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by

Michael C. Yeung

Submitted to the Department of Electrical Engineering
on May 11, 2007 in Partial Fulfillment of the

Requirements for the Degree of Master of Science in
Electrical Engineering and Computer Science

ABSTRACT

This study seeks to investigate various techniques used in Interferometric Synthetic
Aperture Radar (InSAR) during the phase unwrapping process and the noise filtering step.
In particular, as intuition would follow, we establish that the advantage of using three
satellites over using just two in noise reduction means that using three satellites should be
the way to go in all future work. In addition, this thesis does some in-depth investigation
into the effectiveness of the following phase unwrapping methods: weighted least-squares
phase unwrapping, branch-cut, and MAP dynamic programming phase unwrapping. The
weighted least-squares unwrapping utilizes residues, which are points of inconsistencies
on the interferogram, as a guide to assign weights when doing the weighting before the
actual unwrapping step. Results show that weighted least square unwrapping fares the
best in terms of mean RMS height error.

We also introduce the notion of 2-D and 3-D Projection in our search for a simple,
elegant solution to further reduce noise during our InSAR post-processing steps. 2-D
Projection is shown to be a special case of 3-D Projection, and both require the presence
of at least 3 satellites. Projection in general reduces noise in the system by utilizing the
information provided by the configuration of the satellites to reduce the set of allowed
phase points, thereby improving the robustness of the system to noise. Our results show
that, for almost all cases, whether in the extremely small baseline distance or non-integer
baseline ratios, using 3-D Projection gives much better results.

Results are entirely simulation based, using the engineering tool MATLAB Version 7.0
developed by Mathworks. Root-mean-square errors will be used as the metric for
comparison for most cases.

Thesis Supervisor: Jin Au Kong
Title: Professor of Electrical Engineering

Thesis Co-Supervisor: Bae-Ian Wu
Title: Research Scientist
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1. Introduction

1.1 Introduction to SAR Interferometry (InSAR)

Synthetic Aperture Radar (SAR) techniques have been used in many different but related
fields since it was first developed in the 1950's. The varying range of information that
SAR technology provides includes terrain structural information to geologists for mineral
mining, oil spill boundaries to environmentalists, ice hazard maps to sea navigators, and
reconnaissance and stealth information to military personnel, just to name a few.
Interferometric SAR, or InSAR, is the branch of SAR that deals with using more than one
SAR image to obtain additional information on the target. The phase maps that are
generated from the phase differences between different pairs of SAR satellites are
commonly known as interferograms. The phase differences are the key component in
determining the actual three-dimensional height map (also known as the Digital Elevation
Model, or DEM) of the terrain. As such, much study has been done on the recovery of
terrain information from these interferograms.

An example of an interferogram is provided below, Figure 1.1. Its unwrapped counterpart
is presented in Figure 1.2.

Interferogram (map of phases), showing the fringe lines where phase wrapping occurs
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Figure 1.1: Example of an interferogram.
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Phase map showing the disappearance of fringe lines after unwrapping
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Figure 1.2: Example of the interferogram in 1.1 after phase unwrapping.

1.2 Objectives

This thesis seeks to do some in-depth investigation into the algorithms used to improve

the accuracy of the critical phase unwrapping step. We seek to compare the different

methods of unwrapping phases, especially when we have 3 baselines available, as is the

case when there are 3 satellites. Since robustness to noise is probably the biggest factor in

weak performances by different algorithms, we also look at ways to mitigate noise levels

given that we have 3 interferograms instead ofjust 1.

The primary method, and "reference" method to which we will compare other phase

unwrapping methods to, is the Weighted Least Squares unwrapping technique [1]. This

technique makes use of the second derivatives of the wrapped phases to determine the

best unwrapping procedure, with appropriate weights assigned to each pixel in

accordance with how much we suspect that pixel is contaminated by noise. Another

widely available phase unwrapping technique in literature today is the Branch Cut

algorithm in tandem with "residues" present in noisy interferograms [11]. Both these

methods will be presented in greater detail in later sections, and their merits compared in

a test case. It should be noted that both these methods are meant for only one baseline

(instead of multiple baselines), but they set up a solid framework for our multi-baseline

study.

14



In addition, we give a thorough treatment of the iterative dynamic programming approach
that Ying, Munson, Koetter, and Frey used for both the single baseline [27] and the
multibaseline [21] case. This Maximum a posteriori (MAP) estimation that they
undertook is then compared with both the single baseline and multi-baseline cases that
can be achieved using Weighted Least Squares or Branch Cut, and the merits of each
discussed.

We propose 3-D projection as a technique to reduce the impact of noise during our phase
unwrapping step. This makes use of fact that the geometry of the satellite configuration
constrains the relationships among the 3 phases retrieved by the 3 satellites. The relative
distances of the satellites from one another (baseline lengths) play a critical role in this,
and we lay the groundwork as to how this can be exploited to retrieve more accurate
phase values.

1.3 Problem of interest

A problem inherent in retrieving information from phases and phase-related information,
e.g the DEM, is the phenomenon known as phase unwrapping. Phases are naturally
ambiguous in nature - they are always measured as modulo 2R. There is no observable
difference between 1.5 radians and 1.5 + 8n radians - they all map to the same point on
the unit circle in the complex plane, and this leads to fringe lines on interferograms.
However, the terrain information depends on the actually phases, not the wrapped phases.
Phase unwrapping hence becomes a critical part of the height-retrieval process. To
compound the problem, noisy data may cause unnecessary phase jumps (i.e. from 0 to
2n). Since many algorithms typically use phase information from the previous pixel to
unwrap the next pixel, errors induced from a phase pixel unwrapped incorrectly will
quickly propagate to cause large global errors. Many phase unwrapping algorithms have
been developed over the years, and most of these involve just 2 satellites. In this thesis,
we seek to investigate the merits of using 3 satellites instead of 2 in the phase unwrapping
process, and explore the possible algorithms that hold promise for such a critical step in
height retrieval.

Moreover, the presence of 3 satellites gives us a whole new dimension to work with.
Before, when there are only 2 satellites, there has never been much of a solution for
checking for the validity of the data in the presence of noise. There just isn't an extra
degree of freedom that can help us narrow down the effects of noise. However, when we
introduce an extra satellite, the very position of this third satellite should give us
information on whether the unwrapped phase data is coherent. This promises to be a
powerful tool to mitigate noise in our system: since noise is assumed to be randomly
distributed but data is not, the partial effects of noise might be picked up and corrected
more easily if we use 3 satellites instead of 2. A big portion of this thesis will be devoted
to investigating this work.

15



2. Fundamentals of SAR Interferometry

2.1 Configuration of satellite system

To perform any analysis and enhancements of SAR interferometry (InSAR), it is critical

that we first establish the basis of the SAR system. In particular, we have to answer

questions pertaining to how Synthetic Aperture Radar (SAR) is different from other

conventional radar configurations, and the advantages that SAR holds over these regular
methods.

Consider Figure 2.1 for a basic SAR system.

ht direction
,; Flight direction

Azimuth direction

xxN N

"K,
llumiraied area

........ .......

Range direction

Figure 2.1: Basic operation of a SAR system.
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The Synthetic Aperture Radar derives its name from its operation. A single satellite, or
radar, flies over a wide azimuth distance while mapping the terrain in the range direction.
This continuous flying and mapping by the satellite mimics an array of antennas, and
essentially performs the same function as well. In essence, a larger, artificial (or synthetic)
aperture has been replicated with the use of just one satellite in the radar system. The
antenna is usually attached to either an airplane or an air-borne satellite, and this antenna
serves both the purposes of transmitting and receiving signals. The frequency of the
signals sent (and received) is in the microwave region [43], and can be taken to be a
constant train of impulses. It is also important to note that the satellite is flying over the
Earth at a much faster rate than the Earth is spinning. This non-geosynchronous orbit
allows us to make the approximation that measured flight-speed of the SAR system is
fully with respect to a stationary Earth terrain. Hence, for the remainder of this thesis, the
effect of the time differences of arrival of signals is ignored. To simplify things a little
further, the curvature of the Earth also been ignored.

Although Figure 2.1 only showed 1 satellite in motion, InSAR always involves more than
just 1 satellite. This is due to the very nature which InSAR works, since there can be no
interferometry when there is only one satellite present in the system. Furthermore, the
equivalent signal values returning to each of the 2 SAR systems can be expressed in their
real and imaginary parts, or more commonly, in their magnitude and phase. Therefore,
for every pixel on the interferogram corresponding to the terrain being mapped, we can

express the signal as Ae , where A is the magnitude of the signal sent, and $ is the

corresponding signal phase. In the case where there are 2 satellites, each satellite will

receive a different signal, Ale'o' and A2eM2 for each pixel on the ground. With these 2

complex variables, let's define a new variable below:

Acoh eA = (AlejA). (A2e i2)Y (2.1)

We can thus immediately define the following terms:

Acoh A 1AA (2.2)

4it=0 - 02(2.3)

Each of the 2 parts of the term illustrates a fundamental part of the retrieved information.
They both describe the relationship between the two phase values of the same pixel on
the ground due to the two satellites that make up the InSAR system. The magnitude of
the term, Acoh describes the degree of reliability, or coherence, between the 2 pixel

images. A high coherence value would indicate that the corresponding phase estimates
used for height retrieval are acceptable and good height estimates are thus forthcoming.
Conversely, if the Acoh turns out to be near zero value, the height estimate retrieved has to

be considered doubtful. For the purposes of this research and thesis, we will not take into
account the cases where retrieved phases are anything but perfectly coherent, i.e. Acoh is 1.

However, it is important to note that this is one critical factor to be taken into account
when applying techniques developed in this thesis into real-life data.
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The second part of the term,#s, is defined to be the difference in phase value between 2
different satellites. As we shall see later, this is perhaps the single most important piece
of information that can be retrieved from a pair of satellites, because it is directly
proportional to the height of the terrain at that pixel. One important caveat of using phase
to retrieve height is that phase values are inherently ambiguous. A retrieved phase value
of 1.25 z can really mean any value from the set of (1.25 + 2n)r I n e Integers}, because
phases can really only exist between 0 and 2 z. This means that the process of phase
unwrapping is vital and has to be done correctly if we are to get the actual phase values,
and hence the actual terrain heights, back from# .

The entire process of retrieving height from SAR data is described below as a series of
steps. Since there simply is no way to give each step its full deserved treatment in just
one thesis, we will ignore quite a few processes in this thesis, including getting the SAR
data, data co-registration, and coherence determination, working on the assumption that
these ignored steps worked perfectly in a noiseless fashion. They do not lie in our scope
of objectives, and since the steps listed below are fairly modular processes, i.e. one step
does not interfere with the next, we can just focus on the steps that are stated in our
objectives, i.e. Noise filtering, phase unwrapping, and DEM deduction.

SAR Data

Data Processing

Data Co-registration

Noise filtering

Interferogram Evaluation

Coherence determination

Phase Unwrapping

Deducing the DEM

Figure 2.2: Height retrieval from SAR data.
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2.2 Simulating the interferogram with a 2 satellite configuration

In this section, we will explore the exact mathematics that needs to be employed to
retrieve height information with phases for the case of 2 satellites. Since the multi-

N!
satellite case of N satellites can really be thought of as being a vast system of 2N

2 -(N - 2)
pairs of satellites, the mathematics that we are going to present can easily be extended
with no loss of generality.

We start with a 1-dimensional view of the terrain, and seek to obtain the phase difference
between the 2 satellites. At every azimuthal (cross-range) pixel interval, a shot of all the
pixels in the range direction is taken, and stitching together all the cross range pixels
generates a 2-dimensional phase map of the terrain. We assume we only know (or can
measure) the following system parameters: baseline length B, baseline slant angle a, slant
range of the first satellite pl, wavelength of the signals transmitted received A, and the
distance of the first satellite from the ground, H. We are able to find (by transmitting and
receiving the pulses) the wrapped phases of SAR 1 and 2. Figure 2.3 shows the SAR
setup, as well as the corresponding system parameters.

SAR2

SARI B

0

PI

H

Azimuth

AZ

X + Ax 
Range

Figure 2.3: InSAR configuration for 2 satellites.
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We can first obtain the slant range distances from each satellite to a terrain pixel on the
ground. By observing the geometry of the Figure 2.3 and observing the positional
relationship between the satellites and the terrain feature on the ground, we can derive the
following:

p =(H - Az)2 + (X + Ax) 2  (2.4)

p 2 = (H - Az + Bsin a)2 + (X + Ax - Bcosa)2  (2.5)

When the SARI-transmitted signal reaches the ground, the signal gains a certain amount
of phase, which it loses again when it travels the exact same distance back in the
direction of SAR 2. Thus, we can define the interferometric path length 6, which refers to
that change in displacement that the signal travels when it makes it pass from SAR1 to
SAR2 :

9 = 2(p, - p 2). (2.6)

The interferometric phase difference is just the phase equivalent of the interferometric
path length, and thus can be easily defined as follows:

(=kP= = (P-P2). (2.7)

This phase difference would correspond to the #s in equation (2.3). In simulating our
inteferogram for the purposes of this thesis, we will be creating a reasonable terrain in
MATLAB, then going through the equations (2.4) through (2.7) to obtain the
interferogram from the terrain. Once we have the interferogram on hand, we can go ahead
with implementing the variety of techniques that we have developed in this thesis,
including Projection and the range of unwrapping techniques, onto this interferogram to
retrieve the original heights of the terrain that is being mapped.

2.3 The problem of wrapped phases

Now, we will investigate in great detail a problem with interferometry that we have
described briefly in previous sections, and provide insight into potential solutions for it.
This problem is the issue of wrapped phases. The absolute phases that we calculate in
equation (2.7) are naturally continuously; since p, and p 2 are just straight line distances,
there is no reason for equation (2.7) to be discontinuous. However, in reality, the phase
differences measured are discontinuous, being confined in a range between -7C andr c,
and follows a strictly periodic cycle. In other words, the phases obtained from SAR

20



systems are the absolute phases modulo 2 z. The value of the quotient after this wrapping
procedure is forever lost, and there is really no way to be perfectly sure what the actual
phase value after phase wrapping has occurred.

One of the weakest and most commonly used methods to deal with this problem is to do
the following: scan the interferogram in a raster fashion, and whenever you detect a 2 z
phase jump, add 2 z back onto that particular interferogram pixel. This is similar to the
unwrap function provided by MATLAB. While intuitive, this technique is handicapped
by the lack of robustness to noise. Background noise is inevitable in any SAR system,
and this may come from a variety of sources --- thermal radiation, imperfection of
receiving and transmitting antennas, random distribution of input parameters, etc. The
presence of noise means that it is often difficult to be confident that adding 2 z to a pixel
will perform the correct unwrap; in fact, it might be adding even more systematic noise
into the system. As such, we will seek to implement other more effective phase
unwrapping algorithms and compare their results. The unwrap algorithm that is available
in MATLAB will not be used for any phase unwrapping comparisons in this thesis, since
almost any other algorithm will outperform it, except in the cases of extremely low noise
levels.

The 2 most commonly used phase-unwrapping algorithms used in literature today among
many others (see [1]-[12] of Section 8) are the Weighted Least Square and the Branch
Cut algorithms. Each of them has their own pros and cons. We will implement both for
the purposes of this thesis, and perform a full-length comparison between the two to see
which has a better noise-tolerance, since that is our primary concern when it comes to
phase unwrapping. These will be investigated in the next chapter.

2.4 Retrieving height from the interferogram

After we successfully unwrap the phases from the interferogram, the next step would be
to obtain the height of the terrain. We can start by rearranging equation (2.7) to get the
following:

5 = <p (2.8)
4z

By simple geometric reasoning of Figure 2.3, we can obtain a relationship between the
look angle 0 and o as follows:

0 = a + arcsin - + - - 2 (2.9)
(B 2p, 2BpI

The height at a certain pixel, Az, is thus given by:

Az = H - p, cos 9 (2.10)
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As such, given that we have the interferogram and all the necessary parameters (e.g.
H, p, a , etc), we can obtain the entire digital elevation map from the phase map.

One caveat of retrieving the digital elevation map from the interferogram is the
phenomenon of foreshortening. Foreshortening refers to fact that because slant ranges are
usually the ones which are measured to be regularly spaced, the actual horizontal range
intervals Ax are cannot be regularly spaced as long as the terrain is not a purely flat,
horizontal surface. This effect happens primarily because the length of time that has
passed from the time when pulses are emitted to the time when they return to the SAR
depends on what they hit. Pulses that hit taller objects will return to the SAR system
earlier, and pulses that hit a flat ground will return to the SAR system later than it
otherwise would have. This effect, if not corrected for, creates the illusion that taller
objects are nearer than they really should be, and shorter objects are further. We will not
be going into detail in foreshortening; instead, we will simply assume that foreshortening
has been corrected for automatically for us. This assumption is neither realistic nor
representative of actual workings of a SAR system, but since SAR is a fairly modular
system, that would not obstruct us in developing our phase unwrapping and projection
algorithms.
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3. Single Baseline Phase Unwrapping

3.1 The 2 satellite configuration

We now briefly look at the phase unwrapping process with 2 satellites (1 baseline), since
some of the 3 satellite approaches are simply taking averages of phase unwrapping with 2
satellites. To do so, we first have to simulate the actual height terrain in MATLAB, as
well as the system parameters, e.g. wavelength, noise level, and baseline separation, etc.
We can then "measure" the phases that the satellites observe, and generate the
interferogram from there. With this phase map, we introduce the Unweighted Least
Squares (ULS) unwrapping method, the Weighted Least Squares (WLS) unwrapping
method, and the Branch Cut Algorithm, and compare the results.

We start with a 1-dimensional view of the terrain, and seek to obtain the phase difference
between the 2 satellites. At every azimuthal (cross-range) pixel interval, a shot of all the
pixels in the range direction is taken, and stitching together all the cross range pixels
generates a 2-dimensional phase map of the terrain. We assume we only know (or can
measure) the following system parameters: baseline length B, baseline slant angle a, slant
range of the first satellite pl, wavelength of the signals transmitted received A, and the
distance of the first satellite from the ground, H. We are able to find (by transmitting and
receiving the pulses) the wrapped phases of SAR 1 and 2. Figure 3.1 (which is identical
to Figure 2.3) shows the SAR setup, as well as the corresponding system parameters.

SAR2

SARI B

0

H

Azimuth

Az

Range

Figure 3.1: InSAR configuration for 2 satellites.
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By simple geometry and reasoning, it can be easily shown that the interferometric phase
difference, A2 , is given by the following relationship:

$A 1 - 2  (- P 2 ) (3.1)

However, as we discussed before, the observed phase difference is wrapped modulo 2;r ,
so the wrapped phase that we observe, g1 2 , is really given by

y 2 = W($5 12)= 0 1 + 2ck, k e Integers (3.2)

where the W operator maps every A2 point to the range (_ f,;c].

One quick way to potentially resolve the wrapped phase ambiguity is to just add
2;r whenever we see a phase jump of more than ;r radians, since that probably
corresponds to a wrapping of phases. This is akin to the unwrap function in MATLAB.
However, this technique is seriously limited by the presence of noise, which is inevitably
in all real systems. This unintelligent way of unwrapping will not detect pixels which
suffer from abnormally high noise, or worse, shears in the terrain, and unwrap in a wrong
fashion and lead to inaccurate height estimates. As such, we do not even discuss this
method in any of our simulations or comparisons, since almost any other algorithm will
outperform this unwrapping technique.

3.2 The noise model

Before we continue, we have to establish the noise model to be used so that we are all on
the same page. We have picked a white noise model, with each pixel a random amount of
noise, independent of other pixels. Thus, every pixel gets a random amount of phase
noise On (in radians) as follows:

$n = n -(2 -rand (1) -1)- (3.3)
180

where rand(l) is a random number between 0 and 1 (similar to the MATLAB function
rand), and n is the maximum amount of noise (in absolute value) each pixel can get. Thus,
if we say that this interferogram has 40 degrees of noise, it really means each pixel can
randomly have a phase noise of anywhere in between -40 degrees and 40 degrees.

To facilitate the inclusion of the notion of signal-to-noise ratio (SNR), we use the
following definition of SNR (which is similar to that used in [14]):

SNR [dB] = 20 log 180 (3.4)
On~ if)
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In reality, white noise may not be the best way to model noisy systems. There are many
other noise models that we could have adopted, with Gaussian noise perhaps the most
popular (and most commonly seen in nature) of the lot. Nevertheless, since the noise
added is random anyways, and unless otherwise stated, the algorithms do not perform
favorably for one noise model and not for another, the analyses should hold whichever
noise model we choose to adopt, and one algorithm which works better for one noise
model will intuitively also work better for another one.

3.3 The Unweighted Least Square unwrapping algorithm [1]

In [1], the Unweighted Least Square unwrapping method is introduced as a means to
make use of gradients (changes in phases in the range and cross range axes) to produce
more accurate unwrapped phases. In addition, we define the following parameters:

Aij =W( l - ViJ) (3.5)

AY ij =W(Via.1 -V V (3.6)

where i and j refer to differences in the range and cross-range axes respectively. From
this point on, we'll just refer to i's and 's instead of range and cross-range, since we will
be talking about matrices of phases, but there really is no difference between the two.

The least-squares solution requires, as the name implies, the j that minimizes the square

of the difference between the wrapped phase difference and the unwrapped phase
difference. In mathematical form, we want to find the j such that:

M-2N-1 M-IN-2

-~ A~) 2 1ZZ(olJ+ _ 'A,j _AY~)i+1,J ~ Oij - x,j 2 2~i=0 j=0 i=0 j=0

is minimized. M and N represent the total number of pixels in the i and j directions.

An earlier paper by Hunt [4] has already shown that this problem can be solved in closed
form. The unwrapped phase differences and the wrapped phase differences are related by
the discrete Poisson's equation if the least squares constraint is to be satisfied and the 2D
Discrete Cosine Transform (DCT) does the job perfectly.

The Unweighted Least Squares algorithm can be summarized succinctly below:

1. Let p 1 be the following:

Pfmh =f(A CT o ) (Ay (3.7)

Perform the 2D forward DCT on the array p11j to yield the values p,,,j
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2. Compute Ahai,i, according to the following equation:

$hat,i,j = Phat,i,j (3.8)

2 Cos + Cos2
M N

3. Perform the 2D inverse DCT on hat,i,j to obtain # , which are the least-squares

unwrapped phase values that we seek.

3.4 Residues and the Branch Cut algorithm [11]

In [11], Goldstein et al talked about using "residues" to determine phase errors in
interferograms. When we move from one pixel to the next, the change is designated a +1
if there is a change of more than + r (half a cycle), a -1 if there is a change of more than -
r, and a 0 otherwise. If there were no noise in the system, then going clockwise or

counter-clockwise back to the same point that we started off in any fashion while
summing up all the +1's, -1's, and O's should always give us 0 in the end. This is
analogous to walking from the top of a mountain down the hill, then go back up to the
same point on the mountain via any other path - we get back to the same point. However,
if there is noise in the system, then the phases will get randomly shifted up and down -
and the phase at one pixel may be so large that it gets a +1 or a -1 relative to its
neighboring pixels. Thus, if we integrate clockwise (or counter-clockwise) around, 4
pixels, we may get a residue - a + 1 or -1. The presence of a residue thus tells us that there
is inconsistency. Note, however, that the absence of a residue does not indicate the
absence of noise. If the noise level is not high enough, the phases may get disrupted but
not so much as to cause loss of consistency.

To illustrate the idea of residues, consider the following matrix of phases:

0.2 0.8

0.4 0.6

The numbers represent the phases that are measured, normalized by21r .If we integrate
around the phases, we get a residue of +1 - an indication of inconsistency.

The next step of the unwrapping process is to connect nearby +1 and -1 residues with
"cuts". These cuts act as walls so that integration paths can cross them, and so no net
residues can be encircled by these residue paths. As such, no global errors can be
generated, although local errors in the immediate neighborhood of the residues can still
occur. Cuts are chosen such that the total length of them is kept to a minimum to
minimize the total phase discontinuities in the interferogram.

When there are only a few residues around, the location of the optimum cuts is there for
all to see. However, once more noise creeps in and noise levels shoot up, it would be
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computationally intensive to solve for the best cuts. The following algorithm is thus
proposed:

1. Scan interferogram until a residue is found.

2. Place a 3 by 3 box around the residue, and continue scanning for another residue.
If another residue is found, place a cut between them.

3. Designate the cut as "uncharged" if the residue is of the opposite sign, and repeat
step 1. If residue is of the same sign as the original, move the box to the new
residue and continue searching until either:

a. an opposite residue is located and the resulting total cut is uncharged, or
b. no new residues can be found.

4. If step 3b occurs, increase size of box by 2, and repeat algorithm from current
starting residue.

Goldstein et al suggest introducing such "branch cuts" to surround areas on the
interferograms with residues. Essentially, "branch cuts" are "walls" set up to prevent
pixels near areas with residues from unwrapping using information from these phases,
thus preventing the contaminated phases where the residues lie from spreading globally
throughout the unwrapped data. However, this method fails when the noise level is too
high (hence too many residues), since there is no clear way to determine which is the best
path to take to unwrap around the residues. Worse, there may be so many residues in the
phase map that no suitable branch cuts exist, resulting in isolated patches of the
interferogram which are not processed by the algorithm. However, this does not
automatically condemn the Branch Cut algorithm to insignificance. Instead, we can use
the residues to determine the weights of the Weighted Least Squares algorithm, which is
explained next.

3.5 The Weighted Least Square unwrapping algorithm [1],[24]

The Weighted Least Square algorithm is a critical extension to the Unweighted Least
Square algorithm, since it allows us to give higher weights to phase points which we have
more confidence in, and lower weights to those which we doubt are correct.

According to Ghalia and Romero [1], the Unweighted Least Square algorithm can be
expressed in the following matrix form:

P. = p (3.9)

where P is a matrix that performs the discrete Laplacian operator on a vector of the
unwrapped phases (D (which we are trying to solve for), and p is a vector containing the
discrete Laplacian operation on the wrapped phase differences, just like equation (3.7).
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We have already established that equation (3.9) can be easily solved by the forward and
inverse discrete cosine transforms.

However, if we know that certain wrapped phase values are corrupted by some degrading
influence like noise, we can assign those phases less or even no weights so as to increase
the robustness of the unwrapping process [24]. One way to know that wrapped phase
values are indeed corrupted is to check for the presence of residues. If a residue is present,
it means that the 4 neighboring pixels are inconsistent with one another. There is no sure-
fire way to tell which pixel(s) are actually "wrong" - the positioning of the large phase
jump is relative depending on the position of the 2;r interval (in our case, the 2z interval
is, as stated before, (- z, z]). Hence, whenever there is a residue, we assign zero weights
to the 4 corresponding pixels, and if there is no (zero) residue, the weight stays at unity.

Unfortunately, the presence of the weighting matrix means that there is no closed form
solution for the least squares problem, unlike in the unweighted case when the
relationship between wrapped phase differences and unwrapped phase differences reduce
to a discrete Poisson's equation. Ghalia and Romero [1] showed that incorporating
iterative techniques that utilize our ability to solve the Unweighted Least Square problem
into the algorithm are able to converge to the correct phase values in relatively little time.

3.6 Denoising ("Cleaning") [25]

Denoising (or "Cleaning") is the process of reducing the effects of noise on the phase
values. Since noise is the primary cause of errors in phases and bad performance of phase
unwrapping algorithms, denoising becomes a critical part of the phase unwrapping
process, as well as the subsequent height retrieval step.

Since the noise in all the interferograms is uncorrelated white noise, averaging is perhaps
the single most effective way to kill noise. Denoising, as explained in [25], is performed
as follows:

1. The interferogram is expressed as a matrix of complex numbers of magnitude 1,
e1iv'j, with the angle Vig, being the phase value of the corresponding pixel in the
interferogram.

2. The denoised phase value at pixel (ij) is then:

i+1 j+1
angl{e J (1eiyii+1 j+1

/denoised,i,]j + i.age~~J/J(.0
Li- j-1

Vdenoised~iji-1 j-1 vi9i_,
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Essentially, to denoise pixel (ij), the 9 complex numbers (pixel (ij) itself and its 8
immediate neighbors) coding the phase information are summed up and averaged, then
the phase value of that resultant complex number is taken to be the new phase value of
(ij). Intuitively, if the system is perfectly (and unrealistically) noiseless, then the
denoising process averages the entire signal and none of the noise, so we would expect
denoising to worsen things. However, this method should produce more accurate results
if there is some noise in the system, since averaging across 9 pixels can filter out much of
the noise.

One thing to note is that arithmetic averaging in the complex plane will produce good
;r )

results only if the points to be averaged lie close together. Averaging e 2 and e'2 will
IT

produce 0 - hardly a satisfactory result if the correct value is closer to e 2. As such, we
can see that complex averaging may give us results that are worse than that without
denoising if the noise level gets too high or the intervals between neighboring pixels get
too large, as can be the case if the terrain is changing too steeply, like when we're
mapping a cliff.

3.7 Comparing Unweighted Least Square, Weighted Least Square, Branch Cut with
denoising, and Weighted Least Square with denoising

We now compare the Unweighted Least Square, Weighted Least Square, and Branch Cut
algorithms, as well as investigate the effects of denoising on the unwrapped results. We
use the following table of parameters to perform simulations:

Parameter Value used

B (m) 200

a (degrees) 35

Ax (m) 5

X (m) 3-105

H (m) 5 .105

Ay (m) 5

Y (m) 3-105

A (M) 0.03 (X band)

Table 3.1: Parameters used for single baseline case.
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[13] shows that vertical misalignment of the curves happens and is to be expected
because the amplitude information is thrown away when doing interferometry. Since we
are not concerned with the alignment problem in this thesis, it suffices to say that we will
just align the mean values of the plots to be compared to that of the actual terrain used so
that the error comparison can be meaningful. This mean value is thus given by:

N
S h(x) (3.11)

N 1

where N is the number of pixels and h(xk) is the height value at the pixel corresponding to
the Xk range value.

The primary metric used for comparison will be mean root-mean-square (RMS) errors.
For each noise level (as is defined in equation (3.3)), we run the simulation a fixed
number of times, say 10. Since noise is introduced into the system, there will be a
difference in unwrapped phases and the actual phases, and so there will be a difference
between the retrieved heights and the actual terrain heights. This difference can be
quantified in terms of the RMS error, which is given by:

hrmsij = - hactuaij (3.12)

where N is the total number of times we run the simulation, hij is the retrieved height
from the unwrapped phases, hactualij is the actual terrain height that we know, and hrms,ij is
the RMS height error for that particular pixel. After we have the RMS height errors for
all the pixels, we can count the number of pixels that fall into particular "bins" of error
ranges, and thus plot a histogram to represent such results.

The following RMS histograms plot the distribution of errors. Clearly, the closer to zero
the mean of the distribution, the better the phase unwrapping algorithm does. The best
scenario should be the noiseless case, when the peak appears at the bin for zero error,
with no spread along the horizontal axis. The performances of unweighted, weighted,
weighted + cleaned, and branch cut + cleaned are investigated, and Figure 3.2 shows all
four cases for a noise level of 40 degrees.
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RMS error plot for Unweighted
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Figure 3.2a: RMS error plot for unweighted phase unwrapping, n = 40 degrees.
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Figure 3.2b: RMS error plot for weighted phase unwrapping, n = 40degrees.
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R MS error plot for Weighted + Denoised
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Figure 3.2c: RMS error plot for weighted phase
n = 40 degrees.

unwrapping with denoising,

RMS error plot for Branch Cut
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Figure 3.2d: RMS error plot for Branch Cut phase unwrapping with denoising,
n = 40 degrees.
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The mean of the distribution is the "balance point" of the distribution, and is defined to
be:

Yk-N(k)
rmsmean k

I N(k)
(3.13)

where the 2 summations refer to the number of bins used, k refers to the bin number, and
N(k) refers to the number of pixels that fall into bin number k. This means that if most of
the weight is centered on a particular RMS error bin, then the mean RMS height will
naturally fall around that value too.

The RMS errors for varying noise levels for the three techniques are shown in Table 3.2,
and a graphical representation of data in the table is shown in Figure 3.3. Note that
"Residue Concentration" refers to the percentage of pixels that are determined to be
affected by residues.

Residue
Mean RMS Error (m) Concentration

SNR Branch
(dB) Weighted Cut

Noise (degrees) Unweighted Weighted Cleaned Cleaned
0 00 0 0 0.1095 0.2078 0
10 15.16 0.6875 0.6875 0.4954 0.5361 0
20 9.14 1.1753 1.1753 0.6404 0.6754 0
30 5.62 1.7055 1.7055 0.834 0.8637 0
40 3.12 2.2802 2.2429 1.1164 1.138 0.062
50 1.18 3.9661 2.7125 1.6039 1.603 3.05
60 -0.40 9.1408 3.2094 2.8651 6.2648 7.56
70 -1.74 16.489 6.0915 4.8518 8.5791 13.28
80 -2.90 23.8509 13.3311 8.4918 8.6203 18.96
90 -3.92 30.788 23.404 14.6903 8.7054 24.12

Table 3.2: Table of mean RMS error for varying noise levels.
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Mean RMS Errors as a function of noise level
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Figure 3.3: Plot of mean RMS error against noise level for Unweighted Least Square,

Weighted Least Square, Weighted Least Square with denoising, and Branch Cut with

denoising.

From Table 3.2 and Figure 3.3, we see that Weighted Least Square does at least as well

as Unweighted Least Square in all noise levels, and does better whenever the residue

concentration is a non-zero value. For example, at a SNR of 1.18dB (50 degrees noise),

the mean RMS error for Weighting and denoising is only 60% that of just Weighted

Least Square, and about 40% the error of Unweighted Least Square. This is a huge

improvement. The Weighted Least Square method will have all weights of unity

whenever there is no residue, which simply decomposes into the Unweighted Least

Square problem, and when there is residue the weighting makes the phase unwrapping

process more robust to noise. Denoising clearly helps to significantly reduce errors in the

phases, since denoised phases do better in all noise levels except when there is no noise,

which is unrealistic in any practical system. It is unclear whether denoising will help or

hurt when noises get even higher than those presented here, but any noise floor higher is

highly improbable and will bury the signal anyway so we expect that no phase

unwrapping method will give results close enough to the terrain to be acceptable. The

Branch Cut algorithm, coupled with denoising, does not perform as well as the weighted

least square algorithms for SNR greater than -3dB (80 degree noise), and it is only when

the noise SNR becomes an impractically small number like -4dB (90 degree noise) does

the Branch Cut algorithm outperform the other algorithms. In fact, looking at Table 2, we

find that the Branch Cut algorithm does worse than its Least Squares counterpart for all

noise levels less than 90 degrees.
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4. Multibaseline Phase Unwrapping - Iterative Dynamic
Programming Approach with the Maximum a Posteriori Rule

There are many other phase unwrapping methods for multiple baselines that exist in
literature today, and a few do not seem to have been as widely used as the others,
although they seem to hold much promise in their mathematical approach to the problem.
One of these which we would investigate in this section is the Dynamic Programming
Approach using the MAP rule introduced by Ying, Frey, Koetter, and Munson in their
papers [211 and [27]. These 2 papers describe the MAP technique being used in both
single baseline and multiple baseline cases. We implement these algorithms in MATLAB,
and then compare them with our existing techniques, namely Weighted Least Square and
Branch Cut, to determine which method works best for our purposes.

4.1 The 3 satellite configuration

Wong's preliminary report [131 found that placing 3 satellites in a triangle formation will
be able to give us access to many different ratios of baselines if the 3 satellites rotate
around clockwise in a cartwheel fashion. In this section, we investigate the advantages of
3 baselines in the unwrapping process. Figure 4.1 below shows the setup of the 3
satellites, as well as the relevant parameters.

SAR3

SAR2 B

SARI B12

H

Azimuth

Az

X ARange

Figure 4.1: InSAR configuration for 3 satellites, collinear arrangement.
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All parameters used will be kept as they were when we were dealing with only 2 satellites,
with the exception of baseline lengths B12, B23 , and B13, which were given earlier in
Table 3.1.

Parameter Value used

BI2 (M) 150

B23 (m) 50

B13 (m) 200

Table 4.1: Values of baseline lengths used for 3 baselines.

Note that B13 = B23 + B12, as is required by geometry. B13 is the set to be the same length
as B for 2 satellites, and so we would expect the analysis of the interferogram generated
for satellite pairs SARi and SAR 3 to yield similar results to that presented in the previous
section.

4.2 Height averaging

Since the phases (and hence the retrieved heights) are affected by random noise, it is
intuitive to expect that simple averaging of the retrieved heights will reduce the effects of
noise even further. Wong et al [13] showed that averaging with 3 baselines work best if
we only average the heights retrieved from the 2 longest baselines. That preliminary
report derived an inversely linear relationship between RMS height error and baseline
length, expressed as the following:

RMS Error oc n (4.1)
B

Wong's report showed that averaging through the 2 longest baselines gives the best
results, whereas if we average through all 3 baselines, the large errors from the shortest
baseline contaminates the result more than the averaging itself helps, so the retrieved
height errors are worse.

Height averaging is a simple-minded and relatively effective technique to obtain good
results regardless of whichever phase unwrapping algorithm we choose to employ. Thus,
we will use the Weighted Least Square unwrapping algorithm in tandem with averaging
as follows:

1. Unwrap phases i, ,and V,1 3 separately using the Weighted Least Square with
denoising algorithm from the previous section. The unwrapped phases
are $1 and A3.
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2. Retrieve the heights h, and h2 respectively from 012 and 13 .

3. h = h + h )

4.3 Dynamic programming for single baseline

The primary assumption of this approach is that the unwrapped phases (and thus the
terrain) are distributed according to a first-order Gaussian Markov random field (GMRF);
in essence, this means that if we take the generation and distribution of phases as a
stochastic process, then it must be both normally (or Gaussian) distributed, and that the
state (phase) at any particular pixel only depended only on the previous state (a Markov
process).

As expressed in equation (3.2), every wrapped phase yV has to have a corresponding

integer k11 added to it to produce the desired unwrapped phase qj. The set of unknown

kiJ 's which we are trying to solve for is then denoted k. The maximum a posteriori

(MAP) estimator then requires that k satisfy the following:

k = arg min I(V +k - Vng - k,_e )2 +(V + -i, - V - kj 1 )2

This algorithm says that we should seek to find the k's such that differences of phases of
adjacent pixels are minimized. This result makes sense intuitively since adjacent pixels
are more likely to be closer together than further apart.

To find all the k's that minimize the above equation, one way would be to use brute force
- assuming that all k's lie within the range [-K, K], search for every single one of the
(2K+1)MN possibilities if the image size is of size M by N. Clearly, this method is not
scalable. Any reasonably sized image would have a M and N whose product is
prohibitively large. Instead, the following 2 changes are made:

1. kJ is treated as intermediate shifts, an element from the set {-1, 0, 1}, and this
restricted search is iterated K times to achieve essentially the same effect as the
greedy algorithm since the phases can still expand to the range [-K, K]. The
number of searches per iteration is thus reduced to 3 MN instead of (2K+1)MN. This
exponential algorithm is still not scalable with respect to image size, but at least
this change increases the overall speed of the algorithm.

2. Instead of processing the whole interferogram at once, rows are processed W of
them at a time. Dynamic programming is employed within these W rows via a
"sliding window" to search for an optimal k, and the image is updated by adding k
before moving on. A sliding window of W=2 is shown below:
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Figure 4.2: The sliding window (of size W=2) in the MAP technique.

For W=2, a state is defined as:

s(i, j) = (key , k) (4.2)

Assuming that the difference in k between adjacent pixels does not exceed 1, there
are seven states that can exist in a dynamic program. The metric increment of any
particular state s(i, j) is then defined as:

Ad(i, j)= (yi + k - Vay_ - k_1 _1 )2

+ j + k1 - V - k1 i ) 2 (4.3)
± Vf~ + Ac11 - Vij1- k11 -1 )2

+Vi-~ + k - - 2 1 )

and the accumulated metric of state s(i, j) is:

d(i, j)= min[d(i, j -1)+ Ad (, j)] (4.4)

After scanning the W (2 in this case) rows, the unit increments of k values of all the
pixels in the rows are determined by observing which combination of k values give the
lowest accumulated cost metric. To reduce directional effects, we alternate the raster scan
from iteration to iteration. In this way, after a maximum of K iterations, the wrapped
phase map should be fully unwrapped. An added advantage of this approach is the spatial
efficiency - memory used at each stage can be reused for the next stage.

4.4 Multibaseline InSAR elevation estimation via dynamic programming

The single baseline approach described above can be extended to the multibaseline
domain. However, the main problem of extending to multibaseline is that the different
interferograms have entirely different wrapping rates defined by their respective baselines,
so processing their phases consistently in a single dynamic program becomes a challenge.
Ying et al described a way to achieve this in their paper [27] - instead of trying to
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estimate the correct phases, it would be better to estimate the heights generated from the
phases, which are consistent with one another as long as the inversion from phases to
heights is done correctly. However, in the paper, their height estimation is expressed as a
linear function of unwrapped phase as follows:

h (i, j) ~- a (V/i + 2;zki (4.5)

where

a = A (4.6)

with the parameters being the ones laid out in Figure 3.1. This equation is only
approximately correct, because it assumes the following things:

1. The elevation angle, a , is set to be 90 degrees (so the satellites form a straight,
vertical line). Clearly, changing a by even a slight bit will result in wholly
different phases, and this assumption applies a constraint that might be
unreasonable when we are using the satellites to map a terrain, since it is
impossible to require the satellites to fly in a vertical line for the duration of the
operation. However, for now, we will still use this assumption in our simulation to
evaluate the performance of the algorithm.

2. is assumed to be much greater in magnitude than B. This assumption has
4 7rB 2 p

to hold for the retrieved height to be linearly proportional to the unwrapped phase.
It is clear, however, that the following assumption is valid only if B is small, or p
is large, which might not be the case for all practical scenarios.

For the remainder of the discussion, we assume the above 2 conditions are satisfied; also,
for all our simulations utilizing, we set the parameters such that the assumptions hold.
The multibaseline MAP technique then works in a similar fashion as the single baseline
case, but instead of using the phase difference as the metric, we use the height difference
as the metric Vj(sji,sj), as follows:
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V (,1 I t _ (h(i, j) - a (, (i, j) + 2k 1 (i, j))) 2S 2 2
a1 on

+ (h(i,j)- a2(yV2(i,j)+ 271k 2 (i, j)))2

2 2a2  ) n

+ (h(i + 1,1j)- a, (V/1 (i + 1, j) + + 1 , j1))) 2

a2 2

+(h(i +1, j)- a2 (V2(i+ I, j)+ 2;7k, (i +1, j))) 2
2 22a2 07

(h(i, j) - h(i +1, j))2
07 d2

(h(i, j)- h(i -1, j))2
Od2

(h(i, j)- h(i, j -1))2
Sd2

+ (h(i+1, j)- h(i+1, j -1)) 2  (4.7)
2

We need to express the continuous variables h(ij) and h(i+1,j) in the equation (4.6) in
terms of the discrete variables k(ij) and k(i+],j) by solving the following:

av 0
ah(i, j) (4.8)

av_
ah(i+ 1, j) -

for h(ij) and h(i+1,j) and substituting into V. Solving the simultaneous differential
equations yield the following h(ij) and h(i+1,j):

h_(i, j) 1 cq+ sd

h(i+1, pq -s _cs+ pd (4.9)

where

P 2 2 + 21 2 + (4.1Oa)
al a- a 2 on 7 d

1 1 2
q =2 2 2 + 2 (4.1Ob)

al 0-n a 2 an ad
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2

1 1 h(i, j -1) h(i -1, j)
2 2 2 2

aa, a 2 an ad ad
1 1 h(i+1, j -1)

d= , 22+ 2
al Un aon a2

(4. 1Oc)

(4.1Od)

(4. 1Oe)

The algorithm proceeds in a fashion very similar to that presented in the single baseline
case, but this time we are finding both ki and k2, so the computational complexity is
increased by a squared power. The results of the algorithms, when compared against the
previous methods, are shown in the next section.

4.5 Comparing the various methods

Now, we are ready to compare the multibaseline phase unwrapping methods at our
disposal. Since we have to satisfy the assumptions as stated in Section 4.4, we use the
following table of parameters:

Parameter Value used

B13 (m) 100

B12 (m) 70

B2 3 (in) 30

a (degrees) 90

X (m) 3 -106

Y (m) 3 -106

Table 4.2: Parameters used for MAP simulation.

All other parameters are assumed to be held the same as those in Table 3.1.
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The 4 methods which will be compared are the following: Single baseline MAP with
averaging, Multibaseline MAP, Weighted Least Square with averaging, and Branch Cut
algorithm with averaging. The results are shown below:

Mean RMS Error (m)
Single Weighted Least

SNR Baseline MAP Multibaseline Square + Branch Cut +
Noise (dB) + Averaging MAP Averaging Averaging

10 15.16 6.7987 5.4102 5.1718 5.5814
20 9.14 9.5987 7.9484 7.9983 8.5091
30 5.62 12.5371 11.0188 10.9426 11.3235
40 3.12 16.1309 14.6555 14.5754 14.9226
50 1.18 19.4803 18.125 17.9594 18.1592
60 -0.40 23.478 21.6344 21.6472 21.9309
70 -1.74 30.1622 25.6016 26.8802 27.0036
80 -2.90 39.0032 34.1117 33.2328 33.9233

Table 4.3: Results of different multibaseline unwrapping
noise levels.

techniques for varying

Performance of various multibaseline unwrapping
techniques

45
,40
E 35

2 30 + Single Baseline MAP + Avg

25 --- Mul Baseline MAP

2 20 WLS+Avg
15 +Branch Cut + Avg
10 '

:5

0
0 20 40 60 80 100

Noise (degrees)

Figure 4.3: Graphical representation of results in Table 4.3.

The results from Table 4.3 and Figure 4.3 show that for a SNR ratio as low as -3dB, the

Weighted Least Square method coupled with height averaging still outperforms the other

algorithms, with multibaseline MAP coming in a close second for most of the noise

levels. Although the mean height error difference is usually not significant (usually less

than 1 meter between multibaseline MAP and Weighted Least Square with Averaging), it

is still a win nonetheless for WLS with averaging. The single baseline MAP with

averaging does the worst job in terms of height retrieval.
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5. The 2-D and 3-D Projection Methods

5.1 Introduction to projection

In this section, we investigate a new noise-reduction technique when 3 satellites are
present in a system. This new technique, called Projection, is a powerful tool that can
potentially lead to increased robustness of the InSAR height retrieval process. In essence,
projection relies on the very configuration of the satellites to deduce the behavior of the
phases, and thus, give us the ability to classify any other behavior of the phases as the
actions of noise. Because projection relies heavily on the physical configuration of
satellites, the method inevitably will be jeopardized when the configuration itself is noisy
or not ideal. Nonetheless, we press ahead to investigate how projection can help reduce
noise in a multibaseline system.

5.2 The 3 satellite configuration revisited

Figure 5.1 below shows the 3 satellite configuration, and is identical to Figure 4.1.

SAR 3

SAR2 B23

SAR1 B12

H

Azimuth

Az

X + Ax Range

Figure 5.1: InSAR configuration for 3 satellites, collinear arrangement.
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All parameters used will be kept as they were when we were dealing with only 2 satellites,
with the exception of baseline lengths B12, B23, and B13, which were given earlier in
Table 3.2.

Parameter Value used

B12 (M) 150

B 23 (m) 50

B13 (m) 200

Table 5.1: Values of baseline lengths used for 3 baselines.

Note that B13 = B23 + B12, as is required by geometry. B13 is the set to be the same length
as B for 2 satellites, and so we would expect the analysis of the interferogram generated
for satellite pairs SARi and SAR3 to yield similar results to that presented in the previous
section. In particular, we would expect that

RMS Error oc - (5.1)
B

as Wong et al showed in their report [13].

5.3 Unambiguous Range Magnification (URM)

The URM method is a technique that employs the different rates of phase unwrapping
due to the different baseline lengths to expand the range of unambiguous phases from 2 r
to a multiple of 2 ir. At its best, if all the actual phase values lie between 0 and this
multiple of 2 ir, no unwrapping is necessary - all the phases are already "unwrapped" in
the sense that they are already what they should be if unwrapping had actually taken
place. At the very least, this expansion of the unambiguous range minimizes the amount
of unwrapping work that needs to be done, which intuitively is a good thing - we don't
want to unwrap if we don't have to, since the unwrapping algorithm chosen may
introduce errors of its own.

The fundamentals of the URM stems from the following figure, which shows the close-
up of the 3 antennas in Figure 5.1:
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SAR3

AP 23

B231-
Ap13

SAR 2

Ap 12

B 12

SAR1

Figure 5.2: Close-up of the 3 InSAR antennas of Figure 5.1.

Since the slant ranges (p1 , P2, and p3 ) are on the order of 105 while the baselines (B12,
B23, and B13) are on the order of 102, a close-up of the 3 InSAR antennas will show the
slant ranges vectors to be essentially parallel to one another. This in essence means there
are 3 similar triangles that make up the geometry of the satellites, each identified by a
baseline.

The actual phase values and slant range differences are related by the following simple
equations:

#12 = 4;r Ap 12  (5.2a)
A

#13 = AP13 (5.2b)

023 = AP 23  (5.2c)
A

Since phase values are always measured as wrapped values according to equation (3.2),
equations (5.2a), (5.2b), and (5.2c) decompose into the following:
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q 12 +ki -22-c4= API2 (5.3a)

V 13+ k2 .2z1 = Api3 (5.3b)Ap 1

V 2+k3 2zf = 4Apz (5.3c)

In addition, by the rule of similar triangles, the slant range differences and baselines have
to be related by simple ratios:

B12 - B13  B 23  (5.4)
AP 12  AP13  AP23

Thus, we have the following relationships between wrapped phase values, which we
measure, and the baseline lengths, which we know:

- B 1  wURM1  (5.5a)
123 +k3 2)T B23

_12_ _ = B12  uR (5.5b)
V 2 3 +k3 -2) B23

From equation (5.5a), it is clear that the wrapped phaseV 13 is a linear function ofy 2 3 ,
with the slope beingURMI. However, the vertical (Vi3) intercepts, which depend on the
k2 and k3 wrapping integers, are unknown and increment or decrement whenever there is
a wrapping of the phase. Moreover, both t 13 and V23 are wrapped values, so they are
bound within a square box of length 27z. The exact same thing can be said for equation
(5.5b), with the appropriate changes made to reflect the relationship between y 1 2 and 23 .

This phenomenon is best explained in graphical terms, and that is shown in Figures 5.3
and 5.4 below. Since we use B1 2 = 150m and B2 3 = 50m (Table 5.1), URM1 = 4, and
URM 2 = 3. This is clearly seen by observing the slopes of the graphs of Figures 5.3 and
5.4.
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Relationship between Wrapped phi13 and Wrapped phi23
4

/

'7
/
/
/

III I I I

-3 -2 -1 0
Wrapped phi23

1 2 3 4

Figure 5.3: Relationship between /13 and V23-

Relationship between Wrapped phi12 and Wrapped phi23

-3 -2 -1 0
Wrapped phi23

1 2 3 4

Figure 5.4: Relationship between yV2 and V 2 3 -
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Xu et al [13] were the first to propose plotting these wrapped phases in this manner, and
it is known that as long as URM is a rational number, the number of line segments will be
finite, i.e. they will reconnect in a wrapped sense when they hit the edges of the box.
Clearly, a ( 13,/23) couple for any pixel (ij) will now uniquely define the phase

information for that pixel within a much larger range, since it is now in the V13 - V/23 plane.
Alternatively, we can link the line segments together without losing the increased range,
and this means we increase the unambiguous range of one or both of the axes by an
overall URM times.

Figure 5.5 shows the result of
expands 4-fold to encompass a

linking the line segments of Figure 5.3. In
range from 0 to 8 r (25.13) radians.

this case, V/13

Wrapped phi13 after linking line segments

020

C

0

_ 5

4 -3 -2 -1 0
Wrapped phi23

1 2 3 4

Figure 5.5: Figure 5.3 after linking line segments together.

5.4 Projection method

Theoretically, the URM technique allows us to expand the unambiguous range to any
arbitrary size - just increase the ratio of B13 to B23. However, when there is noise in the
system, points will get shifted away from the line segments. Points that do not lie on a
line segment have to be inconsistent with equations (5.5a) and (5.5b), which are derived
purely from the geometry of the satellite configuration. This is thus a clear indication that
noise has disrupted the real values of the wrapped phases. Xu et al [13] suggested that the
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best way to resolve this problem is to use the "Projection Method" - whenever a point
lies away from a line segment, we place it back onto the nearest line segment with the
shortest Euclidean distance. This ensures that the phase values maintain consistency of
the geometry of the 3-satellite configuration, and also allows us to place the phase points
closer (or even onto) the actual wrapped points. Figure 5.6 shows this process in action.

Y13 3

Projection method moves point
back onto the line, (xa, ya)

point is
originally here

'0
line segment

noise moves point
here, (x1, yi)

Known point on the line
segment, (xo, yo)

Figure 5.6: Illustration of the projection method.

Now, we try to frame the 2-D Projection in a solid, mathematical framework. Referring
to Figure 5.6, we name a few key points on the diagram by the following names:

1. a known point on the line segment is defined as (xO, yO)

2. an actual y23 - V13 phase couplet defined by the interferogram is defined as

(xi , y1)

3. The point that we want to find, i.e. the point on the line segment that is of the
shortest Euclidean distance to (x,, yi) is defined as (x,, ya).

With that, we start by observing that the angle that the (xi,y,)-- (x,,y) line makes with

the line segment has to be a right angle. This means that the dot product between the

vector (xa - X I Ya - y,) and (xa - XO, Ya - yO) has to be zero. Equivalently,

(Xa -xOx 1 -Xa)+(Ya yOXy1 -Ya)= 0 (5.6)

In addition, we know the relationship between x0 and yo , namely:
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Y =Y -URM (5.7)
Xa -x0

Substituting equation (5.7) into equation (5.6), we get the following:

(x. -x 0 )-[(x - x)+URM, -(y, -URM, ,(xa -x 0 )+ yo)]= 0 (5.8)

Solving equation (5.8) for x, , we get the following closed form solution:

x, 1 -URM * yo +URMI -y, +URMI*X 0  (59)
1+ URM2

From equation (5.9), and equation (5.7), we immediately get the other half of the couplet:

Ya = URM -(Xa - XO) + yO (5.10)

One important thing to note is that since there are going to be more than 1 line segment in
the plane, there will also be more than one possible (Xa IYa) points that (xI, y, ) can map to.
Since we are only interested in mapping to the line segment that is nearest to (xI, yI), we
only need to calculate the distances between (xI, y) and all possible (xa Ya) pairs:

dis ta nce = (Xa - x, 2 +(ya -y 1 )
2  (5.11)

and pick the appropriate pair.

Figure 5.7 below is an illustration of the distribution and movement of points as noise is
added to the system, then denoised as explained in Section 3.6, then placed back onto the
line segments as described by the projection method.
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W13

Distribution of
original noisy
points

XV23

W13

Noisy points
after denoising

113

Points after
projection

W123 XV23

Figure 5.7: Illustration of the distribution of points on the V13 - V23 plane before any
processing, after denoising, and after denoising and projection.

Figure 5.8 is equivalent to Figure 5.3 with noise of 30 degrees, after we have performed
the denoising step of Section 3.6, while Figure 5.9 shows the results after implementing
projection.

3

2

S

1-1

RelationuhIp between WVadpped ppl 3n d Vfedp1*23, nolso = 30 degrees

-3 -2 -1 0
Wripped *23

Figure 5.8: V13 and V23after noise of 30 degrees is added.
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Graph of Wrapped phii3 and Wrapped phi23 after projection, noise = 30 degrees
4

3-

2-

0

-1 --

-2-

-3-

4 -3 -2 -1 0 1 2 3 4
Wrapped phi23

Figure 5.9: Figure 5.8 after points are projected onto line segments.

One question to be asked is: how do we even know the line segments in the first place?
Since all we have are the noisy points, it is indeed difficult to pin down the exact location
of the line segments. However, from Figure 5.8, we observe that we have so many points
surrounding each line segment that taking the average over all those points should give us
a pretty accurate estimate of where the line segments actually lie. Thus, we do not need to
know the line segments in advance.

Another way that we can be sure of where the actual line segments is to observe the
following: when we look at equations (5.5a) and (5.5b), we see that when the original
phase value #23is zero, the original phase values A2 and $ are both enforced to be zero
so as to satisfy the constraints defined in the equations. This is an important observation;
the point (0,0,0) in the $23 - A2 - A3 space is the exact same point as (0,0,0) in the V/23-

V/12 - V/13 space, since (0,0,0) does not undergo any wrapping at all. Using this information,
we can set up our "reference point" at the origin, and start drawing the line segments
from this one point. After those line segments are drawn, we can perform projection with
ease.

From Figure 5.8, we can qualitatively see the inverse relationship between phase noise
and effectiveness of Unambiguous Range Magnification. With a larger and larger URM
value, the V 13 - V/23 plane gets more and more cluttered with line segments, which would
mean a larger and larger unambiguous interval for the phases. In the noiseless case, this
would be ideal. However, in the presence of noise, points are shifted away from the line
segments. If URM is large, the high density of line segments implies that the distance
between 2 adjacent line segments is small. If the noise is high or the URM is high, we
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could very well be moving points onto the wrong line segments since the segments are so
close to one another. The assumption that the closest line segment is where the noisy
point originally came from will therefore be wrong, and we would have introduced even
more noise into the system than if we had just left the points where they were. Therefore,
we cannot make the URM arbitrarily large without eating into our noise budget - a clear
engineering trade-off.

5.5 What if the URM ratio is not an integer?

Up to this point, we have assumed that our baseline ratios (which are equivalent to the
URM ratios by Equations (5.5a) and (5.5b) are integers. However, as mentioned before
and also in [12], there will be a finite number of line segments as long as the URM ratio
is in the set of rational numbers (of which the set of integers is a subset). We now
investigate the scenarios under which URM is a non-integer rational number.

Since every rational number can be expressed as a ratio of 2 integers, we let URM=
q

where p and q are both elements of the set of non-zero integers. Then, equation (5.5a)
becomes the following:

V 13 + k 2 2r = p (5.12)
V 23 ± k3 2;r q

The k's merely denote that the phases are wrapped. After we link the line segments
together and plot V13 against V23 (like in Figure 5.5), the resulting line will have a slope

of P . This means that after linking, the unambiguous range for the horizontal axis is
q

expanded q -2;r times, while that for the vertical axis is expanded p -2;r times. This has

some obvious consequences:

1. If we want to expand the range of V13 by 4 times, we can use a baseline ratio of

4 4
-instead of -, which allows us to place the satellites much closer to each other
3 1

and hence ensuring good coherence between the signals.

2. The drawback of using non-integer values of URM to achieve point 1 is that you
now have a higher density of lines wrapped in the 2r by 2zf box in the first place.
From the previous section, we discussed that a higher density of lines leads to a
degradation of noise budget.

In addition, if E is a rational number close to an integer (e.g. 2.8), several line segments
q

would appear in very close to one another. Figure 5.10 shows the line segments for B13 =
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5
125m, B23 = 50m, which means a f of -. Note the increased density of lines, as well as

q 2
the increased unambiguous range for both the phase values of the horizontal and vertical

axes. Figure 5.11 shows a f of 2.8.

q

Line segments for 8 13/B23 =5/2
4

3

2

O.

-10

-2

-3

'I

/ /
/ // /

/7 /1
/

/ /
/ 1~

// /

~1/
I d

-4 -3 -2 -1 0 1 2 3

-4 -3 -2 -1 0 1 23
Wrapped phi23

Figure 5.10: Line segments in the V 13 - Vf23 plane with a URM

4

= 2.5.
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Line segments for B13/B23 = 2.8
4

3-1

-2 /4//,Ky(II
-4 -3 - 11

Wrapped phi23

Figure 5.11: Line segments in the V/13 - V23 plane with a URM =2.8.

We introduce the notion of "noise distance" to describe the phenomenon of decreasing
noise budget in exchange for a larger unambiguous range. The noise distance, dn, is
defined as the %/ of the shortest straight line distance (in radians) between 2 adjacent line
segments in the 2zr by 21r box. Qualitatively, this tells you how much the points can
deviate from the line segments before they become too close to the adjacent line segment,
and thus when adjusted, will get mapped onto a wrong line segment and thus a wrong

V13-V/23 value pair.

The noise distance d, can be derived as follows:

13

2 d/

Wrappe ph23

dx

Figure 5.12: Illustration of the "noise distance" dn.
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We know that the line segments expand the vertical range by p times and the horizontal
range by q times. By simple geometry and reasoning, it can be easily shown that after
drawing all the line segments out, the horizontal distance between line segments dx is
given by:

1 2;f

dxq URM
(5.13)

Also, the angle y is given by:

y = tan-1 URM (5.14)

Thus, by observing the geometry, we come up with the following expression for noise
distance:

d = 1 sin(tan-'(URM))
" q URM

(5.15)

The implication of equation (5.15) is clear. A small d, (something we do NOT want) will
appear if q is large, and that easily happens if our URM ratio is some rational number
which has a large integer denominator when it is expressed as a ratio of integers. We plot
a graph of noise distances against URM ratios below for URM ranging from 1 to 3.

2.5

2

Relationship between noise distance and the URM ratios

It ~'I~

It it AI~

A A

Jw~ A JyV~YJ \JJ\~4WN ~'\~ z~f~2 ~& YF~K'v~ K/v
1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

URM ratios

Figure 5.13: Plot of d, against increasing URM ratios, illustrating the problem of non-
integer URM values.
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Figure 5.13 shows what we suspected - noise budget is really high for integer values and
rational numbers that can be expressed as ratios of very small integers (e.g. 1, 2, 3, 1.5,
2.5. 1.2, etc), but it degrades significantly when your URM ratios become ratios of huge
integer numbers.

As mentioned above, projection works best when baseline ratios are integer values, since
only then can we clearly tell the correct mapping of noisy points back onto lines. For the
purposes of exploring the usefulness of projection, we will first make the assumption that
URM ratios are nice, round, small integers. This will obviously facilitate us checking to
see if projection can live up to its promise in the most ideal of cases. Therefore, for the
next few sections of this thesis, we use baseline values such that URM1 and URM2 are
integers. However, after that discussion is complete, we will look into non-integer values
of URM so as to get a more comprehensive view of 3-D Projection. All the results will be
presented in this chapter of the thesis.

5.6 Projection method in 3 dimensions

Xu et al only suggested using a 2-D (i.e. V 13 andV 23 , V12 andV 23) plane to place points

back onto the line segments. However, it is intuitive to see that we should not be
projecting points in the V13 - V23 plane independently from those in the V12 - V3; after all,
they share the V/23 axis, and you can easily get any phase difference value, e.g. Vf 23 if you
know the other 2 phase difference values, yi 3 and V/ 12 . Projecting the points in the 2

planes independently will hence cause inconsistent phases that do not obey the geometry
of the satellite equation. Although we are not using any value of V/23 to construct our
final heights, it seems that resolving this inconsistency may help to achieve more accurate
results, since that further adheres to the geometry of the satellite configuration. As such,
we propose to apply the projection method in the 3D space of ,13 -V2 - Vf23-

Consider the same ratio of baselines as before, but now we plot all the wrapped phases in
the same 3D-space. The figures below highlight the inconsistency. 'o' is the original
phase point without noise, 'x'is the noisy phase point, ''is the noisy point 2D-projected
in the V12 - 2 3 plane, 'V' is the noisy point 2D-projected in the V/13 -yV2 3 plane, and 'Ais
the noisy point projected in the 3D space.
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2D vs 3D Projection

phil2 phi23

Figure 5.14: Noisy points before and after projection.

2D vs 3D Projection

/ /

-3 -2 -1 0
phi23

1',

1 2 3 4

Figure 5.15: Looking at Figure 5.14 down the y 3 y - V 2 3 plane.
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2D vs 3D Projection
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Figure 5.16: Looking at Figure 5.14 down the lf'2 -V 23 plane.

2D vs 3D Projection

I I 1 I
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Figure 5.17: Looking at Figure 5.14 down theif13 -yI 2 plane.
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It should be noted that if we were to rotate the point of view such that we are looking
straight at the y' 3 - V/23 plane (Figure 5.15), we would see the exact same thing that we

would in Figure 5.3; the same thing goes for the V2 - V23 plane (Figure 5.16) and Figure

5.4. From Figures 5.14 - 5.17, we make the following observations:

1. 2D Projection moves the noisy points back onto the nearest line segment in the
2D plane.

2. When you view from another angle, the noisy point is really not on the line
segment at all; it only LOOKS as if it is on the segment if you are looking down
the correct plane.

3. 3D Projection truly moves the noisy point onto the line segment (the point is on
the line no matter which angle you are looking at).

The line segments guarantee consistency as is defined by the satellite configuration
(Equations 5.3a, b, c), and so only 3D projection satisfy the consistency requirement.

For ease of comparison, the line segments are shown again in Figure 5.18, while Figure
5.19 shows the noisy points scattered around the line segments. Figure 5.20 shows the
noisy points after 3D projection is performed.

Relationship among Wrapped phi13, Wrapped phi12, and Wrapped phi23

4

3

2

-2

-3

-4

0

-2 -2

Wrapped phi 2 Wrapped phi23

Figure 5.18: Line segments in the V 13 - V/12 - ' 23 space.
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Plot of Wrapped pNl3, Wrapped pN12 and Wrapped pt123, noIse .30 degrees
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Wrapped pM12 1AkappedpI"23

Figure 5.19: Noisy points in the V3 - Y12 - V/23 space (noise = 30 degrees).

Plot of Wrapped phi13 Wrapped phi12, and Wrapped phi23, noise = 30 degrees

\- V-
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0
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Figure 5.20: Figure 13 after points are projected back onto line segments.

61

4,

3,

2

1

0-

-1

0.)
V-

U)

CL

-2

-3

-4
4

.4 -4



Once again, just like 2-D Projection, we would want to frame 3-D projection in a solid,
mathematical framework. Just like we did for 2-D Projection, we first define the
following points that are of particular interest in this problem::

1. a known point on the line segment is defined as (xo, Yo, z)

2. an actual y23 - V1 - 13 phase triplet defined by the interferogram is defined as

(xi, Y, zI)

3. The point that we want to find, i.e. the point on the line segment that is of the
shortest Euclidean distance to (x,, y1, zi) is defined as (xa, ya Za).

With that, we start by observing that the angle that the (xi, Y1, zI) --- (X., YaZa) line makes

with the line segment has to be a right angle. This means that the dot product between the

vector (X, -XiY, -Yi,Za -zi) and (Xa -X 0 ,Y, -Yo, Z -zO) has to be zero. Equivalently,

(Xa -xo)xi -Xa)+(Ya -yOXy, -ya)+(Z. -Z ZI -z,)= 0 (5.16)

In addition, we know the relationship among x0 , yo, and zo, namely:

Ya YO = URM_ (5.17a)
Xa -x0

Za - Z = URA' 2  (5.17b)
X, -xo

Substituting equation (5.17) into equation (5.16), we get the following:

(x (XI - Xa) + URMI -(y, - (URMI -(x. - x0) + yo)) 0 (5.18)
" +UR, -(i -(RM2 -(X. -XO) + ZO)) _

Solving equation (5.18) for Xa , we get the following closed form solution:

xxy UURMR +URMR x+ U .x0+URMR-x - zURM2 .z0+URM2 ZI (5.19)
a= 1+URMi + URM
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From equation (5.19), and equation (5.17), we immediately get the other parts of the
triplet:

Ya = URM (x, - x0 )+ yo (5.20a)

Z = URM 2 '(Xa - xO)+ zo (5.20b)

One important thing to note is that since there are going to be more than 1 line segment in
the plane, there will also be more than one possible(Xa'YaZa) points that (x,y,,z,) can
map to. Since we are only interested in mapping to the line segment that is nearest
to(x,,y,,z,), we only need to calculate the distances between (x1 ,yi,z 1 ) and all possible

(Xa,, Ya' Za) triplets:

dis ta nce = V(xa - XI)2 + (ya - y)2 + (za - zJ2 (5.21)

and then pick the appropriate triplet. All this is analogous to our mathematical
formulation of 2-D Projection.

5.7 The boundary condition of the line segments

Projection seems to be a powerful idea for noise rejection. By making use of the satellite
configuration as a guide, we were able to relate the different phase data from each
individual satellite pair to one another so as to reject noise in the system. However, there
is one subtle, though nevertheless critical, point that we have not taken into consideration.
Observe the following figure, which illustrates a possible scenario when noise is added to
a system.
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Figure 5.21: Illustration of a possible scenario during projection.

In Figure 5.21, imagine a point originally on the line segment as shown. A tiny bit of
noise added to the system disrupts the point, such that the point is moved outside of the
2z by 2z box. Because of the wrapping process, the point is now mapped onto some
place far away from where it should be. In essence, a tiny bit of noise has been magnified
by the projection process.

This problem can actually be solved relatively easily, as long as we know that it does
exist. In the scenario offered in Figure 5.21, suppose that we now introduce one more line
segment outside of the 2r by 2zf box. This new line segment is exactly like that shown
in Figure 5.21, except that it's shifted to the left by 2r . Figure 5.22 below shows this.
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Figure 5.22: Illustration of Figure 5.21, with an extra line segment placed outside of
original 2/f by 2 ;r box.

As shown in the figure above, the replication of the original 2r by 2ff box in the region
outside leads to a projection that, when wrapped back, produces results much closer to
the original value. This insight is critical, as it further improves the value of projection in
both the 2-D and 3-D algorithms.

We also have to recognize that the original 2r by 2fr box has to be replicated in all
directions so as to perform the best possible job in noise rejection. To accomplish such an
end, this means that in 2-D Projection, we would need an extra 827c by 2fr boxes in
addition to the original one. In 3-D Projection, we would need an extra 26 2ff by 2fr by
2 r cubes in addition to the original one. These additional boxes or cubes would have the
same line segments (i.e. same slopes and same relative positions) as those in the original
one, just shifted by the appropriate distances.

4.8 Is Projection alone just as good as Projection + URM?

In their paper [12], Xu et al suggested first projecting the points onto the line segments
(in 2D phase plane), then using the expanded unambiguous phase range to get the actual
phase values. If the terrain is not changing so rapidly such that it can be unambiguously
represented within this expanded range, then we save ourselves the phase unwrapping
step - clearly an advantage in terms of computational time and error induced from the
unwrapping step itself. However, very often it is impractical to assume that we can do
away with the actual unwrapping step, since we can never be sure if the terrain is
changing that slowly, or whether our URM ratio is big enough. The question then is: If
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we do projection, link the line segments (expand range URM-fold), and unwrap in terms

of URM times 2 ir, is that better than merely doing projection and unwrapping in terms

of 2 ; ? In essence, is the linking of line segments a redundant step?

The following figure shows a simulation of terrain, as well as the retrieved terrain height
with both URM and Projection, and with only projection. The sub-picture in the figure is

a blown-up view of the top portion of the "mountain".

- AcuM tenrn
- Projecton

- Prjectiow+Avg
- URM+Projection

-- URM+PrOjdciOn+Avg

.1

/
7

ihi M ig -;4,19 _w16i6

100 200 300 400 500 600 70

Figure 5.23: Comparing URM + Projection versus just Projection.

In Figure 5.23, we cannot see the green (Projection) and magenta (Projection +
Averaging) lines because they are perfectly hidden behind the black (Projection + URM)

and blue (Projection + URM + Averaging) lines. This goes for any "slice" of the 2D
terrain we pick, and for any noise level we pick. We thus conclude that linking the line

segments is a redundant step that does not improve our results when we unwrap using

Weighted Least Squares.

5.9 Comparison of methods

Now, we are ready to compare the results of the following: just using WLS unwrapped

phases from 1 interferogram (single baseline), arithmetic averaging across 2 longest

baselines, WLS unwrapping with URM and projection in 3D space, and WLS
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unwrapping with URM and projection in 3D space before averaging. The results are
presented in the table and plotted in the figure below.

Mean RMS Height Errors (m _

3D
Noise SNR Average Projection
(deg) (dB) Single across 2 2D 2D Projection 3D with

baseline baselines Projection with Averaging Projection averaging
10 15.16 0.4916 0.4832 0.4970 0.4859 0.4868 0.4907
20 9.14 0.6303 0.6038 0.6399 0.6096 0.6095 0.6174
30 5.62 0.8285 0.7737 0.8423 0.7620 0.781 0.7915
40 3.12 1.0639 0.9746 1.1053 0.9607 0.9743 0.9894
50 1.18 1.6327 1.3269 1.5768 1.2546 1.2645 1.2622
60 -0.40 2.7289 1.9173 2.5973 1.8307 1.6845 1.5982
70 -1.74 4.9736 3.2267 4.9566 3.1558 2.765 2.2935
80 -2.90 8.5898 5.7487 8.1582 5.4432 4.7123 3.8391
90 -3.92 14.1104 10.1253 14.035 9.9044 8.8414 7.2154

Table 5.2: Mean RMS height errors for different methods for 3 baselines

Mean RMS Errors

0 20 40 60 80 100

-+- Single baseline

-u-Average across 2
baselines
2D Projection

--- 2D Projection with
Averaging

-*~3D Projection

-3D Projection with
averaging

Noise (degrees) J
Figure 5.24: Plot of values in Table 5.2 as a function of noise.

From Table 5.2 and Figure 5.24, it is clear that in general, phase unwrapping after

implementing unambiguous range magnification and the 3D Projection method performs

better than simple averaging as suggested in [13]. In addition, URM and projection still

stands to gain from averaging, which further increases the overall robustness of this

process. For example, in the low SNR case of -1.74dB (70 degrees noise), the mean RMS

error for 3D Projection with averaging is 83% that of 3D Projection, 73% that of 2D

Projection with Averaging, 71% that of just simple averaging, and 46% that of just using
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one single baseline. For higher SNR cases, like the a SNR of 9.14 dB (20 degrees noise),
all the algorithms do about just as good, which we would expect since the SNR is low
and any method should work fine anyway.

In all simulations thus far, we only assume that our satellites make just 1 pass over the
target terrain, i.e. we have managed to achieve such results with just one look. In contrast,
Wong [14] showed that the maximum likelihood estimator (MLE) technique, first
proposed by Lombardini [2], requires multiple looks to achieve results which are
comparable with what the simple averaging technique can give in just 1 look. Both the
MLE and the Projection method build on what the Unambiguous Range Magnification
offers. It would thus seem that 3D Projection is able to give us much better results than
other methods, including the maximum likelihood estimation.

5.10 Projection method with multiple frequencies

Equations (5.2a), (5.2b), and (5.2c) show that the phases are as related to frequencies, and
hence wavelengths, as they are to baselines - phases are directly proportional to the
frequencies in question. If we now use only 2 satellites (single baseline), but use 2
different frequencies - SARI using f, and SAR2 using f2, we get the following sets of
equations:

=12,, = Ap1 (5.22a)
2a
477

012,b =- AP12 (5.22b)

Now, substituting equation (3.2) into equations (5.10) and dividing one by the other, we
get the following relationship:

V/12,.+ ki '21 r f
12-b +k2  2 a URM (5.23)

Equation (5.23) looks almost identical to equations (5.5), except that now the 2 wrapped

phases 12, and V12,bare related by the ratios of frequencies used rather than baselines.

Since the form of the equations is exactly the same as that of equations (5.5), we would
expect all the reasoning behind the projection method to work just as well when we have
2 different frequencies and 1 baseline. In addition, it should be noted that equation (5.23)
is exact; in contrast, equations (5.5) are approximate - they only hold if the property of
similar triangles is observed, and that may not be true when the satellites get close
enough to the terrain being illuminated.
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Figure 5.25 shows the range magnification with = 0.09M - 3. In reality, we usually
Aa 0.03m

don't have access to frequencies that differ by such a large amount, but this suffices as an
example to show that URM holds for multi-frequencies as they did for multi-baselines.

URM due to 2 frequencies

-3 -2 -1 0
Wrapped phi12a

1 2 3 4

Figure 5.25: Relationship between y 2 ,andV/1 2,b -

Figure 5.25 looks exactly the same as Figure 5.4, which also has a URM of 3. Multiple
frequencies thus promise to be a viable alternative to multiple baselines, since the
equations turn out to be the same in the end. In addition, baseline lengths can never be
made for certain since they have to be measured as satellites fly by one another; however,
frequencies of signals originate from the transmitter, and that can be fine tuned to more
precise values rather than taking a shot in the dark every time the terrain is illuminated.

Figure 5.26 shows noisy points being displaced from the line segments when there is 30
degrees of noise in the system.
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4
Points displaced from line segments, noise = 30 degrees

2-

C14

0-
0.

-3 -*

-4 -3 -2 -1 0 1 2 3 4
Wrapped phi12a

Figure 5.26: Phase points displaced by 30 degrees of noise, Vg12, -V 712,b plane.

Combining both multiple frequencies and multiple baselines, e.g. 3 satellites working
with 2 frequencies into one framework should give us a few more degrees of freedom,
since for that case every baseline can work at 2 different frequencies. More work has to
be done to exploit that advantage, but it certainly is a promising prospect.

5.11 Special features of non-collinear satellite configurations

Up till now, we have assumed that the 3 satellites fit a collinear configuration, as shown
in Figure 5.2. The systems of equations (equations 5.3 and 5.4) define this collinear
geometry. However, it would be unreasonable to assume that the satellites fly in a
perfectly collinear setup whenever they pass by some terrain. Therefore, we strive to
formulate equations that capture the non-collinearity of satellites.

Figure 5.27 shows the non-collinear setup of the satellites.
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SAR3

L

B 23

SAR 2  Ai

Ap12

.
x

B 12

SAR1

Figure 5.27: InSAR configuration for 3 satellites, non-collinear formation.

Like equations (5.3), the following hold true:

12 = -Ap 12  (5.24a)
A

01= 4; API (5.24b)

023 =4r AP2 3  
(5.24c)

A

Using equation (3.2) and dividing (5.24b) by (5.24c), then making the appropriate
substitutions based on the geometry of Figure 5.26, we get:

V/13 + k2 -2r B12 sin(y) +1= URMI (5.25a)
V 23 + k3 -2; B23 sin(JJ+Y)
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Equation (5.25a) is now in the same form as (5.5a), except that its right hand side is now
a much more complicated expression instead of simple baseline ratios. Note that in the

special case of collinearity, i.e. P =0, (5.25a) reduces to (5.5a).

Performing the corresponding substitutions with equations (5.24a) and (5.24c) gives us:

V12 + ki 2r= B12 sin(y) -= URM 2  (5.25b)
23 + k3 2z B23 sin(J + y)

Once again, equation (5.25b) reduces to (5.5b) in the special case of collinearity.

Figure 5.28 below shows the line segments for a,8 angle of 15 degrees. This problem of

non-collinearity manifests itself in the exact same manner as would non-integer URM's,
since the URM's for equations (5.24a) and (5.24b) will rarely be integers even if the
original baseline ratios are. Thus, solving the problem of non-collinearity will solve the
problem of non-integer URM's, and vice versa, with a few subtle differences that we
have to take note of. First, if we look at equations (5.25), sines are embedded in the
equations. This naturally means that we can very easily get URM ratios that are irrational
numbers, since the sine function regularly throws out irrational numbers (take

sin(jJ = as a good example). As we discussed before, projection, at least in its

current state now, requires the URM ratio to be a rational number; otherwise, there would
be an unlimited number of line segments that could threaten to fill up the entire 3-D space.
Obviously, this presents a problem to the usefulness of 3-D Projection. We will go about
trying to fix that problem later in this chapter.
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Figure 5.28: V/B -V 23 plane for/ =15 degrees.

Of perhaps graver concern, and a thoroughly more important difference between non-
collinearity and collinear non-integer baseline ratios, is that the URM ratio in the non-
collinear case might actually vary as a function of range distance. As each of the 3 (or
more) satellites beam out to further and further distances in the range direction to map
terrain that is further and further away from the original position of the satellites,
something peculiar occurs as a direct consequence of non-collinearity -> the URM ratio
has to change. Observe the next 2 figures to see this in action.
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SAR3

SAR3 B23'

B 23

Apis .

SAR2

Ap12

B 12

SAR

Figure 5.29: Illustration of 3 non-collinear satellites mapping some pixel on near ground.

In Figure 5.29, the satellites are mapping some pixel on the ground, and that particular
pixel is at a range distance such that the angle that B12 makes with the arc of the circle
that extend from the pixel is y'. Suppose that there are 3 satellites flying in this system,
namely SAR1, SAR2, and SAR 3. Since these 3 satellites are flying non-collinearly, we
apply equations 5.25, and get the following:

V13 + k, -21r _ B12sin(y') + IURMI
V 23 +k 3 -21r B2, sin(/+ y')

V12 + k, -21r B12 sin(y') -URM

V23 +k 3 2;f B23sin(fl+y')

(5.26a)

(5.26b)
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However, we can also imagine the following scenario: instead of a SAR3 flying non-
collinearly with the other 2 satellites, there is a SAR3' in the position shown in Figure
5.29 such that SAR1, SAR2, and SAR 3' form a collinear triplet. Since Ap13 is identical for
both the satellite configurations with SAR3 and SAR3', it has to be true that their
interferograms are the same. Of course, this hinges on the assumption that the slant range
vectors are essentially parallel to one another, so that the similar triangle assumption is
approximately true. Taking that as a given, we can reach the following conclusion:

V11 3 ±k2 2;T B13 = u"M.7a
= -23 + k 3 - -BU R 1 (5 .2 7 a )

12 k2r= URM2 (5.27b)
g2 3 + k3 .27c B23 '

We have just defined the imaginary baseline between SAR 2 and SAR 3' as B23'. In
addition, we have expressed the URM ratios as a function of this imaginary baseline.
Now, let's consider the case where the satellites now map a different, further pixel of the
terrain, and investigate the consequence of that change on the URM ratios.
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Figure 5.30: Illustration of 3 non-collinear satellites mapping some pixel on far ground.
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Observing Figure 5.30, we can see that the slant range vectors now are tilted to a more
horizontal position that they are in Figure 5.28. This is reasonable because the pixel being
mapped is now further away from the satellites. Modeling after equations 5.26, we get the
following:

V'1 3 ±+k2 *- 2 _ B12gsinQA")Vf1 3 +k 2 2= B2 sin + - URM1 (5.28a)
Vfs 2+ k3 -2z B23 sin(,8+ y")

Vi2 +k, -2;_ B12sin(y") =URM2 (5.28b)
V'2 3 + k3 .2f B 23sin(,8+y")

Of course, we also observe that the imaginary satellite SAR3 ' is now much further from
SAR1 and SAR2 than SAR3' is in Figure 5.29. This naturally leads to the following
formulation of URM ratios:

I3 +k2 .2; = B13 = URM1  (5.29a)
V 23 + k3 .2r B23 "

Vf 12 + k, - B12  o 2 (5.29b)
f 23+k3 -2ff B23 "

Looking at Figures 5.29 and 5.30 and equations (5.27) and (5.29), we make the following
observations:

1. The satellites did not move in position as it scanned from a pixel in closer range to
a pixel in further range.

2. However, since the imaginary baseline changed from B2 3 ' to B23 '', the URM
ratios changed as well, and this means that the line segments in the Vi13 - V/12 - V23

space are no longer straight, but instead are curved lines since the slopes change
as a function of phases.

3. Using the parameters in Table 3.1 and 5.1, we find that the change in slant look
angle 0 from one end of the terrain to the other end of the terrain varies by 0.05
degrees. Thus, for the test case terrain that we are using for our tests, we do
expect the line segments to be approximately straight, and will carry out
projection as if they are straight. However, it is critical to keep in mind that in
cases of larger, wider terrain, this phenomenon manifests itself prominently, and
has to be taken into account.

4. Collinear, non-integer baseline integer configurations do not suffer from this
problem of changing URM's because the similar triangle property is always
satisfied.
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6. Projection for a Cartwheel Configuration of Satellites

6.1 Setting up the cartwheel configuration

Now, we step beyond what the previous report has considered and investigate the case
where the satellites are not configured ideally --- the baseline ratios are not integers, and
the satellites themselves do not line up in a collinear fashion. It is important to note that
when we plot phase value V23 against t 12 against g13 in a 3-D space, there will be

straight lines of slopes determined by equations (5.19a) and (5.19b). In essence, for the
purpose of this thesis, the problem of non-collinearity manifests itself in the exact same
manner as would collinear non-integer baseline ratios. For this reason, in this section, we
still only consider the case where the satellites are collinear but vary the baselines
through different baseline ratios to obtain different values of URM's. This is just to keep
the satellite simple, and is by no means limiting the value of 3-D Projection to merely
collinear cases.

A large part of Wong's thesis [14] is devoted to exploring an optimization strategy using
a satellite configuration whereby the satellites are fixed in a cartwheel, and rotate about a
fixed point as they fly in the azimuthal direction. This cartwheel configuration has a
unique advantage over other configurations + it allows us to gain access to otherwise
seemingly impossible satellite combinations. For example, we are able to set B13 = B12 in
space, thereby overlapping satellites 2 and 3 in the azimuthal axis. This is shown in
Figure 6.2 below. We utilize the cartwheel for a slightly different purpose - to obtain all
the possible URM ratios. By rotating them as they fly, every single URM ratio can be
obtained by virtue of the changing baseline ratios due to the rotation of the cartwheel.
Figure 6.1 below shows this setup.
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0 Azimuth
axis
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....................................... ............
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Figure 6.1: Illustration of cartwheel configuration that allows full range of URM values.
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Satel.lite 2

B 12
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Satellite 2, Satellite 3

B12 = B13

Range axis

Figure 6.2: Illustration of special case, when satellites 2 and 3 overlap in the
azimuthal axis.
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One thing to take note of is that we have really assumed that the cartwheel is much, much
smaller in size than any other distances that we care about, e.g. the range distance and the
height of the satellites above ground. In such a scenario, the 3 satellites are essentially at
the same point in space in the azimuth-height plane, and so the cartwheel configuration
collapses to a two dimensional problem as desired. This approximation is good so long as
that assumption holds true. However, if satellites start to get further and further away,
serious problems may arise in our assumptions. For the remainder of the thesis, we will
take it that those approximations hold.

First, we need a mathematical relationship that describes the transformation from the tilt
angle 0 to the URM ratios. Letting the shortest straight-line distance between any pair of
satellites be R, it is fairly straightforward to show that the relationship is as follows:

B 13 = R cos(0) (6.1)

B12 = R cos(Z - 0j (6.2)

B 2
URMI =1 - = (6.3)

B2 3  I- r tan(0)

URM2 = +-tan()(6.4)
B 23  1- vrtan(0)

From the geometry and the equations, it is clear that we can obtain all the URMs that we
can possibly get just by sweeping 0 from 0 to 30 degrees. All other tilt angles will also
map to the same URM range, so we only consider 0 ranging from 0 to 30 degrees.
Plotting URMs against 0, as 0 varies from 0 to 30 degrees, gives us the following plot:
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Plot of URM as tilt angle changes
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Figure 6.3: Plot of URM ratios as tilt angle changes.

We note that the URM ratios approach infinity asymptotically as we approach 30 degrees,
because B23 gets increasingly small, and reaches 0 at 0 = 30 degrees.

6.2 Choosing an alternate URM ratio for projection

It is imperative to decide what URM ratios to actually use for any actual satellite
geometry and configuration. For example, if the baselines are such that the ratio is
3.12648, do we use that actual ratio (and thus have lots of line segments), or do we
choose an alternate URM ratio to do the projection? We seek to investigate this by
performing the following experiment:

1. Change the tilt angle such that URMI is 3.35.

2. During the projection module, map the noisy points onto the line segments

defined by URM1 and URM2, where URM, e {3.1, 3.2, 3.3, 3.4, 3.5, 3.6}, and

URM 2 = URMI -1.

3. After mapping onto the chosen URM values, find the mean RMS error in height.

4. Repeat for all other URM values, until the set is exhausted.
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We then plot the mean RMS errors in height as a function of URMI, and present the
results in the following figure.

1.3-
Plot of RMS error as we map points from an actual

1.29 - URM-13-23 of 3.35 onto varying URM values

1.28-
With Projection
Without Projection

1.27-

1.26-

1.25-

1.24-

1.23-

1.22-
3.1 3.15 3.2 3.25 3.3 3.35 3.4 3.45

URM-1 3-23 that points are mapped to
3.5 3.55 3.6

Figure 6.4: Illustration of RMS error as we map points onto different URM values.

From the figure above, we can see that we get the lowest RMS height errors when we
map onto URM values closest to 3.35 (3.3, 3.4), and the results degrade as we map onto
values further away from 3.35. This shows that we should always try to map onto URM
values that are closest to the actual URM ratio. Intuitively, this makes sense, since the
mapping process inherently disturbs the data and so might introduce noise of its own as
well, and mapping data points onto a URM value that is significantly different from the
actual URM based on the satellite geometry will inevitably introduce more noise.

So, now we have the algorithm for 3-D Projection as follows:

1. From the geometry of the satellite configuration, determine the actual URM
values.

2. Determine the URM values to be used for projection. Mathematically, this is:

_ = 10 -URMCtuai I
URM ,o-bes,, -- "10 "

10
This really just means rounding the actual URM value to the nearest 0.1.
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3. Map the noisy points to line segments of the URMto 0.edu1 values in 3-D space.

4. Continue with the height retrieval process using these newly corrected phase

values.

6.3 Projection in the presence of noise

We have already seen the detrimental effects of noise on a system. Increasing levels of

noise invariably introduces increasing errors in the heights retrieved from the phases of

the interferogram. In the previous chapter, we have conclusively shown that with

collinear satellites with integer baseline ratios, 3-D projection can filter out a large chunk

of noise. Used in tandem with other noise filtering techniques like wavelet denoising or

complex averaging, significant improvements can be expected. Now, we would like to

investigate the merits of 3-D projection in a more general case -> that of when URM

ratio is not such a "nice" number anymore. Using a satellite configuration of URM, =

3.35, we investigate the merits of 3-D Projection by finding the RMS height errors as we

change the noise level. The results are shown below:

3.5 r

3

CO)

Plot of RMS height error as noise level is changed

With Projection
Without Projection

2.5-

2-

1.5.-

1

0.5

10 20 30 40
noise (degrees)

50 60 70

Figure 6.5: Illustration of how height errors change as noise level is increased.

From the figure above, it is clear that 3-D projection does not fare worse than not-using
Projection; in fact, for higher noise levels, the noise reduction capability of 3-D
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Projection is fairly significant. In the cases of when noise level is fairly low (between 0

and 40 degrees), it is inconclusive from the graph whether projection helps or hurts noise

filtering. However, the 2 graphs (red and blue) are both basically lying on top of each

other in that noise range that even if using projection does hurt in that noise range, the

effect is fairly insignificant. It is worth noting that even at a noise level of 0 degrees,
there is still some height error. This is due to the fact that complex averaging is used as a

denoising technique when the interferograms are retrieved. It has been shown that

complex averaging does give much better results, but also inadvertently introduces errors

when there's no noise.

6.4 Projection vs. no Projection, non-integer URM ratios

We have determined that we can rotate through from 0 to 30 degrees to get any

combination that we want, and that projection in the presence of high noise level is still a

viable, attractive option even with the URM ratios are not integers.

We now look at the relationships among the satellite configuration, i.e. as the cartwheel is

rotated through different angles, the amount of noise in the system, and the mean RMS

errors in height. Fifty random and different values of URM (and thus 50 different satellite

configurations) are picked from within the set in the set [0,30) degrees (which will

provide us with any URM value in the set [2, oo)). We vary noise values from 0 to 90

degrees to test for behavior of the different methods as noise increases. The results are

shown in the following diagrams.
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Mean RMS Error as a function of tilt angle, noise from 60 to 90 degrees
12-

n=90deg
10-

4'

S8-_

w 6- n =80 deg
W 6

21-
n=60eg -20=- 25eg

n =60 deg

0 5 10 15 20 25 30
tilt angle (degrees)

Figures 6.6: Illustration of how mean RMS height error changes as cartwheel is rotated
and as noise in the system is changed. Blue lines are for cases when 3-D Projection is

used, and red lines for cases when it's not used.

From the figure above, the following is clear:

1. At low noise levels, 3-D Projection even in the general case of non-integer URM
ratios still does not introduce more error than if we do no projection at all.

2. At higher noise levels, 3-D Projection fares significantly better in terms of RMS
height errors.

3. At tilt angles close to 30 degrees, the RMS error due to 3-D Projection seems to
decrease significantly. This can be reasoned as follows: even though there is the
rapidly shrinking B23, which directly leads to a huge URM 13- 23 and URM12-23 and
thus short noise distances, this effect does not show itself because of weighted
averaging.

6.5 2-D Projection as a special case of 3-D Projection

* Up till now, we have been doing 3-D Projection as follows:

> Given a point (x,,y 1, zi),

85



Find the point x, on the appropriate line segment that point (x1 ,y, z1)

maps to.

> Find ya ,z, from x, by multiplying by appropriate URM ratio and adding

the appropriate constants (equations 5.20).

> We have always been using 23 as x. This is an arbitrary choice in the

beginning, and is not normally expected to lead to any different behavior

as when we use 12 or #3 as x. However, as we shall see, there are some

subtle differences that may prove pivotal.

> For ease of comparison, we repeat equation (5.19) here, which sums up

the closed form solution of x, for 3-D Projection:

x -URM -yo + URM -y, + URM -x 0 + URM -xO -URM2 - zo + URM2 z,
a 1+URM2 +URM 2

1 2

(6.5)

Now, we note that 2-D Projection is carried out in a very similar fashion, and in all our

simulations except in Section 5.5, we have been using #3 as x as well. This is once again

an arbitrary choice made in the beginning. We repeat equation (5.9) here, which sums up

the closed form solution of xa for 2-D Projection:

Xa= x1 -URM -yo + URMI -y, +URMI 2 X x (6.6)
1 + URM12

By comparing equations (6.5) and (6.6), it should be clear that if we let all URM 2 's in

(6.5) tend to zero, we end up with (6.6). This is mathematical observation, irregardless of

what the variables in the equations stand for. Thus, mathematically, with the variables

meaning the same thing in both equations, 2-D Projection is a special case of 3-D

Projection.

However, so far, the symbols have been meaning different things in Section 6.5, when we

used 2-D and 3-D Projection in tandem. In that simulation, x represents 023 in 3-D

Projection, but x represents 0 2 in 3-D Projection. This means that equation (6.5) will not

decompose into (6.6), because all the variables represent different things. However, if we

make an adjustment and change the variables in the following manner for 3-D Projection:

86



e 02 as xa-

" #3 as ya.

a 023 as z,.

B
m URM, becomes the -"1 ratio.

B12
B

m URM 2 becomes the B23 ratio.
B12

Now, as tilt angle approaches 30 degrees, B 23 approaches zero, and hence URM 2

approaches zero. Thus, the problem smoothly decomposes into a 2-D Projection picture

from a 3-D Projection one. We can actually prove this experimentally with a simulation.

Let (2 be xa, and #4 be Ya. 2-D Projection on the 42-(43 plane is used, and the results

are juxtaposed on top of the results shown in Figure 6.6 b. The figure below shows this

trend.

Mean RMS Error as a fUnction of tilt angle, noise from 60 to 90 degrees
12-

n =90 de
10

E

6J n=80 deg
C,)

4

n =60 deg n= 70 deg
0-

0 5 10 15 20 25 30
tilt angle (degrees)

Figure 6.7: Illustration of how mean RMS height error changes as cartwheel is rotated

and as noise in the system is changed. Blue lines are for cases when 3-D Projection

(using 23 as x) is used, black lines for cases when 2-D Projection is used in the Y/13 - V/12

plane, and red lines for cases when no projection is used.
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From Figure 6.7, it is clear that 2-D Projection follows the trend of rapidly decreasing

RMS noise error as we approach a tilt angle of 30 degrees, which equates to SAR2 and

SAR 3 being one on top of the other. This simulation essentially proves our case that

mathematically, 2-D Projection is but a special case of 3-D Projection. More importantly,
the figure shows that 3-D Projection is a powerful noise-reduction tool for many cases.

For example, comparing the cases of no projection used with 3-D Projection used for a

noise level of 90 degrees, we see that for most tilt angles 3-D Projection is able to reduce

RMS height errors by close to 30 percent, from 10 meters to 7 meters. That is a huge

reduction in error, and one that makes 3-D Projection a very promising algorithm.
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7. Summary

7.1 Summary of results

Throughout the course of this report, we have investigated the following problems:

Classical Phase Unwrapping Methods

- With only 2 antennas in the SAR configuration, we established the framework of the
Unweighted Least Square algorithm, Weighted Least Square algorithm, Branch Cut
algorithm with Cleaning, and Weighted Least Square with Cleaning. For the least
square algorithms, presence or absence of residues is used as the main criteria for
assigning weights.

- Weight assignment is based on a binary system, i.e. either 1's or O's, and not on a
linear scale.

- Weighted Least Square with Cleaning does much better than the other 3 other
algorithms in phase unwrapping for our purposes.

Dynamic Programming with the MAP approach

- Dynamic Programming with the MAP approach can be done for both single baseline
and multiple baselines. For the multiple baseline scenario, two underlying
assumptions - constraints on elevation angle cx and geometric ratios of satellite
configurations - have to be made for the algorithm to function correctly as desired.

- Weighted Least Square with averaging still does better than multibaseline MAP or
single baseline MAP with averaging. It thus would lead us to conclude that Weighted
Least Square unwrapping with denoising, 3D Projection, and averaging would be the
best algorithm in going from interferogram to heights.

Fundamentals of 2-D and 3-D Projection

- By adding a third antenna to the InSAR system, Unambiguous Range Magnification
(URM) is possible, with the URM ratio being the ratio of baselines. Since there are 3
pairs of satellites now, there would be 2 independent URM ratios (and hence 2
independent slopes).

- 2D Projection is a technique based on the underlying geometry of the satellites to
reduce the noise in the system. It is able to reduce the effects of noise on the
unwrapped phases.

- Although Projection is a by-product of using URM, the increased accuracy of the
unwrapped phases is due to projection, NOT the magnified range itself. Using the
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Weighted Least Square algorithm, there is no difference in unwrapping phases that
are wrapped 2;f or unwrapping phases that are wrapped URM -2fC .

- 3D Projection takes into account the consistency offered by all 3 satellites, and thus
achieves even better results than 2D Projection.

- It is important to take the boundary conditions of the line segments into account.
Specifically, one must replicate all line segments in the original 2fC by 27c box in 2-D
Projection, or 2;f by 2fr by 2fr cube in 3-D Projection, and copy them all around the
original box or cube.

- Multiple frequency InSAR has the same underlying principle as multiple baseline
InSAR, since the framework of equations is the same. Using multiple frequencies in
tandem with multiple baselines could give us far more degrees of freedom.

- The problem of non-collinearity of satellites and the problem of non-integer URM
ratios is really due to the same underlying principle - that line segments lie too
closely to one another, thus eating into our noise budget. Thus, if we can resolve one,
we automatically take care of the other.

Projection used in a 3-satellite cartwheel configuration

- We can obtain all URM ratios in the set [2, oo) by rotating the satellites in the

cartwheel configuration from 0 to 30 degrees.

- Simply mapping all URM ratios to the set of {2.1,2.2,2.3,...3.1,3.2,...}gives us better

results than not doing the mapping at all.

- 3-D Projection fares much, much better in almost all noisy cases across all tilt angles.
Specifically, at tilt angles close to 30 degrees, the improvement is the most significant.

- Mathematically, 2-D Projection is simply a special case of 3-D Projection. As such,
we can reap all benefits of 2-D Projection using 3-D Projection, and so there really is
no real need for 2-D Projection in the first place.
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7.2 Flow chart of multibaseline phase unwrapping

The following illustration shows how the different algorithms and processing steps fit
together. The numbers in parentheses refer to the chapters in this thesis in which those
steps are described in further detail.

Wrapped Phases

Denoising (3.6)

3D Projection (5.6)

Compute residues of
interferograms (3.4)

Weighted Least Square
Unwrapping (3.5)

Branch C
(3.4)

ut Sing
MA

le Baseline Multi-Baseline
P (4.3) MAP (4.4)

ogramnRetrieve heights from each individual interfer

Average among heights from each interferogram (4.2)

Heights

Figure 7.1: Flow chart of the phase unwrapping and height retrieval process when
multiple baselines are available.
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