
Semi-Automatic Wrapper Generation

for Semi-Structured Websites

by

Gabriel Zaccak

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Massachusetts Institute

May 2007

of Technology 2007. All rights reserved.

A uthor ...
Department of Electrical Engineering and Cozputer Science

May 23, 2007

Certified by.................

Principal Research Scientist
Thesis Supervisor

Accepted by
. Wg w .

y h t

Aa Der thu r S th
Chairman, Department Committee on Graduate Students

MASSACHUSETTS INSMUTE
OF TECHNOLOGY

[AUG 16 2007
ARCHVES

L.LIBRARIES

Wrapster:

2

Wrapster: Semi-Automatic Wrapper Generation for

Semi-Structured Websites

by

Gabriel Zaccak

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2007, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Many information sources on the Web are semi-structured; hence there is an oppor-
tunity for automatic tools to process and extract their information for easy access
through a uniform interface language. Wrapper generation is the creation of wrap-
pers which contains scripts that extract and integrate data from data sources, mostly
from Web data sources due to the large amount of data available on the World Wide
Web. Despite ongoing efforts to automate the process of wrapper generation, wrap-
pers frequently break due to formatting and layout changes in data sources.

This thesis presents Wrapster, a new system that semi-automatically generates
wrappers for semi-structured Web sources, improves wrapper robustness, and elim-
inates the need for programming skills and, to a large extent, the process of script
creation. Wrapster's novel component is the repairing module that constantly checks
if any wrapper script has failed and repairs the failing wrapper's script using stored
extracted instances. In addition, Wrapster provides an interactive Web user inter-
face to control the wrapper generation process, edit the generated wrappers, and test
their scripts. Wrapster is being tested on the START Question Answering system;
however, it is a generic tool to be used by any QA system that uses the Web as its
knowledge base.

Thesis Supervisor: Boris Katz
Title: Principal Research Scientist

3

4

Acknowledgments

With the deepest gratitude I wish to thank my advisor, Dr. Boris Katz, for his

inspirational ideas, insightful feedback, and constructive criticism.

I would also like to acknowledge and express my gratitude to my colleagues and

friends Wisam Dakka, Fadi Biadsy, Luke Zettlemoyer, Ali Mohammad, Federico

Mora, Yuan Shen, Sue Felshin, Raj Singh, Igor Malioutov, Gregory Marton, and

Gary Borchardt for dedicating their time to discuss new ideas, proofreading my the-

sis and providing constructive feedback. Without your support and comments some

of the ideas in this thesis would not have come to fruition.

I am grateful to my academic advisor, Prof. Randall Davis for supporting me and

guiding me since my arrival to CSAIL.

I also would like to thank my previous mentors Prof. Michael Elhadad, and Moisei

Rabinovitch for teaching me and giving me the opportunities to learn, and Sofia

Yoshimoto for her support and encouragement through the difficult times at MIT.

I am most indebted to my family. Thank you for your concern, encouragement,

and support.

This is dedicated to you!

5

6

Contents

1 Introduction 13

1.1 M otivation . 13

1.2 Applications 17

1.2.1 Price Engines . 17

1.2.2 Question Answering . 18

1.2.3 News Tracker . 19

1.2.4 Wrapper Generation for End-Users 21

1.3 Basic System Outline and Assumptions 21

1.3.1 Components . 21

1.4 Thesis Overview . 24

2 Related Work 25

2.1 Wrapper Generation . 25

2.1.1 Wrapper Induction . 25

2.1.2 Automatic Wrapper Generation 27

2.1.3 Interactive Wrapper Generation 28

2.1.4 Wrapper Generation for End-Users 28

2.2 Tree Data Structures and Algorithms 29

2.2.1 Tree Edit Distance . 30

2.3 Classification . 31

3 Template Creation 33

3.1 Tree Mapping . 33

7

3.2 Region Identification . 34

3.3 Region Clustering . 37

3.4 Classification . 38

3.4.1 Features . 38

3.5 Annotator Tool . 39

3.5.1 Automatic Annotation . 40

4 Wrapper Induction 45

4.1 Script Generation . 45

4.1.1 Pattern Induction . 46

4.1.2 Region Focuses . 46

5 Semantic Annotation 47

6 Wrapster User Interface 51

7 Repair Module 55

8 Experiments and Results 59

8.1 Classification . 60

8.2 Comprehensive Evaluation . 60

9 Conclusion and Future Work 65

9.1 Contributions . 65

9.2 Future Work . 66

8

List of Figures

1-1 Garden State Web page from IMDB site 15

1-2 300 movie Web page from IMDB site 16

1-3 Froogle's result page for Larry Wasserman's All of Statistics book. . 18

1-4 START's answer for the question "What is the capital of India?" . 20

3-1 Tree mapping of Fahrenheit 9/11 movie Web page aligned with Garden

State movie Web page from IMDB site 35

3-2 Screen shot of Garden State movie Web page from IMDB site 36

3-3 Annotator tool screen shot of the List data page. Selected options

appear at the top and all selected training data items appear below;

the first two items can be seen here. 41

3-4 Annotator tool screen shot of the List data page, zooming on one

training data item . 42

3-5 Annotator tool print-screen of the Upload page. 42

3-6 Annotator tool DTD of training data XML input format. 43

3-7 Annotator tool screen shot of the Manual annotate data page. The

above training sample is a comparison between a "Trivia" and an

"Awards" region. The Annotator Tool decided that those regions do

not match since the classification score is -1.86 outside of the threshold

range. 44

3-8 Annotator tool screen shot of the Batch automatic annotate request

page 44

9

5-1 United States population region extract from The World Factbook Web

site (a) and the corresponding HTML source (b). 48

5-2 The Good Shepherd movie director region extract from the IMDb Web

site (a) and the corresponding HTML source (b). 48

6-1 Wrapster web user interface main page 52

6-2 IMDb Sean Connery Web page opened using Wrapster HTML proxy 52

6-3 Wrapster Web user interface editing the IMDb wrapper 53

7-1 Screen shot of Garden State movie Web page from 2006 IMDB site 56

7-2 Screen shot of Garden State movie Web page from 2007 IMDB site 56

7-3 Garden State movie HTML code from the IMDb site (a) 2006 layout

(b) 2007 layout. 57

10

List of Tables

1.1 Wrapster input examples for IMDb and Weather Channel. 22

8.1 Evaluation dataset. 59

8.2 SVM training data . 60

8.3 SVM feature sets and performance on all training data 61

8.4 SVM feature sets and performance on IMDB movie training data . . 61

8.5 Wrapper generation content discovery 62

8.6 Wrapper generation whole evaluation on the updated Web sites on

April 23rd 62

11

12

Chapter 1

Introduction

Semi-structured resources constitute many of the available information sources, es-

pecially on the Web and this trend is likely to increase. Information extraction from

semi-structured data uses wrappers. A wrapper is an automatic method for infor-

mation extraction from a semi-structured source, and "wrapper induction" is the

field of research whose goal is to generate a wrapper by generalizing over a set of

examples [18]. Although semi-structured sources possess syntactic regularities, it is

not trivial to process and extract information from those sources. The main issues

that wrapper generation systems deal with are scalability and flexibility. Scalability

concerns the multiplicity variations of layout and format between many sites, and

flexibility concerns the robustness of the wrappers to frequent layout and format

change.

1.1 Motivation

To better illustrate the problem, let's look at an extract of the Web page from the

Internet Movie Database' (IMDb) for the movie Garden State (Figure 1-1). The

page contains a top panel, a left panel, and a main section. The top panel has the

IMDb logo and some links to the site services. The left panel consists of search

boxes and a list of links to related and non-related Web pages. The main section

'http://www.imdb.com

13

contains the movie's properties such as the director, the genre, and the actors. A

wrapper generation system needs to identify the regions of relevant information on

the page, associate those regions with semantic values, and create a wrapper for the

data resource that represents a general form of the page. In this example, the page is

in HTML format and is populated from a database of movies and their properties. It

is generated by a filling a movie template with the movie properties. We can notice

that properties are in different format such as a single value for year-of-release, a list

of values for genre, and a table for the cast. The wrapper works as a smart index of

such pages and is able to identify the properties and extract their values for use by

information extraction systems. Automating this task is not trivial, even though the

page is a simple structured Web page. For example, how can a wrapper generation

system identify that the picture under the movie's title is the movie poster and not

the picture of the director when there is no textual indicator. The same difficulty

applies to the movie title and year of release properties. In other cases where there are

textual indicators such as the director property, it is easier to identify the information

and its meaning. All wrapper generation systems' goal is to be able to extract this

information even if the textual clue "Directed by" and the property location change.

After the wrapper has been created, it can identify the movie properties for any

movie page from the IMDb site and, for example, should identify Zack Snyder as the

director of the movie 300 (2006) even though the layout has changed (Figure 1-2).

Existing wrapper generation systems for structured sources and for semi-structured

sources do not make use of the global document structure and are dependent on a

large training set. Newer systems have focused on building end-user wrapper induc-

tion gadgets that reduced the amount of training data needed, leveraged the hierar-

chical structure of HTML, and learned patterns by aligning multiple example trees

using a tree edit distance algorithm. Wrapster has built on these ideas; it represents

the full semantics of the page, adds automatic testing and repair facilities, and partly

automates the labeling process.

This thesis extends previous work in several significant ways for automated wrap-

ping of semi-structured resources, and presents an underlying language for the setup

14

FREE TRIALI

= w D
Home I Tou Movies I Potos I nduInident Film B I HrI p.

All V

Resut: 1 of 20

(4 x ga I?

MoELN xtm Ie IWIE M.=mr ft ee trial

sP w d fas

main details
combined details
Ml cast and crew
company credits

external reviews
Snewsoroup revfews

awards & nominallons
Suserrafgs
recommendabons
message board

plotkeywords
mazon cor summar

menmable quotes

r Mwaf

Garden State (2004)
Directed by
Zach Braf

Writing credits
0ARE SA Zach Bralff(wniftenby)

AddA to N % Potos IMDbPro Profwwunul Deta&s

Genre: Drama / /Romance (mare)

Plot Outline: A quietly troubled young man returns home for his modher's fineral afer being
estrangedfrom his family for a decade. (more) (view)

User Comments: life is a state of mind (more)

User Rating: g . ' g . .0/10 (42,851 votes) S

Cast overview, first billed only:

Zach Braff Andrew Largcmmi

Kenneth G Busboy

George C. Wolfe Restarant Manager

Austin yy Waiter (as Austin Lusy)

Gary G.... Young Holywood Guy

Jil Fliot Obnoxious Gid

Figure 1-1: Garden State Web page from IMDB site

15

EarthsBg st 4ove Database"

*i E TV | M V-/ IMIb ME SAGE I S
LANG NEWS MOVIES VIDEO TV BOARDS &TCET

Home I Top Movies I Photos Independent FilmIGameBase Browse I Help
seac All. mom I tips

>Mb 300 (2006)

Onicklinks
main details 4

Top Links

- ful cast and crew
-tchkE
-official tes
-menmorable es
Overview

-combined details
-ul cast and crew

Promotional
-toollines

- osers
-Phoo aellerv

Awards & Reviews
-user cmments
- ee reviews

- recommendations
- messeae board

at- &,n-

300 (2006)

Directed by
Zack Snyder

Writing credits (WGA)
Zack Snyder (screenplay) &
Kurt Johnstad (screenplay) .
"lorei

Register or login to rate this title

User Rating: 8.110 mi923 votes)

Mo11,

Showtimes & ickets (Register to personalize)

Release Date:

Genre:

Tagline:

Plot Outline:

Plot Keywords:

User Comments:

9 March 2007 (USA) morel viewtraller

Action! History/War morep

Prepare for glory! morel

Based on Frank Miller's graphic novel about the Battle of Thermopylae in 480 B.C. morel
Based On Comic Book ! Bare Butt ! Severed Leg / Gore ! Betrayal morel

Stupendous movie makingl A masterpiecel! more l

Cast(castoverview. first billed only)

Gerard Butler

Lena Headey

... King Leonidas

. Queen Gorgo

Figure 1-2: 300 movie Web page from IMDB site

16

and extension of this system. Given a set of Web pages that describe related objects,

and the names of those objects, Wrapster incrementally forms a common template

that captures relevant slots for extraction from the pages by comparing the related

Web pages and using a metric of tree edit distance. Next, Wrapster labels relevant

regions using a trained classifier with region content and its context as features. Then,

the system induces the value type for the discovered properties (e.g.number with pos-

sible units of measure, text, named entity, list of values, or table of values). The

system uses this type specification and constructs robust scripts to extract type of

values for the specified properties. Because wrapper scripts are generated on the ba-

sis of the conceptual organization of the semi-structured site, and not tied to specific

formatting choices. Therefore, the scripts accommodate small and even medium-sized

formatting differences. In addition, the system can be configured to generate scripts

that identify named entities within value strings, or that standardize accessed val-

ues in a suitable manner for use in answering complex questions within a question

answering system.

1.2 Applications

Price engines, question answering systems, news trackers and web manipulating tools

are several of many applications which require robust wrapper generation systems.

1.2.1 Price Engines

Price engines, such as Froogle2 and PriceGrabber3 , have become very popular in the

past few years. A price engine is a search engine that finds the best prices for specific

items such as books and computer hardware. It searches, indexes all items from

retail sites on the Web, and then identifies similar items for comparative purposes.

For example, if a user searches for the price of Larry A. Wasserman's book, All of

Statistics, the above price engines should provide a list of online retailers that offer
2http://www.google.com
3http://www.google.com/products

17

Web !iMmaews Froogl _ M kB more a

troogie -------ssnna

Caegosy Price range Stores Meichant rating
Books, Music & Vidso Under $60 Abebooks 4 stas and
Books Barnes & Noble.com 3 stars and up

590 -4125 BaMesAndxoble.com 2 stars and wm
5125-$225 Biblo.com Has aratin
Over $225 sew More

I to L>n More y

vw- Umwy~sSodtby relevance ~

joSearch for na ao fte"~c Larry Wasman near you loti~ Yourzpo f qur Lj

AN of 8tasilca
Lery Waseen, Huancover, Senes: Sprnger Texts in Statistics Ser.,
Englah-langusge edition, Pages:442, Pub by Springer-Vedag New York,.
Add to Shopping List

AN of Stalsilc: A Concise Course in Statistical
San on AN of Satildcs: A Concise Course in Statistical inference at
Books-A4-lion.This book is for pee who want to lean priVMy ...
Add to Shoppin List

$33 -Silo

$73 -$136
compare i6 prcs

Figure 1-3: Froogle's result page for Larry Wasserman's All of Statistics book.

the book for sale (Figure 1-3). They also provide advanced search features, such as

sorting the items by price or by merchant rating. Price engines use manually created

or semi-automatic wrappers that require a lot of maintenance and technical skills.

They are not flexible enough to support format changes and lack automatic repair

facilities since they usually look for specific keywords in the searched page. Wrapster

is robust to such changes, identifies the item's properties for indexing by price engines,

and provides automatic wrapper repairing.

1.2.2 Question Answering

Given a collection of documents question answering systems retrieve answers to ques-

tions posed in natural language. They return precise answers, as opposed to search

engines that return lists of whole documents. Complex question answering require

the integration of nuggets of information from multiple data resources. An answer to

the complex question "What is the population of the capital of India?" involves two

queries. First, the system acquires the value for the capital of India and then queries

for the population of the acquired value (Figure 1-4). Therefore, question answering

18

systems can benefit from unified access to information residing on the Web. One

such system is START4, a high-precision question answering system, which uses the

Web as part of its knowledge base [31, 28, 29]. START uses a system called Omni-

base [30] as its uniform access interface to the Web. The main portion of Omnibase

is a database of scripts that extract information from various websites. Omnibase

uses an object property value relational model, and the execution of a script gen-

erates the value of a predefined property from a predefined site. A wrapper for a

site constitutes all the scripts that belong to it, with their corresponding property

names. These scripts are manually written and include low-level regular expressions

that extract information. Moreover, these scripts are tailored to the specific sources,

and are not robust to format and layout changes. An effort to tackle these issues

led to the creation of Hap-Shu [441, a system for locating information in an HTML

document, which abstracts the scripts from low-level regular expressions and HTML-

specific vocabulary to text landmarks. Hap-Shu introduced a new set of commands

that selects information based on context and type. This tool has facilitated the

manual creation of wrappers but it fails with format changes, such as paraphrasing,

and such layout changes as a change in content representation. In addition, this tool

still requires programming skills and the use of regular expressions inside scripts for

user-presentation purposes.

Wrapster tackles these issues and eliminates the need for programming skills and,

to a large extent, the process of scripts creation. It has been successfully deployed

on START; however it is a generic tool to be used by any information access system

that uses the Web as its knowledge base.

1.2.3 News Tracker

News trackers such Google News, and Event Monitor 5 need a uniform way to access

news stories from varied online news Web sites.

Google News uses wrappers to extract the title name, abstract (if one exists) and

4http://start.csail.mit.edu
5 http://www.eventmonitor.com

19

START's reply

-> What ishe o 1 of the cital f India?

I know that India's capital is New Delhi India (source: START KB).

Using this information, I determined what is the population of New Delh, India:

The of New Deh, India is 7,174,755.

Source: START KB

+ Go back to the START dialog window.

Figure 1-4: START's answer for the question "What is the capital of India?"

text of news articles from many online newspapers. It then clusters the news articles

by similar topic and presents the clustered articles on its Web pages ordered by topic.

Each cluster is presented with the title of the highest ranked article, a brief extract

of the text and the links to all news sources that have published the same story.

Many startup companies, such as Event Monitor, have emerged recently to provide

investment management firms and trading operations with an analysis and recommen-

dations about the market and their investments. Their ultimate goal is to provide

smart automatic agents that correctly invest the company's resources and create more

value for the company. However this goal is not yet achieved. The state-of-the-art

systems are recommendation systems that track business news articles and generate

warnings or risk factors about each of the company's investments. For example if a

company investment is being sued for patent infringement, the system might recom-

mend examining a particular investment again and send a message to the management

for immediate attention. Such systems are built on top of wrappers that extract rel-

evant information from business newspapers and online resources. The robustness of

wrappers is crucial for such companies to be able to receive accurate analysis.

20

With Wrapster, such systems can easily add more data sources without the need

of programming skills, and generate wrappers that are robust to layout and format

changes. Wrapster's repairing module constantly checks if any wrapper's script is

failing and immediately fixes the failing scripts using the stored extracted Web page

instances for that script.

1.2.4 Wrapper Generation for End-Users

End-user systems, such as Sifter [25] and Threster [22], allow users to enhance their

browsing experience with expert tools and provide services such as sorting a list of

items on a Web page in an order that is not provided by the site. Usually they are

built as browser extensions, and are intuitive to the non-expert user. They require no

training but are not robust to format changes and do not make use of global document

structure.

1.3 Basic System Outline and Assumptions

The input for Wrapster is the set of objects and their Web page links on a site

(Table 1.1). The output is a wrapper that consists of a finite set of scripts and their

corresponding semantic labels that represent the properties of the site.

1.3.1 Components

Wrapster consists of the following five modules:

1. Template Creation: This module creates a general template that identifies and

marks the relevant information from the pages of the data source. Wrapster

incrementally constructs the template the pages share. Wrapster computes

the alignment between a small subset of pages using the tree edit distance

technique [12, 13, 16, 20, 41, 27]. Using the alignment, Wrapster identified

and discards the elements in common, and leaves us with the relevant slots for

extraction. Then, Wrapster clusters the slots from all the aligned pages using

21

IMDb (The Internet Movie Database, www.imdb.com)

La Dolce Vita http://www.imdb.com/title/tt0053779/
Finding Neverland http://www.imdb.com/title/tt03O8644/
Memoirs of a Geisha http://www.imdb.com/title/tt0397535/

Weather Channel (www.weather.com)

Lima, Peru http://www.weather.com/outlook/travel/businesstraveler/
local/PEXXOO1 1?from=search-city

Paris, France http://www.weather.com/outlook/travel/businesstraveler/
local/FRXX0076?from=search-city

Boston, MA http://www.weather.com/outlook/travel/businesstraveler/
local/FRXX0076?from=search-city

Table 1.1: Wrapster input examples for IMDb and Weather Channel.

a trained classifier [45], creates regions of neighboring slots, and identifies data

structures such as lists and tables comparing the HTML structural and content

similarity. Wrapster only needs a few examples of training data because it uses

a variation of active learning technique [19]. Given a new set of unlabeled data

it classifies the data and then retrains the classifier expanding the training data

with new classified instances that have high confidence classification score. See

Chapter 3 for an in-depth discussion of template creation.

2. Wrapper Induction: After identifying the content regions of the the source

pages, Wrapster creates the scripts that extract the information from the tem-

plate created in the previous step. In addition, it creates scripts with different

focuses, i.e., a response for question fusion needs to be precise for value compar-

ison while other question types prefer HTML fragments as answers for human-

friendly display purposes. The generated scripts comprise the wrapper for the

data source. They are written in a high-level description language that abstracts

away from HTML-specific vocabulary and low-level regular expressions. As a

result, such scripts are robust to format and layout changes, in contrast to regu-

lar expressions and high-level tag paths that break easily with such changes and

22

need constant maintenance. See Chapter 4 for more information on wrapper

induction.

3. Semantic Annotation: The annotation module attaches semantic labels to the

wrappers' scripts. Wrapster labels the regions using a trained classifier with

features such as context and type of value. It is important to give meaningful

labels to the scripts instead of using randomly generated ones for reasons such

as facilitating the annotation process that maps properties to English sentences

and paraphrases. See Chapter 5 for more information on semantic annotation.

4. User Interface: The graphical user interface displays the wrapper generated in

the previous steps and asks the user to approve that the wrapper includes the

relevant properties and correct labels. The user can add, delete and modify the

regions, change the labels, and then approve the deployment of the wrapper to

the online system. This verification step is optional but crucial to high-precision

question answering systems such as START. See Chapter 6 for full description

of the developed Web user interface.

5. Repair Module: The repair module is a background service that constantly ver-

ifies the wrapper's correctness. When scripts fail, the system tries to repair the

failing scripts if possible or else regenerates the wrapper. Wrapster repairs fail-

ing scripts by finding the most similar region on the object's page that matches

the stored extracted instances of the script. Wrapster uses the same trained

classifier from the template creation module. The verification component deals

successfully with frequently updated resources such as The Weather Channel

and Yahoo Stocks. Although the scripts were built to be robust to format

changes, this component is a safety net in cases of total format changes or word

paraphrase changes. See Chapter 7 for more information on the repair module.

23

1.4 Thesis Overview

Chapter 2 describes related work. Chapters 3 through 8 explain in detail Wrapster's

five components. Chapter 9 summarizes the results and contributions of Wrapster,

and describes possible future work.

24

Chapter 2

Related Work

2.1 Wrapper Generation

Wrapper generation is the creation of wrappers which contains scripts that extract

and integrate data from data sources, mostly from Web data sources due to the large

amount of data available on the World Wide Web. A Wrapper can be seen as a set

of specialized programs that extracts data from a data source such as a Web site

and manipulates the information into a suitably structured format to enable further

processing. Usually after creating a wrapper for a Web site, the wrapper is post-

processed and annotated with semantic properties. This process enables the extracted

data to be further manipulated by other specialized programs. For example, an answer

to "What are the 10 richest countries?" might require the question answering system

to request the GDP field of all countries from a country site wrapper, sort the answers

from richest to poorest, and present the 10 highest answers.

In this section I will describe the various approaches developed to automate the

process of wrapper generation.

2.1.1 Wrapper Induction

Wrapper induction is a method that generates wrappers automatically using machine

learning techniques. In wrapper induction, wrappers are generated from a set of ex-

25

amples by computing a generalization that explains the observations. This process is

usually supervised, because it requires expert intervention to label training examples

and manually correct exceptions that cannot be generalized by the learning algorithm.

Nikola Kushmerick introduced the term "wrapper induction". In their WIEN

system, Kushmerick et al. [32] used a four-feature wrapper induction: HLRT, which

stands for Head, Left, Right, and Tail regular expression patterns of the property to

be extracted. Muslea et al. [39] have introduced STALKER, a hierarchical wrapper

induction system. STALKER uses greedy-covering, an inductive learning algorithm,

which incrementally generates extraction rules from training examples. The rules

are represented as linear landmark automata. A linear landmark automaton is a

non-deterministic finite automaton where transition between states is allowed if the

input string matches the rule for this transition. In each step, STALKER tries to

generate new automata for the remaining training examples, until all the positive

examples are covered. The system's output is a simple landmark grammar where

each branch corresponds to a learned landmark automaton. Hsu et al. [24] used finite

state transducers as their model in their SoftMealy system. In contrast to WIEN,

the SoftMealy and STALKER systems' representations support missing values and

variable permutations, and require less training examples.

There are also more general wrapper generation systems, such as RAPIER [7, 8]

and WHISK [42] that extract information from unstructured text data. Given a hand-

tagged template, these systems learn pattern-matching rules to extract the tagged

information in the template.

The bottleneck in all the above systems is the labeling of training examples. Each

system uses different wrapper representations and requires technical users to annotate

input examples. In addition, it is hard to compare the above systems because of the

different underlying representations.

Wrapster addresses representational issues and introduces a general language that

describes the wrapper, independently of the system's model. In addition, it reduces

the amount of training and labeled examples and gets us closer to the goal of unsu-

pervised wrapper induction.

26

2.1.2 Automatic Wrapper Generation

Different approaches have been developed for detail pages and list pages. A detail

page is a page that focuses on a single item (see Figure 1-1). A list page is a page

that lists several items (see Figure 1-3). Previous work developed separate systems

to deal with each data type. Wrapster currently handles detail pages; however, it

detects and extract lists from details pages such as a list of actors in a movie detail

page as described in detail in Chapter 3.

Wrapper Generation for Detail Pages

Crescenzi et al. [14] developed RoadRunner. RoadRunner proposes a matching al-

gorithm to infer union-free regular expressions from multiple pages with the same

template. The resulting regular expressions are then used to extract data from other

similar pages. This approach has been improved by Arasu et al. [3], who presented

a polynomial time algorithm by using several heuristics. The input for such sys-

tems is similar to Wrapster's input and they also require several pages from the same

template. Systems developed for this task need to deal with the following:

* Pages contain irrelevant information such as advertisements and user comments

which wrapper generation systems need to discard.

" Not all pages contains the same set of fields; therefore, wrapper generation

systems need to handle missing and extra fields.

Wrapper Generation for List Page s

This subfield is also known data record extraction. It has been shown by Liu et al. [35]

that one input page is sufficient for for this task. Wrapper generation systems for list

pages first identify data record boundaries and then generate patterns to extract the

data records their properties.

Embley et al. [17] conducted a study to automatically identify data record bound-

aries. Their method is based on set of heuristic rules such as tag repetition and

ontology matching. Buttler et al. [6] proposed additional heuristics such as partial

27

path heuristic and eliminated the need for a domain ontology which is costly to build.

However, those methods do not extract data records. Chang et al. [9] proposed to

find patterns from HTML tag strings based on Patricia trees and sequence alignment

to extract the data items. Liu et al. [35] proposed MDR which only identify data

records. Zhai et al. [47] improved the MDR using visual rendering information to

deal with erroneous HTML tags and then applied partial tree matching to extract

the data record contents. Reis et al. [41] used tree matching to find article content

from Web newspapers.

2.1.3 Interactive Wrapper Generation

Interactive wrapper generation is also called visual wrapper generation. Such an

approach provides specialized pattern specification languages to help the user con-

struct data extraction programs. Interactive wrapper generation systems hide their

complexities under a graphical user interface.

Systems that follow this approach include WICCAP [34], Wargo [40], Lixto [4],

DEBye [33], Dapper', etc.

In contrast to these systems, Wrapster provides an infrastructure that manages a

large number of sites and provides an interactive web interface to edit wrappers.

2.1.4 Wrapper Generation for End-Users

Wrapper generation for end-user systems augments the user browsing experience.

Such systems usually require no training and they provides simple services as such

adding a person contact to the personal address book and sorting a list of items in a

new order.

Bolin et al. [5] have developed Chickenfoot, a Firefox extension that the user can

use to write scripts to manipulate web pages and automate web browsing. It is based

on LAPIS's rich library of patterns and parsers. LAPIS [37] enables Chickenfoot

to recognize text structure automatically. While Wrapster currently uses regular

'http://www.dapper.net

28

expressions to recognize text structure, rich libraries like LAPIS's might someday be

able to provide it with more robust pattern generation.

Hogue et al. have introduced Thresher [22] that lets non-technical users extract

semantic content from the Web. Thresher is an end-user wrapper and part of the

Haystack Project. It reduces the amount of training data needed, leverages the hier-

archical structure of HTML, and learns patterns by aligning multiple example trees

using a tree edit distance algorithm. However, Thresher fails to create wrappers that

make use of global document structures. It can wrap only a small subset of a Web

page, referred to as records, and if the time to generate a wrapper passes the threshold

usually expected of an end-user program, the system will be unusable.

Huynh et al. [25] recently tried to augment the sorting and filtering ability of

retails sites on the Web. Since the resulting items from a query on a retail site have

the same structure, it is easy to recognize the underlying structure by comparing the

tree structure of the items. Even with just the simple ability to sort and filter items

interactively while visiting an online retail site, great value has been added to the

browser, as reported by their user study.

2.2 Tree Data Structures and Algorithms

Typically, information resources on the Web are in HTML. HTML pages can be ma-

nipulated via DOM [1], an application programming interface for HTML and XML

documents. DOM documents have a tree-logical structure. Leveraging the tree struc-

ture of Web pages is a recent trend in wrapper generation from the Web. Reis et

al. [41], Hogue et al. [22], and Huynh et al. [25] used tree edit distance to find and

compare information within Web pages.

Since Wrapster models wrappers from DOM trees, algorithms such as locating tree

nodes, tree-pattern matching, tree isomorphism, and tree edit distance are needed to

extract and compare information from DOM documents:

* Locating nodes in DOM documents is addressed by the XPath standard [2].

XPath allows users to specify path-structured queries which return sets of

29

matching nodes from the DOM document tree. However, XPath requires tech-

nical skills.

" Tree pattern matching has been well studied in fields such as computer science

theory and compiler optimization [12, 16, 20]. Most approaches require the

system to have great knowledge of the underlying data, and have focused on

tree matching of unordered trees.

" Tree isomorphism [23, 36] tries to locate similar structures in trees. It gener-

ally finds structural similarities in trees without including node labels or taking

order into consideration. Tree isomorphism is a specialization of graph isomor-

phism [46], whose complexity is NP (not solvable in polynomial time).

" Tree edit distance [27], upon which our approach is based, is an extension of

string edit distance [13]. The edit distance between strings or trees is computed

in polynomial time using dynamic programming. The edit distance algorithm

finds the minimal cost of delete, insert, and change operations to turn one object

into another.

Tree pattern matching and tree isomorphism are out of the scope of this thesis

since they are used for automatic record detection and extraction research which tries

to find to find similar tree patterns inside a single data page. In the next section I

will describe in detail the definition and my implementation of tree edit distance.

2.2.1 ree Edit Distance

The tree edit distance between two trees T and T2 is defined as the cost of edit

operations to transform T into T2. The three edit operations are changing a node's

label, deleting a node from the tree by making its children the children of the parent

node, and inserting a new node into the tree which is the complement of delete

operation. Each edit operation has an associated cost modify, 7Ynsert, and Ydelete.

A mapping M is sequence of edit operations that transform T1 into T2. The best

mapping M is the lowest-cost set of set of edit operations to transform T into T2.

30

Formally the triple (M,T1,T2) or simply M is defined to be a mapping from from

T1 to T2 (Zhang et al. [27]):

" M is any set of pairs of integers (i, j) satisfying:

L. 1 _< i <_ IT1|, 1 <_ i < IT21

2. For any pair (iiji) and (i2 , j 2) in M,

(a) i1 = i 2 if-f Ji = j2 (one-to-one),

(b) T1 [i 1] is to the left of T[i2] if-f T2 [j 1] is to the left of T2 [j 2] (sibling

order is preserved),

(c) T [i 1] is the ancestor of T1 [i 2] if-f T2 [jL] is the ancestor of T2 [i 2] (ancestor

order relationships preserved)

" The cost 'y(M) of a mapping M from T to T2, is defined to be

y(M) = E -y(T1 [i] -- T2[j]) + E -y(T 1 [i] -- A) + E ^y(A -+ T2[j])
ijEM ifM joM

where A is the empty node.

In Wrapster's implementation, we defined the cost function for each operation to

be

-Y(V -+W)= I if v=w

0 otherwise.

To calculate the least-cost tree edit distance between v and w we implemented

the dynamic programming algorithm defined in Andrew Hogue's master thesis [21].

2.3 Classification

Wrapster uses Support Vector Machines (SVM) for its classification task. SVM has

been in the spotlight in the machine learning community because of its theoretical

soundness and practical performance. In particular, we used SVMlight, a scalable and

31

efficient implementation of SVM [26]. In brief, SVM is defined as the optimal hyper-

plane that separates the vector sets belonging to different classes with the maximum

distance to its closest samples.

32

Chapter 3

Template Creation

In this chapter we describe the first component of Wrapster, how we create a template

for a Web site. A site is a Web data source that contains information about a specific

domain. For example, the IMDb is an online database which contains information

about movies, actors, television shows, production crew personnel, and video games.

As a database has objects with records containing fields of data about the objects,

"semi-structured" Web sites have "objects" with Web pages containing information

about the objects. While a semi-structured Web site doesn't contain formal fields like

a true database, nevertheless the objects' pages have similar structure and "fields"

can be detected programatically with fairly high precision and recall.

Given a list of objects and their corresponding Web URLs (see Table 1.1 for an

example), Wrapster can be configured to either select randomly several items from

the object-URL pair list or the user can select which items to generate the template

from. The generated template for a site is a list of all identified regions of relevant

information that a wrapper for that site should be able to extract.

3.1 Tree Mapping

First, Wrapster computes the tree mapping between all selected item pairs. It parses

the selected items' Web pages into DOM parse trees using the Cyberneko [10] HTML

parser library, a simple HTML parser that enables the information inside the HTML

33

to be accessed using XML interfaces. Then, Wrapster computes tree edit distance on

all DOM tree pairs and gets the optimal mapping between each pair of DOM trees.

The algorithm to compute tree edit distance was described in detail in Section 2.2.1.

To get more intuition about how we identify regions in an HTML page using tree

edit distance, see Figure 3-1, which shows a rendered fragment of the Fahrenheit 9/11

movie Web page where some text content is marked with yellow background. This

page is achieved by computing the tree alignment with the Garden State movie Web

page (Figure 3-2) and marking the aligned HTML elements that are different in both

Web pages. We can notice that the year next to the movie title is not marked since

both movies have the same value "(2004)". We can also notice that the "Writer"

region has the value WGA for both movies so that this region is also not identified

by the tree alignment

Although previous work in wrapper generation for list pages has found it to be

sufficient to examine a single page, this is clearly not the case for details pages. To

guarantee that all possible regions were covered, it would be necessary to perform

every alignment. Currently, Wrapster requires the user to select the specific sample

pages to align, and/or the number of sample pages for the system to randomly select.

In the future, we will investigate automating the process of alignment using heuristics

to choose when to stop the process.

Having the mapping between each pair we continue to the next section to filter

out the irrelevant information.

3.2 Region Identification

This subcomponent receives as input the tree mapping between each DOM tree pair

computed in the previous step. Its purpose is to filter out the irrelevant information

and to identify the regions to extract. First we generate a list of DOM node candidates

that are possible subregions. We discard any mapping under the "head" node since

the data under the "head" tag is not visible in the browser. We add to the list of node

candidates all the text nodes under the "body" node whose node value is different

34

J.MQk Fa wefnt m 11

+ ad ito

Quicklinks
main detais

Top Unks
- trailers
- full cast and crew
-trivia
-oficial sites
memorable quotes

Overview

combined details
-full cast and crew
- company credits

Promotional
- taalines
- trailers
- posters
- photo galleiy

Awards& Reviews
- user comments
Sexternal reviews
- newsgroup reviews
- awards
- user ratings
- recommendations
- message board

Plot & Nuotes
plot summar

- nint kpvwnrris

02O4)

Fahrenheot 9/1
photos

User Rating: 7.7/10
more P

Photo Gallerv (see a

Overview
Director:

Writer (WGA) :
Release Date:

Genre:

Plot Outline:

Plot Keywords:

Awards:

User Comments:

1(2004)
9 board traier details

Register or login to rate this title
50A u voto

more1

Michael Moore

Michael Moore (written by)

25 June 2004 (USA) more l view trailere

Documentary / War more'

Michael Moores view on what happened to the United States after September
11; and how the Bush Administration allegedly used the tragic event to push
forward its agenda for unjust ware in Afghanistan and Iraq. more o

Political Protest / Propaaenda / Good Versus Evil / Fat Man / Expose morel

25 wins & 12 nominations more l

A whirlwind tour of corruption and diplomatic deceit more o

Cast (Cast overview. first bilied only)

Ben Affieck

Stevie Wonder

Geargs W.
Bush

James Baker Ill

... Himself (archive footage)

. Himself (archive footage)

.. Himself (archive footage)

Himself- Former Secretary of State (archive
.. footage)

Figure 3-1: Tree mapping of Fahrenheit 9/11 movie Web page aligned with Garden
State movie Web page from IMDB site

35

JlMj > Garden State (2004)

Qhicklinks
main detas y

Top Links
- trailers
- full cast and crew
- trivia
- official sites
- memorable quotes

Overview

-combined details
-full cast and crew

company credits
tschedule

Promotional

- trailers
- posters
- photo gallery

Awards& Reviews
- user comments
- external reviews
- newsgroup reviews
- awards
- user ratings
- recommendations
- message board

Garden State (2004)
photos board trailer details

Register or login to rate this title

User Rating: 7.9/10 (r.ms vote
morel

Photo Gallery (see all 57 photos)

morel

Overview
Director:

Writer (WGA):

Release Date:

Genre:

Plot Outline:

Plot Keywords:

Awards:

User Comments:

Zach Braf!

Zach Braf! (written by)

22 September 2004 (Trinidad And Tobago) more view trailel I

Comedy / Drama / Music / Romance more l

A quietly troubled young man returns home for his mother's funeral after being
estranged from his family for a decade. more

Boyfriend Girlfriend Relationship / Dog / Overhead Camera Shot / Soundtrack /
Animal In Cast Credits morel

10 wins & 24 nominations morel

A blooming, Wonderful Garden State! more o

Cascaat overview. fiat billed only)

Zach Braf ... Andrew Largeman

Kenneth Graymez ... Busboy

Figure 3-2: Screen shot of Garden State movie Web page from IMDB site

36

in the tree mapping (edit distance is not equal to zero). The text nodes are the

leaf nodes of the HTML DOM tree and they contain all the content of an HTML

document.

Each node is a candidate region. We build a node-path tree of the region candidate

content list. Each node has a unique node path. Using the node-path we identify

nodes that belong to the same region: We traverse the tree and merge recursively

all child nodes if there is no break between them. In Wrapster, a break is one of

the following closing tags DIV, P, BR, TABLE, TH, TR, TD, UL, OL, DL, LI, DT,

and DD. That is, in this step we will merge nodes separated only by constant text

strings; for example, we will merge "Documentary" and "War" into a single region

"Documentary / War" (see the "Genre" line in Figure 3-1). It is acceptable to treat

table and list elements as separate regions here because we will merge lists and tables

later in the process. This step yields region instances.

At the end this merging step, each region contains the list of all candidate content

nodes. At this point, we expand each region with all the close context (context within

the break node), if the context exists, which we will later use in the script generation

process. All nodes in a region are ordered and each region stores its tree mapping

properties such as the edit distance cost for each node. In addition, each region stores

the previous and next general context (context not within the break node). Given the

list of regions, we infer structure such as lists and tables using the regions' node-paths.

To summarize, in this step Wrapster identifies the region instances within each

object's Web page. In the next section, we will describe how we cluster matching

regions from all objects' Web pages in order to form our general template for the site.

3.3 Region Clustering

Having a basic template containing region instances for each alignment pair, we need

to compute the general template of regions for all objects, taking into account all

layout and format differences. This step detects slot insertion or deletion since usually

some objects have different properties from others.

37

In designing an algorithm to perform this step, our first intuition was to create a

manual rule-based program that incrementally built a general template by matching

regions from basic templates. However, this approach didn't perform as well as we

expected because the rules did not generalize well across the data sources. The

maximum performance we achieved with this approach is 90.58% F-Measure. We

dropped this approach and adopted a supervised machine learning technique using

Support Vector Machine classification, as described below.

3.4 Classification

To cluster the identified region instances from all the selected items' Web pages,

Wrapster uses SVM~igth, a Support Vector Machine classifier implementation, that

takes as input all pairs regions instances and deicde for each pair if the regions match

or not, as described in detail in the next paragraph. Then, Wrapster uses the classifier

decision for each pair to create clusters for matching regions that form the basic

template for the wrapped site.

Given two region instances from different objects' Web pages, the classifier task is

to determine if those region instances belong to the same region. To build the training

data seed, we annotated 2,517 region instances from five Web pages. The training

data samples came from IMDb movie and The World Factbook' Web pages. They

consist of 156 matching region instances and 2,361 non-matching instances. (The

features used for training the SVM are described in Section 3.4.1.) However, such

a small dataset does not provide enough training data to reliably generalize feature

settings. Therefore, we used a variation of active learning technique to automatically

annotate data and retrain the classifier (see Chapter 8).

3.4.1 Features

The training data are in HTML format; therefore, the features should leverage the

hierarchical structure of HTML. The features are mostly similarity measures between

lhttps://www.cia.gov/library/publications/the-world-factbook/index.html

38

the two region instances. The features we used are the following:

" Region size ratio: The ratio of the number of nodes in the two regions.

" Content similarities:

- Exact match disregarding HTML tags.

- String edit distance disregarding HTML tags.

" Region node match ratio: The ratio of the number nodes in the two regions

that have zero tree edit cost (close context).

" Node-paths similarities: How far apart are regions in the HTML document.

We add the same features for preceding and following contexts.

3.5 Annotator Tool

We developed a graphical user interface that lets the user add and edit training

instances. The user has two ways of annotating with this tool.

Firstly, the initial page of the annotator (Figures 3-3 and 3-4) lists all the uploaded

training data. The user can select training instances to view using the following

options:

" Classification score: This constraint lets the user view all the training data

which are in the range of specified classification scores interval. This option

allows the user to, for example, constrain the scores to between -1 and 1 to

view only outlying instances.

" Match constraint: This constraint has the following values: list all training data,

list data whose regions match, list data whose regions don't match, and list data

that the annotator is not sure about.

" Automatic match: This constraint lets the user restrict the displayed training

data to just automatically annotated data or manually annotated data.

39

The user can combine any of the above constraints to customize how to inspect and

edit all training data.

To upload more training data the user has the option to type or paste XML in

the input text area or upload a file (Figure 3-5); for example, if training needs to be

readjusted later to take into account an example that was missed in earlier training.

The input is in XML format for which the DTD is shown in Figure 3-6.

The "annotate" page shown in Figure 3-7 lists the next training data item to

annotate. In addition, the page contains the classification score computed by the

trained classifier. The input radio button is preselected according to the classifier

score. If the classification is above or below certain thresholds, in this case 1 and -1,

the program marks that the data item as matching or not matching correspondingly.

If the classification is in the threshold interval, the program chooses the "not sure"

option. The user can edit the program suggestion and move to the next item to

annotate. The user may have to annotate a very large number of examples, which

can be time-consuming and tedious. The automatic classifier can often decide with

fairly high accuracy if the regions match. Therefore, to ease the classification process

for the user and save them the trouble of clicking again and again, the user is given

a countdown timer of seven seconds to edit the program suggestion. By default, the

form is submitted and the next item to annotate is shown to the user. The user can

stop the countdown timer with a mouse click on the page and resume the timer with

another mouse click.

3.5.1 Automatic Annotation

The user's second method for annotating is via the automatic annotation page (Fig-

ure 3-8), which provides quick batch annotation. The user can choose to create a

batch annotation for a certain amount of training data. After the batch run has fin-

ished, the user can inspect the automatic annotation result and correct the classifier

if needed by viewing it in the List data page.

40

Home

Listing ranges

Serialize To File

Range idi 7169 Classification score 1 1.1709073 Automatically matched : 1

Range id: 7207 Classification score : 1.0295992 Automatically matched : 1

Figure 3-3: Annotator tool screen shot of the List data page. Selected options appear
at the top and all selected training data items appear below; the first two items can
be seen here.

41

I k: Slctlist onsraints ___

Range id. fro.m t_~ i oF

claseIfcauIO scorn to

Autwmatic math: LSelect list constraints

Get data

---- -------- - - - - 4 - - - - - - v W vW - - - -

AnnotateUploadList Logout

Range id: 7169 Classification score : 1.1709073 Automatically matched : 1

Figure 3-4: Annotator tool screen shot of the List data page, zooming on one training
data item.

Home List

Annotation load data page

Select Input formatt Text (File 0

Input~x

Upload

A t
Annotate Serialize To File Logout

Figure 3-5: Annotator tool print-screen of the Upload page.

42

CrLoadData |

Create a nex range form

..........

<!ELEMENT CONTENT (DATA, DATAYWITHATTR, MAP) >

<!ELEMENT DATA (#PCDATA) >

<!ELEMENT DATAWITHATTR (#PCDATA) >

<!ELEMENT DOCUMENT (RANGE+) >
<!ATTLIST DOCUMENT count NMTOKEN #REQUIRED >
<!ATTLIST DOCUMENT first-documenturl CDATA #REQUIRED >
<!ATTLIST DOCUMENT seconddocument-url CDATA #REQUIRED >

<!ELEMENT MAP (NODEPROPERTIES+) >

<!ELEMENT NEXTCONTENT (DATA, DATAWITHATTR, MAP) >

<!ELEMENT NODEPROPERTIES
<!ATTLIST NODEPROPERTIES
<!ATTLIST NODE-PROPERTIES

<!ATTLIST NODEPROPERTIES
<!ATTLIST NODE-PROPERTIES
<!ATTLIST NODEPROPERTIES

EMPTY >
content CDATA #REQUIRED >
contentwithattr CDATA #REQUIRED >
cost NMTOKEN #REQUIRED >
order NMTOKEN #REQUIRED >
xpath CDATA #REQUIRED >

<!ELEMENT PREVCONTENT (DATA, DATAWITHATTR, MAP) >

<!ELEMENT RANGE (REGION+) >
<!ATTLIST RANGE range-id NMTOKEN #REQUIRED >
<!ATTLIST RANGE xpathjfrom-firstdocument CDATA #REQUIRED >
<!ATTLIST RANGE xpathjfromseconddocument CDATA #REQUIRED >

<!ELEMENT REGION (CONTENT, PREVCONTENT, NEXTCONTENT) >

<!ELEMENT ROOT (DOCUMENT+) >

Figure 3-6: Annotator tool DTD of training data XML input format.

43

Home

Annotate data page

UploadList Annotate

Coeuili~fs

Range Ids frm

Gs sda.a

Do the regions match? (Classification Result - -1.684667) Automatic Submission In

Yes O No 0 Not Surel 0 NOWI

T*ias Sean Astin reckons that there were 50 separate days of the 15 month shoot were the Hobbits
had their prosthetic feet applied and they were never seen on camera, (more)

(canton of Vaud) (canton of Geneva)

Awards 1 win & 2
nominations (more)

(more) Quotess

Memorabilia Books Ad]
Products

(show details ...)

Range iDestro

Range id: 7376

Figure 3-7: Annotator tool screen shot of the Manual annotate data page. The above
training sample is a comparison between a "Trivia" and an "Awards" region. The
Annotator Tool decided that those regions do not match since the classification score
is -1.86 outside of the threshold range.

Home List

I
Upload Annotate Serialire To File Logout

Batch Automatic Annotation

cnsteraints:

Rag. id. h..

Now ma"m to amotato

Figure 3-8: Annotator tool screen shot of the Batch automatic annotate request page

44

Serialize To File Logout

-i

Chapter 4

Wrapper Induction

After creating the general template for the site being wrapped, our next step is to

generate the wrapper. The template generated in the previous chapter contains all

the clustered identified regions from all the selected Web pages. The wrapper is

comprised of clustered region instances and a list of extraction rules for each cluster.

The extraction rules are the specialized scripts that extract specific properties for any

given object from that site. The region instances will serve us later in the repairing

module to test and fix the wrapper in case a script fails to execute (see Chapter 7).

4.1 Script Generation

The extraction rules for the wrapped site regions are lists of patterns derived from

each cluster of region instances. Regular expressions have been used extensively

to extract regions. Recently, commercial systems leveraged the HTML hierarchical

structure and used XPath to extract information from Web pages; however, this

technique requires parsing of Web pages, which is slower than just matching string

patterns. Furthermore, using XPath is limiting since the XPath language cannot

extract text fields that are not wrapped by an HTML tag. Other techniques, such as

Hap-Shu [44] and LAPIS [37], use rich pattern matching libraries which can extract

regions from Web pages if the region can be identified via text landmarks. Since most

Web pages are updated frequently, those rich libraries aim to make the script more

45

robust to layout changes. Wrapster currently generates standard regular expressions

matching surrounding context, but rich libraries will yield more-robust scripts and

will be explored in future work.

4.1.1 Pattern Induction

The clustered regions contain the content of all regions and their corresponding con-

text along with their order in the document. The extraction rules are a list of prefixes

and suffixes that are matched on the data page to extract a specific region. To com-

pute the prefix and suffix patterns for each region, we first align the text nodes for

all region instances. Then, we search for starting and ending text landmarks that

occurs in all regions and select the ones that surround the region content in all region

instances. If we cannot find starting and ending patterns in the close context of the

region we select them from the preceding and the following context.

4.1.2 Region Focuses

By manipulating the extraction rules we return exact values in addition to HTML

fragments. Since each region has mapping information from the tree alignment, we

know which parts of the region are constant and which parts have the actual content.

Depending on the type of third-party system which will be using the wrapper, we

may want the wrapper to create scripts with different focuses; that is, we may want

to be able to retrieve more than one version of each region value, such as the full

HTML value for human-friendly display purposes or an "exact" value for question

fusion, value comparison, etc. For example, we might want to retrieve "21 wins & 12

nominations" as a movie awards value for human display (see Figure 3-1), but retrieve

"21" as part of answering "What movies have received more than twenty awards?".

Creating scripts with alternate focuses is adds post-processing to each script with

context filtering. One common heuristic is removing links and context text from the

script output. In the near future, we plan to explore more sophisticated heuristics to

create scripts with alternate focuses.

46

Chapter 5

Semantic Annotation

When we start the semantic annotation step of wrapper creation, the wrapper gener-

ated by the previous steps contains the scripts and the stored region instances. How-

ever, to use the wrapper in third-party systems such as question answering systems,

the wrapper needs to store semantic information so that the required information can

be extracted from the object's page. For example, if a QA system needs to answer

"How many people live in the United States?", it will seek for the population prop-

erty information from the queried country's Web page. (It is the responsibility of the

QA system to first identify the "United States" as a country and determine that the

question refers to the population of that country.)

Giving the scripts meaningful names, such as "director", instead of machine gen-

erated names, such as "script-1242", makes the connection of the wrapper with a

third-party application more intuitive. Automating this process is a hard task be-

cause there are not always text clues for all regions on the Web pages. Furthermore,

if a text clue exists there is often more than one to choose from, and its format varies

greatly for each site. To get a sense of where semantic information is located in

the source document, Figure 5-1 shows the "POPULATION" region for the United

States from The World Factbook' Web site and its HTML code. To extract semantic

annotation for this region is not trivial: we need to select the "Population" from the

previous table column and filter out other text clues such as "People" and the image

'https://www.cia.gov/library/publications/the-world-factbook/index.html

47

People United States Too of Pace

Population: [~Q || o

298,444,215 (July 2006 est.)

(a)

<td class="FieldLabel" valicgn="top" width="20%">
<div align="right">Population:</div>

</t d>
<td bgcolor="#ffffff" va~ign="top" vidth="80%">

img src=". ./graphics/listing.jpg" alt="Field Listing">

k

298,444,215 (July 2006 est.)

</t d>

Figure 5-1:
site (a) and

(b)

United States population region extract from The World Factbook Web
the corresponding HTML source (b).

Director: Robert De Niro

(a)

<div class="info">
<h5>Di rector:</h5>

Robert De Niro

</div>

(b)

Figure 5-2: The Good Shepherd movie director region extract from the IMDb Web
site (a) and the corresponding HTML source (b).

48

links. In this case, the default script name is the content of a "div" element. In a

second example (Figure 5-2) the semantic information for the director region is in the

close context of the region and is the content of an "h5" element. Wrapster computes

a basic semantic annotation and then lets the user annotate the wrapper using the

Wrapster Web User Interface (see Chapter 6).

Wrapster's heuristic selects the text occurring in all region instances for the given

attribute and we select the text which is closest to the region of interest in the

preceding context. Non-alphanumeric characters are trimmed from each end of the

selected text. For example, in the cases in the above paragraph, we would select

"Population" and "Director", respectively. This basic suggestion is presented to the

user for confirmation. Earlier implementation of semantic annotation [15, 43] systems

relied mainly on ontologies such as WordNet. In the future, we intend to improve

semantic annotation and implement a component that takes into account the region

content and leverages HTML structure.

49

50

Chapter 6

Wrapster User Interface

To eliminate the need for programming skills usually required to generate a wrapper

for the site, we developed a Web user interface for Wrapster that manages all tasks

needed for wrapper generation. The main purpose of the user interface is to give

a novice user the ability monitor the automatic wrapper generation, edit the final

version of the generated wrappers and add the semantic annotation for each property

discovered.

Wrapster's home page (Figure 6-1) provides the user with two options. The first

is to create a new wrapper for a site and the second is to edit an existing wrapper. To

create a wrapper the user chooses the Web pages from which Wrapster will generate

the wrapper. The user chooses the pages interactively using an HTML proxy server

by adding the browsed pages to a basket using a control bar inserted on the top of

the Web pages (Figure 6-2). After selecting the Web pages, Wrapster generates the

wrapper and redirects the user to the wrapper editing Web page. The wrapper editing

page lists the wrapper's scripts for the site. The user can add semantic information for

each script, edit the extraction patterns, test, and serialize the scripts into START's

Omnibase script format or XML format. The Web wrapper editor, as seen in Figure 6-

3, has three panes. The "Scripts" pane lists all the wrapper's scripts, the "Wrapper

properties" pane lists the the attributes that Wrapster used to generate the wrapper

with, and the "Work" pane enables the user to test the scripts interactively for any

object's URL.

51

HOW CWArT A V*APFE ED A ~MPPS

Welcome to Wrapster, how can we help you today?

Create a Wrapper

Edit a Wrapper

Copyrighl 2007 Infolab - hoiktio I Abonus

Figure 6-1: Wrapster web user interface main page

NOW MIGV1 ;TV M Y N f W MM MESAGE HWTM
PLAYING N LW" MfiVil (IN V VU T V BOARDS &N TICET

E-afth i Rwes tAov; Database" Home Top Movies I Photos 1 UdbpisjlwiH Fil I GameBase 1 Browse Help
SoEth YT 4 m ore Itps

iMoh Sam Comewy SHOP SEAN cQ wMY

auicklinks
categorzed t

Top Links
biography
byvotes

- awards
ews articles

; essage botard

Fihuoraphies 11

Sean Connery

photos board contact details

Photo Gallery (see all 143

hoMOs

Overview
Date of Birth: 25 Autust 193), Edinburgh, Scotland, UK more

Mini Biography: Sean Connery found fame and fortune as the suave, sophisticated
British agent... more

Figure 6-2: IMDb Sean Connery Web page opened using Wrapster HTML proxy

52

Scripts

Goofs - (id 0)
Quotes - (id 1)
Awards - (id 2)
Tagline - (id 3)
Plot - (id 4)
8 Pattern

8 Pattern 0 - (HTML)
- Prefix: <h5>Plot Outline:</h5>
- Suffix: plotsummary">more

8 Examples
8 Example 0 - http://www.imdb.com/title/tt0120586/

- Plot Outline: A former neo-nazi skinhead
(Norton) tries to prevent his younger brother
(Furlong) from going down the same wrong path
that he did. (more) (view trailer)

E Example 1 - http://www.imdb.com/title/tt0120737/
E Example 2 - http://www.imdb.com/title/tt0137523/
E Example 3 - http://www.imdb.com/title/tt0381717/
R Example 4 - http://www.imdb.com/title/tt0408306/

Comments - (id 5)
Rating - (id 6)
MPAA - (id 7)
Runtime - (id 8)
Certification - (id 9)
Trivia - (id 10)
Sound Mix - (id 11)
Genre - (id 12)
Photos - (id 13)
Add Commnets - (id 14)

Create ne v sript

Wrapper Properties

Name: I imdb_tbain1 Apply url: htp/ww mdbcmtitiefl3ci Urts: htpAww~mdb.comititle/t3os S.,.

Work pane

Script: IPlot I URL: http:/wimdb.com/titleMtt3337W? EetscipI

Plot Outine:

A quietly troubled young man returns home for his mother's funeral after being estranged from his family for
a decade. more

user interface editing the IMDb wrapper

S
S
8

8

S
8

8

8

S

S

Figure 6-3: Wrapster Web

54

Chapter 7

Repair Module

Data sources such as Web sites are subject to changes in format and wording, some-

times frequent changes, which cause wrapper scripts to fail. For example, in the IMDb

site, if a "director" script is looking for a text landmark such "Directed by" (Figure 7-

1) to extract the director property for the movie Garden State it will fail if the site

has been updated and the keywords "Directed by" have changed to "Director:" (Fig-

ure 7-2). In addition, we can notice that the layout has changed (Figure 7-3). In order

to be useful, wrapper scripts must be robust to at least moderate changes in format

in wording. Wrapster's repair module monitors and automatically repairs Wrapster

scripts, and so is central to Wrapster's robustness. It handles cases where scripts fail

to extract the previously annotated information from a site, when the layout or for-

mat or both have changed, by looking for regions identified in a new template whose

values match values stored using the old template.

The repairing module runs in the background and tests all the wrappers for failing

scripts where stored values are available. The region instances calculated during

template creation serve as stored values for repair. If a failing script is detected the

module repeats the process of template creation and wrapper induction, described in

Chapter 3 and 4, for that site and update only the failing script or all the site scripts

according to the saved program configuration.

After generating the basic wrapper for the site, the module matches the newly

generated scripts and the existing ones using the stored regions instances. It classifies

55

Garden State (2004)

Directed by
Zach Braff

Writing credits ffGA

Zach Braff (written by)

Add r MvMov7s Photo Galler b p o IMDbPro Besls

Figure 7-1: Screen shot of Garden State movie Web page from 2006 IMDB site

Garden State 2
photos 9 board

Regist
User Rating: 8.0/10 (55,020 votes
more .

Photo Gallery (see all 57 photos)

Overview
Director:

Writer (WGA):

Zach Braft

Zach Braft (written by)

trailer details

er or Lo gjn to rate this title

more s

Figure 7-2: Screen shot of Garden State movie Web page from 2007 IMDB site

56

(a)

<b class="blackcatheader">Di rected By

Zach Braff

(b)

<div class="info">
<h5>Di rector: </h5>
zach Braff

</div>

Figure 7-3: Garden State movie HTML code from the IMDb site (a) 2006 layout (b)
2007 layout.

all pairs of regions instances using the trained classifier and chooses the script with the

highest match ratio. Then, the user-edited information such as semantic information

is transfered to the newly generated scripts from the failing scripts. Finally, the

module can notify the administrator to verify the correction of the new scripts and

apply the changes.

In conclusion, we achieve this module almost without effort using the previous

steps of wrapper generation due to the simple design and modularity of Wrapster

(evaluated in Chapter 8).

57

58

Chapter 8

Experiments and Results

To evaluate Wrapster we need to evaluate some components separately and the per-

formance of the system as a whole. We conducted experiments based on data from

seven sites that have details pages (Table 8.1). Four of the datasets, IMDb person,

POTUS, MSN Money, and The Weather Channel, are available at the RISE repos-

itory [38], and have been evaluated by previous wrapper generation systems such

STALKER [39], WIEN [32], and WL2 [11]. The other three sites were chosen because

they are in use by the START Question Answering system.

Web sites location Number of con-
tent regions

IMDb Movie http://imdb.com/title 30
IMDb Person http://imdb.com/name 14
The World Factbook https://www.cia.gov/cia/publications/ 229

factbook
POTUS http://www.ipl.org/div/potus/ 25
MSN Money http://moneycentral.insn.com/ 28

The Weather Channel http://www.weather.com/ 16
50 States http://www.50states.com/ 77

Table 8.1: Evaluation dataset.

59

source total training positive negative
samples

IMDb Movie 9566 466 9100
The World Factbook 566 463 103

Table 8.2: SVM training data

8.1 Classification

We evaluated the SVM classification on 10,132 training data samples using 10-fold

cross validation (Table 8.2). The training data were annotated using our annotator

tool described in Chapter 3. Tables 8.4 and Table 8.3 show the average F-Measure,

precision, and recall values for the SVM classifier across all feature groups for the full

training data samples and for IMDb Movie training data. We noticed that the FULL

feature group on IMDb data had the best performance. The NEXT CONTEXT feature

group appears to be more informative for classification than the PREVIOUS CONTENT

feature group since the former group outperformed the latter group in all datasets.

In addition we evaluated our system on 2,992 annotated instances of 62,010 data

samples gathered from the rest of the sites in our datasets where their classifier con-

fidence score was inside the [-1,1] range (outliers). The classifier accuracy was 53.41

(37.36% precision and 60.3% recall). Even though the results are not high, they

show satisfactory performance of the classifier on the outlier points which are much

harder to classify. For example, by examining the annotated data samples the clas-

sifier didn't classifier correctly the "Actress Filmography" and "Actor Filmography"

regions of IMDb. In the future we need incorporate more complex features such as

using morphology as a similarity measure.

8.2 Comprehensive Evaluation

Table 8.5 and Table 8.6 present the performance of Wrapster on the dataset.1 Wrap-

ster identified and generated extraction rules correctly for most of the content regions

'The IMDb movie and The World Factbook sites were used both in the evaluation and in training
the classifier (see Chapter 3). Objects were randomly selected, separately, for both these purposes,
so that any overlap between selected objects is coincidental.

60

Feature set F-Measure Precision Recall
RULE BASED CONTENT 63.23 58.0 69.5
RULE BASED CONTENT + CONTEXTS 90.58 98.7 83.7
CONTENT 91.04 98.7 84.5
PREVIOUS CONTEXT 87.71 86 89.5
CONTENT + PREVIOUS CONTEXT 94.57 97.3 92
CONTENT + NEXT CONTEXT 95.72 97.3 94.2
NEXT CONTEXT 87.28 84.2 90.6
FULL 95.46 97.3 93.7

Table 8.3: SVM feature sets and performance on all training data

Feature set F-Measure Precision Recall
RULE BASED CONTENT SCORE 49.07 44.5 54.7
RULE BASED CONTENT + CONTEXTS 92.21 97.1 87.8
SCORE

CONTENT 93.6 97.3 90.2
CONTENT + PREVIOUS CONTEXT 94.797 95.6 94.0
PREVIOUS CONTEXT 86.71 92.9 81.3
CONTENT + NEXT CONTEXT 97.68 99.0 96.4
NEXT CONTEXT 87.59 83.6 92
FULL 97.89 98.2 97.6

Table 8.4: SVM feature sets and performance on IMDB movie training data

61

Web sites Regions discov- Scripts gener- Regions discov-
ered ated ered Recall

IMDb Movie 39 38 100%
IMDb Person 31 5 100%
The World Factbook 198 164 82.9%
POTUS 26 20 88%
MSN Money 18 5 46.4%
The Weather Channel 26 16 62.5%
50 States 64 47 81.8%

Table 8.5: Wrapper generation content discovery

Table 8.6:
23rd

Web sites Regions discov- Number of
ered scripts gener-

ated
IMDb Movie 43 38
IMDb Person 46 29
The World Factbook 203 161
POTUS 23 20
MSN Money 43 41
The Weather Channel 20 19
50 States 63 48

Wrapper generation whole evaluation on the updated Web sites on April

from the test sites. Wrapster identified on average 88.22% of the content regions for

those sites. However, there are some cases where multiple scripts are generated for the

same region because our classifier, as mentioned earlier, fails to classify correctly cases

such a "Actress Filmography" and "Actor Filmography". This mis-classification can

be exploited in the future to discover underlying properties on the Web pages such

as gender. We can notice that Wrapster was able to generate a significant proportion

of scripts for updated versions for most of the sites. The sites that benefited the

most are IMDb person and MSN Money. The wrapper scripts generated by Wrap-

ster increased from 5 scripts each to 29 and 41 respectively, based on which we may

conjecture that these sites changed their layouts in order to increase consistency.

An interesting experiment is to evaluate Wrapster's repair module on the IMDb

movie site because it experience a single recent change and demonstrates how much a

site may change in a single update. It identified 100% of regions for the site and was

62

able to attach with 36.36% accuracy the semantic information such as the names of

the scripts from the old wrapper. Even though the accuracy is low for migrating the

semantic information, we are working to improve it in the near future work and it

doesn't damage Wrapster performance significantly since the user interface provides

us the tools to add the semantic information easily.

63

64

Chapter 9

Conclusion and Future Work

Many available information sources on the Web are semi-structured, which creates

an opportunity for automatic tools to process and extract their information for easy

access through a uniform interface language using wrappers. A wrapper is an au-

tomatic tool for information extraction from a semi-structured source. Although

semi-structured sources possess syntactic regularities, it is not trivial to process and

extract information from those sources because they are not uniform in format and

are frequently updated, making it hard to create flexible wrappers that can adapt to

changing sources, and to scale wrapper-based systems.

In this thesis we presented Wrapster, a wrapper generation system for detail pages

which leverages the HTML structure and reduces the amount of training data needed,

using an active learning technique. The interactive Web user interface enables people

with little or no programming skills to create and edit wrappers. In addition, once a

wrapper for a site is created, Wrapster checks the correctness of all stored wrappers

and automatically fixes their failing scripts.

9.1 Contributions

We have made the following contributions in this research area:

1. We developed a platform-independent, end-to-end wrapper generation system.

65

2. We applied tree edit distance to construct the template of a detail page.

3. We introduced a general wrapper representation that includes not only text

landmarks, but also region instances, extraction rules, and semantic annotations

which aid in repair and integration.

4. We reduced the amount of training examples needed to create a wrapper using

an active learning technique.

5. We implemented an interactive Web user interface so that a user can edit the

generated wrapper without the need for programming skills.

6. We developed a wrapper repair module that checks the correctness of the wrap-

pers and fixes any failing scripts.

9.2 Future Work

Our work with Wrapster suggests several interesting topics for future exploration:

1. Test different approaches for template creation such as sequence alignment and

visual rendering alignment. In addition, create nested templates for sites where

an object spans over multiple Web pages.

2. Experiment with smart features such as using morphology and value type as

similarity measures to improve the performance of the classifier.

3. Try various metrics for region clustering.

4. Develop and use rich pattern libraries such as Hap-Shu and LAPIS that leverage

the HTML structure and are more robust to format changes than simple regular

expressions. In addition, build an interactive Web tool to refine scripts using a

collaborative learning framework such as PLOW [2].

5. Augment user interface functionalities to combine simple scripts into new com-

plex scripts.

66

6. Create user interface for repair; allow the user to align new and old templates

in order to transfer semantic information from old scripts to new; store user

alignments as training data to improve the repair module's automatic alignment

of new and old templates.

7. Automatically annotate the generated scripts with possible questions for each

script.

8. Eliminate the manual input for Wrapster and build a tool that crawls a Web

site and discovers its objects.

9. Automate the selection of objects within a site that we use to generate the

wrapper, using heuristics, to improve the odds of finding all regions for that

site.

10. Allow for repair on a configured subset of objects in a site by storing values for

them; use heuristics to repair scripts for all objects by examining value type

and other features rather than by using stored values.

67

68

Bibliography

[1] Document Object Model (DOM). http://www.w3.org/DOM/.

[2] James Allen, Nathanael Chambers, George Ferguson, Lucian Galescu, Hyuckchul

Jung, Mary Swift, and William Taysom. Demonstration of PLOW: A dialogue

system for one-shot task learning. In Proceedings of Human Language Technolo-

gies: The Annual Conference of the North American Chapter of the Association

for Computational Linguistics (NAACL-HLT), pages 1-2, Rochester, New York,

USA, April 2007. Association for Computational Linguistics.

[3] Arvind Arasu and Hector Garcia-Molina. Extracting structured data from Web

pages. In SIGMOD '03: Proceedings of the 2003 ACM SIGMOD international

conference on management of data, pages 337-348, New York, NY, USA, 2003.

ACM Press.

[4] Robert Baumgartner, Sergio Flesca, and Georg Gottlob. Visual Web Information

Extraction with Lixto. In The VLDB Journal, pages 119-128, 2001.

[5] Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C. Miller.

Automation and customization of rendered web pages. In UIST '05: Proceedings

of the 18th annual ACM symposium on user interface software and technology,

pages 163-172, New York, NY, USA, 2005. ACM Press.

[6] David Buttler, Ling Liu, and Calton Pu. A Fully Automated Object Extrac-

tion System for the World Wide Web. In Proceedings of the 2001 Interna-

tional Conference on Distrubuted Computing Systems (ICDCS'01), pages 361-

370, Phoenix, Arizona, May 2001.

69

[7] Mary Elaine Califf. Relational Learning Techniques for Natural Language Infor-

mation Extraction. PhD thesis, Department of Computer Sciences, University of

Texas, Austin, TX, August 1998. Also appears as Artificial Intelligence Labora-

tory Technical Report AI 98-276 (see http://www.cs.utexas.edu/users/ai-lab).

[8] Mary Elaine Califf and Raymond J. Mooney. Bottom-up relational learning of

pattern matching rules for information extraction. Journal of Machine Learning

Research, 4:177-210, 2003.

[9] Chia-Hui Chang and Shao-Chen Lui. IEPAD: information extraction based on

pattern discovery. In WWW '01: Proceedings of the 10th international conference

on World Wide Web, pages 681-688, New York, NY, USA, 2001. ACM Press.

[10] Andrew Clark. Cyberneko HTML Parser.

http://people.apache.org/-andyc/neko/doc/index.html.

[11] William W. Cohen, Matthew Hurst, and Lee S. Jensen. A flexible learning system

for wrapping tables and lists in HTML documents. In WWW '02: Proceedings

of the 11th international conference on World Wide Web, pages 232-241, New

York, NY, USA, 2002. ACM Press.

[12] Richard Cole, Ramesh Hariharan, and Piotr Indyk. Tree pattern matching and

subset matching in deterministic O(nlog3n)-time. In SODA: ACM-SIAM Sym-

posium on Discrete Algorithms (A Conference on Theoretical and Experimental

Analysis of Discrete Algorithms), 1999.

[13] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction

to Algorithms. MIT Press/McGraw-Hill, 2nd edition, 2001.

[14] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. RoadRunner: To-

wards Automatic Data Extraction from Large Web Sites. In Proceedings of 27th

International Conference on Very Large Data Bases, pages 109-118, 2001.

[15] Yihong Ding and David W. Embley. Using Data-Extraction Ontologies to Foster

Automating Semantic Annotation. In ICDEW '06: Proceedings of the 22nd

70

International Conference on Data Engineering Workshops (ICDEW'06), page

138, Washington, DC, USA, 2006. IEEE Computer Society.

[16] M. Dubiner, Z. Galil, and E. Magen. Faster Tree Pattern Matching. In Proc. of

the Symposium on Foundations of Computer Science (FOCS'90), pages 145-150,

1990.

[17] David W. Embley, Yue Jiang, and Yiu-Kai Ng. Record-boundary discovery in

Web documents. In Proceedings of ACM SIGMOD International Conference on

Management of Data, pages 467-478, 1999.

[18] Dayne Freitag. Information Extraction from HTML: Application of a General

Machine Learning Approach. AAAI/IAAI, 1998.

[19] Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naftali Tishby. Selective

Sampling Using the Query by Committee Algorithm. Machine Learning, 28(2-

3):133-168, 1997.

[20] Christoph M. Hoffmann and Michael J. O'Donnell. Pattern Matching in Trees.

Journal of the ACM, 29(1):68-95, January 1982.

[21] Andrew Hogue. Tree Pattern Inference and Matching for Wrapper Induction on

the World Wide Web. Master's thesis, MIT, 2004.

[22] Andrew Hogue and David Karger. Thresher: automating the unwrapping of

semantic content from the World Wide Web. WWW, 2005.

[23] John E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of

planar graphs Preliminary Report. In STOC '74: Proceedings of the sixth annual

ACM symposium on theory of computing, pages 172-184, New York, NY, USA,

1974. ACM Press.

[24] Chun-Nan Hsu and Ming-Tzung Dung. Generating finite-state transducers for

semi-structured data extraction from the web. Information Systems, 23(9):521-

538, 1998.

71

[25] David F. Huynh, Robert C. Miller, and David R. Karger. Enabling web browsers

to augment web sites' filtering and sorting functionalities. In UIST '06: Pro-

ceedings of the 19th annual ACM symposium on user interface software and

technology, pages 125-134, New York, NY, USA, 2006. ACM Press.

[26] Thorsten Joachims. Making large-scale support vector machine learning prac-

tical. In B. Sch6lkopf, C. Burges, and A. Smola, editors, Advances in Kernel

Methods: Support Vector Machines. MIT Press, Cambridge, MA, 1998.

[27] D. Shasha K. Zhang. Simple fast algorithms for the editing distance between trees

and related problems. In SIAM J. Computing, number 18 (6), pages 1245-1262,

December 1989.

[28] Boris Katz. Using English for Indexing and Retrieving. Technical Report AIM-

1096, 1988.

[29] Boris Katz. Annotating the World Wide Web Using Natural Language. In Pro-

ceedings of the 5th RIAO Conference on Computer Assisted Information Search-

ing on the Internet (RIAO '97), Montreal, Canada, 1997.

[30] Boris Katz, Sue Felshin, Deniz Yuret, Ali Ibrahim, Jimmy Lin, Gregory Marton,

Alton Jerome McFarland, and Baris Temelkuran. Omnibase: Uniform Access

to Heterogeneous Data for Question Answering. In Proc. of the 7th Int. Work-

shop on Applications of Natural Language to Information Systems (NLDB '02),

Stockholm, Sweden, June 2002.

[31] Boris Katz and Jimmy J. Lin. Start and Beyond.

http://citeseer.ist.psu.edu/556306.html, 2002.

[32] Nicholas Kushmerick, Daniel S. Weld, and Robert B. Doorenbos. Wrapper In-

duction for Information Extraction. In Intl. Joint Conference on Artificial In-

telligence (IJCA I), pages 729-737, 1997.

[33] Alberto H. F. Laender, Berthier Ribeiro-Neto, and Altigran S. da Silva. DEByE -

Data extraction by example. Data Knowledge Engineering, 40(2):121-154, 2002.

72

[34] Zhao Li and Wee Keong Ng. WICCAP: From Semi-structured Data to Structured

Data. Engineering of Computer-Based Systems, 00:86, 2004.

[35] Bing Liu, Robert Grossman, and Yanhong Zhai. Mining data records in Web

pages. In KDD '03: Proceedings of the ninth ACM SIGKDD international con-

ference on knowledge discovery and data mining, pages 601-606, New York, NY,

USA, 2003. ACM Press.

[36] David W. Matula. An Algorithm for Subtree Identification. SIAM Review,

10:273-274, 1968. Abstract.

[37] Robert C. Miller and Brad A. Myers. LAPIS: smart editing with text structure.

In CHI '02: CHI '02 extended abstracts on human factors in computing systems,

pages 496-497, New York, NY, USA, 2002. ACM Press.

[38] Ion Muslea. RISE: Repository of online information sources used in information

extraction tasks. http://www.isi.edu/info-agents/RISE/, 1998.

[39] Ion Muslea, Steve Minton, and Craig Knoblock. A hierarchical approach to

wrapper induction. In AGENTS '99: Proceedings of the third annual conference

on Autonomous Agents, pages 190-197, New York, NY, USA, 1999. ACM Press.

[40] Juan Raposo, Alberto Pan, Manuel Alvarez, Justo Hidalgo, and Angel Viha.

The Wargo System: Semi-Automatic Wrapper Generation in Presence of Com-

plex Data Access Modes. In DEXA '02: Proceedings of the 13th International

Workshop on Database and Expert Systems Applications, pages 313-320, Wash-

ington, DC, USA, 2002. IEEE Computer Society.

[41] Davi :De Castro Reis, Paulo B. Golgher, Alberto H.F. Laender, and Altigran S.

da Silva. Automatic web news extraction using tree edit distance. WWW, 2004.

[42] Stephen Soderland. Learning information extraction rules for semi-structured

and free text. Journal of Machine Learning, 34(1-3):233-272, 1999.

73

[431 Hui Song, Suraj Giri, and Fanyuan Ma. Data Extraction and Annotation for

Dynamic Web Pages. In EEE '04: Proceedings of the 2004 IEEE International

Conference on e-Technology, e-Commerce and e-Service (EEE'04), pages 499-

502, Washington, DC, USA, 2004. IEEE Computer Society.

[44] Baris Temelkuran. Hap-Shu: A Language for Locating Information in HTML

Documents. Master's thesis, Massachusetts Institute of Technology, May 2003.

[45] Vladimir Vapnik. Statistical Learning Theory. Wiley-Interscience, New York,

1998.

[46] Eric W. Weisstein. Isomorphic Graphs. http://mathworld.wolfram.com/Isomor

phicGraphs.html. Wolfram MathWorld-the web most extensive mathematics

resource, accessed 21 May 2007.

[47] Yanhong Zhai and Bing Liu. Web data extraction based on partial tree alignment.

In WWW '05: Proceedings of the 14th international conference on World Wide

Web, pages 76-85, New York, NY, USA, 2005. ACM Press.

74

