
Real-Time Enveloping with Rotational Regression

by

Robert Yuanbo Wang

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2007

@ Massachusetts Institute of Technology 2007. All rights reserved.

A uthorf . v......
Department of El rical Engineering and Computer Science

February 1st, 2007

Certified by .
......... "<Jovan Popovic

Associate Professor
Thesis Supervisor

Accepted by.....

MASSACHUSES INSTITVUTE.
TF ECHNOLOQV

AUI 1.6 2007

LiBRARI-S

....•.. • ,.- (.,, ".......

Arthur C. Smith
Chairman, Department Committee on Graduate Students

ARCHIVES

Il

Real-Time Enveloping with Rotational Regression

by

Robert Yuanbo Wang

Submitted to the Department of Electrical Engineering and Computer Science
on February 1st, 2007, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Enveloping (or skinning) is the process that relates a skeleton, which an animator controls,
to a 3-D surface mesh, which the audience sees. This process is necessary in most com-
puter graphics applications that involve animated characters. The complexity (and speed)
of enveloping solutions vary from photo-realistic muscle simulations used for movie pro-
duction, to artifact-ridden heuristics such as linear blend skinning used for video games
and training simulations.

We propose a method for example-based enveloping of 3-D characters. We can ap-
proximate the output of muscle simulations or other high-quality enveloping tools with a
model that can be evaluated at speeds comparable to the fastest enveloping techniques. Our
technique introduces a rotational regression model that can accurately capture common
skinning behaviors such as muscle bulging, twisting, and challenging areas such as the
shoulders. Our better treatment of rotational quantities is made possible by a framework
that predicts mesh deformation gradients instead of mesh vertex positions. We reconstruct
the vertex positions from deformation gradients in an additional step by solving a Poisson
equation.

We show that our model is significantly more expressive than linear blend skinning
and capable of capturing a wider variety of effects without generalization problems. Our
method is also comparable in run-time speed to linear blend skinning. All in all, we are
proposing a more general, less artifact-ridden, replacement for linear blend skinning that
will allow for more realistic enveloping in real-time applications.

Thesis Supervisor: Jovan Popovic
Title: Associate Professor

Acknowledgments

Thanks goes to Ilya Baran, Marco DaSilva, Paul Green, Eugene Hsu, Tom Mertens, and

Sylvain Paris for conversation and discussion. Thanks goes to my office mate Jiawen Chen

for providing technical advice on GPUs and software tools. And of course, special thanks

go to my collaborators, Kari Pulli and Jovan Popovic.

We thank Joel Anderson, Dragomir Anguelov, and Michael Comet for their generosity

in providing the datasets we used to test our model. The T-Rex example was provided by

Joel Anderson. The Drago example was provided by Dragomir Anguelov. The Elbow,

Shoulder, James and Gorilla examples were taken from Poser 6. The Muscle Arm and

Dragon Leg were provided with the cMuscleSystem by Michael Comet.

Contents

1 Introduction 15

1.1 Related W ork 16

1.2 Overview . 18

2 Deformation Gradient Prediction 23

2.1 Notation 24

2.2 Rotational Regression 24

2.2.1 M odel . 25

2.2.2 Training 26

2.3 Scale/Shear Regression 27

3 Mesh Reconstruction 29

3.1 Poisson Mesh Reconstruction 29

3.2 Near-Rigid/SSD Vertex Constraints 30

3.3 Reduced Mesh Reconstruction 31

4 Dimensionality Reduction 35

4.1 Vertex reduction 35

4.2 Predictor Reduction 37

5 GPU Implementation 39

6 Results 41

6.1 Error M etric 41

7 Conclusion 47

A Reduced Poisson Formulation Details 53

List of Figures

1-1 Our technique accurately captures muscle deformations from a set of ex-

amples and efficiently evaluates them on graphics hardware. In this case,

we approximate the anatomical model used to produce the ground truth

(29,380 vertices) at speeds suitable for interactive applications. Our tech-

nique is more accurate than linear blend skinning and almost as fast. 20

1-2 Overview. Our model maps a skeletal pose q to its corresponding mesh

pose y(q). The mapping has two steps. First, we predict deformation

gradients of the mesh based on the skeletal pose. We then reconstruct vertex

positions from these predictions by solving a Poisson equation. 21

2-1 We learn a mapping from a sequence of bone transformations to a sequence

of deformation gradients. We build separate regression models for rota-

tion and scale/shear, learning parameters W and u for rotation and H for

scale/shear. The rotation model R(q) and scale/shear model S(q) combine

to form our deformation gradient predictor. 24

2-2 Arm flexing. While most of the forearm rotates in the same direction and

amount as the bone, parts of the bicep rotate along different axes and by

different amounts 25

2-3 Our rotation predictors learn a constant rotational axis offset W and a con-

stant angle scale factor u to relate a joint rotation sequence (source) to a

triangle rotation sequence (target). 26

2-4 Muscle arm error histogram. We plot a histogram of the errors for our ro-

tational regression heuristic compared to SSD for three poses of a muscle

flexing. We also show the angle scale factor in false color. Note that trian-

gles on the bicep are related to the joint rotation by a small (but non-zero)

scale factor while triangles on the forearm move nearly rigidly. 27

3-1 "Fixing" Poisson. We use the Poisson equation to reconstruct vertex po-

sitions from edge predictions (a). However, low-frequency errors can ac-

cumulate, and the extremities of the mesh may no longer match the joint

configuration (b). Fixing a set of near-rigid vertices to their SSD prediction

(red dots) solves this problem (c). 30

4-1 Vertex clustering. Successive iterations merge coordinated vertices into

fewer and fewer proxy-bones. The resulting transformations also form a

good initial guess for predictor reduction. 37

4-2 Training a Reduced Model. Given a set of example skeleton-mesh pairs,

we can extract triangle deformation sequences DM. Our predictor reduc-

tion step gives us sequences of key deformation gradient sequences Df,

from which we train key deformation gradient predictor. These predictors,

combined with the mesh reconstruction matrices C1 and C2, form our model. 37

5-1 Mesh reconstruction on the GPU. We load C1, C2 and the bone weights for

matrix-palette skinning on the GPU beforehand. At runtime, we need only

send the vectors d(q) and q per model. 39

6-1 Our errors are not only generally lower than SSD, but their standard devi-

ations (error-bars) are smaller as well, meaning that the errors are harder

to detect visually. All errors are normalized so that 100% corresponds to

the best rigid-articulated body predictor for each example. Both approxi-

mation error (dotted line) and generalization error (solid line) for both SSD

and our rotational regression method (RR) are shown. (Lower is better.) . . 43

6-2 Our model captures real deformations of 3-D human scan data. In this case,

we are better at approximating the shoulders than SSD, despite noise in the

training set. 45

6-3 The large shoulders of the gorilla are poorly approximated by SSD, but

captured by our technique. 45

6-4 Twisting bar and arm test. We took three poses from an animation sequence

of a twisting bar and trained an SSD model, an EigenSkin/PSD model,

and our model. We evaluated each model on an unseen test pose. While

SSD has difficulty even representing the twisting deformation, the Eigen-

Skin/PSD model overtrains on the small set of poses and fails to correctly

interpolate the twist 46

6-5 Anatomical arm test. We extracted a set of poses from an anatomically

motivated arm rig with both bending and twisting at the elbow. The twist-

ing and muscle bulges are enough to prevent SSD from approximating the

examples well. The technique of Mohr and Gleicher [21] does better, but

there are still differences. Our model produces a result almost indistin-

guishable from the ground truth. 46

List of Tables

6.1 While our method is slower than SSD, we are usually within a factor of

two in terms of both frame-rate and the number of floating-point opera-

tions. Our results compare most favorably for large detailed meshes, such

as the T-rex, because most of the time is spent on the same matrix-palette

skinning computation as SSD. The absolute speed is also sufficient for use

in interactive applications. 44

Chapter 1

Introduction

Enveloping (or skinning) is a common and fundamental task in computer graphics. When-

ever an animator controls a character via a skeleton, enveloping is used to map these con-

trols to deform a mesh surface. There is no standard way to envelope. An artist may run a

physical simulation to model muscle deformations or tune complex systems of shape blend-

ing for more direct control. For interactive applications, linear blend skinning enjoys the

most popularity. It is easy to use and can be accelerated on graphics hardware. However,

linear blend skinning suffers from artifacts such as joint collapse and restricts the range of

deformations available to the artist.

The shortcomings of linear blend skinning are well-known, and there has been a rich

body of work on alternatives. Much of this work proposes new modeling approaches. How-

ever, given the intricacy of existing modeling tools, an artist may not want to or be able to

switch. For this case, there are techniques that train on examples exported from other

enveloping tools. Most of these example-based approaches learn a model of corrective dis-

placements on top of linear blend skinning. However, displacement models extend poorly

to correcting the rotational errors of linear blend skinning. The methods that directly model

rotational deformations rely on strong assumptions about where and how these deforma-

tions occur. Finally, most techniques are simply not fast enough for use in applications

such as video games and training simulations.

We believe that an artist should be able to use any enveloping tool, or even run a muscle

simulation, without worrying about the computational efficiency of the resulting model.

Thus, our technique learns from examples exported from any block-box enveloping tool

and generates a model suitable for fast evaluation on graphics hardware. We also anticipate

that a common set of skinning behaviors would include deformations such as twisting,

muscle bulges, and shoulder deformations. We designed our rotational regression model

with these behaviors in mind. All in all, we are proposing our technique as a more general,

less artifact-ridden, replacement for linear blend skinning.

Our rotational regression model predicts surface rotations from bone rotations. We also

predict surface scaling and shearing separately, and solve a Poisson equation to reconstruct

vertex positions from these predictions. Our technique makes the following contributions:

Rotational Regression Enveloping: We propose an enveloping technique that naturally

models rotations. This is in contrast to techniques that linearly blend rotation matrices

or use displacements to model rotational deformations. We apply a simple but general

heuristic that maps bone rotations (in pose space) to triangle rotations on the surface mesh.

Accurate and GPU Ready Poisson Reconstruction: We formulate a more accurate

Poisson mesh reconstruction process by integrating easy-to-predict near-rigid vertices as

constraints. We also adapt our reconstruction framework for model reduction, allowing it

to be computed on the GPU.

Dimensionality Reduction: Finally, we present a general dimensionality reduction scheme

compatible with our reduced mesh reconstruction framework that approximates a sequence

of poses with bounded error.

1.1 Related Work

Physically-based and Anatomically-based approaches: Some of the most realistic re-

sults in enveloping have been obtained by muscle simulations [23, 30, 27]. Commercial

packages for muscle simulations are readily available and commonly used in movie pro-

duction and special effects [5, 7]. Other approaches use physics but not anatomy to describe

muscle deformations [13, 4, 3, 11]. We complement these approaches by transforming the

models they produce into a form suitable for evaluation on graphics hardware. In fact, our

main application is to take custom rigged models that are costly to evaluate and learn an

efficient form for use in a training simulation or video game.

Linear blend skinning is the most pervasive enveloping technique used in interactive

applications. This unpublished technique is also known as single-weight enveloping and

skeletal subspace deformation, whose acronym SSD we use for the remainder of this paper.

The benefit of SSD lies in its ease of use and applicability to modem graphics hardware in

the form of matrix-palette skinning [18]. SSD transforms each vertex with a linear blend of

bone rotations. The blend weights are usually hand-painted, but there are also well-known

techniques for optimally training them for a set of examples [21, 14].

Linearly blending rotations leads to well-known artifacts such as collapsing joints and

the "candy wrapper effect" [19, 21]. There have been many techniques that address these

problems. Wang and Phillips [28] and Merry et al. [20] propose variations to SSD that

trains more blend weights per vertex per joint. While these models are more expressive,

they also require more training data to prevent overfitting. The remaining techniques fall

into two broad categories: displacement interpolating approaches and rotation interpolating

approaches.

Displacement interpolating approaches take as input a baseline SSD model and a set

of training poses composed of skeleton-mesh pairs [19, 24, 17, 1, 22]. They compute

corrective displacements to the SSD model based on the training data and interpolate these

displacements in pose space. Adding displacements works well to correct minor errors of

SSD. However, we show that interpolating displacements to correct SSD rotational errors,

such as those found in twisting motion, becomes unwieldy, requiring abundant training

data. Our technique complements the displacement approaches above because it provides

a superior baseline technique that better approximates rotational deformations.

Rotation interpolating approaches: Weber [29], and Mohr and Gleicher [21] extend the

expressive power of SSD by introducing additional spherical linearly interpolated "half-

way" joints. However, these joints are added a priori, without regard to the actual defor-

mations given by example poses. We extend the idea of introducing additional joints by

identifying precisely where they are needed (Section 4) and by fitting the behavior of these

joints to surface deformations. We show that this improves upon existing techniques, espe-

cially for the case of joints with both bending and twisting. Kavan and idra [16] take an

existing SSD model and non-linearly blend quaternions instead of transformation matrices.

This technique corrects twisting defects but cannot approximate muscle deformations that

were never present in the original SSD model.

Deformation gradient approaches: Deformation gradients have been used by a variety

of techniques for pose modeling [25, 2, 8]. We share with these techniques a common

Poisson reconstruction step, but differ in how we model the deformation gradients. Der

et al. [8] describe a pose space with the non-linear span of a set of deformation gradi-

ents extracted from example meshes. This pose space can then be explored by mesh-based

inverse-kinematics. While this is useful for certain applications, animators often want to

control a mesh with a specific skeleton or precisely drive non end-effector joints. Further-

more, Der et al. [8] model the pose space non-parametrically, incurring an evaluation cost

cubic in the number of training poses. The SCAPE pose model predicts deformation gradi-

ents from bone rotations much like our own model [2]. SCAPE can even handle different

identities in addition to different poses. On the other hand, our method more accurately

predicts rotational deformations and is orders of magnitude faster to evaluate.

1.2 Overview

Our task is to learn a mapping y(q) from a set of example skeleton-mesh pairs (qi, yi). We

choose to learn our mapping in the space of deformation gradients. Deformation gradients

encode the local orientation, scaling, and shearing of a region of the mesh with respect to

a rest pose. We train and evaluate deformation gradient predictors D(q) that can relate our

input, bone transformations, to deformation gradients of our output mesh surface (Section

2). From these predictions, we can reconstruct the mesh vertex positions by solving a

Poisson equation (Section 3). We begin by describing a prediction step that evaluates the

deformation gradient of every triangle, and a reconstruction step that solves for the position

of every vertex. However, we can exploit coherency and coordination of the vertices and

triangles (Section 4) to reduce the number of deformation gradients we have to predict and

the number of coordinates we have to solve for at runtime. Our reduction not only makes

CPU evaluation much faster, but also takes the particular form of matrix-palette skinning,

allowing us to perform the bulk of our runtime evaluation on the GPU (Section 5).

Linear
blend

skinning

Figure 1-1: Our technique accurately captures muscle deformations from a set of examples
and efficiently evaluates them on graphics hardware. In this case, we approximate the

anatomical model used to produce the ground truth (29,380 vertices) at speeds suitable for
interactive applications. Our technique is more accurate than linear blend skinning and
almost as fast.

Deformation
Gradient

)diction
-A

Figure 1-2: Overview. Our model maps a skeletal pose q to its corresponding mesh pose
y(q). The mapping has two steps. First, we predict deformation gradients of the mesh
based on the skeletal pose. We then reconstruct vertex positions from these predictions by
solving a Poisson equation.

Mesh
:onstrui

P.

Chapter 2

Deformation Gradient Prediction

The deformation gradient is a local description of orientation, scaling, and shearing of a

deformed pose relative to a rest (or undeformed) pose. Let y and k- be the coordinates of a

body at a deformed pose and at the rest pose respectively. The quantity D = Vy is called

the deformation gradient. If y is given by an affine transformation, y = Ak + b, as is the

case for the three vertices of a triangle, the deformation gradient is the matrix A E R3x3

We seek to relate bone transformations q to mesh deformations D. For an articulated rigid-

body, this mapping is the identity between each bone and the rigid segment it affects. Linear

blend skinning generalizes this mapping, allowing surface deformations to depend on a

linear blend of bone transformations. We've designed our deformation gradient predictors

D(q) to capture additional deformations such as twisting and muscle bulges.

We extract deformation gradient sequences from a set of deformed mesh poses on a

per-triangle basis, similarly to Sumner and Popovid [25], and James and Twigg [14]. The

deformation gradient D can be separated into a rotation component R and a scale/shear

component S using polar decomposition, and these components need to be treated dif-

ferently. We predict the former with a rotational regression model and the latter with a

scale/shear regression model. Together, these two predictions form our deformation gra-

dient predictors D(r) (Figure 2-1). While we begin by describing deformation gradient

predictors on a per-triangle basis, our model can be applied to any sequence of deformation

gradients-a property we exploit for our reduced reconstruction step.

....D'
SR(q) *S(q) = D (q)

Deformation gradient
sequence Regression 'iL Wu tH

Bone transformation Deformation
sequence gradient predictor

Figure 2-1: We learn a mapping from a sequence of bone transformations to a sequence of
deformation gradients. We build separate regression models for rotation and scale/shear,
learning parameters W and ufor rotation and Hfor scale/shear. The rotation model R(q)
and scale/shear model S(q) combine to form our deformation gradient predictor

2.1 Notation

We denote each skeletal pose q to be a vector of J concatenated bone transformations

[vec(Qi)T, d,... , vec(Qj) T , dT]T E R12Jx1. Bone transformations are defined relative

to the rest pose but are not relative to the parent frame. Each mesh y E IR3Vxl is a vector

of V concatenated vertex positions. In the next section, we find it convenient to work in

axis-angle representations. We use 0 and p to denote the axis-angle forms of bone rotations

Q and mesh rotations R respectively. We represent axis-angle quantities as 3-vectors with

angle encoded in the magnitude and axis encoded in the direction.

2.2 Rotational Regression

The basic assumption of SSD is that vertices on the mesh transform with the bones affecting

them. However, when a muscle bulges, some parts of the mesh do not rotate by the same

amount as the joint causing the bulge. Other parts may rotate in the opposite direction

or along a different axis (Figure 2-2). We propose a more general model relating a joint

rotation sequence to a triangle rotation sequence.

Below, we assume that we know which joint affects the triangle. In practice, we train a

model for each joint in the skeleton and select the one that best approximates the triangle

rotation sequence.

I I

Figure 2-2: Arm flexing. While most of the forearm rotates in the same direction and
amount as the bone, parts of the bicep rotate along diferent axes and by different amounts.

2.2.1 Model

To relate bone rotations to triangle rotations, we first need to express both in the same

coordinate frame. Let 6 and P denote our bone rotations and triangle rotations expressed

in the joint frame. Intuitively, 6 is the joint rotation. We relate the angle of the triangle

rotation to the joint angle by a scale factor u and the axis of the triangle rotation to the joint

axis by a rotation offset W. By using the axis-angle representation, this relationship takes

on a linear form:

p(q) = uWOb(q),

where Ob(q) extracts the rotation of bone b from skeletal pose q (Figure 2-3).

For each triangle, we are fitting only four parameters (three for the rotation offset W

and one for the scale factor u). However, this simple model works surprisingly well. The

model handles twisting with the rotation scale factor u, while the rotation offset to the axis

U Are w
angle axis

44Mscale 4 offset

I source target
rotation rotation

Figure 2-3: Our rotation predictors learn a constant rotational axis offset W and a con-
stant angle scale factor u to relate a joint rotation sequence (source) to a triangle rotation
sequence (target).

effectively models muscle bulges (Figure 2-4).

2.2.2 Training

For training, we are given rotation sequences for a bone qi and a triangle pi. First, we

transform both sets of rotations into the joint frame, forming Gb(q i) and ji . The optimal

parameters W E SOz and u E R are given by

argmin uWObi(qi)_ -i 2,
W,u iE1...N

which can be solved with coordinate descent, alternating between solving for u and Q

separately. Given rotation offset W, u has a closed-form solution. Given scale factor u,

solving for W becomes an instance of the Procrustes problem, also yielding a closed form

solution [10].

We initialize the scale factor u independently of W:

argmin E (2ul,(qi) i- IIiI)2
u iE1...N

If the rotational deformation is well represented by this scale-offset model, it can be shown

that starting with this initial guess yields the optimal parameters in the first iteration.

Our training technique is fast enough that we can afford to naively fit a model for

I

IU

0

o
-10

4-
4-0

010E

0-

-SSD
-Our method

11111 I II I 0 u 1
0 0.5 1 1.5 2 2.5

error (radians)

Figure 2-4: Muscle arm error histogram. We plot a histogram of the errors for our rota-
tional regression heuristic compared to SSD for three poses of a muscle flexing. We also
show the angle scale factor in false color. Note that triangles on the bicep are related to the
joint rotation by a small (but non-zero) scale factor while triangles on the forearm move
nearly rigidly.

each joint and select the best one that fits our triangle rotation sequence. We can also fit

the residual rotations to additional bones for areas with multiple joint dependencies. In

practice, we found that two bones were sufficient for all of our examples.

2.3 Scale/Shear Regression

We predict each component of the scale/shear matrix linearly with respect to the axis-angle

representation of two joints [2],

vec(S(q)) = HNb1 ,b2 (q)

The two joint rotations that we use are the joint associated with the best rotational predictor

found by the rotational regression step Ob, and its parent Ob2. We denote Ob1 ,b2(q) as

[ONb (q)T •2 (q)T]T E JR7x1. Given a scale/shear sequence Si and bone rotation sequence

r i
I

,--, 41

qi, we can determine the parameters H E R•9x7 of this predictor using least-squares:

argmin I HObi,b2 (qi) - vec(S') 2.
H iE1...N

Chapter 3

Mesh Reconstruction

To map deformation gradient predictions back to vertex positions, we solve a Poisson equa-

tion. First, we describe this process in its most general formulation: when we have a

deformation gradient prediction at each triangle and nothing else. Next we modify the for-

mulation to integrate the global positions of a set of near-rigid vertices. These near-rigid

vertices are easy to predict with SSD, and improve accuracy by introducing global trans-

lation information into our Poisson problem. Finally, we formulate a reduced form of our

mesh reconstruction optimization by exploiting coherency and coordination of triangles

and vertices. This will allow us to perform the entire reconstruction step on the GPU.

3.1 Poisson Mesh Reconstruction

Our deformation gradient predictions describe the shape and orientation of triangles, which

are then pieced together while enforcing vertex continuity constraints to obtain the final

mesh. Our Poisson equation relates deformation gradients to vertices through edges [2]:

argmin Z Z IlDk(q)irk,j - vk,j 12, (3.1)
Y kEl...Tj=2,3

where Vk,j = Yk,j - Yk,1 denotes the jth edge of the kth triangle in the pose we are solving

for and -rk,j denotes the same edge in the rest pose. Equation 3.1 is a least-squares problem

corresponding to a linear system. We pre-factor the left-hand side of this system with the

sparse Cholesky factorization [26]. Given the per-triangle deformation gradient predictions

for a new pose, we can obtain the vertex positions by back substitution.

3.2 Near-Rigid/SSD Vertex Constraints

Without information about the translational component of the skeleton, the Poisson opti-

mization does not detect or compensate for global translational problems. Low-frequency

errors can accumulate (Figure 3-1), and the extremities of a character may veer away from

the joint configuration. We address this problem by identifying a set of near-rigid vertices.

Near-rigid vertices are easy to predict, since by definition, even an articulated rigid-body

predictor would suffice. In practice, we use the richer SSD model. SSD does not suffer

from error accumulation problems because each vertex is dependent on the translational

components of the skeleton, which contains information about the global position of each

bone. Fixing a set of vertices to their SSD prediction provides our optimization with this

information as well. An additional benefit of this process is that our method is exactly as

fast as SSD for regions SSD predicts well and improves the quality where it does not.

(a)

Figure 3-1: "Fixing" Poisson. We use the Poisson equation to reconstruct vertex positions
from edge predictions (a). However, low-frequency errors can accumulate, and the extrem-
ities of the mesh may no longer match the joint configuration (b). Fixing a set of near-rigid
vertices to their SSD prediction (red dots) solves this problem (c).

We evaluate the error of each vertex over the training set and threshold to select the

set of vertices best predicted by SSD, F. We fix the vertices of this set F to their SSD

predictions in our objective function. Define the linear map T,a such that qI'aq is equivalent

to •' Wa,bTb(q)ra, the SSD prediction of vertex a at pose q. We obtain our SSD weights

Wa,b by non-negative least-squares [14]. We substitute Ya = Taq for all Ya E F into

MO-00L

Equation 3.1:

argmin | | IDk(q)vk,j - Vk,j 2
Y kE1...T j=2,3

where

Yk,j - Yk,1 if Yk,j ý F and Yk,1 F

Vk,j = Yk,j - k,lq if only Yk,1 E F (3.2)

'Ik,jq - Yk,1 if only Yk,j E F.

If both vertices of an edge are fixed, the error term for the edge can be dropped completely

from the objective function.

We can solve Equation 3.2 similarly to Equation 3.1, by pre-factoring the left-hand side

of the corresponding linear system, and evaluating new poses with back-substitution. While

this formulation is sufficient for some applications, we introduce a faster formulation in the

next section that is competitive with SSD in terms of speed.

3.3 Reduced Mesh Reconstruction

The optimization problem in Equation 3.2 solves for the coordinates of every vertex (3V de-

grees of freedom) and requires predicting the deformation gradient of every triangle Dk (q).

In this section, we reduce this optimization to involve only the transformation matrices of

a set of P proxy-bones (12P degrees of freedom) and to require the prediction of only P

deformation gradients. The size of P does not depend on the resolution of the mesh, but

rather on the complexity of the deformation. In our examples, P never exceeds 100. While

we reformulate our optimization in this section, the details of selecting the key deformation

gradients and proxy-bones are given in Section 4.

Our reduced mesh reconstruction scheme is based on the idea that the triangles and

vertices of an articulated model are very coordinated. We express each triangle deformation

gradient predictor as a linear combination of P key deformation gradient predictors:

Dk(q) = E 3k,eDe(q). (3.3)
£E1...P

We express each vertex as the SSD-like prediction from a set of proxy-bones:

ya(t) = E aa,bTb(t)ra = -- at (3.4)
bEl...P

where (Da is defined similarly to TI, and t packs the proxy-bone transformations Tb similarly

to q. Our choice of an SSD-like model here is significant because the evaluation of y(t)

can be performed on the GPU with matrix-palette skinning.

We substitute Equations 3.3 and 3.4 into Equation 3.2 and solve for the proxy-bone

transformations t:

2
t(q) = argmin Z I 3k,jDe(q)k,j - Vk,J

t kE1...T j=2,3 tE1...P

where

Sk,jt - (k,lt if Yk,j V F and Yk,1 0 F

vk,j = 4k,jt - 'k,lq if only Yk,1 E F (3.5)

'Ik,jq - k,1t if only Yk,j E F

Because we chose linear models for both predictor and vertex reductions, the solution t(q)

is also linear with respect to the deformation gradient predictors De(q) and the bone rota-

tions q, taking the form of

t(q) = Cld(q) + C2q, (3.6)

where d(q) = [vec(D (q))T ... vec(Dp(q)) T]T. The derivation of C1 and C2 are given in

the Appendix. To obtain the vertex positions y, we substitute t(q) for t in Equation 3.4.

Thus we have reduced our entire Poisson mesh reconstruction step into a matrix-vector

multiplication (Equation 3.6) and matrix-palette skinning (Equation 3.4). We describe in

Section 5 that both of these operations can be performed on the GPU. The cost of evaluating

P deformation gradient predictors is negligible compared to mesh reconstruction, involving

only nine 7-component dot products and a handful of quaternion multiplies per predictor.

Chapter 4

Dimensionality Reduction

In the previous section, we described a reduced formulation of the mesh reconstruction

step. We outlined the form of the reduction to be matrix-palette skinning for vertices and

a linear blend model for deformation gradients. In this section we find the parameters

required by the reduction: the SSD weights a for the vertex reduction, the blend weights

3 for the predictor reduction, and the key deformation gradient predictors De(q). Given

the formulation of our reduced reconstruction model, we can write objective functions

for finding each of these terms. As we shall see, however, solving these optimization

problems directly can be intractable, and we describe a clustering technique for finding

these quantities approximately. Note that our proposed clustering is one of many that are

possible. In particular, the mean-shift approach advocated for skinning mesh animations

by James and Twigg [14] could be substituted for the vertex reduction below. Mean-shift

clustering is less susceptible to noise. On the other hand, our approach is faster, progressive,

and clusters bones based on vertex error.

4.1 Vertex reduction

We measure the error of our vertex reduction over a set of training meshes yi by the L'

difference between the SSD-based proxy-bone prediction and the ground truth vertex po-

sition, E(T/, aa,b) = : -- IIY - a,bTY,a 1 2 . Ideally, we would like to find the

smallest number of proxy-bones P for a given maximum error threshold e. This would

require us to solve

min P subject to E(Tg, aa,b) < E.
Tr ,ta,b

However, this optimization is too intractable for us to attack directly. Given fixed P and

fixed transformations T4, we can solve for weights aa,b using non-negative least-squares

[14]. Similarly, given fixed P and fixed aa,b, we can find the least-squares solution for Tb.

However, we cannot solve for both simultaneously, and we do not know P beforehand.

Instead, we take an approximate approach inspired by work in mesh decimation [6, 9].

Define the error EA-B of joining proxy-bone A to proxy-bone B as EN -aEGa NIYA -

T/ba 1I2. This error is an upper bound for the real approximation error of joining the vertices

of group GA to group GB. We add all possible joins between contiguous groups into a

priority queue and iteratively perform the join with the lowest error until our error threshold

is reached (Figure 4-1). Specifically:

1. Begin with a proxy-bone for each triangle k initialized to the transformation matri-

ces Tk mapping the vertices of k from the rest pose to each pose i. Initialize the

associated group Gk to contain the vertices of triangle k.

2. Greedily pick the join A -- B with the smallest error EA•B and add the vertices of

group A to group B.

3. Solve for the weights aa,b given the current set of transformations Tb

4. Solve for the transformations TI given the current set of weights aa,b*

5. If E(Tb, aa,b) < c go to Step 2.

In practice, we need not evaluate steps 3, 4, or 5 at every iteration. Error increases

smoothly, and we only need to be careful when we get close to the threshold. For efficiency

reasons, we also only consider joins of contiguous proxy-bones [6]. We restrict each vertex

to depend on only the proxy-bone transformations of the group it belongs to and the groups

adjacent to that group. This reduces overfitting and also boosts performance.

P=500 250 120 60 30

Figure 4-1: Vertex clustering. Successive iterations merge coordinated vertices into fewer
and fewer proxy-bones. The resulting transformations also form a good initial guess for
predictor reduction.

Reduced Training

Examples
yi, q i = 1... N

Triangle deformation
Sgradient sequences

D; k= 1...T

Figure 4-2: Training a Reduced Model. Given a set of example skeleton-mesh pairs, we
can extract triangle deformation sequences Di. Our predictor reduction step gives us
sequences of key deformation gradient sequences D', from which we train key deformation
gradient predictor. These predictors, combined with the mesh reconstruction matrices C1
and C2, form our model.

4.2 Predictor Reduction

To obtain key deformation gradient predictors DI(q), we first find key deformation gradient

sequences Di from triangle deformation gradient sequences Di. We then train predictors

from these sequences as in Section 2 (Figure 4-2). Our error metric for finding the best key

sequences is the objective function from Equation 3.2 with the substitution

£EI...P

Reduction

Key deformation
gradient sequences

D e= 1...P

where 1k,L are the blend weights:

argmin Z Z ZkDVk k
3k,t,DS iE1...N kE1...Tj=2,3 IE1...P

We can solve the optimization above using coordinate descent, alternating between solving

for l3k,e and Di separately. Fortunately, vertex reduction allows us to start from a particu-

larly good initial guess for Di (Figure 4-1). We initialize Di to be the upper-left 3x3 matrix

of the T7 matrix we found from vertex clustering. The coordinate descent converges in

three iterations or less for all of our examples. Having obtained key deformation gradient

sequences, Di, we can train deformation gradient predictors De(q) as described in Section

2.

Chapter 5

GPU Implementation

On GPU

+

Matrix
vector
multiplies

SIDL
I t (q)
I

d(q) Mesh Reconstruction

Figure 5-1: Mesh reconstruction on the GPU. We load C1, C2 and the bone weights for
matrix-palette skinning on the GPU beforehand. At runtime, we need only send the vectors
d(q) and qper model.

There are two components of our GPU implementation: a matrix-vector multiplication

and matrix-palette skinning. Both operations are straightforward on modern graphics hard-

ware and our implementation is one of many that are possible. We take a total of three

passes to skin our character, not including the final rendering pass. The first pass performs

the matrix-vector multiplication. The next pass uses matrix-palette skinning to compute

the vertex positions. The third pass computes the normal vectors of the skinned character

from the post-transformed geometry. The only data that we send to the GPU at runtime

Matrix
palette
skinning y(q)

are the vectorized deformation gradient predictions d(q) and bone transformations q-the

remainder of the computation is performed completely on the GPU.

Matrix-vector multiplication: We precompute and upload C, and C2 into video mem-

ory as a static floating-point texture. For each model, we upload textures d(q) and q at each

frame and use a fragment program to perform the matrix-vector multiplication, one column

at a time. The results are rendered on to the same 12P x 1 rectangle and accumulated using

hardware blending. We store the final result, a vector of concatenated proxy-bone transfor-

mation matrices, as a texture.

Matrix-palette skinning: There are many ways to apply matrix-palette skinning on mod-

em graphics hardware; see Lee [18] for a recent survey. In light of the increase in multi-pass

rendering in video games, we chose to skin only once per frame in a separate pass, storing

the positions in a texture. These results can be played back for each subsequent render-

ing pass. This avoids redundant skinning on each rendering pass and is similar to DirectX

10 memexport skinning [18] and deferred shading [12]. For each vertex, we send the

proxy-bone weights and indices as texture coordinates which can be used to look up the

proxy-bone transformation matrices computed in the previous pass.

Normal vectors: While traditional normal vector computation for a skinned character is

usually approximated on the GPU, we perform this computation more accurately using the

triangle normals of the skinned vertices. For each vertex, we precompute the indices of

its 1-ring of neighbors. At runtime, these indices are passed along as texture coordinates

and used to fetch the position of each neighbor computed from the skinning computation

in the previous pass. We then take the appropriate cross products to compute each triangle

normal, and normalize the sum of the triangle normals to obtain the vertex normal.

Chapter 6

Results

Our technique compares favorably in quality to SSD, displacement interpolating approaches,

and rotation interpolating approaches. We also compare the speed of our GPU implemen-

tation to matrix-palette skinning. Our datasets included artist created examples from Poser,

anatomically simulated examples using the cMuscleSystem [7], and 3-D human scan data

[2].

6.1 Error Metric

We evaluate all our examples using a metric inspired by the percent position error (PPE)

developed by Karni and Gotsman [15] in the context of animation compression. PPE mea-

sures the total error of each predicted vertex, normalized by the best constant prediction

of the animation. However, in the context of enveloping, the animation of a moving walk

could be globally well preserved but locally prone to artifacts. We are only interested in

these local deformations; the global motion is already given by the skeletal information at

each pose. Our enveloping error metric normalizes the total error at each predicted vertex

by the error of the best articulated rigid-body prediction of the animation:

EE = /EN ,V jIy.(qi) _ 2
41• r(qi) - Ya2'

41

where r, (qi) is the best articulated rigid-body prediction of yi based on the skeletal frames

qi, computed by selecting the single best bone transformation for the vertex over all the

poses.

We measure both approximation error and generalization error. Approximation error is

measured by evaluating the model on the training set. We measure generalization in two

ways. For the datasets where we are given an animation sequence, we sample key frames

from the sequence for training and evaluate over the entire sequence. For the datasets

where we are given a set of random and disjoint poses, we evaluate the leave-one-out cross

validation (LOOCV) error. That is, for each example i E 1... N we train on the N - 1

poses not including i and evaluate the resulting model on pose i.

Comparison with SSD: We compared our model both in terms of quality and speed to

SSD. All of our SSD models were trained using non-negative least-squares [14]. Like

James and Twigg [14], we cap the number of non-zero weights at four. In Figure 6-1, we

show that our technique is superior in terms of quality on every example we tried. Not

only is our total enveloping error lower, the variance of our errors across the vertices is also

lower, meaning that our errors are low-frequency and less distracting visually. We compare

particular poses in Figures 6-2 and 6-3.

We evaluate the speed of our technique in Table 6.1. While we are slower than SSD,

the performance difference is always within a factor of two. While faster GPU implemen-

tations are possible, we use the same matrix-palette skinning implementation for both our

method and SSD. Both methods were benchmarked on a Pentium 4 2.8 GHz machine with

a NVIDIA GeForce 8800 GTX. We also estimate the number of floating-point operations

for each method to provide a hardware independent perspective on performance.

Overall, our technique approximates deformations significantly better than SSD, while

generalizing well and being comparable enough in speed to serve as its replacement.

Comparison with Displacement Interpolating Approaches: We highlight the limita-

tions of displacement interpolation for the case of a simple two-joint twisting model, il-

lustrated in the Bar and Elbow examples of Figure 6-4. One joint twists 180 degrees with

M SSD Train 0 SSD Test N RR Train 0 RR Test

150. 0%

120.0%

2
L 90.0% -
0)

S60.0% -
W

30.0% -

Sno/ -

I
5
2

I
1

t
2
I

f
I

p

1
1

I
i

1
I
I

I
I

p

.4

'4

U

.3

P
1
L
2

I

1
I

d

James Drago Gorilla Dragon T-Rex Elbow Bar Muscle Shoulder
Leg Arm

Figure 6-1: Our errors are not only generally lower than SSD, but their standard deviations
(error-bars) are smaller as well, meaning that the errors are harder to detect visually. All
errors are normalized so that 100% corresponds to the best rigid-articulated body predictor
for each example. Both approximation error (dotted line) and generalization error (solid
line)for both SSD and our rotational regression method (RR) are shown. (Lower is better)

respect to the other. This example is a special case of when Eigenskin [17] and pose space

deformation [19] are equivalent. Our model can learn the twisting deformation with just

three training examples, while pose space deformation, though a perfect approximator, fails

to generalize correctly to the new pose.

Comparison with Rotation Interpolating Approaches: The insertion of half-way joints

and expanding/contracting joints as proposed by Mohr and Gleicher [21] can perfectly

model the twisting effects in Figure 6-4. In other cases, the technique is less accurate. We

highlight the limitations of Mohr and Gleicher's technique with an anatomically rigged arm

(Figure 6-5). In this case, the elbow is undergoing both bending and twisting. Applying

Mohr and Gleicher's model allows the vertices of the forearm to choose a linear combi-

nation of the bending joint and the half-way twisting joint, but not the correct solution-a

joint that bends and twists halfway. While more joints can always be added manually, our

I
I
i
I

icI
I
I
I

· I

II

uIN

r
I

1
P
1

2

sire
I

d
I

i

.4

I

I

I

itIIIIIII

41

;t

a
L

2
ii
2
2

I

mia(5
1
1
I
L
5
I
6

~i1·
--

--

I -

p

U
4

--
L_.._

.4

"I

.4

*****t *** *

i'·

Example Vertices Joints Proxy Training Testing Our SSD Our SSD
bones Poses Poses flops flops fps fps

James 11106 73 80 31 LOOCV 5.1M 2.6M 595 1000
Drago 12500 16 80 49 LOOCV 5.OM 2.9M 618 1030
Gorilla 25438 61 100 46 LOOCV 9.9M 5.9M 449 673
Dragon Leg 2210 14 40 9 86 1.OM 0.5M 681 1144

T-Rex 29380 155 60 11 121 9.4M 6.8M 443 583
Elbow 2610 2 30 3 15 1.OM 0.6M 685 1164
Bar 80 2 25 3 50 0.2M 0.OM 711 1228
Muscle Arm 5256 3 30 4 40 2.OM 1.2M 692 1200
Shoulder 2610 2 40 10 100 1.0M 0.6M 690 1172

Table 6.1: While our method is slower than SSD, we are usually within a factor of two in
terms of both frame-rate and the number offloating-point operations. Our results compare
most favorably for large detailed meshes, such as the T-rex, because most of the time is
spent on the same matrix-palette skinning computation as SSD. The absolute speed is also
sufficient for use in interactive applications.

method locates where they are most needed and adds them automatically.

Ground truth Our method SSD
Figure 6-2: Our model captures real deformations of 3-D human scan data. In this case,
we are better at approximating the shoulders than SSD, despite noise in the training set.

Ground truth Our method SSD
Figure 6-3: The large shoulders of the gorilla are poorly approximated by SSD, but cap-
tured by our technique.

Training Evaluation

Ground Our Eigenskin/ SSD
truth method PSD

Figure 6-4: Twisting bar and arm test. We took three poses from an animation sequence
of a twisting bar and trained an SSD model, an EigenSkin/PSD model, and our model. We
evaluated each model on an unseen test pose. While SSD has difficulty even representing
the twisting deformation, the EigenSkin/PSD model overtrains on the small set of poses
and fails to correctly interpolate the twist.

Training Evaluation

Ground Our [Mohr and SSDtruth method Gleicher]
Figure 6-5: Anatomical arm test. We extracted a set of poses from an anatomically moti-
vated arm rig with both bending and twisting at the elbow. The twisting and muscle bulges
are enough to prevent SSD from approximating the examples well. The technique of Mohr
and Gleicher [21] does better, but there are still differences. Our model produces a result
almost indistinguishable from the ground truth.

Chapter 7

Conclusion

We have presented an example-based enveloping model suitable for use in interactive ani-

mation systems. Specifically, our experiments have shown that rotational regression is an

effective way of capturing muscle bulging, twisting and areas such as the shoulder. We

have tested our technique on a wide variety of examples, measuring both approximation

and generalization error. Our method compares favorably to previous techniques in terms

of quality and is usually within a factor of two of SSD in terms of speed.

Our model is good at approximating smooth, large-scale deformations such as muscle

bulges. Fine wrinkles and sharp creases found in intricate skin and cloth may be better

handled by a displacement interpolation technique. Extending our technique with a dis-

placement correction model would also allow it to approximate training poses exactly, an

important feature to animators. To properly handle cloth, dynamics and collisions need to

be addressed. An exciting avenue of future work is to find an analog to our rotation model

for dynamics.

Bibliography

[1] Brett Allen, Brian Curless, Zoran Popovid, and Aaron Hertzmann. Learning a corre-

lated model of identity and pose-dependent body shape variation for real-time synthe-

sis. In 2006 ACM SIGGRAPH / Eurographics Symposium on Computer Animation,

pages 147-156, September 2006.

[2] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim

Rodgers, and James Davis. Scape: shape completion and animation of people. ACM

Transactions on Graphics, 24(3):408-416, August 2005.

[3] Steve Capell, Matthew Burkhart, Brian Curless, Tom Duchamp, and Zoran Popovid.

Physically based rigging for deformable characters. In 2005 ACM SIGGRAPH / Eu-

rographics Symposium on Computer Animation, pages 301-3 10, July 2005.

[4] Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popovid. In-

teractive skeleton-driven dynamic deformations. ACM Transactions on Graphics,

21(3):586-593, July 2002.

[5] cgCharacter. Absolute character tools 1.6, 2003. http://www.cgcharacter.com/.

[6] David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Variational shape approx-

imation. ACM Transactions on Graphics, 23(3):905-914, August 2004.

[7] Michael Comet. Cmusclesystem 1.31, 2006. http://www.cometdigital.com/.

[8] Kevin G. Der, Robert W. Sumner, and Jovan Popovid. Inverse kinematics for reduced

deformable models. ACM Transactions on Graphics, 25(3): 1174-1179, July 2006.

[9] James R. Diebel, Sebastian Thrun, and Michael Briinig. A bayesian method for prob-

able surface reconstruction and decimation. ACM Trans. Graph., 25(1):39-59, 2006.

[10] D. W. Eggert, A. Lorusso, and R. B. Fisher. Estimating 3-d rigid body transforma-

tions: a comparison of four major algorithms. Mach. Vision Appl., 9(5-6):272-290,

1997.

[11] Zheng Guo and Kok Cheong Wong. Skinning With Deformable Chunks. Computer

Graphics Forum, 24(3):373-381, 2005.

[12] Shawn Hargreaves. Deferred shading. In Proceedings of the Game Developers Con-

ference, March 2004.

[13] Dae-Eun Hyun, Seung-Hyun Yoon, Jung-Woo Chang, Joon-Kyung Seong, Myung-

Soo Kim, and Bert Jiittler. Sweep-based human deformation. The Visual Computer,

21(8-10):542-550, 2005.

[14] Doug L. James and Christopher D. Twigg. Skinning mesh animations. ACM Trans.

Graph., 24(3):399-407, 2005.

[15] Z. Karni and Craig Gotsman. Efficient compression of soft-body animation se-

quences. Computer And Graphics, 28(1):25-34, 2004.

[16] Ladislav Kavan and Jifi Zdra. Spherical blend skinning: a real-time deformation of

articulated models. In SI3D '05: Proceedings of the 2005 symposium on Interactive

3D graphics and games, pages 9-16, New York, NY, USA, 2005. ACM Press.

[17] Paul G. Kry, Doug L. James, and Dinesh K. Pai. Eigenskin: real time large defor-

mation character skinning in hardware. In SCA '02: Proceedings of the 2002 ACM

SIGGRAPH/Eurographics symposium on Computer animation, pages 153-159, New

York, NY, USA, 2002. ACM Press.

[18] Matt Lee. Seven ways to skin a mesh: Character skinning revisited for modem gpus.

In Proceedings of GameFest, Microsoft Game Technology Conference, August 2006.

[19] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose space deformations: A unified

approach to shape interpolation and skeleton-driven deformation. In Proceedings of

ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series,

pages 165-172, July 2000.

[20] Bruce Merry, Patrick Marais, and James Gain. Animation space: A truly linear frame-

work for character animation. ACM Transactions on Graphics, 25(4):1400-1423,

October 2006.

[21] Alex Mohr and Michael Gleicher. Building efficient, accurate character skins from

examples. ACM Trans. Graph., 22(3):562-568, 2003.

[22] Taehyun Rhee, J.P. Lewis, and Ulrich Neumann. Real-time weighted pose-space de-

formation on the gpu. Computer Graphics Forum, 25(3):439-448, September 2006.

[23] Ferdi Scheepers, Richard E. Parent, Wayne E. Carlson, and Stephen F. May.

Anatomy-based modeling of the human musculature. In Proceedings of SIGGRAPH

97, Computer Graphics Proceedings, Annual Conference Series, pages 163-172, Au-

gust 1997.

[24] Peter-Pike J. Sloan, III Charles F. Rose, and Michael F. Cohen. Shape by example.

In SI3D '01: Proceedings of the 2001 symposium on Interactive 3D graphics, pages

135-143, New York, NY, USA, 2001. ACM Press.

[25] Robert W. Sumner and Jovan Popovid. Deformation transfer for triangle meshes.

ACM Trans. Graph., 23(3):399-405, 2004.

[26] Robert W. Sumner, Matthias Zwicker, Craig Gotsman, and Jovan Popovid. Mesh-

based inverse kinematics. ACM Trans. Graph., 24(3):488-495, 2005.

[27] Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. Robust qua-

sistatic finite elements and flesh simulation. In 2005 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, pages 181-190, July 2005.

[28] Xiaohuan Corina Wang and Cary Phillips. Multi-weight enveloping: Least-squares

approximation techniques for skin animation. In ACM SIGGRAPH Symposium on

Computer Animation, pages 129-138, July 2002.

[29] Jason Weber. Run-time skin deformation. In Proceedings of Game Developers Con-

ference, 2000.

[30] Jane Wilhelms and Allen Van Gelder. Anatomically based modeling. In Proceedings

ofSIGGRAPH 97, Computer Graphics Proceedings, Annual Conference Series, pages

173-180, August 1997.

Appendix A

Reduced Poisson Formulation Details

Let (k, j) E Fo be the set of edges where neither Yk,j nor Yk,1 are fixed.

Let (k, j) E F1 be the set of edges where only Yk,1 is fixed.

Let (k, j) E F2 be the set of edges where only Yk,j is fixed. Then,

A R12PXl2P S (1 k,j - k1k,I)'Dj -(k,1)-

(k,j)EFo

q k,4 k,j+ k, 1
(k,j)EFi (k,j)EF2

B1 E 12Px9 (k,j k,)T k k,j • 3x3)

(k,j)EFo

S (Jk,)Tkdj k 13x3)
(k,j)EFI

+ (- k,l)TJk (,j 0 13x3)
(k,j)EF2

where 0 denotes the Kronecker product.

B1 E IR12Px9P =[BI1 ... B1p]

B2 RE I1 2Px12J = 5 ((Dk,j)Tf + , (k,1)T k,j
(k,j)EFi (k,j)EF2

C,1 E RI12Px9P =A-'B 1; C2 cE 12Px12J = A-1B2

(A.1)

