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ABSTRACT
This thesis describes a low-power cochlear-implant processor chip and a charge-balanced stimulation

chip that together form a complete processing-and-stimulation cochlear-implant system. The processor chip
uses a novel Asynchronous Interleaved Stimulation (AIS) algorithm that preserves phase and amplitude
cues in its spectral input while simultaneously minimizing electrode interactions and lowering average
stimulation power per electrode. The stimulator chip obviates the need for large D.C. blocking capacitors in
neural implants to achieve highly precise charge-balanced stimulation, thus lowering the size and cost of
the implant. Thus, this thesis suggests that significant performance, power and cost improvements in the
current generation of cochlear implants may be simultaneously possible.

The 16-channel -90 square mm AIS processor chip was built in a 1.5pm VLSI process and consumed
107iW of power over and above that of its analog spectral processing front end, which consumed 250pW
and which has been previously described. The AIS processor was found to faithfully mimic MATLAB
implementations of the AIS algorithm. Two perceptual tests of the AIS algorithm with normal-hearing
listeners verified that AIS signal reconstructions enabled better melody and speech recognition in noise
than traditional envelope-only vocoder simulations of cochlear-implant processing. The average firing rate
of the AIS processor was found to be significantly lower than in traditional synchronous stimulators,
suggesting that the AIS algorithm and processor can potentially save power and improve hearing
performance in cochlear-implant users.

The stimulator chip was built in a 0.7sm high-voltage VLSI process and performed dynamic current
balancing followed by a shorting phase. It achieved <6nA of average DC current error, well below the
targeted safety limit of 25nA for cochlear-implant patients. On +6 and -9V rails, the power consumption of
a single channel of this chip was 47piW when biasing power is shared by 16 channels. It puts out a charge-
balanced stimulation pulse whenever it receives an asynchronous input signal from an AIS processor
encoding phase information and 7-bit amplitude information, thus making the AIS processor chip and
stimulator chip fully compatible in the cochlear-implant system.

The AIS algorithm and charge-balancing circuits described in this work may be useful in other nerve-
stimulation prosthetics where good fidelity in input-information encoding, minimization of electrode
interactions, low-power strategies for stimulation, and compact charge-balanced stimulation are also
important.

Thesis Supervisor: Rahul Sarpeshkar
Title: Associate Professor of Electrical Engineering and Computer Science
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1. INTRODUCTION

Many biomedical implants that seek to restore lost sensory function to disabled

patients currently convey information to the nerves by pulsatile current stimulation,

delivered via an implanted microelectrode array. The most prevalent method of pulsatile

stimulation in current-generation implants is:

a) Synchronous (at a fixed stimulation rate, set by a fixed carrier frequency)

b) Amplitude-Modulated (a slowly-varying envelope of pulses reflects the sensory

input intensity)

c) Time-Interleaved (no more than 1 or 2 electrodes fire a pulse at any one time)

d) Biphasic (charge-balanced with equal positive and negative phases per pulse)

However, several problems have been identified with this current paradigm of neural

stimulation. Of primary concern to us is that the fidelity of sensory input information that

is conveyed to the nerves within this paradigm may be inherently limited by both (a) and

(b). The reasons for this will be outlined in the Background section, and a new

stimulation architecture which has the potential to improve the fidelity of information

transmission will be presented in section 3.

A major discovery made in the early 90s was that (c), or interleaved stimulation, as

part of a strategy called Continuous Interleaved Sampling (CIS), could greatly mitigate

undesirable electrode interactions which would take place due to current spreading from

nearby electrodes (Wilson, Finley et al. 1991). For the same reason, the proposed

stimulation architecture in this thesis also enforces interleaved stimulation as a key

requirement.

Finally, this thesis will also address a practical issue related to (d). In order to prevent

electrolysis and potential rejection of the implant by the immune system, the positive and

negative phases of each current pulse are designed to be precisely charge balanced so as

to deliver negligible net charge into the body. Traditionally, a large series blocking

capacitor on the order of lOOnF was sufficient to perform this function on every electrode

channel, but in an effort to decrease the size and cost of the implanted electronics, it has

become desirable to remove these DC-blocking capacitors. This thesis includes a current-
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drive system which will balance the charge pulses electronically, down to a current error

which is considered physiologically safe.

This study focuses particularly on delivering auditory information to the cochlear

nerve in cochlear implants (CIs), but could impact any multi-channel stimulation

paradigm. In conclusion, this thesis presents a novel architecture for neural stimulation

which seeks to improve the fidelity of sensory information when encoded and conveyed

to the nervous system, from the point of receiving timing-rich sensory information to the

point of driving current pulses to the implant electrodes.

2. BACKGROUND

2.1. Problems with synchronous stimulation

It has been shown that acoustic stimulation of the ear produces much less across-fiber

synchrony and much more within-fiber jitter than electrical stimulation (Kiang and

Moxon 1972), due to stochastic properties of the inner-hair-cell synapse that are not

reproduced in electrical stimulation.

In particular, there is unnecessary synchronization of the neural response to the fixed-

rate electrical carrier, despite the carrier containing no information. Physiological studies

have shown that many neural artifacts are produced, which are never seen under normal

acoustic stimulation. For example, at low-rate (<500-800 Hz) stimulation, there is

deterministic entrainment to the carrier (a neural discharge once per stimulus cycle),

while at high-rate (>500-800 Hz) stimulation, there are severe distortions in the temporal

discharge patterns caused by neural refractoriness (Litvak, Delgutte et al. 2003; Litvak,

Smith et al. 2003).

Secondly but equally important, synchronous stimulation inherently excludes the

possibility of delivering phase, or fine-timing information to implant users. If there is a

significant amount of information which is not carried in the envelope amplitude alone,

but also in the fine-time structure (or phase) of a signal, then an AM method of encoding

envelope information on a fixed carrier frequency is simply unable to carry that

'Sections 2.1-2.4, 2.7, all of Chapter 3 and the first paragraph of 4.1 are D 2007 IEEE. Reprinted, with
permission, from IEEE Transactions on Biomedical Engineering (Sit, Simonson et al. 2007).
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information. A mathematically more rigorous description of the envelope and phase

components to a signal is described further in the next section.

All the problems above can be avoided if fixed-rate stimulation is replaced by some

form of asynchronous stimulation that also takes the limits of neurobiology into account.

For example, the stimulation should refrain from driving the nerves heavily into

refractory-rate limited firing, where cross-fiber synchrony becomes pronounced.

2.2. What is phase information?

It has been shown that any bandpass signal x(t) with center frequency oo and

bandwidth W can be decomposed into quadrature components xc(t)-cos oo(t) + x,(t)-sin

oo(t) (Siebert 1986) and hence also into envelope and phase components E(t) and (t)

respectively, where x(t) = E(t)-cos[oot + (t)] as shown in (Figure 1).

X) x x(t) = x,(t)coswot+x,(t)sin ot

= E(t) cos[cot + #(t)]

E(t) = x 2(t)+x|2 (t)

-X()x(t) =arctan( t)

Figure 1. Quadrature decomposition of a bandpass signal x(t)

As W can be as large as 2co, any bandlimited signal can be expressed in the general

form of E(t)-cos 0(t) where the angle component 0(t) = oot + (t) when oo is specified.

The angle component 0(t) or, equivalently (when oo is defined), the phase component

*(t) is what we will refer to as the phase information in a signal. In the psychoacoustic

literature, phase information is commonly referred to as "fine time structure" or "FM

(frequency modulation) information," as it can be thought of as how rapidly the

instantaneous frequency is being modulated, as opposed to "AM (amplitude modulation)

information" in E(t).

Defining XH(t) as the Hilbert transform (Figure 2) of x(t),
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HILBERT(O)
Hilbert transform 1 HLR-

impulse response R t --

Figure 2. The Hilbert Transform in time and frequency domain representation

x(t) =xjt)coscot+x,(t)sincot

1()
xH(t) 4 x(t)*- = 5 ' [X(f)- HILBERT(f)] (1)

= x, (t) sin cot - x, (t) cos wot (since the Hilbert transform serves to exchange sine and cosine components)

If we then define the analytic signal s(t) = x(t) + j-xH(t),

s(t) 4 x(t) + JxH 

= x,(t)[cos cot + j sin cot] - jx, (t)[cos cot + j sin oot] (2)

=[x.(t)- jx,(t)]eao't

We should note E(t) and 0(t) can then be obtained identically from s(t) as |s(t)| and

Zs(t) respectively:

Is(t) = xEt)-jx,(t)j-te)*'(

= 1x|(1 )+x,2(t) E(t)
4ds(t) = d[x,(t)-jx,(t)]+4 eO'O

= -rcax (1)
= arctan( ) )+Cot =#(t)+aOt =0(t)

x,(t)

When analyzing a signal, it is useful to use the Hilbert transform to look at the E(t) and

0(t) components separately, especially when comparing two signals, as they may be

similar in one component but not the other.

2.3. How important is phase information for CI users?

Experiments by Smith et al. have shown that the melody in music will be carried

primarily in the fine structure, or phase component (t), when the number of bandpass

analysis channels is smaller than 32 (Smith, Delgutte et al. 2002). The current generation

of cochlear implants is limited to 16-24 analysis channels and delivers only E(t) at a fixed

rate, discarding 0(t) altogether (Wilson, Finley et al. 1991). Thus it is no surprise that CI

users have trouble perceiving tones, much less the melody in a piece of music.

In an attempt to restore tonal perception, which is important in many Asian languages

like Mandarin Chinese and Cantonese, researchers have attempted to modulate the
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bandpass center frequencies oo by the fundamental frequency FO in each channel, with

significant success in normal-hearing listeners (Lan, Nie et al. 2004). Lan et al.'s results

can be interpreted as modulating 0(t) in each bandpass channel, to better approximate the

true phase of the signal.

Furthermore, recent work by Nie et al. using acoustic simulations on normal-hearing

listeners shows that speech recognition in noise is significantly improved by the addition

of FM information, which is essentially what we refer to as 0(t), bandlimited to 400 Hz.

They hypothesize that additional FM cues allow better segregation of a target sound into

a perceptual stream that is more distinct from competing noise (Nie, Stickney et al.

2005).

This may be particularly important under conditions of low spectral resolution, such as

those experienced by CI users (Fu, Shannon et al. 1998). An average CI user appears to

receive at most 10 usable channels of spectral information, regardless of the number of

implanted electrodes (Dorman, Loizou et al. 1998; Friesen, Shannon et al. 2001). So

compared to normal-hearing listeners, who potentially have as many as 35,000

independent auditory nerve fibers that can convey spectral information, this is a severe

limitation.

If CI users are able to utilize FM cues similar to normal-hearing listeners in addition to

however many spectral channels they currently receive, then their ability to perceive

speech and music should improve. Overall, these studies and others (Litvak, Delgutte et

al. 2003; Litvak, Delgutte et al. 2003) suggest that the introduction of phase information,

if delivered in ways that were usable, could provide substantial benefit for CI users.

Consequently, at least two published strategies have attempted to incorporate this

additional information into new methods of neural stimulation for cochlear implants, by

stimulating at the peaks (Vandali, Sucher et al. 2005) or zero-crossings (Grayden, Burkitt

et al. 2004) of CI filter-band outputs. Unfortunately, these strategies have yet to show

significant improvement in hearing performance for CI users.

2.4. How can phase information be delivered?

While there are many reasons to believe that phase information is important for higher

fidelity listening, it is not at all clear how phase adjustments or frequency modulation
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should be conveyed to a CI user. The variation of 0(t) is usually very wide and rapid,

which means it cannot be delivered directly to neurons, which have an absolute refractory

period and hence a bandwidth usually no larger than 1 kHz. With regard to CI users in

particular, perceptual data show that they cannot detect FM rate changes at base rates of

more than a few hundred Hz (Zeng 2002; Chen and Zeng 2004). Hence any scheme

proposing to convey phase information to CI users must practically impose both a rate

limitation and a bandwidth limitation on the delivery of 0(t) (Nie, Stickney et al. 2005).

One method is to utilize a zero-crossing detector: we know 0(t) is exactly 0 or 7c at the

zero-crossings, and so delivering this information (e.g. by stimulating at the zero-crossing

times) should provide the brain with fairly rich knowledge of what the phase should be,

even with the bandlimiting requirement. However, to stimulate at zero-crossing times, we

need some quick and intelligent way of choosing a zero-crossing in one channel over

another, because zero-crossings may arrive simultaneously on different channels, and

also very rapidly in the high-frequency channels.

Even if zero-crossing stimulation is not used, channel selection is still required to

enforce interleaved stimulation, to avoid simultaneous interactions between electrodes.

The channel selection process must also prevent one or two strong (high input-intensity)

channels from dominating the firing and not giving other channels a chance to fire.

However, zero-crossing stimulation may not be the ideal method of delivering phase

information. In the presence of noise, the reliability of zero-crossing times as an indicator

of 0(t) rapidly deteriorates. Furthermore, stimulation at a deterministically precise phase

in the signal is very different from what actually happens in biology, as nerves tend to

fire at times which are smoothly distributed over all phases, but concentrated near the

peak in signal energy (Litvak, Delgutte et al. 2003).

To introduce FM information into the stimulation paradigm, Nie et al. have proposed

that either a carrier be frequency modulated with 0(t), or that the carrier itself be replaced

by the band-limited 0(t) signal (Nie, Stickney et al. 2005). In this thesis, and in the spirit

of Nie et al.'s latter idea, our objective is to convey 0(t) but depart entirely from the

concept of either an AM or FM carrier.

Finally, in the search to uncover the neural coding of pitch perception, a study on

tones transposed by high frequency modulation (to activate more basal regions of the
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cochlea) showed that fine time structure should be mapped tonotopically, or to the correct

place along the cochlea, if the pitch is to be perceived (Oxenham, Bernstein et al. 2004).

This must be taken into account when incorporating phase information into the

stimulation.

2.5. Increased membrane noise in the relative refractory period

In (Matsuoka, Rubinstein et al. 2001), membrane noise properties during the relative

refractory period were characterized by electrically stimulating chemically deafened cats

according to the paradigm shown in (Figure 3).

Interpulse
interval (IPI)

MaskeProbe

Figure 3. Stimulus paradigm to study growth of the evoked action potential (EAP) during the relative
refractory period. A masker pulse was applied, followed by a probe after a fixed interpulse interval

(IPI).

Various interpulse intervals were used and the refractory growth function was

measured, defined as the amplitude of the EAP resulting from the probe as a function of

the stimulus current. The refractory growth function was fit using an integrated Gaussian,

and a significant peak in the relative spread (RS, defined as the standard deviation

divided by the mean of the Gaussian) of the refractory growth function was measured

when the IPI was varied from 0.7 to 4ms. The peak in RS occurred consistently across the

5 implanted cats between an IPI of 0.9ms and 1.ims, and is re-plot from the paper in

(Figure 4).
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Estimates of Relative Spread Data orm Matsuoka, Rubinstein et al. 2001

0.
E

0

0.s s . 2 2s5 3 3.s
IPI (mS)

Figure 4. Normalized RS responses for 5 chemically deafened cats. A strong peak shows that the
slope in the I/O function is flattest around ims. One animal has responses recorded for both cathodal

and anodal stimulation.

The increase in RS at the "specific IPI" of-lms is due to the smaller number of noisy

sodium channels available (due to deactivation) during the relative refractory period. A

large number of sodium channels would increase the averaging effect that causes the

stochastic response to converge upon a mean, deterministic response. Correspondingly,

the gradual reduction in active and noisy sodium channels during the relative refractory

period would cause the variance of the response, and hence the RS, to rise.

To summarize, the basic result is that there exists a "specific IPI" which increases

membrane noise in a nerve. Thus, if electrical stimulation was configured to prefer this

IPI, cross-fiber synchrony may be reduced by activating only a stochastically-varying

fraction of the neuron population possessing responsive sodium channels. This potential

possibility will have to be verified in a clinical setting.

2.6. Gamma distributions in the Interspike Interval Histogram (ISIH)

(1) It has been claimed that ideally, interspike intervals should be exponentially

distributed, as this corresponds to an underlying Poisson process (Rubinstein,

Wilson et al. 1999).

(2) More precisely, as we understand neuronal spiking not to be a Poisson

process in itself but rather a result of integrating Poisson distributed stimuli

up to a fixed firing threshold, the inter-spike interval should have a Gamma

15



(or Erlang random variable) distribution (Stein 1965). Two sample

distributions are shown in (Figure 5).

Gamma Distribution (Eriang R.V.) Gamma Distribution (Eriang R.V.)
1.4 0.7111

- P r arrivals) .t tir t - P(r arrivals) at time t ,fJ " [2.00,6.72*.WO1I

1.2- 0.6

fa~) [. , .( tt'i (r-I)l .-s I r fw -p'it-tor I (r-I)l -04*46,
1 -. refaty time to -100 - 0.5 - Ab.refatr time, to -. 00 -

Menrats of arrival, p -3.00ea rats of arrival, p -3.00
Threshold IIIarrivals, r 2 Thrsshold 0 arrivals, r-4

0.8 0.4-

0.6- 0.3-

104 -- 0.2 -

0.2- 0.1 -

0 053 1.5 2 2.5 3 3.5 40 !05 1 1.5 2 2'5 3 3.5 4 4.5 5
Time t (arbitrary units) Time t (arbitrary units)

Figure 5. Gamma distribution with parameters to=1.0, p=3.0, r=2 and r=4. Note that the value of r
controls the slope of the rising edge, and r=1 reduces the gamma distribution to an exponential

distribution with an abrupt (infinite) slope at to.

A bio-realistic ISIH should therefore reflect a more gently rising slope, which peaks

before an exponential "decay," where the steepness of the rising slope is determined by

the voltage threshold for spiking: a high threshold will have a gentler slope, while a low

threshold will have a steeper slope.

2.7. Rate limitation in the auditory response

A final piece of research which impacts our architecture is that of the limitation on

rate discrimination, a.k.a. rate limitation in the auditory response. It has been shown that

the discrimination of rate changes above 300 pulses per second (pps) is very poor in

cochlear implant patients (Shannon 1983). Normal hearing listeners can discriminate

changes in rate (i.e. changes in pitch, or FO) of less than 1% for pure tones at low to

moderate frequencies, while implant patients have FO difference limens (FODLs) on the

order of 10% if even measurable, around 300 Hz (Tong and Clark 1985).

This could be a constraint that limits the usefulness of frequency-modulated

information (i.e. phase information) in cochlear implants. Furthermore, current CI users

may experience a perceptual dissonance due to the lack of consistency of phase cues

between neighboring channels that would be present in a normal traveling-wave

architecture (Loeb 2005).
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Nevertheless, the ability of a CI user to discriminate changes in pulse rate varies

between individuals (Townshend, Cotter et al. 1987), and some CI users may yet benefit

from rate-coding of pitch and tonal information.

3. Asynchronous Interleaved Stimulation (AIS)

3.1. The "race-to-spike" algorithm

If we do not use zero-crossings, how might we generate good asynchronous firing

times? In this section, we propose a bio-inspired way to provide stimulation pulses at

asynchronous times which still have a definite correlation with (t). However, if we make

the firing times a sole function of $(t), this decouples the local decision to fire from

global knowledge of activity in other channels, which may be important. In addition, we

also do not want to decouple the decision to fire from the envelope strength, as it should

be probabilistically more important to provide correct FM information when the AM

signal is strong. Therefore, our strategy attempts to incorporate global information across

all channels about E(t), and favors the firing of a pulse when E(t) in that channel is larger

than others. The resulting times will naturally be asynchronous, and should even appear

pseudorandom for natural, arbitrary sounds, given complex interactions between channels

during the channel-selection process. Further biological justification for this technique is

presented in section 0.

The system is comprised of coupled electronic neurons that incorporate information

about E(t) across all channels, and in competition with each other, generate the

asynchronous firing times. The strategy is also termed a "race-to-spike" algorithm, as the

neurons are set up in a race where the winning channel gets to deliver a stimulation spike

on its electrode. The algorithm is described in the following steps:

(1) The system receives as inputs half-wave rectified currents from a bank of

bandpass analysis filters, which could be actual currents like those generated

by an analog processor (Sarpeshkar, Baker et al. 2005; Sarpeshkar, Salthouse

et al. 2005), or a digital version as produced by a DSP.

(2) There is one integrate-and-fire neuron (Dayan and Abbott 2001) associated

with each channel, receiving the above-mentioned current input from that

17



channel, to charge up its neuronal capacitance from the ground state. This

begins the "race-to-spike."

(3) The first neuron to reach a fixed voltage threshold "wins" and resets all

capacitors back to zero. This ensures that the interleaved stimulation

requirement is satisfied, as there can be only one winner.

(4) The winning neuron then fires a current spike (which is an asynchronous

timing event) on its electrode that is scaled by the channel envelope's energy.

(5) Once a neuron wins, its input current is inhibited (i.e. weakened) for a period

determined by a relaxation time constant, to prevent it from winning

repeatedly.

(6) After the winning neuron has fired its spike, we start the neuronal "race-to-

spike" (step 2) again.

Natural variations of this algorithm could be implemented, and we will list just a few.

The inputs to the integrate-and-fire neurons could be generated by any signal analysis

front-end, for example a modulated filter bank or a cochlear cascade of low-pass filters.

The voltage threshold could be different for different channels, to create pre-emphasis or

to accommodate different sensitivity to stimulation. The level of the electrode current

spike could be an arbitrarily complex function of its input, such as an average past

envelope stored dynamically on a capacitor in that channel. The level of inhibition

following a spike, and also its duration could be arbitrarily complex functions of the past.

For the purposes of this thesis, we will implement in simulation only a simple version of

this strategy, to be elaborated on below.

We wanted to build on existing work on an ultra-low-power analog bionic ear

processor (ABEP) to eventually implement a very low power strategy in hardware

(Sarpeshkar, Baker et al. 2005; Sarpeshkar, Salthouse et al. 2005). Thus, to examine the

effectiveness of this strategy in conjunction with low-power analog signal-processing

components already built, we simulated as our front-end the bandpass filters and

envelope detectors exactly as they were implemented in the ABEP: The bandpass filters

were conventional 2-stage 4th-order filters with Q=4 and 12 dB/octave highpass and

lowpass rolloffs; 16 channels were implemented, with center frequencies scaled

logarithmically from 116 Hz to 5024 Hz. The envelope detectors were implemented with
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asymmetric attack and release 1st-order low-pass time constants, with rA=lms and

,rR=3ms respectively, acting on full-wave rectified filter outputs in order to compute an

approximation for E(t). The envelope detector may therefore be thought of as a low-pass

filter with cutoff frequencies of 1 kHz and 333 Hz for rising and falling transients

respectively. To simulate the finite sampling rate in digitizing E(t), E(t) was passed

through a sample and hold running at a rate of 1.8 kHz. Half-wave rectified versions of

the bandpass filter outputs were used as inputs to the integrate-and-fire neurons.

Neuronal capacitances are simply modeled as capacitive state variables, and their

voltage threshold was set to be the same for all channels, where a low value of around

35mV (in simulation units) turned out to give good results. Using this threshold and input

speech tokens at conversational sound pressure level, all channels reach their threshold

and fire within -400 ps of receiving an input pulse, with a time-to-spike of 50-200 ps

being most common. A histogram of typical times-to-spike is shown in (Figure 6).
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Figure 6. Histogram of times-to-spike, with Vthresh=35mV (in simulation units) and conversational
SPL for the speech token "die."

The size of the spike fired was simply set to the sampled-and-held value of E(t),

which could be easily implemented in hardware by D/A converters.

The last important detail is the time course of the inhibition described in step (5)

above. We wanted to ensure that firing was absolutely prohibited for a minimum amount

of time that is determined by the absolute refractory period of biological neurons. This

prohibition avoids wasting stimulation power when biological neurons are unable to

respond. However, after the absolute refractory period, we would like to softly turn off

the inhibition current, thus enabling a very strong input to overcome the imposed

inhibition.

To accomplish these objectives, we designed the time course of the inhibition current

to be modeled by a Fermi-Dirac exponential roll-off, given by the equation

1
h,) 1 where rinh sets the time where the inhibition falls to half its maximum

value, fixed at 0.8 ms in our simulations and k sets the steepness of the rolloff, fixed at

104. The value of rinh was chosen to be 0.8 ms to enforce a minimum inter-spike interval

near the refractory period of auditory neurons (Miller, Abbas et al. 2001). The shape of

this time course is shown in (Figure 7).

Inhibition current template 0.8 ma k-1.0e+004
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Figure 7. Time profile of inhibition current, with exponential rolloff modeled by the Fermi-Dirac
equation. Note the current falls to half its value when t = Tinh.
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It also happens to match closely with the decrease in current output of a subthreshold

current source if the gate voltage on a pass transistor is linearly decreased, which can be

easily implemented in electronics. The inhibition current Inh(t) is then defined as

Aih -hnh(t), where Ainh sets the maximum inhibition current, fixed at -0.5 in our simulation

units.

The algorithm is described in the following pseudocode:

Initialize: capacitor voltages Vcap(t) = 0 V channels

Initialize: time-of-last-spike tastspike = -co V channels

Initialize: spiking output spike(t) = 0 V channels

At each timestep t, V channels,

Compute: Iinh(t) Ainh-hinh(t-lastspike) ... (step 5)

Increment: Vcap(t) += max[HWR(t) - Inh(t), 0] ... (step 1,2)

where HWR(t) is the half-wave-rectified bandpass filter output for that channel

If max [Va,,(t)] > (Vthresh= 35mV)
Vchannels

Find: max ch = channel with max [V, (t)]
Vchannelsca

Set: Vcap(t) = 0 V channels ... (step 3)

Set: spike(t)= E(t) in channel maxch ... (step 4)

Set: t astspike= t in channel max ch ... (step 5)

3.2. Results from MA TLAB simulations

Various sound files in the .wav format were loaded into MATLAB and input to the

simulation. We tested speech utterances of the words "die" and "buy," a Handel chorus

containing a word vocalization of "hallelujah," and a piece of music (jazz) that does not

contain words.

Being a digital simulation, we had to choose some level of timing resolution with

which to discretize the time steps, thus a "sampling rate" of Fs=44100 Hz was used,

indicating a timing resolution of about 23 ts. Preliminary results (not shown) suggest that

a timing resolution much worse than that degrades the accuracy of our experiments. We

present results from "die," which is one of the two speech utterances tested, to illustrate

the performance of the system.
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3.2.1. Capacitor Voltage and Inhibition Current waveforms

(Figure 8) is a zoomed-in figure of typical capacitor voltage and inhibition current

waveforms. We note that spikes are fired when the capacitor voltage reaches a threshold,

turning on a negative inhibition current that has the profile as described in (Figure 7).

Immediately after a spike, all capacitors are then reset to zero as given by the algorithm.

As the level of inhibition current Ainh at -0.5 was set to be higher than the highest input

level, no channel fires again until its inhibition current has almost returned to baseline.

Asnchronous Neural Stimidator: de
Vthresh35 m A Inh=-0.

5 tfl.S ms (F,=44100 Hz)
18III

-cap vlags
- .Inhiblon curreni

14 6

0
z

U

-4l I 14 4j' 4

2l .. ... ......

0.325 0.33 0.335 0.34 0.345 0.35 0.355
Time (s)

Figure 8. Capacitor voltage (solid lines) and inhibition current (dotted lines) waveforms from race-
to-spike simulation of the speech utterance "die."

3.2.2. Half-wave rectified inputs against spiking outputs

(Figure 9) shows the half-wave rectified outputs of the bandpass filters, used as inputs

to the asynchronous race-to-spike system, and plotted against its spiking outputs for the

same time window as in (Figure 8). We should note that spikes tend to fire near the

beginning of each positive excursion in the filter output, but the phase at which a spike is
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fired is not deterministic. Instead, the time of firing exhibits some pseudo-stochastic

variation due to the competition between channels. We should point out that our strategy

does not explicitly model stochastic firing that arises normally in the auditory system, but

may, however, introduce stochastic responses that are similar to those encountered

normally. By firing only when enough charge has accumulated within a fraction of a half-

wave rectified cycle, and when the intensity of a channel is high enough to be the first to

spike, a channel will generate spike times that are correlated with but not precisely

determined by important features in the phase of the signal (t). The resulting spike

trains, as we shall show later, are sufficient for high-fidelity signal reconstruction, and

encode phase information with a high degree of correlation.
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Figure 9. Half-wave-rectified bandpass filter outputs (dashed lines) used as inputs to the race-to-
spike simulation, plot against the spiking outputs (solid lines). The spikes in this figure are shown

before scaling by E(t), for clarity.

Of note are also the low-frequency channels, where we note multiple spikes may be
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fired over a single pulse of energy. This allows pulses of long duration to be well

represented, which would not occur in zero-crossing based stimulation.

3.2.3. Interspike-Interval Histograms

The interspike-interval histogram of each channel is presented in (Figure 10). An

"absolute refractory period" of about 1 ms is shown to be enforced, keeping the

instantaneous firing rate in each channel below a maximum of 1 kHz. The distributions

also look fairly natural, where a perfectly natural distribution due to spontaneous firing

would be a smooth gamma distribution indicating Poisson arrival of inputs to a neuron.

The histograms do not show exact gamma distributions, but the distribution is

nevertheless more natural than any distribution produced by synchronous firing.
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Figure 10. Interspike-interval histograms for the 16 stimulation channels. Also shown for each
channel are f, the center frequency of each channel, T = 1/f, the number of spikes in that channel,

and the AFR. Spike counts > 100 are clipped (but reported numerically above the figure), and spike
intervals > 9ms are not shown in the histogram.
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3.3. Power Savings

A major advantage of asynchronous stimulation is that the average firing rate (AFR)

is able to fall significantly below the worst case maximum firing rate. In contrast,

synchronous paradigms need a clock that is fast enough to handle the fastest event rate.

Asynchronous stimulation allows the input firing rate to be averaged across time and

across channels such that no power is spent during quiet periods or on quiet channels to

continuously sample the signal. Sensory codes that adapt to signal statistics are efficient

(Smith and Lewicki 2006) and asynchronous stimulation allows us to adapt our sampling

rate in time and spectral space to the needs of the signal.

We should note in our simulation above that the AFR in each channel is about 300-

388 Hz for most channels, and when averaged over all 16 channels comes down to only

279 Hz per channel. This AFR is lower than the firing rate in conventional synchronous

stimulation where firing rates are not adapted to the input stimuli. (Table 1) shows the

power savings possible with our technique by stating the worst-case channel's AFR and

also contrasting it with the mean AFR of all the channels. We see that averaging in time

reduces the worst-case AFR below 1 kHz, thus saving power, and that averaging across

channels reduces the mean AFR, also saving power.

Table 1. Maximum and mean (across channels) of each channel's average firing rate (AFR)

Sound file Maximum Channel with Mean AFR
AFR (Hz) max AFR Hz

"die" 388.2 6 279.4
"bu " 466.5 7 288.9

Handel 772 9 451.9
chorus I I I

Jazz music 556.9 7 275.3

3.4. AIS spike reconstruction and comparisons

In this section, we present a method of comparing the AIS strategy against other

acoustic simulations of cochlear implants. Many acoustic simulations reconstruct the

sound input to a CI from its output of channel envelopes by using white-noise or tonal

carriers for each channel (Shannon, Zeng et al. 1995; Dorman, Loizou et al. 1997), and

are known as noise/tone vocoding reconstructions. To similarly reconstruct a sound from
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the train of spikes generated by AIS, we use a spike-based reconstruction technique that

has its foundation in prior neurophysiology work, showing that analog waveforms can be

accurately reconstructed from spiking waveforms. For example, optimal low-pass filters

can be designed, that when applied to the recorded spike trains from the Eigenmannia

electric fish, produce as their output a very well-correlated reconstruction of the input

voltage variations in the fish's sensed aquatic environment (Wessel, Koch et al. 1996).

Such experiments show that frequency modulations in neuronal spike trains can encode

an analog input so well that only conventional low-pass filters are needed for stimulus

reconstruction.

Recent work has also shown that a spike-based auditory code can very efficiently

encode speech, outperforming gamma-tone, wavelet and Fourier decompositions,

achieving the highest SNR in representing speech at coding rates <60 kbits/s (Smith and

Lewicki 2006). In this research, sound signals are also reconstructed from spikes using

tuned kernel filters that have impulse responses closely resembling those of high-order

resonant low-pass filters. Interestingly, these impulse responses independently matched

physiological data; the dictionary of 32 kernel filters that were adapted to give good

reconstructions turned out to match the tonotopic population of auditory neuron impulse

responses in cats, as derived from reverse correlation analysis (deBoer and deJongh

1978). These results lend further support to the validity and usefulness of impulse

response reconstructions for neuronal spiking codes.

3.4.1. Channel-by-channel spike reconstruction

Motivated by prior work on spike-based reconstruction techniques like that in the

electric fish, we applied 2-stage 4th-order low-pass resonant filters (with the same center

frequency and Q of 4 as the bandpass filters in each channel and with 24 dB/octave low-

pass rolloffs) to the spiking outputs from each channel. The spikes effectively behave like

envelope-scaled impulses and the filters sum the impulse responses from various spikes

to recreate the analog information in each channel:

f spike,,(r) -h (t - r) dr where spike,,(t) contains the E(t)-scaled spikes from channel ch, (4)
reconstruction,, (t) ha h(t) is the low-pass filter impulse response for channel ch,

= max h and reconstruction,,(t) is the reconstructed signal on channel ch

As the peak in the impulse response hch(t) for each channel increases linearly with the
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center frequency, we needed to normalize the reconstructions across channels by dividing

by the peak value of hch(t). The reconstructed waveforms on a channel-by-channel basis

are shown in (Figure 11):
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Figure 11. Sixteen-channel spiking reconstruction (solid lines) of the bandpass filter outputs (dashed
lines). A magnified version of the same time window as in earlier figures is shown on the right.

Correlation coefficients (r) for each channel are computed from the following

equation:

f BPFoutput e, (t) -reconstruction,(t) dt where BPFoutputch (t) is the bandpass output for channel ch, (5)
r = and both BPFoutputh(t) and reconstruction,(t) have

BPFoutput,'(t) dt -reconstructionc2(t) dt had their means removed, i.e. are zero-mean signals

The correlation coefficient is on a scale from 0 to 1, with 1 indicating a perfect

correlation between the bandpass filtered output and the spike reconstruction. The

correlations between each channel are fairly good, with a low-frequency channel having a

correlation coefficient as high as 0.86. In performing these correlations, it was also

important to account for group delay introduced by the bandpass and low-pass filters,

which causes the composite reconstruction(t) (as defined in the next section) to lag the

original signal. Thus, to compensate for the group delay (which does not affect the sound

fidelity), the cross-correlation between reconstruction(t) and the original signal was

performed, and the lag corresponding to the peak in the cross-correlation was then used

to time-shift reconstruction(t) and align it with the original signal. The lags for the 4

sounds ranged from 4.8 - 9.5 ms.
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3.4.2. Composite signal spike reconstruction

If we sum all the reconstructed channels together, we can generate a composite

reconstruction of the original signal just as in CI acoustic simulations using vocoding

reconstruction, defined as follows:
16(6

reconstruction(t)= reconstruction.,(t) (6)

The summated signal is shown in (Figure 12), with a zoomed-in version again on the

right. The phase relationships are clearly preserved, and the envelope is also fairly well

tracked.

Figure 12. Composite spiking AIS reconstruction (solid line) of the waveform "die," by summing the
channel reconstructions together. Note the reconstruction is downsampled to match the sampling

rate of the original sound signal (dotted line). The composite correlation coefficient is 0.48.

The composite correlation coefficient is 0.48 in this example, the word die, and is

calculated as follows:

Forigi nal (t) -reconstruction(t) dt where original(t) is the original sound signal, (7)
r = i and both original (t) and reconstruction(t) have

j original2(t) dt -freconstruction2(t) dt had their means removed, i.e. are zero-mean signals

Note that the sampling rate was reduced to match the same sampling rate of the

original signal, to make a fair comparison. A flowchart of our entire reconstruction

technique is shown in (Figure 13).
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Figure 13. Flowchart of the entire AIS reconstruction process.

3.4.3. Hilbert decomposition and correlation

It is not immediately obvious how much of the phase information j(t) is retained in

the spike output from the AIS strategy. In order to better quantify the transmission of 0(t),

we performed a Hilbert decomposition of the reconstructed signal into E(t) and 0(t)

components as described in Section 2.2. These components were then correlated

separately with the original signal's envelope and phase. In order to see whether the

correlations for E(t) and 0(t) were significant for AIS, we then compared them against

CIS noise and tone vocoding reconstructions, and also a CIS spike-based reconstruction

which employs the same reconstruction filters as described in Eq. (4), except that the

non-overlapping spike input is now sequentially and synchronously firing at a fixed rate
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of 1.4 kHz. Other firing rates were tested as well but found not to make a significant

difference to the results. The sound samples used were the words die and buy, to be

representative of speech, and snippets from Handel's Hallelujah chorus and a jazz piece,

Highway Blues, to be representative of music. As the results for CIS noise vocoding

could vary significantly between trials due to randomness in the noise input, we

conducted 100 trials and present the mean and standard deviation of those trials.

Envelope correlations are shown in (Table 2), phase correlations are shown in (Table 3)

and composite correlations are shown in (Table 4).

Table 2. Correlation in E(t) envelope component for different processing methods

Sound file AIS spike-based CIS noise-based CIS tone- CIS spike-based
reconstruction vocoding based reconstruction

100 trials) vocodin (1.4 kHz firing rate)
"die" 0.6 0.50 ± 0.04 0.57 0.48
"buy" 0.6 0.46 ± 0.08 0.46 0.37

Handel chorus 0.54 0.27 ± 0.06 0.33 0.27
Jazz music 0.49 0.18 ± 0.02 0.29 0.52

Table 3. Correlation in 0(t) phase component for different processing methods

Sound file AIS spike-based CIS noise-based CIS tone- CIS spike-based
reconstruction vocoding based reconstruction

100 trials vocodina 1.4 kHz firin rate)
"die" 0.19 0.03 ± 0.02 0.07 0.16
"buy" 0.13 0.03 ± 0.02 0.01 0.07

Handel chorus 0.42 0.03 ± 0.01 0.02 0.01
Jazz music 0.4 0.01 ± 0.01 0.01 0.01

Table 4. Correlation in composite reconstruction for different processing methods

Sound file AIS spike-based CIS noise-based CIS tone- CIS spike-based
reconstruction vocoding based reconstruction

1______ _ 1 (100 trials) vocodina 1.4 kHz firin rate)
"die" 0.48 0.10 ± 0.02 0.09 0.07
"buy" 0.43 0.10 ± 0.02 0.08 0.04

Handel chorus 0.67 0.08 ± 0.02 0.04 0.01
Jazz music 0.58 0.04 ± 0.01 0.02 0.01

Correlation coefficients for 0(t) are in general lower than that for E(t) because 0(t) by

nature varies much more rapidly than E(t). However, 0(t) correlation coefficients are
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clearly higher for AIS than other reconstruction techniques, especially for the music

pieces. As the E(t) correlation coefficients are not that much different between

reconstruction strategies, the improved match in the composite reconstruction for AIS

may likely be due to the improved transmission of (t) matching up with E(t) in the spike

output. A tone vocoder reconstruction analogous to the AIS reconstruction in (Figure 12)

is shown in (Figure 14), and the effect of poor phase correlation can be clearly seen.

4oA I.'

Figure 14. Composite tone vocoder reconstruction (solid line) of the original speech waveform "die"
(dotted line). The composite correlation coefficient is 0.09.

3.4.4. What do they sound like?

Correlation coefficients only give us a very general indication of the signal fidelity.

The added value of performing a spike reconstruction is that the level of information

encoded can be assessed by listening. If the sound fidelity is poor, it does not necessarily

mean that a high level of information is absent, but if the sound fidelity is good, it

demonstrates that that a high level of information must be present. Some sample

reconstructions can be listened to at http://avnsl.mit.edu/AIS.

The sound quality in AIS reconstructions is noticeably improved in that they sound

more natural, and AIS channels should contain sufficient information for tonal languages

to be correctly represented. In the case of music, while other reconstructions retain only

the rhythm, a clear melody and even different musical instruments are perceptible in the

AIS reconstructions.
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3.5. Perceptual tests in noise

In order to determine whether AIS can provide any real advantage in cochlear

implants, testing our strategy with CI users is absolutely necessary. However, such

testing is costly in time and resources, and hence often prohibitive unless we are

convinced of the new strategy's potential merits. One faster and less costly way of

evaluating a new CI strategy is to perform perceptual tests on normal-hearing listeners,

using acoustic reconstructions of cochlear implant outputs as described above. While

previous results from CI simulations have been found to correlate with CI performance

on some perceptual measures (Friesen, Shannon et al. 2001), it should be emphasized that

they can only gauge the best possible outcomes for CI users, as many differences

between acoustic and electric stimulation are not accounted for in these reconstruction

techniques, such as the channel interactions and poor spatio-temporal coding in real

implants. Furthermore, the tests we perform to evaluate AIS are tasks relying on the

perception of fine time structure, and unlike tasks that rely only on the perception of

envelope cues, there is only a small body of evidence to suggest that the results will

correlate with actual CI performance (Collins, Wakefield et al. 1994). Nevertheless, these

perceptual tests should provide an indication of whether a new CI strategy is worth

testing on real CI users. In this section, we present two psychoacoustic experiments that

were designed to verify whether AIS provides any advantage in coding speech and music,

particularly in the presence of noise, as perceived by normal-hearing listeners.

3.5.1. Methods

Eight normal-hearing listeners were recruited from a local on-line bulletin board to

participate in this study. Five subjects were female and three were male, ranging in age

from 23-48 with a mean age of 29.5 years. Their hearing thresholds were screened before

the test to be at 20 HL or better. Signals were presented at 70 dB SPL over Sennheiser

580 headphones in a sound-attenuating booth. Speech-spectrum shaped noise was used in

conditions where noise was added to the stimulus. Each experiment began with practice

trials, during which feedback was provided.

The target sounds and noise maskers were mixed before processing, using either AIS

spike reconstruction as described in the previous section, or envelope vocoding with tonal
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carriers (as in (Dorman, Loizou et al. 1997; Poissant, Whitmal et al. 2006)). In both

cases, 16 contiguous frequency channels were used, with center frequencies spaced

equally on a logarithmic scale, and an overall passband extending from 100 to 5000 Hz.

Pilot data from CIS spike-based reconstructions and CIS noise-based vocoding both

resulted in poorer performance than CIS tone-based vocoding for speech recognition in

noise and were therefore not used, as we wanted to compare the best-performing CIS

acoustic simulation against our AIS acoustic simulation.

In the first experiment, subjects were told that they would be listening to distorted

speech sounds in a noisy background. They were told that some of the utterances would

be very hard to understand, and that they should type all the words that they think they

hear. In the practice trials, they were presented with 8 lists of 10 HINT sentences

(Nilsson, Soli et al. 1994), counterbalanced across subjects for the 2 processing

conditions tested, namely AIS spike reconstruction and CIS tone vocoding. Half of the

practice trials were presented in quiet (SNR=oo) and the other half at +6 dB SNR, in

alternating sequence. During this stage, subjects were given the chance to hear sentences

again after typing their response, and were shown on the screen what they had just heard.

Actual trials used 16 different lists of 10 HINT sentences at four different SNR's (6, 3, 0

and -3 dB). Lists were randomly selected, and SNR and processing condition were

randomized for each list. This resulted in 2 lists (or 20 sentences) for each condition.

Repetition of the stimuli was not allowed and no feedback was provided.

In the second experiment, subjects were presented with 34 common melodies that had

all rhythmic information removed, and were synthesized from 16 equal-duration notes

using samples from a grand piano. These melodies were also used in previous studies on

melody recognition (Lobo, Toledos et al. 2002; Smith, Delgutte et al. 2002). Subjects

were then asked to select 10 melodies they were most familiar with, which were then

played back in random order for them to identify. All subjects were able to find 10

melodies that they could easily identify correctly. Actual trials presented subjects with

their 10 melodies which were processed by AIS spike reconstruction and CIS tone

vocoding. Melodies were presented at two SNR's (in quiet, SNR=oo, and in noise, with

SNR=0 dB), counterbalanced across subjects for both SNR and processing condition. All

melodies were presented twice in random order for each experimental condition. Subjects
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were instructed to identify the melody, and were forced to select their response from the

closed set of 10 melody names on the screen in front of them. Repetition of the stimulus

was not allowed and no feedback was provided.

3.5.2. Results

(Figure 15) shows HINT sentence recognition scores as a function of SNR for the two

processing conditions, AIS spike reconstruction and CIS tone vocoding. In general,

subjects did no worse with tone vocoding than with AIS for the conditions of 6, 3 and 0

dB SNR. However at -3 dB SNR, subjects performed better with AIS by 17 percentage

points. Analysis of variance (ANOVA) on arcsine transformed data (to normalize the

compression of variance near 100% and 0%) showed a significant main effect for SNR

[F(2,13) = 145, p<0.001], processing condition [F(1,7) = 5.80, p<0.05] and an interaction

between SNR and processing [F(2,15) = 7.53, p<0.005]. A post-hoc analysis (including

Bonferroni correction) using a paired samples t-test revealed that only the -3 dB SNR

condition showed a statistically significant difference between the two processing

conditions [t(7)=5.61, p<0.005]. These results confirm the experiments of Nie et al. (Nie,

Stickney et al. 2005), which suggest that additional FM cues improve performance more

in noise than in quiet. AIS may therefore improve the hearing of speech in noise, if

additional phase information can indeed be delivered to CI users by this strategy.
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HINT Sentence Recognition Results (8 subjects)
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Figure 15. Sentence recognition scores for AIS vs. CIS tone vocoding reconstructions in noise. Error
bars show one standard error.

(Figure 16) shows melody recognition scores for the two SNR conditions and two

processing conditions tested. Subjects performed better with AIS by 55 percentage points

in quiet (oo SNR), and by 61 percentage points in noise (0 dB SNR). A repeated-measures

ANOVA on arcsine transformed data revealed a significant main effect for processing

condition [F(1,7) = 107, p<0.001]. In general, subjects were clearly more able to

recognize melodies correctly when listening to AIS spike reconstructions. Thus, tonal

perception in CI users may also be improved, if additional phase information is in fact

transmitted by AIS. There was no significant main effect for SNR or any interaction.

Thus, the addition of noise at an SNR of 0 dB had no significant effect on subjects'

ability to recognize melodies in either processing scheme.
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Melody Recogntion Results (8 subjects)
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Figure 16. Melody recognition scores for AIS vs. CIS tone vocoding reconstructions in quiet and
noise. Error bars show one standard error.

3.6. Discussion

Earlier stimulation strategies have recognized the importance of providing phase

information. For example, the Peak Derived Timing (PDT) strategy presented in (van

Hoesel and Tyler 2003; Vandali, Sucher et al. 2005) stimulates at times corresponding to

positive peaks in the filter-band output, and the Spike-based Temporal Auditory

Representation (STAR) strategy (Grayden, Burkitt et al. 2004) generates stimulation

pulses at the zero-crossings. Both also encode phase information in the time of firing, but

what truly matters is whether CI users are able to utilize the coded information. CI users

in (Vandali, Sucher et al. 2005) were found to do no better at a pitch ranking task using

PDT than other strategies that did not encode phase information. Many factors are likely

to limit phase coding with CI users, such as perceptual dissonance (Loeb 2005) and

widespread fiber synchrony which is endemic to electrical stimulation, and for these
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reasons AIS may perform no differently from other strategies. However, in contrast with

other strategies, AIS firing times are determined when E(t) in a channel is deemed in a

uniquely bio-inspired way to be more pertinent than other channels, using a neuronal

"integrate-to-fire" competition. Whether this or other details in AIS make any difference,

however, remains to be proven in tests with real CI users.

3.7. Summary of contributions

We have demonstrated a simulation of an asynchronous interleaved sampling (AIS)

strategy for neural stimulation in cochlear implants, that encodes both phase and

envelope information known to be important in perceiving tonal languages and music,

and for hearing in noise. Stimulus reconstructions with AIS using simple filtering-and-

sum techniques show significantly higher correlation coefficients with the input for both

speech and music than other stimulus reconstructions which use only envelope

information. Perceptual tests in noise show that the improved correlation is reflected in

normal-hearing listeners' ability to recognize both sentences and melodies more easily

with AIS reconstructions than with more traditional envelope vocoding techniques. Our

results confirm that phase information should make a greater difference for perceiving

melodies than for speech in noise.

My particular contributions were in:

1. Creating the MATLAB simulation and investigating the parameters which

mattered - for example, a low Vthresh of 35mV in simulation units.

2. Discovering how to do spike reconstructions, and moving from BPF to 1-stage

LPF and finally to 2-stage LPF reconstructions to get the best performance.

3. Exploiting the Hilbert transform to separate envelope and phase correlations.

4. Quantifying the power savings from a reduction in AFR.

5. Qualifying the "naturalness" of firing by looking at ISIHs.

6. Designing the perceptual experiments on normal-hearing listeners.

3.7.1. Acknowledgements

The perceptual experiments conducted in section 3.5 were done with the help of

Andrea Simonson and Andrew Oxenham from the Auditory Perception and Cognition

Lab at MIT. The original idea for AIS was conceived by Mike Faltys at Advanced
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Bionics and my advisor, Rahul Sarpeshkar.

4. Analog Circuit Implementation of AIS

4.1. Motivation

In order to deliver the temporal information in (t) within a pulsatile stimulation

paradigm, the ability to stimulate at precise times is essential, and therefore high temporal

resolution is required to take full advantage of asynchronous stimulation. If conventional

discrete-time signal processing is used to generate asynchronous stimulation times, a

high-rate sampling c-lock is required to achieve high temporal resolution, which can be

costly in power. However, an event-based asynchronous digital or continuous-time

analog signal processing scheme can provide high temporal resolution without the need

for a fast sampling clock that is constantly running whether there are events or not.

Rather than waiting for custom asynchronous hardware to be developed to test the

AIS strategy, we went ahead to develop our own in analog electronics. For the purposes

of demonstrating the hardware feasibility and performance of the AIS algorithm, it made

most practical sense for me to build upon the existing analog bionic ear processor

(ABEP) described in section 3.1, which could readily provide continuous-time analog

inputs in the form of half-wave-rectified (HWR) currents from the envelope detectors.

The envelope detector circuit in the ABEP, more fully described in (Zhak, Baker et al.

2003), needed just a few modifications to output fast HWR currents and is shown in

(Figure 17) below:
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Figure 17. Envelope detector circuit with fast HWR output shown in red

A second compelling reason to use continuous-time analog signal processing is

because it would be compatible with a very low-power implementation by using sub-

threshold building blocks.

As a simple comparison with an asynchronous digital solution, listed below is the

number of operations for each of the 16 channels that would be needed from the

algorithm in section 3.1:

(1) 3 additions

(2) 2 multiplications (+1 more to vary channel thresholds independently)

(3) 17 comparisons

These operations need to be performed on state variables with at least 16 bits of

precision to capture the full 60dB dynamic range in the current input before log

compression. The maximum rate at which these operations need to be completed would

be around the inverse of a single pulsewidth (-50-100ps), in the limiting case where a

series of pulses might fire back to back. The bandwidth of these asynchronous blocks

must therefore be greater than 10-20 kHz. The instantaneous power consumption might

therefore be quite high, in the case where many bits needed to flip at this rate. Energy-

wise, however, since these operations can be averaged out over time to the average firing

rate of a few hundred Hz, even without using an aggressively scaled technology, the
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average power consumption should be comparable to an analog processor.

A more unique advantage of using continuous-time analog processing (as opposed to

asynchronous digital processing) is found in the low complexity of analog primitives that

can be used to implement basic multiply-add and comparison-selection operations. These

analog primitives will be described in the following sections.

4.2. Circuit Specifications

Before getting into a description of the circuit details, a summary of the specifications

that are needed for both practicality and performance are listed below.

(1) Individual tunability: we should allow Vthresh to be set independently in

each channel, to allow channel equalization, pre-emphasis, and also to

accommodate variability between patients and neural populations within each

patient. Provision to prefer a specific interpulse-interval (IPI) should also be

made, to take potential advantage of the increased membrane noise during the

relative refractory period. Finally the pulsewidth of each spike should be

variable to allow for channels that need to maximize the amount of charge

transfer by increasing time, rather than current, to stay within the voltage

compliance of the supply rails.

(2) Channel separation: pulses in different channels should not overlap in time,

to minimize channel interaction and current spreading effects. In other words,

the interleaved stimulation constraint of having only 1 electrode active at any

one time should still be enforced.

(3) Temporal non-interference: additional attention must be paid to the

temporal implementation of the spike generating circuits. As suggested by the

research described in Section 2.7, rate-discrimination limitations in cochlear

implant users may be due (at least in part) to temporal processing issues like

auditory filter ringing. If auditory filters can be modeled by constant-Q filters

like what we implemented, the number of cycles spent ringing varies only

with Q and thus remains roughly constant, so low frequency channels may

ring for a longer time than high frequency channels. Thus it may be desirable

to have constraints in the separation of stimulation pulses in time (for
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example, to guarantee a minimum delay between stimulation of adjacent

channels) in order to minimize temporal interference.

(4) Low power: it is crucial that the final system be a low power design, to be

practical for implantation on a tight power budget.

A full 16-channel analog system was built to meet these specifications in an AMI 1.5

pm process, and will be called the AIS ABEP in the remainder of this thesis.

4.3. The "race-to-spike" circuit

Shown below is a schematic of a circuit which implements the race-to-spike

algorithm, built from a voltage winner-take-all topology. Sixteen channels have been

implemented, but only two channels are shown for illustrative purposes in (Figure 18).
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Figure 18. A two-channel race-to-spike circuit, built from a voltage winner-take-all topology.

Channel 1 transistors are labeled Tlxx, channel 2 transistors are labeled T2xx and

there is a "Channel 0" with transistors labeled TOxx which is required to set the nominal

voltage threshold, Vthresh.

The circuit can be understood in 3 separate sub-sections:

(1) A translinear current gain input stage

(2) A voltage winner-take-all topology with positive feedback

(3) A super-buffer to set attack (Ta) and release (Tr) time constants
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4.3.1. A translinear current gain input stage

The translinear current gain input stage is shown in (Figure 19) below.
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Figure 19. The 2-channel race-to-spike circuit with translinear current gain input stage in bold.

A programmable gain is applied to the input current of each channel by a translinear

current mirror, shown in bold as Tn2l, Tn22, Tn23, Tn24 and Tn25 (where n=channel

number). Since the PMOS gate-to-source voltages are logarithmic functions of their input

current when biased in the sub-threshold region, the output current is given by Iin-I2/13.

The input current was chosen to be injected at Iin rather than 12 even though the DC

transfer function is equivalent, because from an AC analysis, the input impedance seen at

Iin is 1/gm divided by a gain of gmro while the input impedance at 12 is just 1/gm. This is

important for the input stage to have high input bandwidth, since there might be

substantial input capacitance that would otherwise degrade the sharpness of the phase

information in the HWR pulses. A formal analysis is proven in section 5.4.3.

The gained input current then charges the 'neuronal' input capacitance, Cin. Once any

one of the channels 'wins' and causes Vs to go high, Reset transistors T109 and T209

then turn on and short all the input voltages (Vi) to ground.

The current gain is important for several reasons:
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(1) It may be necessary to adjust the threshold of each individual channel, and

weight some channels more strongly than others (pre-emphasis), or to

equalize the relative strength/offsets of all channels. Since:

TTS(n) A -Iin(n) dt = Cn -Vthresh(n) where TTS(n) is the time-to-spike for channel n, (8)
and A is the translinear current gain 12/13

Rather than fixing A and varying Vthresh(n), in this linear system it is

functionally equivalent to fix Vthresh, and instead vary A(n) = 12/13(n).

(2) Since the input capacitance of each channel Cin is fixed in fabrication and

limited by the area available, it may also be necessary to scale all the currents

up or down to vary the mean integration time TTS(n) between winning

spikes, to match good simulation results at around 50-200ps.

In this design, Cin is fixed at IpF, and Vthresh = VinhTH = Vncasc = 1.1 V. To allow

sufficient programming range and also set TTS(n) to be around the 50-200ps range, A(n)

= 12/I3(n) was set using 3 digital bits which control 13 (Table 5):

Table 5. 13(n) and current gain A(n) programming table

Current
Setting [t2..O] 13 (nA) Gain A

0 000 5.714 7.9
1 001 5.000 9.0
2 010 4.286 10.5
3 011 3.571 12.6
4 100 2.857 15.8
5 101 2.143 21.0
6 110 1.429 31.5
7 111 0.714 63.0

The measured programmability of A(n) using 13 is shown in (Figure 20) below:
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Figure 20. 3-bit programmability of A(n) using 13.

The figure was generated by applying a constant 50nA external DC input, which

corresponds to a moderate sound level. The TTS thus covers the desired range.

A subtle point related to the current gain A(n) programmability is that it also

determines a finite separation time between adjacent spikes. Since the Reset signal will

force all channels to integrate up from ground, the minimum time-to-spike (TTS), which

in turn is governed by A(n), sets the minimum separation time between spikes. This is

important for 2 reasons:

(1) Since we want to report a single channel address (a 4-bit number from 0..15)

and a single logA/D value (a 7-bit number) at every spiking event, we will use

tristates to pass an 11-bit digital word onto a common bus. As with all pass-

transistor logic, we need to guarantee that the tristates for two or more

channels are never on at the same time, since they may "clash" and pass a lot

of shoot-through current (a lesson learned from the original ABEP). Hence it

is very important to guarantee that the spikes are distinctly non-overlapping.
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(2) As mentioned in section 4.2(3), we may want to guarantee that the minimum

separation time between spikes is long enough for auditory filter ringing to

die out, especially on low frequency channels. We can do this by setting A(n)

to a lower value, which lengthens the minimum TTS(n).

4.3.2. A voltage winner-take-all topology with positive feedback

The voltage winner-take-all (WTA) with positive feedback (PFB) is shown in (Figure

21) below.
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Figure 21. The 2-channel race-to-spike circuit with voltage winner-take-all (WTA) in bold.

This WTA topology with PFB was adapted from (Cauwenberghs and Pedroni 1994),

with one improvement: by actively turning off the NMOS current sink transistors of Tn15

when one channel starts to win, the PFB gain is doubled. A very strong WTA action

hence enforces the interleaved stimulation requirement in this circuit.

The circuit functions as follows: Vil and Vi2 are the voltage-mode inputs to the

WTA circuit. Vthresh is the threshold voltage that marks the 'finish-line' in the race-to-

spike algorithm. The first channel with an input voltage exceeding Vthresh will initiate a

positive feedback loop around Tx03, Tx04, Tx05 and Tx02 (where x denotes the

'winning' channel number) that very quickly drives its output to the rail. Note that

initially, Tx15 will be sinking Ib, but as TxOI and Tx02 start to steal more current away
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from TOOl by pulling up on Vs, the current sunk by Tx15 will decrease and cause Von to

pull up even faster. Hence the PFB gain is effectively doubled (in a small-signal sense).

The first channel to pull up on Vs and be reinforced by PFB will thereby suppress all

other channels from winning. The strong PFB minimizes the chance that more than one

channel can simultaneously steal current from TOO1, and "win" the race at the same time.

4.3.3. A superbuffer to set attack and release time constants

The superbuffer together with a threshold comparator is shown below in (Figure 22).
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Figure 22. The 2-channel race-to-spike circuit with superbuffer (cascaded N and P source followers)
in bold.

This circuit works as follows: once a channel has won (call it channel x), and Vox

shoots quickly to the rail due to PFB regeneration, this rising edge is coupled into the

superbuffer (cascaded N and P source followers) consisting of transistors Tx07 and Tx08.

Due to the presence of a right-half-plane zero, the output from the superbuffer, Vax,

actually shoots down (undershoots) before it starts to charge up at a rate of Ia/Cr (all Cr

capacitors are set to be the same size of lpF in this implementation). Intuitively, the

right-half-plane zero comes from the negative gain from the gate to drain of Tx07 if the

source does not move instantaneously due to Cr holding its value. From a large-signal

perspective, once Vox shoots up, Tx07 quickly triodes and shorts Vax to Vrx. Since this

causes the Vsg of Tx08 to collapse from -0.9V to almost 0, Vax undershoots before it
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actually starts to rise. As we shall see, this undershoot is essential to set up Ta.

Vax initially sits below VinhTH by design, and is compared against VinhTH by a

simple OTA comparator (Tx31, Tx32, Tx33 and Tx34). Vax will charge up from the

minima of the undershoot, called Vax(min), and when it crosses VinhTH, the comparator

output Vhx goes high and starts the inhibition phase by turning on transistors TxlO and

Tx 11. The time from the rising edge on Vox to the tripping of the comparator defines the

Cr -{(VinhT H - Vax(min))
attack time, Ta = , assuming negligible undershoot time. In this

Ia

simplest implementation, Tx 10 is just a switch that shorts input Vix to ground, much like

reset transistor Tx09.

Tx 1 is identical to TxlO except it shorts the output Vox to ground. This is necessary

because the PFB has now clamped Vox at Vdd, and without a reset phase on Vox, the

WTA would be permanently locked up even after Vix is lowered.

By the same token, once Vox falls due to the action of Tx 11, the falling edge is

coupled into the superbuffer, which then undershoots (Vax shoots up) to a maxima of

Vax(max) before it falls at a rate of Ir/Cr. From a large-signal perspective, the Vsg of

Tx08 inflates again now that Tx07 shuts off, and steps up from -OV back to -0.9V. Vhx

therefore remains high until Vax discharges back down below VinhTH. The time that

Vhx remains high, and the inhibition remains on, is defined as the release time

TrCr -(Vax(max) -VinhTH )
Tr = , again assuming negligible undershoot time. Once Vhx

Ir

falls, the inhibition on both Vix and Vox turn off rapidly, allowing the channel to receive

inputs again.

Measured waveforms for Va are shown in (Figure 23) below:
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Va waveforms wlIncreasing Ta, Tr
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Time (ms)

Figure 23. Superbuffer operation showing effect of Ta, Tr programmability on Va

Conceivably, rather than being a switch to ground, Tx 10 could be a pass-gate to

control a current source instead, which would then implement a soft current-limited

inhibition (i.e. a relative refractory period, where a strong input can overcome the

inhibition). This was not done simply due to lack of die area for the wiring of an

additional current source, and sacrificed because MATLAB simulations predicted only a

minor drop in performance without a relative refractory period (i.e. only an absolute

refractory period). This implementation thus has a "brick-wall" inhibition-current roll-

off, and to model this in MATLAB the roll-off slope k was set to an order of magnitude

larger at 10 5, as shown below in (Figure 24).
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Inhibition current template

0.2 0.4 0.6 0.8
Time (s)

1.2 1.4 1.6

X 10-3

Figure 24. Time profile of inhibition current, with "brick-wall" exponential rolloff (k=1e5)

Similar to A(n), 3-bit programmability of Ta(n) and Tr(n) is given in (Table 6):

Setting
0
1
2
3
4
5
6
7

Table 6. Ia and Ir programming table

[bit2..0] la+lr (nA) Ta (us) Ir (nA)
000 45.0 39 0.36
001 39.4 45 0.71
010 33.8 53 1.07
011 28.1 63 1.43
100 22.5 79 1.79
101 16.9 107 2.14
110 11.3 162 2.50
111 5.6 334 2.86

Tr (us)
4284
2142
1428
1071
857
714
612
536

Ta in (Table 6) was computed at a minimum Ir (bit setting 0) so Ia would not be much

different from Ia+Ir. A subtlety in getting this circuit to work robustly was to make sure

that Ir was set on its own, since it is much smaller than Ia, and not as the difference

between (Ia+Ir) and (Ia), which would be the case if the N source-follower and P source-

follower were flipped.

The measured programmability of Ta is shown in (Figure 25) below:
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Figure 25. 3-bit programmability of Ta

And the measured programmability of Tr is shown in (Figure 26) below:

Sr programming range

S

II

2I a-1 0 1 2 3 4 5 6 7 8

2 ---- r = 1

-1 0 1 2 3 4 5 6 7 a

2 Ir = 2

-1 0 1 2 3 4 5 6 7 8

2
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2- Ir 4

-1 0 1 2 3 4 5 6 7 8
2 - Ir =5

-1 0 1 2 3 4 5 6 7 8

-1 0 1 2 3 4 5 6 8

1-

-1
]LJL.IJLLJ I II I I~ 11~ L I I
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Figure 26. 3-bit programmability of Tr
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4.3.4. Superbuffer small signal analysis

An important point was noted during the design and simulation of this circuit, that the

parasitic capacitance on node Va (which we will call Ca) needs to be minimized for there

to be an undershoot. A "back-of-the-envelope" justification for this can be seen in the

following page of my notebook, shown in (Figure 27) below:

v io l 4

1 Ja 'i > V
Vi- t i~A Vr

t~II~ L~Vr

FT, Va {eeb_: - VA + -aV

CTa~ ;~

-r 5 1/ A_ J'

S)+ '

(,t (a4 -

Ca

-i JV:

Cr ~~

SQr

V er-1)~I r~t

;:24

'1i+1? P*AVZ IV'C 40 Ate4 S--,W Sz. J_ Ve -~s2

" el"O Jo(rV1~ qoil i4~J
Figure 27. Superbuffer small-signal analysis, scanned from notebook

The right-half-plane zero is derived, and the important result (circled in red) is that

the undershoot will have a size which is indicated by its initial slope, inversely

proportional to Ca. If Ca is too large, the undershoot may not even appear, causing Ta

and Tr to be ill-defined, since the undershoot sets up both Vax(min) and Vax(max).

Hence I needed to be mindful in the layout to keep the parasitic Ca small.

It was also important to minimize the parasitic capacitance between Va and Vo to

51



avoid instability, especially when gma is small.

4.3.5. Interpretation of Ta and Tr, and "spikes" vs. "pulses"

The attack time constant Ta defines the pulsewidth of a spike. Although this is not

defined by the AIS algorithm in MATLAB, a pulsewidth defaults to the sampling period

(around 23ps for 44kHz sampling). In a truly asynchronous implementation, however,

there is no sampling period and hence a finite pulsewidth must be defined by the

hardware. It needs to be long enough so that the Reset transistors can fully discharge all

input capacitors Cin(1.. 16), and a biphasic stimulation pulse that is generated in response

to this spiking event must also fire and complete within this time, to avoid overlapping

with the next pulse. Setting Ta to be longer than the actual duration of a biphasic

stimulation pulse is another way to enforce a longer separation time between pulses such

that the specification in 4.2(3) is accommodated.

To avoid confusion, as we have done above, we will consistently be referring to

internal spiking events as "spikes" and actual stimulation pulses going out to the

electrodes as "pulses," but both will occur at about the same asynchronous time (pulses

will be just slightly delayed by a fixed timing offset from the internal spike times since an

11-bit channel address and data value need to be latched before a pulse can be generated).

The release time constant Tr is related directly to the inhibition time rimn in the

MATLAB algorithm, which sets the refractory period of the electronic neuron. Tr and Tinh

are effectively equivalent in the circuit implementation due to the high value of k = 10 5.

4.3.6. Device Sizing

Device sizing turned out to be fairly important, to have good matching in important

components, and also to minimize parasitics in the devices where speed was critical. A

schematic with device sizes for channel 1 and channel 0 on the right is shown in (Figure

28) below:
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Figure 28. The 2-channel race-to-spike circuit with device sizes shown. Units of W and L are in
lambda, with X = 0.8stm.

Of note:

1. all cascode devices were minimum sized (3/2) for minimum drain capacitance

2. all devices in the threshold comparator are 5/5 for matching

3. superbuffer N and P devices are 5/2 to have well-controlled thresholds, but

also small to minimize parasitic capacitance on node Va

4. input NMOS devices have the largest area at 13/12, M=2 for Vth matching

across the chip

5. current gain devices are 5/5 for matching but small to minimize parasitic

capacitance that would limit the bandwidth of the fast HWR input current

4.4. Sensitivity Analysis

It will be informative to evaluate the sensitivity of this race-to-spike circuit, to answer

the following questions:

(1) at what level do closely matched inputs become indiscriminable due to noise

and offset?

(2) what (if any) is the [absolute] minimum detectable signal of a single input?

To answer the first question, we must calculate the noise and offset contributions of

the various parts. We shall start with the noise in the translinear current gain block.
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4.4.1. Noise from input gain stage

The translinear current gain block is reproduced in (Figure 29) below, for ease of

reference.

lin I3

T2 T4

I T3

lout

12

Figure 29. The translinear current gain circuit, in its simplest form.

We now compute N, the number of effective devices, that contribute to current noise

at the output:

(1) Iin: there are actually 4 noise sources hidden in Iin, due to an N mirror and a

P mirror coming from the envelope detector. We will ignore any noise

sources from before these mirrors due to the effect of current noise

rectification in the envelope detector. Adding TI gives NI = 5 noise sources

from the input.

(2) 12: there are 13 noise sources hidden in 12, 5 from the current reference, and

then plus 4 more mirrors with 2 devices each. Adding T2 gives N2 = 14.

(3) 13: depending on the DAC setting for 13, which we will call T (from 1..8),

there are a total of (T+i) noise sources from the DAC plus 8 more from bias

distribution mirrors. I am assuming that the current divider mirrors prior to

that, with a factor of 1:7 and 1:18 in the current reference are negligible

contributors because of heavy filtering due to low gm and large gate

capacitance in those mirrors. This gives N3 = T+9 = 17 in the worst case.

(4) lout: a single device which carries (12/13)-Iin.
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The sum of the current noise terms is as follows:

,= 2 2qI N, + I 2qI 2N2 + "' 2qI3N3 + 2qI.,t
r3 13 3

2qN,, + -in'2 2qN2 + 22qI 3 N + 2q In2 Assu

13 I3 13 I3

= l'22q(N,, + N 2 + N3 + 1)
I3

= 2q(5 +14 +17 +1)I,

= 2qNI,, where N=37

is integrated on capacitor Cm for time T, up to voltage Vtesh I

=( (t) -dt

=1 O,(t)* boxcar[0, T]

sin Iff -jT
= iout(f) x H(f) where H(f) = e

ming all transistors are in subthreshold

The variance of charge, 0-
2 that is integrated can then be calculated:

T- 2 = 7IoutPSDx H 2(f) df

= out,PSD x I H 2J(f). df since H(f ) is even
2

=r out,PSD X I boxcar2 [0, T] dt by Parseval's Theorem
2

=F out,PSD x = 2qNI0 , x = qNI.,tT = qNC,,2 2

Hence, = - . qN .6e - 9x 3 for C =lpF, Vhsh 1 V
Q. CV, Chhrsh lh,, -

= 0.23%

Since the variance seen across 16 channels can be added:

6 (across 16 channels) = 4-p (across 1 channel)
Q Q Q

=0.92%

4.4.2. Input-referred noise from the voltage WTA

The discriminability question askes, what is the input referred noise and offset

appearing at each input Vin of each stage?

Let us assume that in the worst case, all the stages have Vin sitting right around

Vthresh. We will neglect the noise from PFB transistors, which only serve to reinforce a

winner once a winner is found. However, even they are included with Vout also near the

balance point of Vthresh, the result is the same: there will be effectively 1 input device

carrying Ib/17 in each stage.

The relevant devices are shown in (Figure 30) below:
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Figure 30. Schematic of WTA for noise analysis

In this worst possible scenario, there are 4 devices per channel (ignoring cascode

devices), each carrying lb/17, that contribute noise to its respective output node Vol..16.

At each output node Vo, we can assume there are only 8 devices contributing noise: 4

devices from the channel itself, plus 4 more from "channel 0."

The sum of the current noise terms is hence 8.2q(Ib/17), assuming all devices stay in

weak inversion, and the input-referred noise variance can be calculated as follows:

8 -2q(I /17)
n,PSD 2

av. = VKn,PSDx H )df

= npsD x Gain2 xBWx

8.2q(Ib / 17) 2 1 
= 2 x g, 2 gro ) rX x -
gin2  g ) 2ir(g, r)rC 2

8.2q(I 17) (gr)r 0

4C

4q(gr)V where V. = (Ib /17)r, 50V

C and g,,r, =

4 x 1.6e -19 x 200 x 50V where C=
200fF

= 180 mVrms

Input-referring a- back to the input by the gain (gr 0 )2

- 47Vout = 4.5 uVrms
a. ( gr.)2

200 for our process

200fF
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Since the variance seen across 16 channels can be added:

av,, (across 16 channels) = o, = 4,, (across 1 channel)
9.r.

18 pVrms

And thus -V"- .0l8mV= 0.0 0 2 %
V,,, O 1100mV

4.4.3. Input-referred offset from the voltage WTA

Assuming drain current mismatch errors on the order of ajd / Id 2%:

2 1
os2 8 devicesx of I 2

- 2

= 8 devices x (2%)2 x

vo,f =4 x 0.02 xT
K

2.1 mVrms

Since the variance seen across 16 channels can be added:

vo,f (across 16 channels) = 16-4f2 = 4 -av, (across 1 channel)

= 8.4 mVrms

And thus =Vof- 8.4mV = 0.76%
Vthsh 1100mV

4.4.4. Vth variation due to doping

Due to layout constraints, each channel's input pair could not be laid out in common

centroid or even in the same region of the die. This is because the output stage in the

ABEP was previously entirely digital, and the only space available for the AIS circuitry

was in the place of the old output stage.

Thus an extreme Vth variation could be as bad as -100mV in the worst case, say

between opposite ends of the chip. With Vthresh = 1. IV, the percentage error mismatch

would then be -0.1/1.1 ~ 9.1%. This error will clearly dominate the ability of the WTA to

discriminate between closely matched inputs, but is non-fundamental - a layout that

dedicates an area for the entire WTA structure to be well matched would avoid this.

4.4.5. Summary of noise and offset analysis

A summary of the noise and offset contributions that limit the 16-channel

discriminability of the circuit are shown in (Table 7) below:
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Table 7. Summary of noise and offset errors in race-to-spike circuit

Noise Mismatch
Error Source (random offset) (systematic offset)

Input gain stage 0.92%
Input-referred WTA noise 0.002%
2% current matching 0.76%
1 OOmV Vth variation 9.10%
Total: 0.92% 9.86%

In conclusion, the noise is dominated by the input gain stage, but mismatch plays a

much larger role than noise, and we can expect that the circuit may make an error when it

has to decide between inputs which are within -10% of each other.

4.4.6. The minimum detectable signal

A very interesting feature of the "race-to-spike" is that it has no minimum detectable

signal. This may or may not be obvious, but a side-by-side comparison between an

amplifier and an integrating neuron should make it very clear:

Consider an amplifier, with input u, gain of A Consider an integrating neuron, with input i, current gain A,

and output voltage V: capacitance C, time-to-spike T and capacitor voltage V:

Au = V A = CV
T

Assuming there is some fixed noise variance a, Assuming there is some fixed noise variance a-, on the

at the output, what is the input-referred og ? capacitor voltage, what is the input referred a, ?
aui

du= dV di = -- dV
av a

o-u =- a (variances treated as differentials) (, = -1 7v (variances treated as differentials about a mean)
V V

= U - = CA
Au A AT

Note that as u decreases, the output V goes down Note that as i decreases, V = Vthresh remains constant.

with it as V = Au. Thus o remains constant, Alternatively, as i decreases, T increases. Thus a, decreases

together with the signal i. a, stays at a fixed fraction of the
fixed at .. at is the minimum detectable inputsoteeiNO DS

input ( v-), so there is NO MDS.
below which output V is lost in the noise av. V

The significance of this is that even very faint signals can be detected by an

integrating neuron, given enough time to spike (T). So noise limits an integrating neuron

not in signal detection, but only in discrimination between closely matched signals.
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4.5. Digital output protocol

A custom digital protocol was designed to send the asynchronous timing events off-

chip. Within each channel, the analog rising and falling edges on Vo were converted to

digital edges using the following circuit in (Figure 31):
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Figure 31. Creation of digital output signal, VoBUF

The addition of signal VoHIGHBAR was added as an extra safety measure to prevent

two channels from ever spiking at the same time. It was noted that if two inputs, say ViA

and ViB crossed Vthresh very close to each other, both their outputs VoA and VoB

would rise. Thus VoA and VoB may both cross the inverter threshold before the PFB

would have time to kick in and force the slightly lower one back down. To prevent a

spurious digital event in this case, VoHIGHBAR only falls low enough to enable VoBUF

if Vo rises sufficiently above Vs. It is highly unlikely for Vo to rise above Vs unless it is

truly the winner. In simulation, this eliminated all the cases with multiple spikes, and

appears to be borne out in measurement as well.
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4.5.1. Multiplexing of channel data using a bank of tristates

In (Figure 32) below, we show how channel data (E6..O and Ch3..O) is muxed onto a

common bus (F6..O and G3..O).

Figure 32. Tristates passing channel data onto a common bus

Ch3..O are hardcoded to identify each channel with a channel address from 0.. 15, and

so implements a 16-to-4 bit decoder without having to look at all 16 VoBUF signals. This

then allows us to use a single pin (i.e. the Reset signal) to report the presence of an

asynchronous event, and then have G3..0 identify the channel that spiking event was in.

The inverse of Reset is brought off-chip as a signal called VresetBAR.

The combination of VresetBAR and the common bus (F6..0 and G3..0) provides an

efficient way to report the asynchronous events together with channel data and address,

for latching by an external microcontroller or instrument.

VoBUF1..16 are also reported off chip, for ease of interfacing with 16 independent

biphasic pulse generators. Each pulse generator would then listen only to its own channel,

and whenever a spike is received, latch F6..0 on the rising edge of VresetBAR and

asynchronously generate a stimulation pulse of that magnitude.

4.5.2. Modification of LogADC output latches

Since the logADC in the ABEP is running on a clock that is independent of the AIS

output stage (Sarpeshkar, Salthouse et al. 2005), the AIS tristates must be allowed to grab

the most recent data bits (E6..0) out of the logADC at any time. To be compatible with

this, the logADC needed to be modified slightly so that the CLEAR signal for the data
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latches which is exerted during the Integration phase would only zero the input, but not

clear the output. This modification is shown in (Figure 33) below:

Ct 

D L9 .

Figure 33. Modified LogADC latches to be compatible with AIS.

In this way, the old output is preserved until a new LATCH signal is generated to

refresh the latches with new data. The AIS tristates are then guaranteed to receive valid

data which is at most one cycle old. Since the LATCH signal occurs simultaneously on

all 7 bits and is delayed past the clock edge, the bits are either all old or all new without

any possibility of ripple error, and there is only a tiny probability that F6..O will pass

metastable data to be latched (i.e. if LATCH occurs just when VoBUF shuts off).

4.6. Testing strategy and results

A picture of the test setup is shown in (Figure 34) below.
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Figure 34. AIS ABEP test setup.

4.6.1. 3-wire Serial Peripheral Interface (SPI) programming

The chip was programmed using the DAQ (data acquisition) toolbox in MATLAB,

which has native support for controlling all 17 lines in the parallel port as independent

digital I/O lines. This is more than sufficient, since the AIS ABEP was designed to only

utilize 3 wires for digital programming: srClkEnable, srClk and srln (where sr stands for

shift-register).

" srClkEnable is an active-low pin which gates srClk off when it is raised high

(simply implemented with a NOR gate).

" srClk causes a new bit of data from srln to be shifted into a 546-bit long shift

register, on its rising edge.

The 546 bits which program the chip (18 global + 33x16 channels) are described in

(Table 8) below:
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Table 8. SPI bit order for AIS ABEP programming

Circuit parameter # Bits Bit order Polarity
AGC 16 alobal

lattack 4 O..3 n
Irelease 4 O..3 n

G1 4 O..3 n
Imax 4 O..3 n

BPF 14/channel
taus 7 O..6 n
qs 7 0.6 n

ED 7/channel
rel 3 0..2 p
atk 2 O..1 n
xp5 1 0 n
x2 1 0 n

LoaADC 3/channel
Iref 3 0..2 p

AIS 9/channel
la 3 2..0 p
13 3 2..0 p
Ir 3 2..0 n

LoaADC stimrate 2 alobal
SR 2 0..1 p

The MATLAB code used to prepare and shift in these bits is attached in an Appendix.

4.6.2. Using the Logic Analyzer

Using the Agilent logic analyzer 1672G in the "State" capture mode, a word of

channel address and data can be captured on each rising edge of the VresetBAR signal, as

described earlier. The logic analyzer is able to capture from 4096 to 65536 events in its

memory, and I found that 4096 events is enough to encode between 0.5 - 1.5s worth of

signal, depending on the signal complexity (more for music, less for speech). At 4096

events every second, this is about 1 ibits data + 32bits timing = 43 bits/event x 4096

events / Is = 176 kbps bit rate.

However, this assumes that the timing data needs to be transmitted as bits (like the

output from the logic analyzer). If the timing information is extracted from the signal

itself as time between asynchronous events (like the input to the logic analyzer) then the
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timing information is provided by the receiver's internal clock. In this case, the bit rate

goes down to 11 bits/event x 4096 events / Is = 45 kbps. This is favorably compared to

conventional fixed-rate encoding (e.g. PCM), which at -minimum rate and precision of 8

kS/s x 8 bits/sample, will take 64kbps.

An idea similar to this has been exploited in vocal-tract vocoding in cellphones,

which can reduce the bit-rate to -3kbps for efficient transmission by projection onto a

dictionary of kernel filters with coefficients adaptively defined by Linear Predictive

Coding (LPC). So even though we don't do as well as LPC in cellphones, as a benchmark

we are still doing better than conventional PCM.

4.6.3. Filter calibration curves

By playing a pure tone into the AIS ABEP and recording 4096 events in the logic

analyzer over a range of frequencies from 100 to 10kHz, the frequency response curves

for each channel filter were captured. At each frequency and for each channel, the mean

of the samples collected was taken, and in cases where a channel did not put out a spike

within the 4096 events, a point would not be plot but just connected with the next

available data-point.

After some manual adjustment of the tau and iref bits, a plot of roughly equally-

spaced and equal-height filter channels was generated, shown in (Figure 35) below.
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Figure 35. Plot of calibrated filters, taken using 200mVpp tones input directly to the channels.

4.6.4. Sound reconstruction results

The Agilent 1672G has a mixed acquisition mode called "State+Timing" capture,

which was used to obtain asynchronous events timestamped by the logic analyzer's

100MHz internal clock. It thus amply meets the timing resolution required (-50ps or

faster).

Playing a variety of sound clips into the chip, I performed a side-by-side comparison

with the AIS algorithm in MATLAB. The same sound clip 'die' as in section 2 was used.

The MATLAB simulation results are slightly different from before because of the 'brick

wall' inhibition doing away with the relative refractory period.

In (Figure 36) below, individual channel reconstructions are shown, with the original

spikes overlaid in gray:
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Figure 36. Channel by channel reconstructions, comparing chip data (on left) with simulation data
(on right).

In (Figure 37) below, we zoom out to see the spectral features at full-scale, and we

see that they are also quite similar.
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Figure 37. Channel by channel reconstructions, zoomed to fullscale and showing correlation
coefficients for each frequency.

Finally, we sum the channels together to look at the composite reconstruction and its

correlation coefficient. The two pictures are very comparable, shown in (Figure 38)

below:
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Figure 38. Comparison of composite reconstruction (all channels summed together).

The composite correlation coefficient is actually a little higher for the chip

reconstruction, but should only indicate that the two are of comparable quality.

(Table 9) below shows a summary of the results from 11 sound clips processed by the

chip and by MATLAB simulation:

Table 9. Summary of results comparing chip performance against MATLAB simulation
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Sound clip Chip Sim
"Die" Env: 0.59 AFR: 231 Hz Env: 0.56 AFR: 252 Hz

Phase: 0.28 kbps: 40.7 Phase: 0.17 kbps: 44.3
Total: 0.45 Acq: 0.705s Total: 0.41 Len: 0.680s

"Buy" Env: 0.53 AFR: 221 Hz Env: 0.59 AFR: 256 Hz
Phase: 0.22 kbps: 38.8 Phase: 0.11 kbps: 45.1
Total: 0.42 Acq: 0.621s Total: 0.41 Len: 0.547s

Jazz "Highway Blues" Env: 0.29 AFR: 161 Hz Env: 0.22 AFR: 228 Hz
Phase: 0.30 kbps: 28.3 Phase: 0.27 kbps: 40.2
Total: 0.41 Acq: 3.53s Total: 0.39 Len: 3.50s

Beethoven instrumental Env: 0.37 AFR: 386 Hz Env: 0.41 AFR: 446 Hz
(Symphony #9) Phase: 0.26 kbps: 67.9 Phase: 0.27 kbps: 78.5

Total: 0.46 Acq: 3.01s Total: 0.40 Len: 3.00s

Handel chorus Env: 0.28 AFR: 439 Hz Env: 0.43 AFR: 511 Hz
"Hallelujah" Phase: 0.27 kbps: 77.3 Phase: 0.31 kbps: 90.0

Total: 0.46 Acq: 1.50s Total: 0.54 Len: 1.47s
"The boy did a handstand" Env: 0.68 AFR: 212 Hz Env: 0.67 AFR: 269 Hz

Phase: 0.14 kbps: 37.3 Phase: 0.21 kbps: 47.3
Total: 0.47 Acq: 1.82s Total: 0.53 Len: 1.79s

"The kitchen clock was Env: 0.67 AFR: 175 Hz Env: 0.65 AFR: 226 Hz
wrong" Phase: 0.13 kbps: 30.8 Phase: 0.13 kbps: 39.8

Total: 0.43 Acq: 1.72s Total: 0.56 Len: 1.68s
"The nervous driver got Env: 0.65 AFR: 169 Hz Env: 0.59 AFR: 231 Hz
lost" Phase: 0.07 kbps: 29.8 Phase: 0.12 kbps: 40.7

Total: 0.44 Acq: 2.07s Total: 0.48 Len: 1.98s
"The young people are Env: 0.66 AFR: 150 Hz Env: 0.55 AFR: 201 Hz
dancing" Phase: 0.15 kbps: 26.3 Phase: 0.16 kbps: 35.4

Total: 0.45 Acq: 1.63s Total: 0.46 Len: 1.59s
"They took some food Env: 0.61 AFR: 187 Hz Env: 0.63 AFR: 242 Hz
outside" Phase: 0.11 kbps: 32.9 Phase: 0.13 kbps: 42.6

Total: 0.44 Acq: 1.66s Total: 0.41 Len: 1.64s
"They waited for an hour' Env: 0.68 AFR: 198 Hz Env: 0.56 AFR: 262 Hz

Phase: 0.15 kbps: 34.9 Phase: 0.12 kbps: 46.2
_Total: 0.46 Acq: 1.52s Total: 0.39 Len: 1.47s

Env, Phase and Total refer to correlation coefficients. kbps is the bit rate,
acquisition time, and Len is the total duration of the sound clip.

Acq is the

These clips can also be listened to via a link from http://avnsl.mit.edu/AIS, and are of

demonstrably high quality.
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4.6.5. Interspike interval histograms

One final measure of performance that needs to be considered is the interspike

interval histogram, to show differences between the distribution of spikes among the

channels. The ISI histograms for 'die' are shown in (Figure 39) below:
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Figure 39. ISIH comparison for the sound clip 'die'

The distributions look fairly similar, with only minor variations. Comparing the ISIH

for a piece of music, we find in (Figure 40) that the histograms are much denser and an

exponential roll-off is much clearer, but chip and simulation are also similar:
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Figure 40. ISIH comparison for the sound clip of Handel's Messiah
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Since the original sound clip of Handel's Messiah was sampled at 8 kHz, it seems

reasonable to expect no frequency content higher than 4 kHz. However, the chip's 3 kHz

filter (Chl3) seems to fare worse than simulation (which has a strong peak and smooth

exponential drop), which might account for the slightly poorer performance for music.

This might be due to a bandwidth limitation in the half-wave-rectified input, Ihwrout, but

does not impair performance by too much.

4.6.6. Power Consumption

The power consumption of the AIS ABEP is shown in (Table 10):

Table 10. Power consumption in various subsystems of the AIS ABEP.

Subsystem Current (uA) Power (uW) Increase over ABEP (uW)
Microphone Front End 38 106.4 0
Automatic Gain Control 10 28.0 0
Bandpass Filters 13.8 38.6 1
Envelope Detectors 12.6 35.3 17
Off-chip input buffers 2.4 6.7 7
Current Biasing 16.5 46.2 42
Log ADC + AIS circuits 15.6 43.7 40
Digital circuits 18.6 52.1
Total 127.5 357.0 107

The increase in 107 ptW over the ABEP is partly due to lack of optimization in the

bias distribution - no attempt to conserve power was made when distributing current

biasing to the new AIS circuits. Hence there were several more layers of current mirrors

added in each channel, which quickly multiplied up to a large increase in biasing power.

The WTA in the AIS circuit consumes 2 pA, or 5.6 pW, with 1 pA supplied

externally from a pot (the internal 1 pA bias was insufficient).

The digital power is quoted at a clock frequency of 128 kHz for 1 kHz sampling, and

would be doubled for 2 kHz sampling, and halved for 0.5 kHz sampling.

Finally, as in the ABEP, an additional 2 pA needed to be added to the voltage buffers

to lower the noise coupled onto the internal voltage references. The 2 NMOS references,

Vn and Vnc in particular cause circuit performance to be affected by the clock unless the

buffers are given more power.
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4.7. Summary of contributions

We have demonstrated that the AIS architecture is both feasible and practical to be

implemented in custom analog electronics. The design is sufficiently low-noise and is

sufficiently programmable to achieve performance which is comparable to simulation.

With a few refinements, it should have the potential to be used in patient stimulation.

My particular contributions were in:

1. Designing the WTA circuit with enhanced PFB (from Vsink) to perform

channel selection.

2. Designing the super-buffer timing circuit to set spike pulsewidth (Ta) and

absolute refractory period (Tr).

3. Designing the translinear gain input stage for equalization / pre-emphasis of

channels.

4. Solving all the system integration, programming and output interface issues.

5. Charge Balanced Stimulation

5.1. Background on electrodes

As mentioned in the introduction, the second part of my thesis deals with providing

charge-balanced stimulation at physiologically safe levels, without using a DC blocking

capacitor but instead performing precise balancing of current pulses in electronics.

When thinking about the problem of delivering balanced charge in a biphasic current

pulse, it is helpful to have in mind the electrical model of an electrode, shown in (Figure

41):

Biphasic
current R
pulse

fC di

Eectrode

Figure 41. Simple circuit model for a typical electrode.

In this simple model, Rs is the solution spreading resistance, well determined by the
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resistivity of the fluid (set by ionic species in solution). Cdl is the double-layer

capacitance, created by the accumulation of tightly adsorbed ions near the electrode

surface and more loosely attracted ions in a "diffuse layer" behind it. Finally Rf is the

Faradaic resistance, which is governed by diffusion of reactive species to the electrode

for charge-transfer reactions. It seems that Rf is not well modeled at present, being non-

linear and time-varying over different time scales depending on the time constants of the

reactions taking place. Hence it is indicated as a variable resistor in (Figure 41).

In the literature, to take reaction time constants into account, the Faradaic resistance

Rf is also often modeled as a complex impedance called the Warburg impedance, which

has a frequency dependence of co-.5. The physical origin of the capacitive behavior in the

Warburg impedance can be derived from the Nernst diffusion layer thickness 8 = (nDt)0 5,

and its dependence on the square root of time (Taylor and Gileadi 1995). As we shall see

later, this time-varying behavior should be an important consideration in charge-balanced

stimulator designs that employ the strategy of shorting out charge in the electrode.

The values of Rs and Cdl are more predictable, and in the devices we are designing

for, should be between 5-20 kQ and 5-15 nF respectively.

We should also make a distinction between Faradaic current flowing through Rf, and

capacitive current flowing onto Cdl. Faradaic current is DC current flowing through the

electrolyte, and signifies an electrolysis reaction taking place (which may be irreversible,

like electroplating of tissue, and should be avoided). However, AC current which only

charges and discharges Cdl would characterize non-Faradaic processes like ion

adsorption, which are often quickly reversible and biologically less harmful.

5.2. Specifications

To assess the design, it is important to know the leakage current levels which are

considered harmful to the body. Even a high quality blocking capacitor will have leakage,

and may exhibit -10G of shunt resistance across its terminals. Thus with an average of

1OV across the device, such a blocking capacitor would contribute -nA of leakage

current.

Some cochlear implant companies have reported and tested patients with up to 25nA

of leakage current in their device, without perceptible ill effects. However, above an
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average DC level of IOOnA, physiological damage is projected to occur (Xu, Shepherd et

al. 1997). Our goal is therefore to get the average DC leakage current below 25nA.

The second important specification is the output voltage compliance. Due to high

electrode impedances, clinical applications actually require between 9-20V of compliance

(Bhatti and Wise 2006). For example, if we need to drive ImA into an electrode with

only 7 kQ solution-spreading resistance, that alone requires at least ±7V rails and 14V of

output compliance. The current levels we are required to operate over vary from 1p.A to

ImA, depending on many user factors like electrode placement and etiology of deafness.

In practice, the voltage compliance limits the maximum current amplitude we can drive.

Since the percept evoked by stimulation varies with charge and not with current per se,

we have to get around large electrode impedances by increasing the pulsewidth in order

to deliver the same charge at lower current, albeit at the cost of timing resolution. Higher

voltage compliance therefore enables higher timing resolution. To this end, we chose to

design in an AMI 0.7gm, 30V process to achieve -20V of output compliance.

5.3. Dynamic Current Balancing

The strategy that we have employed is a simple one, similar to a dynamic current

mirror: by storing the level of current put out by an NMOS current sink on a PMOS

current source, the two currents should be matched to within the accuracy of our storage

,cell. This eliminates the order of 1-2% matching error because the same PMOS device

which stores the NMOS current is later used to output the P current pulse.

The hold time on the analog storage does not need to be very long since a single pulse

of electrical stimulation in cochlear implants needs to happen on the order of ~100ps or

less, so the precision of an analog storage element can be quite high over that time scale.

5.3.1. Overview of strategy to achieve charge balance

The strategy we will employ to achieve charge balance is two-fold: first, a dynamic

current-balancing phase is performed to match a PMOS current source with an NMOS

current sink. Second, after the biphasic pulse is generated, any residual charge error left

on the electrode is then short to ground, with the details of shorting as an aid to charge

balance covered in section 5.5. This order of operations is shown in (Figure 42) below:
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Figure 42. Timing diagram of dynamic current balancing, followed by biphasic pulse generation and
shorting.

Once the asynchronous input pulse Vox arrives, the sample phase of a sample and

hold (S&H) starts, which is shown as SAMPI in (Figure 42). In this phase, the PMOS

gate voltage required to support an NMOS current Iin is sampled on a hold capacitor C,

as shown in (Figure 43) below:

lbs

saW VPI
HOLD

SAMP1 HL

Vin fCj

Vh Vref Ibcp 4

IVpo
Outut epo.i~

SAMP P 01st

Vno C

4, n IR 1  c~d

Figure 43. Sample phase in dynamic current balancing.

After the circuit has settled, the SAMP switches are opened, and the HOLD switch is

closed for the remainder of the time, as shown in (Figure 44):
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Figure 44. Hold phase in dynamic current balancing.

In this way, the gate voltage Vp is held through the duration of the positive pulse, and

therefore the PMOS source puts out the same current which was sensed during the

sample phase. Soon after the hold phase starts, the Output Neg Pulse, Output Pos Pulse

and SHORT switches are each closed and opened in turn to complete the remaining

operations. Details of the circuit are now described in the following sections.

5.3.2. Closed-loop sample and hold with low-leakage storage

Taking advantage of work that has already been done to achieve high-precision

analog storage, the final circuit which we implemented is simply the integration of a low-

leakage analog storage cell (O'Halloran and Sarpeshkar 2004) inside a dynamic current

mirror feedback loop. The analog storage cell is the same one which achieves 12-bit

precision on 1 OnW of power, by using low-leakage analog switches in a differential

closed-loop sample and hold. To understand its operation, a conventional closed-loop

sample and hold circuit is shown in (Figure 45) below:
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Figure 45. A conventional closed-loop sample and hold circuit.

On the sample phase, SAMPI and SAMP are closed, and HOLD is open. Vin - Vref

is sampled across the capacitor connected to Vh, while Vref is sampled on Vhplus. On

the hold phase, SAMP1 opens first, to implement bottom-plate sampling (at a fixed

common mode of Vref) before SAMP opens and HOLD closes. Vout then holds Vin in

closed loop feedback, which attenuates noise and other disturbances to Vout by the gain

of the loop. Gmh is a transconductance amplifier with cascoded outputs for high gain.

The improvement to this topology using a low-leakage switch is shown in (Figure 46)

below.

HOLD

--oVref

V re f q SAM ---- h o

SAMP1

C

Figure 46. The closed-loop sample and hold, including a low leakage switch.

It was noted in (O'Halloran and Sarpeshkar 2004) that minimizing the switch leakage
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on node Vh is crucial to extending the hold time of the closed loop sample and hold. The

key to minimizing leakage across the switch is to match both source and drain voltages so

even sub-threshold diffusion currents would go down to aA current levels. While this is

done automatically for the Vhplus switch, an additional switch, called the "low-leakage

switch" is added to drive the opposite side of the Vh switch to Vref during the HOLD

phase. This low-leakage switch is controlled by the switching signals SAMPd and

HOLDd.

One change I made to the circuit operation of (O'Halloran and Sarpeshkar 2004) is to

delay the switching of SAMPd and HOLDd at the start of the SAMP phase, as indicated

by the "d" suffix, in order to improve the settling time during the SAMP phase. This will

be elaborated on later. This delay is not to be confused with the delay between SAMPI

and SAMP, where SAMP (and also SAMPd) are delayed from switching at the end of the

SAMP phase, to minimize charge injection errors on the sampled voltage.

5.3.3. Analog circuit implementation

The complete circuit which implements the sample and hold within a dynamic mirror

is shown in (Figure 47) below:
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Figure 47. Dynamic mirror including an analog storage cell

The circuit works as follows: during the SAMPLE phase, current is pulled out of

node Vpo when PCascON is low and PCascOFF is high. Vin is thus the output of a

source-follower that tracks Vpo, Vp is connected to Vin via the switch SAMP, and Vp

completes a feedback loop back to Vpo by servoing the current source transistor to match

the current pulled out of Vpo. The transistors Ml and 179 form an active cascode, turned

on and off by PCascON. The gate voltage Vp is stored across capacitor C4 in this phase.

The analog storage cell within this loop should be recognizable, as Vrefout provides a

buffered version of Vrefin for noise rejection, Vhout is the output of the sample and hold,

and Vh and Vhplus are the storage nodes that need to be quiet and symmetric in layout

for differential cancellation. During the HOLD phase, the storage cell will hold the gate

voltage Vp and therefore put out a current which matches the input current during the

SAMPLE phase.

When the circuit is inactive and waiting for a signal to put out a stimulation pulse, the

transistor gated by CLKRESET is on and pulls Vp up to a diode drop below the rail.
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This is to assist the settling time during the SAMPLE phase, by biasing Vp to a

minimum-current level, since it is faster for the source follower to pull down on Vp than

to pull up. During this inactive phase, PCascON is off (saving power by shutting off the

cascode) while PCascOFF is on. This shorts out the source-follower, and pulls Vpo up to

Vdd. This is also to minimize the settling time by starting at the same initial condition on

Vpo every time, and once more it is faster for Vpo to pull down than to pull up.

Another minor addition to the implementation in (O'Halloran and Sarpeshkar 2004)

was the addition of a lpF capacitor, Chsrc, at the node Vhsrc. This was to dampen a

voltage spike on this node when switching from SAMP to HOLD, which might inject an

error charge into Vh.

The P transistors shown with solid 35V drain symbols are DMOS (diffusion-MOS)

transistors with lightly-diffused drains, to handle large breakdown voltages. This circuit

was designed to operate on rail voltages as high as ±10V, to achieve 20V of output

compliance.

The transconductor Gmh which is used in the analog storage cell is shown in (Figure

48) below. It is used both for the closed-loop feedback amplifier and also as the buffer for

Vref, and biased with the same bias current, since that matches the impedance seen at

Vref with the impedance seen at Vh when the switch SAMP1 is turning off. The

matching of impedances should help the differential charge injection onto the capacitors

to also be well matched, to minimize the hold error.
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Figure 48. Topology of high-output impedance transconductor Gmh, used in the analog storage cell.
The output is cascoded and protected with DMOS output devices to allow a wide voltage swing from

Vref to Vin without breaking down.

The full analog section which implements the biphasic pulse generation was

fabricated in a 0.7pm, high-voltage AMI process and is shown in (Figure 49) below:
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Figure 49. Analog section of biphasic pulse generator. The bottom-right half of the circuit is a 7-bit
NMOS current DAC, with switches to convey current either to the storage cell or to the output Vo.

The top-left shows the PMOS dynamic mirror and storage cell loop. Both NMOS and PMOS current
sources utilize active cascodes to achieve high output impedance.

5.3.4. NMOS current DAC and control switches

A close-up of the bottom half of the circuit is shown in (Figure 50) below:
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Figure 50. 7-bit current DAC and switches to steer current up in the SAMPLE phase or off chip
during stimulation. A shorting circuit short the output to ground is also shown on the far right.

This portion of the circuit functions as follows: The current In which sets up gate

voltage Vn goes to a common-centroid 7-bit current DAC, switched by control signals

Q<6. .0>. There is an additional current It which is added to the DAC output to set the '"T-

level" or minimum detectable threshold current in that electrode channel. NCascON

controls an active cascode, and can be switched off to conserve power when not in use.

During the SAMPLE phase, SAMP is on, while Vpg, Vng and SAMP_DN are off to

disconnect the output. Current is therefore pulled out of Vpo from the dynamic mirror up

above. During this time, Vng_BAR is on to hold Vno at the negative rail Vssa. Note that

Vssa might be - OV, while Vmid could rise to be near Vdd, which may be almost a 20V

drop. Without the SAMP_DN transistor, reverse current may flow out of the Vng gating

transistor, and so Vno must be held at Vssa. The SAMP_DN transistor therefore protects

the Vng gating transistor from the voltage surge on Vmid. The NDMOS transistors with

lightly-doped drains to handle high voltages are labeled with solid black drain symbols

and come in 2 varieties: 25V (floating P-body NDMOS) or 27V (non-floating P-substrate

NDMOS).
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During stimulation, which starts with a negative current pulse, SAMP and VngBAR

are turned off, while Vng and SAMPDN are turned on (Vpg stays off during this time).

The DAC current is then pulled out of Vo through Vng and SAMPDN for a fixed time

which is set by a high-precision clock. After the negative pulse, Vng and SAMP_DN turn

off, while VngBAR and Vpg turn on. Concurrently, in the top half of the circuit

PCascON also turns on, and the value of current which was stored on Vp during the

SAMPLE phase gets sourced through the Vpg transistor for another fixed time period

equal to the negative pulse time.

Finally, after the positive pulse has ended, SHORT goes high while SHORTBAR

goes low, which shorts its output, shortOUT to ground. This stays on until the next

stimulation pulse arrives. Shorting is a technique used to discharge any residual charge

error that is left on the electrode capacitance after the stimulation pulse. By providing a

path for residual charge to flow out of the electrode capacitance, and not through the

Faradaic resistance into the electrolyte, this method corrects for some of the original

imbalance in the charge pulses. Its effectiveness will be analyzed in a later section. In

practice, shortOUT is connected to the electrode output Vo, but was separated in this

circuit to investigate the difference with and without shorting.

A timing diagram which summarizes in sequence all the above timing relationships is

shown in (Figure 51) below:

CLK 27D2

Q1.016

Vp..BA
___ I

SAMP L 1

HOLD

SAMP

SAMPd

Vng

Vpg_BAR 
_~NWascON

PCascON _
CLKRESET--

SHORT L
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Figure 51. Timing diagram for operation of the dynamic current balancer



5.3.5. Logic Circuits

This dynamic current balancer was designed to be fully compatible with receiving the

AIS ABEP asynchronous spiking outputs, and thus the initiation of a pulse occurs on the

falling edge of an input spike (Vox in the timing diagram above). This latches a 7-bit

DAC value into registers, and the 7-bits are then level-shifted from (0,3V) logic levels

down to (Vssa,OV) as shown in (Figure 52) below:

V V

LMdata<6:0>

V

A~ AI
"-, J '

cm 132<6::>
>CP 4

Figure 52. Input latches triggered by asynchronous spike on Vox.

The necessary level shifters to go from (0,3V) logic levels up to (0,Vdd) and down to

(Vssa,O) for controlling analog switches are shown in (Figure 53):

B. -

Ww V n Vout

35V V" Vd VoutBA .14 V

vo: VV

Figure 53. Level shifters to create correct voltage levels to turn analog switches on and off.

Vox also raises the signal CLKRESET (active low), which allows a cascade of 4

toggle flip-flops to count off 4 cycles for sampling (clock cycles 2 to 5 in the timing
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diagram), followed by 8 samples for the negative pulse (clock cycles 6 to D) and another

8 samples for the positive pulse (clock cycles E to 5). Nominally, the CLK frequency was

designed to be 256 kHz, to allow 16ts for sampling and 32ps for each pulse. This allows

the CLK to be shared with the AIS ABEP, for its dual-slope converters to sample 7 bits at

2 kHz. At the end of stimulation, CLKRESET is lowered to deactivate the clock

dividers and save power. This clock divider is shown in (Figure 54) below:

08 016

ED 0 - -- -D 0 +

A Z d2 fnd25d

N'P CD CD ,

JulCLK-RESET-3V i

032 Q64

- s 0  -0 0
*FD4 *FD2

fnd25d fnd25d

S CP Oh) & P CO
a p

Figure 54. Clock divider, activated when CLKRESET goes high.

When Vox raises CLKRESET, it also lowers SAMP 1, and SAMP 1 in turn starts a

single-slope analog timer to count off a time for the SAMPLE phase, shown in (Figure

55) below:
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1u
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Vth

C18 V381
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Comp Out
resch --

139
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Figure 55. Single-slope analog timer (current starved inverter charging a capacitor to a voltage
threshold).

This analog timer does not need to be very precise, but it must signal the SAMPLE

phase to end some time before the start of the negative pulse. This is because the N

current sink must have some time to settle into an "off' state after the connection to the

dynamic mirror is broken. Both N and P current sources must be configured to turn on

from the same state of being "off' initially, and then coming "on" into saturation when

the gating transistors are opened, in order to achieve good charge balance. So the charge

balance will be adversely affected if the N current sink has not settled sufficiently into an

"off' state that matches the P current source.

By using this asynchronous analog timer, we are able to set a sufficient amount of

time for feedback loops to settle in the SAMPLE phase, but also to end the SAMPLE

phase sufficiently before the start of stimulation (in <4 clock cycles or ~16pis). Note in

the timing diagram that the SAMPLE phase ends even before clock cycle 5, because the

Vox pulse is shown to arrive just after a rising edge on the clock, which gives almost one

extra clock cycle before the start of stimulation. We have to design for the worst case,

however, where Vox may arrive just before a rising edge on the clock, and hence the
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SAMPLE phase must still end within less than 4 clock cycles from the arrival of Vox.

5.3.6. Delay Circuits

Finally, I will describe the delay circuits and their importance in this section. There

are 3 short analog delays in this circuit, which should be noticeable in the timing

diagram:

1. SAMPd and HOLDd are delayed from the start of SAMP1. In addition,

because NCascON = Vng OR HOLDd, and PCascON = VpgBAR NOR

HOLDd, both NCascON and PCascON are also delayed from the start of

SAMP1. It was found that these delays improved the settling time of the

SAMP phase by many ps, which is significant, due to the following reason:

When the two halves of the circuit are first connected, Vmid surges up to be

short with Vpo (near Vdd) and couples a large voltage spike onto Vn. There

are 4 feedback loops that will all need to reject this disturbance: the 2 active

cascodes, the loop within the analog memory, and the dynamic mirror major

loop itself. Since they are all interconnected, they can be thrown into a long

period of ringing. The delay makes sure that the 4 feedback loops remain

broken during the voltage spike, and turn on only after the DAC current has

settled. Adding a bypass capacitor of Cn = 5pF to Vn also helped dampen the

voltage spike and improved the initial transient behavior.

2. SAMP / HOLD and SAMPd / HOLDd are delayed from the end of SAMPI so

that charge injection onto the hold capacitor voltages is minimized.

3. SHORT rising high is delayed from the end of CLKRESET falling low. This

is because we want to turn the SHORT phase on only after the positive pulse

has fully ended. If the SHORT phase and overlaps with the positive pulse, the

charge balance will be adversely affected.

These three delays are implemented using analog delay blocks as in (Figure 56)

below:

87



SAMP13.y, HOLD-3V - AMPd-3V

HOLD1_3V SAMP_3V " LDd_3V

Vdelay Vdelo F
.,.,,,"26V 5v.....,.,.

CLK RESET 3V -. SHORT 3V

CLKRESETBAR_3V SHORTBAR_3V

Vdelay

Figure 56. Implementation of three short delays using an analog delay circuit. The delay SAMPd /
HOLDd can be much shorter than the other two, and so it has a separate bias.

The analog delay circuit is the same one which was implemented in (O'Halloran and

Sarpeshkar 2004), and shown in (Figure 57) below:

Vin W

I -e.7 I I=-.7u

148

A Z
25V le is M Vout

Vout-Noninverting

IV

5V25V i 25V W2

M Vina3AR

Vin Vout

VIut4Nonuoertng

Figure 57. Analog delay of a rising edge on Vin. Falling edges on Vin are not delayed.

The circuit delays only a rising edge on Vin, by having to wait for the bias current

from Vb to discharge the gate capacitance of 1119. There is a positive feedback loop

which quickly regenerates a sharp rising edge on the drain once the gate of 1119 nears its

threshold. By choosing the right polarity of Vin and VinBAR, we can choose the analog

delay to be on any edge that we want.

5.4. Feedback and Noise analysis

It might already be evident from the circuit operation that there is a tight constraint on

meeting the settling time during the sampling phase, because 3 circuit techniques had to

be employed to minimize aberrant behavior in the initial transient response that would
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otherwise hurt the settling time. Those techniques are summarized again below:

1. SAMPd, HOLDd, PCascON and NCascON are delayed at the start of SAMP 1

2. PCascOFF switch initializes Vpo to Vdd before SAMP begins

3. CLKRESET switch initializes Vp to a diode drop below Vdd before SAMP

begins

I chose to allow the sampling phase to take up to a quarter of the stimulation time, i.e.

16pts prior to the 64ps stimulation time, trading off a lower power consumption (not

settling very fast) at the expense of some latency.

Even with well-behaved large-signal transient behavior, the small-signal settling time

for the feedback loop must be considered, to make sure that the circuit can settle over

many time constants to achieve good precision.

In addition, we will analyze the noise performance of this circuit to see how much the

sampled thermal noise affects the charge balance.

5.4.1. Closed loop stability and bandwidth

A simplified schematic of the dynamic mirror in closed-loop sampling is shown in

(Figure 58) below:

Ibs

Vp 9M

CE .0+

Vh Vref Ibcp

gme TCCPO ± 
lin

Figure 58. Simplified schematic of dynamic mirror in the SAMPLE phase.
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Cpo is not shown in earlier schematics because it is a parasitic capacitance, but is

important for this analysis. The block diagram for this loop can be written out as in

(Figure 59) below:

gm+Iin 9ms+Ibs+Gmh
noise sources noise sources

lin Vpo Vp
,, Z(Cc + CPO)+ --- s2~,, +s s(CC+ -C - -+ 0

sCc -g,

Figure 59. Block diagram of sampling loop.

A simplifying assumption is made here, that the active cascode is fast and does not

contribute to the loop dynamics, and only increases the output resistance by a factor of A2

to A 2ro. Th is defined as C/Gmh, and all other terms should be readily identifiable.

To find the loop stability and closed loop response, we can simplify the block

diagram to find Vp/Iin, as shown in (Figure 60) below:

gm+lin
noise sources

lin 1.j g., (A'ro) VP0 sCC + g,s Vp

9,, -- s(Cc +Cpo)A 2 ro+1 s(Cc + C + g,
hs +1

Figure 60. Simplified block diagram, to read off L(s) and loop bandwidth.

Observing that the transfer function Vp/Vpo can be treated as -unity (which will be

verified more formally later), it becomes easy to plot the forward transmission G, the

inverse of the feedback transmission 1/H, and also L(s). Since L(s) = G-H, it is indicated

by the continuation of G with the dotted line in (Figure 61) below:
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Bode Magnitude Plot

Fwd transmission, IGI

Feedback transmission, I1/H

s(C.....).... CO.
Hatched = G s(CC + Cpo)A'r Cc+ Cpo Cc

Ain
rhp

Figure 61. Plot of closed loop transfer function G//(1/H) and loop transmission L(s).

Thus we can see that the loop is stable, with a unity gain crossover at gm/(Cc+Cpo),

and a destabilizing right-half-plane (rhp) zero at gm/Cc. However, since the rhp zero

comes after crossover by a factor of Cpo/Cc, it should not adversely affect the loop

stability. However, this is one reason to not make Cc too large, and was set to be 0.5pF.

We can identify a few key insights from this loop: Firstly, without compensation, the

non-dominant pole would come primarily from the source-follower pole at gns/C in

Vp/Vpo, which can be quite slow. The compensation capacitor helps a lot by adding a

zero at gns/Cc to cancel out the non-dominant pole. In addition, the large sampling

capacitor C, which is sized at 2pF, would be a bigger problem for stability if not for the

zero introduced by Gmh in series with it: at high frequencies, rather than seeing the

capacitive rolloff continue forever, the impedance flattens out at l/Gmh and hence inserts

a zero at Gmh/C. The combination of both these zeroes makes the loop stable over a large

range of input currents, down to the minimum Iin of 1p A.

We can also see that the closed-loop bandwidth is the same as the unity-gain

bandwidth of gmn/(Cc+Cpo), and since the minimum input current Iin is set by our

application at 1 pA, we can expect one time constant to be at most ~IpF - 200mV / 1 tA =

200ns. There may be some degradation from this value due to a lag effect (drop in gain)

from Vp/Vpo, but the loop should still be fast enough to settle to within 10 bits (7 time

constants) even with an order of magnitude reduction in speed (to 2 ps).
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5.4.2. Effect of non-dominant poles from source follower

To formally assess the effect of the non-dominant poles coming from Vp/Vpo, we can

write out the transfer function as follows:

Vp sCc + g,,

Vpo sCc+
ro s+1

(sCc + g,,)(rs + 1)

(sCc + g,,)(rhs + 1) + sC

(rs + 1)(rhs + 1)

(rs +1)(rs + 1) +sC
gms

The first thing to note is that at high frequencies, Vp/Vpo recovers to unity gain.

However, this may not be entirely true because we neglected parasitic capacitance on Vp,

which we can call Cp. Thus at high frequencies there may be a loss of gain (a lag effect)

which reduces the bandwidth by a factor of Cc/(Cc+Cp).

Secondly, the two zero locations are well defined at Gmh/C and gins/Cc as mentioned

in the previous section. The poles are split to go higher and lower than the zero

frequencies by the term sC/gs which increases the effective "damping" of the second

order system in the denominator (the poles are real, so they stay on the real axis and just

and split apart). The bode plot for this is shown in (Figure 62) below:

Vp

Vpo

a) 1 9

C+Cc CcI C

Gnh g.s

C Cc

Figure 62. Bode plot of Vp/Vpo, showing two stabilizing zeroes and a transfer function of unity above
the high frequency pole.

The approximate locations of the split poles, oi0 and Whi are shown. Since in practice

we will bias gns and Gnh with the same bias current (~1.2pA), this sets gs ~ 2Gmh, and

the ordering of poles and zeroes will be as shown, dominated mainly by the capacitors.
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Since g. will be set by a minimum bias current of 1 pA, we can expect that Vp/Vpo will

return to -unity gain before the crossover of gm/(Cc+Cpo), in all but the lowest current

settings. Even in the lowest current settings, however, there should be some loss of

bandwidth but not loss of stability.

5.4.3. Noise estimate

Because the voltage Vp which is stored needs to be converted back to a current

through the transconductance Ip = gmVp, we can expect that the error will get worse with

higher gin. Fortunately, g. should eventually become constant at high currents when the

device enters velocity saturation and the current increases only linearly with gate voltage.

For the size of our current source transistor, we can expect to enter velocity saturation

above 500pA.

From the block diagram in (Figure 60), we can see that the noise from the gm and Iin

current sources will see the full bandwidth of the loop. To estimate the contribution of the

other devices, we can re-draw the block diagram of (Figure 59) in (Figure 63) below:

gms+Ibs+Gmh
noise sources

-O VP sCc +g. + VP --
rOS+1 s(Cc + C)+g M

Figure 63. Block diagram showing noise contribution from Ibs and similar current sources.

AO is used to represent the loop gain of gm(A 2ro) and to is the corresponding dominant

pole at (Cc+'Cpo)A 2ro. Since the noise sources shown above see the loop gain in the

feedback path, we can expect their contribution to the output to be greatly attenuated. To

show this formally, we can rewrite the block diagram as in (Figure 64) below:
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g9,+Ibs+Gmh Vp
noise sources g,,,, a s (Cc +)1g,,

sCc A, sCc

gms H p rs +1 9,,

Figure 64. Block diagram showing attenuation of Ibs and similar noise sources.

Finally, we can plot the transfer function from lbs and similar noise sources to Vp,

shown in (Figure 65) below:

Bode Magnitude Plot

Coio Fwd transmission,

Fwd transmission,

C+Cc

IGI

.OCc

IC

G

C

Feedback

-4

:ransmission, 11/H

Cc Hatched =0H

Ibs

V.

Figure 65. Bode plot of transfer function from Ibs and similar noise sources to Vp.

G can be observed to be Vp/Vpo without the zero at gis/Cc, and 1/H shows the strong

attenuation of 1/Ao at low frequencies. At higher frequencies, it will intersect with the

rolloff from G, and hence the noise injected at Vp should be attenuated by the loop over

all frequencies. Although the current noise from Gmh does not inject directly into Vp, it

is capacitively coupled through C, and thus should have a high-pass nature which further
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attenuates low-frequency components. Hence we can expect the noise contribution from

these sources to be negligible compared to gs and Iin injected at Vpo.

Finally, we can note that the low-frequency impedance looking into Vp is 1/gm

divided by the loop gain Ao. This proves the result that was mentioned in section 4.3.1.

Now we have all we need to estimate the noise:

N .4kT 2g9.

VPPSD 2

Vp = VpPSDx H 2(f)- df

VppsD xBWx-
2

9, 21r (Cc +Cpo) 2
2 N kT 

where N =2-3
Cc + Cpo and Cc + Cpo = 1pF

4/3x1.6e -19x26mV

07P -1pF

=75 pVrms

So even with a spread of 6a, and using a maximum gm of ~ImA/V, this works out to

a total spread in the current noise of - 450piV x 1mA/V ~ 450nA, which is better than 11

bits of precision on a full scale signal of ImA. In terms of charge, using a pulsewidth of

32ps, the standard deviation is ~ 75pV x lmA/V x 32ps ~ 2.4pC. This is therefore a very

low noise circuit, and is borne out in measurement as well: the noise observed (shown in

section 5.6.5) is only a small modulation on top of the final residual charge error.

5.4.4. Final error estimate

Assuming that the final error would just be dominated by errors in the stored analog

voltage, the maximum current error we would be able to achieve is then the voltage error

multiplied by the maximum g.

At the highest current level, gm is estimated to be around lmA/V. The full scale

variation in gate voltage Vp is around 1.4V. If we achieve a maximum error of ~1.4mV

or ~10 bits of precision on the analog storage, we would then achieve ~1.4 pA or just

over 9 bits in current terms. If the maximum gm was higher, we would have higher

current error and even lower precision. Hence we can see that gm reaching a maximum
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due to velocity saturation actually helps us by limiting the current error.

Simulations predicted that the circuit would be able to achieve a charge balance of

-0.15% error, which is 1.5piA out of ImA. As will be shown in the data of section 5.6.3,

we achieve in practice a 0.4% matching error, due to other error sources besides the

analog storage alone.

5.5. RC analysis on shorting (when is shorting beneficial?)

It is widely believed that shorting an electrode to ground between stimulation pulses

is sufficient to ensure safe (<100 nA) long-term electrical stimulation (Bhatti and Wise

2006).

In this section we will analyze the usefulness of shorting and its limitations.

5.5.1. Effectiveness of shorting

The basic operation that occurs during shorting is shown in (Figure 66) below:

SHOTR

Figure 66. The basic operation in shorting: discharge of Cdl.

When SHORT is raised high, Cdl is allowed to discharge through the shorting

transistor, which is usually sized to have low enough resistance that the time constant of

discharge is dominated by Rs and Cdl.

The effectiveness of discharging Cdl to achieve charge balance during the shorting

phase is thus determined primarily by two factors:

(1) How much time relative to the discharge time constant (nominally,

Rs.Cdl) is given for shorting

(2) The impedance of Rf during this time, relative to Rs.

Designing for the worst case in (1) where Rs-Cdl is 20 k - 15 nF = 300 ps, if we

enforce a minimum interpulse interval of -Ims (as is done in the AIS ABEP), then the
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electrode only discharges for -3 time constants. This reduces any charge error down to a

factor of e-, which is roughly 0.05.

Hence our strategy to get less than 25nA of DC current error was to follow a

moderately precise (-8-9 bit) dynamic charge balancing scheme with a shorting phase,

and reduce an error on the order of 0.4% by a factor of 20 down to ~0.02%.

At this point readers may note that 0.02% of imA is 200nA, which is not less than

25nA. However, the current error of 0.02% is not made for a continuous DC current but

effectively only during the pulsewidth of a single phase (which is nominally 32 pis). The

total biphasic pulse time of 64 ts is actually chosen so that within a ims refractory

period, all 16 channels will have an opportunity to fire. Thus there is an effective duty-

cycling of the error by a factor of about 2x16 = 32. Dividing the 0.02% error, or 200nA

out of lmA by 32x thus gives an average error of only -6nA. In terms of charge, we

arrive at the same result by dividing the 120pC error by a factor of 20 due to shorting,

giving 6pC out of every ims, which is a DC average of ~6nA.

Note that without shorting, our DC average error with 0.4% error in the stimulation

pulses would be a factor of 20 higher, or ~120nA, which is unacceptable. However,

rather than getting more bits of precision in the current balance, the ability to use shorting

to reduce the error is the simplest solution that allows us to meet the specification.

As for (2), up to now it was assumed that the value of Faradaic leakage due to Rf is

not a concern. This assumption is also pervasive in the literature. Perhaps the typical time

scale over which stimulation occurs (~100pts) and over which shorting occurs (~1ms) is

still considered short compared to the time for electrochemical reactions, and thus no

charge is assumed to leak out through Rf.

However., a formal analysis will be done in the following section to derive the limits

over which this assumption remains valid for a biphasic pulse. It turns out that if Rf does

not remain high enough during the duration of the pulse, then shorting will hurt, rather

than help the final charge balance. Ultimately, electrochemical experiments to verify

reaction time constants in vivo and the corresponding change in electrode impedance

must be measured before we can safely rely on shorting to help, rather than hurt, the

charge balance.
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5.5.2. Limitation of shorting

Consider the simple case of a biphasic current pulse that is injected into a capacitor C

with a leak resistor R in parallel, as shown below in (Figure 67):

V(t)

2 C
I-I

I R CBiphasic _- ---
current pulse

Figure 67. Simple model of biphasic current pulse injected into a parallel RC circuit.

This is the case for the electrode, which has Rf in parallel with Cdl, and just assumes

that Rf is a constant R over the duration of the pulse.

Since shorting can only remove the residual charge which is left on C after the pulse,

we can start by finding the final voltage V(T) after the negative pulse and then V(2T)

after both pulses:

I=+

V()+C dV(t)
R dt

-RI-VQ) RCdV(t)
dt

(n 1 dVt) = dt
RI + V(t) RC

In[RI,+V(tv)| = -T
01'J RC

R11 ±+V(T) _-
RI

T =

V(T) =-R11(I1-e RC)

I =R + I

VQ) +C dV(t)
R dt

RI2 - V(t) =RCdV(t)
dt

(2T 1 dV(t) = dt
(T) -RI 2 + V(t ) RC

ln -RI+ Vt\V(
2

T) -T
In[-R2 + V(T) = C

-RI 2 + V(2T) -T

-RI 2 + V(T)

T 
T

V(2T)= RI 2(1-e RC)+V(T)e

( T T T

=I 2 (1-e RC PI (1-e RC )e RC

At this point we should note that even if there is perfect charge balance, i.e. if Ii = I2

= I, V(2T) will still be non-zero:
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T -T T

V(2T) = RI 2 (1-e RC)- RII(1-e RC)e RC

T -T T

=RO(1-e RC) PJO(1 e RC)e RC

T T

=RIO(1-e RC)(1-e RC)

T

= R1o(1-e RC)
2

Where does this net positive charge come from? It will become clear if we analyze

the three relevant charge quantities:

(1) Error Charge, Qe (from input I):

Qe _4 (I2 - II)T

(2) Residual charge, Qr (left on C):

Qr ACV(2T)
T 

T

SRC(1 - e RC)(I2 - 1Ie RC)

(3) Faradaic charge, Qf (lost through R):

Qf IR (t)dt

S VQ dt
-'R

The net positive charge delivered into the RC "black box" is Qe. Thus by

conservation of charge, Qe = Qr + Qf. If 12 -i = 1o, meaning that Qe=O, then:

Qr = RCI(1- e )2

= -Qf

tells us that there is a net non-zero Faradaic charge pulled through R, even though we

have perfect charge balance at the input.

So we can ask: with perfect 12 = 11 charge balance, why is the negative pulse not

perfectly cancelled by the positive pulse, causing some net Qf lost through R, and exactly

-Qf left behind on C? If we evaluate Qf as the integral defined above, we can see where

the net Qf comes from:

Vtt
Qf = j -1 (1 - e RC)dt from f over [0,T ]

+ I 2 (1-e RC)+ V(e dt from V~t) over [T,2T]
RR

Now it is clear that if 12=11, the first integral is cancelled only by the first term in the

second integral. It is the second term, i.e. V(T) e- =- e(1-R )e- that fails to match
R
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even in perfect charge balance, and thereby causes a Faradaic leakage which cannot be

neglected.

To interpret this term intuitively, we can separate the effects of the first and second

pulses by superposition as shown in (Figure 68) below:

Q(+ve)

"RC decay not

2' matched at 2T

qr. Q(-ve)

Figure 68. Mismatch of RC leakage causing net Faradaic charge error at time 2T.

Thus, even with perfect charge balance, we should note the following:

(1) charge-buildup will be matched even in RC losses during the

accumulation phase of both pulses (the ramp curvatures will be the same).

(2) However, at time 2T, the RC leakage of charge from the first pulse that

occurred during the time of the second pulse will not have yet been

matched.

To perform a sanity check, we can evaluate the integral of Qf above and show that it

is indeed equal to Qe - Qr:

Qf II( - e )dt from over [0, T]

+ I2(1-e R)+ e dt from over [T,2T]
RR

T t

= (I2 - 11 )(1-e RC _I(1 _e RC )e RCdt (let r = RC)

-(2- 10I+ rer0+ I,(1- ) r

T T T=(I2 -I)T t+ e (1 I (-e + )( -e r re -

T T

(12-I)T -r[1-e r ](I2-Ie

Qe - Qr
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The above expression for Qf is useful for another reason, namely to compare the

relative contribution between Faradaic leakage due to:

(1) an error in the input (i.e. if 12 11), defined as Qfe, and

(2) the systemic (unavoidable) error due to 11 arriving first and leaking over

[T,2T], defined as Qfs.

To do this, we rewrite the expression for Qf as:

Qf = (2 - 1 t + re] + I e(1- e)Te ]

- T - T

= (2 - I) (T 1-e]l - Ir(1-e )2

= Qfe +Qfs

Since T is nominally 32ts and should be relatively short compared to t=RC (e.g. t

only needs to be greater than -2OkQ - 15nF = 300ps for this to be well valid), we can

approximate the exponentials in Qfe and Qfs as follows:

= T - 2

=~ ~ ~ ~ ~ ~ ~ ~~~f ('2- Il( I[-lex=r= i<-(- sic issml
Qfe =(2 - ii) T - r[- - -e

( T- T =-+sine-(sasince - is small
= (12 - II)T I - [I -e r] etx=

T T (T 2

= (12 - II)T (I- I[I - e~']

==-I(T2

= (12 - II)T I - 1[1 - (I - x + )]2 since x is small -ITRC

= (12 - II)T ( - [x - ]

= (I2 - lI)T

= (I2 - II)T(T

This allows us to interpret Qfe and Qfs as a full scale charge times a fractional error

term in parentheses. To compare Qe, which is an error we make in the electronic current

balance, with Qfs, we can rewrite Qe = (12-11)T as d-IOT, where I is the mean of 12 and I

and d is the differential error above and below the mean:

Qe = d -I.T where d -IO= 1 2 -1,

i.e. I2= 10 +
2

and I10 d
02
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Now rewriting Qf in terms of Io and Qe:

Qf = Qfe + Qfs

2C C
=IT( T (d )( T

=d10 I2RC -2 IR

= ( T -I (T )T
RC ) RC)

= Qe( -) QtotC T Defining Qtot A IOT,

RC RC) (the mean total charge)

= d -Qtot( Qtot
RC RC

Conclusion #1: Since both terms are multiplied by the same factor (T/RC), and since

Qe is only a small percentage of Qtot, any error (d) that we make in failing to balance

12=11 precisely will ALWAYS contribute a much smaller Faradaic leakage than Ii

arriving first, and leaking over [T,2T].

There is nothing that shorting can do about this Faradaic leakage Qf, since shorting

can only reduce the residual charge Qr (any Qf at the point of shorting is irretrievably lost

to the electrolyte). To see the effectiveness of shorting Qr, we can express Qr in terms of

Qe (the error made by electronics) and Qtot (unavoidable systemic error from I1 arriving

first):

Qr =Qe-Qf

=Qe I- T +Qtot -T

=d -Qtot I- T+ Qtot(T(RC) RC

The first term is the fraction of Qr which is due to electronic error (d). If the first term

is smaller than the second term, then the dominant charge left on Qr is not due to

electronic error but more an "inverse image" of the extra charge which was leaked over

[T,2T], namely Qtot(T/RC). We can see this easily if we set d=0 for both Qf and Qr. In

this case, we would do better to correct for the large value of Qf by simply letting Qr

discharge through R on its own.

However, consider the other extreme where R is enormous (say 1 GO). In this case,

the fraction T/RC will be on the order of 32ps/10s, or 3.2ppm and completely

insignificant compared to the error term d which is more like 0.3% or 3000ppm. It is then

much better to short Qr right away, since the dominant charge in Qr will be due to
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electronic error Qe.

We can therefore find the Faradaic resistance R above which shorting is beneficial: it

is when the first term in Qr is larger than the second:

> Qtot ( -
RC

T

d > RC
d> T
1--

RC
In our case where d = 0.004, given T and C we can find R:

Letx= , x(1+d)<d
RC

Hence
T <d

RC 1+d

R >1+d - = 32us = 0.8Mn
d C 0.004(lOnF)

Conclusion #2: The effectiveness of shorting relies significantly on the Faradaic

resistance Rf being high, above - MCI over the duration of the pulse.

5.6. Test Results

The dynamic current balancer tested has the following parameters shown in (Table

11):

Table 11. Parameter values for dynamic current balancer

Integrated Capacitors Off-chip biases

Ichg 130nA
Icomp 640nA
Vthresh 1.67V

In
It

Cn 5pF

Chsrc 1pF

Ibcp
lbcn

Ibref
lbs

1.2uA
1.2uA

Ibh 1.2uA

7.7uA
1uA

640nA
640nA

Idelay 150nA
IdelayF 150nA

The test setup is shown in (Figure 69) below:
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Figure 69. Dynamic current balancer test setup.

Features of note:

* 7 bits from the parallel port were used to automate the setting of Din (the 7-bit

current level), brought out from the DB-25 break-out box shown on the left.

* The 4ps clock is brought directly to the pin to minimize clock injection (using

a red grabber, shown next to my finger).

* An AD820 buffer on the protoboard is used to buffer the output voltage to the

scope (to avoid loading the capacitor with the scope's 1MQ load).

* A lOnF Teflon capacitor (shown with green and red leads) is used to integrate

the biphasic pulse and hence measure the residual error. It has >50 MC of

shunt resistance when measured at lkC2 on the LCR meter.

* Pot box design courtesy of Micah O'Halloran and Chris Salthouse.

5.6.1. Biphasic pulse on a resistor and capacitor load

A typical electrode looks much like a resistor and capacitor in series. According to
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the design values of Rs and Cdl provided, I used a 1 OnF capacitor to simulate Cdl and a

resistor in the kQ range to simulate Rs. Plot below in (Figure 70) are the output

waveforms when the biphasic pulse at maximum current (Dinl127) is delivered to the

RC load:

4

2

0

o -2

0

-4

-6

-8'
-50

Voltage across R and 1OnF Cap

0 50
Time (ps)

100 150

-.

-. ................- - .

Figure 70. Output voltage Vo measured with various resistive loads.

A few notes on taking this data:

(1) An input pulse on Vox was delivered every Ims, causing a biphasic pulse

to be generated at that rate.

(2) The shortOUT pin had to be connected to Vo, otherwise the capacitor

would slowly integrate the net charge error (which was positive) and shift

the waveforms up to be centered at ~-V where the reduction in positive

current due to early voltage variation balanced out the charge error. So
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under these conditions, shorting works very well to reduce the charge

error.

(3) Vdd rails of ±7V were used initially for R=2.2k(, but to accommodate

higher resistance, rails of +6V and -9V were used. Note that the negative

rail needs more compliance due to the resistive drop and the capacitive

ramp acting in the same direction. On the positive phase, the accumulated

negative charge reduces the maximum voltage attained.

Unfortunately, I was not able to get higher than 15V of compliance with this chip.

Above a 15V drop from positive to negative supply, the voltage waveforms for internal

nodes started to oscillate and look increasingly unstable. I suspect this could be due to an

increase in substrate current due to breakdown of the ESD protection diodes: although the

drain-source junctions are rated to have over 25V breakdown, I was cautious to include

high-voltage protection diodes by tying DMOS gates to sources, but unfortunately the

gate-drain junctions are not rated over 5.5V.

A process like the AMI 0.7ptm I2T100E with a thick gate oxide layer may allow true

20V compliance to be achieved, but >15V may not be necessary anyway because the

power consumption on 20V rails becomes quite prohibitive for bionic implants.

5.6.2. Capacitor voltage waveforms

To measure the DAC linearity, I took a sweep of capacitor voltage waveforms over

all 128 levels for Din, to extract the output current level. Sample waveforms for the

midpoint (Din=64) and end point (Din=127) are shown in (Figure 71) below:
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Figure 71. Capacitor ramps for two current levels.

There was a significant amount of clock feedthrough that made the capacitor ramp

look bumpy (when you look closely), and so the minimum point was not a precise

measure of the output current. I thought a better measure of the output current was to take

the best fit slope of the negative ramp from 30ps to 50ps, shown above.

At each current level, I also zoomed in to IOmV/div on the scope to extract the

residual integrated charge error given by the voltage at the end of the pulse. Sample

waveforms again at Din=64 and Din=127 are shown in (Figure 72) below:
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Figure 72. Captured capacitor voltage waveforms at higher magnification.

From these plots I was also able to extract the best-fit exponential time constant of

decay in the charge error, which was around 40ps. I was using R = 2.2kQ for these

measurements, so this confirmed that the on-resistance of the shorting transistor was as

designed, <2 kQ. The largest residual charge error was discovered to be around the

current midrange, at Din=64.

5.6.3. DAC error measurements

A plot of the residual charge error over all 128 input levels is shown in (Figure 73)

below:
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Plot of Residual Charge Error over DAC range
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Figure 73. Residual charge error and current DAC output curve.

The maximum residual voltage was converted to a charge residue by simply

multiplying by the capacitance of lOnF. As we predicted earlier, the effect of velocity

saturation is a likely contributor to the reduction in error residue at higher current levels.

The transconductance may even decrease towards the high current of ImA, and account

for the bowed error curve.

Another possible contributor to the reduction in error at high currents is due to a

smaller large signal injection onto the hold capacitors from the output of the analog

memory, Vhout. At higher currents, since Vp drops, Vhout will swing a smaller voltage
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when going from Vref up to Vp.

In practice, we set Vref far below the minimum Vp at -IV. This is because we do not

want the node Vh to spike up and lose charge by turning on the PN junction on the low-

leakage switch if Vhout were to make a transient step down. By placing Vref below the

minimum Vp, Vhout is guaranteed to only step up, and thus Vh will only spike down. In

this way, the PN junction on the low-leakage switch will never be forward biased, but

only reverse biased, and thus Vh will lose much less charge in the transient spike. In fact

it is likely that this swing in output of the analog memory couples via this mechanism to

affect its stored voltage: the error increases slowly to about double the presented values if

Vref is raised from -IV to -3V.

As mentioned at the end of section 5.4.4, the worst-case charge error of 0.12nC out of

30nC total charge accounts for a mismatch of 0.4% in the current balancer, and relying

on >20x further reduction in error from shorting, amounts to <6nA total DC error which

is well within the safety limit.

From the plot of DAC output levels against the input code, a plot of the DAC INL

and DNL was generated, shown in (Figure 74) below:
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Figure 74. INL and DNL measurements for 7-bit current DAC.

As expected, the major jumps in INL and DNL are at the codes 32, 64 and 96.

However, the DAC is clearly 7-bit precise, with well-behaved non-linearity, and is

guaranteed to be monotonic since the DNL is <1 LSB for all codes.

5.6.4. Vp settling time measurements

As the major difficulty in simulation was to achieve a settling time that was well

within the 16 ps specification, I took some plots to verify the settling time behavior,

shown in (Figure 75) below:
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Figure 75. Vp settling time plots.

All input levels show a first-order settling time response, and reaching final value

within the 16 p~s limit. As mentioned earlier, the HOLD phase must be scheduled to begin

before 16 gts (which is when the negative pulse starts), and so the analog timer is shown

to set the SAMPLE time just under 15 gs in these plots.

As the current is increased in linear increments from Din=32 to 64 to 96 to 127, we

can see that the 3 Vp increments remain constant around 300mV. Hence we can conclude

that the gm of the device has indeed saturated by -500 pA and maybe even decreased a

little, which helps to limit the charge error at higher currents.

A significant source of error is likely to be the feedthrough from the clock, which

creates the bumpiness in the curves, although it is not certain that the internal Vp node is

similarly affected (shown above is a buffered version to go off chip). Zooming in to look

at the Vp waveform, we can see the effect of the clock quite clearly in (Figure 76):

112



Vp waveforms wfincreasing Din

.
---.----------- 

----------.-. 
--- .---------------- 

. ----------------- 
-------

....... tl a l .J .... :.:........... .. ....... ....... ....... ....... .....

.. .. ...

6 8
Time (Ws)

10 12

Figure 76. Magnified view of Vp curve to see clock injection.

With almost lOmV injections onto the buffered version of Vp, it is likely that clock

injection might be responsible for degrading the expected precision of the charge balance

by -I bit.

5.6.5. Noise measurements

To verify the level of circuit noise, I used the scope to take multiple readings of the

final capacitor voltage after a biphasic pulse. The scope waveforms, together with a

probability distribution to show the mean and standard deviation at the end of the pulse

(-80.8ps) are shown below in (Figure 77):
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Several scope captures of residual charge error, 16-May-2007 21:53
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Figure 77. Using multiple scope acquisitions to find the mean and standard deviation of residual
error voltage at 80.8ps. The disturbance at -80.5ps signifies the end of the pulse, and the second

disturbance at 81ps is due to the start of shorting.

The standard deviation of -0.8mV in the residual error voltage translates to an 8pC

error on the lOnF capacitor. From the expected noise calculated in section 5.4.3, the

measured noise is 3.3x higher than the calculated noise of 2.4pC, but is still a small

fraction of the 120pC systematic charge error, and a very small fraction of the 30nC total

charge.

Since 8pC of noise is an error on the order of 12 bits smaller than 30nC, the

additional noise could come from many sources, including timing jitter in the digital

circuits setting the pulsewidth, and 4kTG current noise from the resistor in the SAMP

switch connecting the P and N halves of the circuit together. Comparing just the switch

resistance contribution against the shot noise contributions:
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N- 4kT 2g
Vp psD (from transistors) = (

g.2

from resistor, with 4kT (G)
PPSD conductance G g,2

Hence, extra noise factor = + 2 G

3 N -g.

Even at the highest g. = mA /V and N = 2, 2 -7500

3

As R = I/G may be on the same order as 750(2, its contribution is not negligible and

would account for at least some of the additional noise.

5.6.6. Power consumption

A summary of the power consumption of this chip is shown in (Table 12):

Table 12. Table of power consumption for dynamic current balancer

Current Not shared (uA) Supply (V) Shared (uA) Supply (V)
lbref 2.40 6.00 1.20 6.00
lbs 1.20 6.00 1.20 6.00
lbh 2.40 6.00 1.20 6.00
Ichg 0.13 3.00 0.13 3.00
Icomp 1.28 3.00 0.64 3.00
lbcp 0.64 4.50
Ibcn 0.64 10.50
Idelay 0.15 3.00
IdelayF 0.15 3.00
In 7.70 9.00
It 1.00 9.00
Subtotal (uW): 40.23 112.71
Per channel (uW): 40.23 7.04

The positive supply is taken as +6V, the negative supply as -9V, and I also assume

that we have a low voltage supply for digital logic and other biasing at +3V. Many of the

bias distribution currents (i.e. in half of a current mirror) can be shared among 16

channels, for example by distributing 1/16 of the current to each channel and then using

16x mirror gain in the bias mirror to provide the currents that cannot be shared.

Ibcp and Ibcn are cascode currents which by design are not on except during

stimulation, hence they are counted as being shared, but require the full positive or
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negative supply rail. Hence their supply voltage is a weighted sum of the lower biasing

rail and a full supply rail.

Exact values of Idelay and IdelayF are not critical, and in practice, 150nA for both

Idelay and IdelayF set up delays < I ps, which give robust performance over any variation

which is < 1 ps. Thus IdelayF can be combined with Idelay to create a single gate voltage

which is biased with 300nA (for robustness), that is then distributed to all channels.

Finally, In and It can be large and should also be distributed as gate voltages, using

tight layout to minimize mismatch between channels, in order to conserve power.

When all the shared powers are divided by 16 channels, the quiescent power

consumption per channel currently comes up to 47.3 pW. The power has not been

optimized, however, and power could be reduced in the analog memory (Ibh), source

follower (Ibs) and buffer (Ibref) since we have met the settling time spec by a significant

margin. With perhaps a 50% reduction in the 40pW of unshared power, at the cost of

some of the excess bandwidth, the power should not be a big fraction of the total

stimulation power, which on high-voltage rails would range from 1mW to even 10mW.

5.7. Summary of contributions

An analysis of electrode impedance and its effect on the problem of charge-balanced

stimulation was discussed. We present a two-stage technique which first reduces the

mismatch error to 0.4% by dynamic current balancing, followed by a period of shorting

that gets the average DC error below 6nA. Shorting is not without its caveats, which are

presented, but is relied upon in our approach since it handles a much smaller error than if

operating on its own.

The fabricated stimulator is 7-bit accurate, and fully compatible with the

asynchronous stimulation protocol in AIS. There are a few refinements that can be

explored to improve the design, but as it stands proves that electronic charge balancing

can be a viable solution to eliminate DC blocking capacitors.

My particular contributions are in:

1. Designing an electrode driver which is compatible with asynchronous

stimulation triggers (e.g. from the AIS ABEP).

2. Achieving 0.4% mismatch in a dynamic current mirror (max of 120pC out of

30nC full scale) with >12V output swing.
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3. Dealing with the issues of achieving full settling within a 16ps sample time on

47pW per channel (for a 64ps biphasic pulse).

4. Obtaining low-noise (OQ = 8pC out of 30nC full scale, or 11-12 effective bits).

5. Analyzing the limitations of shorting as a technique to reduce residual charge

error.

6. CONCLUSION

A complete electrode stimulation architecture for implanted bioelectronics was

developed in this thesis. We started with a theoretical underpinning which motivates a

shift from the paradigm of synchronous stimulation towards asynchronous stimulation,

and developed a bio-inspired strategy for encoding asynchronous stimulation times,

which was proven in simulation and perceptual tests to show promise for improving

cochlear implant performance. Our strategy was termed Asynchronous Interleaved

Stimulation, or AIS.

We went on to show that a practical implementation of asynchronous signal

processing for encoding stimulation pulses was possible in low-power analog electronics.

This was necessary as a proof-of-concept since asynchronous hardware is unconventional

and asynchronous signal processing is expensive when using a synchronous processor.

By providing custom hardware which can be made compatible with implantation, our

system also is a step towards testing AIS on patients, which is absolutely essential to

determine the true merits of the strategy.

Finally, we developed an asynchronous electrode stimulator with current-balanced

output drivers, which when combined with shorting as a two-part process, has the

potential to allow stimulation to be performed safely without DC blocking capacitors.

The understanding of electrode shorting as a technique to achieve charge-balance is also

advanced based on consideration of electrode impedances. More work, however, has to

be done to establish the biological safety of using electronic charge balancing, and as in

any implanted electronic system, failsafes have to be implemented as precautions against

device failure.

These results should be useful in the design of next-generation cochlear implants and

electrode stimulation systems in general.
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7. APPENDICES

7.1. Sample MA TLAB code to shift bits into AIS ABEP

if exist('dio')
delete(dio)
clear dio

end

dio = digitalio('parallel','LPT1');
addline(dio,0,0,'Out','srClk');
addline(dio,2,0,'Out','srIn');
addline(dio,3,0,'Out','VisSCLK');
addline(dio,1,1,'In','ChlVisSel');

if (-exist('gl'))
gl = 7;

end
if (~exist('imax'))

imax = 15;
end
if (-exist('iattack'))

iattack = 7;
end
if (-exist('irelease'))

irelease = 7;
end

chan=
taus=
iref=
iref=
qs =
atk =
rel =
xp5 =
x2 =
Ia =
13 =
Ir =

[1 2 3 4 5 6 7
[0 2 2 4 7 10 9
[4 4 4 3 2 2 2

7 - iref;
repmat (40,1,16);
[3 3 3 3 3 3 3
[7 7 7 7 7 7 7
[0 0 0 0 0 0 0
[1 1 1 1 1 1 1
[1 1 1 1 1 1 1
[4 3 3 3 3 3 4
[5 5 5 5 5 5 5

8
12
3

3
7
0
1
1
3
5

9
19
2

3
7
0
1
1
3
5

10
22
3

3
7
0
1
1
3
5

11
30
3

3
7
0
1
1
6
5

12
40
2

3
7
0
1
1
7
5

13
50
2

3
7
0
1
1
7
5

% red wire, pin 2
% yellow wire, pin 4
% green wire, pin 5
% purple wire, pin 13 (at right edge of port)

14
78
3

3
7
0
1
1
7
5

15
94
4

3
7
0
1
1
7
5

16];
127];

2];

3];
7];
01;
1];
1];
3];
5];

Chip A 0-127(n)
Chip A 0-7(n) minI=0 maxI=7
iref is actually 0-7(p)
Q=4
0-3 (n)
0-7 (p)
binary
binary
0-7 (p)
0-7 (p)
0-7 (n)

minI=0 maxI=3
minI=7 maxI=0
halve Iedout = 0
double Iedout = 1
minI=7 maxI=0
minI=7 maxI=0
minI=0 maxI=7

% 2kHz/SR=0 1.5kHz/SR=1 lkHz/SR=2 0.5kHz/SR=3
% 0-3(p) minI=3 maxI=0
if (~exist('SR'))

SR = 0; % 2kHz by default
end

clear vec;
vec = dec2binvec(iattack,4);
vec = [vec dec2binvec(irelease,4)];
vec = [vec dec2binvec(gl,4)];
vec = [vec dec2binvec(imax,4)];

for ch = 1:16
vec = [vec
vec = [vec
vec = [vec
vec = [vec
vec = [vec
vec = [vec
vec = [vec
vec = [vec
vec = [vec
vec = [vec

end

dec2binvec(taus(ch),7)];
dec2binvec(qs(ch),7)];
dec2binvec(rel(ch),3)];
dec2binvec(atk(ch),2)];
dec2binvec(xp5(ch),1)];
dec2binvec(x2(ch),1)];
dec2binvec(iref(ch),3)];
fliplr( dec2binvec(Ia(ch),3)
fliplr( dec2binvec(I3(ch),3)
fliplr( dec2binvec(Ir(ch),3)

vec = [vec dec2binvec(SR,2)];
vec = fliplr(vec); % push in the last bit first
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putvalue( dio.srClk, 0 );
for i = 1:length(vec)

putvalue( dio.srIn, vec(i) );
putvalue( dio.srClk, 1 );
putvalue( dio.srClk, 0 );

end
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