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Abstract

The objective of this thesis is to understand how to utilize wireless channels in a fair
and efficient manner within a multi-users communication environment. We start by
exploring the allocation of a single wireless downlink fading channel among competing
users. The allocation of a single uplink multiacccess fading channel is studied as well.
With multiple parallel fading channels, a MAC protocol based on pricing is proposed
to allocate network resource according to users' demand. We also investigate the use
of parallel transmissions and redundant packets to reduce the file transmission delay.

Specifically, we develop a novel auction-based algorithm to allow users to fairly
compete for a downlink wireless fading channel. We first use the second-price auction
mechanism whereby user bids for the channel, during each time-slot, based on the
fade state of the channel, and the user that makes the highest bid wins use of the
channel by paying the second highest bid. Under the assumption that each user has
a limited budget for bidding, we show the existence of a Nash equilibrium strategy.
And the Nash equilibrium leads to a unique allocation for certain channel state dis-
tribution. We also show that the Nash equilibrium strategy leads to an allocation
that is pareto optimal. We also investigate the use of another auction mechanism,
the all-pay auction, in allocating a single downlink channel. A unique Nash equilib-
rium is shown to exist. We also show that the Nash equilibrium strategy achieves a
throughput allocation for each user that is proportional to the user's budget

For the uplink of a wireless channel, we present a game-theoretical model of a
wireless communication system with multiple competing users sharing a multiaccess
fading channel. With a specified capture rule and a limited amount of energy avail-
able, a user opportunistically adjusts its transmission power based on its own channel
state to maximize the user's own individual throughput. We derive an explicit form
of the Nash equilibrium power allocation strategy. Furthermore, as the number of
users in the system increases, the total system throughput obtained by using a Nash
equilibrium strategy approaches the maximum attainable throughput.

In a communication scenario where multiple users sharing a set of multiple parallel
channels to communicate with multiple satellites, we propose a novel MAC protocol



based on pricing that allocates network resources efficiently according to users' de-
mand. We first characterize the Pareto efficient throughput region (i.e., the achievable
throughput region). The equilibrium price, where satellite achieve its objective and
users maximize their payoffs, is shown to exist and is unique. The resulting through-
put at the equilibrium is shown to be Pareto efficient.

Finally, we explore how a user can best utilize the available parallel channels
to reduce the delay in sending a file to the base-station or satellite. We study the
reduction of the file delay by adding redundant packets (i.e., coding). Our objective
here is to characterize the delay and coding tradeoff in a single flow case. We also
want to address the question whether coding will help to reduce delay if every user
in the system decides to add redundancy for its file transmission.

Thesis Supervisor: Eytan Modiano
Title: Associate Professor
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Chapter 1

Introduction

The objective of this thesis is to understand how to utilize a wireless channel in

a fair and efficient manner within a multi-users communication environment. In

wireless and satellite networks, network resources such as bandwidth and power are

usually limited. A systematic procedure for fair and efficient resource allocation

among competing individuals, therefore, is desirable.

Recently, numerous centralized channel allocation schemes have been proposed

and studied in the context of wireless networks [9], [19], [25]. There, the fair channel

allocation problem is usually formulated as an optimization problem with objectives

such as maximizing the total system throughput and constraint that takes into ac-

count individual user's performance guarantee. While the objective of maximizing

throughput can be a reasonable one for both the network manager and the individ-

uals users, coming up with fairness constraints for the optimization problem can be

rather arbitrary.

Our approach is to investigate interactions among users with conflicting interest

and the resulting allocation as a consequence of users' selfish behaviors. This channel

allocation result which takes the user's selfish behaviors into account will serve as a

reference point for comparing other centralized allocation scheme. More importantly,

it provides fundamental insight into the understanding and the design of a centralized

channel allocation scheme that makes sense.

Specifically in this thesis, we consider a communication scenario where base-



stations or satellites communicate with multiple users. The case where multiple users

are sharing a single channel to communicate with a single base-station or satellite is

considered in Section 1.1, for both the downlink and the uplink transmission. We

want to explore the use of an auction algorithm as a channel allocation mechanism

to achieve a fair and efficient use of this single channel. In Section 1.2.1, we consider

the case that multiple users sharing a set of multiple parallel channels to communi-

cate with multiple satellites. There, we define the pareto optimal throughput region

and investigate a possible random-access scheme that achieves the pareto optimality.

Lastly, in Section 1.2.2 we introduce how to efficiently utilize the multiple parallel

channels available to reduce file transmission delay when a user need to send a file

through the satellite or base-station.

1.1 Allocation of A Single Channel

1.1.1 Downlink Channel Allocation

A fundamental characteristic of a wireless network is that the channel over which

communication takes place is often time-varying. This variation of the channel quality

is due to constructive and destructive interference between multipaths and shadowing

effects (fading). For a single wireless channel over which a transmitter communicates

with multiple users, the transmitter can send data at higher rates to users with better

channels. However, the potential to exploit higher data throughput for users with

good channel states may introduce a trade-off between system efficiency and fairness

among users. In a time slotted system where only one user can be served during each

time slot, the objective of maximizing the total system throughput may result in very

low throughput for some users whose channel states are consistently poor. Hence, an

allocation scheme that balances the conflicting objective of maximizing total system

throughput and maximizing individual user's throughput is needed.

The following simple example illustrates different allocations that may result from

different notions of fairness. We consider the communication system with one trans-



mitter and two users, A and B, and the allocations that use different notions of fairness

such as the maxmin fairness and time fraction fairness (i.e., assigning a certain per-

centage of time slots to each user). We assume that the throughput is proportional to

the the channel condition. The channel coefficient, which is a quantitative measure

of the channel condition, takes value in the interval [0, 1] with 1 as the best channel

condition. In this example, the channel coefficients for user A and user B in the two

time slots are (0.1, 0.2) and (0.3, 0.9) respectively. The throughput result for each

individual user and for total system under different notions of fairness constraint are

given in Table I. When there is no fairness constraint, to maximize the total system

throughput would require the transmitter to allocate both time slots to user B. To

achieve maxmin fair allocation, the transmitter would allocate slot one to user B and

slot two to user A, thus resulting in a total throughput of 0.5. If the transmitter

wants to maximize the total throughput subject to the constraint that each user gets

one time slot (i.e., the approach of [9]), the resulting allocation, denoted as time

fraction fair, is to give user A slot one and user B slot two. As a result, the total

throughput is 1.0. In the above example, the transmitter selects an allocation to

Throughput for A Throughput for B Total throughput

No fair constraint 0 1.2 1.2
Maxmin fair 0.2 0.3 0.5
Time fraction 0.1 0.9 1.0

Table 1.1: Throughput results using different notions of fairness.

ensure an artificially chosen notion of fairness. From Table I, we can see that from

the user's perspective, no notion is truly fair as both users want slot two. In order

to resolve this conflict, we use a new approach that allows users to compete for time

slots. In this way, each user is responsible for its own action and its resulting through-

put. We call the fraction of bandwidth received by each user competitive fair. Using

this notion of competitive fairness, the resulting throughput obtained for each user

can serve as a reference point for comparing various other allocations. Moreover, the

competitive fair allocation scheme can provide fundamental insight into the design of



a fair scheduler that make sense.

In our model, users compete for time-slots. For each time-slot, each user has a

different valuation (i.e., its own channel condition), and each user is only interested

in maximizing its own throughput. Naturally, these characteristics give rise to an

auction. Here, we consider the second-price and all-pay auction mechanisms. Using

the auction mechanism, users submit a "bid" for the time-slot and the transmitter

allocates the slot to the user that made the highest bid. In the second-price auction

mechanism, the winner only pays the second highest bid [20]. However, in the all-pay

auction mechanism, all users have to pay their bids. Each user is assumed to have an

initial budget. The money possessed by each user can be viewed as fictitious money

that serves as a mechanism to differentiate the QoS given to the various users. This

fictitious money, in fact, could correspond to a certain QoS for which the user paid in

real money. As for the solution of the slot auction game, we use the concept of Nash

equilibrium, which is a set of strategies (one for each player) from which there are no

profitable unilateral deviation.

In the downlink communication system with one transmitter and multiple receiv-

ing users, we assume the channel states for each user are independent and identically

distributed with known probability distribution for each time slot. The channel states

for different users are also independent. Given that each user wants to maximize its

own expected throughput subject to an average budget constraint, we have the follow-

ing results: We find the Nash equilibrium strategy for general channel state distribu-

tion. This Nash equilibrium strategy pair is shown to lead to a unique allocation for

certain channel state distributions, such as the exponential distribution and the uni-

form distribution over a bounded interval. We then show that the Nash equilibrium

strategy of this auction leads to an allocations at which total throughput is no worse

than 3/4 of the throughput obtained by an algorithm that attempts to maximize total

system throughput without a fairness constraint under the uniform distribution. The

throughput for each user, resulting from the use of the Nash equilibrium strategy,

is shown to be pareto optimal (i.e., it is impossible to make some users better off

without making some other users worse off). Lastly, based on the Nash equilibrium



strategies of the second price auction with money constraint, we also propose a cen-

tralized opportunistic scheduler that does not suffer the shortcomings associated with

the proportional fair and the time fraction fair scheduler.

When the all-pay auction is used, we obtain Nash equilibrium strategy for each

user for uniformly distributed channel state. We also show that the Nash equilibrium

strategy pair provides an allocation scheme that is fair in the sense that the price per

unit of throughput is the same for both users.

1.1.2 Uplink Random Access

For the uplink transmission, we present a distributed uplink Aloha based multiple

access scheme. Specifically, we consider a communication system consisting of multi-

ple users competing to access a satellite, or a base-station. Each user has an average

power constraint, and time is slotted. During each time slot, each user chooses a

power level for transmission based on the channel state of current slot, which is only

known to itself. Depending on the capture model and the received power of that

user's signal, a transmitted packet may be captured even if multiple users are trans-

mitting at the same slot. If the objective of each user in the system is to find a

power allocation strategy that maximizes its probability of getting captured based

its average power constraint, we have a power allocation game that resembles the

all-pay auction. Comparing with the all-pay auction, the average power constraint

in the power allocation game corresponds to the average money constraint, and the

transmission power corresponds to the money. Both power and money is taken away

once a bidding or a transmission has taken place. In this uplink scenario, using the

technique to solve for Nash equilibrium in the all-pay auction, we get a similar Nash

equilibrium strategy in the uplink multiple access power allocation problem.

The game theoretical formulation of the uplink power allocation problem stems

from the desire for a distributive algorithm in a wireless uplink. Due to the vari-

ation of channel quality in a fading channel, one can exploit the channel variation

opportunistically by allowing the user with best channel condition to transmit, which

require the presence of a centralized scheduler that knows each user's channel condi-



tion. As the number of users in the network increases, the delay in conveying user's

channel conditions to the scheduler will limit the system's performance. Hence, a

distributed multi-access scheme with no centralized scheduler becomes an attractive

alternative. However, in a distributive environment, users may want to change their

communication protocols in order to improve their own performance, making it im-

possible to ensure a particular algorithm will be adopted by all users in the network.

Rather than following some mandated algorithm, in this work users are assumed to

act selfishly (i.e., choose their own power allocation strategies) to further their own

individual interests.

When each user wants to maximize its own expected throughput, we obtain a

Nash equilibrium power allocation strategy which determines the optimal transmis-

sion power control strategy for each user. The obtained optimal power control strategy

specifies how much power a user needs to use to maximize its own throughput for any

possible channel state. Users get different average throughput based on their average

power constraint. Hence, this transmission scheme can be viewed as mechanism for

providing quality of service (QoS) differentiation; whereby users are given different

energy for transmission. The obtained Nash equilibrium power allocation strategy is

unique under certain capture rules. When all users have the same energy constraint,

we obtained a symmetric Nash equilibrium. Moreover, as the number of users in

the system increases, the total system throughput obtained by using a Nash equi-

librium strategy approaches the maximum attainable throughput using a centralized

scheduler.

1.2 Allocation of Multiple Parallel Channels

1.2.1 Multiple Parallel Channel Allocation Using Pricing

Having studied the single channel communication scenario, we now consider the case

that multiple users sharing a set of multiple parallel channels to communicate with

multiple satellites (one channel for each satellite). Specifically, we consider a commu-



nication network with multiple satellites, collectively acting as a network manager,

that wishes to allocate network uplink capacity efficiently among a set of users, each

with a utility function depending on their allocated data rate. We assume that each

satellite uses a separate channel for communication, such as using different frequency

band for receiving. Each user has data that needs to be sent to the satellite network,

and there may be multiple satellites that a user on the ground can communicate with,

or switched diversity termed in [1]. Therefore, the data rate for each user here is the

rate at which each user can access the satellite network by sending its data to any

satellite within its view.

Slotted aloha is used here as the multi-access scheme for its simplicity. Other

multi-access schemes can be used in conjunction with the pricing scheme to provide

QoS as well. Due to different path loss and fading, the channel gain from a user to

different satellite within its view can be different. Therefore, during a single time slot,

a user has to decide not only whether it should transmit but also to which satellite it

will transmit. To control users' transmission rates, each satellite will set a price (may

differ from satellite to satellite) for each successfully received packet. Based on the

price set by each satellite, a user determines its targeted satellite and the transmission

probability to maximize its net payoff, which is the utility of its received rate minus

the cost.

It is well-known that the throughput of a slotted aloha system is low. Therefore,

a reasonable objective for the network manager is to efficiently utilize the available

resource. In this chapter, we want to explore the use of pricing as a control mechanism

to achieve efficiency. To do so, we need to define the meaning of efficiency in the

context of a slotted aloha system. With a wire-line, such as optical fiber, of capacity

R, an allocation is efficient as along as the sum of the bandwidth allocated to each

individual user is equal to R, i.e., no waste of bandwidth. With a collision channel

in the aloha system, no simple extension of the wire-line case exists. We therefore

use a concept called Pareto efficient for allocating resource in a collision channel. By

definition, a feasible allocation (sl, s2, ... , sn) is Pareto efficient if there is no other

feasible allocation (s', s',... , s') such that s' > si for all i = 1, _ , n and sý > si for



some i.

The multiple satellites communication networks considered here differ from the

multichannel aloha networks in one key aspect-the channel quality associated with

the path from a user to the satellite. This difference gives us insight on how to best

utilize the multiple channels available to users. A multichannel aloha network consists

of M parallel, equal capacity channels for transmission to one base station or satellite

shared by a set of users [30] [31]. The M channels can be implemented based on

either Frequency Division Multiplexing or Time Division Multiplexing approaches.

When a user has a packet to send, it will randomly select one channel to transmit.

This random selection of the channel is largely due to the lack of coordination among

competing users. Intuitively, we would expect that the throughput of the system will

be higher if the coordination in channel selection among users was available. In the

multiple satellite networks, different price and channel state are two mechanisms that

enable the coordination in channel selection among the competing users.

Specifically, we propose a novel MAC protocol based on pricing that allocates

network resources efficiently according to users' demand. We then characterize the

Pareto efficient throughput region in a single satellite network. The existence of a

equilibrium price is presented. Furthermore, we show that such equilibrium price

is unique. In the multiple satellites case, the Pareto efficient throughput region is

also described. We then show that the equilibrium price exists and is unique. The

resulting throughput at the equilibrium is shown to be Pareto efficient as well.

1.2.2 Multipath Routing over Wireless Networks

In this section, we consider the case when there are multiple parallel paths available for

transmission between the source and the destination node [36], [42]. File transmission

delay is studied instead of the average packet delay in networks where a file consists

of multiple packets. The file transmission delay is defined to be the time interval

between the time that the file was generated and the time at which the file can

be reconstructed at the destination node. File transmission delay resembles more

closely the delay experience of an average user. In a wireless transmission scenario,



the transmission delay of each packet can sometimes be modelled as i.i.d. random

variable. The average file transmission delay not only depends on the mean of the

packet delay but also its distribution especially the tail. Here, we focus on the problem

of how to minimize the average file transmission delay in a wireless or satellite network.

For a file with a fixed number of packets, one can assign a certain fraction of

these packets to each path and transmit them simultaneously. We assume that each

packet will experience an independent and identically distributed transmission delay

on a particular path, which we argue to hold for certain communication scenario. File

transmission delay can be very different from the packet transmission delay especially

when the distribution of the packet transmission delay has a heavy tail. After a

source distributed the packets of a file among the available paths, the destination can

reconstruct the file when all the packets of that file have arrived. The problem of

how to distribute a file with finite number of packets among a finite set of parallel

paths, each with different channel statistics, is studied in [46]. There, an optimal

packets allocation scheme to minimize the average file transmission delay is presented.

Reconstruction of the original file at the destination node require the arrivals of all

packets of that file. This may take a long time due to the heavy tail of the packet

delay distribution. Hence, it prompts us to code the original file at the packet level.

Specifically, for a file with k packets originally, the source transmit n > k packets by

adding some redundant packets to the original file. At the destination node, upon

receiving the first k packets out of the n transmitted packets, the destination node

can reconstruct the original file. This kind coding at the packet level exists such as

the digital fountain code or tornado code [45], [44].

Our objective here is to obtain an intuitive understanding of the tradeoff between

the code rate and delay reduction in a communication setting with a single or multiple

source destination pairs that share a set of parallel paths. In the single source-

destination case, given a file size, we provide a practical guideline in determining the

code rate to achieve a good file transmission delay. We show that only a few redundant

packets are required for achieving a significant reduction in file transmission delay.

Next, we consider the trade-off between the file transmission delay and code rate in a



multiple users environment. There, the redundant packets will increase the network

congestion level, hence the packet's queueing delay. We will investigate whether

adding redundant packet can still reduce the file transmission delay. The coding and

delay tradeoff in this case is characterized in terms of the traffic load of the network.

Depending on the load, a unique code rate that minimizes the transmission delay is

obtained.



Chapter 2

Fair Allocation of A Wireless

Fading Channel: An Auction

Approach

The limited bandwidth and high demand in a communication network necessitate a

systematic procedure in place for fair allocation. This is where the economic theory

of pricing and auction can be applied in the field of communications and networks

research, for pricing and auction are natural ways to allocate resources with limited

supply. Recently, in the networks area, much work is done to address the allocation of

a limited resource in a complex, large scaled system such as the internet [6], [16]. They

approach the problem from a classical economic perspective where users have utility

functions and cost functions, both measured in the same monetary unit. Pricing is

used as a tool to balance users' demand for bandwidth.

Here, we are interested in solving a specific engineering problem of scheduling

transmission among a set of users while achieving fairness in a specific wireless envi-

ronment. We use game theoretical concepts such as Nash equilibrium as a tool for

modelling the interaction among users. Both the objective and the constraint of the

optimization problem that each user faces have physical meanings based on underly-

ing system. Our focus in this chapter will be on the use of the second-price and the

all-pay auction in allocating a downlink wireless fading channel.



2.1 Introduction

A fundamental characteristic of a wireless network is that the channel over which

communication takes place is often time-varying. This variation of the channel quality

is due to constructive and destructive interference between multipaths and shadowing

effects (fading). In a single cell with one transmitter (base station or satellite) and

multiple users communicating through fading channels, the transmitter can send data

at higher rates to users with better channels. In a time slotted system, time slots are

allocated among users according to their channel qualities.

The problem of resource allocation in wireless networks has received much atten-

tion in recent years. In [30] the authors try to maximize the data throughput of an

energy and time constrained transmitter communicating over a fading channel. A

dynamic programming formulation that leads to an optimal transmission schedule is

presented. Other works address the similar problem, without consideration of fair-

ness, include [7] and [8]. In [5], the authors consider scheduling policies for maxmin

fairness allocation of bandwidth, which maximizes the allocation for the most poorly

treated sessions while not wasting any network resources, in wireless ad-hoc networks.

In [25], the authors designed a scheduling algorithm that achieves proportional fair-

ness, a notion of fairness originally proposed by Kelly [6]. In [9], the authors present a

slot allocation that maximizes expected system performance subject to the constraint

that each user gets a fixed fraction of time slots. The authors did not use a formal

notion of fairness, but argue that their system can explicitly set the fraction of time

assigned to each user. Hence, while each user may get to use the channel an equal

fraction of the time, the resulting throughput obtained by each user may be vastly

different.

The following simple example illustrates the different allocations that may result

from the different notions of fairness. We consider the communication system with

one transmitter and two users, A and B, and the allocations that use different notions

of fairness discussed in the previous paragraph. We assume that the throughput is

proportional to the the channel condition. The channel coefficient, which is a quan-



titative measure of the channel condition ranging from 0 to 1 with 1 as the best

channel condition, for user A and user B in the two time slots are (0.1, 0.2) and (0.3,

0.9) respectively. The throughput result for each individual user and for total system

under different notions of fairness constraint are given in Table I. When there is no

fairness constraint, to maximize the total system throughput would require the trans-

mitter to allocate both time slots to user B. To achieve maxmin fair allocation, the

transmitter would allocate slot one to user B and slot two to user A, thus resulting in

a total throughput of 0.5. If the transmitter wants to maximize the total throughput

subject to the constraint that each user gets one time slot (i.e., the approach of [9]),

the resulting allocation, denoted as time fraction fair, is to give user A slot one and

user B slot two. As a result, the total throughput is 1.0. In the above example, the

Throughput Throughput Total
for A for B throughput

No fair constraint 0 1.2 1.2
Maxmin fair 0.2 0.3 0.5
Time fraction 0.1 0.9 1.0

Table 2.1: Throughput results using different notions of fairness.

transmitter selects an allocation to ensure an artificially chosen notion of fairness.

From Table I, we can see that from the user's perspective, no notion is truly fair as

both users want slot two. In order to resolve this conflict, we use a new approach

which allows users to compete for time slots. In this way, each user is responsible

for its own action and its resulting throughput. We call the fraction of bandwidth

received by each user competitive fair. Using this notion of competitive fairness, the

resulting throughput obtained for each user can serve as a reference point for compar-

ing various other allocations. Moreover, the competitive fair allocation scheme can

provide fundamental insight into the design of a fair scheduler that make sense.

In our model, users compete for time-slots. For each time-slot, each user has a

different valuation (i.e., its own channel condition). And each user is only interested

in getting a higher throughput for itself. Naturally, these characteristics give rise to

an auction. In this chapter we consider the second-price auction and all-pay auction

1· · ·



mechanism. Using the second-price auction mechanism, users submit a "bid" for the

time-slot and the transmitter allocates the slot to the user that made the highest

bid. Moreover, in the second-price auction mechanism, the winner only pays the

second highest bid [20]. The second-price auction mechanism is used here due to

its "truth telling" nature (i.e., it is optimal for a user to bid its true valuation of a

particular object). Using the all-pay auction mechanism, users submit a "bid" for

the time-slot and the transmitter allocates the slot to the user that made the highest

bid. Furthermore, in the all-pay auction mechanism, the transmitter gets to keep

the bids of all users (regardless of whether or not they win the auction). The all-pay

auction is explored here because it leads an intuitive throughput allocation (i.e., users'

throughput ratio is the same as users' money ratio). Initially, each user is assumed to

have a certain amount of money. The money possessed by each user can be viewed

as fictitious money that serves as a mechanism to differentiate the QoS given to the

various users. This fictitious money, in fact, could correspond to a certain QoS for

which the user paid in real money. As for the solution of the slot auction game, we

use the concept of Nash equilibrium, which is a set of strategies (one for each player)

from which there are no profitable unilateral deviation.

In this chapter, we consider a communication system with one transmitter and

multiple users. For each time slot, channel states are independent and identically

distributed with known probability distribution. Each user wants to maximize its

own expected throughput subject to an average money constraint. Our major results

for the second-price auction include:

* We find the Nash equilibrium strategy for general channel state distribution.

* We show that the Nash equilibrium strategy pair leads to a unique allocation

for certain channel state distribution, such as the exponential distribution and

the uniform distribution over [0, 1].

* We show that the Nash equilibrium strategy of this auction leads to an alloca-

tions at which total throughput is no worse than 3/4 of the throughput obtained

by an algorithm that attempts to maximize total system throughput without a



fairness constraint under uniform distribution.

* We show that the Nash equilibrium strategy leads to an allocation that is pareto

optimal (i.e., it is impossible to make some users better off without making some

other users worse off).

* Based on the Nash equilibrium strategies of the second price auction with money

constraint, we also propose a centralized opportunistic scheduler that does not

suffer the shortcomings associated with the proportional fair and the time frac-

tion fair scheduler.

The results for the all-pay auction is given as follows:

* We find a unique Nash equilibrium when both channel states are uniformly

distributed over [0, 1].

* We show that the Nash equilibrium strategy pair provides an allocation scheme

that is fair in the sense that the price per unit of throughput is the same for

both users.

* We show that the Nash equilibrium strategy of this auction leads to an alloca-

tions at which total throughput is no worse than 3/4 of the throughput obtained

by an algorithm that attempts to maximize total system throughput without a

fairness constraint.

* We provide an estimation algorithm that enables users to accurately estimate

the amount of money possessed by their opponent so that users do not need

prior knowledge of each other's money.

Game theoretical approaches to resource allocation problems have been explored

by many researchers recently (e.g., [2][16]). In [2], the authors consider a resource

allocation problem for a wireless channel, without fading, where users have differ-

ent utility values for the channel. They show the existence of an equilibrium pricing

scheme where the transmitter attempts to maximize its revenue and the users attempt

to maximize their individual utilities. In [16], the authors explore the properties of



a congestion game where users of a congested resource anticipate the effect of their

action on the price of the resource. Again, the work of [16] focuses on a wireline chan-

nel without the notion of wireless fading. Our work attempts to apply game theory

to the allocation of a wireless fading channel. In particular, we show that auction

algorithms are well suited for achieving fair allocation in this environment. Other

papers dealing with the application of game theory to resource allocation problems

include [3] [23] [24].

This chapter is organized as follows. Section 2 analyzes user's Nash equilibrium

bidding strategy for the second-price auction. Specifically, in Section 2.1, we describe

the communication system and the auction mechanism. In Section 2.2, we start by

presenting the Nash equilibrium strategy pair for the two users game with general

channel distribution. The uniqueness of the allocation scheme derived from the Nash

equilibrium is shown when the channel state has the exponential or the uniform

[0, 11 distribution. We then derive the Nash equilibrium for the N-users game. In

section 2.3, we show the unique Nash equilibrium strategy for the case that each

user can use multiple bidding functions. The Pareto optimality of the allocation

resulting from the Nash equilibrium strategies is established in Section 2.4. In Section

2.5, we compare the throughput results of the Nash equilibrium strategy with other

centralized allocation algorithms. The analysis for user's Nash equilibrium bidding

strategy is presented in Section 3. Section 3.1 presents the problem formulation for

the all-pay auction. In Section 3.2, the unique Nash equilibrium strategy pair and

the resulting throughput for each user are provided for the case that each user can

use only one bidding function. In Section 3.3, we show the unique Nash equilibrium

strategy pair for the case that each user can use multiple bidding functions. In Section

3.4, we compare the throughput results of the Nash equilibrium strategy with two

other centralized allocation algorithms. In Section 3.5, an estimation algorithm that

enables the users to estimate the amount of money possessed by their opponent is

developed. Finally, Section 4 concludes the chapter.



2.2 Second-price Auction

2.2.1 Problem Formulation

We consider a communication scenario where a single transmitter sends data to N

users over independent fading channels. We assume that there is always data to be

sent to the users. Time is assumed to be discrete, and the channel state for a given

channel changes according to a known probabilistic model independently over time.

The transmitter can serve only one user during a particular slot with a constant power

P. The channel fade state thus determines the throughput that can be obtained.

For a given power level, we assume for simplicity that the throughput is a linear

function of the channel state. This can be justified by the Shannon capacity at low

signal-to-noise ratio [30]. However, for general throughput function, it can be shown

that the method used in this paper applies as well. Let Xi be a random variable denote

the channel state for the channel between the transmitter and user i, i = 1, . , N.

When transmitting to user i, the throughput will then be P - Xi. Without loss of

generality, we assume P = 1 throughout this paper.

We now describe the second-price auction rule used in this paper. Let ai be the

average amount of money available to user i during each time slot. We assume that

the values of ai's are known to all users. Moreover, users know the distribution of Xi

for all i. We also assume that the exact value of the channel state Xi is revealed to

user i only at the beginning of each time slot. During each time slot, the following

actions take place:

1. Each user submits a bid according to the channel condition revealed to it.

2. The transmitter chooses the one with the highest bid to transmit.

3. The price that the winning user pays is the second-highest bidder's bid. Users

who lose the bid do not pay. In case of a tie, the winner is chosen among the

equal bidders with equal probability.

Formally, this N-players game can be written as I = [N, {Si}, {gi(.)}] which

specifies for each player i a set of strategies, or bidding functions, Si(with si E Si)



and a payoff function gi(s, - - - , SN) giving the throughput associated with outcome

of the auction arising from strategies (sl, - - - , SN).

The formulation of our auction is different from the type of auction used in eco-

nomic theory in several ways. First, we look at a case where the number of object

(time slots) in the auction goes to infinity (average cost criteria). While in the current

auction research, the number of object is finite [20][21][22]. Second, in our auction

formulation, the money used for bidding does not have a direct connection with the

value of the time slot. Money is merely a tool for users to compete for time slots, and

it has no value after the auction. Therefore, it is desirable for each user to spend all of

its money. However, in the traditional auction theory, an object's value is measured

in the same unit as the money used in the bidding process, hence their objective is

to maximize the difference between the object's value and its cost. We choose to use

the second-price and all-pay auction in this chapter to illustrate the auction approach

to resource allocation in wireless networks. As we will see later, second price auction

results in an allocation that is efficient. More specifically, it is pareto optimal.

The objective for each user is to design a bidding strategy, which specifies how

a user will act in every possible distinguishable circumstance, to maximize its own

expected throughput per time slot subject to the expected or average money con-

straint. Once a user, say user 1, chooses a function, say fl, to be its strategy, it bids

an amount of money equal to fi(x) when it sees its channel condition is X 1 = x.

2.2.2 Nash Equilibrium under Second-Price Auction

We begin our analysis of the second-price auction with an average money constraint

by looking at a 2-users case for simplicity. Specifically, we present here a Nash

equilibrium strategy pair (fr, f2) for the second-price auction under general channel

distribution. We consider here the case where users choose their strategies from the

set F1 and F2 respectively. Each user's strategy is a function of its own channel

state Xi. Thus, Fi is defined to be the set of continuous real-valued, and square

integrable functions over the support of Xi. Without loss of generality, we further

assume functions in Fi to be increasing. We define A : (x 1, 2) -- {1, 2} to be an



allocation that maps the possible channel state realization, (x, x2), to either user 1 or

user 2. Here we are interested in the allocation that result from the Nash equilibrium

strategies.

We first consider a channel state Xi that is continuously distributed over a finite

interval [ls, ui] where li and us are nonnegative real number with us > li. Later we

will consider the case that us is infinite (e.g., when Xi is exponentially distributed).

To find the Nash equilibrium strategy pair, we use the following approach. Given

user 1's strategy fl E F1 with its range from fl(li) = a to fl(ul) = b, user 2 wants to

maximize its own expected throughput while satisfying its expected money constraint.

For a given fl, if user 2 chooses a bidding function f2, the expected throughput or

payoff function for user 2 is given by:

g2(fl, f2)= Ex,,x2[X2 1f2 (X2)fl,(X 1 )] (2.1)

where

whrX2)e(X) = 1 if f 2(X 2) > f1(X1)

f 0 otherwise

Recall that in the second-price auction rule, the price that the winner pays is actually

the second highest bid. Therefore, the set of feasible bidding functions for user 2,

denoted as S 2(fl), is given by:

S 2(fl) = {f2 E F2 I Ex 1,x2 [f1(Xi) - l2(X2)lŽf(Xl)] < o2 } (2.2)

Note that the inverse function fj'(y) may not be well defined for y E [a, b] since

fi may not be strictly increasing over [a, b]. Therefore, to avoid such problem, we

define the following function:

11 if y a

h(y)= max {xlf(x) < y} if a<y<b (2.3)

ul if y> b



In the special case that fi is strictly increasing, h(y) is reduced to the following:

h(y) = I
'1

fi- 1(y)

U'

ya

a<y<b

Y~b

(2.4)

For the rest of the paper, it is convenient to consider the definition of

Eq.(2.4).

h(y) given in

We say the strategy f2 is a best response for player 2 to his rival's strategy f, if

92 (fl, f2) > g2(fl, f2) for all f ~E S2 (f). A strategy pair (fl*, f2) is said to be in Nash

equilibrium if fj" is the best response for user 1 to user 2's strategy f2, and f2' is the

best response for user 2 to user 1's strategy f*. The following theorem characterizes

the best response of user 2 to a fixed user 1's strategy.

Theorem 1. Given user 1's bidding strategy f, E F, with its range from fl(ll) = a

to f,(ul) = b, user 2's best response has the following form:

f2(x2) • a

f2() = C2 ' 2

f2(x2) > b

for

for

for

x2 E [12, 01]

x2 C [01, 82]
X2 E [02, u2]

(2.5)

where 01, 02 [12,U 2] and c2 01 = a, C2 02 = b.

Proof. Given user 1's bidding strategy fl and user 2's bid at a particular time slot is

y, the probability that user 2 wins this slot, denoted as P2`n(y), is given by

P2n(y) = P(fl(X,) • y) = P(X1 • h(y))

= xTherefore, (x) duser 2 faces is to find a strategy f

Therefore, the optimization problem that user 2 faces is to find a strategy f2 that



maximize its expected throughput, which can be written as the following:

max z 2Px 2(x 2)P U2 2(X2)) dx2f2
*2 h(f2(x2))

= maX X2P 2 ( X2) PX1
s 2 oJ h(f2 ())

subj. to fl(xl)PXJ (Xj)

(x1) dxl dx2

)px2 (x2) d 1 dx 2 • a2

where the integration is over the region that user 2's bid is higher than user 1's bid.

The constraint term denotes the expected money that user 2 has to pay over the region

which it has a higher bid than user 1. To solve the above optimization problem, we

use the optimality condition in [15]. First, we write the Lagrangian function below:

X1 (Xl)PX2(X2) dxl dx 2 -

f l (xl)PxI (x 1)PX2 (x 2 ) dxl dx2 - 2)

2 - 2fi( 1))pxl (X1) dxi] px 2( 2) dx 2

We then choose a function f2 to maximize the above equation.

which depends on fl, is chosen such that the inequality constraint

Specifically, for each value x2, we solve for the optimal f 2(x 2):

(2.7)

Also, a positive A2 ,

is met with equality.

(2.8)

For convenience, we let z = f 2( 2). Then, Eq. (2.8) becomes

(2.9)

For a fixed x2, the term x2 - A2fi(Xl) is a decreasing function in xl since fi(x1 ) is

increasing. To maximize Li(z), it is equivalent to choosing a value for h(z*) that

includes all value of xl such that x2 - 2fl (x 1) is positive, or maximizes the area

(2.6)

JU2 l h(f2(x2))

JU2 h(f2(X2))

- a20
2

h(f2(x2))
max (x 2 - A2f(x 1))px (l) dxl
12 (X2) f I

max Li(z) = (X2- A2f1 (xl))px (xi) dx.z 11



under the curve x 2 - A2fi( 1 ). It is apparent that the optimal value z* should be

chosen such that x2 - A2fi(h(z*)) = 0 or z* = f. However, if x 2 - A2 f(h(z)) > 0A2

for all z E [a, b], we let z* > b. Similarly, if x2 - A2f 1(h(z)) < 0 for all z E [a, b], we

let z* < a. Thus, from Eq.(2.3), we see that the optimal bidding function has the

following form

f 2(x2 ) a for x2 E [12,01]

f2(X2) = C 2 2 for X2 E [01, 02

f2( 2) 2 b for 2 E [0, 2]

where 01, 02 E [12, 2] and c2 81 = a, c2 802 = b. EO

The above theorem indicates that for user 2 to maximize its throughput given

user 1's strategy fl, the optimal strategy may not be unique following the definition

of the Nash equilibrium. For x2 E [12, 81], as long as f2 (x 2) < a, user 2 always loses

the bid, and the throughput for user 2 does not change. However, from second-price

bidding rule, user 2's strategy affects user 1's strategy through the expected budget

constraint that user 1 must satisfy. This way, user 2 will choose f 2(x 2) = a for

x2 E [12, 01]. Intuitively, even if user 2 knows that it will not win a particular time

slot, it will still choose to maximize its bid in order to force user 1 to pay more.

Hence, user 2's best response is in this sense unique. Therefore, although the second

price auction with average money constraint does not in general have an unique Nash

equilibrium, it does have an unique outcome. We will elaborate on this more in

section III.B where the users' channel distributions are different.

Similarly, given user 2's bidding function f2, we can carry out the same analysis

to find that the best response for user 1 has the form fi(xl) = cl - x1. The next

theorem shows that indeed we can always find a pair cl and c2 such that both users'

money constraints are satisfied simultaneously, and thus show the existence of a Nash

equilibrium strategy pair.

Theorem 2. A Nash equilibrium exists in the second-price auction game P = [2, {Sf}, {gi(.)}]

with {Si} and {gi(-)} defined in Eq.(2.2) and Eq.(2.1) respectively .

Proof. For the channel state X1 distributed over the interval [11, ul], the best response



given in Eq.(2.5) indicates that fi(xl) = cl - xl for all x, in [11,ul] is a valid best

response.

Without loss of generality, we consider only linear bidding functions (i.e., f (xl) =

C1 -. Vx1 E [li, U1], f 2( 2) = C2 .X 2 VX2 E [12, u2] and cl, c2 E [0, oo)) for the purpose

of showing the existence of a Nash equilibrium strategy pair. A Nash equilibrium

exists if we can find a pair of cl and c2 which satisfy the following two constraints:

Ex,,x 2[f2(X2) Ifl(X)>_f 2(X2)] _ a1  (2.10)

Ex1 ,x2[fi(Xi) 1 f2(x 2)_/Ži(x,)] 5 a2  (2.11)

Given user 2's strategy f 2(x2) = C2. x2, we define the set S1 (c2) to be the set

of feasible strategy for user 1. Specifically, S1 (c2) = (C1 E [0, 00) 1 Ex,x 2 [c2X 2

clIX1c!,x 2] 5 a1}. The best response for user 1 when user 2 chooses c2 , bi(c2), is

given by:

bl(c 2 ) = arg max Ex1,x2[XI - 1Yxl> 2x,2yeSl (c2)

To show that Nash equilibrium exists, we need to show that the best response cor-

respondence bl(.) is nonempty, convex-valued, and upper hemicontinuous [17]. Note

first that bl (c2) is the set of maximizer of a continuous function, here the function

Exl,x2 [X1  lyXlCx2XJ, on a compact set S1(c 2 ). Hence, it is nonempty. The con-

vexity of b1(c2 ) follow because the set of maximizers of a quasiconcave function, i.e.,

Ex,,x 2 [X1 . lYxc 2X2,], on a convex set (here S1(c2)) is convex. Ex,,x [X1 l Xl_~c2x2]

is quasiconcave because it is non-decreasing in y. Finally, since the set S 1 (c2 ) is com-

pact for all c2 E [0, oo00), following the Berge Maximum Theorem [18], we have bi(c 2) is

upper hemicontinuous. Now, all the conditions of the Kalkutani fixed point theorem

are satisfied [17]. Hence, there exists a Nash equilibrium for this game. O

The Nash equilibrium strategy discussed above is in general not unique. How-

ever, under a continuous channel state distribution that starts with zero, such as the

uniform distribution over [0, 1] or the exponential distribution, the Nash equilibrium

bidding strategies are unique and lead to an unique allocation. Next, we will discuss



the Nash equilibrium strategy pair of these two distribution.

Uniform channel distribution

In this section, we examine the two users game with the channel state Xi uniformly

distributed over [0, 1]. Following the approach discussed in the previous section, we

find the unique allocation resulting from the Nash equilibrium strategy. Given a

strategy pair (fj, f*) to be in Nash equilibrium, we first investigate the bids that

users submit when the channel state Xi is equal to 0 (i.e., the value of f*(0) and

f2(0)). The result is stated in the following lemma.

Lemma 1. For a strategy pair (f', f2) to be a Nash equilibrium strategy pair, we

must have f (0) = f2(O) = 0 when the channels are uniformly distributed over [0, 1].

Proof. We consider the following three cases regarding the bidding strategy when the

channel state is at 0:

* Case 1: fi*(0) = 0 and f (0) = 0.

* Case 2: f (0) = a with a > 0 and f (0) = 0, or f'*(0) = 0 and f2 (0) = a with

a > 0.

* Case 3: f' (0) = a and f2(0) = b with a > 0 and b > 0.

Case 2 cannot be true from the discussion in the previous section. To see this,

consider f (0) = a with a > 0 and f2(0) = 0. Given a time slot with user

1's channel states x, = 0, the expected money user 1 has to pay is positive

since user 2's bidding function is continuous and f2(0) = 0. But the expected

throughput rewarded for that time slot is zero for user 1. Hence, user 1 should

bid zero when its channel state is zero. Similar idea can be used to show that

case 3 is also impossible. Given a time slot with user 1's channel state xl = 0

and f'(0) = a > b, the expected money user 1 has to pay is positive since

user 2's bidding function is continuous and f2(0) = b. However, the expected



throughput for that time slot is zero for user 1. So user 1 would rather bid zero

in this time slot.

O

With the above lemma, we can get the exact form of the Nash equilibrium strategy

pair.

Theorem 3. With the channel states, X 1 and X 2, uniformly and independently dis-

tributed over [0, 1], the unique Nash equilibrium pair (fr, f2) has the following form:

fl*(xi) = c1 x1 and f2(x 2 ) = c2 " x 2 where cl and c2 are chosen such that the expected

money constraints are satisfied.

Proof. Combine Lemma 1 and the linear form of the bidding function shown previ-

ously, we have the above theorem. O

We now calculate the exact value of cl and c2. Without loss of generality, we

assume that user 2 has more money than user 1 (i.e., a, < a 2 ). Since the form of

the optimal bidding strategy for both users is known, we need to get the exact value

of cl and c2 from the money constraint that users must satisfy. Thus, from Eq.(2.10)

and Eq. (2.11), the constraint for user 1 is given by:

d of1 : ( h ( X i ) )o 0
C2

JO0

f2 ( 2) dx2 dxl = al

S 2 dx2 dX 1 = a 1

Note that the function f7 '(f 2( 2)) is well defined for f 2(x 2) E [0, cj]. Therefore, the

(2.12)



constraint for user 1 is given by:

C2 fi'(f2(X2)) fi(x1) dx dx 2

+ fi(xi) dxl dx 2 = a 2

S2 d d(2.13)

10 1

+ J j c1 xl dxl dx 2 = a 2

r2

Solving the two equations, we get

cl = 2(2a1 + a 2) (2.14)
2(2a• + c2 )2

c2 = (2.15)
3ai

The throughput of each user is then given by

G1 a (2.16)
a2 + 2a,
1 3a2

G2 1 (2.17)2 2(a 2 + 2a 1 )2

Note that the linear bidding function leads to the following allocation: Given that

the channel states are xl and x 2 during a time slot, the transmitter assigns the slot

to user 1 if xt > c * x2 , where c = E  and to user 2 otherwise. We will see later that

this form of allocation leads to the Pareto optimality.

The Unique Outcome of the Game

As we mentioned previously, the Nash equilibrium is not unique in general (although

unique for the cases where channel states are exponentially distributed or uniformly

distributed over [0, 1]); however, the outcome of this second price auction with money

constraint is unique. To see this, consider an example where Xi is uniformly dis-

tributed over the interval [0, 10], and X2 is uniformly distributed over the interval



[5 - E, 5 + E] with e arbitrarily small. If both users have the same average money con-

straint, two strategy pairs are given in Fig. 2-1(a)(b) and (d)(e). They are both Nash

equilibrium strategy pairs by definition. Given user 2's strategy shown in Fig. 2-1(b),

user 1 can bid anything less than T, which is the lowest bid of user 2, during the

interval [0, a] since its throughput will be unaffected (this is the reason that multiple

Nash equilibriums exist). In Fig. 2-1(a), we show the case that user 1 implements a

strict linear bidding function, resulting in an expected throughput of 2.78 for user 1

and 3.33 for user 2. Although user 1's bid during interval [0, a] will not change its

own throughput, it will affect the amount of money user 2 has to pay (i.e., user 2

has to pay more to win a slot if user 1's bid is close to T instead of 0 during [0, a];

consequently, user 2 will have less money to bid in other slots). Thus, a rational

decision for user 1 is not to bid anything less than the smallest bid of user 2. There-

fore, the Nash equilibrium strategy pair shown in Fig. 2-1(d)(e) is a more reasonable

equilibrium strategy pair for this game. The outcome of the game is in this sense

unique.

Exponential distribution

When the channel state Xi is exponentially distributed with rate Zi, the analysis in

the general distribution section is still valid. The unique Nash equilibrium strategy

pair has the same form as the uniform case: ff (xl) = cl -x and f2 (x2) = c 2 x 2. Using

Eq.(2.10) and Eq.(2.11), we get a relationship between cl and c2 to be 21 -= "A'
c2 02'A2

Thus, the optimal allocation is given by:

A*(xi, X2) 2 if x2 > (C1/C 2)X1

1 otherwise

Write the decision in another form i2X 2 > P•1 X 1. We see that only the normalized

channel state distribution (i.e., X2 and x1 where E[X 2] = 1 , E[X 1] = ) areE[X21 E[X1] 1A2 I1I

used in the comparison. This result corroborates the Score-Based scheduler proposed

by [19], which selects a user when its transmission rate is high relative to its own rate
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Figure 2-1: (a) Bidding function for user 1 when using linear bidding function. (b)
Bidding function for user 2. (c) Resulting allocation shown in the support of X 1 and
X2 . (d) Bidding function for user 1 when it tries to make user 2 to pay more. (e)
User 2's bidding function. (f) Resulting allocation when users using bidding function
shown in (d) and (e).

statistics. The expected throughput for each user is given by:

1 i2
G1 = 1- 2A1 (ac + a2 2

1 a2G2 [1- 1
A 2  (C1 + 0 2)2

The N-users Game

In this section, we explore the Nash equilibrium of the second price auction in which

N users, each with an average money constraint ai, compete for time slots. Given

user i's strategy fi E Fi with range from f1 (1) = ai to fi(ui) = bi for i = 2, ... , N,

user 1 wants to maximize its own expected throughput while satisfying its expected

money constraint. For a given {f2,'.. , fN}, if user 1 chooses a bidding function fi,

44
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]r2

X2

(c)
n r



the expected throughput or payoff function for user 1 is given by:

91 = Exl,x 2,...,XN [XI. 1fl(Xl)>max{f2(X2),...,fN(XN)}] (2.18)

The set of feasible bidding functions for user 1, denoted here as S1 (f 2, " ' fN), can

be written as:

SI(f 2," ,fN)=

{fi E Fl I Ex2,...,x, [max{f 2(X2),... , fN(N)}

Slf(X1)>max{f 2 (X2),... ,fN(N)}] • al}

(2.19)

Similar to the 2-users

2, .. , N :

The following theorem

in this N-user game.

case, we define the inverse function as the following for i =

li

fi (Y)

u

y < ai

ai < y < bi

y > bi

(2.20)

characterizes the best response of user 1 for fixed {f2, " •. , fN}

Theorem 4. Given fixed bidding functions {f2,'. fN} for user 2 to user

a = min{f 2(x 2), " ', fN(XN)} and b = max{f 2 ( 2),... , fv(XN)} for ({ 2,"

X 2 x ... x XN, user 1's best response has the following form:

fi(x1) = a

fi(xi) > b

for

for

for

X1 E [12, 1]

zX E [01, 021

zXl e [02, U2]

where 01, 02 E [12, U2] and c 01 = a, C2 ' 82 = b.

Proof. See Appendix.

Theorem 5. A Nash equilibrium exists in the second-price auction game F = [N, {Si}, {gj(-.)}

with {Si} and {gi(.)} defined in Eq.(2.19) and Eq.(2.18) respectively .

N, and

,XN} E

(2.21)

hi(y) =



Proof. We can then follow the steps in the two users case to show the existence of a

Nash equilibrium. The analysis is omitted for brevity. O

2.2.3 Nash Equilibrium Strategy with Multiple Bidding Func-

tions

In the previous section, we restricted the strategy space of each user to be a single

bidding function. Specifically, once a user, say user 1, chooses a function, say fi('),

for its strategy, it bids an amount of money equal to fi(xl) when it sees its channel

condition is X 1 = x1. In other words, user 1 uses the same bidding function fi(&) for

all time slots. In this section, we will relax this single bidding function assumption,

and investigate whether users have incentive to use different bidding function for

different time slot (i.e., user 1 employs the bidding function f(l)(-) for time slot 1,

and fl(2)(.) for time slot 2) as long as their average constraint is not violated. And,

given that users can choose multiple bidding functions, we explore whether the Nash

equilibrium exists.

Again, for simplicity, we consider a 2-users game where the user's channel state is

uniformly distributed over [0, 1]. Let F1 and F2 be, as before, the set of continuous,

increasing, square integrable real-valued functions over the support of X 1 and X2

respectively. Then, the strategy space for user 1, say Si, and user 2, say S2, are

defined as follows:

Stf= ft , f FE (i)( = na(
i=1 (2.22)

S2 = 2(1)) .. n) E F2  ZE~ f2 (X 2) = E2
i=l

For each user, a strategy is a sequence of bidding functions f(l), ... , f(n). Without

loss of generality, we restrict each user to have n different bidding functions, where n

can be chosen as an arbitrarily large number. Note that users now choose a strategy

for a block of n time slots instead of just for a single time slot, one bidding function

for each slot. In order to maximize the overall throughput (over infinite horizon), each



user chooses bidding functions to maximize the expected total throughput over this

block of n slots. The term E[f( (X 1)] denotes the expected amount of money spent

by user 1 if it uses bidding function f(i) for the ith slot in the block. The strategy

space discussed in the previous section can be considered to be a special class of

strategies of Si and S2 in which each user can use only a single bidding function.

More specifically, set fi = f1l) = = f (n) and f2 = f(l) = ... = f(n)

To choose a strategy (i.e., a sequence of bidding functions) from the strategy space

S1 or S2, a user encounters two problems. First, it must decide how to allocate its

money among these n bidding functions so that the average money constraint is still

satisfied. Second, once the money allocated to the ith bidding function is specified, a

user has to choose a bidding function for the ith slot. The second problem is already

solved in the previous section (see Theorem 3). In this section, we will focus on

the first problem that a user encounters, specifically, the problem of how to allocate

money between bidding functions while satisfying the following condition: The total

expected amount of money for the sequence of n bidding functions is n -a, for user

1 and n . a2 for user 2. For convenience, we let a = a,, 0 = a2, and further denote

aO, 3i to be the average money allocated in slot i for user 1 and user 2 respectively.

The strategy space or possible actions that can be taken by users are given by the

following:

S1 = 0'. 1 + ... + :n =n-o-1

S2 = f,31,... 3n 1,a 1 +...+O- = n-01

The objective of each user is still to maximize its own throughput. When user 1 and

user 2 allocate ai and ,3 for their ith bidding function which is given in Theorem 3,

the payoff functions are Gl(ai, /i) for user 1 and G2(ai, /) for user 2.

The following lemma gives us a Nash equilibrium strategy pair for the auction

game described in this section.

Lemma 2. Given that user 2's strategy is to allocate its money evenly among its

bidding functions (i.e., 3i = /, i = 1... n), user 1's best response is to allocate its



money evenly as well (i.e., ai = a, i = 1... n); and vice versa. Therefore, a Nash

equilibrium strategy pair for this auction is for both users to allocate their money

evenly.

Proof. Without loss of generality, we consider the case that n = 2 where each user's

strategy can consist of two different bidding functions. Suppose that user 2 allocates

/3 for both bidding functions f2.) and f 2), and user 1 allocates al for bidding function

f(l) and a 2 for bidding function f,(2) where al + a 2 = 2a and al - a 2. We will show

that the throughput for user 1, Gi(a 1, /3)+ G1 (a2, ), is maximized when al = = a.

Assume //2 < a < /. First, we consider the case that al < /3 and a2 < p. The

equation Gl(al, 3) with p fixed

a 1G, (ao,/3) al

/ + 201

becomes

F(t) = 1t

where t = ~  F(t) is concave for t > 0. Thus, we have Gl(al,/3) + Gi( 2,/3)

maximized when al = a2 = a. For the case that al 2 3 and a2 = 2a - al /3, we

have from Eq.(2.39) and Eq.(2.40)

1 3/32 2a - a1
Gi(a, p3) + G 1(2a - a,, p) = +

2 2(al + 20) 2  /3+ 2(2oa - a1)

The above function can be shown to be strictly decreasing for a l E [3, 2a]. Hence,

it is optimal to choose al = / for al in the interval [/3, 2a]. We also know that in

the case al 5 p3 and ao2 5 /, Gl(al,/3) + G1 (a2, 3) is maximized when al = a2 = a.

Therefore, given user 2 allocates its money evenly among its bidding functions (i.e.,

3i = 3, i = 1... n), user 1's best response is to allocate its money evenly as well. O

We have already obtained a Nash equilibrium strategy pair from the above lemma.

The following theorem states that this Nash equilibrium strategy pair is in fact unique

within the strategy space considered.



Theorem 6. For the second price auction with user's strategy space defined in (2.22),

a unique Nash equilibrium strategy for both users is to allocate their money evenly

among the bidding functions.

Proof. The complete proof is in the Appendix. O

In this section, users are given more freedom in choosing their strategies (i.e., they

can choose n different bidding functions). However, as Theorem 6 shows, the unique

Nash equilibrium strategy pair is for each user to use a single bidding function from its

strategy space. Thus, the throughput result obtained in this broader strategy space-

S 1 and S2-is the same as the throughput result from previous section. Therefore,

there is no incentive for a user to use different bidding functions.

2.2.4 Pareto Optimality of the Nash Equilibrium Strategies

Thus far, we have a Nash equilibrium strategy pair and the resulting throughput when

both players choose to use the Nash equilibrium strategy. In this section, we want

to address the question whether the allocation resulting from the Nash equilibrium

strategy is efficient, or Pareto optimal. An allocation is said to be Pareto optimal

if it is impossible to make some individuals better off without making some other

individuals worse off. This concept is a formalization of the idea that there is no

waste in the allocation process.

We start by investigating an allocation with a fairness constraint that requires the

resulting throughput of the users to be kept at a constant ratio. Specifically, let G1

and G2 denote the expected throughput for user 1 and user 2 respectively. We have

the following optimization problem: for some nonnegative a,

max G1 + G2

subj. (2.23)
subj. = a

G2

The optimal allocation is to divide the possible channel state realizations, (xl, x2),

into two regions by the separation line x2 = c*xl, where c is some positive real number.



Above the line (i.e., x2 > c * xl), the transmitter will assign the slot to user 2. Below

the line (i.e., x2 < C X X 1), the transmitter will assign the slot to user 1.

To prove the above, we use a method that is similar to the one in [9]. By using

an allocation A, the resulting throughput for user 1 and user 2 are GA = E[X 1

1A(Xi,X 2 )=1] and GA = E[X 2 . 1A(x,,X2)=2] respectively. Now, we define an allocation

as follows:

asA*( f s2): 1 if x1(1+ A*) > x 2(1-a.*)

2 otherwise

where A* is chosen such that GA
* /GA* = a is satisfied.

Consider an arbitrary allocation A that satisfies G A/GA = a We have

E[XI - 1A(X1,X 2)=1] + E[X 2 - 1A(X1 ,X2 )=2]

= E[X1 - 1A(XI,X 2)=1] + E[X 2 1IA(X 1,X2 )=2]

+ A*(E[X 1 -1A(XI,X 2)=1] - aE[X2 - 1A(X,,X2)=2])

= E[(X 1 + A*Xi) " 1A(X 1,X2)=1] + E[(X 2 - aA*X 2) . 1A(Xi,X 2)=2]

< E[(X 1 + A*X1) • 1A*(X,,X 2)=1] + E[(X 2 - aA*X 2) • 1A*(Xl,X 2 )=2]

= E[X 1i 1A*(X 1,X2)=1] + E[X 2 ' 1A*(X1,X2)=2]

+ A*(E[X 1 1A*(X,,X 2)=11 - aE[X2 . 1A*(XI,X 2)=2])

= E[X1 . 1A*(X 1,X2 )=1] + E[X 2 . 1A*(XI,X 2)=2]

The inequality in the middle is from the definition of A*. Specifically, if we were

asked to choose an allocation A to maximize E[(X1 + A*X) . 1A(XI,X 2)=1] + E[(X 2 -

aA*X 2) . 1A(X 1,X2 )=2]. Then, A* will be an optimal scheme from its definition. Thus,

A*(X 1, X 2 ) is an optimal solution to the optimization problem in (2.23).

So far, we have shown that the optimal allocation for the problem in (2.23) has the

same form as the allocation scheme resulted from the Nash equilibrium strategy of

second price auction (i.e., both allocation schemes compare channel state realization

x1 with cZx2 where c is a constant). Examining the optimization problem in (2.23), we

see that the resulting throughput obtained is Pareto optimal. To show this, suppose

G' and G' are the throughput of a Pareto optimal allocation, and GP/G2 = cP. If



the optimal solution of the problem maximizing G1 + G2 subject to the constraint

G1/G2 = cp are G* and G*, we must have GI + G* > GP + GP which implies GI > GY

and G* > GP since G1/G 2 = c, and G1/G = cP. From the assumption that GP and

G2 are the throughput of a Pareto optimal allocation, we must have G* = GP and

G* = GP. Therefore, the solution to the optimization problem (2.23) is Pareto optimal

which also implies the Pareto optimality of the allocation resulting from equilibrium

strategy since they have the same form.

2.2.5 Comparison with Other Allocation Schemes

Based on our previous analysis on the Nash equilibrium strategy of the second price

auction with average money constraint, we can implement a centralized opportunistic

scheduler that is fair and efficient. Instead of allowing users to actually bid for

each time slot, the centralized scheduler will assign time slots according to the Nash

equilibrium strategy based on users' average money amount. If users are assumed

to have equal priority (as in the cases of maxmin fairness and proportion fairness),

the scheduler simply let each user have an equal money constraint, and assigns time

slots according to the equilibrium strategy. Later in this section, we will compare our

centralized scheduling scheme with proportional fair scheduling scheme. But first,

we need to quantify the loss of efficiency by using Nash equilibrium strategies. Due

to the fairness constraint, total system throughput will decrease as compared to the

maximum throughput attainable without any fairness constraint. Hence we would

like to compare the total throughput of the Nash equilibrium strategy to that of an

unconstrained strategy. We address this question by first considering an allocation

that maximizes total throughput subject to no constraint.

Maximizing Throughput with No Constraint

To maximize throughput without any constraints, the transmitter serves the user

with a better channel state during each time slot. Then the expected throughput

is E[max{X 1,X 2)]. For X1 and X2 independent uniformly distributed in [0, 1], we



have E[max{X, ,X 2}] = -. Using the Nash equilibrium strategy, the total expected

system throughput, G1 + G2 , is 1 in the worst case (i.e., one users gets all of the time

slots while the other user is starving). Thus, the channel allocation proposed here can

achieve at least 75 percent of the maximum attainable throughput. This gives us a

lower bound of the throughput performance of the allocation derived from the Nash

equilibrium pair.

Proportional fairness

In this section, we examine the well-known proportional fairness allocation. Let

G1, G2, A be defined similarly as in the previous section. The objective of proportional

fairness is to maximize the term (log G1 + log G2) [25]. Specifically, the optimization

problem is given by:

max log E[X1 - 1A(X1,X 2)=1] + log E[X 2 * 1A(X 1,X2)=2]A

= max log[j xP,, 1 (xl)PX, (x 2)dxidX2] (2.24)

+ log[j x2PX1 (Xl)PX2 ( 2 )dxldx2]
(X 1,X2)|A(xl,x2)=2

It is straightforward to see that the optimal allocation policy has to be a threshold

rule. That is, for given (:1, 2) on the threshold and a particular time slot with

channel state (x 1, x2), the scheduler will assign the time slot to user 1 if the channel

state pair (X1,x 2) E {(a,b) a > ti and b < ±2}, and to user 2 if (x 1,x 2) E

{(a, b) I a < t1 and b > t2}. To get the optimal allocation policy, we consider again

a point (xt, t2) on the threshold and a small region with probability A around that

point. Intuitively, since this region is on the threshold, an optimal scheduler can

allocate it to either user 1 or user 2. If allocating the small region to user 1 will result

in more gain than allocating it to user 2, this region will not be on threshold anymore

but belongs to user 1. Thus, for A* to be an optimal allocation rule, we have the



following first order approximation:

log[ ( xzpx(xl)px 2 (x2)dxldx 2 ±+ 1 A]
'(." ,x2)IA* (x ,x2)=1

- log[ ,2)A (x,2)=1 X1PX1 (X)px 2 ( 2)dxldx 2] (2.25)

f(xI,x2)IA*(xi,x2)=1 XIPX1 (xl)px 2 ( 2 )dxldX2

Similar equation can be written for 22. Combine both equations, we have the following

that describes the threshold of A*:

1 2

The optimal allocation can then be stated as:

A*(xi,x 2 ) [ 1 > C X 2

2 otherwise

where the constant c = Gi*/G2 . We find the allocation with proportional fairness

criteria has the same form as the allocation that resulted from the Nash equilibrium

strategy (i.e., both of them are straight lines). Therefore, it is interesting to com-

pare the performance of the proportional fairness algorithm to that of the auction

algorithm. Consider an example where X 1 is uniformly distributed over the interval

[0, 10] and X2 is uniformly distributed over the interval [5 - c, 5 + c] (consistent with

our previous example). Assuming E is small, we can treat X2 as a constant. Using the

proportional fairness scheme, we need to find a threshold c such that x 2 = c. x 1 and

c = GI/G2. From Fig. 2-2(a), we see that G2 = - 5 and G1 = /(10 - 5/c). .

Setting G2= c, we have c = = 0.707. As a result of the proportional fair algo-

rithm, the scheduler will assign almost 71 percent of the time slots to user 2. The

user with a constant channel states obviously benefits more from the proportional

fairness algorithm. For comparison, we use the centralized scheduler (based on the

auction algorithm) described in the early part of this section (i.e., we let each user



X2 = c XI

0 X1 1 user 1

Figure 2-2: (a) The proportional fair allocation scheme. (b) The second price auction
scheme with equal money constraint.

have the same average money constraint when employing the second price auction

algorithm). From Fig. 2-2(b), we see that both users get almost half of the time

slots (it does not bias towards user with a constant channel state). Furthermore, it

also results in a higher total system throughput than that of the proportion fairness

scheme. Specifically, the auction scheme yields a total throughput of 6.25 while the

proportional fairness scheme yields a total throughput of 6.0.

2.3 All-pay Auction

2.3.1 All-pay Auction Problem Formulation

The formulation of the all-pay auction is similar to the formulation of the second-price

auction. Again, for a given power level, we assume for simplicity that the throughput

is a linear function of the channel state. Let Xi be a random variable denoting the

channel state for the channel between the transmitter and user i, i = 1,2. When

transmitting to user i, the throughput will then be P -Xi and P = 1.

We now describe the all-pay auction rule used in this chapter. Let a and 3 be

the average amount of money available to user 1 and user 2 respectively during each

time slot. We assume that the values of ac and / are known to both users. Both

u r 2

1X2

I



users know the distribution of X1 and X2. We also assume that the exact value of the

channel state Xi is revealed to user i only at the beginning of each time slot. During

each time slot, the following actions take place:

1. Each user submits a bid according to the channel condition revealed to it.

2. The transmitter chooses the one with higher bid to transmit.

3. Once a bid is submitted by the user, it is taken by the transmitter regardless of

whether the user gets the slot or not, i.e., no refund for the one who loses the

bid.

The objective for each user is again to design a bidding strategy, which specifies

how a user will act in every possible distinguishable circumstance, to maximize its

own expected throughput per time slot subject to the expected or average money

constraint. Once a user, say user 1, chooses a function, say f(i), for its strategy in

the ith slot, it bids an amount of money equal to f'(i)(x) when it sees its channel

condition in the ith slot is X 1 = x.

Formally, let F1 and F2 be the set of continuous and bounded real-valued functions

with finite first and second derivative over the support of X1 and X2 respectively.

Then, the strategy space for user 1, say S 1, and user 2, say S2, are defined as follows:

Si- {f1) ,f E F E[f() (Xi)] =

S(2.26)
S2 {21). 2 n)E F2  E[f ( f (X 2)]

i=

Note that the set of feasible bidding strategies of user 1 does not depend on the

bidding strategy of user 2 in the all-pay auction, while the bidding strategies of user 1

does depend on the bidding strategy of user 2 in the all-pay auction. For each user, a

strategy is a sequence of bidding functions f(l), - - - , f(n). Without loss of generality,

we restrict each user to have n different bidding functions, where n can be chosen as

an arbitrarily large number. Note that users choose a strategy for a block of n time



slots instead of just for a single time slot, one bidding function for each slot. In order

to maximize the overall throughput (over infinite horizon), each user chooses bidding

functions to maximize the expected total throughput over this block of n slots. The

term E[f~ý (X 1)] denotes the expected amount of money spent by user 1 if it uses

bidding function fi() for the ith slot in the block.

We first consider a special class of strategies in which each user can use only a

single bidding function. More specifically, by setting fl = f1l) = = f (n) and

f2 = fl) = ... f2n), we have the following:

S9 = {f e FI E[fi(Xi)] = (2.27)

92 = f2 E F2 E[f 2(X 2)] i3

By considering first the set of strategies in S 1 and S2, we are able to find the Nash

equilibrium strategy pair within the set S1 and S2.

Given a strategy pair (fl, f2), where fi E S1 and f2 C S2, the expected throughput

or payoff function for user 1 is defined as the following assuming the constant power

P=1:

G i(a, p) = Exx,x 2[X1 - 1f(x)2>f2 (X2)] (2.28)

where

) 1 if fl(X 1) > f 2(X 2)

0 otherwise

Similarly, the throughput function for user 2 assuming P = 1:

G2(a, p) = Exl,x2[X2 ' 1f2(X2)>f1 (X1)] (2.29)

Throughout this section, for simplicity, we let the channel state Xi be uniformly

distributed over [0, 1]. However, our approach can be extended to the case where the

channel state has a general distribution. Due to space limitations, we omit the more

complex analysis for general channel state distribution.



2.3.2 Unique Nash equilibrium strategy with a single bidding

function

We present in this section a unique Nash equilibrium strategy pair (fj*, f2). A strategy

pair (fr, f2) is said to be in Nash equilibrium if fj* is the best response for user 1 to

user 2's strategy fR, and f2 is the best response for user 2 to user 1's strategy fj*.

We consider here the case where both users choose their strategies from the strategy

space S1 and S2 (i.e., the single bidding function strategy) and the value of a and /

are known to both users.

To get the Nash equilibrium strategy pair, we first argue that an equilibrium

bidding function must be nondecreasing. To see this, consider an arbitrary bidding

function f such that f(a) > f(b) for some a < b. If user 1 chooses f as its bidding

function, user 1 will be better off if it bids f(b) when the channel state is a and f(a)

when the channel state is b. This way, its odds of winning the slot when the channel

state is b, which is more valuable to it, will be higher than before, and it has an

incentive to change its strategy (i.e., f is not an equilibrium strategy). Hence, we

conclude that, for each user, an equilibrium bidding function must be nondecreasing.

We further restrict users' bidding functions to be strictly increasing for technical

reason which will be explained later. There is no loss of generality in this assumption

because any continuous, bounded, nondecreasing function can be approximated by a

strictly increasing function arbitrarily closely.

Next, we show some useful properties associated with the equilibrium strategy

pair (f , f2*).

Lemma 3. If (fl*, fi2) is a Nash equilibrium strategy pair, ff (1) = f2 (1).

Proof. Suppose fj*(1) Z f2(1). Without loss of generality, let assume that fj*(1) >

f2*(1). Since both fj and f2 are continuous, there exists 6 > 0 such that fj(x) >

f2(1) + f;(1)-fi(1) Vx E [1- 6, 1]. User 1 can devise a new bidding strategy, say f 1 , by

moving a small amount of money, say J6 ( li(1) 2 f) away from the interval [1 - 6, 1] to

some other interval, thus resulting in an increase in user 1's throughput. Therefore,

when f (1) > f2(1), the bidding strategy pair (fl', f2) cannot be in equilibrium since



the strategy pair (h1, ff) gives a higher throughput for user 1. Similar result holds for

the case f (1) > f (1). Thus, we must have f (1) = f2(1) if (fr, f2) is an equilibrium

strategy pair. O

We have just established that f (1) = f (1) is a necessary condition for (ff, f2)

to be an equilibrium strategy pair. We also find that f*(O) = f2(O) = 0 since it

does not make sense to bid for a slot with zero channel state. Thus, from now on,

to find the Nash equilibrium strategy pair (f*, f2*), we will consider only the function

pair fl E S1 and f2 E S2 that are strictly increasing and satisfying the above two

boundary conditions (i.e., fl(1) = f2(1) and fi(O) = f2(0) = 0).

These two boundary conditions, together with strictly increasing property of fl E

S1 and f2 E S2, make the inverse of fi and f2 well defined. Thus, we are able to define

the following terms. With user 2's strategy f 2 fixed, let ) : (x1 , b) -+ R denote user

l's expected throughput of a slot conditioning on the following events:

* User l's channel state is X 1 = xl.

* User l's bid is b.

Specifically, we can the write the equation:

gf ()(x 1, b) = x1 - P(f 2 (X 2) 5 b) (2.30)

where P(f 2 (X 2) < b) is the probability that user 1 wins the time slot. Consequently,

using a strategy fl, user l's throughput is given by:

10 g0
1(,1)= j(l "Px(x)dx = jg2()xl, fi(x))dXl. (2.31)

where the last equality results from the uniform distribution assumption.

With user l's strategy fi fixed, similar terms for user 2 can be defined.

g (X2, b) = X2 P(fl(X 1) < b)



Then, user 2's throughput is given by:

G2(a, f gf (x2, f 2(x2)) Px2 (x 2)dx 2  0 g ( 2, f 2(x 2))dx2
"  (2.32)

Due to the uniformly distributed channel state, P(f 2(X 2) 5 b) is given by

P(f 2(X 2) _ b) = P(X 2 •_ f-1(b)) = f2-'(b)

where f2ý1 is well defined. Thus, we can rewrite Eq. (3.4) as

f) (x1, b) = 1 -f(b).

Hence we have,

Gl(a,, ) = x 1x f21(f,(xi))dxl (2.33)1/1
G 2(a, 0) = jX2 f'( 2(X2)) dX2 (2.34)

The following lemma gives a necessary and sufficient condition of a Nash equilib-
g ) (x)( ,b)

rium strategy pair. For convenience, we denote 2b Ib=b* (i.e., the marginal gain

at b = b*) as Dg(1) (x, b*).

Lemma 4. A strategy pair (fl*, f) is a Nash equilibrium strategy pair if and only if

Dg.)(xj, fl*(xi)) = cl and Dg.) (x 2, f2*(x 2)) = C2, for some constants cl and C2, for

all x1 E [0, 1] and all x2 E [0, 1].

To understand the lemma intuitively, suppose there exists x / J such that

Dgf)(x, ff(x)) > Dg(1(•,f f*(x)). Reducing the bid at ý to fj*(i) - 6 and in-

creasing the bid at x to f (x) + 5 will result in an increase in the throughput by

(Dg f(x, fj*(x)) - Dg(1)( , f'(i))) 6. Thus, user 1 has an incentive to change its

bidding function, and (ff, f2) cannot be a Nash equilibrium strategy pair in this

case.

Proof. The complete proof is given in the Appendix. O



With Lemma 4, we are able to find the unique Nash equilibrium strategy pair.

The exact form of the equilibrium bidding strategies are presented in the following

Theorem.

Theorem 7. Under the assumption of a single bidding function, the following is a

unique Nash equilibrium strategy pair for the auction:

f (x) = c x· + 1  (2.35)

f*(x) = c. x' (2.36)

where the constant 7 and c are chosen such that

Sc - 1 dx = a (2.37)Jo1
c -x+1 dx = (2.38)

Equations (3.11) and (3.12) impose the average money constraints. Fig. 2-3 shows

an example of the Nash equilibrium bidding strategy pair when a = 1 and / = 2.

Since user 1 has less money than user 2, user 1 concentrates its bidding on time slots

with very good channel state.

Proof. We show here that f*(x) = c -x'+1 and f2(x) = c - x +1 is indeed a Nash

equilibrium strategy pair by using the sufficiency condition of Lemma 4, and we leave

the uniqueness part to the appendix. It is easy to check that both the condition

fj(1) = f2(1) and ff(O) = f2(O) are satisfied. Since both functions are strictly

increasing, we can write g%.)(x, b) = x. f*-'(b) and g . (x, b) = x -fj-'(b). Also, since

both fi* and f are differentiable, we have g(1) (x, b) and g() (x, b) both differentiable

with respect to b. Therefore,

a gf. (x, b) bf()=* x x -

Ob I f2
1(f2'(ff(x))) f2'(x')



Similarly,

agf.) (x, b) x x 1

Ob b=f f;(f () l (f ;(x))) - f'(xl/) - c( + y)'

From Lemma 4, we see that (fr*, f2) is indeed a Nash equilibrium strategy pair because

both Dg f)(x, f*(x)) and Dg2 )(x, f*(x)) are constants.

The proof of uniqueness of (fl, f2) is given in the appendix. E

Bidding function for user 1 with a = 1 and 13 = 2 Bidding function for user 2 with a = 1 and 13 = 2

4.

3.

-o
R 2.
o

1.

0.

channel coefficient channel coefficient

Figure 2-3: An example of Nash equilibrium strategy pair for a = 1 and 3 = 2.

Fig. 2-4 shows the resulting allocation scheme when both users employ the Nash

equilibrium strategy shown in Fig. 2-3. Above the curve, time slots will be allocated

to user 2 since user 2's bid is higher than user 1's in this region. Similarly, user 1

gets the slots below the curve. Here, user 2 is allocated more slots than user 1 since

it has more money.

If both players use Nash equilibrium strategies, the expected throughput obtained

are given by:

Gl(a, 3) = (2.39)
a + 0 + j(a - +)2+



Result of the bid with a = 1 and 3 = 2
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channel coefficient of user 1

Figure 2-4: Allocation scheme from Nash equilibrium strategy pair for a = 1 and
3=2.

G2(a, P) = (2.40)
+ 0 +Vf(a- -0)2 + e1

As can be seen, the ratio of the throughput obtained a,) is equal to 2 which is

the ratio of the money each user had initially. Thus, the Nash equilibrium strategy

pair provides an allocation scheme that is fair in the sense that the price per unit of

throughput is the same for both users.

2.3.3 Unique Nash Equilibrium Strategy with multiple bid-

ding functions

In the previous section, we restricted the strategy space of each user to be a single

bidding function (i.e., S1 and S2) instead of a sequence of bidding functions (i.e.,

S 1 and S2). However, the money constraint imposed upon each user is a long term

average money constraint. A natural question to ask is the following: Is it profitable

for an individual user to change its bidding functions over time while satisfying the

long term average money constraint? Therefore, in this section, we allow the users

to use a strategy within a broader class of strategy space, S1 and S2, and explore



whether there is an incentive for a user to do so (i.e., whether there exists a Nash

equilibrium strategy so that it can increase its throughput).

To choose a strategy (i.e., a sequence of bidding functions) from the strategy space

S1 or S2, a user encounters two problems. First, it must decide how to allocate its

money among these n bidding functions so that the average money constraint is still

satisfied. Second, once the money allocated to the ith bidding function is specified, a

user has to choose a bidding function for the ith slot. The second problem is already

solved in the previous section (see Theorem 7). In this section, we will focus on

the first problem that a user encounters, specifically, the problem of how to allocate

money between the bidding functions while satisfying the following condition: The

total expected amount of money for the sequence of n bidding functions is n -a for

user 1 and n - / for user 2.

More precisely, the strategy space or possible actions that can be taken by users

are the following:

S, = Jai, an I a,+ + an= n -al
S2 = {a1,'",,O 101 +"" +O, = n.- }

The objective of each user is still to maximize its own throughput. When user 1 and

user 2 allocate ai and 3i for their ith bidding function which is given in Theorem 7,

the payoff functions are Gl(ai, /3i) for user 1 and G2(aci, 3i) for user 2.

The following lemma gives us a Nash equilibrium strategy pair for the auction

game described in this section.

Lemma 5. Given that user 2's strategy is to allocate its money evenly among its

bidding functions (i.e., fi = 0, i = 1 ... n), user 1's best response is to allocate its

money evenly as well (i.e., ai = a, i = 1 ... n); and vice versa. Therefore, a Nash

equilibrium strategy pair for this auction is for both users to allocate their money

evenly.

Proof. Without loss of generality, we consider the case that n = 2 where each user's

strategy can consist of two different bidding functions. Suppose that user 2 allocates



p for both bidding functions f2') and f( 2 ), and user 1 allocates al for bidding function

f(l) and a 2 for bidding function f ,(2) where al + a 2 = 2a and al a 2. We now show

that the throughput for user 1, Gi(ai, 0)+Gi (a2 , 0), is maximized when al = a2 = a.

Consider the function Gi(al, 0) with / fixed. The equation

Gl(a, 3) =
a Ip + J(I-- ) 2 +a 13

becomes

F(t) = 1 + t + V/(1 - t)2 + t

where t = -. F(t) is concave for t > 0. Thus, we have Gl(al, 3) + Gl(a 2,O)

maximized when al = a 2 = a. O

We have already obtained a Nash equilibrium strategy pair from the above Lemma.

The following theorem states that this Nash equilibrium strategy pair is in fact unique

within the strategy space considered.

Theorem 8. For the auction in this section, a unique Nash equilibrium strategy for

both users is to allocate their money evenly among the bidding functions.

Proof. The complete proof is in the Appendix. O

In this section, users are given more freedom in choosing their strategies (i.e., they

can choose n different bidding functions). However, as Theorem 8 shows, the unique

Nash equilibrium strategy pair is for each user to use a single bidding function from its

strategy space. Thus, the throughput result obtained in this broader strategy space-

S1 and S2-is the same as the throughput result from previous section. Therefore,

there is no incentive for a user to use different bidding functions.

2.3.4 Comparison with Other Allocation Schemes

To this end, we have a unique Nash equilibrium strategy pair and the resulting

throughput when both players choose to use the Nash equilibrium strategy. In-

evitably, due to the fairness constraint, total system throughput will decrease as



compared to the maximum throughput attainable without any fairness constraint.

We compare the throughput of the centralized allocation scheme that maximize the

total throughput subject to the constraint that the resulting throughput of individ-

ual user is kept at certain ratio (throughput ration constraint). The result of the

throughput ratio constraint problem was given in the analysis of the second-price

auction.

Using the Nash equilibrium strategy pair, the ratio of the resulting throughput

pairGc(,',) is the same as the ratio of money individual user possess ( ). For the op-

timization problem described in (2.23), by setting a = a/,, we compare the resulting

throughput with the throughput obtained when both users employ the Nash equilib-

rium strategy. Fig. 2-5 shows the comparison. For both users, the Nash equilibrium

throughput result is very close to the throughput obtained by solving the constrained

optimization problem (within 97 percent to be precise).

Throughput comparison for user 1 who has less money
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Figure 2-5: Throughput result comparison for both users.
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2.4 Estimation of unknown a and P

For the auction algorithm discussed so far, we assume that the initial amounts of

money, a and 0, are known to both users. In this section, we present an estimation

algorithm that estimates the opponent's money when this prior knowledge of a and

;3 is not available. Assuming that both users use the Nash equilibrium strategy, by

observing the bidding outcome for each time slot (i.e., whether user gets the time

slot) one can estimate the other user's initial money amount.

To illustrate the main idea of our algorithm, we show the estimation process of

user 1 . Initially, user 1 knows only its own money amount a and guesses user 2's

money to be 3 ,et. From the pair (a, &est), it is able to calculate the constants cl and

yl from equations (3.11) and (3.12). Based on the channel state of that slots, say

xl, it then bids f'*(xi) = cl -x' + 1. If it wins the slot, it possibly overestimated its

opponent's money, thus bidding too high. Therefore, user 1 may want to decrease /est

by a step whose size depends on user 1's channel condition. If the channel condition

of user 1 is good (e.g., xl = 0.99), its probability of winning the slot, say Pwin, is very

high regardless of 3,et. In other words, its winning of the slot is more likely due to the

good channel condition than to an overestimate of its opponent's money. Thus, user

1 may not want to decrease 3,et too much. In our algorithm, user 1 decreases e,,t

by (1 - Pwin) -step to take the channel condition into account where step is the step

size used. Similarly, if user 1 loses a bid, it may have underestimated its opponent's

money. If its channel condition happens to be very good also (Pin is high), it may

have severely underestimated user 2's money. Therefore, user 1 wants to increase 3,,est

by a bigger step, Pwi -step.

In Fig 2-6, we use two thousand time slots to demonstrate the algorithm. Initially,

a = 1 and p = 4. To ensure fast convergence, variable step size was used at each

iteration. Specifically, the step size was multiplied by a constant factor, which is

less than one, after each iteration. From Fig 2-6, we see that the estimated value

converges in about one thousand slots. Of course, this estimation procedure is merely

for the purpose of demonstrating the possibility of operating without knowledge of



Convergence of estimated amount of money
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Figure 2-6: Convergence of estimated money possessed by opponent.

each user's budget. A more sophisticated estimation procedure, with faster conversion

times, is a direction for future work.

2.5 Conclusion

We apply an auction algorithm to the problem of fair allocation of a wireless fading

channel. Using the second price auction mechanism, we are able to obtain the Nash

equilibrium strategies for general channel state distribution. Our strategy allocates

bandwidth to the users in accordance with the amount of money that they possess.

Hence, this scheme can be viewed as a mechanism for providing quality of service

(QoS) differentiation; whereby users are given fictitious money that they can use to

bid for the channel. By allocating users different amounts of money, the resulting

QoS differentiation can be achieved.

In this chapter, we find the unique Nash equilibrium strategy for certain commonly

used channel state distribution. We also show that the Nash equilibrium strategy

for the second-price auction leads to an allocation at which total throughput is no

)O



worse than 3/4 the maximum possible throughput when fairness constraints are not

imposed (i.e., slots are allocated to the user with the better channel) under uniform

distribution. Moreover, the equilibrium strategies leads to an allocation that is pareto

optimal. Based on the Nash equilibrium strategies of the second price auction with

money constraint, we also propose a centralized opportunistic scheduler that does not

suffer the shortcomings associated with the proportional fair and the time fraction fair

scheduler. Using the all-pay auction mechanism, we are able to obtain a unique Nash

equilibrium strategy. Our strategy allocated bandwidth to the users in accordance

with the amount of money that they possess. Hence, this scheme can be viewed as

a mechanism for providing quality of service (QoS) differentiation; whereby users are

given fictitious money that they can use to bid for the channel.

Nevertheless, in the second price auction, the problem of how to obtain the mul-

tiplicative constant in user's equilibrium bidding strategy using a computational ef-

ficient way has yet to be explored. Also, to make our proposed centralized scheduler

(based on the Nash equilibrium strategy) suitable for real time implementation, an

algorithm that does not require the prior knowledge of channel distribution but still

results in the Nash equilibrium allocation for each user will be an important topic for

the future research.



Chapter Appendix: Proof of Theorem 4

Proof. If user 1 bids y for a particular time slot, the probability that it win, denoted

as Pl"'i(y), is given by:

P~w"(y) = Pr(max{f 2(X 2), - , fN(XN)} < y)

= Pr(f2(X 2) • y, ' , fN(XN) < y)

The optimization for user 1 can be written as follows:

max JfI f h 2 (f (1))

fi 0 12

fh (1 f(X))

J1N (2.41)

SPxl (X1) -pxN(XN)dxl - - dxN

subject to

ji h2 (fih(x))

l0 1

hN (fl (Xl))
... I max{f2(x2), ,ofN N)}

SlN

Spx l(x1) ' px(zxN)dxl ... dxN < al

After writing the Lagrangian function, we then solve the following optimization prob-

lem:

Max f h2
(hI(x1))

max) 
12

f(1) (x l) l(1)
.. h(fl(x,))

(2.43)
(xt - A1 max{f2 (2), . . . , fN(xN) )

-px2 (X2) ' xN(xN)d2"... dxN

Writing y = fl(xl) for convenience, we have the following:

max 2 )
Y 112

j'' Y (X - Al max{f 2(x 2 ),... , fN(N)})

- Px 2 (2) '. PxN (x z2""d dzg

(2.42)

" I



The term (xl-A 1 max{f 2(x 2), • • , fgN(xN)}) is decreasing since (A1 max{f 2 (x2),. .. , fN(XN)})

is increasing. Therefore, it is desirable to choose y as large as possible while keeping

(xl - AX max{f 2 ( 2), • - , fN(XN)}) > 0.

For a fixed xl, if the term (xi-A1 max{f 2(z 2 ), • , fN(xN)}) is positive for all zi E

[li, ui] for i = 2,... , N, the optimal y* can be chosen such that y* > max{b2, ... , bN}.

Likewise, if the term x1 - A1 max{f 2 ( 2), ... , fv(xz v)} is negative for all zi E [li, ui]

for i = 2,... , N, the optimal y* can be chosen such that y* < min{a 2, ... , aN }. In

the case that (xi -A 1 max{f 2(x 2), • • • , f (xN )}) = 0 for some (X2, '' , XN) E [12, U21] X

S... x [IN, UN], we can choose y* such that (x - A1 max{f 2 (h2(y*)), , f (hN (Y*))}) =

0. From the definition of hi(.) in Eq.(2.20), each term fi(h (y)) equals to min{y*, bi}

for i = 2, ... , N. Hence, we have the following:

max{f 2 (h2(y*)),... , fg(h (Y*))}= Y*

Consequently, the optimal bid for user 1, y*, is I-xl. Again, the optimal bidding

strategy for a user in the N-user game is a linear function of the user's channel state.

The constant coefficient, i.e., -, is chosen such that the average money constraint is

met with equality.

O



Chapter Appendix: Proof of Theorem 6

Proof. Again, we consider n = 2 case for simplicity. For al+a2 = 2a and •31+P2 = 20,

this theorem stated that the pair (a1, 31) and (a 2, 2) cannot be in equilibrium if

a1 : U2 and 31 $ 32. We will show this by contradiction. Here, we present the proof

for the case that a1  /301 and a1 < 31. Other cases can be shown similarly. Now,

suppose the pair (a1, /1) and (a2, 12) are in equilibrium for al  2 a2 and 1 P # 32.

That is, for given 01 and 32, O1 and U2 are chosen such that user 1's throughput

G1 (a, 131) + G (a2 , 12) is the maximum. This implies the following:

OGi(a, ) =l OGi(, (32) 2 (2.44)

To see this, if aG(o,131) > GI(a,,32) 1 we will have Gi(a, + 6,P31) + Gi(a 2 -

6, 32) > Gi(ai, 131) + G1 ( 2, 32) by first order expansion, thus contradicting the state-

ment that G1(a1, 31) + G1(a 2, 32) is the maximum throughput for user 1 for given 31

and 32.

Similarly, for given a1 and a2, if 01 and 32 maximize G2(al, 31) + G2(a 2, 12) then,

G2 (a1, ) 1 G2 (a 2, ) (2.45)1 3 =,3 = 01 0=02 (2.45)

By taking the derivative of equations (2.39) and (2.40), we get the following:

1 = (2.46)au (t1 + 2a1)2

G2.(al, P) I  3a219G2 (a 0=01 = 3 (2.47)
03 o (31 + 2a 1)3

Substituting Eq.(2.64) into Eq.(2.62) and Eq.(2.65) into Eq.(2.63), we then have the

following after combining Eq.(2.62) and Eq.(2.63):

01 (01 + 2a 1)2

(2.48)
12 (32 + 2 2)2 48)

3a2 (1l + 2a 1)
3

S- (32 + 22)3  (2.49)
3a (71 + 2U2)3



61 #2S- = 2 (2.50)

Now, we have '- = .- -. We further show that al = a2 and 01 = /2. Observe that

for fixed 31 and 32, we can write

G(, 0) + A F( ) (2.51)2 + 21

where

Fl)=
014 + 2y

Thus, we have

&Gi(a, /-) - 1aF() (2.52)

acl(o,,32) _2 1 aF(y) ,_ (2.53)

From Eq.(2.62), we have

1 1F(y) 1( F() =  (2.54)
4 07 T I 4/ aY

It is easy to verify that 0 V7y > 0. Therefore, since - = ~,the above

equation implies that 1p = 32 which contradicts our original assumption of 31 3 02.

Therefore, the pair (a1 , 01) and (a2, 2) cannot be in equilibrium if a l f a 2 and

01= /32-



Chapter Appendix: Proof of Lemma 4

Proof: We first show that if (fj , f2) is a Nash equilibrium strategy pair, Dg )  (x1 , fR (xl))

and Dgf )( 2, f2(x 2)) must be constants for all xl E [0, 1] and x2 E [0, 1]. From user

1's perspective with f2* fixed, consider a small variation of the function ff. Specifi-

cally, let f& = fj + 5(f - fl*) where f is an arbitrary function in S1. Since both f

and fj* are in S1, they are both bounded (i.e., If(xl)I • B and If•*(xi)I _ B for all

X1 E [0, 1]). Therefore, we have Ifs(xl) - fjf(xi)I < 2B6 for all x1 E [0, 1]. Using the

Lagrange's form of Taylor's theorem, we get for any xl E [0, 1], there exists a real

number c[xj] E [f1*(xl), f6 (xl)] such that

g(1 (xl, fM(x)) = g:. (xI, ff (X))

1g (1(xl, b)
+ 6((Xi) - f'(xi)) 2b >b=f*(xi) (2.55)

+1 2 (( 1) b)(
+ -2(j52 I_ f1*(11))2 b2 b=cxl]

The last term is bounded by K . 62 for some K since both f and f* are bounded, and

gfl (x , b) has finite second derivative. Therefore, for small enough 6, it is negligible

comparing with the other terms.

Now we show that if Dg * )(x, fj(xl)) is not a constant for all xz E [0, 1], we can

find a strategy f3 which gives user 1 a higher throughput than f*. To do that, we

can write the following equations:

g (1)(x1, fs(x 1)) dx 1- f (x 1, fl*(x 1)) dxl
(2.56)

= - (f(xl) - f(xl)) iOb b=fj*(x,) dxl + o(6)Y (XsinceX 1) D - f

Now, since Dg.f (xl, ff(xl)) is not a constant for all xz E [0, 1], we can find a f such

that the above equation is positive which implies that there is an incentive for user

1 to use fs. Hence, (f*, f ) is not a Nash equilibrium strategy pair. Similarly, we

can show that Dg• (x 2, f2(X2)) is a constant for all X2 E [0, 1] if (fr, f2) is a Nash



equilibrium strategy pair.

For the converse, consider again Eq.(3.24). Since Dg.) (xl, f*(xl)) = g(b) b=f)*(x)

equals to a constant cl for all xl E [0, 1]. We have

ag1(,b)
6j(f(x) - f(xi)) b b=f1 (xl) dx1

Ob (2.57)
= Sc1 l (f(xi) - fj (xl)) dx = 0

for all f E S 1 (i.e., fo f(xl) dxl = a). Thus, there is no incentive for user 1 to use

strategy f. Therefore, (fl*, f2) is a Nash equilibrium strategy pair.



Chapter Appendix: Proof of Theorem 7 (the Unique-

ness )

Consider any Nash equilibrium strategy pair (ft, f2) under the all-pay auction rule.

From previous discussion, we know that the inverse functions, f2-1 and fT 1, are well

defined. With user 2's strategy f2 fixed, we have

gf, (xi, b) = zX - P(f 2 (X 2 ) 5 b) = x f2(b)

Similarly, with userl's strategy fi fixed, we get

g (X 2, b) = X2 P(fl(X1) • b) = X2 fi-1(b)

From Lemma 4, we know that 1Dgf2 f2)From Lemma 4, we know that Dg2 (xj, fl(xi)) and Dg1 (x 2 , f 2(x 2 )) are two con-
stants for all x1 E [0, 1] and x2 E [0, 1] since (fi, f2) is a Nash equilibrium strategy

pair.

Now, consider the set of channel state pair (Xl ,X 2) such that fl(xl) = f 2(x 2)

(i.e., two users' bids are equal). It forms a separation line in space span by X 1

and X2. Mathematically, this line can be defined as h : [0, 1] -- [0, 1] such that

X2 = h(xi) = f21(fi(x1)). By the all-pay auction rule, a slot with channel state

(xl,x') will be assigned to user 2 if (xl,x'2) is above the line x 2 = h(xl) and to user

1 if (x1,x'2) is below the separation line. Fig.2-4 shows an example of h(xl). The

following lemma shows the uniqueness of h(xi). We then derive the uniqueness of the

strategy pair (fl, f2) from the lemma.

Lemma 6. If Dg(x, f(x)) and Dg/ (x 2, f 2(x 2)) are two constants, cl and c2

respectively, for all xj E [0, 1] and x2 E [0, 1], then h(xi) = xC/1C2

Proof. Since Dg(xi, fi(xl)) = c, from g(1)(x1, b) = xl . f,-(b), we have

Dgf2 (x, 1(x)) b=fl(x) = f(f(f(X)) ) = Cl
Ob fj f21 1



f2(h(x )) = (2.58)
Cl

Similarly, for user 2, we get

&gf(x2,b)1  __________z2 _(2)Dg (2) g b f2(2)Dgf (x 2, f 2 (X2 )) = - b D ff(fI1 (f2(x2))) = C2

f'(h-'(x2 )) = X2 (2.59)
C2

We also know that fi(xl) = f 2(h(xi)) and f'(xi) = f2(h(xi)) h'(xi). Thus, we

have

fl(h-l(2)) = f(h(h-(z 2))) h'(h-( 2)) (260)

= f(X2) h'(xi) = f1(h(xi)) h'(x1)

By combining the equations f'(h-l(x 2))= = and f('(h-1(X)) = f 1(h(zl)) h'(xi),

we get
2 = f(h(x)) h'(z).

C2

Next we substitute Eq.(3.26) and x2 = h(xi) in the above equation to obtain,

dh(xi) cl  dh(xzl) cl dxl
xz . -= -h(zl) ==

dzl c2  h(xz) c2 Z1

Cla
In Ih(x) = -n In xi + c3  h(xi) eC3  2

C2

Combined with fact that h(1) = 1, we get h(xi) = x I . O

Now, we are in a position to derive the exact form of the Nash equilibrium strategy

pair. From the equations f:(h-l(z 2)) = and x 2 = h(xi), we get f(xil) h(xl)
C2 C2

x 2 /c2. Combined with the condition that fi(0) = 0, we have fl(x) = -+C2 '+

1 2+1a 1Following the similar method, we get f 2(x) 1= 2x Let y = andc= 1 '

the Nash equilibrium strategy pair for the all-pay auction must have the following

form:

1 +1

fl*(xi) = C -X,1 f2 (X2) = C -X^' (2.61)



The constant y and c are chosen such that equations (3.11) and (3.12) are satisfied.

The uniqueness of the above Nash equilibrium strategy comes from the fact that there

is a unique pair of c and y that satisfy equations (3.11) and (3.12).



Chapter Appendix: Proof of Theorem 8

Proof. Again, we consider n = 2 case for simplicity. For al+a2 = 2a and 1+,32 = 20,

this theorem stated that the pair (al, 01) and (a 2 , 2) cannot be in equilibrium if

a, = a 2 and 1 = /32. We will show this by contradiction. Suppose the pair (a 1 , H1)

and (a 2, 2) are in equilibrium for a1  0a2 and /1 # 32. That is, for given P1 and

/32, a 1 and a 2 are chosen such that user 1's throughput Gi(a,, 01) + Gi(a 2, /2) is the

maximum. This implies the following:

0G 1(a,1)=o = 0 a2) =a2 (2.62)

To see this, if Gi(a,0=,) > aG1(Q,02) we will have Gi((a + 6,3pi) + Gi(a 2 -

6, /2) > G,1(a•, /1) + G1(0a2 , 32) by first order expansion, thus contradicting the state-

ment that Gi(aI, /1) + Gi(a 2 , /2) is the maximum throughput for user 1 for given 01

and /2.

Similarly, for given a1 and a2, if /1 and /2 maximize G2(a,, 1) + G2 (a 2 , /2) then,

0G2(a1, /) = 1  G2(a2, 0) =0• (2.63)
a/3 I = = 32. (2.63)

By taking the derivative of equations (2.39) and (2.40), we get the following:

cGi(a, /31) H(-2 aV - al3 1 + 012 + a1 - 201)=a (2.64)Oa I= - 2(al + i 1 ,+ 1 - 1 + /12)2 3 - l1 + (2

G2 (•1 , ) aI(-2 a -a a 3+ ý0+ 1 - 2a1  ) )265
0/3 • 2(a• 3 + ± - a/ 1 + 3)2 __ - a3 1 + (2.65)

Substituting Eq.(2.64) into Eq.(2.62) and Eq.(2.65) into Eq.(2.63), we then have



the following after combining Eq.(2.62) and Eq.(2.63):

az(-2 a - a1 31 + 01 + 01 - 2i1)

a2(-2 Va - a 2 2 2+ 22 + 02 - 2c02)

To simplify the above equation, we multiply 4 on both sides, and let
a 1

'Y2 = 02 . We get
a2= - "

%2(-2/1 - 2 + y 22+ 1 - 272)

2 1-' 1 +7 + - -2
2 1 +2 + 722 - 2

or, after rearranging terms, the following:

71(-2 v1 - + 7 + 1 - 2-i)
-2 1-y + y2 + - 2-

72(-2 1-y72 + 1y2 - 2N2)

-2 V1 - 2 + 72 +2 - 2

We define
7(- 2 /1 -+ 72 + 1 - 2y)

-2 1-y7+'2+7y- 2

Then Eq.(2.68) becomes f('y7) = f(72). Now we show that this implies 'y1 = 72 by

observing that

Of()
0-y

and it is easy to check that f > 0 V- > 0. Now, we have = - 32 We further showthat 2 and Observe that for fixed 1and2, rite

that a, = a 2 and 01 = 02. Observe that for fixed /3 and /2, we can write

a

a + 01 + V/(1_ - /31)
2 + 1

1+ 1 1-•)2+; 0

(2.66)

"i - a_ ,

(2.67)

(2.68)

Gi(a, i/) =

(2.69)

01(-2 V-c12- a01/1+ + 012 a - 201)

71(-2V/1 - +,1+ +2 1 - 2-1)

(7 + 1)(2 V1 -71 + 2y)

1- 7+2( - 2 / 1 -7+72 + 7 - 2))



where

F(a) =
1+a + f(1 -a) 2 +a

Thus, we have

aGl(a, 01)

aG1(a, 32)
a 1C=C12

1 aF(a)

= 1 8F(a)
132 Oa 2

From Eq.(2.62), we have

1 OF(a)1 1 8F(a) I
131 & au -0 2 = a 1

(2.72)

It is easy to verify that 2 # 0 Va > 0. Therefore, since 1 - = 2, the above19 al 2 2

equation implies that pr = #2 which contradicts our original assumption of '31 / 2.

Therefore, the pair (a,, 01) and (a2, 2) cannot be in equilibrium if al # a2 and

1 # 02"

O
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Chapter 3

Opportunistic Power Allocation for

Fading Channels with

Non-cooperative Users and

Random Access

In the previous chapter, we have studied the use of auction theory in allocating

a downlink wireless fading channel. There, users are assumed to have a fictitious

amount of money that serves as a mechanism to differentiate QoS given to each

user. For the uplink with random access, a natural physical constraint-the energy

constraint-exists to serves as the mechanism for differentiating QoS. In this chapter,

we are going to present a game-theoretical model of a wireless communication system

with multiple competing users sharing a multiaccess fading channel. With a specified

capture rule and a limited amount of energy available, a user opportunistically adjusts

its transmission power based on its own channel state to maximize the user's own

individual throughput.



3.1 Introduction

In a wireless or satellite network, the channel over which communication takes place

is often time-varying. When multiple users try to communicate with a satellite, one

can exploit the channel variation opportunistically by allowing the user with the best

channel condition to transmit. This transmission scheme implies the performance of

the network is dictated by the best channel state rather than the average one. Hence,

the total throughput of such a network tends to increase with number of users.

An important assumption in using this kind scheme is that there is a centralized

scheduler who knows each user's channel condition. To get information about user's

channel condition, the scheduler will require each user to estimate its channel fading

and transmit this information back. As the number of users in the network increases,

the delay in conveying user's channel conditions to the scheduler will limit the system's

performance. Hence, a distributive multi-access scheme with no centralized scheduler

becomes an attractive alternative.

Distributed multi-access schemes such as the aloha random access protocol have

long been studied. Recently, a variation on the aloha scheme that takes user's channel

state into consideration (channel-aware aloha) has been proposed by [111. In their

formulation, each user only has knowledge of its own channel condition, but no knowl-

edge of the channel fading of the other users sharing the communication link. Capture

was not considered in their chapter. In [27], the authors studies multiple power level

aloha with the objective of maximizing total system throughput when channels are

time invariant. In this chapter, we allow the satellite to capture packet depending

on the received power and assume the channel is a time-varying fading channel. To

maximize their own individual throughput subject to the available energy, users op-

portunistically adjust their transmission power based on their own channel condition.

Also, all of the aforementioned work assume that users will implement the same

mandated algorithm and behave in a predictable manner. However, in a distributive

environment, users may want to change their communication protocols in order to

improve their own performance, making it impossible to ensure a particular algorithm



will be adopted by all users in the network. Rather than following some mandated

algorithm, in this chapter users are assumed to act selfishly (i.e., choose their own

power allocation strategies) to further their own individual interests.

The communication system considered in this chapter consists of multiple users

competing to access a satellite, or a base-station. Each user has an average power

constraint. Time is slotted. During each time slot, each user chooses a power level

for transmission based on the channel state of current slot, which is only known to

itself. Depending on the capture model and the received power of that user's signal,

a transmitted packet may be captured even if multiple users are transmitting at the

same slot.

With each user wants to maximize its own expected throughput, we obtain a

Nash equilibrium power allocation strategy which determines the optimal transmis-

sion power control strategy for each user. Nash equilibrium of a game is a set of

strategies (one for each user) from which there is no profitable unilateral deviation.

The obtained optimal power control strategy specifies how much power a user needs

to use to maximize its own throughput for any possible channel state. Users get

different average throughput based on their average power constraint. Hence, this

transmission scheme can be viewed as mechanism for providing quality of service

(QoS) differentiation; whereby users are given different energy for transmission. The

obtained Nash equilibrium power allocation strategy is unique under certain capture

rule. When all users have the same energy constraint, we obtained a symmetric Nash

equilibrium.

Due to the selfish behavior of individual users, the overall system throughput will

be less than that of a system where users employ the same mandated algorithm.

This loss in efficiency is also quantified. In the multiple users' case, as the number

of user in the system increases, the symmetric Nash equilibrium strategy approaches

the optimal algorithm specified by a system designer (i.e., algorithm that results in

the largest total system throughput). In this case, there is no loss of efficiency when

users employ the symmetric Nash equilibrium.

Game theoretical approaches to Aloha random access problems have been explored



by a number of researchers recently (e.g., [10] [28]). In [10], the authors characterized

the stability region for a slotted Aloha system with multipacket reception and selfish

users for the case of perfect information. In [28], the authors considered the problem

of a node computing its own optimal channel access rate in a random access network

with two-way traffic. In their setting, a node is interested in both receiving as well as

transmitting packets. The existence of Nash equilibrium is shown for node without

power constraint as well as with battery power constraint. Our work attempts to

apply game theory to the access of a wireless fading channel. In particular, we show

that the Nash equilibrium strategy derived is well suited to be used as a power control

scheme when there is a large number of users in the system. Other papers dealing

with the application of game theory to the random access and resource allocation

problems in wireless network include [16][23][24].

This chapter is organized as follows. In Section 2, we describe the communication

system. In Section 3, we start by presenting the Nash equilibrium strategy pair for

the two users game when the channel state is uniformly distributed over [0, 1]. The

uniqueness of the Nash equilibrium strategy is shown under certain capture rule.

A symmetric Nash equilibrium is also obtained when users have the same average

power constraint. We then explore the Nash equilibrium strategy for general channel

state distribution. In section 4, a symmetric Nash equilibrium strategy is derived

for the multiple users case. The throughput obtained by using the Nash equilibrium

strategy is shown to approach the maximum attainable throughput. Finally, Section

5 concludes the chapter.

3.2 Problem Formulation

We consider a communication environment with multiple users sending data to a

single base station or satellite over multiple fading channels. We assume that each

user always has data to be sent to the base station. Time is assumed to be discrete,

and the channel state for a given user changes according to a known probabilistic

model independently over time. The channels between the users and the base station



are assumed to be independent of each other. Let Xi be a random variable denoting

the channel state for the channel between user i and the base station.

When multiple users are transmitting during the same time slot, it is still possible

for the receiver to capture one (or more) user's data. The capture model can be

described as a mapping from the received power of the transmitting users to the set

{1,... ,n,0 , where 0 indicates no packet is successfully received. In this chapter,

we are going to investigate two capture models which will be presented in the later

sections.

We assume that each individual user is energy constrained. Specifically, each user

i has an average amount of energy ei available to itself during each time slot. We

assume that the ei values are known to all users, and that users know the distribution

of Xi's. However, the exact value of the channel state Xi is known to user i only at

the beginning of each time slot.

With a given capture model and the energy constraint, the objective for each user

is to design a power allocation strategy to maximize its own expected throughput

(or probability of success) per time slot subject to the expected or average power

constraint. The power allocation strategy will specify how a user will allocate power

in every time slot upon observing its channel state. Under power allocation strategy

gi('), user i transmits a packet with power equal to gi(x) when it sees its channel

condition in this time slot is Xi = x. The received power at the base station is

denoted as fi(x) = x -gi(x).

Formally, let Fi be the set of continuous and bounded real-valued functions with

finite first and second derivative over the support of Xi. Then, the strategy space for

user i (the set of all possible power allocation schemes), say Si, is defined as follows:

Si = gi F, E[gi(Xi)] < ei} (3.1)



3.3 Two Users Case

We start by investigating users' strategies in a communication system consisting of

exactly two users and one base station. The analytical method used in this section

will help us in obtaining equilibrium power allocation scheme in the multiple users

case. We begin our analysis with the assumption that channel state Xi is uniformly

distributed over [0, 1] for all i. The Nash equilibrium power allocation strategy with

general channel state distribution is presented in the subsequent section.

Suppose user 1 and user 2 choose their power allocation strategies to be gl and

92 respectively. Given a time slot with channel state realization (X1, x 2), user 1 and

user 2 will transmit their packets using power levels gl(xi) and g2 (x 2 ) respectively.

The corresponding received power at the base station are fi(xi) = xi g- l(xl) and

f 2(x 2) = 2. 92( 2 ). As in [12] and [13], the capture model used in this section is

the following: if [x1 gl(x 1 )]/[x 2 " g2(X2)] > K where K > 1, user l's packet will be

captured. Likewise, user 2's packet will be captured if [x2 " 92(x 2)1/[X1 1gi(x)] > K.

Thus, given a power allocation strategy pair (gl, g2), where gi e Si and g92 E S2, the

expected throughput for user 1 is defined as the following:

Gl(el, e 2) = Ex],x2[lfi(X1 )>K.f2(X2)] (3.2)

where

lfl(Xl)>f 2 (X 2) 1 if f (Xj) > K'f 2 (X 2 )

0 otherwise

Similarly, the throughput function for user 2:

G2 (e1, e2) = EX,,x 2 [f 2 (X2)>K.fl(X 1)] (3.3)

3.3.1 Nash equilibrium strategy

In this part, we present a Nash equilibrium power allocation strategy pair (g, g,).

A strategy pair (g~, g*) is said to be in Nash equilibrium if g" is the best response



for user 1 to user 2's strategy g*, and g* is the best response for user 2 to user l's

strategy g*. We consider here the case where both users choose their strategies from

the strategy space S1 and S2 and the value of el and e2 are known to both users.

To get the Nash equilibrium strategy pair, we first argue that at equilibrium the

received power function fi*(xi) must be strictly increasing in xi.

Lemma 7. Given a Nash equilibrium power allocation strategy pair (g;, g*) and its

corresponding received power function (fl, f2*), the received power function fj (xl)

must be strictly increasing in xl. Similarly, f2*(x 2) must be strictly increasing in x2.

Proof. For an arbitrary received power function f which is not strictly increasing, we

can always find another received power function that will result in a larger throughput

gain. To see this, consider time slots with channel state in the small intervals (a -

6, a+ 6) and (b - 6, b+ 6) where a < b. When 5 is small, the received power function is

close to f(a) for time slots in the interval (a - 6, a + 6). Likewise, the received power

function is close to f(b) for time slots in the interval (b - 6, b + 6).

For received power function f such that f(a) = a -g(a) > f(b) = b g(b) for some

a < b. The total amount of transmission power used in time slots with channel state

in the two intervals is given by:

f(a) f(b)
[g(a) + g(b)]26 = a) + ]2.

a b

Now, if user 1 employs a new power allocation strategy g such that g(b) = and

g(a) = f(b-, user 1 will achieve the same expected throughput as before. However,

the amount of power used [g(b) + g(a)]26 is less than [g(a) + g(b)]26, and the extra

power can be used to get higher throughput. Hence, both equilibrium received power

function ff(xl) and f2(x 2) must be strictly increasing in xl and x2 respectively. EO

With one user's power allocation strategy, say g2, fixed, we now seek the optimal

power allocation scheme for user 1. From Lemma 7, we see that the inverse of fi and

f2 are well defined. With user 2's strategy g2 fixed, let u ) : (xl, b) ---, denote user

l's expected throughput of a slot conditioning on the following events:



* User l's channel state is X 1 = xl.

* User l's allocated power is b.

For convenience, we will drop the term g2 in the expression u9 (x1 , b), and simply

write it as ul(xL, b). Specifically, we can the write the equation:

u1(x 1, b) = P(f 2(X 2) -K < x1 -b) (3.4)

where P(f 2 (X 2) - K < x1 -b) is the probability that user l's packet gets captured in

a time slot. Consequently, using a strategy gi, user l's throughput is given by:

1U (X1, g (Xi))1 P (Xi) dxGi(el, e2)

= ul(xl,gi(xi)) dxl.
(3.5)

where the last equality results from the uniform distribution assumption.

With user l's strategy gi fixed, similar terms for user 2 can be defined.

u2(x 2, b) = u(2)( 2, b) = P(f (Xi) . K < x2 -b)

Then, user 2's throughput is given by:

1
G2(el, e2) = U2 (X2, 92(X2)) 2- (X2) dx2

(3.6)
I

= u2(x2, g2( 2))dx 2.

Due to the uniformly distributed channel state, P(f 2 (X 2) -K < x -b) is given by

P(f 2(X 2) - K < x 1 -b) =P(X2  fj-1( K1xK
1

=f2-17 (1xi

.b))



where f--' is well defined. Thus, we can rewrite Eq. (3.4) as

u(xi, b)= f-( 1 b).

Hence we have,

Gi(el, e2 ) - ( 1l 91 gl(l))d (3.7)

G2(e1 , e2) = f •  
2 g2( 2 )) dx2  (3.8)

We begin our analysis of the Nash equilibrium strategy pair by first considering

the power allocation on the boundary points 0 and 1. For a pair of power allocation

functions (g*, g*) to be a Nash equilibrium, it is straightforward to see that g (0) =

g* (0) = 0 since it does not make sense to allocate power for a slot with zero channel

state. Likewise, we must have g* (1) _5 K -g (1) and g* (1) < K. g*(1) since allocating

power gi(1) = Kg2(1) or g91(1) = Kg2 (1) + , where e > 0, will result in the same

throughput for user 1. We call these properties the boundary conditions of a Nash

equilibrium strategy pair.

With the boundary conditions satisfied, the following lemma gives a necessary and

sufficient condition for a pair of power allocation strategies to be a Nash equilibrium

strategy pair. For convenience, we denote the marginal gain for user 1 when X 1 = xl

and the allocated power b = b* as

Oul (xj, b) n
O lb=b* DUl (x, b*).

Ob

Lemma 8. Given a power allocation strategy pair (gl, g1) that satisfies the boundary

conditions, (g*, g*) is a Nash equilibrium strategy pair if and only if Dul(x1 , g (xi)) =

c1 and Du2(x 2,9 (x 2 )) = c2, for some constants C1 and c2 , for all x1 C [0, 1] and all

x2 E [0, 1].

Note that the above lemma does not depend on the assumption of the uniformly

distributed channel state. Thus, it is quite general and will be used in the subsequent



section where channel states are not uniformly distributed. To understand the lemma

intuitively, suppose there exists x :2 such that Dul(x,g'(x)) > Dul(:c, g*(c)).

Reducing the power allocated at 5 to gi(i)-6 and increasing the power at x to gl(x)+

6 will result in an increase in the throughput by (Dul(x,g* (x)) - Dul( ,g* (5))) - .

Thus, user 1 has an incentive to change its allocation function, and (g*, g*) cannot

be a Nash equilibrium strategy pair in this case.

Proof. The complete proof is given in the Appendix. O

With Lemma 8, we are able to find the Nash equilibrium strategy pair. The exact

form of the equilibrium power allocation strategies are presented in the following

Theorem.

Theorem 9. Given the average power constraint el and e2 , the Nash equilibrium

power allocation strategy pair has the following form:

g (x) = c1 x Y  (3.9)

2g (x) = C2 . x (3.10)

where the constants ci, c2 and "y are chosen such that

j Cl dx = el (3.11)

SC2 x4 dx = 2  (3.12)

Equations (3.11) and (3.12) impose the average power constraints.

Proof. We show here that g*(x) = c1i x' and g*(x) = c2 " x' is indeed a Nash

equilibrium strategy pair by using the sufficiency condition of Lemma 8. Since both

functions are strictly increasing, we can write ut(x, b) = f2*-l( x - b) and 2 (x, b) =

fi-1(x - b) where f (x) = x - g* (x). Also, since both fl and f2 are differentiable,



we have ui(x, b) and u 2(x, b) both differentiable with respect to b. Therefore, using

f2'(x) = c2(1 + 1)x f (x) = c(1 C (+ "y)x

f2*-(x) = (1x)+, f*-(x) = ( x) 
+

C2  
C1

we have

9u, (x, b) 1x

9b b=g*(x) = , -1

1 1

-• K
_. -- _ _ 1 "_ _

f2'([ ] KC+xY+') C2(1 + l)( C
1+

Similarly,

Ou2 (x,b) x

Ob 2=q(z) fl,(f*-'(, Kg*(z)))
1 1
Kx K

Cf'([ 21 +7x/) c (1+)( + )+

From Lemma 8, we see that (f1, ff) is indeed a Nash equilibrium strategy pair because

both Dul(x, g; (x)) and Du 2 (x, g*(x)) are constants. O

From the above theorem, we see that equations (3.9) and (3.10) specify the Nash

equilibrium power allocation strategy pair. Since there are two equations with three

unknowns, the resulting Nash equilibrium may not be unique in general. However, if

a packet with stronger received power can always be captured (i.e., K = 1), the Nash

equilibrium power allocation strategy is unique.

Corollary 1. For K = 1, the unique Nash equilibrium power allocation pair has the

following form:

g (x) = c- x- (3.13)

g2()where the constants c and are (3.14)

where the constants c and y are chosen such that the average power constraints are



satisfied.

To show the corollary, we first present the following Lemma.

Lemma 9. If (g*, g*) is a Nash equilibrium strategy pair, g* (1) = g* (1).

Proof. Suppose g (1) 4 g* (1). Without loss of generality, let assume that g (1) >

g2 (1). Since both g* and g* are continuous, there exists 6 > 0 such that g (x) >

g (1) + 1(l) 1) Vxz [1 - 6, 1]. User 1 can devise a new allocation strategy, say

gl, by moving a small amount of power, say 6. (1)(1) , away from the interval

[1 - 6, 1] to some other interval, thus resulting in an increase in user 1's throughput.

Therefore, when g (1) > g (1), the power allocation strategy pair (g*, g*) cannot be

in equilibrium since the strategy pair (gl, g*) gives a higher throughput for user 1.

Similar result holds for the case g (1) > g* (1). Thus, we must have g* (1) = g* (1) if

(g, g1) is an equilibrium strategy pair. El

The condition that gj(1) = g*(1) will be useful in proving the uniqueness of the

Nash equilibrium. The complete proof of the corollary is shown in the appendix.

Fig. ?? shows an example of the Nash equilibrium power allocation strategy pair

when el = 1 and e2 = 2. Since user 1 has less average power than user 2, user 1

concentrates its power on time slots with very good channel state. Fig. 3-2 shows

the capture result when both users employ the Nash equilibrium strategy shown

in Fig. ??. For a time slot with channel state realization that fall into the region

above the curve, user 2's packet will be successfully captured since user 2's received

power is higher than that of user 1 in this region. Here, user 2 has more successful

transmissions than user 1 since it has more power.

3.3.2 General Channel State Distribution

In this section, we specify the conditions that a general channel state distribution has

to satisfy in order for a Nash equilibrium strategy pair to exist.

From Lemma 7, one can see that fi and f2 have to be increasing functions re-

gardless of the distribution of the Xi's. Let px, () denote the probability density



Power allocation strategy for user 1 with average power = Power allocation strategy for user 2 with average power = 2

05

channel coefficient channel coefficient

Figure 3-1: An example of Nash equilibrium strategy pair for el = 1 and e2 = 2.

function of Xi with the support over an interval starting at zero. Assuming K = 1,

the probability that user l's packet will be captured in a time slot with X 1 = x1 and

g9(xl) = b can be written as the following:

u1(xi, b) = P(f 2(X 2) <1 x b)

- P(X 2 <_ f1 (x 1 b)) (3.15)
_ ( (xj .b)

-pX2 (X2) dx 2

From the optimality condition stated in Lemma 8, we must have Dul(xl, b) = cl

where cl is some constant. This condition can be expanded as follows:

dul(xl,b) xl
Ob = px2 (f2

1 (x1i b)) 1 = cl (3.16)

Now, let's focus on finding a symmetric Nash equilibrium power allocation strategy.

Substituting b = gi(xi), the term f-' 1(x.b) is equal to f7'(f1 (x1 )) = x1 since fi = f2.

1

L



Result of the throughput with e1 = 1 and e2 = 2

channel coefficient of user 1

Figure 3-2: Results obtained when using the Nash equilibrium strategy pair for el = 1
and e2 = 2.

Thus, Eq.(3.16) can be reduced to the following:

px2 (xl) xl/(Xl)f () (3.17)

=•fI(X1) - X1 ' PX2 (Xl)
C1

The above equation provides a condition on the distribution of the Xi such that there

exists a Nash equilibrium power allocation scheme. The condition can be restated as

the following:

xg1*1(mx) = -x px 2 (xt) dxl (3.18)

From the above condition, for example, we see that if px2 (-) is a strictly increasing

polynomial, there exist a Nash equilibrium power allocation strategy.

3.4 Multiple Users Equilibrium Strategies

In this section, we explore the Nash equilibrium power allocation strategies when

n users are competing to access the single base station. User i's power alloca-



tion function is denoted as gi('). Given a time slot with channel state realization

S= (x 1, ... ,xn), the transmitting power for each user is gi(xj). The corresponding

received power at the base station is again denoted as fi(xi) = •. -gi(xi). The new

capture rule used in this section is given as the following: a packet from user 1 will

be successfully received if the following holds:

fl(x1) > (1 + A) max(f2(X2), , fn(n))

Similar capture model can be found in [26] (i.e., protocol model). The quantity A

models situations where a guard zone is specified to prevent interference. Note also

that the capture rule used in the two users' case can be viewed as a special case the

above capture rule.

We start with each user facing the same average power constraint (i.e., el = e2

S. = en). Since users are identical, it is reasonable to seek a symmetric Nash equilib-

rium power allocation strategy. Specifically, the set of strategies (gl = g, - - , g, = g)

is said to be a symmetric Nash equilibrium strategies if gi = g is the best power allo-

cation strategy for user i when all other users are also employing the power allocation

strategy g. For a power allocation function g to be a symmetric Nash equilibrium

strategy, f(x) = xg(x) must be a strictly increasing function using a similar argument

as in the two users case. The following theorem shows the existence and the form of

a symmetric Nash equilibrium power allocation strategy.

Theorem 10. Given that each user has the same average power constraint, there

exists a symmetric Nash equilibrium power allocation strategy with the following form:

gj(xj) = c. x-' V ie{1, ... , n} (3.19)

where c is chosen such that the average power constraint is satisfied.

Proof. The complete proof is given in the Appendix. O

With the symmetric Nash equilibrium power allocation strategy given in Eq. (3.19),



the expected throughput for each user is given by:

P(f(Xi) > (1+ A) max(f(X2), - , f(X,)))

= P(X'l > (1 + A) max(X,... , Xn)) (3.20)

= P(XI (1 + A) max(X2, , X,))

To quantify the loss of efficiency due to users' selfish behavior, we consider a system

where all users implement the same power allocation policy provided by a system

designer such that the overall system throughput is maximized. To find such scheme,

we solve the following optimization problem as in the two users' case:

max P(Xiv(Xi) 2(1 + A) max(X 2v(X 2 ), ,Xv(Xn))
vESi

By symmetry, we have the following upper bound for the above probability:

1
P(Xiv(Xi) > (1 + A) - max(X 2v(X 2), ... ,Xnv(Xn)) < -

As in the two users' case, we consider a series of functions, vm(x) = xm for m > 1.

As m -+ oo, we have

P(X " +l' > (1 + A) - max(X+2ml, .. . , Xnm+l))

11 1
= P(X1 > (1 + A)-+'I max(X 2 ,... , Xn)) - -

Thus, there indeed exists a power allocation scheme that will achieve the maximum

possible throughput. In other words, it is possible to have a packet successfully cap-

tured in every time slot. Now, when users behave selfishly, the expected throughput

for each user is given as follows from Eq.(3.20):

P(Xi 2 (1 + A) max(X 2,... ,X,)) (3.21)

As n increases, the above equation goes to 1/n which is the maximum attainable

throughput. Therefore, as the number of users becomes large, the symmetric Nash



equilibrium power allocation scheme is optimal in the sense that the throughput

obtained approaches the maximum attainable throughput.

For the special case where A = 0, the capture rule becomes that the user with

the largest received power get captured. With this simple rule, a Nash equilibrium

strategy can be derived with general channel state distribution (i.e., Xi has probability

density function px (.)). From Eq.(3.37), we have

pz(f-l(xi b)) X1 =c
f'(f-l(xi - b)) (3.22)

f'(xi) = -xlpz(xl)
c

where

Pz(z) = (n - 1)pX,(z)[ PX,(x) dx]n - 2

Hence, we can write the received power function as the following:

f(x) = - xpz(x) dx

From the above equation, one can get the optimal power allocation function by using

g(x) = f(X)

3.5 Conclusion

In this chapter, we consider a communication system with multiple users compet-

ing, in a non-cooperative manner, for the access of a single satellite, or base station.

With a specified capture rule and an average power constraint, users opportunisti-

cally adjust their transmission power based on their channel state to maximize their

throughput. A Nash equilibrium power allocation strategy is characterized, and the

resulting throughput efficiency loss, due to selfish behavior, is quantified. As the num-

ber of users increases, the Nash equilibrium power allocation strategy approaches the

optimal power allocation strategy that can be achieved in a cooperative environment.



Chapter Appendix: Proof of Theorem 8

Proof: We first show that if (g*, g*) is a Nash equilibrium strategy pair then Dul(xi, g (Xl))

and Du2(x 2 ,92*(2)) must be constants for all xz E [0, 1] and x2 E [0, 1]. From user

l's perspective with g* fixed, consider a small variation of the function g*. Specifi-

cally, let gj = g* + 5( - g*) where ^ is an arbitrary function in S 1. Since both

and g* are in S1, they are both bounded (i.e., |I(xl) <5 B and Ig*(xl)l _< B for all

x1 E [0, 1]). Therefore, we have |g6(xl) - g*(xl)l 5 2BS for all xl e [0, 1]. Using the

Lagrange's form of Taylor's theorem, we get for any xz E [0, 1], there exists a real

number c[x,] [gt(xl),g(Yx1)] such that

u 1(xl, g6(x1 )) = U1(x 1, g1(x 1))

BU 1 (Xl, b)+ 6( (x1) - g(x)) , b) b=g,(x1) (3.23)

+ 1•2(§(X 1) - g*(Xl))2 2U, (x I, b)

2 2 1b
2 1Ib=c[,

The last term is bounded by K .62 for some K since both § and g* are bounded, and

u1 (x1, b) has finite second derivative. Therefore, for small enough 6, it is negligible

comparing with the other terms.

Now we show that if Dui(x1 , g* (xi)) is not a constant for all xI1  [0, 1], we can

find a strategy g6 which gives user 1 a higher throughput than g*. To do that, we can

write the following equations:

j ul(xl, f 6(xl)) dxl - ul (xi, fl (xi)) dxl (3.24)

(3.24)

6 () - g(x)) u , b) b=g(x) dx1 + o(6)

Now, since Dul (xj, g (xl)) is not a constant for all x, e [0,1], we can find a § such

that the above equation is positive which implies that there is an incentive for user

1 to use gs. Hence, (g*, g*) is not a Nash equilibrium strategy pair. Similarly, we

can show that Du 2 (x 2 , g(x 2 )) is a constant for all 2 E [0, 1] if (g ,g*) is a Nash

equilibrium strategy pair.



For the converse, consider again Eq.(3.24). Since Dul (x, g (x)) = b=g (x(b)

equals to a constant cl for all x1 E [0, 1]. We have

[1 &ui(xi, b)

S (g(Xl - g(x)) O1bxb 1 b=g;(x,) d1xl
(3.25)

=6lc (g(xl) - g*(xi)) dxl = 0

for all g E S1 (i.e., fo g(xx) dxl = el). Thus, there is no incentive for user 1 to use

strategy g. Therefore, (g*, g*) is a Nash equilibrium strategy pair.



Chapter Appendix: Proof of Corollary

We have established that g9 (1) = g*(1) is a necessary condition for (g*, g*) to be

an equilibrium strategy pair from lemma 9. Combining with gl*(0) = g*(0) = 0, we

will consider only the function pair gi E S 1 and g2 E S2 that satisfy the above two

boundary conditions (i.e., gi(1) = g2(1) and gi(0) = g2(0) = 0).

Consider any Nash equilibrium strategy pair (gl, g2) under the capture rule de-

scribed in the two users' case. From previous discussion, we know that the inverse

functions, f2j1 and f1-; where fi = xg l (x) and f2 = xg2(x), are well defined. With

user 2's strategy g2 fixed, we have

ul(xi, b) = P(f 2(X 2) • 1 x .b) = f2 1(x 1 . b)

Similarly, with userl's strategy fl fixed, we get

u2(x2, b) = P(fl(Xi) < x2 . b) = f - 1(x 2 . b)

From Lemma 8, we know that Dul (xl, gl(xi)) and Du2(x2 , g2(x 2)) are two constants

for all x1 E [0, 1] and x2 E [0, 1] since (g1, g2) is a Nash equilibrium strategy pair.

Now, consider the set of channel state pair (xl, X2) such that fi(xi) = f 2(x 2) (i.e.,

two users' received power are equal). It forms a separation line in space span by

X1 and X 2. Mathematically, this line can be defined as h : [0, 1] -* [0, 1] such that

X2 = h(x1) = f 1(fi( 1)). By the capture rule, a slot with channel state (X1,X,) will

be successfully used by user 2 if (xl, /2) is above the line x2 = h(xi) and by user

1 if (x1 , x~) is below the separation line. Fig.3-2 shows an example of h(xl). The

following lemma shows the uniqueness of h(xi). We then derive the uniqueness of the

strategy pair (gl, g2) from the lemma.

Lemma 10. If Dul(xl,gl(xl)) and Du2(x 2 ,g2(x 2)) are two constants, cl and c2

respectively, for all x, C [0, 1] and X2 C [0, 1], then h(xl) = / , /C 2
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Proof. Since Du1(x1 , g1 (xl)) = cl, from ul(x 1 , b) = f-' (x 1, b), we have

Dul(xl, gl(x 1 ))
Oul (xi, b)I
S Ob Ib=gl (x)

X1

X1

f2(h(xi))

Similarly, for user 2, we get

Du2(x 2, f2 (x 2))
Ou2(x 2, b)I

= b I b=g9 2(x2)

=X2

fi (fY-l(f2 (X2)))
X2 (3.27)

We also know that fi(xi) = f 2(h(x 1)) and f'(xi) = f2(h(xl)) -h'(xi). Thus, we

have

fi(h-'(X2)) = f-(h(h-'(x 2))) . h'(h-l(X2))

= f2(x2) " h'(xl) (3.28)

= f2(h(xi)) -h'(xl)

By combining the equations f'(h- (X2)) = - and fA(h-1 (x2))= f 1(h (x)).h'( 1),

we get
X2 = f2(h(xl)) . h'(xizl).
C2

Next we substitute Eq.(3.26) and x2 = h(xi) in the above equation to obtain,

dh(xi)
dxl

dh(xi)
h(xl)

ci
-h(xi)
C2

cl dxl

C2 X1
C1

lnlh(xl) = -In xj + ca
C2

(3.26)



h(xi) = ec3 . 2

Combined with fact that h(1) = 1, we get h(xi) = xr•2 . O

Now, we are in a position to derive the exact form of the Nash equilibrium strategy

pair. From the equations f'(h-'(x2)) = and 2 = h(xi), we get f(xl) = h(l
SC2 'C2

~2 /c 2. Combined with the condition that f (0) = 0, we have fi(x) = +12

Following the similar method, we get f 2(x) = +1 Let 7 = and c

the received power of a Nash equilibrium strategy pair must have the following form:

f*(xi) = c -x (3.29)(3.29)

f2 (x2) = c X (3.30)

Consequently, we have the Nash equilibrium power allocation strategy to be the form:

g*(x1) = c - (3.31)

g9(x2) = C .x (3.32)

The constant y and c are chosen such that equations (3.11) and (3.12) are satisfied.

The uniqueness of the above Nash equilibrium strategy comes from the fact that there

is a unique pair of c and 7 that satisfy equations (3.11) and (3.12).
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Chapter Appendix: Proof of Theorem 10

Proof. With all users i # 1 using a fixed power allocation strategy g, we now explore

the optimal power allocation strategy for user 1 which is denoted by g*. Let u(i)

(x1, b) -, R denote user l's expected throughput during a slot conditioning on the

following events:

* User l's channel state is X 1 = xl.

* User l's allocated power is b.

As before, we will drop the

as ul (x, b). Specifically, we

term g in the expression u ()(l,

can the write the equation:

b), and simply write it

u1(x1, b) = P((1+ A)max(f 2(X2 ), ... , fn(Xn)) 5 x1 -b)

= P((1 + A)Y < x1 -b)

where Y = max(f 2(X2 ), ... , f,1 (Xn)). Since all users i # 1 use the same strategy

g, we have Y = max(f(X2 ), ... , f(X,)) where f(Xi) = Xi g(Xi) for all i 4 1.

Moreover, since f is strictly increasing, we can write:

Y = max(f(X 2),... , f(X,)) = f(max(X2 , ... , X,))

Denoting Z = max(X 2 , • , X,), we have the following:

ul(xi, b) = P((1 + A)Y < x .- b)

1
= P(Z < f-'(• xz - b))

S .xl.b))

= pz(z) dz
o
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where pz(') denote the probability density function of the random variable Z. The

optimization problem that user 1 faces can be written as the following:

maxGi(e) = l(xY,gi(xl)) -px (xi) dl

= j uj(x1 , g(xI)) dx (3.34)1
subj. gi(xi) dxl < e

Writing the Lagrangian function, we have

Su(x, gi(x)) dxl - A( g(x) dx - e) (3.35)
(3.35)

=j [ul(x, g(xl)) - Ag(xi)] dx + AXe

Therefore, for each fixed xl, we want to choose a gl(xi) to maximize the term

ul(x 1, g1(xl)) - Ag1(x1 ). For convenience, let b = gi(xz). Then, we have

max L(b) = ul (xi , b) - Ab
b

f-'( 9 xil.b) (3.36)
= max 1 pz(z) dz - Ab

Maximizing L(b) with respect to b yields the first order condition:

OL(b) 1 x1L(b) - Pz(f-( 1 l - b)) - A = 0 (3.37)Ob 1+ A(1 - b))

Since Z = max(X2,... , X,) and Xi's are i.i.d, we have

pz(z) = (n - 1)zn-2.

Now, consider b = gl(xl) = cx'. Since we are seeking a symmetric Nash equilibrium

power allocation strategy, user i # 1 will adopt the same strategy as user 1. Thus,

we have f(x) = x -g(x) = x - cxm = cxm+l. The second term in Eq.(3.37) can be
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written as the following:

1
f'(f -l( z- b))1+A

c
= f'(f-l(•-•x x2"))

1 , (3.38)
= f'(( • x"1 )m+11f + XM)

I m= c(m + 1)( • M+1xl1+A

Similarly,

1
pz(f -l(• -b))1+A

1 1
= Pz(( ) "+ x 1 ) (3.39)1+A

1 n-2

= (n - 1)+( )-+• x 2

Eq.(3.37) can be re-written in the following form:

n-2 n-2 1+•
(n- 1)( I1 - A = 0 (3.40)

1+ c(m + 1)( m+ 1x

Since the above equality has to hold for all x1 E [0, 1], the following must be true

InT-2 w' l-m = 1

Thus, we have m = n - 1 and gi(x) = cn-1 for all i = 1, ,n. O
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Chapter 4

Channel Allocation Using Pricing

in Satellite Networks

Having studied the single channel allocation problem in the previous two chapters, we

now explore the case that there are multiple channels between a source and destination

node. Future satellite communication networks are envisioned to provide diverse

quality of service based on user's demand. Hence, it is vital to have a Medium Access

Control (MAC) protocol that provides fair and efficient channel access for each user.

In this chapter, we propose a novel MAC protocol based on pricing that allocates

network resources efficiently in response to users' demand.

4.1 Introduction

We consider here a communication network with multiple satellites, collectively acting

as a network manager, who wish to allocate network uplink capacity efficiently among

a set of users, each endowed with a utility function depending on their data rate. We

assume that each satellite uses a separate channel for communication, such as using

different frequency band for receiving. Each user has data that needs to be sent to

the satellite network, and there may be multiple satellites that a user on the ground

can communicate with, or switched diversity termed in [1]. Therefore, the data rate

for each user here is the rate at which each user can access the satellite network by
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sending its data to any satellite within its view.

Slotted aloha is used here as the multi-access scheme for its simplicity. Other

multi-access schemes can be used in conjunction with our pricing scheme to provide

QoS as well. Due to different path loss and fading, the channel gain from a user to

different satellites within its view can be different. Therefore, during a single time

slot, a user has to decide not only whether it should transmit but also to which

satellite it will transmit. To control users' transmission rates, each satellite will set a

price that may differ from satellite to satellite for each successfully received packet.

Based on the price set by each satellite, a user determines its target satellite and the

transmission probability to maximize its net payoff, which is the utility of its received

rate minus the cost.

It is well-known that the throughput of a slotted aloha system is low. Therefore,

to efficiently utilize the available resource is a reasonable objective for the network

manager. In this chapter, we want to explore the use of pricing as a control mechanism

to achieve efficiency. To do so, we need to define the meaning of efficiency in the

context of a slotted aloha system. With a wire-line, such as optical fiber, of capacity

R, an allocation is efficient as along as the sum of the bandwidth allocated to each

individual user is equal to R, i.e., no waste of bandwidth. With a collision channel in

the aloha system, no simple extension of the wire-line case exists. We therefore use

a concept called Pareto efficiency for allocating resource in a collision channel. By

definition, a feasible allocation (sl, s2, ... , sn) is Pareto efficient if there is no other

feasible allocation (s', s'.. , sin) such that sý > si for all i = 1, n and s' > si for

some i.

The multiple satellites communication networks considered here differ from the

multichannel aloha networks in only one aspect-the channel quality associated with

the path from user to the satellite is different in the multiple satellites case. This

difference gives us insight on how to best utilize the multiple channels available to

users. A multichannel aloha network consists of M parallel, equal capacity channels

for transmission to one receiver shared by a set of users. The M channels can be

implemented based on either Frequency Division Multiplexing or Time Division Mul-
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tiplexing approaches. When a user has a packet to send, it will randomly select one

channel to transmit. This random selection of the channel is largely due to the lack of

coordination among competing users. Intuitively, we would expect that the through-

put of the system will be higher if the coordination in channel selection among users

was available. As we show in this chapter, in multiple satellite networks, different

prices and channel states are two mechanisms that enable the coordination in channel

selection among the competing users.

The multi-channel slotted aloha problem has been studied by numerous researchers.

In [32], the authors develop a distributed approach for power allocation and schedul-

ing in a wireless network where users communicate over a set of parallel multi-access

fading channels, as in an OFDM or multi-carrier system. In [33], the authors shows

how to improve the classic multichannel slotted aloha protocols by judiciously using

redundant transmissions. The use of pricing strategy to control the behavior of users

who are sharing a single channel using aloha medium access protocol was investi-

gated in [34]. A game theoretical model for users competing for the limited resources

is provided. Multiple channels and the associated channel states for the users are not

considered in their work.

The organization of this chapter is as follows. In section 2, we characterize the

Pareto efficient throughput region in a single satellite network. The existence of a

equilibrium price is presented. Furthermore, we show that such equilibrium price is

unique. In section 3, we describe the Pareto efficient throughput region in a multi-

satellites environment given that coordination of satellite selection was allowed among

users. We then show that the equilibrium price exists and is unique. The resulting

throughput at the equilibrium is shown to be Pareto efficient also. An multiple

satellites example, where the competitive equilibrium is explicitly calculated, is given

in Section 4. Section 5 concludes the chapter.
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4.2 A Single Satellite Network

We consider an uplink communication scenario in a single satellite network with n

users. Each user has unlimited number of packets in its buffer need to be transmitted.

As in standard slotted ALOHA model, if two or more packets are transmitted during

the same time slot, we assume no packets will be received at the satellite. Now,

let zi denote the transmission probability of user i. The probability that user i's

packet is successfully received by the satellite is then denoted as si = zi Hljoi(1 -

zj). We further denote the constant channel state coefficient from user i to the

satellite as ci. Assume all users transmitting at a constant power P. Given user

i's transmission during a particular time slot was successful, the throughput of that

time slot for user i can be written as qi = gi(ci, P), where gi is a concave function

(e.g.,Shannon capacity equation). Thus, the data rate that user i received can be

written as qj - si. User i, therefore, receives a utility equal to Ui(qi - si), where the

utility is measured in monetary units. The utility function Ui(.) is assumed to be

concave, strictly increasing, and continuously differentiable. As mentioned in most

literature, concavity corresponds to the assumption of elastic traffic.

We therefore use a concept called Pareto efficient for allocating resource in a

collision channel. By definition, a feasible allocation (sl, s2, - - - , sn) is Pareto efficient

if there is no other feasible allocation (sI, s2,... , s') such that s' 2 si for all i =

1, ... , n and s' > si for some i. Here, the allocation is in terms of the success

probability of each packet instead of the actual data rate qi - si. As we will mention

later, it is sufficient for us to consider si's only. The following theorem gives the

capacity region (i.e., the pareto efficient allocation) of the aloha system considered

here.

Theorem 11. Given a set of transmission probabilities (z1 , z2, . , zn), the resulting

allocation (sl, S2, . . , sn) is Pareto efficient if and only if z1 + z2 + ... + zn = 1.

Proof. First, we will find the capacity region or the Pareto efficient (sl, s2, .. , Sn).
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We begin by considering the following optimization problem:

max s1 + s2 + * * *+ Sn
ZZ2 t" Zns2 sn (4.1)

subj. - =2, ,- = an
S1 S1

The Lagrangian is given by:

L(s1, . , Sn, A2,''" , n)
n n

= (1 -E Aiai)s + (1 + Ai)si (4.2)
i=2 i=2

= 08sl + 02S2 + " + n•sn

where 31 = (1 - E• 2 Aai) and /i = 1 + Ai for i = 2, ... , n. Substituting si =

zi Hjoi(1 - zj) and differentiating L(sl, ... , sn, A2 ,... , An) with respect to zi's, we

have

Oz =Ai -(1- zj) - E kZk (1 - zj) (4.3)jai kyi jok,joi

Next, we claim that the solution to the system of equations ( = 0,.. , = 0)

has the following form:

zi = E n 3i (4.4)
Ei=1 pi

We will now show that the above solution form indeed solves the system of equations.

Substituting Eq.(4.4) into Eq.(4.3), the first term of Eq.(4.3) is given by:

li1 -z = -(n- n1) j

i ji k=l k (4.5)

(n- 1)n
- 1

(Ek=3 k)n-1 2 -
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Similarly, the second term of Eq.(4.3) is given by:

(n - 1)(n-2) 1Iji /j
kZk J II (1- )= z ( 3)(n2)

k i j/k,j/i k i ( j=1

( (n - 1(n2) -n k) (4.6)

(E (n1) E )13j)

(n - 1)(n-2)

(E 1 U- ( j)(n - 1)1

Comparing the two terms, we see that Eq.(4.4) is indeed the solution to Eq.(4.3).

C 1, zi = 1 follows trivially. Also, note that the set zi's given in Eq. (4.4) is a

stationary point for the function L(.). It is straight forward to see that the set zi's

given in Eq.(4.4) cannot be a minimum point of the function L(.). Hence, the set of

zj's given in Eq.(4.4) must maximize L(.).

We have shown that for an Pareto efficient allocation, the sum of individual trans-

mission probability has to be one. Conversely, if the sum of individual transmission

probability is one, we know it is a solution to the optimization problem defined above

for appropriately chosen ai's. Therefore, the resulted si's must be Pareto efficient. O

The utility function of each user, U (.), is not available to the satellite in general.

Therefore, we consider a pricing scheme for controlling the transmission probability.

We assume that the satellite, or network manager, treats all users the same (i.e., the

satellite does not price discriminate). In our case, the price per successfully received

packet charged by the satellite is the same for all users.

Given a price p per successfully received packet and other users' transmission

probability zj for j = i, user i acts to maximize the following payoff function over

0 < Z < 1:

UV(zi j(1 - zj) -q,) - zi I-(1 - zj) -p
iji j#i (4.7)

= Ui(si qi) - s. -p

The first term represents the utility to user i if it receives a data rate of si -qj, and the
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second term represents the price that user i pays to the network manager. We say a

set (S, * , sn, p) with si = zi H1-j(1 - zj) for i = 1, - - - , n and p > 0 is a competitive

equilibrium if users maximize their payoff as defined in (4.7), and the satellite sets a

price p so as to make i=ln zi = 1 (i.e., network is efficiently utilized).

The following theorem shows the existence of a unique competitive equilibrium

for the pricing scheme considered here.

Theorem 12. Assume for each user i, the utility function Ui is concave, strictly

increasing, and continuously differentiable. Then there exists a unique competitive

equilibrium.

Proof. We first provide the condition for users to be in the equilibrium. At an equi-

librium point, user i chooses a transmission probability zi to maximize its payoff,

Ui(si qi) - si p which is equivalent to the following conditions:

Ui (qi - zi H(1- zj)) = p, if 0 < zi <1 (4.8)
j~i 

qi

U (0) < , if zi = 0 (4.9)
qi

U(qi 1(1 -z)) > P , if zi =1 (4.10)

Eq.(4.9) represents the case that the price set by the satellite is too high; therefore,

user i will not transmit anything. Similarly, Eq.(4.10) indicates that the price per

successfully received packet is too low; hence, user i will always transmit. We consider

the case that each user's utility function is strictly concave. Since the utility Ui is

strictly concave, strictly increasing, and continuously differentiable, Uf is a continuous,

strictly decreasing function with its domain [0, qj] and range over the interval [a, b]

where b could be infinity. Consequently, the inverse U'i, say Vi, is also well defined

over the interval [a, b], and it is continuous and strictly decreasing. We can write

Eq.(4.8) as the following:
1psi = -Vi(p) (4.11)
qi qi

We can think of the si's as the desired throughput for user i given the price p,
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even though the set (sl, ... , sn) may not be feasible (i.e., there does not exist a set

(z1, ... , z,) and 0 < zi 5 1 such that si = zi H-i (1 - zj)). The set (s, s2, ... * ,sn)

forms a strictly decreasing continuous trajectory in R~n from (1, 1, ... , 1) to (0, , ... , 0)

as p increases. The continuity property of the trajectory is due to the continuity of

Vi.

For any Pareto optimal allocation (Sl, S2,... , sn), we must have El zi = 1. For

convenience, we write Z = (lZ z2, ' * , n) and g = (sl, s2, .. , s,). Then, let A =

{ 1 z_ > 0 for i = 1, .. , n and ~ zi= = 1}. Moreover, let f(z-) = zi -ji(1 - zj).

Thus, the mapping f of A into R•Z is defined by:

f(7) = (fi(Z, -- - , fn(ZI)

Since each of the functions fl, - - - , f, is continuous, f is continuous as well. We then

have the set B = {f(5.) I ' c A} is compact because A is compact. Thus, the set

B forms a surface in R" that separates the point (1, 1,... , 1) from the origin. To

see this, we use induction. In the two dimensional case, this is obviously true. Now,

suppose this statement is true for the n-dimensional case. For the n + 1 dimensional

case, let's look at the boundary points of the simplex E_, 1 zi = 1. The boundary

points has dimension n. Thus, the resulting mapping is closed surface from induction

hypothesis. The following figure illustrate the idea by going from two dimension to

three dimension.

Therefore, for the continuous trajectory (sl, s2, • • , sn) parameterized by the price

p to go from (1, 1, - -- , 1) to the origin, it must intersect with the set B at a unique

point. That point is the unique competitive equilibrium in our pricing scheme. O

114



) as

Pareto optimal
i~ 

.~

l, s( s2)

1 31

rap

sl

sj (b)

Figure 4-1: (a) The relationship between a Pareto optimal (sl, s2). (b) The relation-
ship of a Pareto optimal (sli, , 2,3)

4.3 Multi-satellite System

4.3.1 The Pareto Optimal Throughput Region of A Multi-

satellite System

In a network with multiple satellites, we assume that users can simultaneously trans-

mit to different satellites using different frequencies during the same time slot. The

case that a user can transmit to only one single satellite during a time slot is a special

case of the model where simultaneous transmissions are allowed. We let z(i,j) denote

the transmission probability from user i to satellite j. Similarly, let q(i,j) denote the

quality of the channel from user i to satellite j. The set of users that transmits to

satellite j is denoted as Aj. The set of satellites that user i transmits to is denoted
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as Bi. The probability of a success transmission from user i to satellite j is denoted

as s(i,j). We also assume that users are backlogged. A graph G = (V, E) can be used

to represent the connections between users and satellites, where V is a set of nodes

representing the users and the satellites; the edge (i, j) is in E if z(i,j) is positive.

We first consider the case where the channels from the users to the satellites are all

identical. The Pareto optimal throughput region of this multiple satellites system

with identical channel quality is given by the following theorem:

Theorem 13. Given a multi-satellite system represented by a connected graph G =

(V, E), the resulting throughput is Pareto optimal if and only if the following two

conditions are satisfied:

1. there is no cycle in the graph G

For a multi-satellite system that cannot be represented by a connected graph, we

can consider each disconnected part of that graph separately. The following figure is

a graphical representation of a possible communication scenario.

Sat 1 Sat 2 Sat 1 Sat 2

(a) (b)

Figure 4-2: (a) A graphical representation containing no cycle. (b) A graphical
representation containing cycle.

Proof. Condition (2) is straightforward from Theorem 11. We will prove condition

(1) here. Suppose that we have m satellites and n users. The probability of success
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for user i can be written as follows:

S= (i (1- Z(j,k)) (4.12)
kEBi jEAk

A set of transmission probabilities z(i,j) achieving pareto optimality implies that we

cannot find a set of small variation ,(i.j), on z(i,j) such that the throughput can be

improved for all users. Hence, given a set of transmission probability z(i,j), to see

whether such transmission probabilities achieves pareto optimality, we need to check

whether we can find a set of 6Z(,j1) to improve the throughput performance for some

users without decreasing the throughput for other users. For satellite j, if there are

k users transmitting to this satellite, we can freely vary the transmission probability

by a small amount to only k - 1 users in order to satisfy the condition E• z(i,j) = 1

(If we change the transmission probability of all k users by a small amount, the

condition Ei z(i,j) = 1 may be violated). In this case, we say that we have k - 1

degree of freedom in varying the transmission probabilities. Therefore, for a system

with m satellites, the degree of freedom in varying the transmission probabilities is

,=1 IBil - m. For a connected graph, we must have

SB I n + +m- 1.
i=l

Similarly, for the connected graph to contain a cycle, we must have

IBi > n+m.

i=1

Therefore, for a connected graph contains no cycle, we have

IBN = n+m-1.
i=l

To satisfy the pareto optimality, from the first order condition, we need to check
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whether we can find a set of 6,(i) such that

z i j) > 0 V i (4.13)
,, a (ilj)

and
asi

O , ,j > 0 for some i. (4.14)
i,, OZ(i,j)

If we can find a set of 6z,,,) satisfying the above equation, the set of transmission

probability z(i,j) cannot be pareto optimal transmission probabilities. Since there is

a total of n users, we will have n linear equations. The variables in these linear

equations are the small variation 6,(.J. The number of variable is the degree of

freedom in varying the transmission probabilities, which is El IBil - m. For a

graph with cycle, we have E ,1 IJBij - m > n. In this case, since we have n positive

linear equations and k > n variables, we can certainly find a set of 6z5(,) of dimension

k that satisfies Eq.(4.13) and Eq.(4.14).

Now suppose that a connected graph G satisfies both conditions of this theorem.

If we increase the transmission probability of one link, we must also decrease the

transmission probability of some other link due to the constraint that Ei z(i,j) = 1Vj

and the fact that there is no cycle in the graph. Hence, the resulting throughput is

pareto optimal. O

In the case that there is a channel state q(i,j) associated with each channel,

the above theorem provides a necessary condition for obtaining the Pareto optimal

throughput region.

Now, let's consider a network consisting of only two satellites for simplicity. We

investigate how these two satellites can each set their own prices, pi and p2 respec-

tively, to achieve Pareto optimal throughput region. The objective for user i is to

maximize the following function:

Ui(s(i,1) q(i,1) + S(i,2) q(i, 2 )) - S(i,1)P1 - S(i,2)P2 (4.15)
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where

S(i,k) = Z(i,k) " I7 (1- Z(jk)) (4.16)
jEAk

The term s(i,1) - q(i,1) + S(i,2 ) • q(i, 2) denotes the throughput of user i. We first assume

that the transmission probability z(i,1) is independent of the transmission probability

z(i,2) for user i. That is, user i can transmit to both satellites during the same time

slot. The case that user i can send to only one satellite during a time slot is the same

as the case which allows simultaneous transmission when z(i,1) + z(i,2) < 1. To increase

the utility function in Eq.(4.15) by a small amount, user i can increase either s(i,i)

or S(i,2). The marginal costs are pll/q(i,) and p2/q(i,2) respectively. Thus, if pll/q(i,i)

is strictly less than p2/q(i,2 ), user i will transmit to satellite 1 only. To maximize

Eq.(4.15), the following equation must be satisfied:

8 pl
-- U (s(,) - q(ii)) = Pi (4.17)

08(i,1) q(i,1)

Likewise, if p2/q(i,2) is strictly less than P1/q(i,i), user i will transmit to satellite 2

only. The following equations must be satisfied to maximize Eq.(4.15):

_ P2
a8 Ui(S(i,2) -q(i,2)) = q(,2 ) (4.18)a8(i,2) q(i,2)

In the case that pll/q(i,1) = P2/q(i,2), user i can transmit to either satellite, and the

following equation holds:

Ui(s(i,) - q(i,i) + 8 (i,2) . q(i,2)) = pi P2 (4.19)
q(i,1) q(i,2 )

Following the single satellite case, in the m satellites case we say a set (s(1,1), S(1,2),

. , s(n,1), S(n,2), pl,'' , Pm) with S(i,k) defined in Eq.(4.16) and pj > 0 for j = 1,... , m

is a competitive equilibrium if users maximize their payoff, and satellites set a price

vector (pl ,Pm) so as to make i z(i) = 1 for j E {1,... ,m}. To test for

equilibrium, given the price set by the satellite, we ask whether a particular user has

the desire to change its transmission strategy. That is, a user will take the price as
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fixed, and decide the optimal action based on this price. We also make the following

channel diversity assumptions:

1. There does not exist i and j such that q(i,k) = q(j,k) for all k.

2. q(i,ki) # q(i,k2 ) for all kI and k2.

Assumption 1 implies that no two users have identical channel to both satellites.

Assumption 2 implies that, for each user, the channel states to different satellites are

different. The following theorem shows the existence of a competitive equilibrium in

a multi-satellites environment.

Theorem 14. With the channel diversity assumption, given that each user's utility

function Ui is concave, strictly increasing, and continuously differentiable, there exists

a unique competitive equilibrium in this network with n users and m satellites.

Proof. We first consider the case that m = 2 and n = 3 for illustration. Because

Vi = Uf is strictly decreasing, as the price pj increases, the desired throughput for

each user also decreases, moving closer to a feasible point (i.e., ZiEAj Z(i,j) = 1)-

Eventually, the desired throughput meet a feasible point. This part is the same as

the single satellite part. However, as one satellite decreases or increases the price

pl, it may cause a user, say user 1, to start transmitting to the other satellite. This

happens when pl/q(1,1) = p2/q(1, 2). If the user's desired throughput is r, it can choose

s(1,l) and s(1,2) such that s(1,1) q(1,1)+s(l,2)" q(1,2) = r. For fixed r, s(il) is a continuous

function of s(1,2). If p1 is too high, user 1 could start transmitting to satellite 2, thus

forcing satellite 2 to change its price to meet the Pareto operating point. In case that

two prices are decoupled, we have two desired operating points, one for each satellite,

with two control parameters. In case that prices are coupled, we can control one

price and one transmitting probability to get the two desired operating points. In

both cases, we have two control parameters, thus are able to get to the equilibrium

point.

For the general n-users case, we know that user i should send to satellite 2 if the
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following holds:
q(i, ) Pi
q(i, 2) P2

Also, from our channel diversity assumption, there can be only one user such that

q(i,i) P1

q(i, 2) P2

This implies that at most one user can transmit to both satellites.

Now, we show that the equilibrium is indeed unique. Assuming there exists two

equilibrium points: (s( 1,1), . . , S(n,2),p1,P2) and (s1,1),  , S(n,2), p pp 2) , we will show

that there is a contradiction. At a equilibrium point, we know that two scenarios

are possible: 1) no user transmits to both satellites; 2) there is exactly one user

transmitting to both satellites. First, we consider the case that no user transmits to

both satellites at both equilibriums. Without loss of generality, we number users such

that the following order holds:

q(1,1) > (2,1) q(n,i)

q(1,2) q(2, 2) q(n, 2)

If both equilibrium points have the same graphical representation (i.e., user transmits

to the same satellite in both equilibrium), the two equilibrium points have to be

identical from the derivation in the single satellite case. Let's now consider the case

that two equilibriums points have different graphical representations. Specifically,

users 1 to k transmit to satellite one, and users k + 1 to n transmit to satellite two

for the equilibrium (s(1,1), , S(k,1), S(k+1,2) * ' , S(n,2), P1,2). For the equilibrium

(8s1, " - ,8l1,1), S(+1, ,2, ... , s( I),Pl,p2 ), users 1 to 1 transmit to satellite one and

users 1 + 1 to n transmit to the second satellite, where 1 > k. Since 1 > k, we have

pi > p
P2 P'2

If pi < p', we have P2 < p~ from the above equation. With price P2, the desired

throughput at satellite two is (S(k+1,2), ' , S(,2)). Similarly, with price p2, the desired
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throughput at satellite two is (s1+1 ,2 ),..., *(n,2)). Since P2 < pý, we have the desired

throughput S(i,2) > S'i,2) for all i E {1+1, , n}. We know that (S(1+1,2) , s(n,2), P2)

is at equilibrium in satellite two. Therefore, (S(k+1,2)'' " S(1,2), ' ' , S(n,2), P2) cannot

be in equilibrium. That is, there does not exist (Z(k+1,2)," ' ' , (n,2)) such that

S(i2) Z(i, 2) z2 (1- Z(j,2)) Vi = (k + 1,..,n}
j i,jEA2

and 'i=k+1 Z(i,2) = 1. Hence, we have a contradiction here. If pl > p', we get a

similar contradiction.

Thus far, we have discussed the case that no user transmits to both satellites for

both equilibrium points. If there is exactly one user transmits to both satellites for

the two equilibrium points, a similar contradiction can be derived. For the other cases

(i.e., one user transmits to both satellites in one equilibrium while no user transmits to

both satellites in the other equilibrium), we can get similar contradiction. Therefore,

the equilibrium is unique.

O

Corollary 2. The equilibrium throughput obtained using the pricing scheme is Pareto

optimal.

Proof. From the proof of the Theorem 13, we see there cannot be any cycle in the

graph even when users having different channel qualities. Let the set of users trans-

mitting to satellite one and satellite two be denoted as A1 and A2 respectively. Since

q(i,1)/q(i,2) > q(j,1)/q(j,2) for all i E A1 and j E A 2, thus switching the receiving satellite

cannot expand the throughput region. Hence, the equilibrium throughput is Pareto

optimal. O

4.4 Example

In this example, we consider a communication scenario with two satellites and three

users and try to obtain an exact expression of the equilibrium point. The channel
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conditions are given as follows:

q(1,1) = 0.8, q(2,1) = 0.5, q(3,1) = 0.5

q(1, 2) = 0.3, q(2,2) = 0.4, q(3, 2) = 0.7

The utility function for user i is given by the following:

Ui(x) = ai -xb'  (4.20)

where al = 1, a2 = 2, a3 = 1.5 and bl = b2 = b3 = 0.5. We first make the assumption

that user 2 transmits to both satellites; user 1 only transmits to satellite 1 while

user 3 transmits to satellite 2 only. If we can find an equilibrium, we know that our

assumption is correct. Therefore, the following equations must hold:

U;(s(j,j) q(,,)) = Pi
q(1,1)

Pl P2
g2((2,1) q q(2,1) + S(2,2) ' q(2,2)) = - (4.21)

q(2,1) q(2,2)

U3(S(3,2) ' q(3,2)) = 2
q(3,2)

We have the following after simplification:

1

s(1,1) . 0.8 = a• Pb-
1

S(2,1) 0.5 + S( 2 ,2 ) . 0.4 = a2 ' P22- (4.22)
1

8(3,2) • 0.7 = a3 2b3 -1

where

1 1
al = ( bl-1

q( 1 ,l)albl

1 1

2 = (=2-1
q(2,2)a2b2

1 1
q(3,2)a3b3
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The set of s(1,i) and s(2,1) such that z(1,1) + z(2 ,1) = 1 are related by the following

equation:

s(1,1) = (1 - )2. (4.23)

Similar relation holds for S(2,2) and s( 3 ,2 ). Hence, we have the following equation:

1

(1- '))2 .0.5 + (1 - 3,22 0.4 = a2 'p• (4.24)

Since user 2 is transmitting to both satellites, the equation pl/q(2,1) = P2/q(2,2) holds.

We can write s(,1i) and s(3,2) as a function of P2 only. Substituting s(1,1) and S(3,2)

into Eq. (4.24), we can solve for P2. From P2, we can get the unique competitive

equilibrium for this example, which is given below:

p1 = 1.097, s(1,1) = 0.166, s(2,2) = 0.081

p2 = 0.877, s(2,1) = 0.351, s(3,2) = 0.511

The transmission probability is given as the following:

z(1,1) = 0.407, z(2,2) = 0.285

z(2,1) = 0.593, z(3,2) = 0.715

4.5 Conclusion

In this chapter, we investigate how to better utilize the multiple channels available

in a satellite network. Specifically, we use pricing as a mechanism to control users'

transmission probabilities and exploit different channel qualities to coordinate trans-

mission among users. Hence, the throughput performance of the system is improved.

We also characterize the Pareto optimal throughput region for both single satellite

network and multiple satellites network. We show that users' throughput is Pareto

optimal at the equilibrium price. The characterization of the Pareto optimal through-

put region for multiple channels with time varying channel states can be a possible

direction for the future research.
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Chapter 5

Multipath Routing over Wireless

Networks: Coding and Delay

Tradeoff 1

With multiple parallel channels existing between a source and a destination node,

one can utilize these parallel channels to improve the quality of service such as the

delay performance by using parallel transmission. Indeed, the deployment of various

wireline and wireless networks make it possible for multiple alternative routing path

to exist between a source and destination pair. In this chapter, we propose to use

digital fountain code to transmit data file with redundancy. Given that a file with k

packets is encoded into n packets for transmission, the use of digital fountain code

allows the file to be received when only k out of n packets are received. By adding

the redundant packets, the destination node does not have to wait for packet arrive

late, hence reducing the delay of the file transmission. We characterize the tradeoff

between the code rate (i.e., ratio between the number of transmitted packet and the

number of the original packets) and the file delay reduction. As a rule of thumb, we

provide a practical guideline in determining an appropriate code rate for a fixed file to

achieve a reasonable transmission delay. We show that only a few redundant packets

'This chapter is the result of the collaboration with Yonggang Wen. This joint research has also
benefited from discussions with Professor Vincent Chan and his insightful feedbacks.
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are needed to achieve a significant reduction in file transmission delay. In the second

part of this chapter, we consider the reduction of file delay when there are multiple

users sharing the set of parallel paths. Adding redundant packets for transmission

will increase the congestion level of the network, consequently the queueing delay

of an individual packet. Hence, the file transmission delay may under some coding

rate. We also show that there exists a unique coding rate that minimizes the file

transmission delay.

5.1 Introduction

Network delay is an important quality of service requirement to support various real

time applications. In today's network, packet delay is usually specified by the service

provider to demonstrate the performance level that it can guarantee consumers. How-

ever, with increasing volume of the data traffic such as the electronic files in today's

data networks, packet delay is not always a good indication of the performance that

a typical user will experience. On the other hand, file transmission delay, which is

the time interval that the destination node has to wait before it can reconstruct the

original file, resembles more closely to the delay experience of an average user. In this

paper, we focus on the problem of how to minimize the file transmission delay in a

wireless or satellite network.

We consider the case when there are multiple parallel paths available for trans-

mission between the source and the destination node [36], [42]. That is, for a file with

a fixed number of packets, one can assign a certain fraction of these packets on each

path and transmit them simultaneously. We assume that each packet will experience

an independent and identically distributed transmission delay on a particular path,

which we argue to hold for certain communication scenario. File transmission delay

can be very different from the packet transmission delay especially when the distribu-

tion of the packet transmission delay has a heavy tail. After a source distributed the

packets of a file among the available paths, the destination can reconstruct the file

when all the packets of that file have arrived. The problem of how to distribute a file
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with finite amount of packets among a finite set of parallel paths, each with different

channel statistics, is studied in [46]. There, an optimal packets allocation scheme to

minimize the average file transmission delay is presented. To reconstruct the original

file at the destination node require the arrivals of all packets of that file. This may

take a long time due to the heavy tail of the packet delay distribution. Hence, it

prompts us to code the original file at the packet level. Specifically, for a file with

k packets originally, the source transmit n > k packets by adding some redundant

packets to the original file. At the destination node, upon receiving the first k packets

out of the n transmitted packets, the destination node can reconstruct the original

file. This kind coding at the packet level exists such as the digital fountain code or

tornado code [45], [44].

The problem of two nodes communicating using multiple paths has received con-

siderable attention in various contexts (for example, traffic balancing, higher through-

put and path redundancy for higher reliability) for wired networks [35], [36], [40].

Recently, with advent of wireless networks such as the Roofnet, multi-beams satellite

networks [43], and ad-hoc networks, there is a resurging interest in the multi-path

routing research [41], [42]. In wireless networks, channels are often unreliable due to

fading and interference. Multi-path routing, due to its diverse routing path, becomes

an effective method in mitigating unreliable channels and providing a good delay per-

formance. In [38], the authors propose models to analyze and compare single-path

and multi-path routing protocols in terms of overheads, traffic distribution and con-

nection throughput in a mobile ad-hoc network. In [39], the authors developed a

framework for optimal rate allocation and multi-path routing in multi-hop wireless

networks. Analytical results for optimal rate allocation for Poisson arrivals at each

node are derived. More recently, in [41], the authors show how to split, replicate, and

erasure code message fragments over multiple delivery paths to optimize the prob-

ability of successful message delivery in a delay tolerant network. Simulations that

covers wide range of delay tolerant application are provided.

The work that bears the closest resemblance to this chapter is the seminal work

presented in [36]. There, the author proposed the dispersity routing scheme which
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sub-divides the message and disperses it through the maze of paths comprising the

network. The author also considered adding redundant message to the original file to

reduce the file delay, and the average delay was plotted numerically. We know that

the file transmission delay will be reduced by adding more redundant packets. In this

chapter, our aim is to obtain an intuitive understanding of the tradeoff between the

code rate and delay reduction in a communication setting with a single or multiple

source-destination pairs that sharing a set of parallel paths. In the single source-

destination case, given a file size, we then provided a practical guideline in determining

the code rate to achieve a good reasonable file transmission delay. We show that

only a few redundant packet is required for achieving a significant reduction in file

transmission delay. Next, we consider the trade-off between the file transmission

delay and code rate in a multiple users environment. There, the redundant packets

will increase the network congestion level, hence the packet's queueing delay. We will

investigate whether adding redundant packet can still reduce the file transmission

delay. The coding and delay tradeoff in this case is characterized in terms of the traffic

load of the network. Depending on the load, a unique coding rate that minimizes the

transmission delay is obtained.

The rest of this chapter is organized as follows: Section 2 describes the detailed

formulation of this file transmission delay minimization problem. In section 3, the cod-

ing and delay tradeoff in the case of a single source and destination pair is presented.

Section 4 describe the coding and delay relationship in the case where multiple users

are sharing the same set of parallel paths. Finally, section 5 concludes this chapter.

5.2 Problem Formulation

In this chapter, we consider a communication network with a rich set of disjoint paths

between a source and destination pair of interest. Given this set of disjoint paths,

we focus on the problem of how to best utilize these paths to minimize file transfer

delay from the source node to the destination node. We assume there are n, paths

between the source and destination node. The transmission delay distribution of a
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single packet is the same for all paths. Here, the transmission delay denotes the

time interval that begins with a packet is being transmitted at the source node to

the time that this packet reaches its destination node. For a particular path, the

transmission delay of a single packet is an identical and independently distributed

random variable. The time takes to transmit two packets is then the sum of two i.i.d

random variables. The assumption of a random transmission time for each packet is

reasonable in the wireless communication scenario such as the multi-beam satellite

downlinks, or wireless mesh networks. In a multi-beam satellite downlink, due to the

time-varying nature of the channel quality, the transmission time of each packet can

be different. For example, when the channel is bad, the satellite may take longer time

to transmit a packet in order to save energy because of the concavity of the rate-

power curve. Similarly, in a wireless mesh network, the channel fading of a wireless

link and the Aloha type contention resolution in the MAC layer both contribute to

the randomness of the transmission time of a single packet. Due to the possibility of

a deep fade (i.e., no transmission is possible), it may take a long time for a packet

to arrive its destination. Hence, we model the delay distribution of a packet as a

distribution with a tail (i.e., the probability of having a very large delay is nonzero).

In this chapter, for simplicity, we use exponential distribution with rate 1L to model

the delay distribution of a single packet.

The assumption that the transmission delay of each packet is identically dis-

tributed is reasonable since the communication channel is identical to each other

statistically. To make sense of the assumption that delay of each packet is indepen-

dently distribution, we need to focus on satellite or wireless network. For a multi-hop

wire-line network, the transmission delay of one packet cannot be independent of

each other since the transmission delay in a wireline system consists mainly the prop-

agation delay which is highly correlated for each packet. Here, we are considering a

satellite downlink with time-varying channel which can be described by an ergodic

process. Therefore, it is reasonable to assume that the transmission delay of each

packet is independent. In the case of a heterogeneous network, we consider the case

where a wireless link connecting wireline links in each path. The delay in transmitting
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a packet is going to be dominated by the transmission of the wireless link. Hence, the

independence assumption of the packet transmission delay is still a reasonable one.

At the source node, a file generated consists of k packets. The source can then

encode this file into n packets such that the destination node can decode the whole

file as soon as it received k packets (i.e., Digital Fountain code). Note that Digital

Fountain code actually require the destination node to receive k(1 + E) packets in

order to decode the original file, where E is small. For the first part of the chapter, we

assume that the source is the only node that has packets to send to the destination

node. Assume that a file is generated at the source node at time zero. The file

transmission delay, denoted here as D, is the time at which the destination node

receive k packets. The code rate is define to be n/k.

5.3 Delay-coding tradeoff for a single source des-

tination pair

We start this section by giving the following motivating example. Consider sending

a file with k packets, numbered (P1 , - - - , Pk), from the source to the destination. Let

n, = 2, and these two paths be identical. The time required for sending a packet Pi,

denoted here as Ti, is an i.i.d. exponential random variable with mean I. To transmit

the file using both paths, a simple way would be to allocate packets (P1 , , Pk/2)

on the first path and packets (Pk/2+1, '" , Pk) on the second path, assuming that k

is even. Let Tj, j E {1,.. - , np}, represents the total time needed for a path to clear

all packets assigned to it. Here, we have

T1 = + ... + Tk/2

T2 = 7Tk/2+1 +' + Tk

The file transmission delay D is given by:

D = max {T, T2}.
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For the case where k is much larger than np, we have

D T1  T2
k/2 T1/2 k /2

Since k is large, both paths will be busy in serving the packets. There is not much

we can do to further reduce the file transmission delay. However, in this chapter, we

focus on the case where k is not much larger than np.

Now, consider the case where a file consists of only six packets and nP = 2. We

assign packets (P1 , P2, P3) to the first path and (P4, Ps, P6) to the second path. If

any one of the two paths clear its packets first, it will remain idle while the other

path is transmitting its packets. We see that there is an non-negligible fraction of

system time wasted in idle instead of serving packets. A natural way to resolve the

above problem and reduce the file transmission delay is to do the following: assigning

packets (P1, P2, " , P6) on path one and transmitting these packets in this order;

similarly, assigning packets (P6, P5 ,... " P1) on path two and sending them in this

order. This way, whenever the destination received a total of six packets, the original

file can be reconstructed. Since both paths are transmitting packets (i.e., a faster

path can serve more packets than the slower path instead of waiting idly), the file

transmission delay will be reduced. In fact, the arrangement will minimize the file

transmission delay. Therefore, as we added redundant packets on each path, the file

transmission delay can be reduced. Now, we come to the first points that we want to

illustrate in this chapter: there is a relationship between the redundancy and the file

transmission delay.

With only two paths, the above transmission strategy achieves the minimum file

transmission delay. With np 2 3, it is not clear how to allocate packet on each path

so as to reduce the file transmission delay. In that case, we use digital fountain code

for transmission so that we do not have to worry about the assignment of each packet

on a particular path. All we need to concern is the total number of packets assigned

to a particular path. In the following section, we are going to present the trade-off

between coding and file transmission delay for two different cases: n < n, and n > np.
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5.3.1 Case I: n > n,

First, we consider the case where the number of packets in the file is greater than

the number of parallel paths. For convenience, we let k = 1 n, and n = m -n,.

As we mentioned before, sending a file using parallel transmission through multiple

paths requires the destination node to wait for all packets of the file to arrive. To

reduce the waiting time of the last few packets, we can add redundant packets to

the original file. In this section, we study the tradeoff between the file delay and

the amount of redundant packets added to the file. Specifically, we consider the file

delay of a single source and destination pair with np identical and disjoint paths

between them. We also define a transmission strategy to be a packet allocation

vector d = {al,a 2 , .. anp}, where ai denotes the number of packets that needs to

be transmitted on path i. The following lemma provides the optimal transmission

strategy for using the multiple paths.

Lemma 11. Given a set of identical paths between a source and destination pair, the

expected file delay is minimized when allocating packets evenly on each path.

Proof. See Appendix. OE

For a file with I n, packets, the source can encoded the file to m np packets. From

the above lemma, we know that allocating packets evenly on each path will result

in the minimum expected file transmission delay. Now, consider all of the np paths.

With each path assigned m packets, we define Ni(t) to be the number of packets that

had arrived the destination node by time t. To reconstruct the original file at the

destination node at time t, the following condition has to be satisfied:

np

E Ni(t) > 1 - np (5.1)
i=1

or

n Ni(t) 1 (5.2)
p i=1
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The file transmission delay is given by:

np

Z) = inf{t : Ni(t) > I np} (5.3)
i=1

As the number of path gets large, from the law of large number, we have

lim
lim - Ni(t) --- E[N(t)], (5.4)

np---,OO n p i=1

and the file transmission delay can be written as:

D = inf{t : E[N(t)] > 1} (5.5)

Now, consider a single path with m packets that need to be transmitted. Let N(t)

denote the total number of packets had arrived at the destination node by time t

for this path with a total of m packets. Similarly, let N(t) denote the number of

arrivals by the time t for a poisson process with rate y. For the case where the packet

transmission is exponentially distributed with rate p, note that the first m arrivals

of the process N(t) and N(t) are statistically identical. Hence, we can write the

expected number of packet arrived by time t as the following:

m co

E[N(t)] = i- P(N(t) = i) + m E P(N(t) = i) (5.6)
i=1 i=m+l

To get the file transmission delay, we need to first evaluate E[N(t)]. Expand Eq.
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(5.6), we have:

Z iP(N(t) = i)

m P(1(t) = i)
i=m+l

r(m)

m (it)ieI-t

i=1

r(m)

=m E i!
i=m+1

r(m + 1) - F(m + 1, At)
r(m)

1
(m- 1)"

Thus, we have

E (put)F(m, yt) + r(m + 1) - r(m + 1, pt)
E[N(t) =()

where
m-1 (GYi

r(m, jit) = r(m)e (,e- i!=0
i=O

Since E[N(t)] is a continuous function in t, the file transmission delay D satisfies

E[N(D)] = 1. The above equation for E[N(t)] is hard to solve in general. However,

when pL t = m, Eq. (5.8) will have a simpler form. In this case, we have

(pt)r(m, pjt) - r(m + 1, ,t) = -(/Lt)me - 1t = -m m e- m

and
mm e -m

E[N(t)] = m - 1)!
(mrn - 1)!

By using the Stirling approximation, we can further simplify the above equation as
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follows:

mm e-m mm e-m
E[N(t)]= m- (n-=m-m -

(m- 1)! m!
mme-m

m - m - mmem (5.10)

At this point, one may think that put = m is merely an equation that simplifies

E[N(t)]. However, as we will show later, the equation pt = m provides important

insight in obtaining the best coding and file delay tradeoff. First, let's examine

the implication of 1pt = m. This equation give rise to the following communication

scenario: Given a file that contains (m - m/27r)np packets, the source first encodes

the file into m -n, packets and transmits m packets on each path. To reconstruct the

file at the destination node, the destination node has to wait for (m - m/27)np

packets to arrive. The time takes for (m- v /7r)np packets to arrive the destination

node, or the file delay, is simply t = m/P.

For a file with a fixed size, it is intuitive to see that the file delay will decrease as

more redundant packets are added during the actual transmission of the file. However,

the above communication scenario only provides the delay for one specific code rate

(i.e., m/(m - m/2w)). It does not give us the file delay for other code rates. As the

source adds redundant packets for transmission, at the beginning a few redundant

packets may reduce the delay significantly while each additional redundant packet

may not reduce the file delay much. Without a complete code rate and delay curve,

it seems that we do not know how to achieve an appropriate balance between code

rate and delay. Nevertheless, we are going to show next a coding strategy that achieve

a good balance between the code rate and the file delay by using the equation tit = m.

First, we derive the minimum file transmission delay, denoted here as Dmin , for a file

with fixed size 1 . n, in the following lemma.

Lemma 12. Given a file with I -np packets, the minimum achievable file transmission

delay Dmin = .Ac
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Proof. The minimum file transmission delay is achieved by sending infinity number

of packets on each path. In this case, we have the expected number of arrival by time

t given by:

E[N(t)] = pt (5.11)

Because E[N(Dmin)] = 1, we have 9Dmin = 1/p. O

The following theorem presents a coding scheme that provides a good tradeoff

between the code rate and the file transmission delay.

Theorem 15. For a file with k = 1 -n packets, coding the file with n = nm np packets,

where

will result in a file delay that is O(v'l)/Il away from Dmin.

Proof. By letting /it = m, the expected number of packet arrived destination node

by time t is given by:

E[N(t)] = m - r

In order to reconstruct the file at the destination node, we must have E[N(t)] = 1

also. Combining the previous two equations, we have

1/ v + 1/(27) + 41 2m=( 22

The file transmission delay with m packets on each path will result in a delay

m
D=-

The difference of the above delay and D)min is given by:

rm-l 1 m2 - D, 1/ + + 41 -
1 1/V'+ V1/(27r)+41

472
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The above theorem states that using coding rate

(1/ v + V/1/(27r) + 41)21
2 1

we can achieve a file transfer delay that is asymptotically optimal. That is, let

D - Dmin

•min

we then have the difference between the delay obtained using our simple coding

scheme and the minimum delay goes to zero as I gets large (i.e., e = 1/O(v1)). This

idea is illustrated in the figure below. Here, for simplicity, we let pI = 1. The x-axis

of the plot indicates the file transmission delay. The y-axis denotes the number of

packet (per path) in the original file. Each curve in the plot represents a coding and

file delay tradeoff for a fixed number of packets assigned to each path. For example,

the top curve represents the coding and file delay tradeoff if we assign six packets to

each path. Let the x-axis and y-axis of the points A and B be represented by (Ax, A,)

and (Bx, By) respectively. Thus, if the original file contains By packets per path, the

file transmission delay will be Bx if we encoded the original file to six packets per

path. As for point A, if the original file size is still By = Ay, the delay will be Ax if we

encoded the original file with infinity number of packets on each path. The benefit of

using a code rate of infinity rather than 6/By is the reduction of the file transmission

delay by Bx - Ax. The reduction of a file delay for using a code rate of 5/By instead

of infinity is also shown in the plot. For the same file, the code rate of 6/By and 5/By

will result in a different file transmission delay. Obviously, depending on the source's

preference, one rate may be more suitable than the other. Using the transmission

strategy stated in Theorem 15, the resulting coding and file delay tradeoff is plotted

with a dashed line. As 1 gets large, this transmission strategy achieves a code rate

of almost one (i.e., the redundant packets is negligible comparing with the original

file size), and a file delay that is within O(v0)/p of the minimum file delay. Hence,
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Coding and file delay tradeoff
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Figure 5-1: Coding and file delay tradeoff.

Theorem 1 can serve as a practical guideline for adding redundant packets to the

original file in order to reduce the file transmission delay.

5.3.2 Case II: n < nP

In the case where the number of parallel paths, nP, is larger than the number of

encoded packets in a file, n, the expected file transmission delay can be obtained

without the assumption that nP is large. Assigning at most one packet to each path,

the expected file transmission delay will be the expected value of the kth largest

random variable out of the n random variables. Let Xi for i = 1, -- - , n denote the

arrival time of the ith packet. Then, let Si for i = 1, -- - , n denote the order statistics

of Xi. The expected value of S1 (i.e., the first arrival of n independent Poisson
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processes) is given by the following:

1E[Si] =

Due to the memoryless property of the exponential distribution, the expected inter-

arrival time between the first packet and the second packet is given by:

1
E[S 2 - S1] = 1

(n - 1)p

Hence, the file transmission delay, which is Sk, has the following form:

k-1 1
E[Sk] = E (5.12)

i=0

In the figure below, we plot the file transmission delay using different code rate (i.e.,

different n) for k = 10. We see that the reduction of file transmission delay can be

significant even with a moderate coding rate. From integration, we have the following:

1 In 1 1
E[Sk] - >- dx > E[S 1

np P •n-k+1 x (n- k + 1)[

or

1 k-i 1
In(1 - - ) + E[Sk]

1 1 (5.13)1 k-1 1< -- In(i - ) + .
AU n (n - k + 1) z

The term - ln(1 - --) dictates the decrease rate of the delay.

Now, consider the case where the number of packets in a file to be large while

still satisfying k < n < nP. We use Ni(t) as an indicator random variable to denote

whether the ith coded packet has arrive its destination node by time t. At the

destination node, to reconstruct the original file, we need the following to hold:

Ni (t) _ k (5.14)
i=1
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File transmission delay using parallel routing: k = 10

Code rate r = n/k

Figure 5-2: Coding and file delay tradeoff.

1 n kE1 N(t) > - (5.
n n

i=1

As the number of coded packet gets large, from the law of large number, we have

n

lim1 Ni(t) - E[NI(t)]. (5.
n--*oo n

i=1

15)

16)

Since N (t) is an indicator random variable, we can rewrite

E[Ni(t)] > -
n

P(Ni(t) = 1) > k-

Now, let Dp denote the transmission delay of a single packet. We will then have the
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following:

P(NI(t) = 1) = P(Dp < t). (5.17)

Again, let D denote the file transmission delay in this multi-users transmission sce-

nario. Then, the file transmission delay can be written as

k
D = inf{t : P(D, < t) > -I.

With exponentially distributed packet transmission delay, we have the file transmis-

sion delay given by the following:

1 k
D = -- n(1 - -) (5.18)

Note the similarity between the above equation and Eq. (5.13).

5.4 Delay-coding tradeoff for multiple source des-

tination pairs

In the previous section, we have considered adding redundancy to a file so as to

reduce the file transmission delay by using the multiple paths between the source and

destination pair. No other source and destination pair is using these multiple paths.

File delay is being reduced since we do not have to wait for the last few packets to

arrive. Now, if there are multiple users, or source destination pairs, are using these

paths, adding redundancy will increase the system load and queueing delay for each

packet. Consequently, the end-to-end delay (i.e., the transmission delay plus the

queueing delay) for each individual packet will increase. Hence in this section, we are

going to explore whether redundancy can still reduce a file transmission delay in a

multiple users environment.

Again, we assume that there are fp identical paths between the sources and the

destinations. The packet transmission delay distribution is the same for all paths.

Here, in the multiple users' environment, the packet transmission delay denotes the
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time interval that begins with a packet is being served at the source node to the time

that this packet reaches its destination node (i.e., not including the queueing delay).

For a particular path, the transmission delay of a single packet is an identical and

independently distributed random variable. Using the same argument as in the single

user case, we assume that the packet transmission delay is an exponential random

variable with rate of p. We also assume that there are N users in the system, each

generates file with a rate of Af files per second. Here, each file contains k packets. We

let n > k denote the encoded file size after adding the redundant packets. As we will

explain later, we assume that n << n, also. Again, the destination can reconstruct

a file as soon as the kth packet arrives at the destination. The transmission scenario

in the multi-users case is illustrated in the following figure.

N
I S

rS

\tS

np paths
n packets

Figure 5-3: Parallel transmission with multiple users sharing a set of identical paths.

Given a file with n encoded packets, using parallel transmission implies that each

path will be allocated at most one packet due to n, > n. We now describe a random

parallel routing scheme based on parallel transmission:

* Given a file with n encoded packets, the n packets will be randomly assigned

to the np paths, and no path will contain more than one packet.

Next, we will explore the coding and delay tradeoff in the multiple users environment

using the random parallel routing scheme.
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Consider a file with n coded packets. Since each packet will be randomly assigned

to a different path, we use Ni(t) as an indicator random variable to denote whether

the ith packet has arrive its destination node by time t. Note that Ni(t) are i.i.d

random variables since nP >> n. Hence, at the destination node, to reconstruct the

original file, we need the following to hold:

SNj(t) > k (5.19)
i=1

or
I n k

- Ni(t) > - (5.20)
n n

i=1

Similar to the previous section, as the number of coded packet gets large, from the

law of large number, we have

lim1 Ni (t) --+ E[Ni (t)]. (5.21)
n-oo0 n

i= 1

Since Ni(t) is an indicator random variable, we can rewrite

E[Nl(t)] > -
n

as
k

P(NI (t) = 1) > -.

Now, let DP denote the end-to-end delay of a single packet (i.e., transmission delay

plus queueing delay). We will then have the following:

P(NI(t) = 1) = P(D• < t). (5.22)

Again, let D denote the file transmission delay in this multi-users transmission sce-

nario. Then, the file transmission delay can be written as

S= inf {t : P(DP < t) > -}.
n
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Next, we want to obtain the distribution of D•,. The arrivals of packets to a particular

path is a poisson process with rate

A NAyn
np

This can be seen from the following reasons:

* There can be at most one packet from a file assigned to a particular path.

* The packets of a file are assigned to the parallel paths randomly.

* The file are generate according to a poisson process with rate Af.

Since the service time of each packet, or the transmission time, is an exponentially

distributed random variable with rate p, the distribution of the end-to-end delay of

a packet is the same as that of a M/M/1 queue. The total time of packet spent in

a M/M/1 queue is well known. Hence, Dp has the following cumulative distribution

function:

Fvo(t) = 1 - e- Po - p)t  (5.23)

where
A NAyn

Since D is defined to be Fvp(D) = k/n, we have the file delay given by:

--ln(1 - ý)
VD = ( (5.24)

/ (1 - p)

We define the original load of the network po as the following:

NAfk
Po-

npyu

Also writing the code rate r = n/k, the file delay can be rewritten as:

- In(1 - k)

I(1 - !Po)
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-In(1 - 1)
= r .(5.25)

A(' - rpo)

Examining the above expression, we see that the code rate has to satisfy the following

expression in order for the network to have a finite file transmission delay:

1
1<r<--.

Po

The following lemma shows that there exists a unique code rate which minimizes the

file transmission delay.

Lemma 13. Let
-l In(1- 1 )

f(r) = p( - rpo)

There exists a unique r* such that

f(r*) = inf f(r).
1<r<l/po

Proof. Taking the first derivative of f(r), we have

f1 ( 1 In(1 - )po
f (1 - rpo) r2(1 - 0) 1 - rPO

Setting f'(r) = 0, the stationary point satisfy the following equation:

In(1 - •)Po 1

1 - rPo r2(1_ )

which implies

[-ln(1 - )]r2(1 r) + = (5.26)
r r Po

We will first show that

g(r) = -[ln(1 - )]r2(1 -
r r

is a strictly increasing function of r. That is, we need to show that g'(r) > 0 for all
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1 < r < 1/po, or

1
g'(r) = -[ln(1 - -)](2r - 1) - 1 > 0

r
1 1

-= (1- -)<e 2r-1
r

Let y = 1 - 1, we then need to show that

r1-a

y < e l+-

for y E (0, 1). From the following inequality

eX>x+l for x<1,

we have
-_1 - y 

2
y

e 1++ > + 1= (5.27)
1l+y l+y

Indeed, we have
2y

1+y

since y E (0, 1). Thus, we have shown that g(r) is an strictly increasing function

for 1 < r < 1/po. It is straightforward to see the left hand side of Eq. (5.26) is

a continuous and strictly increasing function. Now, for an arbitrary po, we want to

show that there exists a unique r such that g(r) + r = 1/po. Since we already know

that g(r) + r is a strictly increasing function in (1, 1/po), we only to show that there

exists rl and r 2 such that g(ri) + ri < 1/po and g(r2) + r72 > 1po. To see that

there exists a rl E (1, 1/po) such that g(ri) + rl < 1/pao, we let r approaches 1. As r

approaches 1, g(r) will approach zero since

1
lim x(ln-) = 0.
x--0 X

Hence, we have g(r) + r approaches one, which is strictly smaller than 1/pao, as r

approaches one. Thus, we can always find rl such that g(ri) + rl < 1/po.
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To see that there exists an r2 such that g(r 2) + r2 > 1/po, we let r approaches

1/po from below. In this case, g(r) approaches the following

- ln(1 - o)]( )2(1 - Po) > 0.
Po

Hence, we can find r2 such that g(r 2) + r2 > 1/po when r approaches 1/po.

Let r* satisfy the following expression

1 1 1
[- n(1 - )](r*)2(1 ) + r* = (5.28)

7 * Po

for we have shown that r* exists. Examine the following term in f'(r):

( 1 In( - )Po
r2(1 1) 1 -rpo

For r < r*, the above term is less than zero, and greater than zero for r > r*. We see

the continuous function f(r) is decreasing for r < r* and increasing r > r*. Hence,

r* is the unique minimum of the function f(r). O

Given the load of the network Po, the optimal code rate that minimizes the file

transmission delay is the r* satisfy Eq. (5.28). For various value of po, we plot the

file transmission delay as a function of code rate r = n/k. In the bottom plot of Fig.

5-4, we plot a file transmission delay under a light load (i.e., po is small). The file

transmission delay decreases sharply as a few redundant packets are added. However,

the reduction of delay becomes small as more redundant packets are added. This

behavior is similar the one exhibited in the single source and destination pair case.

As we expected, when more and more redundant packets are added to the network,

the file transmission delay starts to increase. On the top plot of Fig. 5-4, a plot

of the file transmission with high load is shown. With a small code rate, the file

transmission starts to increase.

Intuitively, using parallel transmission will reduce the file transmission delay in the

single source and destination case. In the multi-users communication scenario, one

can employ a routing scheme, which is termed the serial routing scheme, that assign
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File transmission delay using parallel routing: po = 0.2, g= 1

1 1.5 2 2.5 3 3.5 4 4.5
Code rate r = n/k

File transmission delay using parallel routing: po = 0.9, 1 = 1

Code rate r = n/k
45

Figure 5-4: Comparison of the file transmission delay under different traffic load.

all n packets of a particular file to a randomly chosen path. At this point, it is not

clear that using parallel transmission with coding will have a shorter file transmission

delay than that of a serial routing scheme in the multiple users environment. We are

going to compare these two transmission schemes now.

For the serial routing scheme, the file arrival rate to each path is the following:

NA1
np

Since the path is randomly chosen and the the files are generate according to a Poisson

process, the file arrival to a particular path is also a Poisson process. On a particular

path, the service time for a file with k packets is a sum of k exponential random
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variable. So the path can be thought of as a M/G/1 queue. Let X and X 2 denote

average service time and the second moment of service time respectively. We then

have

k

k k2

It 2 P

The total waiting time for file, in queue and in service, is

ApX 2

Ds =X+
2(1 - ApX)

k ( + )2
- 2(1 N- f(k))

np

k po(l+ k)
= -+

p 2p(1 - Po)

Given a file size of k packets and a load of po, the minimum delay using the parallel

transmission, denoted here as D*, is achieved by using a code rate of r* given in Eq.

(5.28). In Fig. 5-5, we plot the file transmission delay for both parallel routing scheme

and serial routing scheme. Here, the service rate p is equal to one, and the number

of packets in a file k = 6. To get the minimum file transmission D* using the parallel

routing scheme, we first get Po for a given code rate r according to Eq. (5.28). From

this pair of r and Po, we can derive the minimum transmission delay according to

Eq. (5.25). In the figure, the file transmission delay of the parallel routing scheme is

much smaller than that of the serial routing scheme when the load of the network Po is

small. As Po gets large, the delay of the parallel routing scheme eventually surpasses

the delay of the serial routing scheme. Hence, we see that multipath parallel routing

with coding helps to reduce the file transmission delay only when the system load Po is

not too large. Note also that the number of packets in a file, k, will not affect the file

transmission when using the parallel routing scheme due to the random assignment

of packets on different paths. However, k will affect the file transmission delay of

the serial routing scheme. In fact, keeping the load po to be a constant, the file
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File transmission delay: serial routing v.s. parallel routing
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Figure 5-5: Comparison of the file transmission delay using the parallel routing scheme
and the serial routing scheme.

transmission delay increases linearly as k increases.

5.5 Conclusion

In this chapter, we explore the use of multipath routing to reduce the file transmis-

sion delay in a wireless network. By avoiding the long tail in the distribution of a

packet's transmission time, we show that the file transmission delay can be signif-

icantly reduced with only a few redundant packets in the single source destination

case. For a given file, an encoding strategy is provided to obtain a good code and file

transmission delay tradeoff. In the multiple users communication scenario, we show

that there exists a unique code rate, which depends on the traffic load of network,

that minimize the average file transmission delay. This optimal code is also presented

for a given load.

As for future research, we are planning to investigate the file delay under a differ-
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ent path model, where there are multiple hops on the path between the source and

destination nodes. Similarly, the file transmission delay in the case where each path

has a different average packet transmission time is also worth exploring.
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Chapter Appendix: Proof of Lemma 11

We first show that the above lemma is true for the case that there is no redundant

packets added to the original file (i.e., no coding). Consider the following packet

allocation vector a = {ml - 1, m 2 + 1, m 3 , *.. * , mp}. We will show that the expected

file transmission delay for the allocation vector a, denoted here as E[Da], is less than

the expected file transmission delay for an allocation b = {mx, m2, m3,... , mnp}

which is denoted as E[Db].

Now, we focus on the first two paths among these np paths. There are mi packets

that needs to be transmitted on path one and m2 packets that needs to be transmitted

on path two, where mi < m 2 . We denote the time takes for all m, packets on

path one to arrive the destination node to be Tm,. Likewise, the time takes for all

m2 packets on path two to arrive destination can be defined as Tm2. We then let

T(ml,m2) = max{Tm, Tm2 }. Hence, T(ml,m 2) is the time takes for all packets in both

paths to arrive the destination. Then, we consider another allocation of packets on

these two paths, with m - 1 packets on one path and m 2+1 packets on the other. The

terms Tmi-1, Tm2 +1, and T(ml-1,m2 +1) can be similarly defined. The time takes for all

packets on these two paths to arrive the destination is now denoted as T(m- 1 1,m2 +1)'

The allocation (ml, m2) is more balanced than (ml - 1, n 2 + 1) since m 1 < m 2.

Lastly, we define the To to be the time required for all packets on the other paths

to arrive the destination node. Then, we can write Da = max{T(m,-1,m2 +1), T} and

Db = max{T(m,,m 2),To}. By showing P(T(m,,m 2) < t) > P(T(m-1,m2+l) < t) for all t,

we can prove E[Da,] 2 E[Db].

Now, we show that P(T(mi,m 2) < t) > P(T(m1-1,m2+1) < t) for all t. That is, the

cumulative distribution function of T(mi,m 2) is greater T(m,-1,m2 +1) pointwisely, which

implies that the more balanced allocation (i.e., (ml, m2)) tends to have a smaller

transmission delay than the delay of the unbalanced allocation.

In order to get the cumulative distribution function of T(ml,m 2), we need to get an

expression for Tm1 . Consider path one with mi packets requires to be transmitted.

The arrival time of the mith packet at the destination is statistically the same with
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the arrival time of the m1th arrival in a poisson process with rate A. Hence, we can

write the cumulative distribution of T,, as follows:

P(Tm, < t) = P(N(t) > ml)

= k!
k=ml

The cumulative distribution function of T(mi,m 2) and T(ml-1,m,+1) are given by the

following:

P(T(ml,m2) < t) = P(Tmi < t) -P(Tm2 < t)
01)• (ILtre-pt) ( 00 (,Lt)k -4t) (5.29)

k=ml k=m 2

P(T(mI-l,m2+l) < t)0=( (,t)ke
P(TmE-m k!

k=m -1 k(5.30)

k=m2+l

To see that the cumulative distribution function of T(m, m2) is greater T(mi-1,m2 +1)

pointwisely, we expand the following expression:

P(T(m,m 2) < t) - P(T(m-1l,m2+l) < t)

S (k pt)k-!• c  -(t--  
(5.31)

k=ml k=m 2

k=1 (-1t)ke- t ) k (k= t)ke2+ t

k=mj-1 k=M2+1
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00 (1t)ke-pt
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(A t)ml-le-1) 
t

(M - ! )
k=m2 +1

( •lt)k e-&
(5.33)

(,It)k+m2! e-2"t k-
k=m2+1

(lt)k+m- 1  e
k( -2t- 1)k! (m, - 1)!)

Examining the above expression, the first sum contains more summand then the

second sum does since mi < m 2. We can thus rewrite the above expression in terms

of the difference of summand in the summation. Specifically, we have the following:

km!m2!
k=mn+1

(,,t)k +mi - 1

k(m l- 1)!) 2"t

1 1
M2 + T(M2) (1 V (5.34)

+ 1 1
( (ml + 1)mnl (m2 + 2)(m2 + 1

- - t""t -L + 1

(mrt2)!(M 1  - 1)t) +

Since mi < m2, we will have P(T(m,,m2) < t) > P(T(m,-1,m2+1) < t) for all t.

The expected packet transmission delay of allocation vector d and b are given by:

E[Da] = 1 - P(Da < t) dt
= 0 (5.35)= 1 - P(T(m-',m+1) -t)P(To < t) dt

MI1O2 1
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00

E[Ab] = 1 - P(Db < t)bdt
(5.36)

= j 1 - P(T(m,m 2) • t)P(To < t) dt

Since P(T(m,,m 2) < t > P(T(mi-1,m2 +1) < t) for all t, we have E[Db] 5 E[Da]. This

implies that we can always obtain a smaller file transmission delay if we try to balance

the packets allocated to any two paths. Hence, the optimal transmission strategy is

to allocate packet evenly among the available paths. Because the transmission delay

for each packet is independent, the expected file transmission delay will be minimized

by allocating packets evenly on each path for the case the file is coded.
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Chapter 6

Conclusion

In this thesis, we address the question of how to utilize a wireless channel in an

efficient and fair manner. With finite bandwidth available, users in wireless system

often have to compete for the access of the channel. By allowing users to behave

selfishly, we try to obtain an allocation algorithm that is distributed and robust.

Specifically, in the downlink case, we apply an auction algorithm to the problem

of fair allocation of a wireless fading channel. Using the second price auction mecha-

nism, we are able to obtain the Nash equilibrium strategies for general channel state

distribution. Our strategy allocates bandwidth to the users in accordance with the

amount of money that they possess. Hence, this scheme can be viewed as a mech-

anism for providing quality of service (QoS) differentiation; whereby users are given

fictitious money that they can use to bid for the channel. By allocating users different

amounts of money, the resulting QoS differentiation can be achieved.

We find the unique Nash equilibrium strategy for certain commonly used channel

state distribution. We also show that the Nash equilibrium strategy for the second-

price auction leads to an allocation at which total throughput is no worse than 3/4

the maximum possible throughput when fairness constraints are not imposed (i.e.,

slots are allocated to the user with the better channel) under uniform distribution.

Moreover, the equilibrium strategies leads to an allocation that is pareto optimal.

Based on the Nash equilibrium strategies of the second price auction with money

constraint, we also propose a centralized opportunistic scheduler that does not suffer
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the shortcomings associated with the proportional fair and the time fraction fair

scheduler. Using the all-pay auction mechanism, we are able to obtain a unique Nash

equilibrium strategy. Our strategy allocated bandwidth to the users in accordance

with the amount of money that they possess. Hence, this scheme can be viewed as

a mechanism for providing quality of service (QoS) differentiation; whereby users are

given fictitious money that they can use to bid for the channel.

Nevertheless, in the second price auction, the problem of how to obtain the mul-

tiplicative constant in user's equilibrium bidding strategy using a computational ef-

ficient way has yet to be explored. Also, to make our proposed centralized scheduler

(based on the Nash equilibrium strategy) suitable for real time implementation, an

algorithm that does not require the prior knowledge of channel distribution but still

results in the Nash equilibrium allocation for each user will be an important topic for

the future research.

For the uplink, we studied the scenario where multiple users competing, in a

non-cooperative manner, for the access of a single satellite, or base station. With a

specified capture rule and an average power constraint, users opportunistically adjust

their transmission power based on their channel state to maximize their throughput.

We characterized the Nash equilibrium power allocation strategy and quantified the

resulting throughput efficiency loss, due to selfish behavior. As the number of users

increases, the Nash equilibrium power allocation strategy approaches the optimal

power allocation strategy that can be achieved in a cooperative environment.

With multiple channels available for communication, we again investigate how to

better utilize these multiple channels available in a satellite network. Specifically,

we use pricing as a mechanism to control users' transmission probabilities and ex-

ploit different channel qualities to coordinate transmission among users. Hence, the

throughput performance of the system is improved. We also characterize the Pareto

optimal throughput region for both single satellite network and multiple satellites

network. We show that users' throughput is Pareto optimal at the equilibrium price.

The characterization of the Pareto optimal throughput region for multiple channels

with time varying channel states can be a possible direction for the future research.
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To further exploit the multiple channels available for transmission, we study the

use of multipath routing to reduce the file transmission delay in a wireless network.

By avoiding the long tail in the distribution of a packet's transmission time, we show

that the file transmission delay can be significantly reduced with only a few redundant

packets in the single source destination case. For a given file, an encoding strategy is

provided to obtain a good code and file transmission delay tradeoff. In the multiple

users communication scenario, we show that there exists a unique code rate, which

depends on the traffic load of network, that minimize the average file transmission

delay. This optimal code is also presented for a given load. As for future research, we

are planning to investigate the file delay under a different path model, where there

are multiple hops on the path between the source and destination nodes. Similarly,

the file transmission delay in the case where each path has a different average packet

transmission time is also worth exploring.
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