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Abstract

The strength of the high-end retail industry has traditionally been in marketing and brand-
ing while management and operational efficiency lagged behind. In the face of changing
client demographics and increased competition, improving operations through better data
management and utilization could prove promising. In this work, we attempt to do so by
focusing on a neglected area in high-end retail - management of the sales associates. Our
first finding is the existence of a disconnect between the data collected and the data required
for better control of the associates. Recognizing the gap, we sidestep it by tapping the
knowledge of many experienced sales associates through field work. This knowledge is then
funnelled back to assist in modeling client behavior. The dynamics between an associate and
his clients are modeled using an evolution model with stochastic client behavior. We show
that under certain conditions, the optimal policy for an associate is a quasi-concave policy.
In addition, we provide a methodology that would enable the associates to capture the full
potential of a client while at the same time, allow management to reduce the variability in
customer service within the store. The computational results indicate that such a mecha-
nism, when compared to the commonly practiced policies, can achieve a substantial lift in
revenue generated. In addition, the results also provide managerial insights and expose some
common misconceptions.
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Chapter 1

Introduction

The distribution of the United States household earnings has undergone tremendous changes

in the past 30 years. In the 1970s, income distribution clustered around the average level,

with few households earning more than the average. Today, the steep drop of number of

households past the average is much more attenuated [1]. The data in Figure 1-1 obtained

from the U.S Census Bureau shows that the number of consumers with an annual income of

$80,000 or greater has been increasing steadily from 1996 to 2005, with 10% of the population

and 25.6% of households falling into this segment in 2005. In Figure 1-2, a similar trend is

observed for the number of consumers with an annual income of $100,000 or greater, with

6.7% of the population and 17.2% of households falling into this segment in 2005. As such,

the belief that there are only two distinct consumer groups - the mass and the high-end

- is no longer true. An entirely new segment, known as the Mass Affluent and famously

dissected by Paul Nunes and Brian Johnson in their book "Mass Affluence: Seven New

Rules of Marketing to Today's Consumer" [2], has emerged. This segment, characterized

by its ability and willingness to pay a premium for brand and quality, is quickly becoming

the new darling of the retail industry. The attractiveness of the mass affluent, driven by

its lucrative nature and steady growth, is further accentuated by the influence it casts over

the purchase behavior of the general public [3]. This phenomenon, sometimes known as

the snob and the follower effect, has been well studied in the economics literature ([4],[5]).
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One explanation suggests that the existence of this effect is driven by the desire to not be

identified as the less-endowed. As such, the mass consumers tend to follow the consumption

patterns of the well-endowed.

The emergence and subsequent recognition of the mass affluent segment have dramatically

altered the retailing landscape. Traditional upscale retailers are attempting to diversify their

product portfolio and to venture into price points more accessible to the mass affluent. We

observe this in the luxury car industry as both BMW and Daimler now offer lower priced

models. In the fashion industry, many luxury labels are offering separate sports and/or casual

lines at lower price points as well. At the other end of the spectrum, the mass retailers

are attempting to project an up-market image by leveraging third party brand equity in

the creation of upscale products. In the fashion retail industry, this is exemplified by the

relationships of H&M with Karl Lagerfeld' and Stella McCartney.2 Target, often pronounced

in faux French as "Tar-zhay", entered into high profile design partnerships across various

product lines. In apparel, Target partnered with Isaac Mizrahi, while in kitchenware, it

introduced Philippe Stark's line followed by Michael Graves' in quick succession.

These responses from existing and newly emerging players have resulted in a much more

competitive high-end fashion retail industry, one that is projected to reach 50 billion USD

in 2010 with an annual growth rate of 10% to 15%. The plethora of choices available further

exacerbates the situation by reducing customer loyalty towards a particular brand. Many in

high-end retail corporate upper management are turning to cultivating client relationships

as a way to increase client loyalty and to differentiate themselves from the mass retailers.

While the strategy seems sound, the implementation itself deserves scrutiny. Since client

relationships are best built through sales associates, the role of an associate takes on increased

importance in the face of the new landscape. Yet, has the management of these associates

at the store level changed to reflect the added importance? Answers to this question hinge

on the understanding of the current situation, which we delve into next in §1.1.

1CChief Executive of Design at House of Chanel, furs for Fendi and his eponymous label.
2 Daughter of Paul McCartney, previously helming Chlo6 and presently her eponymous label.



1.1 Current Control and Relationship between the Re-

tailer and Sales Associates

In most high-end retail stores, sales associates are hired on a commissioned basis. Some

associates are fully commissioned while others receive an hourly rate in exchange for a lowered

commission. Each associate usually maintains a client book containing detailed information

about his clients - to be referred to when attempting to contact clients for generating sales.

Figure 1-3 depicts a typical client page. The client book is built slowly over the years. A

Business Contact

Occupation Office

Look Email

Family Events

Spouse Birthday

Children Anniversary

Personal Sizes

Vacation Coat/Dress

Hobbies Shirt/Blouse

Interests Slack/Skirt

Shoe

Figure 1-3: A generic client page.

walk-in client purchasing for the first time will usually be asked if he would like to be included

in the central database. Concurrently, the associate selectively adds new clients to his book.

It is worth noting that the client books and the central database are not synchronized; the

information held in each are also very different. The central database consists of transaction

Name

Address



histories - some of which are associated with names - of all customers who have bought

from the store. Most of the data is not very user friendly since the transactions are often

identified by stock keeping units (SKUs). As such, it is nearly impossible to backtrack

simple information like size and color. The client books contain a subset of customers from

the central database, and the information consists of mostly personal preferences. Clients

stay active for a certain period of time, upon which, due to a variety of reasons, they stop

visiting the store.

Management (both corporate and store level) offer little training to new and existing

hires, and tend to focus their effort on marketing and client acquisition. Even though client

relationships are acknowledged to be important at the corporate level, the actual task of

cultivating these relationships are mostly delegated to the store level. Unfortunately, some

store level managers believe that once a client is acquired, he will be enamored by the brand

and its quality such that repeat business will follow naturally. The sales associates, due to

their particular compensation scheme coupled with the distinct relationship they have with

clients, often think of themselves as independent agents maintaining a store within a store.

These associates are loosely managed, and are motivated by the amount of sales they push

through the door. Under complete autonomy and little guidance, these associates naturally

demarcate into two groups. The good associates generate a significant amount of revenue

for the store, while the mediocre associates merely get by. As one drills for what makes a

good associate, it appears that "good" is a misleading characterization. An associate in a

high traffic store can do well by merely focusing on walk in clients. Such an associate is not

necessarily considered "good" since he does very little client work, and consequently fails

to capture the full potential of a client. On the other hand, an associate who makes the

effort of maintaining and cultivating client relationships can sometimes fare worse, brought

about by his little understanding of the nuances of client relationships. The different types of

associate in the store, coupled with very little management control, result in high variability

in customer service levels. Depending on pure luck, a new client could either have an associate

who never bothers to contact or one who is overbearing. One cringes at the possibility of a



high potential client being managed by a mediocre associate.

Having understood the status quo, and perhaps having overcome the initial shock, many

questions follow. How much opportunity has been squandered? How much does the store

stand to gain if the full potential of clients are realized? Is there a way to capture such

potential systematically? Is such a system easily implementable? How does one reduce the

variability in customer service level? Can one provide managerial insights?

Our research, then, is very much driven by providing answers to this series of questions.

We begin by reviewing relevant literature in §1.2.

1.2 Literature Review

Of interest to us is literature relating to relationship management for sales associates. We

find that much of the research relating to sales force focuses on compensation [6] and manage-

ment [7] from a firm's perspective. The earlier works modeled sales force using a deterministic

selling effort, while the later works evolved into using stochastic models. This line of research

typically employs a game theoretic framework to find a compensation scheme such that both

parties will not be incentivized to deviate from it. An interesting paper by Wernerfelt [8]

looked at the function of sales assistance. In this paper, Wernerfelt models such function as

providing a better match between the buyer with the product, and concludes that in certain

industries, sales assistance does indeed prevail.

As direct literature search turns unfruitful, we take a step back and examine the mech-

anism used by associates for relationship building. In its simplest form, this mechanism is

illustrated in Figure 1-4. In every period, the agent makes a contact decision based on the

state of the customer. The customer observes the decision and takes his own action. The

customer state is then updated, and the sequence of events is repeated for the next period.

Presented this way, one observes that the dynamics of relationship building can be mapped

easily to direct mailing and e-commerce industries. In the direct mailing industry, the agent

is analogous to the catalog firm, the message to the catalog and the contact decision to the

mailing decision. In the e-commerce industry, the agent is analogous to the firm, the message



to the email and contact decision to the emailing decision. In the high-end retail industry,

the agent is analogous to the sales associate, the message to the phone call and the contact

decision to the calling decision.

State
Update

p

I

0 N

Figure 1-4: Mechanism used for relationship building.

Recognizing this allows us to leverage literature relating to the catalog industry. We begin

by providing a brief industry overview. In the catalog sales industry, companies classify their

customers into two categories: customers who belong to the rental lists and those who belong

to the house list. Rental lists consist of names that have certain features in common and can

be rented by the catalog companies. Thus, according to the products sold in the catalog,

companies rent names from the market segments that are likely to buy them. The response

rates for rental lists are generally low (0.5% to 1.5%). Once a customer from a rental

list responds with a purchase, this customer becomes part of the house list, upon which

companies can use the names without incurring a fee. In addition, house lists in general

have a higher response rate of 3% to 8%.

Traditionally, catalog firms segment their customers along three dimensions - Recency,

Frequency and Monetary value - otherwise known as the RFM classification. The most

common definitions found in the industry for these three parameters are described in what

I

--I

L-i



follows. Recency of the last purchase is defined by the number of periods since the last

purchase. Frequency is defined by the number of times a customer has responded with

an order or by the fraction of mailings that the customer has responded to within a certain

period of time. This definition is often times simplified further to consider only two values for

frequency: one for customers that just entered the house list and the second for customers

that have bought more than once from the company. Monetary value is defined by the

average dollar amount per purchase, or by the dollar value that the customer spent in the

last purchase or in all purchases to date.

The nature of the industry is rich enough that it has generated a wealth of research,

roughly separable into catalog quality and appearance issues [9], customer returns [10], cus-

tomer trust [11] and optimal mailing policies. Due to our interest in relationship manage-

ment, in the following we will only focus on research relating to the optimal mailing policies.

Bitran and Mondschein [12] study optimal mailing and reordering policy in a stochastic

setting. They focus on the cash flow and inventory constraints and their impact on optimal

mailing strategies. They investigate the trade-off between sending catalogs to prospective

customers and house customers using traditional RFM parameters to capture the state of

the customers. They build a model to study how optimal solution changes with price, cost of

goods, response rates and mailing costs. The computational results show that in the presence

of cash flow constraints, it is better to send fewer catalogs to the recently responded customer

and use the money to reach the less responsive ones. They also show that catalog companies

should expect to spend a significant amount of resources in market tests to build their house

lists.

G6niil and Shi [13] cast the problem in a game theoretic setting where a customer's utility

is parameterized, thereby explicitly modeling the customer. They assume that the customers

understand the firm's mailing policy and act in such a way that increases their chances of

receiving a catalog. The firm and customer's problem are solved together to produce an

optimal mailing policy. They make the strong assumption that a customer knows the cost

of mailing and the mailing policy in simplified form, and that the information is publicly



available. By doing this, they provide justification for not including budget constraints and

inventory costs. They also assume that the firm has a very simplified cost structure which

involves two variables: R (average revenue) and C (cost). Further, since parameters for the

customer utility functions are estimated using past data, the catalog content is assumed not

to vary substantially period to period. They find that it is not always optimal to mail to

customers who have very recently purchased. It is better to save the mailing dollars for

customers who have not responded recently. The catalog, in this case, serves as a reminder.

Their result is similar to ones obtained by Bitran and Mondschein [12].

Elsner et al. [14] presented a multi-period optimization model of catalog mailings that

allows for dynamic promotion or demotion of customers across a large number of customer

segments. The model operates at three levels. They show that mailing to low-valued cus-

tomers may be profitable even when these customers are not likely to respond immediately.

Simester, Sun and Tsitsiklis [15] tackle the problem by designing a discrete state space

using customer histories and optimizing the mailing policy based on the state space. They

calculate the transitional probabilities directly from the historical data and do not impose

functional form assumptions. Thus, the model relies on stochasticity in the historical policy.

In particular, if the historical policy is to mail only to customers who have recently purchased,

they cannot estimate the effects of mailing to customers who have not purchased recently.

They implemented the model using 13 variables to describe each customer's mailing and

purchase histories. The model was validated in a field test with mixed results. The optimal

policy recommended mailing less to customers who had recently purchased, but it turned

out that there was insufficient stochasticity in the data to predict customer behavior under

such scenario.

The existing literature in the catalog industry illustrates that two approaches could be

used for modeling the associate. One is to use a dynamic programming formulation, while

the other is to use a game theoretic framework. Similarly, to model the clients, one approach

is to use historical data to predict future behavior; the other is to model the clients directly

as solving their own utility maximization problem. In addition, the literature shows that the



choice of methods does not change the fundamental result.

In the rest of this thesis we will use the ideas derived from the catalog industry literature

to assist in our modeling. In tackling the problem we focus on the high-end retail environment

and take the perspective of a sales associate, whom we define as follows.

Definition 1. A4 sales associate is an employee who assists a client with his current and all

future purchases for the entire duration he remains a client of the store.

I:n Chapter 2 we formulate the problem of an associate and his clients. Chapters 3

and 4 analyze the single client problem in the infinite and finite horizon cases respectively.

Chapter 5 analyzes the more realistic problem of an associate with multiple clients. We

conclude with managerial insights and suggestions for future work in Chapter 6.





Chapter 2

Modeling An Associate and His

Clients

The high-end retail industry is extremely seasonal and revolves around two distinct seasons

- Spring/Summer and Fall/Winter. Retailers receive all merchandise in the beginning of

each season and the assortment stays on the selling floor until close to the end of the season.

As with all seasonal merchandise, the "leftovers" are discounted and eventually shipped out

of the store. In recent years, high-end retailers are beginning to receive a small set of new

assortment in the middle of the season. These refreshers are timed to coincide with the

cruise and resort season. With this in mind, we model the sales associate problem as a

multiperiod decision making process. In each period, the associate needs to choose a control

policy in order to maximize his long term revenue stream. In this thesis we will focus on a

single control variable which is binary in nature - the contact decision. The choice of control

variable coupled with the periodicity of the industry implies that a sales associate will have

approximately two opportunities to contact clients each season - in the beginning when the

majority of the assortment arrives, and either in the middle of the season if updates are

received, or close to the end when the retailer starts sale. We comment on other available

control variables in §6.2.2.

To fully define the problem one also need to model the customer's response and behavior



under different controls used by associates. There are multiple ways to obtain such a re-

sponse model. Gniil and Shi [13] obtained client responses by directly solving each client's

own utility maximization problem. In the initial stages of this work, an attempt was made

to explicitly characterize the utility of a client, but the attempt was later shelved due to

the intractability of the resulting model. We comment on this further in §6.2.3. An alter-

native method, employed by Simester et al. [15] and Bitran and Mondschein [12], involves

using historical data to estimate transitional probabilities without imposing functional form

assumptions. Such data is not readily available in the high-end retail industry, since an

associate makes his own contact decisions using his client book and rarely keeps track of the

policy and its impact on clients. Having exhausted the two common methods, we decide

to take a different approach in modeling customer's responses in this work. The level of

interaction between an experienced associate and his clients leads us to believe that such an

associate could have a wealth of knowledge relating to customer responses. We attempt to

harvest this by distilling conversations with experienced associates and managers such that

the essence of client behavior is captured.

In this work we do not address competition directly, although one can argue that the

effects of competition are embedded in the observed client responses. We also do not include

the problem of client acquisition and assume that each associate already has a set of existing

clients.

In the remainder of this chapter, we first formulate the simple case of an associate with

a single client in §2.1. We then proceed to the realistic case of an associate with multiple

clients in §2.2. Following this we present the model of a client in §2.3.

2.1 An Associate with a Single Client

In this simple case, we assume that the particular client remains in the associate's client book

for N - 1 periods. In the beginning of each period t, the client starts off in state it and the

associate decides on a contact policy ut. The client responds with a purchase decision and

subsequently transitions into a new state jt+l in the next period. The associate's problem



can then be formulated as

V(it) = max [g(it, ut) + a piutVt+1(jt+1)] (2.1)
utE {0,1}

VN(iN)= 0 (2.2)

where Vt(it) denotes the optimal value function when the client is in state it, ut = 1 denotes

the associate contacting the client, ut = 0 denotes the associate not contacting the client, a

denotes the discount factor, and pijut denotes the probability of the client transitioning from

state i into state j under policy ut. Since the client leaves the system after N - 1 periods,

the terminal cost is set to 0. The associate's single period expected reward is a function of

his contact policy and the client's purchase decision, as expressed in Eq. (2.3).

g(it, Ut) = RPibut - UtC (2.3)

where R is the revenue, pibut is the probability that receiver in state i in period t will make a

purchase when policy ut is adopted, and c is the cost associated with contacting the client,

including the opportunity cost, cost of time and phone call. In this work we assume that

the cost of contact is a constant. In reality, this cost varies by the day of the week and time

of the day. Since an associate could potentially lose a walk-in sale when contacting clients,

the cost of contact is highest when the store is busy.1 We comment on this in §6.2.4.

2.2 An Associate with Multiple Clients

We now turn to the problem of an associate with multiple clients. In this more realistic

case, the associate has a set of clients S (totaling SI) instead of a single client. In the

beginning of each period, the set of clients start off in a vector of states it, where it =

[il, i,, . .. ,iZl]. The associate makes a contact decision for each client, denoted by the vector

1In retail, the busiest days of the week are the weekends, while the busiest hours of the days vary depending
on location.



Ut = [ut, u I ., ut 1], where uu E {0, 1} V s E S. Very often, the associate is limited in

the number of clients that he can or will contact each period. This limitation arises naturally

due to time constraints, or artificially as imposed by management 2 or inventory availability.

The clients respond independently with their own purchase decisions and transition to a new

vector of accessible states jt+l = [if+l, j+,"" , i+J]. The problem can be formulated as

follows, where Vt(it) is the value function of the clients in states it in period t, Mt is the

number of contacts to be made in that period and e is a column unit vector.

Vt(it) = max[g(it, ut) + a Piuut Vt+l(jt+l)] (2.4)
ut

Jt

s.t. ut'e = M (2.5)

VN(iN) = 0 (2.6)

2.3 Modeling the Client Behavior

We began this phase of the research by conducting interviews with associates and man-

agers ([16], [17], [18], [19]) from high-end retail stores in Boston, including Hugo Boss,

Hermes, Gucci and Barney's New York. The goals of the interviews are to understand how

client work is currently performed, why certain methods are used, and to extract common

knowledge about client behavior and purchase pattern. After distilling the conversations,

we find that the experienced associates generally point to three factors that affect client

behavior. The first factor, which we term the purchase saturation effect, is driven by the

price points of the merchandise coupled with decreased loyalty among the clients. Associates

point out that the majority of the clients get saturated and are not likely to purchase con-

secutively for many seasons. The second factor, which we term the repeat purchase effect,

can be explained by the impact of freshness. Clients, either new or ones who have stopped

buying for a couple of seasons, will return to the store and buy continuously for a couple

of seasons in the beginning. The flurry of activity then dies down. The third factor, which

2 Management sets targets periodically in an attempt to maintain some sort of service level to customers.



we term the activation effect, is less recognized than the other two. A small number of

associates mentioned that if they call clients after having not seen them in the store for

awhile, it is quite likely that these clients will end up making a purchase. Once the window

of opportunity passes, it becomes more difficult to get these clients to purchase again.

In order to capture all three effects we choose to represent the state of a client it with a

pair of variables (bt, nrt). bt is defined as the total number of consecutive purchases by time

t, while nrt is defined as the total number of consecutive non-purchases by time t. Using

this representation, the state transition of a client is depicted in Figure 2-1. Since the notion

Figure 2-1: State transitions for a client at time t.

of "consecutive" is often confusing, we illustrate the state transitions with an example. A

newly acquired client starts in the system with state (1, 0). If the client makes a purchase in

this period, he transitions into state (2, 0). In the next period, if this client makes another

purchase, he transitions into state (3, 0). In the subsequent period, if this client does not

make a purchase, he transitions into state (0, 1). From this state, if he does not makes a

purchase, he goes into state (0, 2). In the next period, if the client makes a purchase, he

returns to state (1, 0). This process continues for a total of N periods, upon which the

client will leave the system. Such a state representation, coupled with a time invariant

transitional probability, assumes that a client is memoryless. In other words, we do not

explicitly modeling the effect of the depth of a relationship. §6.2.1 provides suggestions to

include this aspect into the model.



Our state definitions dictate that a particular client can either be in one of the buy states

(bt > 1) or one of the non-buy states (nrt > 1) in any given period. Thus to capture the

behavior, we look at two sets of transitional probabilities. The first set models the behavior

of a client where bt > 1, and the second models the behavior of a client where nrt > 1.

In Section 2.3.1, we propose transitional probabilities that capture the saturation effect.

In Section 2.3.2, we propose transitional probabilities that capture all the aforementioned

behavior. The transitional probabilities are stationary in both cases.

2.3.1 Monotonic Client Behavior

When a particular client exhibits monotonic behavior, we use monotonic transitional prob-

abilities depicted in Figure 2-2 to capture his responses. A different client would exhibit the

same monotonicity in his behavior, but the transitional probability would take on different

values.

Figure 2-2(a) captures the behavior of this client in the buy states. Under monotonic

behavior, the probability of purchase (thus transitioning into a higher buy state) is highest

when the client has made one purchase and decreases monotonically to zero. Thus when

a client has purchased many consecutive times, he is very unlikely to purchase again. In

addition, when the client is being contacted (u = 1), his purchase response is uniformly

higher than when he is not being contacted.

Figure 2-2(b) captures the behavior of this client in one of the non-buy states. Under

monotonic behavior, the probability of non-purchase (thus transitioning into a higher non-

purchase state) approaches one monotonically. Thus at very high non-purchase states, the

client is very unlikely to purchase again. In addition, when the client is being contacted

(u = 1), his non-purchase response is uniformly lower than when he is not being contacted.

2.3.2 Peaking Client Behavior

When a particular client exhibits all aforementioned behavior, we use transitional probabili-

ties depicted in Figure 2-3 to capture his responses. Similarly, a different client would exhibit
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the same peaking behavior, but with the peak shifted and the transitional probabilities taking

on different values.

Figure 2-3(a) models this client in one of the buy states. In this figure, the probability

of purchase is uniformly larger when the client is contacted (u = 1) than otherwise. The

responses are not mononotic, but peaks when the number of consecutive buys equals to two.

Note that the peak occurs under both policies. This is intentional, and is meant to capture

the freshness effect, since a new client will tend to purchase consecutively in the beginning

even without a contact.

Figure 2-3(b) models the same client in one of the non-buy states. The probability of

non-purchase is uniformly larger when the client is not contacted than otherwise. When the

client is not contacted (u = 0), the probability of non-purchase increases with the value of

nr. On the other hand, when the client is contacted (u = 1), the non-purchase probability

dips at nr = 4. In other words, the client is most likely to purchase again if contacted at

nr = 4.
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Chapter 3

A Single Client: Infinite Horizon

Problem

In this chapter, we analyze the infinite horizon version of the problem formulated in Eq. (2.1)-

Eq. (2.2). The motivation behind looking at the infinite horizon problem lies in its elegant

and insightful analysis coupled with implementational simplicity.1 Reformulated as an in-

finite horizon problem, the associate's problem is stated as in Eq. (3.1), where gi, denotes

the expected single stage cost in state i under policy u, and pij, denotes the probability of

transitioning from state i to j under policy u. Figure 3-1 depicts the admissible transitions

for all states.

V(i) = max [gi, + a pijuV(j)] (3.1)
uG {0,1}

Based on this formulation, we derive the structure of the optimal policy, where possible,

for two types of client behaviors. The first behavior we look at is one where the client behaves

monotonically, as illustrated in Figure 2-2. The second type of behavior we investigate is

one 'where the client exhibits a peaking behavior, as illustrated in Figure 2-3. For each type

of client behavior, we analyze the buy states and the non-buy states separately. Recall, by

'O)ptimal policy in infinite horizon problems are mostly stationary.



Figure 3-1: State transitions for the infinite horizon problem. The blue states represent
consecutive buy states while the red states represent consecutive non-buy states.

our state definition, that a client in one of the buy states has bought at least one consecutive

time while a client in one of the non-buy states has stopped buying for at least for one period.

When a client is in one of the buy states, the value of the state - denoted i - is uniquely

determined by the value of b. As illustrated in Figure 3-2(a), upon a purchase, the client

moves into a next state where i = b + 1. Otherwise, the client moves into the state (0, 1).

We thus use b (corresponding to the number of consecutive buys) to denote a unique buy

state and b to denote the non-buy state (0, 1). Figure 3-2(b) illustrates the revenue streams

associated with the client actions using the simplified state notation.

Correspondingly, when a client is in one of the non-buy states, i is uniquely determined

by the value of nr. As illustrated in Figure 3-2(c), upon a non-purchase, the client transitions

into the next state where i = nr + 1. Otherwise, the client transitions into the state (1, 0).

We thus use nr (corresponding to the number of consecutive non-buys) to denote a unique

non-buy state and b to denote the buy state (1,0). Figure 3-2(d) illustrates the revenue

streams associated with the client actions using the simplified state notation.

**R
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The rest of the chapter is organized as follows. §3.1 and §3.2 focus on a monotonic client

in the buy states and non-buy states respectively. §3.3 and §3.4 characterize the optimal

policy for a non-monotonic client in the buy states and the non-buy states, respectively. We

close this chapter by presenting computational results in §3.5.



3.1 Characterization of Optimal Policy for a Mono-

tonic Client in Buy States

We begin by introducing the set of notation used in this section and by stating the assump-

tions invoked when a client is behaving monotonically.

p, (b) = probability of transitioning from state b into b + 1 under policy u,

where u E {0, 1}

Ab,u~ Pl(b) - po(b)

b- state (0,1)

u* = optimal policy

Using the above notation, the expected single stage cost giu is given by

giu = (R - u . c)pu(b) + (-u . c)(1 - pu(b)) (3.2)

= Rp,(b) - u. - c (3.3)

Assumption 1. pi(b) > po(b) V b and p,(b) is convex and non-increasing.

Assumption 2. pl(b) - po(b) is monotonically non-increasing in b. In other words, the

effect of a contact decreases as b increases.

The first step in characterizing an optimal policy involves defining the notion of optimal-

ity. In other words, what is it that makes an associate better off when he contacts a client in

a buy state? Since the associate has binary control, one would expect the optimality of the

control to be determined by a ratio. Proposition 3.1.1 shows that such a ratio does exist.

Proposition 3.1.1. If (pi(b) - po(b)) > C , then u* = 1 at b.
(R+aV(b+1)-aV(b)



Proof.

V(b),=o = Rpo(b) + a [po(b)V(b + 1) + (1 - po(b))V(b)]

V(b),=i = Rpi(b) - c + a [pi(b)V(b + 1) + (1 - p(b))V(b)]

Since u* = 1 when V(b),=l > V(b)u=o, u* = 1 when

Rpi(b) - c + ±a[pi(b)V(b + 1) + (1 - pi(b))V(b)] >

Rpo(b) + a [po(b)V(b + 1) + (1 - po(b))V(b)]

Simplifying the expression gives

(R + aV(b + 1) - aV(b)) (pi(b) - po(b)) > c

The interpretation of Proposition 3.1.1 is rather intuitive. When the client is in state b,

R + aV(b + 1) is the resulting revenue stream if he makes a purchase, while aV(b) is the

resulting revenue stream if he does not make a purchase. Since c is the cost of contact, the

ratio ( +)- ) can be interpreted as a weighted cost of contact. The weighted cost
1 R+aV(b+1)-aV(;)

of contact is inversely proportional to the value function of the next buy state, V(b + 1).

When V(b + 1) is high, the weighted cost of contact for the associate is low. On the other

hand, a low V(b + 1) increases the weighted cost of contact for the associate. The term

pi(b) -po(b) can be thought of as the impact of a contact when the client is in state b. Thus,

when the impact is greater than the weighted cost at state b, it is optimal for an associate

to contact the client.

Having defined the notion of optimality, we need to look at the behavior of the impact of a

contact, Ab,,, and the value function, V(b), for different values of b. Assumption 2 states that

Ab,u is monotonically non-increasing in b. It is then tempting to show that the expression



c is monotonically non-decreasing in b, and that it approaches a limit.2

(R+aV(b+1)-aV(;)
Since R and V(b) are constant in b, we can equivalently show that V(b) is monotonically

non-increasing in b, and that V(b) approaches a limit as b -+ o. The desired properties of

V(b) are shown in Propositions 3.1.2 and 3.1.3.

We now look at how the desired properties of V(b) give rise to the existence of an optimal

threshold policy. Figure 3-3 plots the two components that determine the optimality of a

control. The dashed red line represents the impact of contact, pl(b) - po(b), while the solid

black line represents the weighted cost of contact, (R+V )- It is apparent from
(R+aV(b+1)-aV(;)

the figure that the optimal policy for this particular set of curves is a threshold policy.

It is also apparent that there will be cases where it is optimal to never contact a client.

Propositions 3.1.4 and 3.1.5 establish the optimality of both, namely a never-contact policy

and a threshold policy. In addition, we are also able to show in Proposition 3.1.6 that V(b)

is convex. This result will come in handy in subsequent analysis.

Proposition 3.1.2. limb,,o V(b) = aV(b)

Proof.

V(b) = max Rpo(b) + a [po(b)V(b + 1) + (1 - po(b))V(b)],

Rpi(b) - c + a [pi(b)V(b + 1) + (1 - pi(b)) V(b)]

Since limb_,, po (b) = 0 and limb_0,, Pl (b) = 0

lim V(b) = max{aV(b), -c + aV(b)
b--+oo-

= aV(b)

2Such a combination will lead to the existence of an optimal threshold policy, as explained in the following
paragraph.
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Figure 3-3: Characterization of optimal policy for the buy states.
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Proposition 3.1.3. V(b) is monotonically non-increasing.

Proof. Let Vk(b) denote the value function of state b during iteration k. By the value

iteration algorithm, V(b) = limk->oo Vk(b) [20].

Vk(b + 1)

We assume, for induction, that Vk(b) >

V b and R + aVk(b + 2) > aVk(b). Then,

Vk+l(b) = max Rpo(b) + a [po(b)Vk(b + 1) + (1 - po(b))Vk(b)],

Rpi(b) - c + a [pi(b)Vk(b + 1) + (1 - pl(b))Vk(b)]

= max po(b) [R + aVk(b + 1) - aVk(b)] + aVk(b),

pi(b) [R + aVk(b + 1) - aVk(b)] + aVk(b) -

By monotonicity of the transitional probabilities, po(b) > po(b + 1), and pl(b) _ pi(b + 1)

> max Po(b + 1) [R + aVk(b + 1) - aVk(b)] + aVk(b),

p (b + 1) [R + Vk(b+ 1) - aVk(b)] + aVk(1)- c}

By induction assumption, Vk(b + 1) > Vk(b + 2)

> max po(b + 1)[R + aVk(b + 2)

pi(b + 1) [R + aVk(b + 2) -

- aVk(b)] + aVk(b),

aVk(b)] + aVk(b) - C

- Vk+1(b + 1)

'. Vk+l(b) 2 Vk+l(b + 1). Since V(b) = limk_>o. Vk(b), we conclude that V(b) > V(b + 1),

and that V(b) is monotonicallv non-increasing in b.

Proposition 3.1.4. If R+aV(2-aV(b) > A ,, then it is never optimal to contact.

Proof. > CSR+aV(b+1)-aV(b) - R+aV(2)-aV(b) V b > 1 and Al, > Ab, V b>l1

V b>landu*=0 V b> 1R+C (b+1)-aV(b)""R+ozV(b+l)-aV(b) /b u



Proposition 3.1.5. If 3 bh such that u* = 1 at bh and u* = 0 at bh + 1, then u* =

1 V b<bh andu*=0 V b>bh+l

Proof. By optimality condition at bh, we have R+±V(b~cl)-aV(b) < Abh,U. Further, V b < bh,

Abh,U < Ab,u and +• >
R+aV(bh+1) -aV(b) - R+aV(b+1)-aV(b)

c < Ab,u and u* = 1 V b < bh."" R+aV(b+l)-aV(b)

Similarly, by optimality condition at bh + 1, we have R+aV(bh2)-V(b) > bh+, Further,

V b > bh + 1, AbhU > Abru and C - < CVbb bh + 1, Ab,_ Abn R+aV(bh+2)-aV(b) - R+aV(b+1)-aV(b)

"R+aVc(b+-aV(b) > Ab,u and u* = 0 V b > bh + 1. I

Proposition 3.1.6. V(b) is convex

Proof. The proof is rather lengthy, and relies on the fact that the optimal policy is either a

never contact or a threshold policy. We separately show convexity in the different regions

and at the boundary. Please refer to Appendix A.1 for details. O



3.2 Characterization of Optimal Policy for a Mono-

tonic Client in Non-Buy States

Having characterized the optimal policy for the buy states, we now venture into the non-buy

states. We begin by introducing the set of notation used in this section and by stating the

assumptions invoked when a client is behaving monotonically in these states.

p,(nr) = probability of transitioning from state nr into nr + 1 under policy u,

where u E {0, 1}

Anr,u = Po(nr) - pi(nr)

'b - state (1,0)

Using the above notation, the expected single stage cost gi, is given by

giu = (R - u - c)(1- p,(nr)) + (-u - c)(p,(nr)) (3.4)

= R(1 - p,(nr)) - u - c (3.5)

Assumption 3. po(nr) > pi(nr) V nr and pu(nr) is concave and non decreasing.

Assumption 4. po(nr) - pl (nr) is monotonically non-increasing in nr. In other words, the

effect of a contact decreases as nr increases.

We follow the flow in §3.1 by first defining the notion of optimality for the non-buy states.

We expect, due to the binary nature of an associate's available control, that such notion will

be determined by a ratio. Proposition 3.2.1 confirms our intuition.

Proposition 3.2.1. If (po(nr) - pi(nr)) > y(,+)) then u* = 1 at nr.
(R+aV(b)-aV(nr+1)



Proof.

V(nr),=o = R(1 - po(nr)) + a [po(nr)V(nr + 1) + (1 - po(nr))V(b)]

= -po(nr) [R + aV(b) - aV(nr + 1)] + aV(b) + R
V(nr),•= = R(1 - pi(nr)) - c + c [pi(nr)V(nr + 1) + (1 - pi(nr))V(b)]

= -pi(nr) [R + aV(b) - aV(nr + 1)] + aV(b) + R - c

Since u* = 1 when V(nr),=i > V(nr),=o, u* = 1 when

-pi(nr) [R + aV(b) - aV(nr + 1)] - c >

- po(nr) [R + aV(b) - aV(nr + 1)]

Rearranging terms,

c <[R + aV(b) - aV(nr + 1)] (po(nr) - pi(nr))

Proposition 3.2.1 has the same form as Proposition 3.1.1, and thus offers the same intu-

itive interpretation. When the client is in state nr, R + aV(b) is the resulting revenue stream

if he makes a purchase, while aV(nr + 1) is the resulting revenue stream if he does not make

a purchase. Since c is the cost of contact, the ratio )) can be interpreted as
(R+aV(b)-aV(nr+1)

a weighted cost of contact. This term, unlike when the client is in one of the buy states, is

proportional to the value function of the next non-buy state, V(nr + 1). When V(nr + 1)

is high, the weighted cost of contact is high. On the other hand, when V(nr + 1) is low, the

weighted cost of contact is low as well. Since a contact increases the probability of purchase

and causes the client not to go into the next non-buy state, the weighted cost of contact

is high when the value function of the next non-buy state is high. po(nr) - pl(nr) can be

thought of as the impact of a contact when the client is in state nr. Thus, when the impact

is greater than the weighted cost at state nr, it is optimal for an associate to contact the



client.

Since the expression for optimality hinges on the impact of a contact, Anr,u, and the value

function, V(nr), we.proceed to look at how these two terms behave for different values of

nr. Assumption 4 states that Anr,u is monotonically non increasing in nr. Intuitively, V(nr)

should be non-increasing in nr as well. Recall that nr represents the number of consecutive

non-buys. As such, a high value of nr indicates that the client has not purchased for many

consecutive periods. It thus seems reasonable that the value function associated with such

a client will be non increasing in nr, which we show in Proposition 3.2.2.



Proposition 3.2.2. V(nr) is monotonically non-increasing.

Proof. Let Vk(nr) denote the value function of state nr during iteration k. By the value

iteration algorithm, V(nr) = limk>oo Vk(nr). We assume, for induction, that Vk(nr) >

Vk(nr + 1) V nr and oVk(nr + 1) - aVk(b) - R < 0. Then,

Vk+l(nr) = max{R(1 - po(nr)) + a [po(nr)Vknr ) (1 - (nr))Vk(b),

R(1 - pi(nr)) -c + a [pl(nr)Vk(nr 1) ± (1 - pl(nr))Vk(b)]

=max -po(nr) [-aVk(nr + 1) + aVk(b) + R] + aVk(b) + R,

- PI(nr) [-aVk(nr T 1) + aVk(b) + R] + aVk(b) + R - c

By monotonicity of the transitional probabilities and induction assumption

po(nr) 5 po(nr + 1)

pi(nr) < pl(nr + 1)

-aVk(nr + 1) + aVk(b) + R < -aVk(nr + 2) + aVk(b) + R

po(nr) [-aVk(nr + 1) + aVk(b) + R] 5 po(nr + 1) [-aVk(nr + 2) + aVk(b) + R]

pi(nr) [-aVk(nr + 1) + aVk(b) + R] : pl(nr + 1) [-aVk(nr + 2) + aVk(b) + R]

-po(nr) [-aVk(nr + 1) + aVk(b) + R] > -po(nr + 1) [-aVk(nr + 2) + aVk(b) + R]

-pi(nr) [-aVk(nr + 1) + aVk(b) + R] Ž -pi(nr + 1) [-aVk(nr + 2) + aVk(b) + R]

We then have the following inequality

Vk+l(nr)) max (nr + 1) (nr + 2) - aVk(b) - R] + aVk(b) + R,

pi(nr + 1) [Vk(nr + 2)- aVk(b)- R] + aVk(b)+ R - c

= Vk+l(nr + 1)



.'. Vk1+(nr) + Vk+,(nr + 1). Since V(nr) = limk_>o Vk(nr), we conclude that V(nr) >

V(nr + 1), and that V(nr) is monotonically non-increasing in nr. Ol

We now look at what the two components of Proposition 3.2.1 reveal about the form

of optimal policy. Unlike the case where the client is in the buy state (§3.1), the ratio

that determines optimality for the non-buy states, ( , is monotonically non-
R+aV(b)-aV(nr+1)

increasing in nr due to the minus sign preceding the term caV(nr + 1). Coupled with

the behavior of Ar,l,, the form of optimal policy is not apparent since both terms are

monotonically non increasing in nr. Even so, there are two conjectures regarding optimal

policy that can be made. One would guess that it is not optimal for an associate to contact

a client if such client is in a state with very high nr. In addition, if the largest impact of

contact is less than the smallest weighted cost, one would guess that it is never optimal to

contact such a client. We show that these two conjectures are true in Propositions 3.2.3

and 3.2.4. Out of curiosity, in §3.2.1 we investigate the conditions under which an optimal

threshold policy will result.

Proposition 3.2.3. As nr -- oc, u* -+ 0.

Proof. As nr -- oc, both pl(nr) and po(nr) approach 1.

V(nr) = max{ -po(nr) [R + aV(b) - aV(nr + 1)] + aV(b) + R

- pli(nr) [R + aV(b) - aV(nr + 1)] + aV(b) + R - c}

At large nr,

V(nr) = max{aV(nr + 1), aV(nr + 1) - c}

.. u* = 0 at large nr. L

Proposition 3.2.4. If minn,. +V()V( ) > A , u* = 0 V nr



Proof. Since both V(nr) and AnT,L are monotonically non-increasing, we have V nr

c c> min
(R + aV(b) - aV(nr + 1)) nr (R + aV(b) - aV(nr + 1))

max Anr,u = A1,u > Anr,unr

3.2.1 On the Optimality of a Threshold Policy

Previously, we have shown that both An,,u and r+l)) are monotonically non-
(R+aV(b)-aV(nr+1)

increasing. In addition, we have also shown that the optimal policy, as nr --, oo, is to not

contact. Thus a threshold policy is optimal if i) contacting a client in the first non-buy state

(when nr = 1) is known to be optimal and ii) V(nr) is convex. Under these two conditions,

the terms An,, and ((n+l)) will only crossover once, as illustrated by the red
(R+aV(b)-aV(nr+1)

dashed line and black solid line respectively in Figure 3-4. We formalize this in Lemma

3.2.1.

Lemma 3.2.1. If u* = 1 at nr = 1 and V(nr) is convex, then a threshold policy exists and

it is optimal.

Proof. We show by contradiction. Denote h(nr) = ( ()-V(+)) h(nrOO) the value
(R+aV(b)-aV(nr+1)

of h(nr) as nr -+ 00 and An,,., the value of An,u as nr -- oc. If there is no crossover

(i.e,. threshold policy does not exist), Anr~,k _ h(nr,), which is a contradiction since at

An,,,k < h(nr0) by Proposition 3.2.3. O

Motivated by Lemma 3.2.1, we now spend some time to establish the convexity of V(nr).

Unlike in the buy states, the optimal policy is not proven to be a threshold policy. As

such, we cannot separate V(nr) into two regions and show convexity for both regions and

for the boundary. A more general approach for showing convexity of V(nr) is needed. For

exposition clarity we make a minor notation modification here and explicitly denote V*(nr)

as the optimal value function for a client in state nr. We first define V to be a class of all



po(nr)-pl(nr)

11 nr

Figure 3-4: Optimal policy for non-buy states.

functions V(nr) which are non-increasing and convex. Next, under the additional assumption

that p,(nr) is such that V(nr) = -p,(nr) [R + aV(b) - aV(nr + 1)] E V if V(nr + 1) E V,

Lemma 3.2.2 establishes the convexity of V*(nr).

Lemma 3.2.2. V*(nr) E V.

Proof. We show by value iteration. Define Vo(nr) = R+aV(b) -po(nr) [R+aV(b) -aV(nr+

1)] and Vl(nr) = R+aV(b) -c-pl(nr) [Ro+aV(b) -aV(nr + 1)]. Since convexity is closed

under maximization, we need to show that Vo(nr) and V1 (nr) both E V.

We assume for induction that Vk(nr + 1) is convex and monotonically non-increasing and

express Vk+l(nr) as

Vk+l(nr) = max{R + aV(b) - po(nr) [R + aV(b) - aVk(nr + 1)],

R + aV(b) - c - pi(nr) [R + aV(b) - aVk(nr + 1)]}

Since Vk(nr) is convex and monotonically non-increasing, -po(nr) [R + aV(b) - aVk(nr +

1)] and -pl(nr) [R + aV(b) - aVk(nr + 1)] are both monotonically non-increasing and
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convex by assumption. Since convexity is closed under addition, Vk+1(nr) E V.

starting from any Vo E V, we have Vk+1 (nr) convex and monotonically non-increasing.

limk_-. Vk+1 (nr) = V*(nr), V*(nr) is monotonically non-increasing and convex.

Thus

Since

O

The assumption required for Lemma 3.2.2 to hold is quite strong and it is not obviously

satisfied by any p,(nr). Driven by our inability to show that V(nr) is convex, we turn to

computational experiments. The computational results show that given the concavity in the

response probabilities, V(nr) is indeed not always convex. As a result, the optimal policy is

also not guaranteed to be a threshold policy. Figure 3-5, in which the responses are modeled

with a quadratic function, illustrates one such example.
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Figure 3-5: Example of a non-threshold optimal policy.
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3.3 Characterization of Optimal Policy for a Non-Monotonic

Client in Buy States

In §3.1 the optimal policy for an associate when the client behaves monotonically in the buy

states is shown to be either a threshold policy or a never-contact policy. In this section, we

look at how a non-monotonic client behavior affects the form of optimal policy. We begin by

introducing the set of notations used and by stating the assumptions invoked when a client

exhibits a peaking behavior in the buy states.

p,(b) = probability of transitioning from state b into b + 1 under policy u,

where u E {0, 1}

Ab,u = pl(b) - po(b)

b == arg maxp,(b)
b

S== arg max V(b)
b

b- state (0,1)

V(b), = value function in state b under the assumption that u is optimal

BC = set of buy states where b + 2 < b < b + 1

Assumption 5. pi(b) and po(b) both exhibit peaking behaviors with a maximum at b.

Assumption 6. pi(b) - po(b) is maximum at b. In addition, pi(b) - po(b) is concave, non-

decreasing V 1 < b < b and non-increasing for b > b. In other words, the effect of a contact

increases towards the peak at b before decreasing with b.

Since the optimality condition in Proposition 3.1.1 remains unchanged and Ab,u is dic-

tated by Assumption 6, we proceed to look at the behavior of V(b) for different values of b.

Referring back to the transitional probabilities depicted in Figure 2-3(a), one would guess

that due to the peaking in the transitional probabilities, it is unlikely that V(b) will always

be monotonically non-increasing. If so, will it be unimodal, or will it have multiple peaks?



We answer such questions in §3.3.1.

3.3.1 Property of the Value Function V(b)

We begin by noting that Ab,u behaves identically to the monotonic case for all values of

b > b. As such, we know that V(b) will be monotonically non-increasing for b > b. We thus

focus on the region of V(b) where 1 < b b - 1. To establish unimodality of V(b), we need

to show that if there is a peak b, where 1 < b < b, then V(b) is less than V(b) V b < b.

When b = 1, V(b) reduces to a monotonically non-increasing function. When b = 2, V(b)

can only be either monotonically non-increasing or unimodal. Thus we are only concerned

about the case where the peak occurs anywhere in between [3, b]. Lemma 3.3.1 shows that in

that range, the value function V(b) will be monotonically non-decreasing in b for 1 < b < b.

With that, Proposition 3.3.1 shows that V(b) is unimodal.

Lemma 3.3.1. If V(b) > V(b - 1), then V(b - 1) V(b - 2) V 3 b b.

Proof.

V(b - 1) = max{po(b - 1)[R + aV(b) - aV(b)] + cV(b),

pi(b - 1)[R + aV(b) - aV(b)] + aV(b) - c}

> max{po(b - 2)[R + cV(b) - aV(b)] + aV(b),

Pi(b - 2)[R + aV(b) - aV(b)] + aV(b) - c}

> max{po(b - 2)[R + aV(b - 1) - aV(b)] + aV(b),

pl(b - 2) [R + aV(b - 1) - aV(b)] + aV(b) - c}

= V(b - 2)

The first inequality is true because pl(b) 2 pl(b - 1) and po(b) > po(b - 1) V b < b. The

second inequality is true because V(b) > V(b - 1). O

Proposition 3.3.1. V(b) is unimodal in b with b = argmaxb V(b), where 1 < b < b.



Proof. We show that V(b) is unimodal for i) b = 1, ii) = 2 and iii) 3 < b < b.

b = 1 is trivial, V(b) reduces to a monotonically non-increasing function. b = 2 is trivial as

well. Lemma 3.3.1 takes care of case (iii). Starting from a peak value b, the value function

preceding it will be monotonically non-decreasing in b. OE

Knowing that V(b) is unimodal, we now turn to look at when the peak b occurs. In-

tuitively, the value function exhibits such peaking behavior due to the properties of the

transitional probabilities. Take any triplet V(b - 1), V(b), V(b + 1), where V(b) > V(b + 1)

and p,(b - 1) 5 p,(b). The sufficient conditions for a peak to occur at b are

po(b - 1) R + V(b + 1) - aV(b)
po (b) R + aV(b) - aV(b)

pi (b - 1) R + aV(b + 1) - aV(b)
< (3.7)

Pi(b) - R + V(b) - aV(b)

Thus when the ratio pu(b-1) is small enough (caused by a relatively significant reduction inpu(b)

p,(b - 1)), there will be a peak at b. We analyze the necessary conditions for such peaking

to occur in Appendix B.

It turns out that the unimodality of V(b) greatly assists, but is not sufficient, in charac-

terizing the optimal policies. For reasons that will become apparent in §3.3.2, we show that

V(b) is concave and non-increasing in [b, b + 1]. In Lemmas 3.3.2 to 3.3.5, we first show that

a triplet of value functions always satisfy concavity when all states in the triplet belong to

B3 regardless of the policy. The first triplet occurs when b = b + 1, as shown by the blue

boxes in Figure 3-6. As we move one state to the left, illustrated by the green boxes in the

same figure, all possible states are also concave by the same set of lemmas. Thus V(b) is

concave in B,, as stated in Lemma 3.3.6.

Lemma 3.3.2. V(b - 2)u=1 - V(b - 1)u,=1 V(b - 1)u=1 - V(b) V b + 2 < b < b + 1



b+)1

Figure 3-6: Partial concavity of V(b).

Proof. Let pl(b - 2) + J1 = pi(b - 1). Then 61 > 0 V b Bc.

V(b - 2),=1 - V(b - 1),=1 = pi(b - 2)[R + aV(b - 1),=1 - aV(b)]

- pi(b - 1)[R + aV(b) - aV(b)]



Substituting pl (b - 2),

= (pi(b - 1) - 61 )[R + aV(b - 1),= 1 - aV(b)]-

pi (b - 1) [R + aV(b) - aV(b)]

= pI(b - 1)[aV(b - 1),= 1 - aV(b)] - 61 [R + aV(b - 1),= 1 - aV(b)]

"< p(b - 1)[aV(b - 1)=1- aV(b)]

"< V(b- 1)u=l- V(b)

The first inequality is true because 61 [R + aV(b - 1),=1 - aV(b)] > 0, the second inequality

true because pl(b - 1) < 1 and a < 1.

Lemma 3.3.3. V(b - 2),=1 - V(b - 1)U=o < V(b - 1) =o - V(b) V b+2 <b<b+

Proof.

V(b -- 2)U=1 - V(b - 1)U,= = pi(b - 2)[R + aV(b - 1)=o - aV(b)] - c

- po(b - 1)[R + aV(b) - aV(b)]

Since by assumption, u* = 0 at b - 1, we have R+V(b)-oV(b) > p(b - 1) - po(b - 1).

addition, let p l (b - 2) + 61 = pl(b - 1). Then 6 1 > 0 V bE B,.

.. pl(b - 2)[R + aV(b - 1),=o - aV(b)] - c - po(b - 1)[R + aV(b) - aV(b)]

< pl(b - 2) [R + aV(b - 1),=o - aV(b)] - pi(b - 1) [R + aV(b) - aV(b)]

= (pi(b - 1) - 61 )[R + aV(b - 1),=o - aV(b)] - pi(b - 1)[R + aV(b) - aV(b)]

" pl(b - 1)[aV(b - 1)u=o - aV(b)]

< V7(b1- 1),=o - V(b)

The first inequality is true because 61[R + aV(b - 1),=o - aV(b)] > 0, the second inequality

true because pl (b - 1) < 1 and a < 1. O

Lemma 3.3.4. V(b - 2)u=o - V(b - 1)=o < V(b - 1) =o - V(b) V b+2<b<Sb+ 1



Proof. Let po(b - 2) + 61 = Po(b - 1). Then 61 > 0 V b E B,.

V(b - 2),=o - V(b - 1),=o = po(b - 2)[R + aV(b - 1)>=o - aV(b)]

- po(b - 1)[R + aV(b) - WV(b)]

Substituting po(b - 2),

=(po(b - 1) - 61)[R + aV(b - 1)u=o - aV(b)] - po(b - 1)[R + aV(b) - aV(b)]

=po(b - 1)[aV(b - 1),=o - aV(b)] - 61[R + oV(b - 1),=o - aV(b)]

<po(b - 1)[aV(b - I)U=o - aV(b)]

<V(b - 1),=o - V(b)

The first inequality is true because 61 [R + aV(b - 1)u=o - cV(b)] > 0, the second inequality

true because po(b - 1) < 1 and a < 1. O

Lemma 3.3.5. V(b - 2)u=o - V(b - 1)u,=1 V(b - 1),=1 - V(b) V b+2<b<bp+l

Proof.

V(b - 2)u=o - V(b - 1)u,= = po(b - 2)[R + aV(b - 1)u= 1 - aV(b)]

- pi(b - 1)[R + aV(b) - aV(b)] + c

Since by assumption, u* = 1 at b - 1, we have RV-aV((b) < pl(b - 1) - po(b - 1).

addition, let pl(b - 2) + 61 = pl(b - 1). Then 6 1 > 0 V bE BC.

.. po(b - 2)[R + aV(b - 1)u,= - OV(b)] - pi(b - 1)[R + aV(b) - aV(b)] + c

< po(b - 2)[R + (V(b - 1),=1 - aV(b)] - po(b - 1)[R + aV(b) - aV(b)]

- (po(b - 1) - 61)[R + aV(b - 1)u=1

< po(b - 1)[aV(b - 1)u= 1 - •V(b)]

< V(b - 1),=I - V(b)

- aV(b)] - po(b - 1)[R + aV(b) - cV(b)]



The first inequality is true because 61[R + aV(b - 1),=1 - aV(b)] > 0, the second inequality

is true because po(b - 1) < 1 and a < 1. O

Lemma 3.3.6. V(b) is concave for b E Be

Proof. Lemmas 3.3.2 to 3.3.5 establish the concavity of each triplet belonging to B, for all

combinations of policies. The concavity of the region follows directly. O

3.3.2 Optimal Policy for Unimodal V(b)

Having established the unimodality and concavity of V(b) for b E B" when the client exhibits

a peaking behavior in the buy states, we are now able to characterize the optimal policy for

the associate. We begin by looking at when it is optimal to never contact a client. Since

the maximum impact of contact occurs at b and the minimum weighted cost R+aV(b+l)-V(b)
occurs at b = b, we expect that the optimal policy is to never contact when the maximum

impact is smaller than the minimum weighted cost. Proposition 3.3.2 confirms this.

Proposition 3.3.2. When R v( > u* = 0 V b> 1R+aV(b)-aV(b) t'ýkb
Proof. R (b V(b) >  - V b > 1 and A&, > Ab,u V b> 1.

R+aV(b+1)-oV(b) - R+aV(b)-aV(b)
. .u*=0 V b>1. O

Given the property of the value function and the peaking in the client behavior, it seems

unlikely that the optimal policy will always be threshold, as in §3.1. Instead, it could be that

the optimal policy has two thresholds: a lower threshold, where the policy switches from a

no-contact to a contact, and an upper threshold, where the policy switches from a contact

back to no-contact. In order to show that such a quasi-concave policy is optimal, we separate

the states into three regions, namely b < 1 - , b - 1 < b < b and b > b. For b < b - 1, we

show in Propositions 3.3.3 and 3.3.4 that the optimal policy is either a never-contact policy

or a threshold. Similarly, for b > b, as shown previously in Propositions 3.1.4 and 3.1.5,

the optimal policy is either a never-contact policy or a threshold policy. In the last region,

where the states fall in b - 1 < b < b, we show in Proposition 3.3.5 that the optimal policy

is either a never-contact policy, a threshold policy, or a quasi-concave policy.



Proposition 3.3.3. If u* = O at b - 1, then u* = O V 1 < b < b - 1.

Proof. u* = 0 at b - 1 dictates that V( V() > A•' Since A > Ab, 1R+aV(b)-aV(nr) -,-1,u

b < -1 and < V l<b<b-1,wehave CR+aV(b)-aV(nr) - R+aV(b)-aV(nr) R+aV(b)-caV(nr)

Ab,u V 1 b <b-1. Thus, u* =0 V 1 b b - 1. The densely shaded region in

Figure 3-7(b) illustrates this pictorially. O

Proposition 3.3.4. If 3 b, K b - 1 such that u* = 1 at b, and u* = 0 at b, - 1, then

u* =0 V 1 • b < b1 - 1 and u* = 1 V b 1 • b _ b- 1 and a threshold policy exists.

Proof. At b1, C V(bi•) < Ab,, u" Since Ab,u Ž Ab,uV b <_ b < b and R±>V(btl+)-aV(nr)

R+V(b)-cV(nr)V b < b < b-1, we have u* = 1V b, 5 b b- 1. At b-1, R+CV(b-V(n

Ab,_l,u. Since Ab,u • Ab, - 1,uV 1 < b < b1 - 1 and R+V(b)-V(nr) R+(b+V 1 <

b < b - 1, we have u* = OV l < b < b1 - 1. The densely shaded region in Figure 3-7(a)

illustrates this pictorially. O

Proposition 3.3.5. The optimal policy where b - 1 < b < b is one of the following:

1. u*=O V b-l<b<b

2. 3 bh such that u* = 1 V b - 1 < b < bh and u* =O V bh + 1 < b < b

3. 3 bi such that u* = OV b - 1 < b < b, - 1 and u* = 1 V b• < b < b

4. u* = 1 V b < b bh and u* = O else

Proof. We separate into two cases. In the first case, the optimal policy is to contact in state

b - 1. In the second case, the optimal policy is not to contact in state b - 1.

Case 1: If u* = 1 at b - 1 When in this case, there are two possible forms of optimal

policies as illustrated in the sparsely shaded region of Figure 3-7(a). The first policy, illus-

trated by the dotted red line, has a single crossover point bh < b - 1 (due to the convexity of

RaV(b)-V(nr) and the concavity of Ab,u in this particular region) such that u* = 1 V b < bh

and u* = 0 V b> bh + 1. The second policy, illustrated by the dashed blue line, will not



exhibit such a crossover point, and by the convexity of R+CV(b -V(nr) and the concavity of

Ab,U in this particular region, will have u* = 1 V b - 1 b < b _ b.

Case 2: If u* = 0 at 6 - 1 When in this case, there are three possible forms of optimal

policy as illustrated in the sparsely shaded region of Figure 3-7(b). The first policy, indicated

by the dotted red line, occurs when there is no intersection between the curves Ab,u and

R+aV(b)-V(nr), resulting in u* = 0 V b - 1 < b < b. The second policy, indicated by the

dashed blue line, has a single crossover point b1 _ 6, due to the convexity of R+V(-V(n)

and the concavity of Ab,u in this particular region, such that u* = 1 V b, < b < b. The

last policy, indicated by the finely dashed green line, occurs when there are two crossover

points, also due to the convexity of R+V(b~ V(nr) and the concavity of Ab,u in this particular

region, such that u* = 1 bi < b < bh and u* = 1 else. O

Combining the characterization for all three regions results in either a never-contact

policy or a quasi-concave policy for a unimodal V(b).
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Figure 3-7: Possible optimal policies for buy states under peaking client behavior.
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3.4 Characterization of Optimal Policy for a Non-Monotonic

Client in Non-Buy States

In §3.2, we were unable to say much about the optimal policy when the client behaves

monotonically in the non-buy states, other than that the threshold policy is not necessarily

optimal. We suspect that the optimal policy when the client exhibits a peaking behavior will

be more challenging to characterize. We begin, as usual, by introducing the set of notations

used and by stating the assumptions invoked when the client exhibits a peaking behavior in

the non-buy states.

p,(nr) = probability of transitioning from state nr into nr + 1 under policy u,

where u E {0, 11

Anr,, = po(nr) - Pl(nr)

rir = arg max p,(nr)
nr

rir = arg max V(nr)
nr

b - state (1,0)

V(nr), = value function in state nr under the assumption that u is optimal

Assumption 7. po(nr) is concave and non-decreasing while pi(nr) exhibit peaking behavior

with a minimum at frr.

Assumption 8. po(nr) - pi(nr) is maximum at r7r. In addition, po(nr) - pi(nr) is non-

decreasing V 1 < nr < rfr and non-increasing for nr > 7rr. In other words, the effect of a

contact peaks at rnr before decreasing with nr.

The optimality condition in Proposition 3.2.1 remains unchanged and An,,u is dictated

by Assumption 8. Thus we turn to characterizing V(nr) as the first step. To gain some

insights to V(nr), we refer back to the client behavior in Figure 2-3(b). The two responses

corresponding to when the client is contacted (u = 1) and when the client is not contacted



(u = 0) do not move in tandem. In other words, it is not obvious, unlike in §3.3, that the

value function will be unimodal. We look at why this is so in §3.4.1.

3.4.1 Property of the Value Function V(nr)

Since we have shown in §3.2 that V(nr) is monotonically non-increasing for nr > rir, we

focus on characterizing V(nr) for nr < ir. We first investigate the unimodality of V(nr).

In order for V(nr) to be unimodal, we need to show, for all possible policy combinations,

that if there is a peak at rnr _< rr, the value function preceding it will be monotonically

non-decreasing in nr. Unfortunately one cannot conclusively make such a statement. For a

general state nr < nir, the value function is given in Eq. (3.8).

V(nr) = max{-pi(nr)[R + aV(b) - aV(nr + 1)] + oaV(b) + R - c,
(3.8)

- po(nr)[R + WV(b) - aV(nr + 1)] + aV(b) + R}

If the peak rnr occurs at nr, we have V(nr) > V(nr + 1). Consider the case where u* = 0 for

both nr and nr - 1. The value functions for both states are given by Eq. (3.9) and Eq. (3.10)

V(nr),=o = -po(nr)[R + aV(b) - aV(nr + 1)] + aV(b) + R (3.9)

V(nr - 1),=o = -po(nr - 1)[R + aV(b) - aV(nr)] + aV(b) + R (3.10)

Since po(nr - 1) < po(nr) V nr < rr , V(nr),=o > V(nr - 1),,=0o is not always true.

Computational results confirm that there are cases when V(nr) will not be unimodal. Figure

3-8 illustrates one such example.

3.4.2 Optimal Policy Characterization

V(nr) being non-unimodal makes the optimal policy very difficult to characterize. Proposi-

tion 3.2.4 still applies for determining the circumstances under which a never contact policy

is optimal. It turns out we can also show that when the optimal policy at rir is not to
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Figure 3-8: Computational example of a non-unimodal V(nr).

contact, it is also optimal not to contact for all values of nr < fir since the maximum impact

of contact occurs at fir. We show this in Proposition 3.4.1 and Lemmas 3.4.1 to 3.4.2.

Lemma 3.4.1. If u* = 0 at n^r, then u* = 0 at fr - 1

Proof. u* = 0 at frr implies that R+aV(b)CaV(7r.+1) > arf.
>  1 . In addition, Ar, > An7 l,. Thus, we have

-V(rT7) - -V(r+1) n^-,u

Since V(nrr) > V(nrr + 1),

R + aV(b) - aV(nir) R + aV(b) - aV(rr + 1)> An'r,u > Anr--l,u

and u* = 0 at nr^ - 1.

Lemma 3.4.2. V(nr - 1),=o > V(nr),=o if V(nr) > V(nr + 1).



Proof.

V(nr - 1),,=o = -po(nr - 1) [R + aV(b) - aV(nr)] + aV(b) + R

V(nr),=o = -po(nr) [R + aV(b) - aV(nr + 1)] + aV(b) + R

(3.11)

(3.12)

Since V(nr) > V(nr + 1) and po(nr - 1) < po(nr), we have V(nr - 1),,=o > V(nr),=o.

Proposition 3.4.1. If u* = 0 at rir, then u* = 0 V nr < rr.

Proof. We showed in Lemma 3.4.1 that u* = 0 at Trr implies u* = 0 at rr- 1. This means that

V(rir - 1) = V(Trr - 1)U=o. We also showed in Lemma 3.4.2 that V(fir - 1)u=o > V(nrr)•=O

is always true. Knowing that V(rir - 1) = V(rir - 1)u=o > V(Trr)u=o, we have the following

R + aV(b) - aV(lr - 1)
c

R + aV(b) - aV(fr) nr-1,u

and u* = 0 at rir - 2. Further, V(rir - 2)U=o > V(rir - 1)U=o when V(rir - 1) > V(dr) by

Lemma 3.4.2. u* = 0 at dir - 3 follows. This is true V k where rir - k > 0.

> nA1r-22,u



3.5 Computational Results

The size of the state space enables computation of the optimal policy for a single client

when an absorbing state is defined. Figure 3-9 illustrates the state transitions with the

absorbing state. A buy state with the number of consecutive buys of b,,x will transition

into the non-buy state (0, 1) deterministically. A state with non-buys exceeding nrmax will

transition probabilistically into the absorbing state upon a non-purchase. When this occurs,

the client has not purchased for many consecutive periods and will not return in the future.

We computed the optimal policy using value iteration algorithm [20]. Figures 3-10 to 3-

e~9.

I

Figure 3-9: State transitions for the infinite horizon problem with an absorbing state. The
blue states represent consecutive buy states while the red states represent consecutive non-
buy states.

12 illustrate the optimal policy towards a client who exhibits a non-monotonic purchase

behavior for different values of cost of contact, ' c. For example, if the cost of contact is

relatively low, the associate should only contact when this particular client has purchased

one or two consecutive times. The policy also points out that the associate should continue

to activate the client if such client has not purchased for many consecutive periods. We note

1000

,.Ooolý

I
L

· · · I
Iqu



that the forms of the optimal policies for the buy states are either threshold or never-contact,

which coincides with the theoretical characterization of optimal policy. On the other hand,

the optimal policies for the non-buy states are not always threshold.

Buy State Optimal Policy, c =10 r = 100

Buy State

Buy State Optimal Policy, c =10 r = 100

1 2 3 4 5 6
Non Buy State

7 8 9 10

Figure 3-10: Optimal policy for a client when R = 100 and c = 10.

In the next set of computations we looked at the impact of a low discount factor -

emulating a short-term oriented associate - on the optimal policy. Not surprisingly, we find

that the low discount factor shifts the threshold of the optimal policy but does not change

the form of the optimal policy. Figures 3-13 to 3-15 illustrate the optimal policy for the

same client when a = 0.3.
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Buy State Optimal Policy, c =20 r = 100

2 3 4 5 6
Buy State

Non Buy State

Figure 3-11: Optimal policy for a client when R = 100 and c = 20.

Buy State Optimal Policy, c =30 r = 100

4 5 6
Buy State

7 8 9

Buy State Optimal Policy, c =30 r = 100

Non Buy State

Figure 3-12: Optimal policy for a client when R = 100 and c = 30.
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Buy State Optimal Policy, c =10 r = 100

2 3 4
Buy State

Non Buy State

Figure 3-13: Optimal policy for a

0.6

0.2

UI

client when R = 100, c = 10 and a = 0.3.

Buy State Optimal Policy, c =20 r = 100

2 3 4 5 6 7 8 9 1
Buy State

Buy State Optimal Policy, c =20 r = 100
1 i,

ITT T 1I'I
I I I I I
I I I I I I
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1 2 3 4 5 6

Non Buy State

Figure 3-14: Optimal policy for a client when R = 100, c = 20 and a = 0.3.
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Buy State Optimal Policy, c =30 r = 100

1 2 3 4 5 6 7 8 9
Buy State

Buy State Optimal Policy, c =30 r = 100

ci - 1 1 16 1 ________________

3 4 5 6
Non Buy State

Figure 3-15: Optimal policy for a client when R = 100, c = 30 and a = 0.3.
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3.5.1 Insights

It is worthwhile to pause and understand the insights these results reveal. For each single

client, we have provided a method for an associate to determine when it is optimal to

contact a client. The optimal policy takes a very simple form. Towards a client who has

not purchased for many consecutive periods, the policy guides the associate as to when to

start reactivating and when to give up. On the other hand, towards a client who has been

purchasing for consecutive periods, it guides the associate as to when to stop pestering.

Interestingly, the policy also seems to suggest the importance of reactivating a client, as

illustrated by the number of non-buy states in which it is optimal to contact. Lastly, the

results confirm the inverse relationship between the cost and the number of contacts initiated.

As the cost increases, the results indicate that the number of states where it is optimal to

contact decreases.

The question that follows, naturally, is "What is the impact of the optimal policy?"

To gauge such an impact, we compare the lifetime value of a client under some commonly

practiced policies. For the extremely diligent associates, we assume that they will always

call; for the extremely lazy associates, we assume that they never call and focus on walk-in

clients instead; for the "smart" associates, we assume that they will chase after the repeat

purchase clients; finally for the fickle associates, we assume that they use a random policy.

Table 3.1 illustrates the relative performance of these policies under varying cost of contact.

The best heuristic in each column is boldfaced while the worst is italicized. We first note

Policy I ~ -= .2 E = .3 E = .4
Contact all 0.9921 0.9323 0.7536 0.5360

Never Contact 0.2450 0.2873 0.3087 0.3273
Contact Buys Only 0.3240 0.3272 0.2951 0.2529

Random 0.7291 0.7644 0.7243 0.6650
Optimal Lifetime Value 1014.1790 865.0606 805.0540 759.2720

Table 3.1: Relative (to optimal) performance of various policies.

that when the cost of contact is very low, the extremely diligent associate performs rather



well. Unfortunately, the performance decreases drastically with increasing cost. The lazy

associate does not fare very well, for his performance is around 30% of the optimal policy.

The "smart" associate does not fare well either since he fails to grasp the importance of

reactivation. The fickle associate performs relatively well since a client is occasionally and

randomly activated.

When the discount factor is low, a different picture emerges. Table 3.2 illustrates the

relative performance for the same client when a = 0.3. The best heuristic in each column

is boldfaced while the worst is italicized. We first note that the optimal lifetime value is

small. Its value is also close to the expected single stage cost since revenue in the future is

heavily discounted.3 Next, we note that the lazy associate does well, especially when the

relative cost of contact is high. The "smart" associate and the extremely diligent associate

both perform well under low relative cost of contact, but poorly under high relative cost of

contact.

Policy = .1 = .2 E= .3 = .4F Policy R R R R _

Contact all 0.9999 0.9426 0.7126 0.4621
Never Contact 0.7982 0.9504 0.9749 0.9830

Contact Buys Only 0.9575 0.9258 0.7300 0.5145
Random 0.8307 0.9522 0.9390 0.9087

Optimal Lifetime Value 68.6040 57.6210 56.1727 55.7083

Table 3.2: Relative (to optimal) performance of various policies when a = 0.3

The contrasts between the relative performance of associates under two different values of

a are rather interesting. If one were to assume that the future value of a client is insignificant,

then the commonly practiced policy of contacting clients when they have purchased is actually

close to optimal when the cost of contact is low. When the cost of contact is high, the

associates are better off never contacting a client. Unfortunately, the future value of a client

is often very significant. In following the commonly practiced policies, the associates are

letting go of a significant opportunity.

3When a approaches 0, the problem reduces to a single stage problem.





Chapter 4

A Single Client: Finite Horizon

Problem

Having analyzed the infinite horizon problem, we now look into the finite horizon problem

as formulated in Eq. (2.1) - Eq. (2.2). Figure 4-1 depicts the evolution of the client as he

moves through the system. A client enters the system in state (1,0) at time t = 1. In the

next period, depending on his action, he will either move into the next buy state or the

non-buy state. For reasons similar to Chapter 3, we analyze the buy states and the non-buy

states separately in §4.1 and §4.2. The same set of notation is used, with the exception that

the value functions are now indexed by time t. Since the transitional probabilities are time

invariant, Assumptions 1 to 8 remain valid as well. We close this chapter with computational

results in §4.3.

4.1 Characterization of Optimal Policy for a Client in

the Buy States

Rather than being time invariant, we expect the optimality condition of a policy to be

indexed by time. In addition, we expect that such optimality be determined by a ratio.

Proposition 4.1.1 illustrates this mathematically. When the client is in the final period, an
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Figure 4-1: State transitions for a client for the finite horizon problem.

associate's policy should only be determined by the impact of a contact and the ratio of cost

over revenue. Corollary 4.1.1 confirms this.

Proposition 4.1.1. If Ab,u R+a±V (b 1)-acVt(b) at time t, then u* = 1 at b.

Proof. Let Vt(b),=o and Vt(b)u=l denote the value function at time t when the associate does

not contact (u=O) and contact (u = 1) respectively in a buy state b.

Vt(b)u=o = Rpo(b) + a [po(b)Vt+l(b + 1) + (1 - po(b))Vt+4(b)]

t(b)u=1 = Rp,(b) - c + a [p1 (b)V++1(b + 1) + (1 - po(b))V++ 1()]
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Since u* = 1 when Vt(b)= 1l > Vt(b)=0o, u* = 1 when

Rpi(b) - c + a [pi(b) Vt+(b + 1) + (1 - po(b))•t+l(b)] >

Rpo(b) + a [po(b)141(b + 1) + (1 - po(b))Vt+1(b)]

pl(b) [R + aVt+l(b + 1) - at•l(b)] - c > po(b) [R + aVt+l(b + 1) - acVt+(b)]

pl(b) - po(b) >
R + aVt+l (b + 1) - aVt+l(b)

Corollary 4.1.1. If Ab, > -, u* = 1 at time N - 1.

Proof. Since VN(i) = 0 V i, using Proposition 4.1.1 with t = N - 1 gives the result. Ol

The optimality condition bears strong resemblance to the infinite horizon characteriza-

tion. As such we will not make additional comments on the intuition behind the condition.

Since the optimality condition varies with time when the horizon is finite, one needs to look

at how Vt(b) changes with both time and the state b. We begin by looking at the effect of time

on Vt(b). A very natural result is that the value function associated with a particular state

will decrease with time. We show this in Proposition 4.1.2. We also expect that when time

t is fixed, the behavior of Vt(b) will be identical to the behavior of V(b). As such, the results

for V(b) in Chapter 3 can be applied here. For example, we show in Proposition 4.1.3 that

Vt(b) is monotonically non increasing for a fixed t when the client behaves monotonically. As

such, the optimal policy for a fixed time t is either a never-contact or a quasi-concave policy.

Thus, as we sweep t from 1 to N, the optimal policy will be time varying with different lower

and upper thresholds.

Proposition 4.1.2. V t < N - 1, Vt(b) > Vt+l(b) > 0

Proof. We show by induction.

We first show for t = N - 1, VN-l(b) > VN(b) > 0.



By definition, VN(b) = 0. For t = N - 1

VN-l(b) = max {Rpi(b) - c, Rpo(b) } 0

since po(b) > 0, pl(b) > 0 and we are taking the maximum.

For t < N - 2, we invoke the following for induction hypothesis

Vt+(b) • Vt+2(b) > 0

Vt+(b) 2 Vt4 2(b) > 0

For the buy states, we show Vt(b) > Vt+,(b) by induction.

Vt(b) = max{R(pi(b)) - c + c~ap(b)Vt+l(b + 1) + a(1 -

R(po(b)) + api(b)4Vt+l(b + 1) + a(1 - pl(b))t+1(b)

> max{R(pi(b)) - c + ap~(b)V÷+2(b + 1) + a(1 - pi(b)) V+2(b)

R(po(b)) + ap1 (b)Vt+2(b + 1) + o~(1 - pi(b))Vt+2(b)}

= V+l (b)

pi(b))Vt+,(b)



Proposition 4.1.3. V t < N - 1, Vt(b) is monotonically non increasing in b for fixed t.

Proof. We show by induction that this is true.

For t = N - 1

VN-l(b) = max{Rpi(b) - c, Rpo(b)}

VNl(b + 1) = max(Rpi(b + 1) - c, Rpo(b + 1)}

pl(b) > pi(b + 1)

po(b) > po(b + 1)

.. VN1 (b) > VN-_I(b + 1)

For t < N - 2, we assume for induction that Vt+4(b) is monotonically non-increasing and

show that Vt(b) > Vt(b + 1)

Vt(b) = max {RpI(b) - c + apl(b)Vt+l(b + 1) + a (1 - pi(b))4Vtl(b),

Rpo(b) + apo(b)Vt+1 (b + 1) + a(1 - po(b))Vt, 1(b)}

= max{(p(b)(R+aVt+l(b + 1) - aVt+1(b)) + aVt+1 (b) -c,

Po(b)(R+aVt+l(b + 1) - aVt+l(b)) + aVt+l(b)}

> max{pl(b + 1)(R + aVt+l(b + 1) - aVt+i(b)) + aVt+l(b) - c,

Po(b + 1)(R + aVt+1 (b + 1) - aVt+ (b)) + aVt+l(b)}

By induction assumption

> max {p(b + 1)(R + aVt+ (b + 2) - aVt+l(b)) + aVt+l(b) - c,

po(b + 1)(R + aoVt+l(b + 2) - aVt+l(b)) + aVtl 1 (b)}

= Vt(b + 1)

E



4.2 Characterization of Optimal Policy for a Client in

the Non-buy States

In this section we look at the optimality condition of a policy when the client is in the

non-buy state. Similar to §4.1, we show in Proposition 4.2.1 that such condition is time

dependent. Corollary 4.2.1 states the optimality condition of a client who is in the final

period. We will not go into detail regarding the intuition of these results since they are

identical to ones in §4.1.

Proposition 4.2.1. If A,,,., > R+a+l(b)-•+ (nr+l) at time t, then u* = 1 at nr.

Proof. Let Vt(nr),=o and Vt(nr),=1 denote the value function at time t when the associate

does not contact (u=0O) and contact (u = 1) respectively in a non-buy state nr.

Vt(nr)>=o = R(1 - po(nr)) + a [po(nr)Vt+l(nr + 1) + (1 - po(nr))Vt+l(b)]

Vt(nr)u=1 = R(1 - pi(nr)) - c + a [pi(nr)Vt+l(nr + 1) + (1 - po(nr))Vt+l(b)]

Since u* = 1 when Vt(nr)=l1 > Vt(nr)=o, u* = 1 when

R(1 - pi(nr))-c+a [pi(nr)Vt+l(nr + 1) + (1 -po(nr))Vt+l(b)] >

R(1- po(n,)) +t [po(nr)Vt+i(nr + 1) + (1 -po(nr))Vt, 1 (b)]

Simplifying the above gives

c
Po (nr) - Pl (nr) > (4.1)

R + WVt+l (b) - aVt+,1 (nr + 1)

Corollary 4.2.1. If A,,,., > -, u* = 1 at time N - 1.

Proof. Since VN(i) = 0 V i, using Proposition 4.2.1 with t = N - 1 gives the result. EO



Due to the time dependent nature of the optimality condition, we look at how Vt(nr)

changes with both time and state nr in order to fully characterize the optimal policy. We

show in Proposition 4.2.2 that the value function associated with a particular state will

decrease with time. For a particular value of t along the time axis, the behavior of Vt(nr)

becomes time invariant since the value of t is fixed. As such, for each value of t, the results

in §3.2 and §3.4 apply and the threshold policy is not always optimal.

Proposition 4.2.2. V t < N - 1, Vt(nr) > Vt+ (nr) > 0

Proof. We show by induction.

By definition, Vv(nr) = 0. For t = N - 1

VN-l(nr) = max{R(1 - pl(nr)) - c, R(1 - po(nr))} > 0

For t < N - 2, we invoke the following for induction hypothesis

Vt+(nr) Vt+2(nr) > 0

Vt+4(b) _ Vt+ 2 (b) > 0

We show Vt(nr) > Vt+ (nr) by induction.

Vt(nr) = max{R(1 - Po(nr)) + a [po(nr)Vt,+(nr + 1) + (1 - po(nr)) Vt+(b)],

R(1 - pi(nr)) - c + a [pl(nr)Vt+l(nr + 1) + (1 - po(nr))Vt+1(b)] }

2 max{R(1 - po(nr)) + a [po(nr)Vt+2(nr + 1) + (1 - po(nr))Vt+2(b)],

R(1 - pl(nrr)) - c + a [p((nr)Vt+2(nr 1) + (1 - po( (r))Vt+ 2(b)] }

= Vt+l(nr)

=



Policy L = 1 = =1.3 - .4
Contact all 541.65 434.31 326.97 219.63

Never Contact 231.31 231.31 231.31 231.31
Contact Buys Only 298.26 256.50 214.75 173.00

Random 427.26 351.29 358.74 276.83
Optimal Lifetime Value 545.42 464.18 432.68 409.69

Table 4.1: Lifetime value function for various policies when N = 16

4.3 Computational Results

Our state definition allows the optimal policy under finite time horizon to be computed by

brute force recursion from the very last time period. The computational results align with

our theoretical characterizations. For clients in the buy states, the optimal policy is quasi-

concave with time dependent upper and lower thresholds. For clients in the non-buy states,

the threshold policy is not necessarily optimal. An example of the optimal policy can be

seen in Figure 4-2, which plots the policy against the time period and the state variable.

The results are obtained using a cost of c = 20 and a revenue of R = 100. A contact policy

is indicated by value one while a non contact policy is indicated by value zero. For the

buy states (Figure 4-2(a)), we see that the optimal policy is a time dependent quasi-concave

policy. For the non-buy states (Figure 4-2(b)), we see that the optimal policy is also time

dependent and quasi concave.

To gauge the impact of an optimal policy, we compare the differences in lifetime valuel of

a client under various policies. Table 4.1 illustrates the lifetime values of various heuristics

while Table 4.2 illustrates their performance relative to the optimal policy. When the relative

cost is low, a blanket contact policy works best (.99 relative to the optimal policy), followed

by the "contact buys only" policy and the "never contact" policy. When the relative cost is

high, the "never contact policy" outperforms the other two. For both "contact buys only"

and "never contact" policies, the performance deteriorates as the relative cost increases.

To gauge the viability of the infinite horizon approximation, we compared the perfor-

1Defined as the value function of a client for the entire period of time he remains in the system. In this
case, it is given by V/16(1, 0).



Policy - = .I = .2 L=.3 = .4

Contact all 0.9931 0.9357 0.7557 0.5361
Never Contact 0.4241 0.4983 0.5346 0.5646

Contact Buys Only 0.5468 0.5526 0.4963 0.4223
Random 0.7834 0.7568 0.8291 0.6757

Table 4.2: Comparison of lifetime value under different policies and costs.

Policy = . = .2 -=.3 - = .4
u* for oo Horizon, N=10 0.9992 0.9992 0.9997 0.9999
U* for oc Horizon, N=16 0.9996 0.9996 0.9998 0.9999
t* for oc Horizon, N=20 0.9997 0.9997 0.9999 0.9999

Table 4.3: Comparison of infinite horizon optimal policy under different costs.

mance of the infinite horizon optimal policies to the finite horizon optimal policies. Table

4.3 shows that the infinite horizon optimal policies perform to within 0.999 of the finite

horizon optimal policy. In addition, the results were quite insensitive to time horizon N, as

modifying it did not significantly change the performance.

We conclude this chapter by noting that the time varying optimal policy does not per-

form significantly better than the corresponding infinite horizon optimal policy. As such, it

is much less attractive compared to its time invariant counterpart due to implementation

and computational difficulties. The computational complexity further increases in the more

realistic case where an associate has multiple clients.
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(a) Optimal contact policy for buy states.

Optimal Policy for Non Buy States, R =100C =20
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(b) Optimal contact policy for non-buy states.

Figure 4-2: Optimal policies for a client with peaking behavior under finite time horizon.



Chapter 5

Multiple Clients: Infinite Horizon

Problem

In previous chapters we discussed the control mechanisms of an associate who only has a

single client and[ analyzed this scenario under both infinite and finite time horizons. We now

turn to analyzing the problem where an associate has multiple clients. The infinite horizon

version of the problem originally formulated in §2.2 is restated as follows, where V(i) is the

value function of the clients in states i and M is the number of contacts to be made in that

period.

V(i) = max[g(i, u) + a piuV(j)] (5.1)

s.t. u'e = M (5.2)

The problem in Eq. (5.1) - Eq. (5.2) falls into the category of a restless bandit problem,

which is a generalization of the classical multiarmed bandit problem. In the classical mul-

tiarmed bandit problem, one out of n projects can be worked on in any time period. The

project selected will return an expected reward and its state will evolve accordingly, while

the passive projects remain static. In the restless bandit problem, the passive projects do

not remain static. Rather, they evolve according to a set of passive transitional probabili-



ties. The analogy between the restless bandit problem and the associate's problem is clear.

Each client corresponds to a project, and in each period, the associate selects M clients to

work on. The ones selected (or active) will evolve according to a set of active transitional

probabilities while the ones not selected (or passive) will evolve according to a set of pas-

sive transitional probabilities. This problem was first investigated by Whittle in his seminal

paper in 1988 [21]. Papadimitriou and Tsitsiklis [22] studied the complexity of the problem

in 1999 and established that it is PSPACE-hard even with deterministic transition rules.

In the remainder of this chapter, we first establish an upper bound for V(i) in Section 5.1.

Following that we propose heuristics in Section 5.2 and provide computational results to

judge their performance in Section 5.3.

Before delving into the analysis, we introduce a set of simplified notation to be used

throughout this chapter. For each client s, we define the following:

i" = state of client s, equivalent to sth element of i

V'(i') = Value function of client s in state is

r" = single period reward yielded by client s, dependent on state and action

g'(i') = expected single period reward when client in state is is contacted

go(i') = expected single period reward when client in state is is not contacted

(PiV")(i') = expected value function of the next period when client in state is is contacted

(P8 oVS)(i') = expected value function of the next period when client in state i s is not contacted

a = discount factor

5.1 Upper Bound of Value Function

The upper bound derivation closely follows Whittle's approach [21]. In his paper, an upper

bound for the undiscounted restless bandit problem with M = 1 was derived by replacing the

per-period constraint with an averaged version, facilitating the introduction of an Lagrangian

multiplier. We take an identical approach in deriving the upper bound for the discounted



bandit problem with M > 1. The constraint of contacting M clients every period is relaxed

to the following:

0-• M
E [ atm(t)] = (5.3)

t=O

In other words, we only need the discounted long run average of clients being contacted to

be i-. The problem, in which the constraint is relaxed as in Eq. (5.3), can be reformulated

as follows:

max E [ E atr] (5.4)
sES t=O

s.t E[EE]I,(t)at] - M (5.5)1--O
sES t=O

where I,(t) = 0 when the client is contacted and If,(t) = 1 when the client is not contacted.

Denote the solution to the relaxed constraint problem in Eq. (5.4) - Eq. (5.5) as VR(i). We

solve the problem by introducing a Lagrangian multiplier i.

max E[E (at(r" +I(t))) - (IS-M)] (5.6)
sES t=O

Next, we maximize the primal variable 7r (the policy):

00

max E[E(Eat(rS + Kpc (t)))] (5.7)
sES t=O

When r, = 0, for a particular client s, Eq. (5.7) reduces to

00

max E a trS (5.8)
t=O



The solution to Eq. (5.8) can be obtained by solving the equivalent problem stated as follows.

V8 (i8) = max[g'(is) + a(P,~V')(i'),go(i') + a(PsoVs)(i')] V s E S (5.9)

For a general n, obtaining the solution to the formulation in Eq. (5.7) for a client s is

equivalent to solving

V'(is, ra) = max[g'(is) + a(P 8,Vs)(is), K + g0(i') + a(PsoVS)(is)] V . E S (5.10)

It follows that the solution to the primal problem in Eq. (5.7) for a given n is

00

VS (is, ') = max E[ (Z at (r + Il, (t)))] (5.11)
sES sES t=O

We now minimize the dual variable . in order to solve the original problem in Eq. (5.6). For

a given M, the solution is given by

VR(i, M) = min [ Vs(i, K) - (I - )] (5.12)
sES

The expression in Eq. (5.12) is quite intuitive. The term -sE, V'(i", r) gives the maximum

possible reward for all clients. Since the associate is constrained to maintain a certain

average, the total reward thus needs to be reduced accordingly by ( • ).

Proposition 5.1.1. V*(i) • VR(i).

Proof. The upper bound immediately follows since the constraints for VR(i) is a relaxed

version of the original constraint. O

5.2 Heuristics

In the absence of the optimal solution we turn to investigating various heuristics in order to

solve the multiple client problem. The first heuristics we consider are myopic in nature. We



follow by looking at a one-step lookahead policy and a policy based on linear programming

relaxation.

5.2.1 Myopic Policies

We consider two simple myopic policies - the greedy policy (GR) and a modified version

of the greedy policy (V'). The greedy policy dictates that the associate picks M clients

with the largest active single-stage reward every period. The ability to compute V'(i'),l

the unconstrained value function of a particular client, allows for a modified myopic policy.

Instead of looking at the single-stage reward of each client, the associate selects M clients

with the highest value of V8 (i8 ). Mathematically, this heuristic solves the following problem

in each period.

max E V(i') -u  (5.13)
sES

s.t. u'e = M (5.14)

where u" E {0, 1} V s E S is the sth element of vector u.

5.2.2 One Step Lookahead Policy (isla)

We improve on the myopic policy by looking at one-step lookahead policies. Since we are

able to calculate the value functions of each individual client, we approximate V(i) by a

separable function and let V(i) f V(i) = C, VY(is). Let M denote the set of clients

selected. The one-step lookahead policy selects M clients that maximizes the following:

E g'(i) + E g (it ) + 0 Ej(PiVs)(i') + a E(Ptovt)(it) (5.15)
sEM tVM sEM tVM

1See §3.5



Let

E g (it) = E g (it) - E go(i') (5.16)
t•~4M teS sEM

Z(Pto Vt)(it) = E(Po Vt)(it) - E (P•o V)(is) (5.17)
tVM tES sEM

A simple substitution shows that Eq. (5.15) can be rewritten as

E [gS(iS) - gA(is) + a((Pl YV')(is) - (P0oV )(is))]

(5.18)+ E [±(it)+ (i ) + (Po Vt)(it)]
tES

If we define an index m(is) as in

m(i() = gs(is) - gg(is) + a((P,1Vs)(is) - (P0o •V)(is)) (5.19)

then the solution to Eq. (5.18) is to pick the top M clients according to index m(is). Note

that when M = 1, this one step lookahead policy reduces to the policy derived by Bertsekas

in [23]. By Proposition 1.3.7(b) in [23], the performance of the one-step lookahead policy is

to within 2'~ae of the optimal solution, where V(i) - Ee < V(i) < V(i) + Ee.

The index m(is) ranks each client according to a value which makes contacting and not

contacting a client equivalent. Interestingly, a similar idea was proposed by Whittle in his

seminal paper on restless bandits [21]. In this paper, Whittle proposed an index based on a

project independent subsidy (v) pitched at the right level to ensure that M projects are active

on average. Projects with subsidy values greater that v will be made passive while projects

with subsidy values less than v will be made active. Whittle's index, formulated for the

average cost problem,2 recovers the classical Gittin's index, and was conjectured by Whittle

and later shown by Weber and Weiss [24] to be asymptotically optimal for the exactly-m

2 The equivalent for the discolmted problem is derived in Eq. (5.12), where , is the project independent
subsidy.



problem under an additional technical condition. This index, although very intuitive, is only

limited to the class of problems which is indexable, defined as follows.

Definition 2. (From [21]) A project is indexable for a given discount factor 0 < a < 1 if

the set of states where it is optimal to take passive action increases monotonically from 0 to

a full state space as Kr grows from -oc to +oo.

Intuitively, the multiple client problem is indexable. For a given client, it is possible to

rank all the states according to their respective break-even point, r,. As we sweep ra from

-o0 to +oo, the set of states where is it optimal to not contact increases monotonically.

5.2.3 Primal-Dual Heuristic

Bertsimas and Nifio-Mora [25], in an attempt to work around the indexability requirement,

proposed a different index policy based on the primal and dual solutions to an equivalent

linear programming (LP) formulation of Whittle's relaxation.

We define the following to facilitate the restating of their formulation:

x = total expected discounted time that

4 = total expected discounted time that

xs = column vector of xi and x4

client s is in state i" and active

client s is in state iS and passive

1 if client s is in state i" at time t = 0

0 else

= finite state space of client s

-{x, E R7ZTXO',1l |x + x =
i s EZ+



The primal problem can now be stated as

(P) max Z [g(i') + g0(is) ]
sES iEZTs

s.t x E Q1, sES

S, M

1-a
sES isE, 8

and the corresponding dual as

M
(D) min 5l j"s +  M-

1-a s
sES jSE278

s.t is- a E

is-a jeisZ7

B"-·C
jSEta

Pisjs K is ý> ,Sis)ý

Pisis 
isPo b > g (i8),

is .s B

is E ZIs, s E S

is E ,1s E S

a>0

Let x 1 , 2 and Ri, k denote the optimal solutions to the primal and dual problems respec-

tively. Further, let the optimal reduced cost coefficients be as defined in Eq. (5.27) and

Eq. (5.28).

jssz

is i P s E i'i +l• ÷ g s ( i s)

jPi 1

(5.27)

(5.28)

Then the heuristic is as follows:

1. Given the current states of the SI clients, compute the indices i.s = " - %i'

2. Contact M clients who have the smallest indices. In case of ties, contact the clients

with ±'s > 0

This particular index is not as intuitive as Whittle's. In order to gain some insight, we note

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)



that Y1" and -4 can be thought of as the rate of decrease in objective value of the primal

problem per unit increase in xi and x0 respectively. Thus, the smaller "s, the better it is

for a client to spend more active time in state is. In deciding which client to contact (or

equivalently to make active), one would pick a client when 1'" < 1'. This leads to a natural

interpretation of the heuristic proposed - an associate would rank the clients according to

i" - 1' in increasing order and pick the first M to contact.

5.3 Impact of the Control Mechanism

In this section we attempt to establish the impact of implementing a control mechanism. We

do so by simulating the various heuristics and comparing their performance to the established

upper bound in §5.1. In addition, we compare them to some "policies" commonly practiced

by sales associates, which we elaborate on in the following paragraph.

We find that managers and associates alike often rank clients by the total amount of

money spent. In addition, when not offered guidance, associates tend to call clients who are

fresher in their minds. As they flip through their client lists, they naturally select clients

who they recently helped. We use the following heuristics to capture these "policies".

1. TopRev - Rank clients according to the total amount of money spent. Pick the top M

clients.

2. JustBought - Rank clients according to how recent and frequent they purchase. For

clients in the buy states, rank according to the value of b. If needed, rank clients in

the non-buy states according to their average revenue.

5.3.1 Methodology

Figure 5-1 depicts our methodology for simulating the heuristics. Prior to simulation, an

initial set of clients is generated. For each heuristic, the same set of initial clients is used to

simulate its performance. A single run consists of simulating all the heuristics for a predeter-

mined T periods. Depending on the particular heuristic, clients will have different evolution



processes. Next state realization is simulated using a draw from a uniform distribution in

unit interval. If the result of the draw is less than or equal to the transitional probability of

the client, the transition occurs. 3 The period revenue for each heuristic is then calculated,

and the period counter is incremented. This process is repeated for T periods, upon which

the simulation for a single run is complete. We stop the simulation at run 1 if the percentage

difference between the mean of the first 1 - 1 runs and l runs is less than 10- 4 . In order to

gauge the performance of these heuristics, we computed the upper bound using the formu-

lation in Eq. (5.20) - Eq. (5.22). The result was checked using the alternative formulation

in Eq. (5.12).

Update clients for next period

Yes

Update clients for next period

Figure 5-1: Simulation methodology.

3For example, if the probability of transitioning from a buy state of value 1 to 2 is .8, and if the value of
the random draw is .7, the transition occurs.



5.3.2 Results

In this section *we present the relative performance of the heuristics as compared to the

upper bound.4  The number of periods T is set such that terms where act > 10- 4 are

truncated.5 Tables 5.1 and 5.3 break down the heuristics by the total revenue generated

from all clients. The corresponding standard errors are tabulated in Tables 5.2 and 5.4.

Each column tabulates the performance of various heuristics for a given value of constraint

M. The best heuristic in each column is boldfaced while the worst is italicized. Figures 5-2

and 5-3 plot the performance of various heuristics relative to the upper bound.

We first note that the commonly practiced policies are the two worst performing heuris-

tics. Among the two, the policy of going after clients who just purchased is worse. Next,

we observe that the two myopic policies perform better than the two commonly practiced

policies, with the greedy policy being the better of the two. The top two performers are the

Primal-Dual and the One-step Lookahead policies, with both achieving > 95% of the upper

bound. The lift achieved by using the best performing heuristic rather than one of going

after clients who just purchased is significant. Simulation results indicate that the lift ranges

from 65% to as high as 95% for a randomly generated group of clients.

5.3.3 Insights

In addition quantifying the promising lift achieved when the associates practice a better pol-

icy in contacting clients, the results confirm that the commonly practiced policies are indeed

a misconception towards client work. Chasing after repeat buyers not only is suboptimal,

it is one of the 'worst performing policies. In addition, the guideline of "calling as many as

you can" often given out by management is vague and suboptimal. The methodology pro-

posed can potentially assist management in determining the number of clients that should
4 Weber and Weiss [24] showed that the upper bonmd is asymptotically optimal for the average cost per

stage problem. We do not investigate the strength of the upper boumd for the discolmted problem since our
goal is to provide a way to judge the relative performance of the heuristics and commonly practiced policies.

5 Reducing the value of T does not change the relative ranking of the heuristics. The absolute performance
of the heuristics, however, are fulrther from the upper bolmd. This is because the upper bolnd is derived
based on the infinite horizon assumption. Increasing the value of T improves the performance of some of the
heuristics (P-D and lsi).



Heuristic M=5 M=10 M=15 M=20
TopRev 28849.12 31386.02 33316.02 35099.47

Rank by b 26264.18 26130.08 26738.67 27858.34
V 8  31805.00 35568.68 37932.31 40055.35

Greedy 34281.28 38495.91 41474.78 43135.64
Isla 39655.16 44054.00 46081.41 46961.25

Primal-Dual 39686.90 44108.73 46114.95 46568.91
Upper Bound 41196.23 45738.30 47492.26 48160.59

Table 5.1: Performance of heuristics for ISI = 50. The best performing heuristic is boldfaced
while the worst performing heuristic is italicized.

Heuristic M=5 I M=10 [ M=15 M==20
TopRev 3.77 4.03 4.07 4.36

Rank by b 3.88 3.98 4.16 4.21
V8  3.67 3.47 3.65 3.69

Greedy 3.63 3.96 4.31 4.09
1sla 3.86 4.46 4.43 4.54

Primal-Dual 3.97 4.24 4.53 4.63

Table 5.2: Standard error for ISI = 50.

Heuristic M=10 M=20 M=30 M=40
TopRev 54847.30 59016.72 62948.09 66583.35

Rank by b 49538.49 49849.25 50704.48 52909.51
V8  60321.31 67310.76 72806.83 76916.82

Greedy 65804.51 74380.72 80432.77 84938.60
Isla 79170.50 88233.22 92249.02 93453.69

Primal-Dual 79139.42 88039.57 91889.42 93531.81
Uppper Bound 81653.52 90247.17 94123.54 95587.07

Table 5.3: Performance of heuristics for ISI = 100. The best performing heuristic is bold-
faced while the worst performing heuristic is italicized.



Table 5.4: Standard error for ISI = 100.

be contacted each period. In addition, it can also assist sales associates in determining which

clients should be selected. Given these tools, the variability in customer service level within

a store could be reduced.

Heuristic M=10 M=20 I M=30 M=-40
TopRev 7.08 7.16 7.99 7.66

Rank by b 7.39 7.70 8.12 8.32
V, 6.81 7.14 7.18 7.20

Greedy 6.86 7.16 7.79 8.11
Isla 7.80 8.20 7.96 8.66

Primal-Dual 7.61 8.15 8.46 8.19
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Figure 5-2: Relative performance of various heuristics when total number of clients = 50.
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Figure 5-3: Relative performance of various heuristics when total number of clients = 100.
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Chapter 6

Conclusions and Extensions

In this final chapter, we provide some concluding remarks and offer suggestions for extensions

and future work.

6.1 Concluding Remarks

In this work we looked at a neglected problem in high-end retail - the control and management

of sales associates. As we further researched the area, the existence of a disconnect between

data currently collected - which has limited usefulness - and the data required for better

control of the associates became apparent. We sidestepped the data unavailability issue

by tapping the knowledge of many experienced sales associates through field work. This

knowledge was then funneled back to assist in modeling client behavior. We proceeded to

frame the control problem of an associate using dynamic programming. In analyzing the

problem, we began by focusing on the case where an associate only has a single client and

subsequently extended to the case where an associate has multiple clients. In both cases,

the analysis was separately performed for clients in the buy states and the non-buy states.

When the associate only has a single client, we showed that the optimal policy under

monotonic client behavior in the buy states is a threshold policy. Further, we showed that

the optimal policy under peaking client behavior in the buy states is a quasi-concave policy.
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On the other hand, when the client is in the non-buy states, the characterization of the

optimal policy was hindered by the non-concavity and non-unimodality of the optimality

condition. Computational results for a single client showed that the commonly used policy

of contacting clients who recently purchased performed to within approximately 30% of the

optimal policy.

When the associate has multiple clients, the problem was formulated as a restless bandit.

Due to the complexity of such problems, we did not attempt to characterize the optimal

policy. Instead, we provided an upper bound based on Lagrangian relaxation and proceeded

to look at various heuristics that could be used to solve the problem. Computational results

showed that the best heuristic performed to within approximately 96% of the upper bound,

while the commonly practiced policy of contacting clients who recently purchased performed

to within approximately 55% of the upper bound.

The qualitative data obtained through extensive field work coupled with the mathemati-

cal model in this work provided answers to many of the questions initially raised. We showed

that current operations in the high-end retail stores are far from optimal and that associates

are squandering opportunities to capture long-term potential of clients. The proposed mech-

anism is simple, implementable and will generate a substantial lift in revenue. With better

control and management of the sales associates, the variability in customer service level will

be reduced. In addition, the results also provide managerial insights and shed light on some

common misconceptions.

In this work we have made several simplifying assumptions to assist in modeling and to

maintain tractability. As a result, the model serves as a basis from which extensions could

be built. In the following section we will address these assumptions and extensions.
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6.2 Model Extensions and Future Work

6.2.1 Incorporating Updating Mechanism

In this work we have used a set of time invariant transitional probability to model the

behavior of a particular client. Coupled with the choice of variables used for the state

representation, the following assumptions were implicitly made:

1. The client behavior, due to the time invariant transitional probability, does not change

with time.

2. The client behavior is independent of the total number of past interactions made be-

tween the client and the associate.

Both of these assumptions are quite limiting. One would expect the transitional probability

to be non-stationary. With passage of time, the associate would have a better estimate of

the client behavior. In addition, one would also expect a dependency between the client

behavior and the total number of past interactions. The current state definition does not

differentiate between a completely new client in state (1, 0) and an old client who happens to

return back to state (1, 0).1 Future work should look at ways to address these assumptions.

One straightforward method is to enlarge the state space at the expense of computational

complexity. In an effort to maintain computational ability, an alternative is to use an updat-

ing mechanism to capture the changing client behavior and client-associate relationship. For

each new client, we propose an initial set of transitional probabilities as depicted in Figure

2-2. Each point on the transitional probability curve represents the response probability of

a particular client in the given state i under policy u, which we model as a Bernoulli ran-

dom variable with parameter pi,u. The initial priors are set such that the mean of the Beta

distribution, ', is equal to the estimated response. In each period, the updating occurs as

depicted in Figure 6-1 for buy states and in Figure 6-2 for non-buy states.

1This could be justified if we ignore the impact of hulman relationships, but the main motivation behind
using sales associates is to take advantage of the relationship bond between two parties.
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Buy State: state = b

Buy

Pb,i

Pb,O

Not Buy Pbo

-> (a, p+1)

-> (a+l, p)

-> (a, 0+0)

Associate Client
Decision Action

Figure 6-1: Updating for buy states. A
corresponds to a non-purchase.

Updating

success corresponds to a purchase and a failure

Non Buy State: state = nr

Buy
Pnr,1 -> (a, +1)

Pnr -> (a+1, p)

Pr,o -> (a, +[1)

Not Buy Pnr.O -> (a+l, 3)

Associate Client
Decision I Action

Figure 6-2: Updating for non-buy states. A
failure corresponds to a purchase.

Updating

success corresponds to a non-purchase and a
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Unfortunately, the slow speed of learning in the high-end retail environment suggests

that more research into the impact, practicality and efficiency of such an updating mech-

anism is needed. The time varying transitional probabilities also make the optimal policy

characterization more difficult.

6.2.2 Expanded Control Structure

In this work we have modeled the associate as having a binary control of contacting or

not contacting a client. Future work could look at other control variables available to the

associate. One example of such a control variable is the type of message sent by the associate.

In high-end retail, associates could contact clients for various reasons, including following up

on a sale and calling to inform clients of special in-store charity or sales events. Incorporating

this aspect into the model would increase the state space of the associate policy - instead of

the decision of contacting or not contacting, the policy will also dictate the type of message

to send during a contact.

Another control implicitly available to the associates is pricing. Since the retailing in-

dustry goes into sales season twice a year, the associate can potentially choose to call a

particular client only during sales season. The ability to make this decision optimally hinges

on knowing the type of client one has. Some clients value the assortment and size availability

at the beginning of the season, thus are more likely to purchase at full price.2 Others value

the discounted price points, and will only purchase during sales season. Successful modeling

using the expanded control structure will require a substantial amount of data to be gathered

such that customer responses to various different types of control can be gauged.

6.2.3 Game Theoretic Framework

In this work, we used a dynamic programming framework to model the problem of an asso-

ciate and his clients. Alternatively, one could have used a game theoretic framework. Such

2 High-end retailers do not carry many munits of each assortment. For example, a particular style and
fabric of men's suit will come in various sizes ranging from 38R to 46R, but a store will only carry 2 units
for each size.
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a framework requires one to explicitly model the utility of a client, and could potentially

provide some interesting results since it can capture the interaction between the associate

and the client more accurately. Instead of a simple two-step interaction where the asso-

ciate contacts the client and the client responds with a purchase decision, a more complete

sequence of interaction is illustrated in Figure 6-3. In each period the associate makes a

contact decision based on the client's state. The client then decides whether or not to visit

the store. If the client chooses to visit, he will inspect the item and subsequently make a

purchase decision. At the end of the period, the client updates the state of the associate

by either upgrading, downgrading or maintaining his old state. The incorporation of a cus-

tomer's feedback mechanism could be interesting for future work. In addition, one can also

enrich the model to capture two stages of decision making from the client's perspective - the

first is the decision to visit the store, the second is the decision to purchase.

Using a game theoretic framework also allows one to study the incentive misalignment

in retailing. One obvious example of such misalignment occurs between the firm and the

associate since the firm is focused on profit while the associate is focused on pure revenue.

In addition, the game theoretic framework also lends itself well to modeling the in store

competition between the sales associates and general competition between firms. These

problems might have been studied in the economics literature, but it is worthwhile to look

at them again under different a light.

6.2.4 Management of Sales Associate

This work looked at the management of sales associates at a tactical level. Future work

could look into both strategic and operational levels. At the strategic level, one wonders if

forming a one-to-one relationship between an associate and his clients is the best method

for managing client relationships. Very often, a departing associate will bring his clients

away with him. Would a gating process be a better way to manage these relationships?

In a gating process, a client would evolve through different associates in his lifetime, each

with increasing level of capability. At the operational level, one could look at scheduling of
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Figure 6-3: A detailed sequence of associate and client interaction.
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associates to better match supply and demand in the services sector. From the associate's

perspective, one could also look at the impact of the changing cost of contact on optimal

policy.
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Appendix A

Proofs

A.1 Proof for Proposition 3.1.6

Proof. We show for two cases, i) u* = 0

Case 1: u* = 0

V bandii) u* = V b<bh, u* = 0

In this case, we know that V(b) = po(b) [R + aV(b + 1) - aV(b)] + aV(b)

bmax as the maximum state for V(b). We construct V(b) such that

V(b) = { V(b)
V(bmax)

V b. Define

bE [1, bmnax]

b = bmax + 1, bmax + 2

We show by induction that V(b) - V(b + 1) > V(b + 1) - V(b + 2)

b E [1, bma,], V(b) is also convex.

Base Case:

We show that V(bma))-V(bma+ 1) Ž V(bmax+1)-V(bnax+2). This is true by construction.

(Induction Hypothesis) V(b) - V(b + 1) > V(b + 1) - V(b + 2).
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We now show that V(b - 1) - V(b) _ V(b) - V(b + 1)

V(b - 1) = po(b - 1)[R + a•o(b) - aV(b)] + aV(b) (A.1)

V(b) = po(b) [R + aV(b + 1) - aV(b)] + aV(b) (A.2)

V(b - 1) - V(b) = po(b - 1)[R + aV(b) - aV(b)] - po(b) [R + aV(b + 1) - aV(b)] (A.3)

Substituting po(b - 1) - po(b) = 61, we have

V(b - 1) - V(b) = 61[R + aV(b) - aV(b)] + po(b)(&V(b) - af(b + 1)) (A.4)

Similarly, substituting po(b) - po(b + 1) = 52, we have

V(b) - V(b + 1) = 62[R + olV(b + 1) - aV(b)] + po(b + 1)(aV(b + 1) - aV(b + 2)) (A.5)

By convexity of po(b) and monotonicity of V(b), 3 1 Ž 62 and aV(b) Ž aV(b + 1). By

monotonicity of po(b) and induction hypothesis, po(b) > po(b+ 1) and (aV(b)- •V(b+ 1)) Ž

(aV(b + 1) - aV(b + 2)). So we have shown that V(b - i) - V(b) 2 V(b) - V(b + 1) and

that V(b) is convex for this case.

Case 2: u* = 1 V b < bh, u* = O V b > bh

The proof for Case 1 can be duplicated here to show that V(b) is convex in the region

b E [bh + 1, bma,]. Since V(b) is convex in this region, we have

po(bh) [R + aV(bh + 1) - aV(b)] - po(bh + 1) [R + aV(bh + 2) - aV(b)]

Ž po(bh + 1) [R + aV(bh + 2) - aV(b)] - Po(bh + 2) [R + aV(bh + 3) - aV(b)]
= V(bh + 1)- V(bh + 2)

(A.6)
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Further, since uz = 1 at bh, we have

V(bh) = pl(bh) [R + aV(bh + 1) - oV(b)] - c > po(bh) [R + aV(bh + 1) - caV(b)]

and

V(bh) - V(bh + 1) > V(bh + 1) - V(bh + 2)

(A.7)

(A.8)

We now need to show that V(bh - 1) - V(bh) > V(bh) - V(bh + 1). Since u* = 1 at bh - 1, bh

and u* = 0 at bl, + 1, we have

V(bh - 1) = pi(bh - 1) [R + aV(bh) - aV(b)] + aV(b) - c

V(bh) = pl(bh) [R + aV(bh + 1) - aV(b)] + acV(b) - c

V(bh + 1) = po(bh + 1) [R + aV(bh + 2) - aV(b)] + aV(b)

(A.9)

(A.10)

(A.11)

We want to show that

pI(bh - 1)[R + aV(bh) - aV(b)] - pi(bh) [R + aV(bh + 1) - OV(b)]

> pi(bh) [R + aV(bh + 1) - aV(b)] - c - po(bh + 1) [R + aV(bh + 2) - aV(b)]

(A.12)

Since u* = 0 at bh + 1, we have the following inequality

-pi(bh + 1) [R + oV(bh + 2) - aV(b)] > -c - po(bh + 1) [R + aV(bh + 2) - aV(b)]

(A.13)

113



We now need to show

pi(bh - 1) [R + aV(bh) - aV(b)] - pl(bh) [R + aV(bh + 1) - aV(b)]

Ž pl(bh) [R + aV(bh + 1) - aV(b)] - pi(bh 1) [R + aV(bh + 2) - aV(b)]
(A.14)

We showed in Eq. (A.8) that

V(bh)- V(bh + 1) 2 V(bh + 1)- V(bh + 2) (A.15)

Let p1(bh) + 61 = pl(bh - 1), then

p,(bh - 1) [R + aV(bh) - aV(b)] - pi(bh) [R + aV(bh + 1) -Y V(b)]
= 61 [R + aV(bh) - aV(b)] + pl(bh)(aV(bh) - aV(bh + 1))

(A.16)

(A.17)

Similarly, let pl(bh + 1) + 62 = pl(bh), we have

Pi(bh) [R + aV(bh + 1) - oV(b)] - pi(bh + 1) [R + aV(bh + 2) - oV(6)]
= 62 [R + aV(bh + 1) - CV(b)] + p,(bh + 1)(aV(bh + 1)- aV(bh + 2))

(A.18)

(A.19)

By convexity of pi(b) and monotonicity of V(b), 61 2 62 and aV(b) Ž aV(b + 1). By

monotonicity of pi(b) and Eq. (A.15), po(b) > po(b + 1) and (aV(bh) - aV(bh + 1)) >

(aV(bh + 1)- aV(bh +2)). So we have shown that V(bh - 1)- V(bh) > V(bh)- V(bh +1). To

get the base case for induction in region b E [1, bh], we use V(bh-1)-V(bh) Ž V(bh)-V(bh+l)

to show

Pl(bh - 2) [R + aV(bh - 1) - aV(6)] - pi(bh - 1) [R + OV(bh) - QV(b)]

Ž Pi(bh - 1) [R + aV(bh) - aV(b)] - pl(bh) [R + aV(bh + 1) - aV(b)]

The induction step is shown in Eq. (A.14) - Eq. (A.19) and V(b) is convex.

(A.20)
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Appendix B

Necessary Conditions for Peaking at b

Since b = arg maxbp,(b), V(b) is monotonically non increasing V

bg,b, = V(b), where 6b,b+l >

b > b. Let V(b + 1) +

0. For V(b - 1) > V(b) to hold, one of the following conditions

need to hold.

1. V(b - i),=o V(b)5=o

2. V( - l1)u=1 V(b)u=1

3. V(b - l)U=o > V(b),=~

4. V(b - 1)u=1 V(b),=o

We proceed to elaborate on each of the conditions.

1. V(b - 1),,=o Ž V(b),==O

V(b - 1),=o = Po(b - 1)[R + cV(b) - aV(b)] + aV(b)

= po(b - 1)[R + aV(b + 1) - aV(b)] + apo(b - 1)6,b+1 + aV(b)

V(b)u=o = po(b)[R + aV(b + 1) - aV(b)] + aV(b)
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The inequality holds when

Po(b - 1)[R + aV(b + 1) - aV(6)] + Po(b - 1)66,+

2 Po(b)[R + aV(b + 1) - cV(b)]

66,+1 [R + aV(b + 1) - aV()] po(b 1)- 1]

- 1),=1 V(b)u=l

V(ý - 1),= = pi(b - 1) [R +

= Pi(bE - 1)[R +

aV(b) - aV(b)] + aV(b) - c (B.6)

aV(b + 1) - aV(b)] + apl(b - 1)6+, & 1 + +V(b) - c

(B.7)

V(b),=l = pi(b)[R + aV(b + 1) - aV(b)] + aV(b) - c

The inequality holds when

66,6+1 [R + aV(b + 1) - oV(b)] p(b 1)

3. V(b - 1),=o > V(b),u=

A simple substitution shows that the inequality holds when

4. V(b - 1),= 1 > V()U=O

116

2. V(b

(B.4)

(B.5)

(B.8)

-'1+ (B.9)

c

po(b- 1)oa
(B.10)V(u) pl(b)

Po(b - 1) 1]1
66,b+ l 2 [R + aV(b + 1) -



A simple substitution shows that the inequality holds when

66 ,g61 > [R + aV(b + 1) - aV(b)]
Po(b)

p, (b - 1)

C

pl(b- 1)a
(B.11)

If none of the conditions hold, V(b - 1) < V(b) and a peak occurs at b. The above conditions

can be generalized for any b < b.
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Definition

State of a client in period t

Optimal value function in period t when the client is in state it

Single period expected reward

Average revenue an associate derives from a client if there is a purchase

Associate's cost of contact

Discount factor

Set of clients belonging to an associate

Vector of states corresponding to the set of clients

Vector of policies corresponding to the set of clients

Number of clients to be contacted each period

Optimal value function in period t for the set of clients

Number of consecutive buys

Number of consecutive non-buys

Associate's policy, where u E {0, 1}

Probability of transitioning from state b into b + 1 under policy u

Pl (b) - po(b)

Maps to state (0,1)
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Table of Symbols

Symbol

it

Vt(it)

g(it, ut)

R

c

a

S

it

Ut

Mrt

Vt(it)
b

nr

U

p,(b)

Ab,u

b



Definition

pu(nr)

Anru

b

b

V(b),
Be
fir

V(nr),

V8(is)

r8

gf(is)

g (is)

(PlW V)) (is)

(PSoVS))(i 8)

Probability of transitioning from state nr into nr + 1 under policy u

po(nr) - p (nr)

Maps to state (1, O0) when used in the context of non-buy states

arg maxb Pu(b)

arg maxb V(b)

Value function in state b under the assumption that u is optimal

Set of buy states where b + 2 < b < b + 1

arg max,lr pu(nr)

arg max,,. V(nr)

Value function in state nr under the assumption that u is optimal

State of client s, equivalent to Sth element of i

Value function of client s in state is

Single period reward yielded by client s, dependent on state and action

Expected single period reward when client s in state i8 is contacted

Expected single period reward when client s in state i8 is not contacted

Expected value function of the next period when client s in

state i" is contacted

Expected value function of the next period when client s in

state is is not contacted
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