 L1toJ

[(1 + Rhs) (1 - Rhs)* - Pot|Ths12 ]} (2.28)

where the parameter pot is given by [39]

Potpokz (2.29)

The simplification to (2.28) is a direct result of phase matching, which requires kx

to be continuous across the boundary. Applying the formulas T, = 1 + Rhs and

potTs = 1 - Rh, obtained from the boundary conditions, it immediately follows that

PoThs12 = (1 + Rhs)(1 - Rhs)*

so that the tangential force is zero (Fx = 0). This result is a direct consequence

of the boundary conditions and phase matching at a single interface, and it can be

(2.30)

- IHz(z =
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generalized to multiple interfaces, including the lossless slab discussed previously, the

details of which are omitted for brevity. This differs from previous reports of derived

nonzero tangential force at a planar boundary [43, 44]. The radiation pressure on a

lossless half-space medium is found from (2.25) and simplifies to

F = IEi 2 [ cos CO (1 + Rh 12) - cos 2 2T, , (2.31)

where Ot is the transmitted angle found from Snell's law. Note that this equation

also accounts for y $ po, the contribution of which appears in the reflection and

transmission coefficients. Again we can see the contribution from the incident, re-

flected, and transmitted wave momenta to the force on the medium. In this regard,

the transmitted momentum is different from the free space momentum due to the

response of the material. This is discussed extensively in the next chapter.

Equation (2.31) is applied to evaluate the radiation pressure on the half-space

medium due to a normal incident plane wave. By taking the limit c --+ 00, it is simple

to show that the radiation pressure approaches

lim < F >= -2c0 El. (2.32)
E--+00:

This limit is seen in Fig. 2-7 where Ej = 1V/m such that < Fz, >- -o(1V/m)

-8.85 [pN/m 2] for very large E. Thus, the force of a normally incident plane wave on

a lossless dielectric half-space is pulling toward the incoming wave, while in the slab

case the plane wave pushes the medium in the wave propagating direction. Likewise,

the analytical limit of e -+ 0 gives

limP = +coE', (2.33)
E-0

which is also seen in Fig. 2-7.

The analytical expression (2.31) differs from (2.24a) and (2.24b), which retain



2.2. RADIATION PRESSURE ON DIELECTRIC AND MAGNETIC MEDIA 63
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Figure 2-7: Pressure due to an electromagnetic wave incident at O= 0 upon a lossless
half-space medium as calculated from the Maxwell stress tensor. The 2-directed force
is shown as a function of the relative permittivity E/co. The free space wavelength is
Ao = 640nm and [ = /-o, Ej = 1 V/m. The incident media (region 0) is free space.
The dotted lines denote ±EoEi = ±8.85 pN/m 2. @ 2005 Optical Society of America,
Inc. [1].

their form in the limiting case of a lossless medium [41,43]. In particular, (2.24a)

and (2.24b) produce different values from (2.31) for three cases involving a lossless

half-space. First, for an impedance matched interface such as a fictive interface

between two free space media, Rh,= 0, which would yield a nonzero value of < F, >=

2'fE2. Since such a fictive boundary could be placed anywhere, it would indicate

that forces in free space are present everywhere. Second, a nonzero tangential force

< F, ># 0 at oblique incidence [43] disagrees with the zero sheering force predicted

by (2.31) and Stratton [55]. Third, the predicted normal force < Fz > is always

positive for a lossless dielectric, which contradicts the known theory that the force of

a normally incident plane wave on a lossless half-space is pulling toward the incident

wave [39,61].

The differing results obtained from the distribution of Lorentz force and the

Maxwell stress tensor do not imply that either result is incorrect. Instead, we in-

terpret the force on a semi-infinite half-space obtained from the method of [43] to be

the total Lorentz force on all bound and free charges and currents with the assump-
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tion that the fields attenuate to zero as z -+ oc due to some finite loss. This holds

once the force density is integrated, even if the losses approach zero. To illustrate

this point, the force on a lossless half-space due to a normally incident wave can be

computed from the distributed Lorentz force by considering the ohmic loss due to the

conductivity a - we1 in a slightly lossy medium. Some of the energy transferred from

the wave to the conduction current i, is dissipated as ohmic loss. The time average

power dissipated is [39]

< PC >= dVc(f) - E*(F) , (2.34)

which must be accounted for in computing the momentum transfer. The correspond-

ing momentum transfer to the free-currents due to the attenuation of the wave is

given by (2.12). Integrating over the entire medium and allowing the conductivity to

approach zero yields

< F, >= lim R dz [T (Jc - E*)] } ETh. (2.35)
o-0 2 0 C . 2

This nonzero contribution to the conduction currents is precisely the difference be-

tween (2.31) and the result reported by [43] for the normal incidence case. This

momentum contribution to the free currents leads to the conclusion that (2.31) is the

radiation pressure on a lossless half-space, while (2.24) is interpreted as the total radi-

ation pressure on a half-space with the assumption that the fields attenuate to zero as

z --+ o. To further enforce this point, it is emphasized that the Maxwell stress tensor

was applied to derive (2.24). It was only necessary to assume that the fields attenuate

to zero at infinity, then the total force given by < F >= 'RT{T(z = 0-)} is equivalent

to (2.24) and includes nonzero contribution from < Fc >= R{fT(z = 0+)}. In fact,

the tangential force (2.24b) is due entirely to < Fc > as expected.
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2.2.4 Mirrors submerged in dielectrics

A significant amount of attention has been given to the form of the electromagnetic

wave momentum in media. Equation (2.12) proves that the momentum transfer to free

carriers due to the absorption of electromagnetic energy is proportional to the index

of refraction n. This result is confirmed by experimental evidence; the photon drag

effect [51, 60] and the photon recoil in a dilute gas of atoms [52] have been interpreted

in favor of the Minkowski momentum flux PM = n as opposed to the Abraham

momentum flux PA = . An alternate mode of experimental research deals with

the reflection of electromagnetic waves from mirrors submerged in dielectrics. In 1954,

Jones and Richards measured the deflection of reflectors as a function of refractive

index of the submerging fluids [49]. The invention of the laser allowed Jones and Leslie

in 1978 to improve upon the precision of the original experiment [50]. The observed

forces upon the mirrors in the Jones-Richards-Leslie (JRL) experiments were directly

proportional to the index of reflection n, thus supporting the Minkowski momentum

for the electromagnetic wave.

Recently, this conclusion has been reconsidered by Mansuripur, who shows that

the transfer of momentum to the mirror may be the Minkowski value, the Abraham

value, or any value between depending upon the phase of the mirror reflection co-

efficient [62]. Thus, it is argued that the momentum of a photon inside a dielectric

host has the arithmetic mean value of the Abraham and Minkowski momenta. This

argument is based on the direct application of the Lorentz force to a reflector which

is incident by an electromagnetic wave from a dielectric background. The results

demonstrate that, for a perfect electrical conductor (PEC) mirror, the electromag-

netic pressure on the mirror is equal to the Minkowski momentum flux, while the

pressure on a perfect magnetic conductor (PMC) mirror is equal to the Abraham

momentum flux. The mirrors used in the JRL experiments are well modeled as PEC,

thus the derived results agree with the experiment. However, if the mirrors were

PMC, Mansuripur claims that the Abraham momentum would be measured. Here,
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the theoretical calculations of [62] are reproduced via the Maxwell stress tensor for-

malism. Then the results are interpreted to predict that the observed pressure in

most experiments will be the Minkowski form, regardless of the phase of the mirror

reflection coefficient.

Figure 2-8: TEM plane wave incident upon a reflector. The reflector is defined
by R = ei' and is separated from the incident dielectric with index of refraction

n = V/Eo by an air gap of thickness 6.

The problem under consideration is shown in Fig. 2-8. An electromagnetic wave

F = 2Ee ik is incident from a dielectric medium with index of refraction n = Vf/Eo

onto a mirror with reflection coefficient R6 = eO. Since IR6 1 = 1, the properties of the

mirror are contained completely within the phase parameter <$. It is assumed that an

air gap of thickness 6 may exist between the dielectric and the mirror, which allows

us to completely separate the electromagnetic force on the mirror and the force on

the dielectric. However, the problem of a mirror submerged in a dielectric liquid may

be treated by simply letting 6 = 0.

The electromagnetic force on the mirror is given by the change in electromagnetic

momentum at z = 6

<P5  1 1< F6 >= -R{2 - T(z = 6-)} = -Rf Z -T(z = 0+-2 2

= 2 I ["|E.(z = 0+) 2 + H"(Z = 0+)12 = (JA12 + B12), (2.36)
2.2 2 z2

where the coefficients A and B give the amplitudes of the forward and backward

propagating waves in the air gap and are given in terms of the reflection coefficient
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R in Appendix A. The force on the mirror surface at z = 6 reduces after some

manipulation to

< F6 >= - [(1 ± n2 ) + n{R}(1 - n2 )] < Si >, (2.37)nc

where < S, >= R{EjH,'} is the average Poynting power of the incident wave, and

the real component of the reflection coefficient R is

1 - n2 tan2 (ko6 + 0/2)
1 + n 2 tan2 (k06 + #/2)(

Equations (2.37) and (2.38) show the direct dependence of the radiation pressure

on the mirror upon the phase term k06 + #/2 and are applied to study the momentum

transfer to the mirror. In the case of a submerged PEC, # = 7r and 6 = 0 gives

R{R} = -1. Thus, the radiation pressure < F6 >= 21 < Si > on the mirror is given
C

by twice the Minkowski momentum flux (the factor of two indicates that the incident

momentum is completely reflected). However, the electromagnetic pressure < F6 >=
2 < S, > on a PMC submerged in a dielectric is twice the Abraham momentum

nC

flux since # = 0 and 6 = 0 yields Q{R} = 1. Thus Mansuripur's results [62] have

been reproduced via the stress tensor formalism and, in the discussion that follows,

an interpretation of these results is given that is different from [62].

Mansuripur argues that the momentum of light inside a dielectric host is has

the arithmetic mean of the Abraham and Minkowski momentum since all values

within this range are equally likely to be observed in experiments. However, while

the dependence upon the phase term k06 + q/2 is oscillatory, the average value does

not take the arithmetic mean of the Abraham and Minkowski momenta in general.

This is shown in Fig. 2-9 for a mirror submerged in dielectric (6 = 0). The pressure

on the mirror takes on values between the Minkowski momentum and the Abraham

momentum depending upon 0. As the index of refraction of the mirror is increased

from n = 2 in Fig. 2-9 (a) to n = 16 in Fig. 2-9 (b), the momentum transfer to the
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Figure 2-9: Radiation pressure on a mirror submerged in a dielectric (6 = 0) as a
function of the phase # E {0, 2wr} of the reflection coefficient R = eo. The incident
medium is (a) n = 2 and (b) n = 16. The incident power is unit amplitude at
normal incidence < Si >= . The radiation pressure oscillates between the upper
limit 2pM = 21 < Si > and the lower limit 2 PA = < Si > represented by theC n

dashed lines.

mirror follows more closely the Minkowski value for a larger range of 5. However, the

pressure on a PMC retains the association with the Abraham momentum even for

large index of refraction.

The pressure of the electromagnetic fields upon the mirror is directly related to

the standing wave pattern in the region in front of the mirror. In addition to changing

the phase of the reflected wave at the mirror, the standing wave may also be altered

by adding an air gap between the dielectric and the mirror. This relationship is

given explicitly by the phase term k06 + #/2 in (2.38) and is illustrated in Fig. 2-
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6/A 0
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Figure 2-10: Radiation pressure on a mirror submerged (6 = 0) in a dielectric with
index of refraction n = 2. The incident power is unit amplitude at normal incidence
< 3i >= 2. The mirror is (a) PEC (# = r) and (b) PMC (# = 0). The radiation
pressure oscillates between the upper limit 2pM = 2' < Si > and the lower limit
2PA = 2< Si > represented by the dashed lines.nc

10. It is seen that the pressure on the mirror oscillates between the Minkowski and

Abraham momentum with a period of AO/2. Indeed, an electromagnetic wave imparts

the Minkowski momentum upon a PEC mirror for 6 = mAo/2 (m = 0,1, 2, ... ).

However, the pressure on the PEC mirror is given by the Abraham momentum for

6 = (2m+ 1)Ao/4. This is shown in Fig. 2-10 (a), while the PMC case is simply phase

shifted as shown in Fig. 2-10 (b).

The analysis presented here confirms the recent results of Mansuripur [621. How-

ever, while the pressure exerted upon the mirror by the electromagnetic field is un-
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questionable, we may still ponder which momentum transfer, Minkowski or Abraham,

will be observed in experiment. To answer this question, we must compute the pres-

sure on the dielectric surface at z = 0. This force is derived in previous sections and

for this particular geometry is given by the momentum balance

< o >= + R|2) - ( 2+ BI2) , (2.39)
2 2

where the second term is simply the negative of the force on the mirror. Since IR12

the pressure on the dielectric reduces to

<Po >= z 2- I [(1 + n2 ) + (1 - n2 )!{R}] < Si >. (2.40)
C nc

The result of (2.40) implies that there is an additional pressure on the host dielectric

which accompanies the pressure on the mirror. If the surface of the dielectric and

the mirror are mechanically linked, such as a submerged mirror in a liquid dielectric

(i.e. 6 = 0), the total force on the interface is < F >=< P6 > + < Po >= 2 <
C

Si >. Thus, it is predicted that in most experiments the Minkowski momentum will

be observed regardless of the mirror reflection coefficient phase 0. In the previous

examples, < F0 >= 0 for a submerged PEC (6 = 0, 7r =), while < F0 >= 2 n2 -1 <
Tic

Si > restores the total force on a submerged PMC (6 = 0, # = 0) to twice the

Minkowski momentum.

This result can be obtained simply by applying the concept of electromagnetic

wave momentum introduced by Gordon [21]. In this regard, we may apply the

Maxwell-Minkowski stress tensor T(F) in (2.14) directly to predict many experimental

observations, and, in the process, reduce greatly the complexity in analysis. Thus, we

may model the momentum transfer to objects submerged in dielectrics by applying

an effective wave momentum while treating the background medium as a reference.
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For example, the effective pressure on the submerged mirror with 6 = 0 is

- 1
< F > = 2{ - (z = 0-) - T(z -- 00)}. (2.41)

We may assume that the fields are zero as z -+ oc due to the mirror, but in reality,

we only need to suppose that the fields are sufficiently small on the unilluminated

side of the mirror. Thus, the pressure is simply

<F> 1 'W{ E 1+ A )H 12}<P>=2 2 |E +2y

= (1 + ei)1+ e-io) + (1-e )( -e- )4 4
n

=2 n2 < S, >, (2.42)
c

which is twice the Minkowski momentum and is independent of 0. Thus, we may

apply the conservation of electromagnetic wave momentum to calculate the effective

momentum transfer to the mirror, which may include force contributions to the sur-

rounding medium. This concept of wave momentum will be discussed thoroughly in

Chapter 3 and applied in Chapter 4 and Chapter 5 to model the optical manipulation

of particles in a dielectric medium.

2.3 An alternate formulation

Although the Abraham-Minkowski controversy has been debated for the better part

of a century, researchers have gradually become less concerned with the identification

of a single form for the momentum density. Instead, focus has shifted to the separa-

tion of electromagnetic field and material subsystems in the framework of momentum

conservation [21, 38, 53, 63-67]. In this regard, it is accepted that the Minkowski

momentum, which has been directly observed in experiments [49-52, 60], includes

contributions from both the electromagnetic fields and the response of the medium.

71
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While the electromagnetic contribution to the momentum density was originally as-

sumed to be the Abraham form [21, 63, 64], some reports [38, 65-67] assign E0E x B as

the component of the momentum density residing in the fields; the difference between

these two forms originates from the choice of formulation for the Maxwell equations.

Alternatively, the previous sections have demonstrated that the Lorentz force can

be applied directly to media via bound and free currents and charges, thus avoid-

ing a priori assumptions of momentum [41-43]. However, various formulations of the

electromagnetic theory have been applied to derive different expressions for the force

densities, and each may be associated with a particular momentum stress tensor and

momentum density vector. The Amperian, Chu, and Minkowski formulations are the

most widely used and differ in how matter is modeled in the Maxwell equations [39].

The Amperian formulation, which is also called the EB representation, models mat-

ter as electric currents and charges and has been proposed as a suitable basis for the

force on matter [67, 68]. In contrast, the Chu formulation, which is also referred to

EH representation, treats matter as a combination of electric and magnetic charges

and currents. The Maxwell-Chu theory has also been applied to predict the force

on matter [69]. The Minkowski formulation, on the other hand, makes no claims

to the separation of fields and matter. In fact, the source terms in the Minkwoski

formulation represent the free charges and currents. In this section, the Amperian

formulation is applied to develop an alternate form of the Lorentz force. A simple

argument is given to prove the equivalence of this form of the average force on matter.

The contribution of matter in the Amperian formulation is expressed in terms of

the electric current density leb = 'P/9t + V x A4 and the electric charge density
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Table 2.1: Summary of momentum stress tensors and momentum densities.
Momentum Stress Tensor Momentum Density

Minkowski (P -9 +8 -f ) I -DE5 - &H x 8
Chu f.on - H) I - E0-poto x R

Amperian (EoE -E + B B/po) I - S - BB/ 1$0 60S x B

Peb = V P in a region free of sources. The Maxwell-Amperian equations are [39]

1 a8
Vx -B-E0 = Jeb (2.43a)

p-o at

V x e + OB= 0 (2.43b)at
V 13 = 0 (2.43c)

60V - = Peb. (2.43d)

In the Amperian formulation S and B are regarded as the fundamental fields and the

Lorentz force density

feb = Peb$ + Jeb X B (2.44)

may be interpreted as relating the mechanical action of the electromagnetic fields on

media [68]. The conservation equation derived by substituting the sources on the

right-hand side of (2.43) into (2.44) is

0Geb
feb a V -Teb, (2.45)

at

where the momentum density vector GeO-b co x B and the stress tensor 7 eb

2 (6os -e + 8 - /puo) I - C0E - U8/puo have been proposed to represent the electro-

magnetic subsystem [38, 65-67]. Such an interpretation implies the isolation of mate-

rial contributions on the right-hand side of the Maxwell-Amperian equations (2.43).

Likewise, the Chu and Minkowski formulations are associated with momentum density

vectors and momentum stress tensors. The associations are summarized in Table 2.1.
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The time-average force density resulting from the Amperian formulation is

< feb >= - 60(V - E)E* + iw coE - c EE + 1 ( xi x B*. (2.46)2 pUo Jyo

The total time-average Amperian force density < Feb > is given by

<Peb >= dV R iwE X * - iw EE x B*

V

+ JdA R Pea*ve + J, x *(2.47)

A

where the bound surface charge density pe was previously defined and the bound

surface current density is

S= -A - 1 x R. (2.48)

Thus, the Amperian formulation provides a description of optical forces on matter in

terms of surface charge, surface current, volume charge, and volume current. It should

be obvious that this formulation provides identical predictions for the time-average

force on a material body since it can be equivalently cast in terms of the free space

Maxwell stress tensor. That is, all of the stress tensors in Table 2.1 reduce to the same

expression when applied to the free space region external to a material body. This

has been confirmed via numerical application of (2.47) to various examples. One such

example of the radiation pressure on an absorbing slab at oblique incidence is shown in

Fig. 2-11. While this formulation provides yet another viewpoint for the force density

(e.g. the inclusion of bound surface current instead of bound magnetic charges),

the prediction of experimental observations is equivalent to the Chu formulation.

However, the Chu model is simpler to study and apply due to the duality of the

electric and magnetic field models [53]. It will therefore be employed in the following

chapter to model the more complicated problem of electromagnetic momentum in

dispersive and lossy media.
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-F >
o < Feb>

2 4 6 8 10
d/A

Figure 2-11: Radiation pressure on an absorbing slab as a function of thickness d.
The unit amplitude wave is incident at 9, = 7r/6. The slab is characterized by

A = (2 + i0.02)po and c = (1 + iO.01)co, and the thickness is normalized to the
wavelength inside the material. The line is computed via the Maxwell stress tensor
and the circles represent the force given in (2.47).

2.4 Discussion

The distributed Lorentz force method of [43] was generalized to include contribution

from magnetic material. This method was shown to provide results equivalent to

those obtained from the application of the Maxwell stress tensor, which was used to

derive simple closed form expressions for the force on a lossless slab in equation (2.20)

and the force on a lossless half-space in equation (2.31). It was shown that in both

cases, the force tangential to the interface is zero. A normally incident plane wave

pushes a dielectric slab in the wave propagation direction and pulls a lossless dielectric

half-space toward the incident wave [39,61].

It was shown that the previous application of the distributed Lorentz force to the

half-space problem lacks to account for the residual absorption [43]. This is because

the fields are assumed to approach zero at infinity, an assumption that holds for a

conducting medium in the limit as o -- 0. As an example, (2.31) was derived for

the normal incidence case from the Lorentz force with consideration given to ohmic

energy loss in the conduction current.
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A very important contribution contained herein is the separation of force on bound

currents and charges and the force on free currents. This separation formalizes a view

of momentum transfer in lossy media based on an adiabatic transfer of momentum

due to reflection and refraction of the wave and momentum transfer due to absorp-

tion inside the medium. This view was applied to explain relevant experiments in

terms of an effective electromagnetic wave momentum. The wave momentum includes

contributions from both the field and matter as a coupled system, which explains

experimental observations of adiabatic momentum transfer to objects immersed in

dielectric and magnetic fluids. This concept is extended to dispersive materials and

applied to calculate the forces on colloidal particles in the following chapters.

Although the two force calculation methods can be applied to calculate the total

force on media, there are inherent advantages and disadvantages for each method.

Through numerous examples, [44] demonstrated that the distributed Lorentz method

is easily applied to finite-difference time domain (FDTD) computational and can

be used to find the forces distributed throughout a host medium. In particular,

the tension and compression forces due to a light beam inside a dielectric medium

were calculated. In contrast, the advantage of the Maxwell stress tensor is that it

reduces a volume integral in three dimensions to a surface integral, thus reducing the

computation required to calculate the total force on a material object.

As a concluding note to this chapter, it may not be assumed that the time-

domain Chu and Amperian formulations for the force on matter will have the same

interpretations for all time. This is discussed in detail by Penfield and Haus in

their research monograph, which applies the principle of virtual power to close the

overall system [53]. For a broad range of problems, their work ensures that an overall

system can be found which conserves energy and momentum. However, the additional

subsystems required to form a closed system differ based on which formulation of the

Maxwell equations is applied. Thus, the Chu and Amperian subsystems for the

electromagnetic waves do not have the same interpretation. A simple illustration of
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this point follows.

The Lorentz force F is often expressed in terms of the momentum density vector

C and the Maxwell stress tensor T as [70]

F=- dV{ - dA -, (2.49)

V A

where the volume V is enclosed by the surface A with outward pointing unit nor-

mal vector h. The issue of "how much electromagnetic momentum is transferred to

macroscopic bodies" was recently addressed by considering a spatially finite pulse

interacting with a slab [68]. The authors compared different forms of the momentum

density vector with the Lorentz force applied directly to media. The isolation of the

momentum density vector from the stress tensor is possible since the volume V can

be made arbitrarily large so that the fields tend to zero on A [71]. In this case, the

force exerted on the media is interpreted according to the choice of G, which results

directly from the formulation of the Maxwell equations applied to separate field and

material contributions. The recent theoretical study of the momentum of light pulses

in matter favors 60po-E x H as the momentum of the electromagnetic fields [68]. It is

agreed, however, that experimental verification is needed and that such verification

could be difficult because of the coupling of momentum between fields and matter [72].

The numerical results of that study show that the predicted pressure on a slab evolves

in time differently depending upon which value for the momentum density vector is

applied. In all cases however, the total momentum transferred to the slab as t -* 00

approaches the same value as expected [72]. In contrast, the time-average force due

to time-harmonic fields results entirely from the stress tensor contribution. Thus, the

radiation pressure on a material body in free space can be determined unambiguously

by considering the divergence of the free space Maxwell stress tensor. It is, of course,

the latter situation that is treated in this thesis.
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Chapter 3

Reversal of Wave Momentum in

Isotropic LHM

3.1 Negative Index Materials

Left-handed materials (LHM) have received much attention since their realization in

2001 [73] due to interesting physics such as negative refraction [74-76], reversal of

the Cerenkov effect [77-80], and the potential to create a perfect lens [81]. However,

the reversal of radiation pressure in LHM first predicted in 1968 by Veselago [82]

has received much less attention. Veselago's results show that the momentum of an

electromagnetic wave

1k 06 1 2+Ofpf1< G >= - R E xf ± (* + - E2+ -2 } (3.1)
2 2 O O

is antiparallel to the average Poynting power in materials with simultaneously neg-

ative permeability p and permittivity e, giving rise to light attraction instead of

light pressure [82]. Researchers still have not observed experimentally the predicted

79



80 CHAPTER 3. REVERSAL OF WAVE MOMENTUM IN ISOTROPIC LHM

reversal of electromagnetic wave momentum. Experiments have revealed optical mo-

mentum transfer to dielectric media in direct proportion to the macroscopic index

of refraction [50-52, 60], but observations have not revealed dependence on the slope

of the dielectric function as in (3.1). Furthermore, identification of electromagnetic

momentum in media continues to be a controversial subject; various definitions and

interpretations have been proposed [21, 38,40, 43, 65-68].

Recent application of electromagnetic momentum conservation at the interface

separating free-space and an isotropic LHM led to the conclusion that the change

in momentum of the electromagnetic wave due to refraction must produce a force

with a nonzero component directed parallel to the boundary [83]. This sheering force

is claimed to be unique to LHM, thus supporting the notion that the tangential

component of the momentum is conserved at the boundary separating two right-

handed materials (RHM). However, the aforementioned sheering force is predicted

to be nonzero because the momentum flux in LHM was assumed to be in the same

direction as the power flow, which is in contrast to Veselago's prediction for the mo-

mentum density [82]. Thus, electromagnetic wave momentum and radiation pressure

in LHM remains topical.

In this chapter, the momentum transfer to isotropic LHM is rigourously treated

by applying the classical electromagnetic wave theory. It is argued that previous

attempts to describe the momentum of the electromagnetic wave in LHM fail to in-

clude material losses and/or dispersion, which cannot be ignored in a causal system

with negative index of refraction. We apply the concept of wave momentum, which

includes contributions from the material response as proposed by the seminal work of

Gordon [21]. The derived expressions define the wave momentum density and wave

momentum flux similar to previous derivations for dispersive dielectrics [65, 66]. The

results presented here are analogous to the wave energy density and wave energy flux

previously derived using the standard Lorentz model for the polarization and magne-

tization [84]. The Lorentz force is also applied directly to derive the wave momentum
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flux density in an LHM half-space resulting from oblique incidence of a monochro-

matic wave. It is shown that the force tangential to the interface results solely from

the momentum transfer as the wave attenuates in the medium. Thus, the tangential

component of wave momentum is conserved due to reflection and refraction at the

interface of any isotropic medium, and the tangential force on a hypothetical loss-

less medium is zero regardless of the direction of phase propagation. In the process,

we provide a rigorous derivation for the cycle-averaged force on free-currents, which,

along with the force on bound currents and charges, gives the total force and de-

scribes the details of momentum transfer in lossy media. Furthermore, the force on

free currents due to the attenuation of the electromagnetic wave in a material with

negative index of refraction is opposite to the direction of power flow.

3.2 Energy and Momentum in Unbounded Media

In order to accurately describe wave propagation in an LHM, it is necessary to include

material dispersion and losses. That is, the coupled electromagnetic field and material

response must be considered together in determining the form of the energy and

momentum of the electromagnetic wave. The equations governing the energy and

momentum of an arbitrary subsystem generally take the form [53]

V + - (3.2a)
at

V T + = - , (3.2b)
at

where the energy flow S, energy density W, momentum flow T, and momentum den-

sity 0 interact with other subsystems via o and f. In this section, the equations that

govern the energy and momentum of the wave are derived from the classical electro-

magnetic theory and the equations governing the dielectric and magnetic response of

a Lorentz medium.
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3.2.1 Energy and momentum of the electromagnetic fields

We begin with the Maxwell-Minkowski fields E(F, t), 7H(r, t), D(f, t), and 8(f, t) in

a source free region [39]. The electromagnetic fields and the material response fields

are separated by defining the polarization P = D - Eo5 and magnetization puM A

B - p0N for a stationary medium, where the dependence upon space and time is now

implied in the notation. The resulting Maxwell-Chu equations [39, 53]

x- - - - Je (3.3a)
at at

V X += o a -Jh (3.3b)

POVN= -V -1OM -Ph (3.3c)

6OV = -V -P = Pe (3.3d)

give the electromagnetic fields t and 7 in the presence of the material represented

by the source terms Je, Jh, pe, and Ph. The energy and momentum quantities for the

electromagnetic subsystem can be derived without specifying models for P and M.

The energy equation is derived in the usual way by subtracting (3.3a) dot mul-

tiplied by S from (3.3b) dot multiplied by N and applying the vector identity [39]

'H - (V x 5) - E - (V x N) = V - (E x N). The quantities corresponding to the

electromagnetic subsystem in (3.2a) are identified as [53]

Se xN (3.4a)

Weh -- S -- ± N (3.4b)
2 2

(Peh e A - -HN, (3.4c)

where the subscript eh denotes quantities relating to the electromagnetic subsystem.

Likewise, the equation describing the transfer of momentum to and from the

electromagnetic subsystem is derived by adding the cross product of the vector equa-

tion (3.3a) and poN, the cross product of the vector equation (3.3b) and coS, the
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product of the scaler equation (3.3c) and JR, and the product of the scaler equa-

tion (3.3d) and E. After some manipulation of the resulting vector equation, the

momentum conservation equation for the electromagnetic subsystem can be written

in the form of (3.2b) with the quantities given by [53]

Teh - -(= o -,F + poH - H)I - 6o08 - htoNH (3.5a)
2

Geh - E0/0S X 'H (3.5b)

Le - PE+ PhH+ Je X POR - Jh X EWE, (3.5c)

where I is the 3 x 3 identity dyad and 5 represents a dyadic product. The quantities

in (3.4) and (3.5) represent the electromagnetic subsystem and may be regarded as the

electromagnetic contributions to energy and momentum [53]. The quantities Weh and

Seh are identified as the energy density of the electromagnetic fields and the Poynting

power, respectively. The momentum density Geh is often referred to as the Abraham

momentum [36], and the momentum flux Teh takes the form of the free-space Maxwell

stress tensor [54, 55]. It is well know that a material contribution to the energy density

accompanies the propagation of electromagnetic energy in dielectrics [85-87]. In the

section that follows, we derive the corresponding material contribution to the wave

momentum.

3.2.2 Energy and momentum contribution from dispersive

media

To model many experimental observations, it is necessary to include the dispersive

characteristics of the material in describing the observed behavior of the electro-

magnetic wave. The inclusion of losses requires that a specific model for P and M

be applied. The material response to the electromagnetic fields is described by the
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differential equations for a Lorentz medium

(2 + e±W2O) P = ow,2 (3.6a)

02 09_
_2 + _ + L M = FW2m, (3.6b)

where the parameters of the equations have their usual meanings [84]. To derive the

energy of the electromagnetic wave, the material equations (3.6a) and (3.6b) are dot

multiplied by Je and Jh, respectively. The resulting equations

--p p + W2 +9 -Y -P 7 . aP
je - E =+ W p } +a at (3.7a)

-~~~ ~ - -Yn9 8 - - 7PO 8
h - aM + aMM -M (3.7b)

2Fw2 at at at Fw+M at atmp_ +~ Fw t t (3b

are then added to the energy conservation equation of the electromagnetic subsystem

given by (3.2a) with the quantities defined by (3.4). The resulting energy conservation

equation for the electromagnetic wave is in the form of (3.2a) with the energy flow

S, energy density W, and energy dissipation <p given by [84]

, Se = E X (3.8a)

eo- - yo--- 1 [a aP 2 iW oe = s- + 11f -R + +2o -P2 2 2ow2, at at eL

/1 + L- M (3.8b)2Fw2  at at

7e aP aP ympo aM a M8c)
(p=+ .(3.8c)

OL2, at at Fw2, at at

A few remarks are in order regarding the quantities in (3.8), which are written without

subscript to indicate values corresponding to the electromagnetic wave. First, the

energy flow 9 is generally regarded as the Poynting power and retains its free-space

form even in the presence of a lossy, dispersive material. Second, the energy density W

contains contributions from the potential energy and kinetic energy of the electric and
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magnetic dipoles. Furthermore, the form of (3.8b) has been regarded as significant

since the energy density remains positive in left-handed media [84]. Third, the energy

dissipation term o depends upon the damping factors -Ye and 7m in (3.6). Thus, 0 = 0

in the limiting case of a lossless material (i.e. the energy of the electromagnetic wave

is conserved).

A similar mathematical derivation exists for the wave momentum. To determine

the contribution of the material response fields to the wave momentum, the mate-

rial dispersion equations (3.6) are dot multiplied by the dyads -VP and -pioVM,

respectively. The resulting vector equations are then added to the electromagnetic

conservation equation given by (3.2b) and (3.5) to yield

acGeh
V - Te -+ t-+- -h7 poN -

{a2 P 2- 1a N 0 P
/2 COgep _ FW0VP - - +w O PoVA- - +a 2MV 2 aO22 at2 Fw2

09P 7e -M aA47po
=VIP - + VM .

at COL)2, at Ft) 2ep MP

Application of identities from vector calculus allows us to write

(3.9)

8t2 ±2 )

- 2 - o 

-VM -- + LoM fat2 M Fw2

feh - V +PO -M

__(a-Pa P 2
ep2 ( t at

at [1L2 - P \1(3.10a)
-t eo2, (VP= - ep -1 M -M

V[ /t (aM4 axi- 2M l
2FwLk at at WMOM Jj

a o VM - "M)](3. 10b)at F(2l t

+ at 'EO X 1 -Eopoe X R] . (3. 10c)

By combining (3.9) and (3.10), the momentum conservation equation for the elec-
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tromagnetic wave can be written in the form of (3.2b) with the momentum flow,

momentum density, and force density

2~~~ 2 Poe, t1 --M - - - - a -P eT= 2D8B7(ID-7(. 6e iat at -~PP

+ -(aM _ 2 M + (P-+ p0 MA-h)lI (3.11a)
Fw2, at at m O

1 1 a - am
G = 'x B - VP - [ VM- (3.11b)

cowe &t Fw2P at

7Ye - a 70p1 [OM
f =- V - VM - . (3.11c)

eow2 at F42 at

The expressions in (3.11) define the quantities for the wave momentum conservation

equation analogous to the wave energy quantities given by (3.8). The momentum

density C contains the Minkowski [35] momentum P x B3 plus material dispersion

terms. Likewise, the momentum flow T is the Maxwell stress tensor -(1 - + 13-

R)I - DE - 3' in non-dispersive media [39,54] plus dispersive terms. We note

that the momentum dissipation term f depends upon the damping factors Ye and -y

in (3.6). Thus, f= 0 in the limiting case of a lossless, unbounded material (i.e. the

momentum of the electromagnetic wave is conserved).

3.2.3 Energy and momentum of a monochromatic wave

For the remainder of this chapter, we consider the propagation of time-harmonic

electromagnetic waves and employ complex notation such that the complex field E

is related to the time-domain field by ={iwe-t}. To arrive at various quantities

of interest, the substitutions a/at - -iw and V - ik are made, which are valid for

plane wave solutions to the wave equation [39]. The constitutive parameters,

/ 2

e(w) C, - 2 Wep (3.12a)
WL2_ + iW7e

FW2
11(LL) =0 W2 W 2 MP . ,-I (3.12b)

S- MO + m
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are functions of the frequency w and consist of real and imaginary parts denoted by

6 = CR + I, and y = PR + Wt1 . Likewise, the time-average of the squared polarization

and magnetization are

2 w4

1P|2 0 eOeP E 2 (3.13a)
Fw 2 4 + 7 2

KI 12 2. (3.13b)
(W 2 -W 2) 2 + _22 I

Similarly, aP/t&2  w 2 P 2 and &M/&t 2 w 2 M 2 . These quantities can now

be applied to determine the time-average values relating to energy and momentum

conservation given in the previous section.

The time average energy density found from (3.8b) is

E0 F w2 (w 2  we20 ) 1 -2
= - 1 e

2 (W2 _ w2 + W2I

Pt0  Fw (w2 ±+wo0 ) 1 2
+ 1 + ( 2  )2 j . (3.14)

2 (P2 _ m)2 + 7mw2

We note that in the lossless case, -ye = 0 and -m = 0 implies that both c, = 0 and

MU = 0, and the energy density satisfies the well-known relation [39, 54, 85, 86]

< W >= a EW) + f 2 (3.15)
4 (9- - 4 aw

The extension of (3.15) to lossy materials has been criticized due to the possibility

of negative values for LHM [84]. In contrast, the average energy density in (3.14)

remains positive for all w. However, it is the rate of change in energy that appears in

the conservation equation (3.2a), which tends to zero upon cycle averaging. That is,

< aW/at >= 0, and the resulting conservation equation

1
- < 1- >= 2[wCI|E2 + W11 2] (3.16)
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is generally regarded as the complex Poynting's theorem, where < S >= j{E x H*}

is the time average Poynting power [39].

A similar analysis is applied to the wave momentum conservation equation. The

average momentum density,

2

R DxB*+k EOWWep 2 E2
2 _2 )2 + y2'2

2 po - W2

+ k ( OwFwmp ft12 (3.17)
2 _ )2 + 2 2

is obtained from (3.11b). It is simple to show using (3.12) that the average momentum

given in (3.17) satisfies (3.1) when the medium is lossless. Thus, the expression for

the momentum given by Vesselago is valid only when absorption of electromagnetic

energy can be ignored. The momentum flow reduces to

1 (3.18-)<'T >= p R 1( - * + D. H )I - DE* - BH* (3.18)

since the dispersive terms in (3.11a) tend to zero upon cycle averaging. The momen-

tum flow in (3.18) is also referred to as the Maxwell stress tensor in matter [39, 54].

Since the average rate of change in momentum density is zero (i.e. < ac/at >= 0),

the momentum conservation theorem for a monochromatic wave reduces to

= 1 r
- < V - T >= --R weE i x * - wpH x *. (3.19)

The right-hand side of (3.19) is recognized as the force density on free currents.

It is now possible to study the propagation of electromagnetic energy and mo-

mentum in a dispersive LHM. Consider an electromagnetic wave E = E, = deikz

propagating in an unbounded medium with complex index of refraction n + ir =

kc/w = cqiFl, where c is the speed of light in vacuum. The magnetic field satis-

fies the relation JUvH, = fiE,. The analysis is simplified by taking the ratio of

the energy flow and energy density. This ratio < Sz > / < W >= ve is generally
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referred to as the energy velocity of the wave [85, 87]. The -directed time-average

Poynting power is simply < S, >= !RQ{EH*}. Similarly, a momentum velocity

< Tz, > / < G >= vm may also be defined [65]. The average momentum flux is

< TZZ > = I ?{RCEX2 + IilHy 12 = < Sz >. (3.20)
4 c

It is obvious from (3.20) that the momentum flow is antiparallel to the energy flow

when the index of refraction is negative. Furthermore, it has been previously argued

that the momentum density < Gz > is also antiparallel to < Sz > when both n < 0

and when absorption is negligible [82]. As an illustration, the energy velocity and

momentum velocity have been plotted along with the index of refraction for a lossless

medium in Fig. 3-1. Since there is no loss, ve and vm are both equivalent to the group

velocity [39]. In the negative index region, both < W > and < Sz > are positive

while < Gz > and < Tzz > are negative. This latter point is evident by the fact that

Vm > 0, which implies that < Gz > and < Tzz > have the same sign for all w. A lossy

medium is considered for a second illustration as shown in Fig. 3-2. In this example,

the energy velocity and momentum velocity are quite different in the region where

n < 0. The energy velocity remains positive since both < W > and < Sz > are

positive. However, the momentum velocity becomes negative for part of this region.

While the sign of < Tzz > follows exactly the sign of n via (3.20), the momentum

density < G2 > may be positive or negative in a frequency band with negative index

of refraction.

The results of this section prove that the momentum density < G > may be par-

allel or antiparallel to the power flow < 9 > in a lossy LHM. This is in contrast to

the results for a lossless LHM, where the momentum density is always antiparallel

to the energy flow [82]. However, the momentum transfer from a monochromatic

wave is independent of the momentum density. Instead, the momentum conservation

equation reduces to (3.19). Thus, it is expected that observed forces due a continuous
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Figure 3-1: (a) Normalized energy velocity and momentum velocity for an electro-
magnetic wave in a lossless medium. (b) The complex index of refraction is given by
n + i2 = cgfte, where y and c are given in (3.12). The triangles clearly show that n
and G, have the same signs over the entire frequency range. The parameters of the
material are we0 = WiO - Wo, Wep2 = Fw2  = 1 5w 2 and = 0. @ 2007 The
American Physical Society [2].
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wave depend upon the average momentum flow, which, due to the direct dependence

upon n shown in (3.20), is opposite to the flow of energy in an LHM. In the follow-

ing section, this conservation equation for a monochromatic wave will be applied to

predict the reversal of radiation pressure in LHM.

3.3 Electromagnetic Force

The average force exerted by a monochromatic wave upon matter is given by the

Lorentz force density applied directly to matter

<I >= R Co(V -E)E* + po(V -H)H* - iwP x poH* + iwpoM x coE* 3.21)

is the time average of (3.5c). Furthermore, the Lorentz force density can be decom-

posed into the force on free currents and the force on bound currents and charges.

The total force density < f >=< fb > - < f > is separated based on the real and

imaginary contributions to the complex permittivity = ER - iEj and 1 = -11R .

According to (3.19), the force density

< >= ER WIE x B*- wAR x D* , (3.22)

relates the force density on free currents to the momentum transfer as the wave

attenuates in the medium, and the force density on bound charges and currents

< f > - - O(V - E)E* + po(V H)H*

- iW(ER - Eo)E X B* + iW(11R - /1o)H X D* (3.23)

gives the remaining momentum transfer to the host material. Therefore, the theory

presented in the previous chapter may be applied to a dispersive medium, and the

total forces < P >, < Pc >, and < Pb > resulting from the total volume integration
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of the corresponding force densities can be found equivalently, after application of

the divergence theorem, by appropriate integration of the Maxwell stress tensor. In

what follows, we apply the force on free currents and the force on bound currents and

charges to determine the electromagnetic momentum transfer to LHM.

3.3.1 Radiation pressure on an LHM interface

The radiation pressure on an LHM interface was previously calculated by applying

momentum conservation at the boundary separating free space and the material [83].

However, the momentum transmitted into the LHM was assumed to be parallel to

the Poynting power. In contrast, we derive the radiation pressure on the interface

by applying the Lorentz force directly. That is, the force density (3.22) is applied to

derive the electromagnetic wave momentum transmitted into a medium occupying the

region z > 0. The TE and TM polarized waves are treated identically by considering

the fields E = BEoezk and H = hHoezkr transmitted into the medium, where E0

and Ho are the magnitudes of the electric field and magnetic field at z = 0+, k =k

is the complex wave vector, and s = x h. The fields satisfy the relations wpuH

k x E and wcE = -k x H, and the field solutions are omitted since the details

of the reflection/transmission (R/T) of an electromagnetic wave incident onto an

LHM interface have been extensively treated by analytical methods [75,88-90]. Since

E = cEJ exp(io,) and y = ljt exp(#5,,) are complex, the phase propagation direction is

determined by the sign of kR, which is defined by k = kR +ik, = w 061 pl exp i(OE +

0$,)/2]. Inserting the fields into (3.22) and using the relationship k/k = (k/k)*

yields

<f > * + p jS2] }. (3.24)

By applying Poynting's theorem (3.16), the force density on free currents (3.24) is

written as

<fc>= - R V -9 = - RV-p,(3.25)
2w 1 2
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where 9 = E x IH* is the complex Poynting power and f = nS/c is the momentum

flux density of the wave. Thus, the direction of the force on free currents depends

upon the sign of the index of refraction n = ckR/w.

Transmission of the momentum flux density P ensures that the tangential force

due to R/T at the boundary is zero. To demonstrate this fact, we treat a TE polarized

wave E = DEoe-kJzeikzRZeikxx transmitted into the material and integrate the force

density on free currents over the region z E [0, oo). The analysis is simplified by

applying the divergence theorem to (3.25). Thus the total pressure on free currents is

P evaluated at z = 0+, where it is assumed that the fields attenuate to zero as z -* oc

due to losses. The tangential component of the resulting force is

±- < Pc >= E2(1 - JRhs 2 ) cos Oi sin 64, (3.26)
2

where IEi12 is the intensity of the incident wave and Oi is the incident angle. In deriv-

ing (3.26), we have applied E0 = EiTh, and the fundamental relationship between the

half-space reflection coefficient Rh, and transmission coefficient T, resulting from the

boundary conditions [39]. The fact that (3.26) gives the total tangential momentum

transfer to the half-space leads to the conclusion that the tangential component of

< Fb > is identically zero. In fact, it is straightforward to verify that this is true

by integrating (3.23) over z E [0, oo) . Thus, the force on a half space void of free

currents is normal to the surface. Just as < PC > gives the momentum transfer to free

carriers inside the medium, < Fb > can be interpreted as the momentum transfer due

to R/T at the boundary since it can be computed by the application of the Maxwell

stress tensor along a surface that just encloses the boundary. This view of momentum

conservation is shown in Fig. 3-3 for the case of c = -co and p = -po previously

considered [83]. The momentum flux is seen to be in the opposite direction of the

Poynting power and the tangential projection of the wave momentum is conserved at

the interface with an LHM resulting in zero tangential force.
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Figure 3-3: Average power and momentum flux of a monochromatic wave refracted at
the boundary of free space (po, co) and a matched LHM (t = -po, e = -o) occupying
the region z > 0. The incident power < Si > and incident momentum flux < i > are
parallel, while the transmitted power < S > and transmitted momentum flux < i >
are antiparallel. @ 2007 The American Physical Society [2].

3.3.2 Radiation pressure on an LHM slab

A more physically realistic situation of an electromagnetic wave incident from free

space onto an absorbing slab is now considered. The expression for the radiation

pressure

< >= _Ei2 [1 + Rslab 2 - |Tslab|2 ] , (3.27)

due to a plane wave of intensity jEi|2 incident normal to the surface of a slab occu-

pying the region 0 < z < d satisfies the conservation of free space electromagnetic

momentum. The reflection coefficient Rsiab and transmission coefficient Tslab have

well-known closed form solutions [39]. Also, the total force can be decomposed into

the force on bound currents and the force on free currents.

Figure 3-4 (a) gives an example of momentum transfer to an absorbing dielectric.

In most situations, the observed force is expected to be the total force < F >, which

is always positive. However, several experiments have been devised to confirm the

dependence of < F, > upon n. Indeed, the photon drag effect [51,60], photon recoil

in a dilute gas of atoms [52], and the deflection of mirrors immersed in dielectric

fluids [49, 50] provide experimental evidence that the wave momentum is directly
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proportional to the index of refraction in dielectrics. This direct dependence upon n

explains the force on free currents in Fig. 3-4 (a), which is greater than the total force

on the slab when the slab thickness is comparable to or greater than the penetration

depth of the wave. By virtue of linear momentum conservation, a negative force on

bound currents is required as shown in Fig. 3-4 (a). This recoil force is unobserved

in most experiments. However, we believe that one of the earliest observations of

this force was made by J.H. Poynting and G. Barlow. In an experiment to measure

the recoil of light against its source, Poynting and Barlow measured the deflection of

disks under steady illumination [48]. One of these experiments involving light incident

upon the absorbing side of a disk produced an initial suction. It was explained that

the effect was due to heating of occluded gas from the silver film on the unilluminated

side of the disk causing a back pressure on the film. From the theory presented here,

the heated gas obtained a momentum greater than the incident radiation pressure

due to the absorption of electromagnetic energy in the disk. However, Poynting and

Barlow observed the recoil force directly, which we explain as the force on bound

currents < F >.

A similar situation may be envisioned for an LHM slab as shown in Fig. 3-4 (b).

As with the dielectric slab in Fig. 3-4 (a), the total pressure is always positive. How-

ever, the momentum transfer to free currents in LHM is negative since < > is

proportional to n. Therefore, as the wave attenuates in an LHM, the free currents

are pulled toward the incident wave, thus proving that radiation pressure in LHM

is negative. As required by momentum conservation, the force on bound currents

is positive. Thus, while the total force remains positive, the force on free currents

is negative, and the force on bound currents is positive for an absorbing LHM slab,

which is in contrast to the situation for an RHM slab.
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Figure 3-4: Radiation pressure due to a unit amplitude electromagnetic wave incident
normally upon an absorbing slab as a function of thickness d. The radiation pressure
is decomposed into the force on free currents and the force on bound currents for (a)
dielectric slab (t = yo) with index of refraction n + ir = 4 + iO.04 and (b) LHM
with p = (-1 + 0.01)po and 6 = (-4 + iO.04)Eo. The thickness is normalized to the
wavelength inside the material. @ 2007 The American Physical Society [2].
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3.4 Discussion

The momentum transfer to isotropic LHM has been rigourously treated by applying

the classical electromagnetic wave theory. Contrary to previous attempts to describe

the momentum of the electromagnetic wave in LHM, material dispersion and losses

have been included, which are necessary for a causal medium with negative index

of refraction. In this regard, the standard Lorentz model was employed for the po-

larization and magnetization, which is consistent with a previous derivation of the

electromagnetic wave energy [84]. Thus, the derived expressions for the momentum

given by (3.11) is analogous to the energy of the wave in (3.8). It is recognize that

the results in (3.8) and (3.11) are open to some interpretation. It is known that while

the mathematical validity of Poynting's theorem is unquestionable, its interpretation

is subject to some criticism [55]. For example, it is certainly possible in many cases to

algebraically rearrange terms in (3.8) so that the energy flow and energy density take

different forms, while the prediction of measurable quantities such as time-average

Poynting power and energy dissipation remain unaltered. Likewise, one may assume

that the momentum conservation theorem given by (3.11) may also be subject to

similar manipulations. However, the measurable results predicted by the application

of the cycle-average theorems (3.16) and (3.19) are unambiguous. Also, the results

presented here depend upon the model used for the material response in the presence

of the electromagnetic fields. For example, the two time derivative Lorentz material

model

a2  a 2 _ ( 2  m am a 2

at2 +7m + WO) M = Wma mpX at Xfat2) (3.28)

was previously employed to describe the magnetic response of an LHM [69]. This

model reduces to the standard Lorentz model for T = T = 0. Another variation in

which = = 0 was recently applied to derive an alternate form of the electro-

magnetic energy density in LHM, and it was acknowledged that this alternate form
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maps very closely to the result derived from the standard Lorentz media model [91].

In this regard, the various models produce equations for the electromagnetic wave

energy that differ in form, but give similar quantitative results in the negative index

frequency ranges where the models have overlapping validity. Thus, it is expected

that the results for momentum, like the energy, should remain both qualitatively and

quantitatively similar in frequency bands where multiple models are valid. Further-

more, it is noted that the results derived here for momentum and energy reduce to

the known expressions for a single resonance Lorentz dielectric [65, 87].

The average momentum density vector of a monochromatic wave may be either

parallel or antiparallel to the average Poynting vector in a material with negative

index of refraction. However, the momentum conservation equation given by (3.19)

depends only upon the average momentum flow in (3.18). Thus, it is expected that

any observation of momentum transfer in RHM or LHM due to a monochromatic

wave is independent of the details of dispersion. Furthermore, these results provide a

rigorous derivation of the force on free currents and further validation of the theoret-

ical separation of force based on the real and imaginary parts of the permittivity and

permeability. The theory was applied to calculate the radiation pressure on an infi-

nite half-space and a lossy slab. For the hypothetical problem of a lossless half-space

(i.e. tj = cI = 0), the material is pulled toward the incident wave when n > 1 [61]

and pushed when n < 1, which includes the negative index regime. Also, a slab in

vacuum is pushed by a monochromatic wave regardless of the values for p and e. This

differs from the results previously reported for a finite pulse, where it was concluded

that the pulse attracts a slab when 0 < ti, e < 1. It is possible, however, to consider

a slab embedded in a left-handed vacuum [92], where the replacements [o -> -po

and e0 -> -60 are made for the free space background. In this case, the slab is pulled

toward the incident wave consistent with the prediction of radiation attraction by

Veselago [82].

Finally, we may conclude that the theory presented here attaches fundamental
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physical meaning to Snell's law; the reflected and transmitted wave vectors ensure

conservation of the momentum component which is parallel to the boundary. Like-

wise, the magnitudes of the reflected and transmitted waves ensure conservation of

wave energy at the interface. This assertion holds for LHM and ensures that no

sheering force exists due to R/T at the interface.



Chapter 4

Optical Manipulation of

Mesoscopic Particles

In this chapter, the previously derived theory is applied to model the forces exerted

on particles by an optical field. The modeling process requires two steps, which may

be carried out independently. First, the total fields must be found, which can be done

by numerical or analytical techniques. The particles considered here are canonical

geometries so that an analytical solution for the total field is known. Second, the

force on the particle is calculated by either applying the Lorentz force directly to the

material or by invoking the momentum conservation theorem derived in the previous

chapters. It is shown that analytical solution for the fields and the Maxwell stress

tensor divergence provide a numerically efficient solution. Both two-dimensional (2-D)

particles and three-dimensional (3-D) particles are modeled using the Mie theory for a

cylinder and sphere, respectively. The cylindrical particle is used as a computationally

efficient way to understand phenomena and will be used in the following chapter to

model the optical binding phenomenon, while the sphere more closely resembles 3-D

particles used in many experiments.
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4.1 Two-dimensional dielectric and magnetic par-

ticles

The total fields due to the scattering of an in-plane electromagnetic wave by an infinite

cylinder is calculated from the Mie solution given in Appendix B. The incident field

is s-polarized (i.e. the electric field is parallel to the cylinder axis). In this section,

three configurations of incident waves are considered. First, the scattering force due

to a single plane wave incidence is described in terms of momentum scattering and,

equivalently, in terms of a gradient force. Second, multiple plane wave interference

patterns are considered. The three and four plane wave incidences are such that the

net incident momentum is zero so that the force on particles in the Rayleigh regime are

described simply in terms of the gradient of the incident intensity pattern. However,

it is shown that this simple description is not valid for larger particles. Third, an

incident laser is modeled as a spectral Gaussian beam. This configuration is applied

in a 2-D study of optical trapping.

4.1.1 Scattering force on a dielectric cylinder

In this section, an infinite cylinder in 2 is incident by a s-polarized (TM) wave as

shown in Fig. 4-1. That is, an electromagnetic wave Einc =eP is incident upon

an infinite cylinder of radius a and characterized by (pp, Ep) set in a background of

(pb, Eb). The incident wave vector is in the plane so that kI = ki(J cos #i + sin 0j),

where ki = w Ippjjepjexp(i(argpp + argcp)/2) and #i is the incident angle in the xy

plane. Various field distributions, such as a Gaussian beam, can be described by a

sum of plane-waves.

The so-called scattering force results from the transfer of linear momentum from

an incident wave to a dielectric particle. Alternatively, the force can be computed

by applying the Lorentz force directly. Since the incident electric field is polarized

parallel to the cylinder axis, the bound electric charges at the surface are zero, and the
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Figure 4-1: An infinite cylinder is used to represent optical manipulation of mesoscopic
particles in 2-D. The cylinder of radius a is composed of isotropic material ([p, 6,) in
a background of ([b, 6b). Various incident fields are given by a sum of plane waves
each with a different wave vector ki. The total fields inside and outside the cylinder
are computed using the formulation of Appendix B.

total force < P > per unit length (N/m) is obtained by integrating the bulk Lorentz

force density < fAiu >= 'R{-iwP x B*} over the cross section of the cylinder.

The numerical integration is performed by summing the contribution from discrete

area elements. The area elements AA = AxAy are taken to be identical so that the

numerical integration is

L

< P >= Jj dA 2{ fbulk} A A 2 J{-iwPi x po 1*}, (4.1)
1=1

where the dielectric polarization P and magnetic field H, are evaluated at each point

indexed by 1 in the cross section of the cylinder.

In contrast, the stress tensor divergence reduces to a line integral for the 2-D

problem. The line integral is evaluated by simple numerical integration, although

Grzegorczyk recently derived an analytical expression for the force on a dielectric

cylinder by integrating the line integral analytically [93]. However, this analytic ex-

pression for the force is valid only for a single nonmagnetic cylinder and was published

y
t

6b, kpb

1 $ P x
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after the work contained in this chapter was completed. The integration path cho-

sen is a circle of radius R > a concentric with the particle and the integration steps

(RA#) are constant. The numerical integration is computed by

1 R r27r m1,, (jm1 (42<F>= - 2 h -T(R, #)Rd# ~ -RA-( (4.2)

where the values of #m result from the discretization of 0 e [0, 27F].

As an example, Fig. 4-2 shows the total field intensity resulting from an electro-

magnetic plane wave incident at #3 = r/4, which demonstrates that the Mie solution

presented in Appendix B is easily rotated to model an arbitrary incident angle. Typ-

ically, the radiation pressure on a particle is described in terms of the scattering of

incident electromagnetic momentum. Of course this viewpoint is formalized by cal-

culating the divergence of the Maxwell stress tensor. However, a more fundamental

viewpoint is obtained by considering the Lorentz force applied directly to the particle.

In this regard, it may be argued that the optical forces exist everywhere inside the

particle once the incident field is present. This force distribution is represented in

Fig. 4-2 by the arrows, which are seen to point toward regions of high electric field

intensity. Thus, regions of compression and tension may be identified inside the par-

ticle. Such distributions of high force densities may be detrimental to certain types

of particles such as living cells. Furthermore, the scattering force on a particle may

be equivalently described by a pulling toward the high intensity focus.

4.1.2 Multiple plane wave interference pattern

Optical manipulation of colloidal particles is typically achieved by creation of an

incident optical intensity gradient. One such configuration consists of three lasers

with 27r/3 incident angle separation [94]. Such a configuration results in a zero net

incident momentum since I = 0, which allows us to isolate the so-called gradient

force. Furthermore, we may also consider any number of symmetric incidences. For
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Figure 4-2: Lorentz force density on bound currents (arrows) overlayed on the electric
field intensity IEZ12 [(V/rn) 2]. The force on the dielectric cylinder results from a 2
polarized plane wave of unit amplitude incident from free-space (E = 60, /b = o)
with wavelength A0 = 1064 nm. The constitutive parameters for the lossless cylinder
are Ep = 26o and p, = yo. The angle of incidence is #i = 7r/4.

105



106 CHAPTER 4. OPTICAL MANIPULATION OF MESOSCOPIC PARTICLES

example, a pair of counter propagating waves produce an optical potential landscape

in one dimension. Here the analysis is focused on interference fringes created by three

and four symmetric incidences.

The interference of three plane waves having wave vectors with incident angles

separated by 27/3 in the xy plane creates a hexagonal intensity pattern. This inter-

ference is represented by the background of Fig. 4-3 where white denotes regions of

high intensity. The effective force on a polystyrene particle (cp = 2.56co, pp = po) in

water (Eb = 1.6960, lb = o) is calculated from the incident and scattered electromag-

netic wave momenta via the divergence of the Maxwell-Minkowski stress tensor. The

overlayed arrows represent the relative force pattern on a dielectric cylinder, which

spans the plane. That is, each arrow represents the direction and relative magnitude

of force on a dielectric cylinder placed at the tail of the arrow. The force on the small

particle with radius a = 0.15AO is seen to closely follow the high intensity gradient

of the incident field with stable optical traps occurring in the high intensity regions.

However, larger particles with radius a = 0.30AO are repelled from the high intensity

regions and find stable trapping positions in the dark regions of the incident optical

interference pattern. This is in contrast to the gradient force obtained in the Rayleigh

approximation and demonstrates that such an approximation yields results which are

both quantitatively and qualitatively incorrect for particles that are on the order of

a wavelength. The reason, of course, is that the larger particles cause greater distur-

bance of the incident field pattern and interact with the neighboring high intensity

traps. Thus, a larger particle my find an equilibrium such that it's center is in a

dark region while the particle is held in place by the interaction with multiple bright

regions.

Next, the interference of four plane waves having wave vectors with incident angles

separated by 7r/2 is considered. The intensity pattern in this case forms a square

pattern as shown by the background of Fig. 4-4. Again, the effective momentum

transfer to a polystyrene cylinder in water is calculated and represented by the arrows
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Figure 4-3: Force per unit length (represented by the arrows) on a single infinite
cylinder due to the interference of three plane waves (represented by the background
pattern) of equal amplitude Ej = 1 [V/m] and wavelength A0 = 532 nm. The incident
angles of the plane waves are {7r/2, 77r/6, 117r/6}. The background medium is water
Eb = 1.690o, and the cylinder is polystyrene c, = 2.56o0 with radius (a) a = 0.15AO
and (b) a = 0.30Ao.
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for a small particle a = 0.15AO in Fig. 4-4 (a) and a larger particle a = 0.30A0 in Fig. 4-

4 (b). As before, the small particle is attracted to the high intensity regions while

the large particle is repelled from the regions of incident high intensity.

One obvious question regarding the analysis of multiple plane wave interference

patterns pertains to the transition from small to large particles. That is, we may

ponder what happens to the distribution of arrows in the previous two figures when a

particle is between a = 0.15AO and a = 0.30AO. Although we have not completed the

analysis of this regime, we may consider an example case of a single intermediate value

of radius. For example, the force on a particle with radius a = 0.225AO is plotted over

the background of the incident three plane wave interference pattern in Fig. 4-5. An

interesting feature of this plot is that the force field appears to be non-conservative.

That is a particle moving from one side of a vortex in a dark region to the other

requires a different amount of work depending upon the path taken. Therefore, it

may not be possible to describe such an interference pattern as an optical potential

landscape. A prediction of stable optical trapping in these vortices has been reported

by Grzegorczyk [95]. In contrast, no such vortices are seen for the four plane wave

interference pattern of Fig. 4-5 (b). However, further investigation into the nature of

the forces in such incident interference patterns is still underway using the analytical

expressions for the force [93].

The analysis of multiple plane wave interference patterns is concluded with a

study of the numerical efficiency of the force calculation methods. Figure 4-6 shows

the force versus the number of integration points for application of (4.2) using an

integration radius of R = 1.01a. The results show that the integration converges

rapidly. Because the force is calculated by a divergence integral, the result does not

depend on the value of R > a, provided enough integration points are chosen and the

background medium is lossless. To confirm this, the force was calculated for various

choices of integration radius yielding zero for all R < a and F = p2.1190 -10-'8[N/rn]

for all R > a. Likewise, the y-directed force is plotted in Fig. (4-7) versus the number
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Figure 4-4: Force per unit length (represented by the arrows) on a single infinite
cylinder due to the interference of four plane waves (represented by the background
pattern) of equal amplitude Ej = 1 [V/m] and wavelength A0 = 532 nm. The incident
angles of the plane waves are {7r/4, 37/4, 57r/4, 77r/4}. The background medium is
water Eb = 1.69co, and the cylinder is polystyrene Ep = 2.566o with radius (a) a =

0.15Ao and (b) a = 0.30Ao
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Figure 4-5: Force per unit length (represented by the arrows) on a single infinite cylin-

der due to the interference of plane waves (represented by the background pattern)
of equal amplitude Ej = 1 [V/m] and wavelength A0 = 532 nm. The background
medium is water Eb = 1.696o, and the cylinder is polystyrene E, = 2.566o. (a) The

3 plane waves are incident at q5 = {7r/2, 77r/6, 117r/6} onto a cylinder of radius
a = 0.225AO. (b) The 4 plane waves are incident at qi = {7r/4, 37r/4, 57r/4, 77r/4} onto

a cylinder of radius a = 0.25AO.
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Figure 4-6: Number of integration points used for convergence of the line integral
of the Maxwell stress tensor. The integration path, shown by the inset diagram,
is a circle of radius of R = 1.01a concentric with the cylinder of radius a = 0.3AO
at center coordinates (xe, Yc) = (0, 100) [nm]. The three identical plane waves are
incident upon a polystyrene cylinder (cp = 2.566o) in water (Eb = 1.69Eo). @ 2006
Koninklijke Brill NV [3]

of integration points used to numerically integrate the Lorentz force in (4.1). Since

the background is water (Eb = 1.69Eo), the effective transfer of electromagnetic wave

momentum is calculated via the Lorentz force by making the replacement EO -+ Eb

such that the effective polarization is P = (e, - b). The integral converges much

slower than the line integral applied to the stress tensor, however the resulting force

is F = p2.1191- 10- 18[N/m], thus matching the result from the Maxwell stress tensor.

4.1.3 Dielectric particle in a Gaussian beam

A more commonly used optical intensity gradient is a highly focused laser beam, which

is modeled by the spectral Gaussian beam. Focused lasers have been used to trap,

levitate, and accelerate particles since the pioneering work of Ashkin [12-14, ?-14].
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Figure 4-7: Convergence of Lorentz force surface integration for calculation of force

on a dielectric cylinder (Ep = 2.566o) in water (Eb = 1.69Eo). The configuration is the

three plane wave interference pattern and particle with radius a = 0.3AO placed at

center coordinates (XC, Yc) = (0, 100) [nm]. The dashed line is the force computed

using the stress tensor with 100 numerical integration points on a concentric circle of

radius R = 1.01a. @ 2006 Koninklijke Brill NV [3]
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In two dimensions, the incident field of a Gaussian beam polarized in is [96]

00
-W f~ ~ kx~k,Eine = E dkxe4 eixxNzz, (4.3)

-00

where k b = - k b, kg = W/bb, and w is the beam waist. The electric field in (4.3)

satisfies the Helmholtz wave equation [39] and is implemented as a discrete sum of

plane waves. In reality, the spectrum is limited by the optics of the system, and the

sum is implemented here within the domain |kx| < NA , where NA is the numerical

aperture of the objective lens [97]. The field in (4.3) is implemented numerically as a

discrete sum, with 40 plane waves typically used for the analysis in this thesis.

Figure 4-8 shows the force on a particle in water due to a Gaussian beam with

incident intensity represented by the background shading. The force on the particle

is calculated at each point by first finding the total field (incident and scattered)

and applying the Maxwell-Minkowski stress tensor. In Fig. 4-8 (a), the dielectric

particle is optically dense compared to the background medium. It is pulled into

the axis of the beam and pushed by radiation pressure. In contrast, Fig. 4-8 (b)

shows that an air bubble, which is optically less dense than the water, is pushed out

of the beam axis and pushed in the propagation direction. This result qualitatively

models the original accelerating and trapping experiments of Ashkin [12]. This is an

important result because the effective force on each particle has been calculated from

the scattered electromagnetic wave momentum. In reality, the force on the air bubble

is zero since the permittivity is closely matched to free space and the polarization is

negligible (i.e. P ~~ 0). The bubble is actually pushed out of the center of the beam

due to the forces on the liquid surrounding the bubble. Here, the analysis is simplified

by applying the results of the previous chapters to model the observed behavior of

the bubble in a laser beam. This approach to calculation has recently been applied to

spherical particles to achieve quantitative agreement with experimental measurements

of trap stiffness [97-99].
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Figure 4-8: Force per unit length (represented by the arrows) on a single infinite
cylinder due to an incident Gaussian beam with NA = 1, E0 = 1, w = 0.5AO, and

wavelength A0 = 1064 nm. The background medium is water Eb = 1.69Eo and the

radius of the particle is a = 0.5AO. The particle is (a) polystyrene (cp = 2.566o) and

(b) air bubble (c, = co).
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Figure 4-9: Classical optical tweezers modeled by a 2-D dielectric particle in water.
The arrows represent the force on a silica particle with index of refraction nr = 1.46
and radius a = 50 nm in water (nb = 1.33). The incident laser is modeled as a
Gaussian beam with waist w = 0.2AO, A0 = 514.5 nm, and spectrum defined by
NA = 1.25.

The classical optical tweezers first realized in 1986 by Ashkin and colleagues [22]

can also be reproduced with 2-D particles. Figure 4-9 shows the reversal of radiation

pressure on a silica cylinder due to a single tightly focused beam. The parameters

match closely the experimental conditions used in the original experiments to trap

silica beads. Thus, the infinite cylinder can be trapped in the plane by a single focused

Gaussian beam.

4.1.4 Scattering force on a magnetic cylinder

Magnetic particles have not been trapped in the laboratory since naturally occurring

materials do not exhibit significant magnetic response at optical wavelengths. How-

ever, there are materials that exhibit magnetic response up to microwave frequencies,
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and researchers have recently trapped large particles (diameters up to 600 pm) by

focusing microwaves with a flat photonic crystal lens [100]. Also, metamaterials (see

for example [101, 102] and references herein) have recently been developed with mag-

netic response into the Terahertz [58] and optical [59] frequencies and offer hope for

future experiments of optical momentum transfer in magnetic media.

The Lorentz force was applied in Chapter 2 to bound magnetic charges and cur-

rents to calculate the radiation pressure on a magnetic slab. However, the method

has not been used to determine the force on magnetic particles. In this section, we

calculate the radiation pressure on a 2-D magnetic particle represented by an infinite

cylinder incident by a single plane wave. The incident plane wave Ei = Eieikox

propagates in free space (6o, [o) with a wavelength Ao = 2wr/ko = 640 [nm]. The

2-D magnetic particles (6o, 3po) are infinite in the i-direction. The Maxwell stress

tensor and the distributed Lorentz force methods are applied to calculate the total

force on the particles. The direct application of the Lorentz force requires the model

of bound magnetic currents iwpouM in (2.9a) and bound magnetic surface charges Ph

in (2.9b). Agreement between the two methods is shown in Fig. 4-10 as a function of

particle radius. The oscillations in force are a result of internal resonances, which is

also evident for the case of dielectric and magnetic slabs incident by plane waves.

There are noticeable differences between the results of the two methods for larger

values of a as shown in Fig. 4-10. This is due to increased spatial variations in force

distribution for particles on the order of a wavelength or larger. The slow convergence

of the total Lorentz force has been observed for small dielectric particles as shown in

Fig. 4-7 and becomes a major obstacle for obtaining many digits of accuracy from

the Lorentz force for large particles. To illustrate this point, we compare the force

calculated for the magnetic particle with radius a = 1000 nm with various number of

integration points N in Table 4.1. For each calculation, 200 points are used for the

calculation of force on bound surface charges, which was determined to be enough

for the number of significant digits reported. The force obtained from the stress
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Figure 4-10: Radiation pressure on a magnetic cylinder (p, = 3po, cp = eo) versus
the radius a. The i-polarized plane wave propagates in the i-direction in free space
(pb = [o, Eb = co), and the wavelength is 640 [nm]. The force is calculated by the
divergence of the stress tensor (line) and the Lorentz force on bound currents and
charges (markers). @ 2006 Koninklijke Brill NV [3]
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Table 4.1: Radiation Pressure on a Magnetic Particle (a = 1000 [nm])
Number of Integration Points Total Lorentz Force < F, >

25, 952 4.8177. 10-18 [N/m]
103, 336 4.9175. 10-18 [N/m]
282, 868 4.9498 .10-18 [N/m]

tensor approach is 5.3524-10-18 [N/m], which converges within 100 points. It is clear

that for this particular case, the total Lorentz force converges so slowly that it could

hinder studies involving multiple particles or variations in multiple parameters. For

many applications, however, the Lorentz force is useful for getting a picture of force

distribution inside the particle, while the divergence of the stress tensor is much more

efficient for obtaining the total force on the particle.

4.2 Absorbing Mie particles

The Lorentz force density and momentum conservation are equivalently applied to

explain relevant experimental observations and to calculate the radiation pressure on

absorbing Mie particles. In contrast to the scattering plus absorption forces derived

for small particles, we predict that absorption can reduce the total optical momentum

transfer to certain particles due to the balance between the force on free currents

and the force on bound currents and charges. Thus, the theory of optical momentum

transfer to absorbing macroscopic media is applied to predict and explain new physics

in this study.

4.2.1 Lossy dielectric cylinder

The total fields due to plane-wave incidence on a 2-D particle are found from Mie

theory applied to an absorbing infinite cylinder. We consider two separate problems of

E = seikox incident from free space onto a lossless cylinder and onto a lossy cylinder,

each of diameter 0.5 pm. The choice of an infinite dielectric cylinder incident by a
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TE wave allows for a complete description of the Lorentz force by the distribution

inside the particle since the force on bound charges at the boundary is zero. The

total electric field intensity is shown in Fig. 4-11(a) for the lossless dielectric particle.

The total force is the force on bound currents < F >= F = -?4.02 - 10-18 N/m,

which is computed by integrating the force density (2.8) over the area of the particle

or, equivalently, by integrating the stress tensor of (2.14) along the circular path

shown in Fig. 2-1(a). The integration is performed by simple numerical integration.

Although equivalent in results, the former approach provides the viewpoint that the

particle is pulled toward the resulting high intensity focus, while the latter gives the

usual intuition of a particle being pushed by the transfer of wave momentum. The

total electric field intensity and force density on bound currents for a lossy particle

is shown in Fig. 4-11(b). The resulting force density < Pb >= -i2.05- 10-18 N/m

indicates that the bound currents are pulled toward the incident wave, which is offset

by a positive momentum transfer to free currents represented by < P, >= J5.80 -

10-18 N/m, found equivalently by applying an integration path to the stress tensor

shown in Fig.2-1(b). The total pressure on the particle is < P >= 3.75- 10-18 N/M,

which is less than the total force on the transparent particle.

4.2.2 Lossy dielectric sphere

A physically realistic situation of an electromagnetic wave impinging on a spherical

particle is studied using Mie theory. For ER/EO = 2, Fig. 4-12 (a) shows that a maxi-

mum optical momentum transfer occurs for a value of E1 near maximum absorption

(i.e. the penetration depth is on the order of the particle diameter). In contrast, a

particle with large value for ER can exhibit reduced momentum transfer due to signif-

icant wave attenuation in the sphere as shown in Fig. 4-12 (b). A further decrease in

< F > for the high contrast sphere is observed as c approaches the limit of a perfect

reflector. The later point is made by comparing the adiabatic momentum transfers

to the transparent dielectric sphere and to the reflecting sphere of equal size. How-
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Figure 4-11: Lorentz force density on bound currents (arrows) overlayed on electric

field intensity IEZ12 [(V/M) 2 ] resulting from a polarized plane wave of unit amplitude

incident from free-space with wavelength A0 = 1064 nm onto a dielectric cylinder. (a)

The lossless cylinder is defined by c = 16Eo. (nax(I < fb > 1) = 1.25- 10-6 [N/rm 3])
(b) The lossy cylinder, described by c = (16 + i - 10)co, contains an additional force

density on free currents. (max(I < fb > ) = 3.00 -10-9 N/M 3) @2006 The American

Physical Society [4].
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Figure 4-12: Forces on a 2 pm diameter sphere due to a plane wave of unit amplitude.
The wave is incident from free space with wavelength A0 - 1064 nrm onto a nonmag-
netic sphere with (a) 6 = 2Eo + i'E and (b) 6 = 166o + ie1 . @2006 The American
Physical Society [4].

ever, the combined effect of < Fb > and < F, > is required to explain the radiation

pressure increase of Fig. 4-12 (a) or decrease of Fig. 4-12 (b) due to absorption. This

separation of < F > into < F > and < F, > is further investigated by plotting

the force versus sphere diameter for constant material parameters in Fig 4-13. For

small spheres, the power absorption is small since the diameter is much less than the

penetration depth. When the diameter is of the order of the penetration depth, the

force on free currents becomes significant due to the direct dependence upon n given

by (2.12).

A perspective of momentum transfer in lossy media has been applied to study
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Figure 4-13: Force versus diameter for a dielectric sphere (6/6o = 16 + i) incident
by a unit amplitude plane wave. The free space wavelength of the incident wave is
A0 = 1064 nm. @2006 The American Physical Society [4].

momentum transfer to particles. In the case of an absorbing Mie particle, the contri-

butions from Pb and P, sum to give the total force on the particle. The particles we

consider consist of ER = 1660, a value typical for semiconductors, and ER = 2, which is

representative of many insulators. A novelty of our results is the reduction of optical

momentum transfer to particles due to absorption, which requires high dielectric con-

trast with the background medium and an attenuation length on the order of particle

diameter. These results differ from the expected result of scattering plus absorption

forces resulting from Rayleigh particles [29]. Because a detailed understanding of

both Pb and P. are required to describe the physics involved, the theory presented

here is fundamental to the understanding of optical momentum transfer to absorbing

particles.

4.3 Discussion

The optical forces exerted upon 2-D particles have been calculated from both the

divergence of the Maxwell stress tensor and the direct application of the Lorentz

force to bound currents and charges. The Lorentz force is applied directly to bound
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currents and charges used to model dielectric and magnetic materials. The advantage

of the stress tensor approach for force calculation on 2-D particles is that it reduces

a combination of surface integral over the bulk force density <Ibulk > and a line

integral over the surface force density < isurf > to a single line integral over the

Maxwell stress tensor. This reduction in computation has been demonstrated by

example. The Lorentz force, however, can give the force distribution throughout

the particle. Such distributions can be important when optical forces are applied

to sensitive objects such as in biological applications. For large particles, the total

force may be difficult to obtain accurately from the Lorentz force density, which is

illustrated by calculating the radiation pressure on a magnetic particle. It was shown

that in some cases the radiation pressure on a cylinder may be described in terms

of the gradient of the total field. Likewise, the force on a particle in an optical

interference pattern may not always be directed toward the high intensity regions.

Thus, there is certainly a need for description of optical manipulation beyond gradient

and scattering forces. Furthermore, there may be evidence that particles in an optical

interference pattern may be subject to non-conservative forces. That is, in some cases,

the work done on a particle moving from one point to another will depend upon path.

This line of research is still underway using the analytical expressions developed by

Grzegorczyk [93].

Dielectric cylinders in a Gaussian beam were used to model the early trapping

experiments by Ashkin [12, 22]. The results presented here are important for two

reasons. First, the qualitative agreement with experimental observations of trapped

particles submerged in a dielectric liquid is a direct consequence of the scattering

of electromagnetic wave momentum derived in the previous chapters. In particular,

direct application of the Lorentz force yields a zero force density everywhere inside

an air bubble in water. However, calculating the scattered wave momentum, or

equivalently calculating the Lorentz force based on the polarization with respect to

the background P = (Cp - cb)E, shows that the air bubble is actually pushed out of
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the high intensity beam axis as observed in experiment. Second, the validation of

a 2-D model with trapping experiments allows us to model binding more efficiently

with infinite cylinders subject to an in-plane incidence. Optical binding in 2-D will

be discussed in Chapter 5.

In the case of an absorbing particle, the contributions from < P, > and < P >,

which is shown have and equivalent representation in momentum conservation, sum

to give the total force on the particle. The fact that the total radiation pressure on an

absorbing particle may be less than that of a similar lossless particle, differs from the

conventional wisdom that absorption forces added to scattering forces must increase

the overall radiation pressure on a particle; an assumption taken from experiments and

theory involving lossy particles in the Rayleigh regime [29]. This result was confirmed

for the physically realistic geometry of an absorbing Mie sphere. The theory presented

here is thus fundamental to the understanding of optical momentum transfer in lossy

media and necessary for modeling in applications of trapping, binding, and guiding

of Mie particles.



Chapter 5

Optical Binding

Optical manipulation of dielectric particles has been accomplished using focused

laser beams since the pioneering work by Ashkin [12]. The effects of levitation

and trapping have been described by the scattering force and the gradient force,

respectively. Optical binding was reported as a third optical force [32] and has been

used to create arrays of particles termed optical matter [33]. The formation of two-

dimensional optical arrays [94, ?, ?] and one-dimensional optical arrays [103, ?, ?, ?]

has been verified by various groups. The description of optical manipulation based on

scattering, gradient, and binding forces is an over simplification in many cases, but it

is useful for developing some intuition. Rigorous modeling of optical array formation

requires the computation of the total electric and magnetic fields within the parti-

cles or within the near field of the particles. The exact solution of electromagnetic

scattering from an aggregate of spheres is known [104] and was recently applied to

study photonic clusters formed by dielectric spheres [105]. However, the complexity

of computing the exact field solution of a collection of Mie spheres hinders the ability

to develop a fundamental understanding of the underlying optical binding forces and

limits the number of particles that can be studied in dynamic systems. Typically,

a system of particles is studied by applying an approximate solution, such as the
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Rayleigh approximation [34, ?]. In this chapter, an alternate approach to modeling

applications of optical binding is taken; exact field solutions are applied to simplified

geometric representations of particles. That is, multiple slabs and cylinders are used

to study optical binding in one dimension and two dimensions, respectively. Since all

fields are time-harmonic in the analysis of optical binding, complex fields are used

and all forces are cycle-averaged with the brackets < - > dropped to simplify the

notation in this chapter.

5.1 Optical binding in one dimension

The optical binding force is due to interference of multiple waves, which result because

of the boundary conditions imposed upon the electromagnetic fields. The optical

binding between two slabs was already mentioned in Chapter 2. The Lorentz force

density in a half-wave slab shown in Fig. 2-3 (b) can be thought of the binding

interaction between two quarter-wave slabs. In this viewpoint, the quarter-wave slab

on the left-hand side and the quarter-wave slab on the right-hand side are being pulled

apart by equal but opposite forces. It is within this context that the optical binding

of equivalent dielectric slabs is studied here.

The geometry of the problem to be studied is shown in Fig. 5-1. The two dielectric

slabs of permittivity c and thickness d are separated by a distance 6. A plane wave

of unit amplitude is incident from free space in the direction. The field solution

is known for an arbitrary number of isotropic, homogeneous layers, each of arbitrary

thickness and constitutive parameters [39]. The fields in each region can be thought of

as an infinite number of waves being multiply scattered from the boundaries. However,

the solution can be written simply as a superposition of a forward +2 propagating

wave and backward -2 propagating wave within each region. The amplitudes of these

waves are determined by writing the boundary conditions as a vector equation and

inverting the matrix to determine the unknown coefficients. Therefore, the unique
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60 1,1 E, /o 60, Ao
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eikoz A 6 eikoz Te ikoz

Figure 5-1: The fields resulting from two identical slabs in free space under normal
incidence are found by matching the boundary conditions with counter propagating
plane wave solutions in each region. The unit amplitude incident electric field pro-
duces a reflected wave Re-ikoz, a transmitted wave Teikoz, and counter propagating
waves Abeikoz and Bse-ikoz between the slabs. The complex coefficients R, T, A6 ,
and B6 are determined from the boundary conditions. The incident electric field is
R = -eikoz, where ko = w V1 oEo.

solution for the electric and magnetic fields in each region is known. The waves

considered here are limited to normal incidence, so the forces exerted upon the slabs

are in the ± directions.

It is interesting to study the distribution of force density in the two slabs as the

separation 6 is varied. Here, we return to the previous case of two dielectric slabs

with d = A/4 and 6 = 4eo, so that Ao = 2A. When 6 = 0, the force density is given in

Fig. 2-3 (b). For other values of separation, the force density is plotted in Fig. 5-2.

The radiation pressure on each slab is the integration of the Lorentz force density.

For example, the pressure on the left-hand slab is

d

FL = R dz [-i(E - 60)Ex po*] . (5.1)

0
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The binding force is defined here by the 2 directed force Find = FR - FL, which is

simply the force exerted upon the slab on the right minus the force exerted upon the

slab on the left. In Fig 5-2 (a), the total force on the two slabs are equal in magnitude

and direction, thus the binding force is zero. However, the force distributions in each

slab, which results due to a separation of 0.096AO, are quite different as evident in

the figure. In this case, the two slabs will be pushed in the +2 direction by the same

amount. It will be shown later that this situation corresponds to a stable equilibrium

in the binding force. When the two slabs are separated by AO/4, the binding force

is negative as determined from Fig. 5-2 (b), which indicates that the slab on the

left-hand side will be pushed toward the slab on the right-hand side while both are

subject to a net +2 directed force. The force distributions shown in Fig. 5-2 (c)

and Fig. 5-2 (d) are equivalent to the force distributions in Fig. 2-3 (b) and Fig 5-

2 (a), respectively, except for the added separation of Ao/2 in each case. From this

analysis, we would expect that the binding between two slabs is a periodic function

with respect to separation distance with a period of AO/2.

Next, the binding force is studied to demonstrate phenomena such as optical

trapping based on binding forces. Using the more efficient momentum conservation

approach, the cycle-average forces exerted upon the left slab and upon the right slab

are

FL -(1 + R12 
- 2 B6 12 ) (5.2a)

2
FR = 6 (| A6|2 + |B)2 _ IT |2). (5.2b)

2

As before, the finding force

Fbnd -- co(| A6 2 + B1|2) - (1 +|R 2 +|T| 2 ) (5.3)
2

is the difference between the two forces such that a positive binding force indicates

that the two slabs are being pushed apart. Energy conservation dictates that R12 +
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JTJ2 = 1, and the binding force reduces to

Fbn d- Eo(|A 6 1|2 + |B6 |2  1). (5.4)

Because the coefficients A6 and B6 are periodic with respect to the separation distance

6, the binding force given by (5.4) must also be periodic. This periodicity is seen

to be AO/2 for all three cases in Fig. 5-3, which is in agreement with the previous

conclusion drawn from Fig. 5-2. From Fig. 5-3 we can see a couple of trends with

respect to the parameters. First, the binding force exerted upon quarter wave slabs

at 6 = mwr/2 (m = 0, 1, ... ) becomes very large as the permittivity increases. Thus,

two quarter wave slabs brought in contact will be pushed apart, and slabs with

larger permittivity will experience a larger separation force. However, the thin slabs

(d = 0.01Ao) experience a negative binding force for 6 = m7r/2. This means that two

thin slabs are pulled together when touching. Second, the force on the right-hand slab

approaches a constant and the force on the left-hand slab appears to be harmonic as

the slab thickness approaches zero. This limiting case is analogous to the Rayleigh

regime for spherical particles.

We first predicted optical trapping based on optical binding forces in two dimen-

sions by analyzing a system of cylinders [6]. The analysis of cylinders is treated in

the following section. Here, it is argued that a much simpler manifestation of this

phenomenon occurs in one dimension. If we take the right-hand slab to be fixed and

allow the left slab-hand to span z, we can see for all three cases in Fig. 5-3 that

stable optical trapping occurs for the left-hand slab at values of 6 were FL = 0 and

aFL/86 < 0. Specifically, the thin slab (d = 0.01A) shown in Fig. 5-3 (c) is trapped at

6 = 0.154 + mAo/2, where again 7n = 0, 1, 2, . . .. Thus, it is possible to trap a slab in

1-D using only binding forces. However, trapping in multiple dimensions requires the

binding force from multiple fixed particles as will be shown in the following section.

Finally, we note that two identical small slabs brought in contact are pushed
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Figure 5-3: Binding force versus separation distance due to two identical dielectric
slabs incident by a plane wave. The slabs are (a) quarter wave slabs d = A/4 with
6 = 460, (b) quarter wave slabs d = A/4 with e = 1660, and (c) very thin slabs

d = 0.01A with c = 4eo, where A is the wavelength inside the slabs. The separation
distance 6 is normalized by the free space wavelength A0 = 2A. Find = FR - FL
is the binding force exerted upon the slabs, where FR and FL are the forces on the
individual slabs on the right-hand side and left-hand side, respectively. The incident
wave is Ej = -eikoz.
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together, while larger slabs such as for d = A/4 are pulled apart when touching. This

observation is evident from Fig. 5-3 when 3 = 0. Here, this issue is studied in more

detail. A straightforward analysis of the force density f, inside a slab reveals that

two slabs, each of thickness A/8 will experience zero binding force when 6 = 0. This

is evident in Fig. 5-4 which shows the binding force versus slab thickness for two

slabs which are touching. Not only is it confirmed that slabs smaller than A/8 will be

bound to each other when brought together, but it is seen that there is a periodicity

in this plot as well. Two identical slabs of thickness d = A/2 experience zero binding

force. Furthermore, slabs with thickness d = A/2 t A/8 will experience a negative (or

zero) binding force when brought together. That is, we could expect two identical

slabs in this size range can bind together with zero spacing. However, slabs in the

range d = A/4 ± A/8 will separate based on the positive sign of the binding force.

This result may have implications in forming optical matter when it is desired to have

little or no space between adjacent particles. However, a detailed study of multiple

2-D and 3-D particles have not been completed at this time.

5.2 Optical binding in two dimensions

The formation of two dimensional optical arrays of three dimensional particles has

been realized in experiments where the motion is typically constrained in one di-

mension [94]. In this section, the optical binding in two dimensions is modeled by

a collection of infinite cylinders. An exact theoretical model based on Mie theory

is applied to compute the total fields due to an arbitrary number of 2-D dielectric

cylinders subject to in plane incidence. The interactions between the particles are

computed using the Foldy-Lax multiple scattering equations [106, ?]. The force on

each particle is then computed by numerically integrating the line integral of the

Maxwell stress tensor.
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5.2.1 Binding of 2-D particles in an in-plane field

The problem considered here consists of L infinitely long cylinders aligned parallel to

the 2 axis incident by one or multiple 2 polarized plane waves. The field solution is

given by the cylindrical wave expansions in Appendix B and the multiple scattering

equations in Appendix E. First, we consider the two cylinders shown in Fig. 5-5. The

two cylinders are separated by a distance x measured center-to-center and incident

by a single plane wave propagating in the y direction. The i directed force exerted on

the right-hand particle is shown in Fig. 5-6. Note that the - directed force on the left-

hand particle is equal in magnitude and opposite in sign due to the symmetry of the

problem. There is also a force in the +y direction on both particles (not shown, but

to be discussed later). It can be seen from Fig. 5-6 that the binding force between the

two particles is oscillatory. This force also decreases in magnitude with separation

distance as expected. Thus, as with the slab, the array of two cylinders exhibits

multi-stability in the equilibrium separation distance. These distances correspond to

points in Fig. 5-6 with zero force and negative slope. Fig. 5-7 shows a similar plot

for a small particle (a = 0.015A0). The interesting feature of this plot is that the

particles experience a negative binding force when the two particles are close to each

other, which contrasts the results for the larger particles in Fig. 5-6.

Eb

Figure 5-5: Two infinite cylinders of radius a are subject to an electromagnetic wave

propagating in the y direction. The electric field is polarized parallel to the cylinder

axis.

We are now in a position to simulate a system of multiple particles. Here, we

reproduce part of the experimental conclusions of Ref. [94] within the limitation
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Figure 5-6: Force in the s direction as a function of the center-to-center distance
between two particles. The plane wave E = 2eikY is incident from water Eb = 1.696o

with free space wavelength A0 = 546 nm. The radii of the polystyrene cylinders
cp = 2.56co are indicated by the label. The computation was performed with N = 10
in the summation of cylindrical modes. @ 2006 Optical Society of America, Inc. [5]
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Figure 5-7: Force in the : direction as a function of the center-to-center distance

between two particles. The plane wave E = 2eiky is incident from water Eb -1.6960

with free space wavelength A0 = 546 nm. The radius of the polystyrene cylinder

EP = 2.56co is a = 0.015AO. The computation was performed with N = 10 in the
summation of cylindrical modes.
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of in-plane incident plane waves. Twenty polystyrene particles (eP = 2.56co) are

placed randomly in water E = 1.6960 and subject to three plane waves of wavelength

A0 = 546 nm incident at angles [-F/2, 77r/6, 11r/6]. The particles of radius a = 0.15AO

are placed in the positions given in Table 5.1 and shown in Fig. 5-8 along with the

incident electric field interference pattern. The final positions given in Table 5.1

are deduced by an iterative process. At each iteration, the force on the particle is

computed from the total fields and the particle is moved just a fraction of a particle

radius. This process is repeated until the position of all the particles approaches a

constant value. It should be emphasized that the motion of the particles resulting

from this iterative process is not derived from the equations of motion. Instead,

this iterative process is merely a tool to estimate the final trapping positions for the

particles in a liquid such as water, where strong damping is present. It has since

been confirmed that the final positions are the same when the equations of motions

are implemented to model the dynamics. While the particles tend to trap near the

high intensity regions as with a single particle, it is evident that the binding forces

resulting from all interactions effects the final trapping positions. Note that the

total fields resulting from the final field locations are also shown in Fig. 5-8 (lower

left). From this plot, it can be seen that indeed the particles align with the high

intensity regions of the total fields resulting from all interactions. Also shown in are

the final position for another set of random initial positions). These positions being

different from the final positions given in the previous example demonstrates that the

final positions depend upon both the incident waves and the initial positions of the

particles.

5.2.2 Optical trapping based on optical binding forces

Previously, it was shown that a slab can be trapped by using the binding force result-

ing from a second stationary slab. In this section, we show that the binding force can

be used to create a stable trap in two dimensions. The configuration of the problem
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Table 5.1: Initial positions (Xi, yi) and final positions (xf, yf) of 20 particles in a three
plane wave interference pattern

xi (nm) yj (nm) xf (nm) yf (nm)
-148.91 -59.30 -200.08 -120.94
-377.76 -388.95 -410.69 -533.34
296.79 -380.12 179.12 -356.27
30.78 -355.74 -7.45 -486.75

-106.53 396.91 18.50 454.02
286.33 -85.47 398.75 16.19
278.84 301.18 219.68 374.49

-272.76 179.49 -427.16 245.14
-276.50 362.89 -219.12 346.56
279.25 91.55 204.00 111.49

-287.76 -231.91 -388.75 -230.97
42.83 17.06 -5.79 -2.15
70.09 231.64 -7.01 235.09

-310.92 3.13 -409.60 19.53
-151.11 -349.56 -198.72 -402.18

10.59 -162.72 2.95 -247.57
-101.12 118.56 -206.37 118.08
388.51 -224.98 416.51 -199.41
168.19 -235.86 193.02 -125.97
141.00 397.59 249.79 633.45
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Figure 5-8: Positions of 20 dielectric cylinders overlayed on the absolute value of
the (0 to 3 V/m). Initial random initial position in a three plane wave interference
pattern (top left). Organized final positions due to the incident interference pattern
shown in the background (top right). The positions are the same but with the total
field shown (bottom left). Organized final positions corresponding to another set of
initial positions different from the previous case (bottom right). The parameters are
A0 = 546 nm, e, = 2.56co, 6b = 1.69eo, and a = 0.15Ao. @ 2006 Optical Society of
America, Inc. [5]
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is similar to the one studied previously, where it was shown in Fig. 5-6 that the x

directed binding force (denoted Fx) can take on both negative and positive values. A

similar geometry is considered in Fig. 5-9 (a). In this configuration the force on the

right-hand particle also has a positive directed force (denoted F.). In order to have

stable two dimensional trapping of the particle on the right hand side, it is necessary

to reverse the direction of F.. In this regard, we consider one or multiple polystyrene

particles of radius 10 nm which may be fixed in position along the y axis as shown

in Fig. 5-9 (b). It is evident that with as few as three fixed particles, a negative Fy

is achieved for the identical particle which spans the x axis. For proof of concept, we

choose nine particles aligned along the y axis as shown in Fig. 5-9 (c). Note that we

can also achieve Fy < 0 for nine particles aligned along the negative x axis as shown

in Fig. 5-9 (d), although we will from now on consider only the vertically aligned

cylinders of Fig. 5-9 (c).

The forces in Fig. 5-9 (c) are symmetric in x and that the first minimum has a

magnitude comparable to the first maximum (F -1.1 - 10-22 N/rn at x r 155m

and FY e +1.5 - 10-22 N/rn at x 430nm). In order to achieve the two dimensional

trap, we consider the symmetric set of fixed particles shown in Fig. 5-10. The second

set of nine vertically aligned particles are placed at x = 595 nrm. The location of the

second set of nine vertical particles was optimized such that the independent forces

tend to cancel each other by superposing their respective minima and maxima. To

optimize the location of the particles, an inverse problem was defined based on the

multi-scattering equations presented in Appendix E. As a starting point, the Fy and

F2 resulting independently from two sets of vertically aligned particles was used to

determine the approximate location of a stable trap in both x and y. Although the

reasoning based on the independent forces from the two vertical sets is not exact, it

gives a good guess (a 585 nm) of the initial positions to be used in the optimization.

The optimization was run with 19 identical particles (18 are fixed and 1 spans the

plane). The force field on the particle allowed to span the plane is plotted using the
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Figure 5-9: Binding force in the a-direction on a particle to the right as a function
of its position along the i-axis due to a single plane wave B = ZeikY with free space
wavelength A0 = 632.8 nm. The four subplots correspond to different arrangements
of the fixed particles to the left.: (a) single particle, (b) three particles aligned in
y, (c) nine particles aligned in , (d) and nine particles aligned in X. All particles
have a permittivity ep = 2.256o, and have a radius of 10 nm. The particles to the
left are separated edge-to-edge by 1 nm. The dashed curve indicates the force on a
single particle (F. ~ 4.36. 10-23 N/rm). The triangles represent calculations based on
the Lorentz force density integrated over the fields inside the particle obtained from
the commercial package CST Microwave Studio @. @ 2006 The American Physical
Society.
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optimized structure in Fig. 5-10. In each plot, each arrow represents the direction

and the relative magnitude of the force on the free particle located at the base of the

arrow. Thus, a stable trap is seen to exist at (x, y) = (297.5nm, 0.4nm). Furthermore,

this trap remains when multiple particles (up to four shown) occupy the trap already.

In fact, our analysis of the potential energy reveals that the addition of up to four

particles in the trap strengthens the potential well created by the optical binding

forces. Thus, we have demonstrated the concept that optical binding forces can

indeed create a stable optical trap.

5.2.3 Sorting of particles using optical binding forces

The ability to sort mesoscopic dielectric particles is of interest to scientist who wish

to separate solutions of mono-dispersed particles from poly-dispersed ones. In this

regard, sorting based on a combination of a fluid drag and optical forces has been

demonstrated as a viable technique for discriminating dielectric particles based on size

and index of refraction [107,108]. Here, we demonstrate proof of concept for particle

sorting based solely on the optical binding forces between the free particles and a

diffractive structure. Thus, the sorting mechanism presented here is fundamentally

different in that it does not rely upon fluid drag.

The configuration of the system is similar to the one studied in the previous

section and is shown in Fig. 5-11. An electromagnetic wave of unit amplitude and

wavelength 632.8 nm propagating in the y direction is incident upon ten fixed particles

aligned along the y axis and one free particle is free to move in the xy plane. The

configuration can be viewed as a diffractive structure that produces the field gradient

shown in the background. In this regard, one may argue that propagation channels

exists along the regions of high intensity due simply to the gradient force and the

scattering force. However, we model the diffractive structure as a series of particles

so that all interactions can be taken into account analytically. This is necessary since

the field gradient shown is altered by the presence of the free particle. Thus, optical
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Figure 5-10: Force on a free particle in the presence of two vertical walls of particles
separated by 595 nm and (a) no trapped particle, (b) a single trapped particle, (c) four
trapped particles, all clustered around the trapping position (X, y) = (297.5, 0.4) nm.
The other parameters are identical to those of Fig. 5-9. @ 2006 The American
Physical Society [6].

143

300 400 500 600
x [nm]

500 600

/
/

I
.4

/

/I
/
.4

4%

.4

/
/

4%

300 400
x [nm]

500 600



CHAPTER 5. OPTICAL BINDING

200 - sei Onxeu [luCi
free particle

100

0 -

-100 -

0 200 400 600 800 1000
x [nm]

Figure 5-11: Configuration proposed for guiding and sorting consisting of an incident

plane wave propagating along y. A series of ten fixed cylinders is used to guide and

sort one particle which is free to move in the x - y plane. The force results from the

interaction between the free particle and the fixed particles responsible for the field

intensity shown in the background. @ 2006 Optical Society of America, Inc. [7]

binding forces contribute to guiding and sorting properties of the structure.

The operation of the structure can be viewed as a "black box" and is demonstrated

by the trajectories in Fig. 5-12. Free particles are allowed to enter the region of space

at any x position along the line defined by y ~ -100 nm. We then are interested in

the exit positions along the line y ~ 300. To deduce the exit positions, we follow the

iterative procedure previously applied: the particle is moved a small amount based

on the direction and the magnitude of the cycle averaged force, and this process is

repeated until an exit position is reached. The paths are shown by the lines with

starting positions every 20 nm along x. In the simulation shown, 10 nm particles

propagate along channels and exit the guiding structure at A or B, denoted by the

index 1 = 1 or 1 = 2, respectively.

The sorting ability is studied by defining the relative displacement x4'2,(a)

(f) (a) - xf (a = 1) m) where (1 (a) is the size-dependent exit position and xW (a =

5nm) is the nominal exit position for a particle of radius a = 5nm. Three data

sets are presented in Fig. 5-13 corresponding to the nominal (reference) exit posi-

tions f (a = 5mm) = 5340m and xf (a = 5nm) = 1032nm for a water background
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Figure 5-12: Propagation channels of a free cylindrical particle due to the interaction
with the guiding and sorting configuration of Fig. 5-11. The starting points for the
particle with e, = 2.56co and radius a = 10 nm are located at various x positions
(shown at 20 nm intervals) for y = -100 nm. The trajectory of the free particle
is traced by computing the force and displacing the particle accordingly. @ 2006
Optical Society of America, Inc. [7]

(Eb = 1.69co) and x0(1 (a = 5nm) = 659nm for free space background (Eb = Eo). It can

be seen that the larger particles have a larger displacement away from the reference

position (negative displacement indicates shifting to the left). The unique correspon-

dence between position and size for a given configuration is the key feature by which

passive sorting is possible. This uniqueness in the exit position is a direct result of the

binding force since the propagation channel differs from the field gradient of Fig. 5-11

by virtue of binding forces between the fixed particles and the free particle.

5.3 Discussion

In this chapter, the forces on a collection of 1-D particles (slabs) and 2-D particles

(cylinders) have been calculated without the usual approximations on particle size,

permittivity, or separation. Because of this, the optical forces based on scattering,

trapping, and binding have not been calculated as separate quantities, rather the

electrodynamics of the system have been deduced from application of the Lorentz

force density directly or by conservation of momentum via the Maxwell stress tensor.
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Figure 5-13: Relative exit position of the particle for various sizes and permittivity.
The absolute reference positions are 41 (a = 5nm) =534m and x2 (a = 5nm) =

1032nm for Eb = 1.69Eo and x0 (a = 5nm) = 659nm for Eb =co. The error bars (not

shown for the case of Cb = 6O for clarity) illustrate the drift in positions of a minority
of particles whose starting positions are toward the right edge of the right- and left-

pointing arrows in Fig. 5-13 (close to 460 nm for 1 = 1 and close to 990 nm for 1 = 2.

@ 2006 Optical Society of America, Inc. [7]
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However, we have shown that the terms "trapping force" and "binding force" are

useful in a qualitative description of the optical manipulation of dielectric particles.

The results contained herein represent the first analysis of optical binding of slabs.

Two identical lossless dielectric slabs were studied to reduce the optical binding prob-

lem to a simple one dimensional study of interference patterns. In this regard, the

Lorentz force density, which exists everywhere inside the material once the fields are

present, is distributed within the slabs according to the interference pattern of counter

propagating waves. Thus, the details of the direction of binding force and the location

of stable equilibria depend upon the standing waves both inside the slabs and outside

the slabs. Therefore, it should not be surprising that the binding force between two

slabs in free space is periodic with separation distance 6 with a period which depends

upon the free space wavelength A0 (or the wavelength of the background medium).

The period of the function Fbind(6 ) is Ao/2 because the "round trip" distance between

two slabs separated by mAo/2 is mA0 , which provides a phase of 2k 06 = 2mir since

ko = 27/Ao.

An exact method to compute the optical forces within a system of multiple Mie

particles has also been presented. For the sake of simplicity, the particles are taken

to be lossless dielectric cylinders, which is not a sever limitation since apart from

the depolarization effects, most of the phenomena observed in two-dimensions can

be generalized to three-dimensions. This model represents a step forward in the

understanding of optical binding and the formation of optical matter, particularly

where large particles are manipulated. Using this method, three systems have been

studied in two dimensions; a collection of free dielectric particles, a new trapping

regime based on optical binding forces, and passive guiding and sorting of dielectric

particles with optical binding forces. These three studies demonstrate applications of

optical binding via two dimensional simulations. Each system provides evidence of the

effect of binding forces, which were calculated here from the general theory of optical

momentum transfer, not from separate approximations for scattering, trapping, and
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binding forces.

It should be noted that each of these systems required the computation of fields in

a region of many particles surrounded by dielectric medium. Furthermore, the concept

of electromagnetic wave momentum presented in previous chapters was employed to

deduce the effective momentum transferred to each particle. Without this approach,

the simulation would require the computation of force everywhere inside the particle

and the background medium as well as the characterization of mechanical interaction

between the background medium and the particles. Such a computationally expensive

procedure would severely limit the ability to simulate optical binding experiments

involving multiple particles suspended in a background medium such as water.



Chapter 6

Conclusions

This thesis presents a self-consistent formulation for efficiently modeling optical

momentum transfer to macroscopic media. The formulation is based on the clas-

sical electromagnetic wave theory applied to monochromatic waves propagating in

linear, isotropic, and stationary media. The results contained herein reconcile two

methods for calculating the cycle-average force; the direct application of the Lorentz

force density to media, which has been in vogue with researchers over the past few

years, and application of momentum conservation theorems via the Maxwell stress

tensor formalism, a topic which has been debated for most of the past century. The

formulation is shown to be valid for a wide range of dielectric and magnetic media

exhibiting temporal dispersion and loss. This theory is shown to be consistent with

relevant experimental observations of momentum transfer to media and is applied to

model optical manipulation of one or multiple particles in a laser field.

6.1 Conceptual conclusions of theoretical work

A number of conceptual conclusions can be deduced from the theoretical work pre-

sented in this thesis. Thus, a better fundamental understanding of electrodynamics
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accompanies the ability to model optical trapping and binding experiments.

Two approaches were equivalently applied to various problems. The divergence

of the Maxwell stress tensor relies on the conservation of momentum to deduce the

forces on a material. On the other hand, the Lorentz force density states that the

forces exist everywhere inside the matter once the fields are present. For example,

the pressure on a lossless slab can be viewed as resulting from momentum changes at

the two boundaries, or the pressure can be viewed as originating from the standing

wave patterns inside the slab. In all cases studied herein, however, the prediction of

experimental observable quantities are identical. Furthermore, the conceptual prob-

lem of the radiation attraction of a lossless dielectric interface has been reconciled in

favor of the results derived by Daly and Gruenberg [61]. Reconciliation has also been

shown for multiple examples of particles subject to multiple electromagnetic waves.

These results have been published in Optics Express [1] and the Journal of Electro-

magnetic Waves and Applications [3], and they were presented at the 2006 Progress

in Electromagnetics Research Symposium session "Recent advances in optical trap-

ping and binding" organized by Professor Jean-Marc Fournier and Dr. Tomasz M.

Grzegorczyk [109].

The momentum transfer to media has been separated into an adiabatic process and

a non-adiabatic process. These processes are derived from the Lorentz force density

exerted upon bound currents and charges and upon free currents, respectively. This

separation was shown to be very useful in modeling various experimental observations

of electromagnetic momentum transfer due to absorption in polarizable media. It is

concluded that the direct dependence of absorbed momentum on the refractive index

holds for both dielectric and magnetic media. These conclusions remain valid for

temporally dispersive media. Thus, in the case where the index of refraction is nega-

tive, free currents are pulled toward the incident wave as the wave attenuates inside

the material. This result is in agreement the reversal of radiation pressure predicted

by Veselago [82]. This viewpoint of electromagnetic wave momentum is generalized
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to model electromagnetic momentum transfer in lossless systems such as reflections

from submerged mirrors and optical manipulation of mesoscopic particles in a back-

ground medium. In this regard, the electromagnetic wave momentum, which contains

contributions from the electromagnetic fields and the response of the material, can be

applied to predict observations in a wide variety of problems. We may conclude that

the theory presented here attaches fundamental physical meaning to Snell's law; the

reflected and transmitted wave vectors ensure conservation of the momentum com-

ponent which is parallel to the boundary. Likewise, the magnitudes of the reflected

and transmitted waves ensure conservation of wave energy at the interface. This as-

sertion ensures that no sheering force exists due to the reflection and transmission of

an electromagnetic wave at an interface. The theory is applied to predict a decrease

in optical momentum transfer to Mie particles due to absorption, which contrasts

the common intuition based on the scattering and absorption by Rayleigh particles.

These results have been published in the Physical Review Letters [4] and the Physical

Review A [2].

Evidence of optical trapping and binding forces have been predicted in one dimen-

sion and two dimensions without approximation. Optical trapping of single particles

subject to multiple waves and Gaussian beams can be modeled using Mie theory and

the scattering of electromagnetic wave momentum computed from the divergence of

the Maxwell stress tensor. Thus the formulation is not only exact, but computation-

ally efficient both in computing the fields and deducing the forces. Optical binding

was demonstrated in one dimension by studying the interaction of multiple plane

waves incident by an electromagnetic waves. Modeling of multiple particles in an

in-plane electromagnetic wave is based on an extension of Mie theory to cylindrical

particles combined with the Foldy-Lax multiple scattering equations. Modeling the

electrodynamics of a system of particles represents an advancement in the under-

standing of optical trapping and binding. Using this formulation, a new trapping

regime based on optical binding forces has been demonstrated analytically. The pos-

151



CHAPTER 6. CONCLUSIONS

sibility of serially guiding and sorting nanometer sized particles using optical binding

forces is also demonstrated. These applications are derived without approximation or

explicit separation of scattering, trapping, and binding forces. However, they do serve

to demonstrate the effects of multiple particle interactions. These results have been

published in the Journal of the Optical Society of America A [5], the Physical Review

Letters [6], and Optics Letters [7], and they were presented at the 2006 Progress in

Electromagnetics Research Symposium [110].

6.2 Future work

As with any thesis, the results presented here are incomplete. The theoretical mod-

eling of optical manipulation and electromagnetic momentum could be carried out

indefinitely. Through the course of this investigation, I have come across a number of

interesting problems. However, one cannot hope to solve the entire universe within

one Ph.D. program. In this section, I outline some avenues of future research that

have come to my attention over the past couple of years. In addition, I give some

thoughts on how such problems could be approached. However, I have also learned

that my original intuition and approach are often times misleading at best, or simply

wrong at worst. Thus, the research projects and proposed solution approaches listed

here are merely suggestions based on untested ideas.

6.2.1 Optical trapping and binding of LHM particles

I have conducted an initial study of optical manipulation to lossless (noncausal) neg-

ative index particles, which is not included in this thesis. As expected, the radiation

pressure on such particles, either modeled as infinite cylinders or spheres, depends

only upon the refractive index of the background medium; a particle is pushed by

the incident wave if the background index of refraction is positive and is pulled by

the incident wave if the background is negative, regardless of the sign of the particle
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refractive index. There is some question as to the direction of the gradient force, for

example in a Gaussian beam or a three plane wave interference pattern. Initial inves-

tigation suggests that there may be polarization effects that would greatly influence

the direction of the trapping force on negative index cylinders. Initial binding studies

of negative index particles have not been carried out to my knowledge. All of the the-

ory to conduct this academic investigation are contained within this thesis. However,

it has not been completed at the time of this writing due to time constraints.

6.2.2 Development of an optical manipulation simulator

This thesis demonstrates how to efficiently model slabs, cylinders, and spheres subject

to various optical incidences. As the field of optical manipulation matures, applica-

tions are being found in physics, biology, chemistry, and medicine [25-27]. So far,

experiments and applications have been designed relying mostly on approximate for-

mulas. The theory presented herein could be used to develop an efficient simulator

for optical trapping and binding studies. The field solutions would fall into two

categories: analytical solutions for canonical geometries and numerical solutions for

arbitrary geometries. A user friendly interface could eventually lead to a commercially

viable engineering design tool.

6.2.3 Optical momentum transfer to bianisotropic media

All of the results presented here assume isotropic media. Many materials in na-

ture exhibit anisotropy, while a new class of metamaterials can be classified as bian-

isotropic [111]. To study electromagnetic momentum transfer to such metamaterials,

it is necessary to have a model of bianisotropy in the force calculations. In this case,

D = i -E + H H and B = H H + . E. For simplicity, one could study arbitrary

incidence upon a bianisotropic slab. Fortunately, the field solution already exists [89].

Also, the total pressure on the slab can be computed via they divergence of the free

space Maxwell stress tensor once the fields are known. Then, to model the details of

153



154 CHAPTER 6. CONCLUSIONS

momentum transfer, we would need to determine the contributions to f, and ft. One

possibility is using the lossless conditions [39], = Ft, j = p , and = = t, to factor out

the bound currents from the free currents in Maxwell's equations. Then, one could

show that an equivalent separation can be made using a stress tensor formalism as

was done in this thesis for isotropic material.

6.2.4 Electromagnetic wave momentum in moving media

In Chapter 3, the electromagnetic wave momentum was derived for a dispersive di-

electric and magnetic material. However, the assumption of stationary material was

placed on the derivation for simplicity. One could, however, apply the concept of

virtual power to derive the form of the momentum flux density T and the momentum

density vector 0 from the accepted forms of the energy flux and energy density in

the rest frame of the material. The prescription for the application of virtual power

is given by Penfield and Haus [53]. We should expect that the derived quantities T

and G in the laboratory frame reduce to the quantities derived in Chapter 3 in the

limit of material velocity approaches zero. This derivation is expected to involve a

lot of tedious math, and the results, while providing a more complete solution, may

not add to the understanding of optical manipulation.

6.2.5 Light pulses and the Abraham-Minkowski controversy

The momentum of electromagnetic waves has been debated by physicists by nearly

a century. The issue of momentum flux due to an electromagnetic waves is now well

understood. The electromagnetic wave momentum, which reduces to the Minkowski

momentum in non-dispersive materials, consists of a contribution from the electro-

magnetic fields (Abraham momentum) and the response of the medium. Thus, the

Abraham-Minkowski controversy for time-harmonic fields has been reduced to inter-

preting the contributions of field and matter [2,21,38, 65]. For a finite wave packet

(electromagnetic pulse) the isolation of the momentum density vector from the stress
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tensor is possible as discussed in Chapter 2. In this case, the force exerted on the

media is interpreted according to the choice of momentum density vector C, which

results directly from the formulation of the Maxwell equations applied to separate

field and material contributions. Scalora et. al. revisited this issue in 2006 by com-

paring the momentum transfer to a thick slab (i.e. thick compared to the incident

light pulse) based on the assumption of Abraham or Minkowski forms of the momen-

tum density vector [68]. The numerical results of that study show that the predicted

pressure on a slab evolves differently in time depending upon which value for the

momentum density vector is applied. The momentum transfer in this case occurs in

one dimension with the incident pulse having a positive momentum. Application of

the Minkowski (Abraham) momentum predicts that the slab will acquire a negative

(positive) momentum while the wave packet is inside the slab. In all cases however,

the total momentum transferred to the slab as t -- oc approaches the same value as

expected. While the principal author and I agree that an experiment would provide

a fundamental test of electromagnetic theory [72], I argue that resolution to the issue

may not be out of reach for the theorist. The key issue is the direction of momentum

acquired by the slab due to the interaction of the wave packet with the medium. One

could apply an analysis similar to that of Daly and Gruenberg [61]. That is, solve

the problem within the framework of moving media. Then, use energy relations to

deduce the direction of the slab velocity. To my knowledge, this approach has not

been applied to the problem of a slab incident by a finite pulse. A theoretical and/or

experimental resolution to this problem would be a significant contribution to physics

considering the long and controversial history of this topic. However, one should bear

in mind that such a claim would also come under significant scrutiny.
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Appendix A

Reflection and Transmission by a

Slab

Region 0

60, -o

Ej

Region 2

62, A 2

d

Figure A-1: TE plane wave incident upon an isotropic slab of thickness d.

The fields inside and outside an isotropic slab occupying the region 0 < z < d due

to TE incidence are give below.
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Region 0 (z < 0)

fto = ---koz E,(eikoz

Region 1 (0 < z < d)

Rei = 2 (z> ikd z

Region 2 (z > d)

Lo = Q E(eikozz + Re--kozz )ikxx

- Re-ikozz)eikxx +

- Be-ikzz)eikxx +

Z k Ei (eikozz + Re-ikozz)eikxx

kx (Aeikizz + Be-ikzz) eikxx

E82= iEiTeik2zze ikxx

EiTeik2zzeikxx + k) EiTeik2zzeikxx

The unknown coefficients are found in the usual manor
conditions for tangential E and ft at the two boundaries.

by applying the boundary

R Ro 1+R12ei 2kizd
1 + RoRi2ei2kzd (A.7)

AE.+

BE.

1
T - (Aeiklzd

Ei

Ro1 = -Rio -Po
1+Poi

R) + pio(1 - R)]

R) -pio(1 - R)]

+ Be--iklzd) e-ik2zd

R12 =-R 21 1 -P12
1 + P12

(A.1)

(A.2)

(A.3)

(A.4)

12 
= J

(A.5)

(A.6)

(A.8)

(A.9)

(A.10)

(A.11)
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p10Poi l
Pio

- pokiz

p1koz

Region 0

Eo, [0

_1
P12 2

P21

Region 2

62, P2

=d

ii

(A.12)

Figure A-2: TM plane wave incident upon an isotropic slab of thickness d.

The fields inside and outside an isotropic slab due to TM incidence are found by

duality.

ft->-E, (A.13)

Incident Region (z < 0)

H o = H i(ezkoz + Re-ikozz)e ikxx

= kZ Hi(eikozz - Reikoz eikxx + - Hi(eikozz + R-ikozz ik.x
-o=iWC6H 0 e e') WE6+Re0

(A.14)

(A.15)

_ t1k2z

P2k~z

Ej

C <- A
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Slab Region (0 < z < d)

ft1 = $(Aeikjzz + Be-ikzz)eikxx

R1 = z (Aeik1z -
WE1

Be-iklzz ikxx + - Aeik1z

WEI
+ Be kizz)e ikxx

Transmitted Region (z > d)

H2 = HiTeik2z eikxx

E2z= ( HiTeik2zzeikxx HiTeik2zzeikxx

The coefficients are also dual of the TE case.

R R l + R 2 ei2 kizd
1 + RoiR 1 2 e i2k1 d

A = j [(I + R) + pio (I - R)]

2
B = ((1 + R) - pio(1 - R))

2

T - ( Ae iklz + Be- iklzd) e-ik2zd
Ei

1+ Poi1

Poi 1 I -_ cok 1z
Pio Eikoz

1 P12

1+P12

1 Eik 2 2P12 - I = E2k12
P21 62 kiz

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)
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Appendix B

Scattering by an Infinite Cylinder

Figure B-1: Scattering from an infinite cylinder. The geometry for the problem is an
infinitely long cylinder in the i-direction. The cylinder of radius a, which can be used
to represent a circular particle in two dimensions, is composed of isotropic material
(pp, cp) in a background of ([b, Eb).

The geometry of the problem is shown in Fig. B-1. It consists of an electromagnetic

wave incident upon an infinite cylinder of radius a. The cylinder is characterized

by (pp, Ep) and the background by (pb, Eb). The incident wave is assumed to be a

plane wave with e-iwt dependence. Note that many other field distributions, such

as a Gaussian beam, can be described by a sum of plane-waves. Therefore, the
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SCATTERING BY AN INFINITE CYLINDER

total solution for such incident fields can be described as a superposition of solutions

resulting from a plane-wave. The incident, scattered, and internal fields are expanded

in cylindrical waves given by Sn, ft, RgNa, and RgMt,.

by [112].

The solution is given

The incident electric field is polarized in the i-direction and propagates in the

plane (kz = 0). The magnetic fields are obtained from Faraday's law

iWAH(p) = V x E(p) (B.1)

using the identities

V x M= kNn

V x n= kf.t

(B.2a)

(B.2b)

The incident fields are regular at the origin and are given by

N

inc(P) = iEoe = E an Rg Vn(kb, )
n=-N

Rine= W k N n Rg(k, ),
<1W/lb __E ,aTb

(B.3a)

(B.3b)

where the wavenumber in the background medium is given by the dispersion relation

k W2 /bpb. The scattered fields are

Escatp) =W

Hscat) =

N

an NnN(k,,p)
n=-N

kb a8n(kb,5).
lW/lb n=-N

(B.4a)

(B.4b)
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The internal fields are also regular at the origin and can be computed from

N

Eint() = 1 cnRgNn(kp,5) (B.5a)
n=-N

N

Hint) cnRgMn(kp, p), (B.5b)
iwf, n=-N

where the wavenumber in the cylinder (p < a) is given by kP = 2ppc. The un-

known coefficients (a', c,) are determined by matching the boundary conditions and

the coefficients (an) are known from the incident plane wave expansion [112]. The

expressions for incident, scattered, and internal fields become exact for N -* oc. The

vector cylindrical wave functions for this particular incidence are given by [55]

RN(kp) =kH l)(kp)eino (B.6a)

Mn(kp)= , [ifH1(kp)1 e + [kH (kp) - H1 ) (kp) e (B.6b)

RgNn(k, p) = k Jn(kp)eno (B.6c)

RgMn (kp) = i niJn(kp) ein" + [kJn+±(kp) - nJn(kp) e i"o. (B.6d)

Here, Hn~1l (.) is the Hankel function of the first kind and Jn(.) is the bessel function.

The coordinates (p, 0, q) represent the point for field evaluation (i.e. the observer

position). The angle #i is used to represent the incident direction of the illuminating

wave.

The simplest case is a perfect electrical conductor (PEC). For the PEC, the inter-

nal fields are assumed to be zero so that cn = 0 for all n. Note that the discontinuity

in the magnetic field at the surface gives rise to a surface current i.. However, since

the incident wave is TE, it is expected that no resonant effects result from i8 .
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The coefficients for the incident and reflected wave are

einoi
a, = i" Eo (B.7a)

kb

a = -an J(ka) (B.7b)
n Hn()(ka)

The fields were compared favorably with results obtained using the commercial soft-

ware package CST Microwave Studio @. Only a few field plots are presented here for

future reference. Note that while several minutes are required for numerical programs

to calculate the fields suitable for radiation pressure studies, the analytic approach

detailed in these notes require only a couple of seconds since the field evaluation at

one point in space requires far less than a second using a MATLAB script based on

the equations contained herein.

For a general dielectric and magnetic medium, the boundary conditions give a

2 x 2 system of equations that must be solved for the unknown coefficients,

=in io
an = E0  (B.8a)

kb
bIm 22 - b2 m 1 2 B.8b)

an T11Tn22 - Tn21Tn12

C= bim21 - b2m 11 . (B.8c)
M12M21 ~- 22Tn11

The matrix elements and RHS for the linear system are

M1 = -kbH' (kba) (B.9a)

M12 = kp J.(kpa) (B.9b)

= - kbH3(ka) + -H(')(kba) (B.9c)

an
M22 = Pbk [kpJn+(kpa) - n Jn(kpa) (B.9d)

likb a
b1 = ankbJl(kba) (B.9e)

b2 = an kbJn+1(kba) - n Jn(kba) . (B.9f)
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Figure B-2: A 1 GHz electromagnetic plane wave scattered from an infinite PEC
cylinder. The wave is incident from free space (Eb = CO, /b = Ao) in the - direction.
The radius of the cylinder is a = 2AN ~ 0.6 m and the calculation was performed
with N = 40. The left column is magnitude of the real part of the complex field, and
the right column is absolute value of the field. The fields are, from top to bottom,
Ez, Hy, H. The order of magnitude is 10-3 for the magnetic field.
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The resulting fields compare favorably with results obtained using the commercial

software package CST Microwave Studio @.
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Figure B-3: A 1 GHz electromagnetic plane wave scattered from an infinite LHM
cylinder (Ep = -6o, p = -po). The wave is incident from free space (Eb = EO,

Pb = Po) at an angle <5 = 7r/4. The radius of the cylinder is a = 2Ao ~ 0.6 m and

the calculation was performed with N = 40. The left column is magnitude of the real
part of the complex field, and the right column is absolute value of the field. The
fields are, from top to bottom, Ez, Hy, H,. The order of magnitude is 10-3 for the
magnetic field.
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Figure B-4: Electromagnetic fields resulting from a plane wave scattered from an

infinite air cylinder (Ep = co, p = po). The wave is incident from water (Nb = 1.69EO,

[Lb = [o) at an angle <i = 7r/4. The radius of the cylinder is a = 2Ao, where

AO = 1064 nm is the wavelength of the incident wave. The calculation was performed

with N = 40. The left column is magnitude of the real part of the complex field, and

the right column is absolute value of the field. The fields are, from top to bottom,
E2, Hy, H,. The order of magnitude is 10- for the magnetic field.
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Appendix C

Scattering by a Sphere

The incident electric field is polarized in the i-direction and propagates in the

i-direction. The background is characterized by (Eb, b) with a wavenumber kb. The

particle is composed of (Ep, pp) with wavenumber kp. The geometry of the problem is

shown in Fig. C-1. The incident fields are

B i = Eo eikbz = EoeikbrCOS0 (C.Ia)
- ,Eo Eo kbzCS

Anc = Y e ikbZ eikrcos o. (C.1b)
i7b rib

The solution is found by expanding the incident, scattered, and internal fields as

a sum of spherical waves. The unknown coefficients for the scattered and internal

fields are found from the boundary conditions. The problem and solution are given

in [39].

The incident wave is expanded in~spherical modes using the identity

N

eikr cos _ -nZ(2n + 1)jn(kr)Pn(cos 0), (C.2)
neO

where in, (kr) is a spherical Bessel function and Pn (cos 0) is the Legendre function.
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Figure C-1: Scattering from an isotropic sphere. The sphere of radius a, which can

be used to represent a circular particle in three dimensions, is composed of isotropic

material (ptp, 6p) in a background of (Pb, eb). The incident wave is linearly polarized

in the - direction and propagates in the direction.

The approximation is exact as N -+ oc.

The incident, scattered, and internal waves are decomposed into TM to i^ and

TE to i waves by using scalar potentials 7e and 7rm respectively. The potentials are

defined by

A = r'ire -

snx A re
sin 0 06

(C.3a)

(C.3b)

for TM waves and

sm=VxZ=0
sin 0 i~o

(C.4a)

(C.4b)

for TE waves. The potentials satisfy the Helmholtz equation in spherical coordinates

(V 2 + k2 ) 7r = 0. (C.5)

x
t

z

b, Pb
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The scaler potentials are

N

Wre =J An zn(kr) P,(cos) cos
n=1

N

7rm : ZBn zn(kr) P' (cos0) sin4
n=1

(C.6a)

(C.6b)

where zn(kr) represents solutions to the Bessel equation. The solutions differ in the

three regions by the following.

. Incident (re, 7m)

zn (kr) = jn(kbr)

kb (-i)-"(2n + 1)
bo n(n +

kb

" Scattered (rTr,)

zn(kr) = hn(kbr)

kb
A = E 0  -*-an

Bn = -- Eo - bn

hn(kbr) = hnfl (kbr) is the spherical Hankel function of the first kind.

* internal (7, r)

zn(kr) = jn(kpr)

An = E 0 k -C

Bn = -Eo -dn
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The unknown coefficients an, bn, cn, dn are found using the boundary conditions

for the tangential electric field and tangential magnetic field.

The total fields are:

Er =i-!- AP,(cos90) [krz,,(kr) +±2z,,(kr) + krz' (kr)] cosq
n=1

(C.10a)

N

Eo {iAn P n(cos

n=1

0) k zn(kr) +z' (kr)
1kr -

(C.I Ob)+ BnP ( si0 zn(kr) IcosP
sinG Qf\

{ I
P (cos 0)zn(kr) sinp

Hr = -Z- k 5BnP (cos) [krzn (kr) +2z(kr) krz(kr) ]sin~

n1

(C.10c)

(C.IOd)

N

Ho = -
n=1 {iB - Pn(cos0)W/ta krzn(kr) + z' (kr)

(C.10e)- A Pc (Cos 0)(k)'sin
sinO )

k P1 (cos0)
iB -wpi sinO zn(kr) + z' (kr)

+ Ana P(cosO)zn(kr) cos# (C.10f)

The spherical Bessel and Hankel functions zn( ) are given in terms of the Bessel and

Hankel functions Zn( ) by

z()= Z. ( (C.11)

To evaluate the derivatives, it is helpful to define 1 = n + 2, m = n + 1, p = n - 1,

and q = n - 2 and use the relation [55]

M.fn) (C.12)

N

E0 = -
n=1

+±Bna

iAn k Pn(cos0) 1-zn(kr) + z'(kr)
wE sinO 0 kr

N

Ho = -E
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The second derivative with respect to the argument is

Z = ( 2 n - [pzq( ) - nzn( )]
(2n + 1) (2p + 1)

- m [mzn() + lzi()]. (C.13)(2n + 1) (2m + 1)

The derivative of the Legendre function with respect to the argument is, in general,

known. Therefore, a useful relation is

a a
P (cos ) = -sin O P m (cos 0). (C.14)

ao a Cos 0

The coefficients as determined from the boundary conditions are [113]

an gn kbcpen(kpa)Jn(kba) - kpEbJn(kba)Jn(kpa) (C.15a)
kp~b~fn(kba)jl(kpa) - k p jn(ka)fn(kba)

bnkbeAJn(kpa)J(kba) - kbJ(kba)J(ka (C.15b)
kp1 bofn(kba)jk(kpa) - kbpPjn(kpa)H$(kba)

cn = gn * ikbEpcp (C.15c)
kbeepbJn(kpa)H7(kba) - kpEbpkH(kba) J;(kpa)

dn = gn * ikpp (C. 15d)
kbpJn(kpa)H (kba) - kypobHn(kba)J,(kpa)

where

gn = (_i)-- (2n + 1). (C.-16)n(n + 1)

The Ricatti-Bessel functions jn( ) and Htn( ) = Hn1' ( ) are

Zn( ) = zn( ) (C.17a)

Z () = zn() + Z' (0). (C.17b)
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Figure C-2: Absolute values of the electromagnetic fields resulting from a plane wave

scattered from a dielectric sphere (E, = 2.56co, p = po). The wave is incident from

water (Eb = 1.6960 , [b = [o) in the 2 direction. The radius of the sphere is 0.5 Am, and

AO = 1064 nm is the wavelength of the incident wave. The calculation was performed

with N = 100. The fields are, from top to bottom, (left column) JE,, JE, and JHyj

in the y = 0 plane and (right column) IEX,, JHyj, and JH in the x = 0 plane. The

order of magnitude of the magnetic field is 10-.
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Figure C-3: Absolute values of the electromagnetic fields resulting from a plane wave
scattered from a lossy sphere (e, = (16+i)Eo, pp = po). The wave is incident from free
space (Eb = 60, /b = [1o) in the i direction. The radius of the sphere is 0.5 pm, and
Ao = 1064 nm is the wavelength of the incident wave. The calculation was performed
with N 100. The fields are, from top to bottom, (left column) |E, , |E.|, and JHy|
in the y 0 plane and (right column) IE, , 1Hy1, and IH| in the x = 0 plane. The
order of magnitude of the magnetic field is 103.
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Appendix D

Field Solution for Multiple Slabs

E, I A62 1P2 63, 1P3 E4, 14 E5, 16

Biz

Z Z 1  Z Z 2  Z Z 3  Z Z 4

Figure D-1: The fields resulting from five layered media (4 boundaries) are found by
matching the boundary conditions with counter propagating plane wave solutions in
each region. The unit amplitude incident electric field is polarized in y.

The fields in the five regions shown in Fig. D-1 are assumed to be plane wave

solutions.
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Region 1 (A 1 = 1, B 1 = R)

1 = Q(eikiz + Re-ikz )eikxx (D.1a)

H1 = x 1Z (eikz - Reiklzz)eikxx +2 (eikz + Re-ik1z )ekx (D.1b)

Region 2

E2= i( A 2 eik2z + B 2e-ikzz )eikxx (D.2a)

f 2 = (Aseiksz - B2 -ikszZ)+ k (A2eik2 z + B 2 e-ikzz)] eikxx (D.2b)

LW~t A2 ei ~ - Wi~z A2 ekz

Region 3

E3= (A 3 e ik3 + B 3e-ik3zZ)eikxx (D.3a)

f3 - z (A3 eik3z - B3,-ikazZ) + k- (A3eik3zZ + B 3 e -ika3z eikxx (D.3b)
K A W~)+ A3 e~~+ex

Region 4

P4= j(A 4 eik4z + B 4 e-ik4zZ )eikxx (D.4a)

14  [k 4 z (A 4eik4z - B 4 e-ik4zZ) + 2 kX (A 4 eik4,Z + B4e-ikzeikxx (D.4a)
L A WA4 /1 

B46i4zz)

Region 5 (A 5 = T, B5 = 0)

R5 - yTeik eikxx (D.5a)

R5 = -k5z T ik 5 + T ik5zl eikxx (D.5b)

The coefficients are determined by matching the boundary conditions at zj, z 2,

z3 , and z4. These eight equations (two for each boundary) can be written as a matrix

equation in terms of the column vector of unknown coefficients. The solution is found

by inverting the matrix.
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The solution is simplified when we apply the equations to two identical dielectric

slabs as in Chapter 5. Here, we let ci = 63 = C5 = 60,62 =64 n2 E and pi =

A2 = P3 = A4 = /15, where n is the index of refraction of the two slabs. Furthermore,

the two slabs are of equal thickness os that we let z1 = 0, z2 = d, z3 = d + 6, and

z4= 2d + 6. Refer to Fig. 5-1. To evaluate the force in this case, we can apply the

formula given in (5.4), which gives the force in terms of the coefficients A6 = A3 and

B6 = B 3. These coefficients are calculated in this simplified case using the closed-form

expressions

cos(kd) - (n2+1) sin(kd)] e-iko(d+6)

A6 = -. nQ(D.6a)

-i ) sin(kd) eiko (d+)

B6 = -- (D.6b)

where

= cos2(kd) - n 2 + 2 sin2 (kd) - i2 n 2 + cos(kd) sin(kd) e-iko6

2n 2n

+ n2 _- 2 sin2( kd jeikoI. (D.7)
(2n
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Appendix E

Scattering by Multiple Cylinders

The scattering from multiple cylinders is solved analytically by applying the for-

mulation proposed by Foldy [106] and Lax [114]. The formulation presented here is

reproduced from [115]. The total excitation field of particle q is the incident field plus

the scattered field from all other particles except itself, and is written mathematically

as

Elx'(P) = Einc(P) sE Eatp) (E. 1)
I:Aq

The incident field field is given in terms of the Bessel functions in Appendix B, and,

as a generalization of those results, the scattered field of particle q is

+ N

Bq=) a 3 ) Nn( kb, P - 9q). (E.2)
n=-N

The cylindrical wave functions Nn were given in Appendix B and must be evaluated

at translated origins for each particle q located at Pq. The scattering coefficients are

given by an') - Tnwn, where Tn is the known coefficient for a cylinder. For the given
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s-polarized (TM) wave,

kp J(kpa) _ Jn(ka)
T = -B(k (E.3a)

kb H 1 )(kba) H 1 )(ka)

Bn =i k H1 a)J(ka ' (k ka) H1) ( E.3b)n 2ikb [kbHn1)' (kba)Jn(kpa) - kpJ1nka)~)wrak, 1(.b

and the wn are solved from

+N
(=kq) Nea + X J H=1i_,( kb - pqJ)e-i(n-n')0IqTw$, (E.4)

n'=-N lq

where 01q is the angel between -% and the vector joining the centers of particles (1)

and (q). The solution is exact as N --> oc. In reality, the summation over n is

truncated. Thus, the solution of (E.4) requires the inversion of a square matrix of

dimension L x (2N + 1), where L is the number of particles. This formulation was

implemented in FORTRAN by Dr. Grzegorczyk and validated via numerous examples

using the commercial field solver CST Microwave Studio @. An example is plotted

in Fig. E-1. In the example, the 1 GHz electromagnetic wave is incident from free

space in the ^ direction upon two identical dielectric cylinders (E = 26o, a = AO/2)

cylinders separated by 3AO. Although not shown, the electric and magnetic fields of

this example and several others involving multiple cylinders compare favorably with

the fields generated using CST Microwave Studio @.
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Figure E-1: Electric field magnitude IEz scattered from 2 dielectric cylinders. The
incident electric field is unit amplitude at 1 GHz propagating in the - direction. The
two identical cylinders of permittivity c, = 26o and radius a = AO/2 are separated by
a center-to-center distance of 3a. The background is free space Eb = EO
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