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Abstract

GaAs Pseudomorphic High-Electron Mobility Transistors (PHEMTs) are widely used in RF power
applications. Since these devices typically operate at high power levels and under high voltage
biasing, their electrical reliability is of serious concern. Previous studies have identified several
distinct degradation phenomena in these devices, but a complete picture has yet to be formed.

In this study, we have carried out a comprehensive study of the mechanisms of electrical degra-
dation on a set of experimental RF power GaAs PHEMTs (non-commercial devices provided by our
sponsor, Mitsubishi Electric). A wide variety of electrical stressing experiments employing different
conditions (varying temperature, bias, environment) were performed on these devices in order to
monitor their degradation with stressing.

Our general observations showed several forms of degradation, the most concerning being an
increase in the drain resistance RD and a reduction in maximum drain current Ima. Contrary to
what is often claimed in the literature, our experiments indicated that these forms of degradation
were not driven by impact-ionization or hot-electron effects. Instead, we found the degradation to
be strongly correlated with temperature, stressing environment, and drain-gate bias, which were
all consistent with a corrosion mechanism. Via materials analysis we were able to confirm that the
degradation of both RD and I,., were due to surface corrosion on the drain side of the device,
albeit at different specific locations. The increase in RD was attributed to oxidation on the n+GaAs
ledge, while the reduction in I, was due to oxidation on the AlGaAs surface, closer to the gate.

A recoverable negative shift in the threshold voltage VT and a permanent decrease in Rs were
also observed during electrical stressing. The shift in VT was attributed to field-assisted tunneling
of electrons out of traps under the gate, while the decrease in Rs was found to be consistent with
recombination-induced annealing of defects on the source side of the device.

Measurements were also performed to observe light emitted from the device during electrical
stressing. The observed light-emission indicated that device degradation was proceeding in a highly
non-uniform manner across the width of the device, due to a non-uniform electric field distribution.
We attributed this to a non-uniform recess geometry across the device width. This suggested
that it is important to ensure uniform geometry across the device width, in order to minimize
non-uniformities in electric field distribution and enhance device reliability.

The physical understanding developed in this work should be instrumental to identifying and
addressing future reliability issues in RF power GaAs PHEMTs.

Thesis Supervisor: Jesus A. del Alamo
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Chapter 1

Introduction

1.1 Background

GaAs Pseudomorphic High-Electron Mobility Transistors (PHEMTs) have been gaining popularity

for use in RF power applications for wireless systems. Due to their high frequency response, GaAs

PHEMTs are important devices for power amplification in cell phones, base stations, and satellite

communication systems. However, significant reliability issues in these devices need to be addressed

before they can realize their full potential in such applications.

The devices studied in this research are pseudomorphic HEMTs, as the layers forming the active

structure of the device have slightly different equilibrium lattice constants (introducing strain in

the channel layer). In PHEMTs, InGaAs (rather than GaAs) is used for the channel material, as

the addition of indium decreases the bandgap and thus increases the channel mobility [1]. Fig. 1-1

shows a sketch of a typical PHEMT structure. In this schematic, the undoped channel layer lies

between two very thin highly-doped layers which are separated by an undoped spacer layer. The

thin"supply" layers provide the carriers that form a two-dimensional electron gas (2DEG) in the

channel, and the spacer regions ensure that the 2DEG is separated from ionized donors in the

supply layers.

The energy-band diagram of this type of device is shown in Fig. 1-2. Due to the large bandgap

difference between AlGaAs and InGaAs, narrow triangular quantum wells are formed in the InGaAs
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Figure 1-1: Sketch of double-recessed, double-heterojunction pseudomorphic HEMT structure on
GaAs substrate.

channel near the AlGaAs/InGaAs interfaces, thus confining the electrons there to very thin sheets

of charge (the 2DEGs). Since they are separated from their parent donor ions, the electrons in

the 2DEG do not experience ionized-impurity scattering and thus exhibit enhanced mobilities [2].

The undoped AlGaAs spacer layers help to further isolate the 2DEG from the doped supply layers,

resulting in even higher electron mobilities (with a compromise of decreased electron density in

the 2DEG). Typical HEMTs have 2DEG sheet carrier densities on the order of 1012 cm- 2 [2].

Depending on the spacer thicknesses, indium content and other factors, GaAs PHEMTs with

InGaAs channels have been typically found to have room-temperature mobilities from around

4,000 to 8,000 cm 2/Vs [3,4]. Such high mobilities gives these devices their high frequency response,

allowing their use in various high-speed applications.
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Figure 1-2: Energy band diagram of a double-heterojunction pseudomorphic HEMT.

1.2 Motivation

The high-power device applications of GaAs PHEMTs (as mentioned in the previous section)

require severe and prolonged biasing conditions, which cause the devices to gradually degrade over

time. Therefore the electrical degradation of RF power GaAs PHEMTs is of serious concern. The

degradation is usually observed via an increase in the drain resistance RD and a decrease in the

maximum drain current, I,,. This poses a problem because it results in a decrease in overall

output power [5-7], as illustrated in Fig. 1-3.

Previous research on GaAs PHEMTs has attributed this degradation to various mechanisms,

such as impact-ionization, electron-trapping, and surface corrosion [5-8]. However, complete details

of the underlying physical mechanisms have not been totally spelled out. The overall picture of

electrical degradation is somewhat confused by the simultaneous presence of other side effects

of stressing (such as thermal effects, like self-heating, or environmental effects, such as hydrogen

poisoning [9,10]). Furthermore, there are still reliability issues that are missing a thorough analysis.

To date, there have been no studies examining the degradation across the width of the device

(reliability studies have always assumed that degradation occurs uniformly across the device width).
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Figure 1-3: (a) DC characteristics of an AlGaAs/InGaAs PHEMT, before and after RF life test
(Tchann, = 1500C, VDS = 5 V, f = 18 GHz, 2000 hrs). (b) RF characteristics of same device,
before and after RF life test. From [7].

This is also important to investigate because it is unclear how non-uniformities in degradation across

the width of the device can impact device reliability.

1.3 GaAs PHEMT Reliability

In GaAs PHEMTs, several different mechanisms have been identified to be responsible for various

types of device degradation. This section will discuss the main mechanisms that have been observed

and discussed in the literature so far. Here the mechanisms are organized by the primary physical

location of the degradation: the drain, gate, and source.

1.3.1 Drain

The region between the drain and the gate is of utmost concern in PHEMT reliability, largely due

to the high electric field present under typical operating conditions. Hot electron degradation is the

most widely reported failure mechanism of PHEMTs [11], so it is crucial to monitor the presence

of hot electrons and other effects of the high electric field in the drain region. An important figure
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of merit here is the drain resistance RD, which gives an indication of the resistivity of the drain

ohmic contact and the gate-drain access region. Since GaAs PHEMTs are widely used in RF power

applications, the related RF figure of merit 'max (measured as maximum drain current near the

knee drain voltage) has become of greater significance. Thus degradation on the drain side of

usually observed via an increase in RD and a decrease in 'max.

There have been numerous studies on the drain degradation of GaAs PHEMTs. Probably the

most common explanations involve some kind of electron trapping in the region between the gate

and drain. Many have proposed that impact ionization on the drain side of the device (due to the

high electric field) generates hot electrons which create traps in the drain access region [6,12]. This

is schematically illustrated in Fig. 1-4. The trapped negative charge thus reduces the sheet carrier

concentration (n.) in the extrinsic drain, thus causing the increase in RD and a decrease in Imax.

And since the negative charge effectively widens the depletion region and decreases the peak electric

field, this form of degradation is usually accompanied by an increase in the device breakdown voltage

(commonly referred to as breakdown walkout [13]). As for the specific location of the traps, one such

theory found evidence of the trapping to occur at an interface [8]. Another theory claimed that

electrons are injected and trapped in the passivation layer above the drain access region [5,14]. In

[14], it was found that in the early stages, the charge trapping in the passivation layer was reversible

via thermally-activated emission of the trapped charge. This reversible degradation is referred to

as power drift. In more advanced stages, the charge trapping becomes irreversible (this is referred

to as power slump). In any case the symptoms of the resulting degradation were very similar: an

increase in RD and BVDG and a decrease in Imax and Pt. Also, this type of degradation has

been found to decrease with higher stressing temperatures [12], indicating a close correlation with

impact-ionization and/or hot electron temperature, which have negative temperature dependence

in these devices.

In contrast to these trap-related theories, another explanation for the RD and Imax degrada-

tion involves the corrosion of the semiconductor surface between the gate and drain [7]. This is

illustrated schematically in Fig. 1-5. This degradation is found to be more closely correlated to the

stressing drain current and temperature than to impact-ionization, and is found to be accelerated
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Figure 1-4: Schematic illustration of PHEMT with trapped electrons in drain access region, caused
by hot electrons generated by impact-ionization on drain end of channel (discussed in [5,6,12-14]).
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Passivation film

' I
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Figure 1-5: Schematic illustration of PHEMT with corrosion degradation (discussed in [7]) and
ohmic contact degradation (described in [15,16]) affecting drain side of device.
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Figure 1-6: Schematic illustration of PHEMT with gate metal outdiffusion into barrier layer (dis-
cussed in [18]).

in an air environment [7,17]. A special treatment to the semiconductor surface before passivation

has been found to be effective in suppressing this type of degradation.

Increases in RD have also been attributed to ohmic contact degradation (also illustrated in

Fig. 1-5.). Evidence of this has been observed under unbiased high-temperature storage tests [15]

and under DC bias life tests with high channel temperatures [16]. The contact degradation mecha,

nism is basically due to metal-semiconductor interdiffusion, and is mainly thermally activated [15].

Since temperature is the main accelerating factor for this mechanism, contact degradation typically

affects the source as well as the drain (resulting in increases in both Rs and RD) [15,16].

1.3.2 Gate

Aside from trapped charge modulation (see last paragraph in this section), the majority of degra-

dation mechanisms affecting the gate appear to be due to either thermal or environmental effects.

However, since such effects can be present under typical electrical stressing conditions, it is impor-

tant to be aware of them and their effects on device characteristics.

Probably of greatest concern is gate sinking, a thermally-activated mechanism which refers to

the gradual interdiffusion of the Ti gate metal into the semiconductor. This is schematically illus-

trated in Fig. 1-6. The effect is a positive shift in the threshold voltage VT, which thus causes a
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decrease in ID (and therefore a decrease in output power). Due to the smaller distance between the

gate metal and the channel, an increase in the peak transconductance gmpeak is sometimes also ob-

served [18]. Since the interdiffusion mechanism typically has an activation energy around 1.4-1.6 eV,

its presence usually requires relatively high temperatures [11]. But even under room-temperature

electrical stressing, such thermal effects can be present, due to high channel temperatures (possi-

bly as high as 100'C) induced by high power dissipation [19]. Thus while analyzing degradation

behavior under electrical stress, it is important to properly identify the effects of gate sinking and

isolate them from mechanism directly relating to the electric field.

Other degradation mechanisms involving the gate metal in GaAs PHEMTs have been attributed

to environmental effects, such as hydrogen poisoning. Hydrogen is typically out-gassed from her-

metic packaging materials, or it can be left over from PECVD dielectric deposition [20]. The main

effect of hydrogen is its reaction with the Ti metal to form TiH [9]. This is a reliability concern

because the formation of TiH creates tensile stress in the semiconductor heterostructure that shifts

VT. Since this involves a piezoelectric effect, the sign of the VT shift depends on the length and

the orientation of the gate [10]. The conditions in which hydrogen degradation is readily observed

involve relatively high temperatures, and so its effects must also be tested for and isolated from

thermal and/or environmental effects in analyzing effects of electrical stress.

Another set of mechanisms pertaining to the gate region involves the neutralization of trapped

charge under the gate. The mechanism can be either thermal (trapped electrons gaining enough

energy to escape) or electrical (holes generated from impact ionization recombining with the trapped

electrons) [21]. In both cases, this has the effect of creating a negative shift in VT (and thus

increasing ID). Since these mechanisms involve the filling and emptying of traps, their effects

tend to saturate with stressing and are mostly recoverable with room-temperature storage [12,21].

This effect has been observed in electrical stressing at room temperature, as well as under high-

temperature storage [211.
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Figure 1-7: Schematic illustration of PHEMT with trapped electrons under gate recombining with
hot holes generated by impact-ionization on drain end of channel (discussed in [12,21]).

1.3.3 Source

In terms of electrical reliability, the source region is of relatively minor concern, since the electric

field in the source-gate region is much smaller than in the drain-gate region under normal biasing

conditions. The main figure of merit here is the source resistance RS, which gives an indication of

the resistivity of the source ohmic contact and of the source-gate access region. In the early days of

HEMT reliability studies, RS (along with RD) was reported to increase significantly under stress,

which was eventually attributed to ohmic contact degradation, as a result of temperature-induced

metal-metal or metal-semiconductor diffusion [15]. However, since then commercial HEMTs have

employed effective barrier layers to prevent this from happening [11]. Thus, in more recent studies,

RS has been reported to either remain unchanged [22] or decrease slightly [12,211 under prolonged

electrical stress. The slight decrease in RS, when observed, has been attributed to thermally-

activated detrapping of electrons in the source-gate access region [21], and has been generally found

to be recoverable. However, significant permanent changes in RS (reductions of almost 10%) have

also been observed [17], and despite its association with an increase in sheet carrier concentration

on the source side of the device, the details of the underlying mechanism are unclear.
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1.4 Thesis goals and outline

The goal of this thesis is to deepen the understanding of fundamental degradation mechanisms

in RF power GaAs PHEMTs. We seek to accomplish this via a systematic investigation of the

degradation of experimental RF power PHEMTs under prolonged electrical stress. By examining

various types of stressing (off-state as well as on-state stressing, nitrogen and hydrogen environments

as well as air), analyzing light-emission, performing materials analysis, and modeling degradation

in these devices, we hope to identify the physical mechanisms responsible for degradation in GaAs

PHEMTs. Once this is done we can then make suggestions for device design that will mitigate

electrical degradation and thus improve reliability.

This thesis will be organized in the following manner. Chapter 2 describes the experimental

stress and measurement setup used to perform electrical stressing experiments on the PHEMTs.

This chapter describes our device characterization suite used to monitor the various device figures

of merit while the device is under stress. The bias stressing scheme used to stress the devices is also

explained. This chapter summarizes the findings previously discovered using this setup (in S.M.

thesis) and concludes with the various issues that need further investigation.

In Chapter 3, we first present the overall results of the bias-stressing experiments, which illus-

trates the main forms of degradation and the unresolved issues in each case. This chapter focuses

on the degradation associated with the drain side of the device, namely the increase of RD and

decrease of Ima. The results of various electrical stressing experiments investigating the effects on

degradation due to environment, bias voltage, bias current, and temperature are discussed. The

time evolution of degradation is also examined and the electrical degradation is correlated with

damage observed via materials analysis (STEM, EDX) of degraded devices. This chapter is con-

cluded with a summary of the findings from these experiments and proposed mechanisms for the

degradation.

Chapter 4 discusses the mechanisms behind two independent forms of degradation associated

with the gate and source side of the device, namely the negative shift in VT and the decrease in

Rs. For each case, the time evolution of the degradation and its dependences on environment,
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electric field, impact-ionization, and temperature are all investigated, and a proposed mechanism

is presented.

Chapter 5 contains a description of our light-emission experiments performed on the PHEMTs,

done in order to obtain a spatial picture of carrier recombination and electric field under stressing.

The experimental setup and the overall results from these light-emission experiments are described.

This chapter also contains materials analyses of devices that explain the origin of the light-emission

pattern observed. This chapter concludes with a summary of the findings from the light emission

experiments and corresponding analyses, which makes a correlation between device geometry and

light-emission behavior and the mentions the possible consequences for device reliability.

Finally, in Chapter 6, the conclusions of this work are presented with all the degradation

mechanisms identified in this study. The results of our findings are compared and contrasted

with observations reported in the literature. This section also contains some suggestions for the

suppression of these degradation mechanisms.
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Chapter 2

Experimental

2.1 Device Technology

We will start by describing the devices that are studied in this research. A schematic cross-section of

the PHEMTs under study is shown in Fig. 2-1. These PHEMTs are non-commercial, experimental

devices that were designed and fabricated by Mitsubishi Electric. The active channel is made of

InGaAs, which is sandwiched between two thick layers of undoped AlGaAs. Within each intrinsic

AlGaAs layer, there is a thin heavily-doped AlGaAs electron supply layer, which provides the

carriers in the channel. The device has a double-recessed T-gate structure of length L9 = 0.25 pm.

Lr, and Lrd both range from 0.2 pm to 0.9 pm. However, the main type of device studied (referred

to as a "standard-parameter" device) has L, = 0.4 pm and Lrd = 0.5 pm. The various gate widths

of the devices studied are Wg = 40 pm (2 fingers of 20 pm each), W = 100 pm (2 fingers of 50 pm

each), and Wg = 160 pm (4 fingers of 40 pm each). Single-gate-finger devices of Wg = 50 pm were

also available.

A typical virgin device has a current-gain cutoff frequency fT around 40-50 GHz. For a standard-

parameter device, a typical value for the drain resistance RD is 0.7 Q-mm, while a typical source

resistance Rs is around 0.6 Q-mm. The threshold voltage VT typically ranges from -0.6 to -0.7 V,

and the drain current at VGS = 0 V and VDS = 1.2 V is ID,, =200 mA/mm. The drain current near

the knee voltage (usually known as Imax in PHEMT power applications) is measured at VGS = 0.8 V
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Figure 2-1: Schematic cross-section of GaAs PHEMT under study. Lr and Ld are the distances

between the center of the gate to the edge of the n+ GaAs cap on the source side and on the drain

side, respectively.

and VDS = 1.0 V and is typically Imax = 470 mA/mm. The off-state breakdown voltage BVDGoff

ranges from 12 to 16 V.

2.2 Stress and Measurement Setup

To investigate the degradation of these PHEMTs we employed a specially-designed stress and

measurement setup, which had been developed in [23]. This setup employed an automated bias-

stressing program (written in HP VEE) which allowed us to stress a device under a variety of

conditions, while monitoring its key figures of merit. By this means we were able to evaluate device

performance during electrical stress degradation.

2.2.1 Experimental Setup

The device under test is probed on a Cascade Microtech probe station, using Picoprobe GSG 150 prm

microwave probes. A chamber encloses the chuck and test area containing the probes and the

sample, which provides shielding from light and allows gases (such as nitrogen and forming gas) to be

pumped into the chamber. The 8-inch chuck is connected to a Temptronix TP03000A temperature-

40



2.2. Stress and Measurement Setup

BUm-in

Characterization

Stressing

Figure 2-2: Flowchart illustrating the in-situ characterization of the device in a bias-stressing
experiment.

controller, which allows us to set the ambient temperature of the stressing environment. A Windows

PC running HP VEE controls an HP4155A Semiconductor Parameter Analyzer, which is used to

electrically stress the device as well as characterize it.

Once this entire setup is in place, the stressing program is first calibrated to factor out external

series resistance of the system in its measurements. After the probes are placed on the device, the

device undergoes a one-time burn-in measurement (described in Section 2.3.3 of [23]) in order to

quickly exhaust any initial fast transients that typically occur with repeated measurements on a

new device. Once the burn-in is completed, the bias-stressing program is executed, which stresses

the device for extended periods of time, while characterizing the device at frequent intervals. This

flow of events is shown schematically in Fig. 2-2.

2.2.2 Device Characterization

The device under test is characterized by means of a comprehensive device characterization suite.

The measurements in this suite are careful to implement relatively low voltages and currents, so

that the characterization suite itself does not introduce any degradation to the device [23]. The
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Figure 2-3: Output characteristics of a standard-parameter, virgin PHEMT. W. = 160pm. Mea-

surements taken at room temperature. Red point indicates where Imax is measured (VGS = 0.8 V,
VDS = 1.0 V), green point indicates where ID, is measured (VGS = 1.0 V, VDS = 1.2 V).

characterization suite obtains the output, transfer, and subthreshold characteristics of the device

under test, in addition to extracting several key parameters (including source and drain resistances,

maximum drain current, threshold voltage, and off-state breakdown voltage). The specifics of all

the individual measurements performed in the suite are detailed in [23]. Fig. 2-3 shows a typical set

of output characteristics for a virgin PHEMT, taken at room temperature, with the measurements

for IDs, and Imax indicated on the plot. Fig. 2-4 shows a set of transfer characteristics taken on the

same device. The subthreshold characteristics are shown in Fig. 2-5. For the measurement of off-

state breakdown voltage, BVDG,Off, the drain-current injection technique, as described in [24], was

used. A small positive current is injected into the drain, while VGS is swept from zero to negative

bias. BVDG,Off is then measured as the drain-to-gate voltage corresponding to the maximum VDS

(see Fig. 2-6).
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Figure 2-4: Transfer characteristics of a standard-parameter, virgin
surements taken at room temperature.

1.OE+03 -

1.OE+02 -

1.OE+01 -

S1.OE+00 -

E 1.OE-01 -

-" I.OE-02 -

1.OE-03 -

1.OE-04

1.OE-05
-1.5 -1.0 -0.5

VD VJ

PHEMT. W = 160pim. Mea-

0.0

Figure 2-5: Semi-log plot of subthreshold characteristics of a standard-parameter, virgin PHEMT.
Wg = 160pm. Measurements taken at room temperature.
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Figure 2-6: Measurement of the off-state breakdown voltage of a standard-parameter, virgin
PHEMT, using the drain-current injection technique [24]. BVDG,Off is measured as the VDG cor-
responding to maximum VDS. Wg = 160pm. Measurements taken at room temperature.

44



2.2. Stress and Measurement Setup

2.2.3 Electrical Stressing Methodology

Since previous research [5, 6, 12, 25] has linked impact ionization with electrical degradation in

HEMTs, we wanted to choose a bias stressing scheme that, to the first order, should keep the

impact-ionization rate constant. As described in [26], the impact-ionization current in a HEMT

has been found to exhibit the following dependence on the biasing conditions:

--B
Iii = AID exp D B (2.1)

VDGo + VT

where A and B are constants depending on the extent of high-field region and device design, and

VDGo is the intrinsic drain-to-gate voltage drop (excludes external resistance such as RD). Thus

keeping impact-ionization constant would require keeping the stressing drain current ID constant

and VDGo + VT constant. This type of stressing scheme is optimal also because it keeps the intrinsic

stressing conditions imposed on a device relatively immune to variations in VT and RD. If instead

the applied bias voltages were kept constant during stressing (i.e. a stressing scheme of constant

VGS and constant VDS) then the resulting stressing current ID and intrinsic gate-drain stressing

voltage (VDGo) would change significantly upon any changes in VT and RD during the experiment.

A stressing scheme of constant ID and constant VDGO ± VT would thus result in more uniform

intrinsic stressing conditions throughout an experiment, as shown in [27].

In many experiments, in order to enhance the experimental productivity and/or to observe the

effects of various bias levels, VDGo ± VT is stepped up in regular time intervals. A graph of such

a step-stressing experiment is shown in Fig. 2-7. This figure shows the behavior of the source and

drain resistances, RS and RD, during a typical step-stressing experiment. The left vertical axis

shows the normalized values of Rs and RD, while the right vertical axis shows the bias stressing

voltage VDGo ± VT. As one can see, such a stressing experiment lets us observe the dynamic effects

of bias on each key device parameter. Note that the stressing conditions here (and in most of our

stressing experiments) are quite aggressive; usually, bias currents close to 'max (nearly triple the

typical operating ID) and high bias voltages were implemented in our experiments. Such conditions

were chosen in order to be able to observe device degradation in a reasonable time frame.
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Figure 2-7: Time evolution of RD and Rs for a typical a step-stressing experiment. Performed on

a W = 100 pm standard-parameter device in an air environment.

2.3 Previous Findings

In [23], we conducted an initial set of electrical stressing experiments on these PHEMTs and also

on special test structures (Transmission-Line Model structures, or TLMs). A TLM has essentially

the same structure as a PHEMT, but without a gate. Being less complicated than the PHEMTs,

but having similar structure, the TLMs were useful devices in studying degradation. From our

experiments on both TLMs and PHEMTs, we identified three main forms of degradation associated

with the three regions of the PHEMT: the source, the gate, and the drain (see Fig. 2-8). We

observed a decrease in Rs, a negative shift in VT, and an increase in RD (and a correlated decrease

in Imax). The decrease in Rs was found to be associated with a permanent increase in sheet carrier

concentration on the source side. The negative shift in VT was attributed to charge modulation

occurring under the gate (likely electron de-trapping). The increase in RD and drop in Imax was

attributed to a decrease in sheet carrier concentration on the drain side, and also to drain contact

degradation.
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- accelerated in air, permanent

Rs40- permanent RD+ ' -+ Rc
? n+ m =>:: ,surface =- contact

?max reaction degradation
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- independent of environment
VT4" - recoverable
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Figure 2-8: A schematic of the top layers of a GaAs PHEMT, illustrated the three main modes of

degradation that were identified in S.M. thesis [23].

2.4 Summary

In this chapter we have described the GaAs PHEMT devices under study as well as the stress and

measurement setup implemented to monitor their degradation. This setup is effective for in situ

observation of device degradation during electrical stressing. From our initial experiments utilizing

this setup, we were able to obtain a general idea of the main forms of degradation present in these

devices. However, the specifics of the underlying mechanisms still remained unclear. In order

to pinpoint the specific mechanisms behind the observed degradation, we have performed a more

thorough investigation of each form of degradation. The results of these experiments and analyses

are discussed next.
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Chapter 3

RD and Imax Degradation of PHEMTs

This chapter describes the degradation of RD and Imax observed in our electrical stressing experi-

ments on experimental RF power GaAs PHEMTs. The general results are first presented, followed

by more specific results pertaining to various additional experiments performed in order to uncover

the mechanism(s) behind this degradation.

3.1 Overall Results of Stressing Experiments

3.1.1 General Observations

Fig. 3-1 and Fig. 3-2 show the overall results of a typical on-state degradation experiment performed

on a W 9 = 100pm standard-parameter device (Lrd = 0.5pm, Lrs = 0.4pm). Fig. 3-1 shows how

during the stressing, RD increases while RS decreases and saturates. Fig. 3-2(a) shows how the

stressing also causes a negative shift in VT. This shift thus causes an increase in IDs, and Imax.

However, under prolonged stressing eventually Imax begins to decrease (see Fig. 3-2(b)). This

and other experiments discussed in [23 indicated that RD and Imax were both correlated with

degradation on the drain region. Eventually catastrophic breakdown (burnout) occurs in the device

after several hours of stressing, when the bias voltages become very high (corresponding to a VDS of

8-9 V). Typically, the only sign of impending burnout is a dramatic drop in the off-state breakdown

voltage immediately before (shown in Fig. 3-3).
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Figure 3-1: (a) Time evolution of normalized RD (a) and RS (b), for voltage step-stress experiment
performed on standard-parameter PHEMT in air environment, at room temperature. Wg = 100im.
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Figure 3-3: Time evolution of normalized BVDGOff for voltage step-stress experiment performed

on standard-parameter PHEMT in air environment, at room temperature. W = 100pm.

3.1.2 Observation of Impact Ionization

As mentioned in Section 2.2, it is suspected that impact ionization and hot-electron effects play

some role in the drain degradation of PHEMTs [5,6,12,25]. So in addition to the usual device

characterization, separate measurements were also performed to try to observe impact ionization

in the devices studied. Under high biases, the PHEMTs indeed showed various indications of

impact ionization. Previous measurements of gate current IG vs. VGs at high values of VDS exhibit

a bell-shaped curve [23], which is a classic signature of impact ionization [28]. To confirm that

this observed behavior indicated impact-ionization (and not another high-field process, such as

thermionic field emission) we also investigated the temperature dependence of this phenomenon.

Fig. 3-4 shows the IG vs. VGS curves at VDS of 6.0 V, measured at 25'C, 50'C, and 75*C. Although

all temperatures exhibit a bell-shaped curve, the magnitude of the gate current decreases for higher

temperatures, which is consistent with impact ionization (and not with thermionic field emission,

which has a positive temperature dependence).

In addition to these measurements, output characteristics at certain values of VGS were also

measured at various temperatures. By measuring both the drain and gate current vs. VDS at
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Figure 3-4: IG vs. VGS for an unstressed standard-parameter PHEMT, taken at 25, 50 and 75'C

in N 2 , for VDS = 6.0 V. W = 10Opm.
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Figure 3-5: Plot of ID vs. VDS (a) and semi-log plot of |IG/ID I vs. l/(VDGo ± VT) (b), for a set of

measurements taken at VGS= 0.3 V, at 25, 50, and 75*C in N 2 , on standard-parameter PHEMT.

Wg = 100pm.
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constant VGS, a plot of the normalized gate current I IDIII versus 1/(VDGO ± VT) could be created.

This is shown in Fig. 3-5. As one can see from the right graph, the behavior at high VDGO ± VT

(VDGO + VT > 4 V) clearly indicates impact ionization (refer to Eq. 2.1 for dependence of impact

ionization on VDGO + VT). For low VDGo + VT, the level of impact-ionization is so small that IG is

dominated by the reverse leakage current of the gate-drain Schottky junction [29].

From these graphs one can see that in order to observe reasonable levels of impact ionization, it

is necessary to perform measurements at high voltages (VDS > 5 V). Because of this, we could not

incorporate such measurements in our regular characterization suite, since doing so could potentially

introduce significant degradation in the device. However, this degradation could be minimized if the

high-voltage measurements were performed at only a few instances during a stressing experiment.

Thus, during select experiments, these high-voltage measurements were performed at occasional

time points throughout electrical stressing. Fig. 3-6 shows RD and Imax degradation during such

a step-stressing experiment, along with a plot of IIG/IDI vs. l/(VDGo + VT) for a few time points

during this experiment. As one can see, here impact ionization decreases consistently as time goes

on and the device degrades. This could be due to the reduction of the maximum electric field

between the gate and drain, as a result of the increase in RD [12,30]. It can also be due to the

decrease in Imax, which suggests lower sheet carrier concentration n, on the extrinsic drain, which

would tend to increase BVDGOff [31]. But then this seems to be inconsistent with the decrease in

BVDGOff that is observed with electrical stressing. This brought forth an issue that required some

further investigation, and will be discussed later on in this chapter.
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Observations in TLMs Correlation with PHEMTs
Regime 1: n, T on source, Initially RS 4,
insensitive to H 2 0/0 2  insensitive to H20/02
Regime 2: RC T on drain, RD T,

accelerated in air accelerated in air
Regime 3: n, I on drain, RD T, Imax t,

accelerated in air accelerated in air
all degradation accelerated all degradation accelerated
with temperature with temperature

Table 3.1: General forms of degradation observed in TLMs, and their correlation with observed
behavior in PHEMTs.

3.1.3 Mechanisms behind ARD and Almax

As discussed in [17,23], in order to obtain a simple, clearer picture of the various degradation mech-

anisms in the PHEMTs, electrical stressing experiments were also performed on TLM structures.

The observations from these experiments helped us clarify what was happening on the drain side

in the PHEMTs. The general forms of degradation observed in the TLMs and their correlation to

PHEMTs are summarized in Table 3.1. These findings suggested that the increase RD was due

to degradation of the drain ohmic contact, followed by a decrease in sheet carrier concentration

n, on the drain side. The decrease Imax is correlated with the decrease in n, on the drain side.

As these forms of drain degradation were both accelerated with temperature and in air, all these

findings were consistent with some kind of chemical reaction on the drain side (possibly corrosion

happening on the surface of the drain-gate region, as described in [7]).

However, there were still some unanswered questions surrounding this theory of degradation.

Did the corrosion reaction require a significant drain current, or just a high-electric field? In

order to determine if the degradation could be induced by just an electric field itself (without any

significant drain current), it was necessary to perform off-state stressing experiments as well. Also,

if oxygen or moisture was required for the corrosion reaction, it was unclear why some RD and

Imax degradation could still be observed while stressing in nitrogen environment, as seen in [23].

Thus we needed to take a closer look at the drain degradation in air vs. nitrogen, in both off-state
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and on-state stressing experiments. Also, we needed to obtain a quantitative measurement of the

temperature dependence of the degradation. And of course, we wanted to obtain direct evidence

of the suspected corrosion layer in degraded devices (by means of materials analysis).

3.2 Off-State Stressing

Initially, all of our previous stressing experiments were done in the on-state, where the drain current

was quite high (ID > 400 mA/mm). This was done in order to accelerate device degradation, so

that changes in parameters could be observed in a reasonable time frame. However, the main issue

with this type of stressing is the fact that the channel temperature is dependent on the biasing

conditions. Thus it is difficult to isolate the effects of higher voltage or current biases from the

effects of increasing channel temperature. One way around this is to perform stressing experiments

in the off-state condition, in which the drain-gate bias is very high, but VGS - VT such that

the drain current is very small. In this case, the dissipated power causes a negligible increase in

channel temperature, and thus the channel temperature will remain more or less at the ambient

temperature, regardless of any increase in bias voltage.

Our typical off-state experiments employed a stressing current of ID = 10 mA/mm and VDGO +

VT starting from 10 V and stepping up 0.2 V every 50 minutes, up to 15 V. Fig. 3-7 illustrates

the time evolution of RD and Imax during such an experiment, which was done at Tamb = 75*C

in air. From the left graph, one can observe a small but significant increase in RD. From the

right graph, one can observe a very significant decrease in Imax. Fig. 3-8(a) illustrates the transfer

characteristics and before and after stressing, showing a significant reduction in 9mpeak while no

major shift in VT. Fig. 3-8(b) shows the output characteristics before and after stressing, clearly

illustrating the dramatic effect of the degradation on drain current. From these experiments it is

quite clear than the mechanism behind RD and Imax degradation does not need significant drain

current to occur, as long as there is a large enough electric field between the gate and the drain.
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Figure 3-7: Time evolution of normalized RD (a) and 'max (b), for off-state experiment performed
on standard-parameter PHEMT at Tamb = 75*C in air. Wg = 100/m.

450-
400-
350-

E 300
250

E 200

E 150
100

50-
0
-0

Sgm, t=-1300 -
-- ID, t-O -

ID, t=1300-

Vos=1.2 V -

.8

-450
-400
-350
300j'
250 E
200 E
150.2

-100

-50
-0

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
VGS [V]

(a)

E

E.;t

350 -

300 -

250 -

200 -

150 -

100 -

50 -

0*

VGs=-0.6 to +0.4
0.2 V ste

before--
after

0.0 1.0 2.0 3.0

V05 [V]

(b)
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3.3 Effect of Environment

3.3.1 Off-State Stressing

In order to study the effects of the environment, we also performed off-state stressing experiments

in nitrogen. Fig. 3-9 shows the time evolution of RD and Imax for identical off-state stressing

experiments done in air and in nitrogen at ambient temperature of 75*C. As one can see, the

stressing environment does not make a difference here; the device stressed in nitrogen exhibits

essentially the same amount of RD and Imax degradation as in air. This suggests that if the

degradation observed here is due to corrosion, then the oxygen or moisture for the reaction must

be being obtained from a source other than the environment (possibly from the silicon dioxide

passivation layer).

1.10 = 10 mA/mm 1.05 15.0

108 T=75*C VD,+VT 14.0 -- 14.5
1+14.0 1.00 14.0

1.046 -r - 13.5 ( 0.95-N 12.5
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1.00- 11.0 11.11.5 .8 - air -- 11.5
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Figure 3-9: Time evolution of normalized RD (a) and Imx (b), for off-state step-stress experiments

performed on standard-parameter PHEMTs in air & nitrogen environments at Tamb = 75*C. ID =

10 mA/mm. Wg = 100pm.

However, when the same experiments were performed at higher temperature, the degradation

under nitrogen was quite different from that in air. Fig. 3-10 shows the time evolution of RD

and Imax for identical off-state stressing experiments done in air and in nitrogen, at an ambient

temperature of 125'C. As one can see, the stressing environment makes a considerable difference

here; the device stressed in nitrogen exhibits only negligible degradation of RD and Imx.
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Figure 3-10: Time evolution of normalized RD (a) and Imax (b), for off-state step-stress experiments

performed on standard-parameter PHEMTs in air & nitrogen environments at Tamb = 125*C.

Wg = 100upm.

This behavior was initially quite puzzling, since at ambient temperatures just 50'C lower,

the environment had no noticeable impact whatsoever on the degradation. It was soon discovered,

however, that in our experiments where high ambient temperatures are employed (125*C or higher),

the mere heating of the device introduces a significant effect on device degradation. Namely, heating

tends to impede subsequent degradation. Heating in nitrogen was more effective in preventing

degradation than heating in air. This explains the difference in degradation observed in Fig. 3-10.

This effect will be discussed in further detail in Sec. 3.4.

3.3.2 On-State Stressing

In our on-state stressing experiments, despite significant degradation on the drain (as evidenced by

an increase in RD) it is sometimes difficult to observe a significant decrease in Imax, partially because

Imax is also affected by the negative shift in VT, which tends to increase Imax (refer to Fig. 3-2(b)).

Thus, in order to adequately compare the degradation of RD and Imax in different environments,

a set of on-state experiments employing a very high level of stressing current (ID= 450 mA/mm)

was performed, so that a clear decrease in Imax as well as an increase in RD could be observed in

both cases. Fig. 3-11 shows the results of these experiments. As one can see, the relative increase
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of RD and decrease of 'max are both reduced by about 1/3 by stressing in nitrogen instead of air.

This suggests that oxygen and moisture in the air play a significant role in the drain degradation

here, and thus supports the presence of an oxidation mechanism. However, the fact that here

the degradation is not completely suppressed by stressing in nitrogen suggests that either (1) the

corrosion reaction is somehow able to proceed without oxygen and/or moisture from the air, or

(2) there is a separate, environment-independent mechanism occurring that is contributing to the

degradation of RD and Ima* In the first case, it could be that the oxygen is being somehow

obtained from the silicon dioxide passivation layer. Additional experiments discussed later in this

chapter will shed some light on this issue.

1.60 7.0 35 7.0
10 450 mA/mm 30 = 450 mAmm

1.50-- -6.8 30 - - 6.8

1.40-- 25

2 13 -- air - -6.6 air -- 6.6
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Figure 3-11: Time evolution of normalized RD (a) and Imax (b), for voltage step-stress experi-

ments performed on standard-parameter PHEMTs in air & nitrogen environments, at Tamb = 25*.

Wg = 100Am.

3.4 Annealing Effect

During the course of performing various off-stressing experiments, it was discovered that simply

heating the devices at high temperatures had significant effects on their subsequent degradation.

After unbiased high-temperature storage for a period of time, devices would exhibit less degradation

of RD and 'max upon electrical stressing. An example of this is illustrated in Fig. 3-12, which
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Figure 3-12: Time evolution of normalized RD during on-state stressing experiments performed

with ID = 400 mA/mm, VDGo + VT = 6 V at Tamb = 25*C. Devices shown in magenta were heated

prior to stressing. Heating was done for 48 hours at 175*C in air.

shows the time evolution of RD for a number of devices stressed in the on-state condition at

ID = 400 mA/mm, VDGo ± VT = 6 V at room temperature. Devices stressed in air without any

prior heating are shown in dark blue, where the devices stressed in air but which were heated in air

(at Tamb = 175'C for 48 hours) prior to stressing are shown in magenta. Although there is some

variation among the devices tested, it is clear that the heating prior to stressing had the effect of

inhibiting the degradation. It is interesting to note that heated devices stressed in air have about

the same level of degradation as an unheated device stressed in nitrogen. This suggests that the

heating prior to stressing somehow prevents oxygen/moisture from the environment from reaching

the semiconductor surface and reacting to form the corrosion layer. The heating could be somehow

making the silicon dioxide passivation layer more impermeable to oxygen and water from the air,

either by annealing out defects in the passivation (hindering impurity diffusion?) or densifying the

passivation.

This effect of heating can also be seen during our electrical stressing experiments, in which

high ambient temperatures are employed. Fig. 3-13 shows the time evolution of RD and Imax for a
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Chapter 3. RD & Imax Degradation

series of off-state step-stressing experiments performed at ambient temperatures from 75 to 150 C

in nitrogen. In Fig. 3-13(a), we can see that for the first 50 minutes of stressing, there is an increase

in RD for all temperatures. However, for the devices stressed at 125 and 150*C, there is no further

degradation upon further stressing. A similar phenomenon is happening with the Imax degradation

shown in Fig. 3-13(b). Initially, a reduction in Imax is observed for all temperatures; however,

after about an hour of stressing, for the devices stressed at 125 and 150'C, the decrease in Imax

"saturates" and no further degradation is observed, despite the increasing bias.
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Figure 3-13: Time evolution of normalized RD (a) and I,.a (b), for off-state step-stress experiments

performed on standard-parameter PHEMTs in nitrogen environment at Tamb = 75, 100, 125, 150*C.

Wg = 100 pm.

These observations thus suggest that for ambient temperatures above 125*C, heating begins

to have a significant effect on the devices under test by making them less susceptible to degrada-

tion. This effect seems more pronounced if the heating is done in a nitrogen environment, as the

degradation of RD and Imax become completely suppressed in this case. This can thus explain

the discrepancy seen in the effects of the environment in the off-state experiments discussed in

Sec. 3.3.1. Recall that in Fig. 3-10, where devices were stressed in the off-state at Tamb = 125*C,

the degradation of RD and Imax seemed to be completely suppressed when stressed in nitrogen.

However, the degradation observed in identical experiments stressed at 75*C yielded no difference

between stressing in air and nitrogen. Now we can see that this is because at 125*C, the high
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temperature over time was making the devices less susceptible to degradation. Although both

devices were getting heated, the one heated in nitrogen became more impervious to degradation.

This makes sense, as heating a device in nitrogen could not potentially introduce any additional

oxygen or moisture to the device. This suggests that the effect of heating is to drive out residual

oxygen/moisture from the surface, thus preventing corrosion from taking place.

3.5 Effect of Temperature

In [23] we observed that in the stressing experiments on the TLMs, all main forms of degradation

were accelerated with increasing ambient temperature. Since then, analogous stressing experiments

have been performed on the PHEMTs and similar tendencies have been observed (RD and Imax

degradation accelerated with temperature).

3.5.1 Estimating Channel Temperature

In order to accurately analyze the temperature dependence of the degradation, the actual channel

temperature of the device under stress must be known. Due to the high currents and voltages

employed in typical electrical stressing experiments, a significant amount of heat is dissipated

by the device, thus causing the channel temperature to be significantly higher than the ambient

temperature. Thus it is important to consider this channel temperature (rather than the ambient

temperature) in the analysis of the temperature dependence of any type of degradation.

To determine the actual channel temperature of a device (Teh) while it is being it stressed at a

specific biasing condition and ambient temperature (Tamb), we use the following equations:

Tch = Tamb + Pdis8 Oje (3.1)

where

Pdiss = VGSIG ± VDSID (3.2)

The thermal resistance of the device Ojc (in *C/W) is estimated by comparing DC I-V charac-
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teristics with pulsed characteristics, as described in the Appendix. At room temperature, for a

standard-parameter device of Wg = 160pm, Ojc was extracted to be 241*C/W. This agrees well

with calculations done using the Cooke method (also described in Appendix), which give 254*C/W

for a Wg = 160pm device. However one must note that since the thermal conductivity decreases

with temperature, 0j, will increase with temperature [32]. So to obtain the most accurate estimate

for 0j, one must take into account the ambient temperature and the power dissipation during each

particular stressing experiment. Also, it should be noted that Ojc depends on the device width

(narrower devices will have a larger thermal resistance). This is further discussed in the Appendix.

Using the thermal resistance, we can now estimate how much the temperature increases during

a typical on-state stressing experiment. For a standard W9 = 160 Am device at room temperature

under ID = 400 mA/mm and VDGo + VT = 6.0 V, VDS is about 7.4 V, and the actual drain current

ID is 64 mA. Both IG and VGS are much smaller than ID and VDS, so we can ignore the second term

and just say that Pdis, = IDVDS, which gives a power dissipation of about 0.47 W. This results in

a channel temperature increase of 150*C above the ambient temperature. The thermal resistance

here is about 310*C/W, which is a significant increase from the value at room temperature.

From this analysis we can easily see that any increase in bias will lead to an increase in channel

temperature. Consequently, during an on-state step-stressing experiment, the channel temperature

is not constant, making it difficult to separate the effects of bias and temperature on degradation.

Thus, we decided to perform additional stressing experiments at various temperatures, in which

the channel temperature is held more or less constant throughout each experiment. These consist

of off-state step-stressing experiments (where Tamb = Teh regardless of bias voltage, since there is

little power dissipation), or on-state stressing experiments at constant bias voltages (no stepping).

3.5.2 Off-State Stressing

We will first examine the temperature dependence of the degradation in the off-state condition. We

performed a series of off-state step-stressing experiments done over a wide range of temperatures

(25'-175*C) in air. Fig. 3-14 and Fig. 3-15 show the degradation of RD and Imax, respectively,

for these experiments. Since different behaviors were observed for low and high temperatures, the

64



3.5. Effect of Temperature

results are split up into two groups: data from 25-75*C, and 100-175'C.
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Figure 3-14: Time evolution of normalized RD for off-state step-stressing experiments performed
on standard-parameter PHEMTs in air environments, for Tmb = 25, 50, 75*C (a) and Tmb = 100,
150, 175*C (b). ID = 10 mA/mm. Wg = 100im.

First, looking at the behavior of RD, one can note that the degradation is relatively non-

existent below 50 C. Overall, the RD degradation appears to increase slightly with temperature,

for the entire range of temperatures. However, the behavior of Imax is somewhat different. In these

experiments, the reduction of Im-x has a different dependence on temperature for low temperatures

and high temperatures. For 25-75'C, the Imax degradation increases with increasing temperature,

thus exhibiting a positive temperature dependence. In contrast, for 100-175*C, the degradation

has a negative temperature dependence.

First of all, from the discussion in Sec. 3.4, we know that with storage at high ambient tem-

peratures the devices tend to become less prone to degradation. So this explains the negative

temperature dependence of the Imax degradation observed above 100 C; as the devices are heated

more, the stronger the "annealing effect" and the more impervious they become to degradation.

Because of the presence of this effect in experiments done at high temperatures, we should focus on

the behavior at lower temperatures in studying the temperature dependence of the degradation. In

this case, the Imax degradation exhibits a positive temperature dependence, which indicates that

the degradation could be limited by the oxidation reaction rate.
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Figure 3-15: Time evolution of normalized Imx for off-state step-stressing experiments performed

on standard-parameter PHEMTs in air environments, for Tamb = 25, 50, 75*C (a) and Tamb = 100,

150, 175*C (b). ID = 10 mA/mm. Wg = 100pm.

Fig. 3-16 shows an Arrhenius plot of the change in Imax in these experiments. Here one can

see that the best fit to the data points corresponds to an activation energy of Ea = 0.32 eV. This

activation energy likely represents that of the corrosion reaction rate under these conditions.

To assess the accuracy of this extracted activation energy, we examined the possible variation

of Ea due to uncertainties in the experimental data. The main contributor to changes in Ea

was the variation in the relative amount of degradation observed. Although all devices tested

are nominally identical, due to process variations the amount of degradation observed for a given

stressing condition will vary slightly from device to device, thus introducing some uncertainty. In

the off-state experiments we determined that the uncertainty in %Imax degradation was about 10%.

This was used to construct the error bars shown along with the data in Fig. 3-16. From this it was

determined that the extracted value of 0.32 eV is accurate to ±0.04 eV.
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Figure 3-16: Arrhenius plot of percent decrease in Imax after 600 minutes of stressing for off-state
step-stressing experiments performed on standard-parameter PHEMTs in air environments, for
Tamb = 25, 50, 75*C . ID = 10 mA/mm, Wg = 100ptm.
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Chapter 3. RD & Imax Degradation

3.5.3 On-State Stressing

We performed on-state stressing experiments with constant bias voltage, at various ambient temper-

atures. Fig. 3-17 shows the time evolution of RD and Imax for devices stressed at VDGo + VT = 6.0 V

under various temperatures, in a nitrogen environment. From this one can clearly see that even

small increases in temperature have a drastic effect on the degradation of both RD and Imax.
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Figure 3-17: Time evolution of normalized RD (a) and change in I,. (b), for constant VDGo + VT

and constant ID experiments performed on standard-parameter PHEMTs in nitrogen environments,

at Ta = 25, 30, 35, 40, and 50'C. W9 = 160Mm.

It is clear from these graphs that in the on-state condition, the degradation of RD and Imax

have a very strong positive temperature dependence. But to analyze this dependence accurately, it

is important to consider the actual channel temperature in each case. As discussed in Sec. 3.5.1, the

channel temperature is determined by device power dissipation as well as the ambient temperature.

Thus we must acknowledge that other factors that affect power dissipation (such as stressing current,

device width) can affect the channel temperature. Fig. 3-18(a) illustrates the effect of stressing

current on RD degradation. Fig. 3-18(b) illustrates the effect of device width on RD degradation.

These graphs illustrate that as ID or W9 increase, the RD degradation increases. This makes sense,

as either increasing ID or W9 will cause the device to heat up more.

Acknowledging the effect on ID on Teh then raises the possibility that the effect of increasing

stressing current on degradation is only because of the resulting increase in channel temperature.

To look further into this, we then investigated a set of similar stressing experiments where VDGO±,VT

- -- --- ------
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Figure 3-18: Time evolution of normalized RD for constant VDGO + VT and constant ID experiments
performed on standard-parameter PHEMTs in air environment at Ta = 25*C, for varying stressing
currents (a) and varying widths (b).

and ID where held constant, but instead of varying Tmb as in Fig. 3-17, the stressing ID was varied

slightly, from 390 mA/mm to 420 mA/mm. Fig. 3-19 shows the time evolution RD and Imax for

these experiments. First of all, one can see that changing the stressing current also has a very

strong effect on the RD degradation; for example, just a 5% increase in ID (400 mA/mm to 420

mA/mm) essentially doubles the increase in RD. The effect on I,,x appears to be much less,

and is difficult to observe due to the relatively small amount of degradation and the simultaneous

presence of the negative VT shift. As for the strong effect on RD degradation, instead of simply

assigning this effect to the increased current itself, we first calculate the channel temperatures in

each of these experiments and those in Fig. 3-17 and compare them. Specifically, we will examine

devices stressed under different ID and different Ta, but with similar Tch. If the level of degradation

observed in these devices is the same, then we can conclude that the effects of varying the stressing

ID (at least, over a moderate range) is indeed only due to the change in Teh.

Table 3.2 shows the values of TM calculated for all of the experiments in Fig. 3-17 and Fig. 3-19.

The two experiments shown in bold (one stressed at ID = 420 mA/mm and Tamb = 25*C, the other

with ID = 400 mA/mm and Tamb = 35*C) have very similar channel temperatures (Teh ; 190*C),

so we will examine the degradation in those cases. Fig. 3-20 shows the RD and Imax degradation
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Figure 3-19: Time evolution of normalized RD (a) and Imax (b), for constant VDGO + VT and

constant ID experiments performed on standard-parameter PHEMTs in nitrogen environments at

Ta = 25'C, with ID = 390,400,410,420 mA/mm. Wg = 160pm.

of these two experiments, along with a third "nominal" experiment with a much lower channel

temperature, where ID = 400mA/mm and Tamb = 25*C. As one can see, the behavior of RD and

Imax is virtually the same in the two cases with similar Th. So whether ID was increased by 20

mA/mm or Tamb by 10*C from the nominal conditions, both result in increasing Tch by about the

same amount from the nominal case, thus inducing more or less the same amount of degradation.

This hence suggests that, in these devices, Tch is what is really critical for degradation, and not

actually ID itself.

Now to obtain a quantitative sense of the temperature dependence of the degradation, we

sought to create an Arrhenius plot of the degradation rates and extract the activation energies. We

first examine the increase of RD, which was more readily observed that the decrease of Imax. To

represent the degradation rate, 1/r was used, where r was the time required for a 10% increase

of RD. Fig. 3-21 shows the Arrhenius plot containing data points from the eight experiments

summarized in Table 3.2. As one can see, the data points from these experiments fit nicely to

an activation energy of Ea = 1.21 eV. This activation energy represents the strong temperature

dependence of the RD degradation, for this type of device under constant VDGO + VT = 6.OV, in a

nitrogen environment.
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ID [mA/mm] Tamb [C Pdiss[W AT Tch [0 C]
390 25 0.465 144.3 169.3
400 25 0.480 150.3 175.3
410 25 0.495 156.4 181.4

400 30 0.483 154.9 184.9

420 25 0.511 163.0 188.0
400 35 0.482 157.5 192.5
400 40 0.483 161.5 201.5
400 50 0.486 169.8 219.8

Table 3.2: Table showing estimated changes in temperature AT and resulting Teh for constant

VDGO ± VT and constant ID experiments shown in Fig. 3-17 and Fig. 3-19. W = 160pm, nitro-

gen environment. Teh values calculated taking into account temperature dependence of thermal

resistance.
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Figure 3-20: Time evolution of normalized RD (a) and Im.x (b) for three different experiments

of constant VDGO ± VT and constant ID performed on identical standard-parameter PHEMTs in

nitrogen environment. W = 160p.m.
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Figure 3-21: Arrhenius plot of RD degradation rate for series of constant VDGo + VT and constant

ID experiments performed on standard-parameter PHEMTs in nitrogen environment under various

Tamb and stressing ID (same experiments summarized in Table 3.2). Error bars (assuming 20%

uncertainty in measurement of r) indicated by magenta and green lines.

As was done in Sec. 3.5.2 we examined the possible variation of Ea due to uncertainties in the

experimental data. The biggest contributor to changes in Ea was the uncertainty in the values of r.

As mentioned previously, the amount of degradation under given stressing conditions varies slightly,

thus causing variations on r. For our on-state experiments we determined that the uncertainty in -r

was about 20%. This was used to construct the error bars shown along with the data in Fig. 3-21.

From this it was determined that the minimum and maximum values of Ea for this set of data were

1.10 and 1.40 eV, respectively. Thus we can say that the extracted value of 1.21 eV is accurate to

±0.2 eV.

An activation energy was also extracted for the decrease in Imx. To represent the degradation

rate, 1/r was used, where r was the time required for a 1.5% decrease of Imax. Since in these

experiments, relatively little Imax degradation was observed, only the three hottest devices (with

the most reduction in Imax) were used in this analysis. Fig. 3-22 shows the Arrhenius plot containing

these data points. Here one can see that the temperature dependence can be fitted to an activation

energy of Ea = 2.18 ± 0.3 eV. The fact that this activation is much higher than that for RD can

explain why the Imax degradation is not as readily observed under these conditions.
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Figure 3-22: Arrhenius plot of Imax degradation rate for series of constant VDGO ± VT and constant

ID experiments performed on standard-parameter PHEMTs in nitrogen environment under various
Tamb (includes experiments summarized in Table 3.2). Error bars (assuming 20% uncertainty in

measurement of r) indicated by magenta and green lines.
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3.6 Time Evolution of Degradation

In order to obtain better physical understanding of the mechanisms behind the degradation, we

closely examined the time evolution of RD during stressing. We focused on the RD degradation in

the on-state experiments, since in that case RD degradation was more readily observed than Imax

degradation.

We looked at the time evolution of RD in various on-state experiments, and attempted to fit the

data to various mathematical models. For this analysis, the percentage increase from the minimum

value of RD (not the inital value) was examined. This allowed us to factor out the transient

decreases in RD observed in the initial data points and thus make better comparisons between the

relative amount of degradation in the experiments.

Fig. 3-23 shows a log-log plot of the percent increase of RD, for the same set of stressing

experiments observed in Fig. 3-17. From this graph one can see that although the devices have

varying levels of degradation (due the differences in temperature), they all seem to follow the same

general pattern; there seems to be two "regimes" of degradation. For initial stages of degradation

(less than 10% increase in RD), the degradation seems to be more or less linear in time. But then

the degradation slows down, becoming closer to a logarithmic dependence in time. The logarithmic

behavior is better seen in Fig. 3-24, which shows a semi-log plot of the same data with both the

linear and log fits superimposed. As one can see, in each case these fits are very close to the actual

data. Other fits (including power fits, with n ~ 0.6) could also be fitted to the 2nd regime data

reasonably well, but did not seem to fit as well as logarithmic fits, which seemed to better capture

the slowing down of the degradation with longer times.

This dual-regime behavior of the degradation of RD now gives us some insight into the un-

derlying mechanism. In fact, this time dependence observed in the increase in RD (initial linear

behavior, followed by logarithmic) is the same as the dependence observed for oxide growth on

GaAs [33]. Initially, as a GaAs surface is oxidized, the oxide layer is thin so the oxide growth at

the GaAs/oxide interface is simply limited by the reaction rate, thus giving a linear dependence

in time. However, as the oxide layer thickens, the oxide formation then becomes limited by the
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Figure 3-23: Log-log plot of percent increase of RD versus stressing time for series of constant

VDGO + VT = 6.0 V and constant ID = 400 mA/mm experiments performed on standard-parameter

PHEMTs in nitrogen environment at Tamb = 25, 30, 35, 40, and 50'C. (same experiments shown

in Fig. 3-17).
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Figure 3-24: Semi-log plot of percent increase of RD versus stressing time for series of constant

VDGO ± VT and constant ID experiments performed on standard-parameter PHEMTs in nitrogen
environment at Tamb = 25, 30, 35, 40, and 50*C. (same experiments shown in Fig. 3-17) Linear and

logarithmic fits are shown for each set.
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Chapter 3. RD & Imax Degradation

transport of the oxidizing agent (e.g. oxygen or water) to the GaAs/oxide interface [33]. This

transport process has been observed to have a logarithmic dependence by several [33-35].

Physically, a logarithmic growth law is caused by some physical mechanism involving an expo-

nentially decreasing particle current that is limiting the oxide growth [36]. This has been attributed

to several different physical phenomena; one theory is that it is due to constraints on ion diffusion

imposed either by void formation or space charge in the oxide, caused by a large interfacial barrier

which prevents the injection of electrons into the oxide [34]. A growth rate limited by ion diffu-

sion alone would give a square-root dependence in time, so another limiting transport process as

mentioned must be involved to result in a logarithmic growth rate.

So this suggests that the observed increase in RD could be directly related to the growth of

an oxide layer on the semiconductor surface, on the drain side of the device. A possible theory

is that in the initial stages of stressing, an oxide begins to form on the surface, as a result of a

reaction with oxygen/water from the atmosphere and electrons at the surface. At first, the oxide

layer is very thin so the oxide growth rate is linear in time, hence resulting in a linear degradation

of RD. However, eventually the oxide layer becomes thick enough so that further oxide growth is

limited by the arrival of electrons to the GaAs/oxide interface, resulting in a logarithmic growth

rate. Thus, the increase of RD eventually slows down to follow a logarithmic dependence on time.
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3.7 Materials Analysis

The previous section suggested a correlation between the degradation of RD and oxide growth.

In [7], a correlation was found between Imax degradation and the formation of corrosion layer.

However, in order to confirm our theory that corrosion was ultimately responsible for the observed

degradation of RD and Imax , we had STEM and EDX analyses performed on select devices that

were degraded in our stressing experiments. We had these analyses performed on devices degraded

in both air and nitrogen environments, and under off-state and on-state environments, in order to

examine any differences in the form of degradation.

3.7.1 Off-State Stressing

For the materials analysis of off-state degradation, we chose a standard-parameter W. = 100pLm

PHEMT that had been stressed at Tamb=75*C in air (same device stressed in Fig. 3-7). ID was

kept constant at 10 mA/mm, and VDGO + VT was stepped from 10 to 15 V in regular intervals.

Since under these conditions, devices stressed in nitrogen exhibited the same degradation as in air,

only one sample (the device stressed in air) was sent in for analysis. The time evolution of the

degradation of RD and Imax for this device can be seen in Fig. 3-7 in Sec. 3.2. Note that although

there is less than a 10% increase in RD, Imax is reduced by more than 20%.

Fig. 3-25 shows the STEM device cross-section of the degraded PHEMT. One can clearly see

that there is damage on the AlGaAs surface, as indicated by the red circle. There is also some

damage on the n-GaAs and n+GaAs ledges, on both the source and drain sides, but it appears

to be relatively minor compared to that on the AlGaAs. The damage on the AlGaAs can be seen

more clearly in Fig. 3-26, which zeroes in on the gate and the surrounding inner recess. As one can

see, the damage on the AlGaAs is only on the drain side.

To confirm that the damage observed on the AlGaAs is due to corrosion, EDX analysis was

performed to determine the composition of the damaged region. Fig. 3-27 shows the EDX data

of a selected area of the damaged region (indicated by inset image). This shows that there is a

significant amount of oxygen present, among Ga, As, and Al. Thus this indicates that the damaged

77



Chapter 3. RD & I,. Degradation

EAG HD2300 200kV x0k ZC 300**m

Figure 3-25: STEM image of device cross-section of standard-parameter PHEMT after 1300 min of
off-state stressing in air. Stressing conditions: VDXo+VT = 10-15 V, ID = 10 mA/mm, T.,a = 75*C.
Wg = 100psm.

source gate drain

Figure 3-26: STEM cross-section image of intrinsic region of standard-parameter PHEMT after
1300 min of off-state stressing in air. Stressing conditions: VDGO+VT = 10-15 V, ID =10 mA/mm,
T.,nb = 75*C. W = 100pm.
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Figure 3-27: EDX analysis on select area of damaged region (indicated by red circle) on standard-
parameter PHEMT after of-state stressing in air. Peaks indicate the various elements present.

region is indeed an oxide layer, formed by corrosion of the AlGaAs surface.
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3.7.2 On-State Stressing

For the materials analysis of on-state degradation, we chose two standard-parameter W = 160pm

PHEMTs that had been stressed at constant VDGo + VT and constant ID at Tamb= 3 5 *C. One was

stressed in air, the other in nitrogen. Fig. 3-28 below shows the degradation of RD and Imax

for both of these experiments. As expected, the device stressed in air showed significantly more

degradation. And in both cases, I,. does not decrease much (less than 5%), but RD increases by

more than 20%. Fig. 3-29 shows the time evolution of the off-state breakdown voltage for these

devices. Although both exhibited a decrease in BVDGOff, the device stressed in air shows a much

larger reduction in BVDGOff, indicating some major gate-drain leakage current was induced by the

degradation.

1.40- 1.08
VDG,+VT = 6.0 V 1.07

1.30- ID =400 mA/mm air 1.06
.. 2 - 40 Zm 1.05- N2

101.104

p.10 - 21.03- air
1.02

1.00 - 1.01

0.90 1. i i i00 T

0 100 200 300 400 500 0 100 200 300 400 500
time [min] time [min]

(a) (b)

Figure 3-28: Time evolution of normalized RD (a) and 'max (b) for constant VDGO ±VT and constant

ID experiments performed on standard-parameter PHEMTs in air and nitrogen environments at

Tamb = 35'C. Wg = 160pm.

Fig. 3-30 shows the STEM device cross-sections of the two PHEMTs. One can see that both

devices exhibit significant damage on the drain side, as indicated by the red circles. There is some

slight damage on the source side as well, but it is not as much as on the drain. Fig. 3-31 shows

STEM cross-section images of the drain side in each case. Although both show heavily damaged

regions on the n-GaAs ledge (yellow circles) and n+GaAs ledge (red circles), the device stressed in

air shows more extensive degradation on the surface. This can be seen more clearly in Fig. 3-32,
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Figure 3-29: Time evolution of normalized BVDGOff for constant VDGo + VT and constant ID

experiments performed on standard-parameter PHEMTs in air and nitrogen environments at

Tamb = 35'C. W9 = 160pIm.

which are STEM images focusing on the damaged n+GaAs region in each device. As highlighted

by the dashed lines, the device stressed in air clearly has more degradation along the semiconductor

surface. In both cases, there appears to be some crystallographic defects underneath the degraded

layer. This type of damage is not observed on the source side.

In order to confirm that the damage on the drain side observed in these images is due to

corrosion, we had EDX analysis performed to determine the composition of the damaged regions.

Fig. 3-33 shows the EDX data of a selected area of the damaged region near the surface (indicated

by inset image), for both devices. One can see that in both cases, the main elements present are

Ga, As, and 0, thus indicating that the damaged region indeed consists of oxides of Ga and As.

Note that the device stressed in air appears to have a relatively higher amount of oxygen present,

indicating a higher level of oxidation.
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(a)

(b)

Figure 3-30: STEM image of device cross-section of standard-parameter PHEMT after 500 min
of on-state stressing in air (a) and nitrogen (b). Stressing conditions: VDGO + VT = 6.0 V,
ID = 400 mA/mm, Tamb = 35*C.
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(a) (b)

Figure 3-31: STEM cross-section image of drain side of standard-parameter PHEMT after on-state
stressing in air (a) and nitrogen (b). Yellow circles indicate damage on n-GaAs layer, and red
circles indicate damage on n+GaAs layer.

(a) (b)

Figure 3-32: STEM cross-section image focusing on damaged region on drain side of standard-
parameter PHEMT after on-state stressing in air (a) and nitrogen (b). Dashed lines outline corroded
regions.
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Figure 3-33: EDX analysis on select area of damaged region (indicated by red circle) on standard-
parameter PHEMT after on-state stressing in air (a) and nitrogen (b). Peaks indicate the various
elements present.
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3.8. Discussion

3.8 Discussion

Now that we have examined the degradation of RD and Imax under a variety of stressing conditions

and have observed physical evidence of the damage occurring, we can make some general comments

and then propose hypotheses regarding the mechanisms.

A summary of the various observations for the RD and Imax degradation discussed in this thesis

is given in Table 3.3. An important thing to note is the difference in RD and Imax degradation

observed in off-state and on-state conditions. As illustrated in Fig. 3-1 and Fig. 3-2, in the on-state

the increase of RD is much more readily observed than the reduction of Imax. And as evidenced in

Fig. 3-7, in the off-state experiments, Imax degrades much more than RD-

This is more clearly seen in Table 3.4, which compares the total degradation observed in RD

and Imax in two standard-parameter PHEMTs, one degraded under off-state stress and the other

under on-state stress. From this it is clear that the degradation of RD is more prevalent under

on-state stress, whereas Imax degradation is more prevalent under off-state stressing.

The devices described in Table 3.4 were among the devices analyzed with STEM/EDX in the

previous section. As discussed in Sec. 3.7.1, the device stressed in the off-state condition (which

had 22% reduction in 'max) exhibited a corrosion layer on the AlGaAs surface, on the drain side

of the inner recess. This damage was not observed in the device stressed in the off-state condition,

which only had a 4% reduction in Imax. Therefore, we can correlate the reduction of Imax with

corrosion on the AlGaAs surface in the inner recess.

In an analogous manner, we can correlate the increase of RD with corrosion on the n+GaAs

ledge, on the drain side. As described in Sec. 3.7.2, the device stressed in the on-state condition

(which had a 38% increase in RD) exhibited major corrosion on the corner of the n+GaAs cap on

the drain side. In contrast, the damage to the n+GaAs cap on the device stressed in the off-state

condition (which had only a 9% increase in RD) was very minor.

In each case, the corrosion results from chemical reactions with oxygen and/or moisture at

the semiconductor surface. The oxygen or moisture can come from the air environment, but also

must be coming from residual 0 2 /H20 on the surface or from the SiO 2 passivation, as there is
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Effect of... RD increase Imax decrease
On-state Off-state On-state Off-state

Electric Field accelerated accelerated Accelerated Accelerated
with VDGO±VT with VDGo+VT with VDGO+VT with VDGo VT

Ta < 100'C: Ta < 100*C:
independent of independent of

Environment Reduced in N 2  nvironment' Reduced in N 2  environment,
Ta > 100*C: Ta > 100*C:
suppressed in suppressed in

N 2  N 2

Strong positive Weak positive Strong positive Weak positive
Temperature dependence dependence dependence dependence

(Ea ~ 1.2eV) (Ea ~ 0.3eV) (Ea ~ 2.2eV) (Ea ~ 0.3eV)

Positive de- no major ef- Positive de- no major ef-
Drain Current pendence, due fect up to 20 pendence, due fect up to 20

to Tch increase mA/mm to Tch increase mA/mm

Level of Degra- RD increase RD increase 'max decrease Imax decrease

dation <~50% <~10% <-7% <~22%
initially linear,

time E then logarith-
tionmi

mic

AlGaAs sur-
on drain face (inner

side, corner slight damage recess) on

Locration o of n+GaAs on n-GaAs sur- drain side,
cap, n-GaAs face slight damage
surface on n-GaAs

surface

Table 3.3: Summary of
stressing experiments.

the various observations on the degradation of RD and Imax under various
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Type of Stressing Bias Conditions Temperature ARD Almax
ID = 10mA/mm, T = 75*C

Off-state VDGO+VT = 10-15V, a ' +9% -22%
1300 min
ID = 400mA/mm, T = 350C,

On-state VDGo + VT = 6.OV, a +38% -4%
1 500 min I _ _ 190'_I_

Table 3.4: Stressing conditions and resulting degradation for on-state and off-state experiments
performed on standard-parameter PHEMTs in air. For on-state experiment, W, = 160pLm, and for
off-state experiment, W = 100plm.

degradation observed even in nitrogen environments. Our hypothesis is that the semiconductor

surface that is being oxidized (either the AlGaAs or the n+GaAs cap) acts as the anode, and the

gate metal acts as the cathode. Since it is generally believed that holes accumulated at the surface

are what induce corrosion in GaAs [37], the following oxidation reaction is proposed to proceed at

the anode:

GaAs + 6h+ - Ga 3+ + As 3+ (3.3)

At the gate electrode, the following reduction reaction will occur:

1
-02 + H20 + 2e- -- 20H- (3.4)
2

The resulting OH- ions diffuse through the passivation layer to the oxidized semiconductor

surface and cause further reactions to with the Ga and As ions, which result in the formation of

oxides and/or hydroxides of Ga and As [38]:

Ga 3+ + 30H- --> Ga(OH) 3  (3.5)

2Ga 3+ + 60H- -- Ga 2O3 + 3H 20 (3.6)

As 3+ + 30H- -- As(OH) 3 (3.7)

2As3+ + 60H- -> As 2O 3 + 3H 2 0
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Schematics illustrating this corrosion mechanism for the degradation of RD and 'max are shown

in Fig. 3-34. This general corrosion mechanism can explain how the damaged regions observed in

our STEM/EDX analysis are formed. Although we do not know the exact chemical makeup of the

damaged regions, from the EDX analysis we do know that they consist of some kind of oxides of

Ga and As.

+SiO 2
OH- n+GaAs

n-GaAs

AIGaAs

(a)

4 SiO 2

n+GaAs

H n-GaAs

anod6 AlGaAs

(b)

Figure 3-34: Schematics illustrating corrosion mechanism behind degradation of RD(a) and Imax(b).

The semiconductor surface (either n+GaAs or AlGaAs) acts as the anode whereas the gate metal

acts as the cathode. Ionic species diffuse through the Si0 2 passivation layer.

Since it is unclear which of Eq. 3.5- 3.8 proceed and what type of oxides are eventually formed,

it is difficult to define an overall chemical reaction for the corrosion and thus determine the reaction

rate. However, we can still obtain the general form of the rate for the corrosion, which can help

to understand the mechanism behind the observed degradation. We know that the corrosion rate

depends on the reaction rate constant (kc,,r), and the concentration of the reactants [39]:

rate = kcorr[reactants] = Ae-Ea/kT[reactants] (3.9)

Here A is a constant and Ea is the activation energy for the reaction (in eV), and k is the

Boltzmann constant (8.63 x 10-5 eV/K). Note that the rate constant kcr has an Arrhenius de-
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pendence on temperature, which is consistent with the temperature dependences observed for the

degradation of both RD and Imax. Also, note how the corrosion rate depends on the concentration

of reactants, which will include 02 and H20. This can explain the accelerated degradation in air

environments.

Although both the degradation of RD and Imax involve corrosion of GaAs, they occur in different

locations. Whether the corrosion happens on the n+GaAs or the AlGaAs seems strongly connected

to the particular stressing conditions. Thus we need to compare the physics of what is going on

in the on-state and off-state conditions. In the on-state, the electric fields are moderately high

(typically VDGO + VT = 6 - 7 V) and the current is extremely high (typically ID = 400mA/mm)

so there is a large amount of power dissipation, causing high channel temperatures (Tch > 1700C).

Now in the off-state conditions, there is very little current (typically ID = 10mA/mm) so there is

very little impact ionization, but the electric field is much higher (VDGO + VT = 10 - 15V). And

since there is negligible self-heating, Th = Tmb so the temperatures are usually much lower than

in the on-state. Thus it seems like under high channel temperatures, the corrosion is more likely to

happen on the n+GaAs, and under high-electric fields, the corrosion is more likely to occur on the

AlGaAs. This can be seen by looking the activation energies for each type of degradation, over a

range of biasing conditions. Fig. 3-35 shows the activation energies for ARD and Almaz extracted

from various stressing experiments, as a function of VDGO + VT. First of all, one can see that for

VDGo + VT = 6.0 V (on-state condition), the activation energy for LImax (Ea ~ 2.2 eV) is much

higher than that for ARD (Ea ~ 1.2 eV). The higher activation energy can explain why Imax is

less readily observed in the on-state condition.

The reason why the activation energy is higher for Imax degradation could be related to the

availability of holes in both types of degradation. First, one should recall that the oxidation of

GaAs as shown in Eq.3.3 requires holes. Since holes are generated by the transfer of electrons from

the valence band to the conduction band, then one would expect that the availability of holes to

be related to the bandgap of the semiconductor. For GaAs, the band gap is Eg = 1.42 eV, whereas

for AlGaAs (in our devices, Al fraction is 0.24), Eg = 1.7 eV [40]. The higher bandgap for AlGaAs

can thus explain the higher activation energies for the Imax degradation, which is associated with
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Figure 3-35: Extracted activation energies for degradation of RD and I,. as a function of VDGO +

VT.

corrosion on the AlGaAs.

And although both activation energies are small at high bias, recall that the RD degradation

is not as readily observed in the off-state as it is in the on-state. An explanation for this could

be that in general, AlGaAs is more readily oxidized than GaAs. This hypothesis is supported

by various reports in the literature demonstrating that the oxidation of AlGaAs is significantly

accelerated with increasing Al content [41,42], since the oxidation of AlAs compared to GaAs is

more thermodynamically favorable [43]. This is attributed to the extreme reactivity of Al and

its tendency to form various oxygen-rich compounds [44]. Although most of these reports are

for thermally-grown oxides on AlGaAs with high Al-content (Al fraction > 0.8), one can still use

these findings to hypothesize that for the same conditions, the corrosion rate for the AlGaAs in

our devices (Al fraction = 0.24) is likely higher than that of the n+GaAs, due to the increased

reactivity of aluminum. Thus this could explain why the n+GaAs does not corrode much in the

off-state condition, in spite of similar activation energy (E. ~ 0.3 eV).

The main thing to note from Fig. 3-35, however is how the activation energies decrease with

increasing VDGO +VT. This phenomenon can be explained by an electrochemical phenomenon called

anodic activation polarization. By introducing a bias on the anode, the energy of the atoms on

the anode surface are increased, making it more favorable for the atoms to form ions [45]. This is
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Figure 3-36: An energy profile for an anode at equilibrium (black) and a similar profile for anodic
activation polarization, for generic anode reaction M V Mz+ + ze~. Adapted from [39].

illustrated in Fig. 3-36, which shows the energy profile for a generic anode at equilibrium and the

profile under anodic activation polzarization (adapted from [39]). The overpotential (in volts) is

denoted by q, and the amount of anodic polarization is denoted as aq. To convert to an energy

scale (in eV), the amount of polarization is scaled by ze, where z is the valence, or number of

electrons in the anodic reaction (e.g. for oxidation Ga or As, would be 3), and e is the charge of

one electron. As illustrated in this graph, the anodic polarization causes the atoms at the surface

to be at higher energy, which effectively reduces the energy barrier required for them to become

ionized. Quantitatively, the activation energy is reduced by aize, resulting in the new activation

energy E.(7) = E.(O) - aqze. From this one can easily see that as 7 is increased, the resulting

activation energy will be decreased further. This phenomenon can thus explain the dependence on

activation energy with bias that is observed for the degradation of both RD and I,.. This can

also explain why the drain-gate bias is so critical for degradation, and why temperature alone is

not the only accelerating factor.

In addition to RD and I,., the corrosion on the surface also seems to affect the off-state
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breakdown voltage, BVDGOff. Because the degradation of RD and 'max reduce the peak electric-

field and n, on the drain side, one would expect an improvement in BVDGOff during stressing.

However, in our experiments a decrease in BVDGOff is typically observed, especially under on-state

stressing in air. This decrease is accompanied by an increase in the magnitude of IG- As shown in

Sec. 3.7.2, the device stressed in air (which had major decrease in BVDGOff) had more extensive

corrosion on the surface of the n+GaAs than the device stressed in nitrogen (which did not show a

significant decrease in BVDGOff). This seems to suggest that the surface corrosion on the n+GaAs

layer is somehow causing increased leakage between the gate and the drain.

3.9 Summary

Our various experiments and analyses have shown that increase of RD and the decrease of Imax

are indeed due to corrosion on the drain side of the device. However, they are associated with

damage on different areas of the extrinsic drain. The increase of RD is mostly due to corrosion

on the corner of the n+GaAs cap, whereas the reduction of Imax is mostly due to corrosion on

the AlGaAs. The general mechanism in both cases involves the oxidation of GaAs by holes at the

anode (n+GaAs or AlGaAs surface), and the reduction of oxygen and water at the cathode (gate).

The corrosion layer is formed by the reaction with the resulting hydroxide ions (which diffuse to

the semiconductor surface from the gate) with Ga and As ions.

The location of the corrosion (n+GaAs or AlGaAs) depends on the specific stressing conditions,

as the activation energies for each type of corrosion are different. The activation energy for the

corrosion on AlGaAs is nominally higher than that for the n+GaAs, likely due to the higher bandgap

of AlGaAs. Thus, under moderate electric fields and high channel temperatures the corrosion mostly

happens on the n+GaAs cap. However, under very high electric fields, the activation energies are

reduced and the corrosion mostly occurs on the AlGaAs. The reduction in activation energy with

increasing drain-gate bias was attributed to anodic polarization of the semiconductor surface on

the drain side, which makes it easier for Ga and As to become ionized. This phenomenon could

explain why the drain-gate bias as well as temperature is important to the degradation of RD and
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Imax.

Since the degradation of RD and Imax involve corrosion reactions at a semiconductor surface, the

device temperature, electric field and stressing environment play a much stronger role than impact-

ionization. In order to suppress this degradation during stressing, the semiconductor surface must

be prevented from becoming corroded. We found that this could be accomplished by unbiased

high-temperature storage of the device for several hours. It is suggested that this heating somehow

prevents oxygen and moisture in the air from reaching the semiconductor surface, or drives out

residual oxygen/moisture already present.
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Chapter 4

Change of VT and RS in PHEMTs

This chapter describes the negative shift in VT and decrease in RS observed in our electrical

stressing experiments. In each case, the overall results are first presented, followed by more specific

results pertaining to various additional experiments and analyses performed in order to uncover

the underlying mechanisms.

4.1 Negative VT Shift

As shown in Sec. 3.1.1, a significant negative shift in VT is observed in our electrical stressing

experiments, which has a major effect on IDs, Imax, and other parameters. This change was found

to be mostly recoverable with unbiased storage at room temperature [23] and was independent of

the stressing environment (the shift was the same, whether in air or in nitrogen). Negative shifts

in VT have been previously observed in GaAs HEMTs under stress, though a wide variety of very

different mechanisms have been proposed [5,10,12,21,46]. Although a hypothesis for the VT shift

seen in our devices was proposed in [23], it was later discovered that some assumptions made about

the relative levels of impact ionization in the devices studied were incorrect. In addition, we had yet

to examine the effect of temperature on the VT shift, or the possibility of non-electrical mechanisms

(such as hydrogen degradation) from possibly causing a shift in VT. Thus it was necessary to revisit

some of our experiments and perform a more thorough analysis, in order to determine the specific
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Figure 4-1: Time evolution of AVT, for step-stressing experiments performed on four different

devices with different values of Ld. Wg = 100pm.

mechanism responsible in this case.

4.1.1 Effect of Ld

To examine the impact of impact ionization on VT shift, we examined the effect of Ld (the n+GaAs

recess length on the drain side, as illustrated in Fig. 2-1). Initially, we assumed that devices with

larger Ld would have less impact ionization for a given bias, since the peak electric field would be

smaller. Step-stressing experiments on devices with different Ld were performed, and the relative

shifts in VT were compared. Fig. 4-1 shows the time evolution for the change in VT for these

experiments. Looking at this graph, it is clear that the shift in VT is indeed decelerated as Ld

gets larger. This behavior thus prompted us to initially conclude that impact ionization (which

was assumed to decrease with Ld) was the driving force behind the shift in VT. This consequently

led us to attribute the shift to a mechanism where holes generated by impact ionization neutralize

electrons trapped underneath the gate, as proposed in [211.

However, separate experiments performed later on revealed that the assumption of less impact

ionization with larger Ld was actually not necessarily true (at least, in the devices we studied).
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4.1. Negative Vr Shift

Lr8 [AM] Lrd [pim] BVDGO!] RD [Q-mm] Rs [Q-mm] VT [V]

0.4 0.3 11.70 0.661 0.571 -0.605
0.4 0.5 15.56 0.723 0.577 -0.621
0.4 0.7 17.88 0.787 0.560 -0.616
0.4 0.9 20.06 0.841 0.545 -0.629

Table 4.1: Device Parameters and Measured Data of unstressed PHEMTs of varying Ld. Mea-

surements taken at 250C in nitrogen.

This was discovered via measurements of impact-ionization on another set of devices of varying

Lrd. Table 4.1 shows the device parameters and key figures of merit for this set of four devices,

all identical except for the parameter Lrd. One can note that the off-state breakdown voltage

BVDGOff increases with larger Ltd, which indicates that devices with longer Ld do have smaller

electric fields. Despite this however, subsequent electrical measurements show that for some of

these devices, electric field does not necessarily correlate with impact ionization. This is illustrated

in Fig. 4-2, which shows a plot of ID vs. VDS and a semi-log plot of |IG/IDj vs l/(VDG0 + VT)

from measurements taken at VGS = 0.3 V for each device. As one can see, although the 0.3pm

and 0.Spm device seem to behave as expected (smaller Lrd results in more impact ionization), the

devices with long Lrd (Lrd = 0.7pm and 0.9pm) exhibit odd output characteristics and non-linear

behavior in the high VDGo ± VT regime. This strange behavior is attributed to oscillations on these

particular devices, as discussed in [47].

Thus upon realizing that devices with very long Lrd actually have more impact ionization, we

had to rethink our proposed mechanism causing the VT shift during stressing. It cannot be due

to a mechanism driven by impact ionization, as it cannot explain why some devices that actually

have more impact ionization still end up a slower rate of VT degradation, as shown in Fig. 4-1. To

uncover the underlying mechanism, we must examine the dependences of the VT shift on various

factors. We first look at the the dependence of the VT shift on IG, which will allow us to see what

kind of dependence the VT shift actually has on impact ionization (if any).

A separate set of devices of varying Lrd were electrically stressed under similar conditions, at

ID = 400 mA/mm, VDGO + VT = 5.0 V, at 250C in nitrogen. A lower bias voltage was chosen here
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Figure 4-2: Plot of ID vs. VDs (a) and semi-log plot of JIG/IDI vs.

of measurements taken at VGs= 0.3 V, at 250C in N2 , for devices
Wg = 100/4m.

1/(VDGo + VT) (b), for a set
with different values of Ld.

in order to be able to observe the change in VT more easily. Fig. 4-3 illustrates the time evolution

of AVT for these experiments. Similar to what was seen in Fig. 4-1, the VT shift is slower with

longer Ld, despite higher impact-ionization. Fig. 4-4(a) shows the absolute value of the VT shift

at various time points during these experiments, versus the average value of IIGI during the initial

stages of stressing. As one can see, the VT shift at various points during stressing are not correlated

with lIG at all. This suggests that AVT is not correlated with impact-ionization, since in that case

we would expect some positive correlation with JIGI. Fig. 4-4(b) shows the change in VT for those

same points, but plotted versus the inverse of Ld. Since Ld is expected to be completely depleted,

the peak electric field should be inversely related to L~d (the bigger the L~d, smaller peak electric

field). Here there clearly seems to be a correlation between AVT and 1/Ld, suggesting that the VT

shift is actually correlated with the peak electric field. This thus suggests a field-aided de-trapping

mechanism, in which trapped electrons tunnel out of traps, as suggested in [46].
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Figure 4-3: Time evolution of AVT, for set of stressing experiments employing constant ID =

400 mA/mm and constant VDGO + VT = 5.0 V, at T.ma = 25* in air. W = 160/Am.
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Figure 4-4: Absolute value of change in VT after t = 4, 10 minutes of stressing versus average gate
current (a) and versus 1/Ld (b) for stressing experiments employing constant ID = 400 mA/mm
and constant VDGO+VT = 5.0 V, at 25*C in air, on devices with different values of Ld. W, = 160pm.
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Figure 4-5: Time evolution of AVT, for set of stressing experiments employing constant ID =

400 mA/mm and constant VDGo + VT, at Tamb = 250 in air. Wg = 160pm.

4.1.2 Effect of Electric Field

To further examine the dependence of AVT on electric field, a set of stressing experiments employing

constant ID but varying VDGo + VT were performed on a set of identical devices. Fig. 4-5 shows

the time evolution of the change in VT for these experiments. One can clearly see that increasing

VDGo + VT accelerates and increases the VT shift. If one examines the change in VT after a given

amount of time, one can see that it obeys a linear dependence on VDGo + VT, as shown in Fig. 4-

6. This further supports the correlation between the VT shift and the drain-gate electric-field.

This dependence is very similar to what was observed in [46], thus confirming that a field-aided

de-trapping mechanism is responsible for the change in VT.
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Figure 4-6: Absolute value of change in VT after t = 10, 30 minutes of stressing versus VDGo ± VT,

for set of stressing experiments employing constant ID = 400 mA/mm and constant VDGo + VT,

performed at Tmb = 25' in air. Wg = 160pm.
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Figure 4-7: Time evolution of AVT, for constant ID and constant VDGO +VT experiments performed
on standard-parameter PHEMTs at 25, 50, 750C in nitrogen. Wg = 100/pm.

4.1.3 Effect of Temperature

To explore the temperature dependence of AVT, on-state stressing experiments performed at various

ambient temperatures were performed. Fig. 4-7 shows the time evolution of AVT for a set of constant

ID and constant VDGO + VT experiments, performed at 25, 50, 750C in nitrogen. This shows that

the shift in VT is accelerated with increasing temperature. This positive temperature dependence

suggests that the de-trapping of electrons is thermally assisted to some extent.

And as discussed in Sec. 3.5.3, the channel temperature is also affected by ID and Wg, so

consequently AVT will depend on stressing current and gate width. Fig. 4-8(a) shows the time

evolution of AVT for a different set of stressing experiments, of varying ID. Fig. 4-8(b) shows the

time evolution of AVT for a set of stressing experiments where Wg was varied. One can see from

these graphs that the change in VT is increased with either increasing ID or Wg.

A mathematical expression for the temperature dependence of AV will be presented in the next

section, where models for the behavior of AV with time are fitted to the data and an activation

energy for the degradation is extracted.
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Figure 4-8: Time evolution of AVT for constant ID and constant VDGO + VT stressing experi-
ments performed on standard-parameter PHEMTs in air environment at Ta.b = 250C, for varying
stressing currents (a) and varying device widths (b).

4.1.4 Time Evolution of AVT

The time evolution of the change in VT under various conditions was examined. For this analysis,

we focused on the first hour of stressing (where most of the changes occurred, before beginning to

saturate). We also ignored the first data point, as the changes between t = 0 and t = 2 min usually

involve what appears to be fast transient behavior of a different nature. We looked at data from

the experiments performed in Fig. 4-7. Several models were attempted to fit the data, but a model

containing an exponential of the form e~/T fit the data best for all temperatures. These fits are

shown in Fig. 4-9.

From each of these fits, a rate constant r is extracted, which gives an indication of the rate

of change of VT. These value are summarized in Table 4.2, which shows the rate constant r for

each case, in addition to the estimated value of TM. These values are then used to create an plot

of 1/r (degradation rate) vs. 1/Ta, as shown in Fig. 4-10. As one can see, the change in VT has

an Arrhenius dependence with temperature, with an activation energy of E. = 0.42 ± 0.09 eV.

This represents the energy required to de-trap the trapped electrons under the particular stressing

conditions (VDGO + VT = 6.0 eV). This value is a bit different from activation energies found

elsewhere (in [12], an activation energy for 0.21 eV for AV is reported). However, it is difficult to

make a comparison with [12] as in that case AV was purely thermally activated and thus likely
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Figure 4-9: Time evolution of AVT, for constant ID and constant VDGO + VT experiments performed
on standard-parameter PHEMTs at T 0mb = 25, 50, and 75*C in nitrogen. Data is shown along
with exponential fits. Wg = 100psm.

due a slightly different mechanism. Also, it is expected that the activation energy we extracted for

AVT will decrease with increasing electric field, due to increased tunneling.

Also, it is important to mention that since AVT involves the de-trapping of electrons, the

change in VT during stressing will eventually saturate once all the traps under the gate have been

completely emptied out. This is typically observed under high drain-gate electric fields after long

enough periods of time. This is illustrated in Fig. 4-1 for the Ld = 0.3pim device. As one can

see, after about 100 minutes of stressing, this device exhibits no further decrease in VT, despite

increases in bias. This indicates that there are no electrons under the gate left to be de-trapped. On

the other hand, the other three devices (which have longer Lrd and thus lower peak electric-fields)

continue to experience a decrease in VT with increasing bias, since not all the electrons have been

de-trapped yet.
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4.1. Negative VT Shift

Tamb [*C] Pdiss [W] AT [*C] Tch ['C] r [min] 1/r [sec-1]
25 0.294 99.2 124.2 13.79 1.23E-03
50 0.298 111.9 161.9 4.00 4.17E-03
75 0.301 124.8 199.8 1.94 8.60E-03

Table 4.2: Time constants obtained
75'C in nitrogen. Wg = 100pm.
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Figure 4-10: Semi-log plot of 1/- versus 1/Tch, using time constant (r) values for VT change during

constant ID and constant VDGO + VT stressing experiments performed at Tamb = 25, 50, and 75 C.

Shown with exponential fit to data and extracted activation energy. Error bars (assuming 20%

uncertainty in r) indicated by magenta and green lines. Wg = 100pm.
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Figure 4-11: Time evolution of AVT off-state step-stressing experiments performed at 75, 100, 125,
and 150*C in nitrogen. Wg = 100psm.

4.1.5 Off-state Stressing

So far, the experiments and analyses investigating AVT have involved the behavior of VT during

on-state stressing. However, changes in VT were also observed in our off-state stressing experi-

ments. Fig. 4-11 illustrates the time evolution of AVT for a series of off-state stressing experiments

performed at various ambient temperatures, in a nitrogen environment. As one can see, negative

shifts in VT are observed here as well, indicating that the electron de-trapping can occur without

significant drain current, as long as the electric field is high enough.

From this data, one can note that for low temperatures (below 1000C), the negative shift in VT

increases with increasing temperature. This is the same as what is observed in on-state stressing

and is consistent with thermally-activated de-trapping, as discussed in Sec. 4.1.3. However, one can

see that for temperatures above 100*C, increasing the temperature actually reduces the negative

VT shift, eventually causing the change in VT to become positive (T = 150*C). This suggests that

at high ambient temperatures, a separate mechanism causing a positive shift in VT dominates over

the electron de-trapping mechanism causing the negative VT shift. The nature of this separate

mechanism will be discussed further in Sec. 4.1.7.
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4.1.6 Hydrogen Experiments

As mentioned in Sec. 1.3.2, other HEMT reliability studies have demonstrated shifts in threshold

voltages due to hydrogen degradation [10,20,481 . We needed to know if such effects were present in

our devices, so that we could separate any such effects from those due to electrical stressing alone.

Thus we performed hydrogen exposure experiments, similar those done in [10,48.

Our basic hydrogen experiments consist of three steps. The first step is to pre-bake the device

in nitrogen, in order to exhaust any changes in device parameters due to thermal effects. Then the

second step is a "thermal stability check," in which the device is stored at 200'C in nitrogen for

2.5 hours. Here device parameters are measured in-situ, and before proceeding to the next step it

is confirmed that there are no significant changes due to thermal drift. The third and final step

is the actual hydrogen exposure, in which the device is again stored at 200'C for 2.5 hours, but

with forming gas (95%N2 , 5%H 2) now flowing in the probe station chamber. During this step the

device continues to be monitored, thus allowing a comparison of device behavior of "before" and

"during" exposure to hydrogen.

Although our experiments here consist of only three steps, in general, hydrogen experiments

employ a fourth step of similar conditions to the first or second step (high-temperature storage in

N2) to see if any changes incurred during the hydrogen exposure can be recovered by annealing.

However, as will be discussed below, we ended up not observing any changes during the hydrogen

exposure, so there was no reason to do an additional step to check for recovery.

From our initial testing, we found that a pre-baking temperature of 230*C was adequate to

saturate changes from thermal effects in a reasonable time frame (~30 hours). Although at this

temperature we could not do in-situ characterization (the maximum chuck temperature for our

probe station was 200'C), the device was removed from the oven at various intervals in order to be

characterized. From this we found that VT was the main parameter that showed significant changes

due to thermal storage. Fig. 4-12 shows the time evolution of VT of one device during this prebake

step. The characterizations were all done at 200*C.

As one can see, with storage at 230'C, initally VT increases rapidly, but after ~30 hours,

the change in Vr has significantly slowed down. As for the mechanism behind this change in
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Figure 4-12: Time evolution of VT during 230'C storage in N 2 (measurements taken at 200*C).
Wg = 100Pm.

VT, previous studies have attributed the positive VT shift observed under high temperatures to

gate-sinking [18]. Since this mechanisms is driven by diffusion, this mechanisms has a t1 / 2 depen-

dence [15]. Fig. 4-13 shows a log-lot plot of the change in VT versus time, along with a best power

fit (of the form t"), and a square root fit (a power fit where n = 0.5). Looking at the data along

with the best power fit (dashed blue line), it appears that the change in VT tends to follow a power

law, where n is about 0.8. A square root fit (magenta line) can also be attempted to fit the data,

but does not fit so well to the early data points (t < 5 hours). Despite this discrepancy, however,

it is still highly likely that the VT shift here is due to gate sinking; even though the extent of

gate metal interdiffusion may be strictly following a t1/ 2 dependence, the change in VT can have a

slightly more complex dependence.

From this data we then assumed that N 2 storage for 230*C for 30 hours was enough to minimize

further thermal changes on these devices at lower temperatures. These same conditions were then

used for the pre-bake step in our subsequent hydrogen degradation experiments. A complete

summary of the conditions from our hydrogen experiments is shown in Table 4.3.

We performed a full experiment of this type on a new device of the same type. The prebake

steps was performed (causing VT to shift by +0.15 V) and then in the prober, steps 2 and 3 of the

experiments were carried out. Fig. 4-14 shows the time evolution of VT during these steps.

As one can see, VT remains virtually unchanged during the thermal stability check step, thus
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Figure 4-13: Log-log plot of time evolution of AVT during 230*C storage in N2 (measurements taken

at 200'C), with best power fit (dashed dark blue line) and (time)1/ 2 fit (magenta). W9 = 100pm.

Step Description Temp [*C] Env Location Time [hr]

1 Prebake 230 N 2  oven 30
2 Thermal Stability Check 200 N 2  prober 2.5
3 Hydrogen Exposure 200 5%H 2  prober 2.5

Table 4.3: Outline of Steps for Hydrogen Degradation Experiments.
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Figure 4-14: Time evolution of VT during steps (2) and (3) of hydrogen degradation experiment.

T = 200*C. W9 = 100pm.
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Figure 4-15: Time evolution of VT during additional steps of hydrogen degradation experiment.

T = 200*C.

confirming that thermal effects have largely saturated. Upon subsequent H 2 exposure, VT still does

not change appreciably. But before assuming that hydrogen has no effect on these devices, we first

decided to prolong hydrogen exposure. So on the same device, we repeated steps (2) and (3), for

an extended period of time. At 200*C, we stored the device in N 2 for 5 hours, and then in forming

gas for another 4.5 hours. Fig. 4-15 shows the time evolution of VT during these additional steps

to the experiment. One can notice that the initial VT of the additional degradation steps is not

exactly the same as the final VT of the first degradation steps (as shown in Fig. 4-14). However, this

difference is very small (~7 mV), and is likely because the additional degradation steps were not

started immediately after the first degradation steps (the device was first brought down to room

temperature and stored for a few hours before resuming degradation).

At this point, since the device has undergone a total of 7 hours of hydrogen exposure at 200*C

without any observable changes, we assume that hydrogen degradation is not of serious concern for

these particular devices, at least under the conditions we employ in our stressing experiments. How-

ever, as previous studies have shown that hydrogen effects tend to vary with gate orientation [48],

it could be possible that devices like these but with different gate orientation would experience

some effects due to hydrogen exposure. Also, it is possible that at higher temperatures (> 2000C)

the devices would begin to experience some effects from the hydrogen, but due to limitations with
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our setup, such experiments were not possible.

4.1.7 Discussion

In the previous section, although no hydrogen-induced VT shifts were observed, a positive shift

in VT is observed under high-temperature storage, which we attributed to gate sinking, a previ-

ously identified mechanism [18]. This mechanism could explain the behavior of VT in our off-state

stressing experiments performed at high temperatures. Since gate sinking is a thermally-activated

mechanism t11], at high enough temperatures, the gate sinking mechanism dominates over the de-

trapping mechanism, eventually making the shift in VT more positive with increasing temperature.

That being said, in the majority of our electrical stressing experiments, lower ambient temper-

atures are employed, resulting in a negative shift in VT. Since this effect is more prominent and

the underlying mechanism was less clear, we focused on investigating the negative shift in VT and

uncovering the mechanism responsible.

From our initial studies, we observed the negative shift in VT to be largely recoverable with

unbiased storage at room temperature. This points to charge modulation underneath the gate,

namely electron de-trapping, as described in [211. Though some have attributed this phenomena to

hot holes generated from impact-ionization neutralizing trapped electrons under the gate [21], from

our experiments discussed in Sec. 4.1.1, it appears that AVT is actually not correlated with impact

ionization. Instead, AVT seems to have a significant correlation with the peak electric field in the

drain-gate region. This suggests that the de-trapping mechanism involves field-assisted tunneling of

the electrons out of the traps, as mentioned in [46]. The de-trapping can be thermally activated [21],

which explains how AVT is accelerated with increasing temperature. This mechanism is illustrated

in Fig. 4-16.

The fact that AVT is driven by the electric field instead of impact ionization has profound im-

plications on the behavior of VT during various stressing conditions. For instance, this means that

negative shifts in VT can still occur under conditions with relatively low levels of impact-ionization

but with high electric fields (e.g. off-state stressing). This was demonstrated in our off-state stress-

ing experiments, where significant negative shifts in VT were observed during stressing. Typically in
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Figure 4-16: Spatial diagram (a) and energy band diagram (b) illustrating electron de-trapping

mechanism causing negative shift in VT.

off-state experiments VT shifts by ~10-20 mV, compared to the ~100 mV changes observed under

on-state stressing. This discrepancy may be due to differences in channel temperature (typically

on-state temperatures are must hotter). However, these changes are still large enough to have

significant effects on ID,, and Imax.

4.2 Decrease in Rs

As shown in Sec. 3.1.1, a permanent decrease in Rs is typically observed in our devices upon

electrical stressing. While a recoverable decrease in Rs has been reported [21], a permanent decrease

in Rs has not. The fact that this change is not recoverable with room-temperature unbiased storage

seems to rule out a trapping effects, which is the suggested mechanism behind the temporary change

in Rs [21].

Our previous stressing experiments on various types of TLMs allowed us to clearly identify a

permanent increase in sheet carrier concentration, n,, present in the first stages of stressing [23].

Since this increase was found to occur mostly on the source side, this correlated very will with

the decrease in Rs observed in the PHEMTs. However, aside from this, there was not much

else that could be said about the actual physical mechanism behind the decrease of Rs. Some

----- -- ------ --------- -------
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of the aspects of the RS degradation seemed to contradict each other, or were otherwise quite

puzzling. The experiments investigating the effect of Lrs (source-gate gap) suggested a surface-

related mechanism, but then separate experiments showed that the Rs was the same in both air

and in nitrogen, ruling out any surface oxidation effects. The experiments investigating the effect of

Lrd (drain-gate gap) on ARS seemed to show a negative dependence on impact-ionization, but then

separate experiments showed that the degradation was accelerated with higher bias currents. So

in order to clarify this picture and determine the nature of the mechanism behind the Rs change,

additional experiments and further analyses were necessary.

4.2.1 Effect of Lrd

First we will re-examine the effect of Lrd on device degradation. Fig. 4-17 shows the change in RS

for four different devices of varying Lrd during a set of a identical stressing experiments at constant

ID and constant, VDGo + VT. From this graph one can clearly see that the two devices with longer

Lrd (Lrd = 0.7 and 0.9pm) exhibit a faster decrease in Rs. Initially this behavior was puzzling,

as it was assumed that devices with longer Lrd should have less degradation, as the peak electric

field was smaller for a given bias. But as discussed in Sec. 4.1.1, it was later found that the devices

with longer Lrd actually exhibited oscillation problems that caused them to have higher levels of

impact-ionization than those with shorter Lrd. Therefore, the decrease of Rs could actually be

correlated with impact ionization after all. To look further into this, the magnitude of the gate

current during these experiments was examined.

Fig. 4-18(a) plots the Rs decrease at various time points, versus the average value of JIGI during

the initial stages of stressing. As one can see, the decrease in Rs does seem to have a roughly linear

correlation with jIGI, suggesting that ARs is indeed correlated with impact-ionization. Fig. 4-18(b)

shows the decrease in Rs for those same points, but plotted versus the inverse of Ld. Here there

is clearly not a positive correlation between ARS and 1/Ltd. This thus suggests that change in RS

is driven by impact-ionization more than the electric field.
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Figure 4-17: Time evolution of ARs, for set of stressing experiments employing

400 mA/mm and constant VDGo + VT = 5.0 V, at Tamb = 250 in air. W = 160Mm.
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Figure 4-18: Absolute value of change in Rs after t = 4, 10 minutes of stressing versus average gate

current (a) and versus 1/Ld (b) for stressing experiments employing constant ID = 400 mA/mm

and constant VDGO+VT = 5.0 V, at 25*C in air, on devices with different values of Ld. W = 160Mm.
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Figure 4-19: Time evolution of ARS, for set of stressing experiments employing constant ID =

400 mA/mm and constant VDGo ± VT, at Tamb = 250 in air. W = 160pm.

4.2.2 Effect of Electric Field

The set of stressing experiments employing different VDGO+VT (described in Sec. 4.1.2) was also used

to examine the decrease in RS as a function of electric field. If ARs is driven by impact-ionization,

we expect that it should have an exponential dependence on VDGO ± VT. We first look at the time

evolution of ARs for these different experiments. This is shown in Fig. 4-19. One can clearly see

that increasing VDGO±VT accelerates the decrease in Rs. However, unlike with AVT, the dependence

of ARS on VDGO + VT seems highly non-linear. Starting at VDGo + VT = 4.2 V, the degradation

increases dramatically with small increments of VDGo ± VT, but then around VDGo ± VT = 5.3 V

the change quickly saturates, despite increasing the bias up to 6.0 V.

To get a better picture of this non-linear dependence on bias, the change in Rs at given time

points (after 10 and 30 minutes of stressing) is plotted versus VDGo +VT. This is shown in Fig. 4-20.

This clearly shows the "saturation" of ARs at higher biases (especially after 30 minutes). But even

if one just looks at the data points at lower biases, the behavior still doesn't seem quite linear.

Since the previous section suggested ARs was related to impact-ionization, then that should result

in an exponential relationship with 1/(VDGo + VT). Fig. 4-21 shows the change in RS at selected

time points versus the inverse of VDGo + VT. For this plot, the two highest bias points are omitted,

as to remove the effect of the "saturation" of the degradation. From this graph, one can see that
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Figure 4-20: Absolute value of change in Rs after t = 10, 30 minutes of stressing versus VDGO + VT,

for set of stressing experiments employing constant ID = 400 mA/mm and constant VDGo ± VT,

performed at Tamb = 250 in air. Wg = 160pm.

the data fit reasonably well to the exponential fits, thus further supporting the idea that impact

ionization is what is driving ARs, and not so much electric field.
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Figure 4-21: Absolute value of change in Rs after t = 4, 10,30 minutes of stressing versus l/(VDGO±e
VT), for set of stressing experiments employing constant ID = 400 mA/mm and constant VDGO± VT,

performed at Tamb = 250 in air. Wg = 160pm.
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Figure 4-22: Time evolution of ARs, for constant ID and constant VDGO+VT experiments performed
on standard-parameter PHEMTs at 25, 50, 750C in nitrogen. Wg = 10011m.

4.2.3 Effect of Temperature

To explore the temperature dependence of ARs, the time evolution ofRS in the stressing experi-

ments performed at various ambient temperatures (described in Sec. 4.1.3) were examined. Fig. 4-22

shows the time evolution of ARs for these experiments. This clearly shows that the decrease in

Rs is accelerated with increasing temperature.

So although the decrease in Rs seems to be driven by impact-ionization, it has an overall positive

temperature dependence. This suggests that mechanism behind ARs must also involve another

physical process that has a positive dependence on temperature. The temperature dependence

will be further examined in the next section, where an activation energy for the change in Rs is

extracted.

4.2.4 Time Evolution of ARs

The time evolution of the change in Rs under various conditions was further examined, in order

to obtain a mathematical model for the behavior. As done in the analysis of AV in Sec. 4.1.4,

we focused on the first hour of stressing, where most of the changes occurred, and ignored the first

data point. We looked at data from the experiments performed in Fig. 4-22. Like with AVT, a

model containing an exponential of the form e-t/T fit the data best for all temperatures. These fits

are shown in Fig. 4-23.
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Figure 4-23: Time evolution of ARs, for constant ID and constant VDGO-+VT experiments performed
on standard-parameter PHEMTs at 25, 50, 750C in nitrogen. Data is shown along with exponential
fits. Wg = 100pm.

Tamb [*C] Pdas [W] AT [*C TM [*C] r [min] 1/r [sec-1]
25 0.294 99.2 124.2 14.71 1.13E-03
50 0.298 111.9 161.9 7.69 2.16E-03
75 0.301 124.8 199.8 5.88 2.84E-03

Table 4.4: Time constants obtained for Rs change in stressing experiments done at Tamb= 25, 50,
750C in nitrogen. Wg = 100pm.

From each of these fits, a rate constant r is extracted, which gives an indication of the rate of

change of VT. These value are summarized in Table 4.4, which shows the rate constant r for each

case, in addition to the estimated value of TM. These values are then used to create an plot of

1/r (degradation rate) vs. 1/Tc, as shown in Fig. 4-24. As one can see, the change in Rs has an

Arrhenius dependence with temperature, with an activation energy of Ea = 0.19 ± 0.09 eV.

4.2.5 Discussion

From all of our various experiments and analyses, we have been able to make a number of obser-

vations about the decrease in Rs. Our early experiments showed that it was independent of the

environment and that it was not recoverable with unbiased storage at room temperature. Exper-

iments investigating the effect of Ld suggested that ARs is closely related to impact-ionization
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Figure 4-24: Semi-log plot of 1/r versus 1/Tch, using time constant (r) values for Rs change during

constant ID and constant VDGo + VT stressing experiments performed at Tmb = 25, 50, and 75*C.

Shown with exponential fit to data and extracted activation energy. Error bars (assuming 20%

uncertainty in measurement of r) indicated by magenta and green lines. Wg = 10011m.

more than with the drain-gate electric field. This is consistent with the fact the decrease in Rs was

not observed at all under off-state stressing conditions; even under very high electric field, if there

is no impact-ionization, there is no decrease in Rs.

However, there seems to be another physical process involved, since ARS is accelerated with

temperature (Ea = 0.19 eV), and we know that impact-ionization has a negative temperature

dependence. Also, what's unique about the Rs degradation is that it saturates, both with voltage

and with time. These observations are consistent with the mechanism of recombination-enhanced

defect annealing, as described in [49]. In this process, electron-hole recombination gives off energy

to defects, which enables them to get annealed out. The annealing rate of this process in GaAs

diodes was found to be Ea = 0.34 eV [49], which is not very different from the activation energy we

found for the decrease of RS, especially considering the error of +0.09 eV. The difference can be also

possibly accounted for by the fact that impact-ionization has a negative temperature dependence

which would reduce the Ea that is extracted. So this defect-annealing process could be what is

happening on the source side, where recombination is occurring as a result of impact-ionization on

the drain side. As the defects get annealed out, the sheet carrier concentration n, on the source
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increases, thus decreasing Rs. Once all the defects are annealed, n, stops increasing, thus causing

ARs to eventually saturate. Since carrier recombination is required for this annealing, this can

explain the strong correlation of ARs with impact-ionization; the decrease in RS will only be

observed if there is impact-ionzation present to cause electron-hole recombination.

4.3 Summary

In this chapter, we have presented the results of systematic electrical stressing experiments per-

formed in order to uncover the mechanisms behind the negative shift in VT and the decrease in

RS observed during electrical stressing. Although these forms of "degradation" seem to improve

device characteristics and are thus less worrying than the degradation of RD and 'max, since they

do induce some significant changes during electrical stressing it is important to acknowledge their

effects and understand the underlying mechanisms.

From our early experiments, it was known that the negative shift in VT is recoverable with

room-temperature unbiased storage, which suggested a mechanism involving some de-trapping of

electron under the gate. Initially, this was attributed to hot holes generated from impact-ionization

neutralizing the trapped electrons. However, later experiments investigating the effect of Lrd and

VDGO + VT allowed us to determine that the negative shift in VT is actually correlated with the

drain-gate electric field, and not impact ionization as previously thought. This allowed us to identify

the de-trapping mechanism as field-assisted tunneling of the electrons out of the traps. Under bias

stress, this de-trapping can be thermally activated, with an activation energy of Ea = 0.42 eV.

In contrast to the shift in VT, the decrease in Rs was not recoverable, which ruled out a similar

de-trapping mechanism on the source side. From experiments investigating Lrd and VDGO ± VT,

it was found that the change in RS was more correlated with impact-ionization that electric field.

Also, it was noted the ARs tend to "saturate" with high bias. Analysis of the temperature

dependence gave an activation energy of Ea = 0.19 eV. All these findings are consistent with

a mechanism of recombination-enhanced defect annealing on the source side. Under electrical

stressing, the recombination on the source side produced by impact-ionization gives energy to local
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defects, causing them to be annealed out. This in turn results in a higher carrier concentration n.

on the source side, thereby reducing Rs.

The following chapter will discuss our experiments performed to observe light-emission from the

PHEMTs during stressing. In this study it will be shown that there is significant recombination

occurring on the source side of the device, strengthening the theory of recombination-induced defect

annealing behind ARS.



Chapter 5

Non-Uniformities in Degradation

In [23], light-emission experiments were performed on TLM structures, which allowed us to obtain

spatial pictures of the light emitted from the TLM as it was being stressed. These experiments

showed that the distribution of light emission along the width was very non-uniform: initially,

it was very heavily concentrated in the center, but with stressing it spread out and eventually

concentrated towards the edges. So we decided to perform analogous light-emission experiments

on the PHEMTs to see if they exhibited similar behavior.

5.1 Introduction

As mentioned in the previous section, the degradation of RD and Imax was mainly attributed to

moisture-induced corrosion of the surface on the drain side, which is accelerated by high electric

fields. We know that under these high-electric fields, impact ionization tends to occur (as shown

in previous chapter). The presence of impact ionization leads to the recombination of electrons

and holes, which then results in emission of photons. This is illustrated in Fig. 5-1, containing a

schematic of the PHEMT cross-section. Under high bias stressing, due to the high electric field

in the drain-gate region, impact ionization occurs on the drain side, resulting in the creation of

both electrons (shown as blue circles) and holes (white circles). The carriers recombine on both

the source and the drain side, thus giving off light. So, if we can somehow capture a picture of the
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S G D

Figure 5-1: Cartoon illustration of impact ionization and consequent light-emission occurring in a

PHEMT under high bias.

light emission of the device, we can thus get a picture of the distribution of impact ionization and

of the electric field.

5.2 Experimental

In this study we took pictures of light emitted from the PHEMTs using a special setup created

by Professor Mark Somerville at Olin College. This setup, which is pictured in Fig. 5-2 consists

of a Cascade probe station equipped with an astronomical-grade CCD sensor. This setup allowed

us to take light-emission photographs of a device while it was being electrically stressed. Due to

limitations in this particular setup, for these stressing experiments we could not keep VDGO- + VT

constant. So instead, we implemented a stressing scheme that kept VGS and VDS constant. And,

to speed up degradation, we stepped VDS in regular intervals. This is illustrated in Fig. 5-3, which

shows the bias stressing VDS as a function of time, for a typical experiment on a standard-parameter

PHEMT. Here, VGS was kept constant at 0.3 V, and VDS was initially set at 6.6 V and increased

by 0.2 V every 100 minutes. Photographs were taken at frequent intervals throughout the stressing
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5.3. Light Emission During Step-Stressing

Figure 5-2: Photograph of light-emission setup in Professor Mark Somerville's laboratory at Olin
College, used to measure light-emission of PHEMTs during stressing.

experiment (at least every 10 minutes) and also after each bias-stepping, where the bias VDS was

momentarily returned to the initial biasing condition (VDs = 6.6 V).

5.3 Light Emission During Step-Stressing

From every picture taken, we obtained the total light emission intensity (sum of all pixel values

in the image, normalized to the exposure time). To account for the change in the drain current

with stressing (from the downward shift in VT), we normalized the total light intensity to the drain

current. The blue data of Fig. 5-4 shows the total light emission (normalized to ID) as a function

of stressing time (each data point corresponds to data from one picture).

From this graph, one can see that in the initial stages of stressing, the intensity of the emit-

ted light remains more or less constant for a given VDs. However, with prolonged stressing

(t > 500 min), the intensity tends to decrease with constant-VDS stressing. The light inten-

sity also increases as VDS is increased (as expected, since there is more impact ionization). Fig. 5-5

shows the time evolution of the drain current ID. As one can see, in the first half of the experiment,
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Figure 5-3: Applied stressing voltage VDS vs. stressing time for a typical light-emission experi-

ment on a PHEMT. Each dot represents a point in time when a light-emission picture was taken.

Throughout the experiment, VGS is held constant at 0.3 V.
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Figure 5-4: Applied stressing voltage (green) and total light emission intensity normalized to drain

current (blue) vs. stressing time for light-emission experiment on a standard-parameter single-gate

finger PHEMT (Wg = 50pm). VGS = 0.3 V.
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Figure 5-5: Drain current ID vs. stressing time for light emission experiment on a standard-
parameter PHEMT.

ID increases even for a constant VDS. As mentioned earlier, we can attribute this to the negative

shift in VT that is typically observed during the initial stages of high-VDs stressing.

Over 100 photographs are typically taken during a light-emission experiment; a few of them will

be shown next. For each of these pictures, the light-emission picture was superimposed with the

device picture (which showed the source and drain contacts). Here, the source side is on the left,

and the drain side on the right. The pictures taken at a fixed bias of VDS = 6.6 V are examined

first. Fig. 5-6 shows the light-emission coming from the source and drain, for different points during

the experiment. One can see that the light emitted from the source side is much stronger than

that emitted from the drain, suggesting the strong presence of cold-carrier recombination on the

source side [28]. The main thing to note, however, is that initially, the light emission is mainly

concentrated in the center of the width of the device (the center 30 pim). As the stressing proceeds,

the light gradually spreads out to eventually cover the entire device width.

The light emission distribution of these pictures can be better analyzed by plotting the inte-

grated light intensity along the width of the device for these various points. Since light was emitted

from both the source and the drain, these two were separated and graphed separately. Fig. 5-7

shows the profile for the light distribution along the width (normalized to ID) emitted from the
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Figure 5-6: Photos of light emission from source and drain of standard-parameter PHEMT, at
various points during the light emission experiment. Taken at VGS = 0.3 V, VDS = 6.6 V.

source (a) and drain (b) before, during, and after the experiment. From this one can see that in

the first half of the experiment, the light emission just spreads out; in the second half, the main

effect is an overall decrease in light intensity. This has an effect of an initial increase in the total

light intensity (relative to ID), followed by a steady decrease (as shown in Fig. 5-8 ). This suggests

that, with stressing, the total impact-ionization initially increases (due to the width spreading) but

then eventually decreases (due to the drain degradation). This is consistent with the RD degra-

dation previously observed in Fig. 3-1(a): with stressing, RD initially decreases, but then steadily

increases (which reduces the drain-gate electric field, and thus reduces impact-ionization, as shown

in Fig. 3-6).

So far we have examined the light emission during the experiment at a fixed value of VDS,
which has basically allowed us to see the effects of stressing on the light emission distribution. We

now turn to examine the light emission behavior during the stressing, at the actual stressing bias.

This will hence give an indication of the distribution of the device degradation as it is actually

happening. If we examine the light intensity at higher biases at later stages of stressing, we can
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Figure 5-7: Integrated light intensity (normalized to ID) across width of standard-parameter
PHEMT, at VDS = 6.6 V, for t = 0 (blue), t = 428 min (green), and t = 849 min (red).
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Figure 5-9: Light intensity (normalized to ID) vs. device width, for light emitted from source side
of device at various times during light-emission experiment, on a standard-parameter PHEMT.

Wg = 50pim. Dotted black lines mark physical edges of device.

also that the light-intensity starts decreasing more in the center, thus concentrating towards the

edges. Fig. 5-9 shows the light-emission profile along the width of the device, for the source side.

The two dotted lines mark the location of the device edges. From this graph it is clear that as

VDS is stepped up, the light intensity emitted from the source side increases and spreads out to

cover the entire device width. One can also see here that for advanced stages of stressing (after

VDS > 7.4V), the light intensity in the center of the device has decreased so much that the profile

becomes "peaked" at the edges of the device.

Fig. 5-10 shows the light-emission profile along the width for the drain side. Again, one can

see here that as VDS is stepped up, the emitted light intensity increases and spreads out over the

width. However the light emission from the drain is more uniform than that of the source (no

major "peaks" form).

All these data suggests that under stressing, device degradation is proceeding in a non-uniform

manner. The initial distribution of light-emission suggests that the impact-ionization rate on the

drain side of the device is initially higher in the center of the device. As the device is stressed,
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Figure 5-10: Light intensity (normalized to ID) vs. device width, for light emitted from drain side
of device at various times during light-emission experiment, on a standard-parameter PHEMT.

Wg = 50Am. Dotted black lines mark physical edges of device.

the center degrades degrades faster than the edges, thus causing a reduction of impact-ionization

(and light-emission) in the center. The non-uniformity in impact ionization rate can arise from

three possible non-uniformities: drain current, electric field on the drain side of the device, or local

temperature. Since there is a linear dependence between impact ionization and drain current, we can

rule out non-uniformity in drain current as this would require the edges of the device to be virtually

shut off. This would have a profound effect in the I-V characteristics of the device which is not

observed. Similarly, since impact ionization in these devices has a negative temperature coefficient,

impact ionization should be more prevalent on the edges of the device (which are expected to be

cooler). This is inconsistent with our observations. Hence, we expect that the non-uniform pattern

of impact ionization arises from a non-uniform electric field distribution on the drain side. This

could easily occur as a result of a non-uniform recess geometry. In order to confirm this, materials

analyses on the devices were performed. This is described in the next section.
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Figure 5-11: SEM micrograph of TLM (L = 2.4m, W = 60pm) illustrating recess length variation
across the device width.

5.4 Materials Analysis

In order to confirm the presence of a non-uniform recess geometry, we examined in detail the

geometry of the n+ recess of TLMs (L = 2.4pm, W = 60pm) through AFM and SEM. An SEM

micrograph of a typical TLM is shown in Fig. 5-11. Using the data from SEM and AFM, we can

make fairly accurate measurements of the recess length across the width of the TLM. A typical

result is graphed in Fig. 5-12, which clearly shows that the recess is longer at the edges and shorter

in the center of the device. This non-uniformity produces a larger electric field at the center than

at the edges, thus concentrating impact ionization towards the center of the device width. Since

the PHEMTs are fabricated using the same process as the TLMs, and we observe analogous light-

emission behavior in the TLMs, then it is likely that this same recess non-uniformity is present in

the PHEMTs.

5.5 Summary

In our study of light-emission of PHEMTs during stressing, we observe a general pattern: initially,

the light concentrates in the center of the device width, but then spreads out when undergoing

high-bias stressing. After enough stressing, the light tends to decrease in intensity, and eventually

becomes "peaked" at the edges. This behavior is remarkably similar to the light-emission behavior

of the TLMs (refer to [17,23]), thus strongly suggesting that the same phenomenon is responsible

in both cases.
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Figure 5-12: Length of n+ recess across width of TLM (from MATLAB analysis of SEM photo-

graph). Marks in red show corresponding values from AFM measurements. L = 2.4pm, W = 60Am.

The origin of this non-uniformity in light-emission is attributed to a variation in the electric

field along the width of the device. From our materials analyses on the TLMs, we observed that

the recess width is actually narrower in the center than at the edges, thus causing the electric field

to be higher in the center. This explains why initially, light-emission concentrates in the center,

and why under stressing, the center tends to degrade faster, thus causing the intensity to decrease

there and eventually peak at the edges.

These findings reveal a new and important dimension in the electrical reliability of PHEMTs -

the uniformity of impact-ionization across the width of the device. Since excessive impact ionization

can potentially have deleterious effects on device reliability, it is important to minimize any non-

uniformities in the recess geometry that can give rise to non-uniformities in the electric field.

This discovery should help develop fabrication processes that minimize impact-ionization-related

electrical degradation in PHEMTs.
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Chapter 6

Conclusions and Suggestions

6.1 Conclusions

In this work we have performed a comprehensive study of the electrical degradation mechanisms of

GaAs RF power PHEMTs. Utilizing our stress and measurement setup we were able to effectively

perform in situ monitoring of device degradation under electrical stressing. The general observa-

tions for our experiments indicated several different forms of degradation associated with the three

regions of the device: the source, gate and drain. Further experiments and analyses investigat-

ing each form of degradation allowed us to formulate hypotheses for the underlying mechanisms.

A cartoon summarizing all of the main forms of degradation identified in this thesis is shown in

Fig. 6-1.

Concerning the drain side of the device, we observed an increase in RD and a decrease in

Imax under electrical stressing. These forms of degradation were of greatest concern as they po-

tentially have deleterious effects on output power, as shown in [7]. In Chapter 3, the results of

various experiments investigating the effects of stressing environment, bias voltage, bias current,

and temperature on the degradation of RD and Imax were discussed. Contrary to what is often

claimed in the literature, our experiments indicated that these forms of degradation were not driven

by impact-ionization or hot-electron effects. Instead, device temperature, the drain-gate electric

field, and the stressing environment played strong roles in degradation, which suggested a corrosion
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Figure 6-1: Schematic of top layers of a GaAs PHEMT, illustrating all the main forms of degradation

that have been identified in this research.
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mechanism on the drain side of the device. From STEM and EDX analysis, we were able to confirm

that both the degradation of RD and Imax were due corrosion on the drain side of the device, albeit

at different locations. The increase of RD was correlated to corrosion on the corner of the n+GaAs

cap, whereas the reduction of Imax was correlated with corrosion on the exposed AlGaAs, closer

to the gate. Whether the damage happened on the AlGaAs or the n+GaAs seemed closely related

to the particular stressing conditions. Under high electric fields, the oxidation was more likely to

occur on the AlGaAs; under high channel temperatures, the oxidation tends to happen mostly on

the n+GaAs cap.

The proposed mechanism behind the corrosion involves the oxidation of Ga and As at the

n+GaAs or AlGaAs surface (anode) and the reduction of oxygen at the gate metal (cathode). The

rate of corrosion depends on the concentration of reactants (including oxygen and water) and the

rate constant, which has an Arrhenius dependence. It was shown that the activation energy for the

corrosion reaction is reduced with increasing drain-gate bias, via anodic polarization, which makes

it easier for Ga and As to become oxidized. This mechanism of corrosion explains the dependences

of of the degradation of RD and Imax on stressing environment, temperature, and electric field.

In addition to the degradation of RD and Imax, in our experiments, other forms of degradation

relating to the gate and source side of the device were observed: a negative shift in VT and a

decrease in Rs. Although these forms of "degradation" seem to improve device characteristics

and are thus of less concern than the degradation of RD and Imax, they do introduce changes in

device characteristics to the extent that could potentially result in circuit malfunction. Thus, it

was important to acknowledge their effects and understand the underlying mechanisms. In Chapter

4, the changes in VT and Rs were discussed and mechanisms were proposed for each.

The negative shift in VT was found to be mostly recoverable with unbiased storage at room

temperature, which suggested a mechanism involving some de-trapping of electrons under the

gate. Initially, this was attributed to hot holes generated from impact-ionization neutralizing the

trapped electrons, as described in [21]. However, later experiments investigating the effect of Lrd

and VDGO + VT demonstrated that the negative shift in VT is actually correlated with the drain-

gate electric field, and not impact ionization as previously thought. This allowed us to identify the
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de-trapping mechanism as field-assisted tunneling of the electrons out of the traps, as discussed

in [46]. Under bias stress, this de-trapping can be thermally activated, with an activation energy

of Ea = 0.42 eV.

In contrast to the shift in VT, the decrease in RS was not recoverable, which ruled out a similar

de-trapping mechanism on the source side. With the exception of our previous work [17, 231,

a permanent decrease in Rs during electrical stressing was never previously reported for GaAs

PHEMTs. From experiments investigating Lrd and VDGo + VT, it was found that the change in

RS was more correlated with impact-ionization that electric field. Also, it was noted the change

in RS tended to "saturate" with time and high bias. Analysis of the temperature dependence

gave an activation energy of Ea = 0.19 eV. All these findings were consistent with a mechanism of

recombination-enhanced defect annealing on the source side, as described in [49]. Under electrical

stressing, the recombination on the source side produced by impact-ionization gives energy to local

defects, causing them to be annealed out. This in turn results in a higher carrier concentration

n, on the source side, thereby reducing Rs. The change in Rs saturates once all the defects are

annealed out.

As suggested by Fig. 6-1, all of our stressing experiments described thus far have examined

degradation in terms of the device cross-section (i.e. across the length of the device). This is how

most HEMT reliability studies in the literature are conducted; device degradation is typically as-

sociated with specific regions pertaining to the device cross-section (e.g. ohmic contact, drain-gate

access regions, etc). However, we recognized that it was also necessary to examine device degra-

dation across the width of the device. In Chapter 5, we described our light-emission experiments

performed on the PHEMTs, done in order to obtain a spatial picture of carrier recombination and

electric field during stressing, and thus obtain a picture of degradation across the device width.

In our study of light-emission of PHEMTs during stressing, we observed a general pattern:

initially, the light emitted from the device concentrates in the center of the device width, but then

spreads out while undergoing high-bias stressing. Eventually the intensity of light in the center

decreases, causing the light distribution to concentrate at the edges. This behavior was remarkably

similar to the light-emission behavior of the TLMs (refer to [17,23]), thus strongly suggesting that
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the same phenomenon is responsible in both cases. The origin of this non-uniformity in light-

emission was attributed to a variation in the electric field along the width of the device. From

our materials analyses on the TLMs, we observed that the recess width is actually narrower in the

center than at the edges, thus causing the electric field to be higher in the center. This explains

why initially, light-emission concentrates in the center, and why under stressing, the center tends

to degrade faster, thus causing the intensity to decrease there and eventually peak at the edges.

These findings revealed a new and important dimension in the electrical reliability of PHEMTs -

the uniformity of electric field and impact-ionization across the width of the device. Since excessive

impact ionization and high electric fields can potentially have deleterious effects on device reliability,

it is important to identify and minimize any factors that can cause non-uniform electric fields across

the device width.

6.2 Suggestions

After uncovering the various mechanisms behind the degradation, we are now in a position to

suggest some possible remedies to alleviate them. First, we will discuss possible methods to prevent

the degradation behind the increase in RD and decrease in Imax. Since corrosion is involved in both

cases, the key to suppressing the degradation is to remove oxygen and water from the semiconductor

surface, thus preventing any reactions from occurring. This could involve surface treatments prior

to passivation that remove residual oxygen and water from the semiconductor surface. Also, the

passivation layer itself could be somehow improved so that it provides better protection from the

environment. For SiO, films, it has been reported that thicker and more compressive stress films

and the incorporation of nitrogen and Si-H bonds in the film improve moisture resistance [50]. One

could also consider using passivation materials other than SiO 2 (such as SiN2) that may offer better

barriers against ion diffusion, which would prevent corrosion. In [51], it was reported that SiN,

passivation offers better resistance to moisture than SiO. films. However, if SiN. films are used, the

PECVD deposition parameters (e.g. gas flux ratio, discharge frequency) must be carefully tailored

in order to ensure a stable, moisture-resistant barrier [52]. Or, instead of PECVD, alternative

139



Chapter 6. Conclusions and Suggestions

nitride deposition techniques (such as that described in [531) may be implemented in order to

deposit high-density nitride passivation layers, which should provide better hermeticity.

But even if such treatments or process modifications cannot be implemented, we have found

another way to alleviate the corrosion degradation. As discussed in Sec. 3.4, it was discovered that

unbiased storage at moderately high temperatures (- 150 - 175'C) prior to stressing tended to

reduce the increase in RD and decrease in 'max observed during stressing. This suggested that the

heating tends to drive out residual oxygen and/or moisture away from the semiconductor surface

(possibly due to increased diffusion at higher temperatures). Therefore, heating could possibly be

employed in this manner to prevent future degradation. However, in implementing this treatment,

caution must be taken as to not employ temperatures so high that other thermally-activated forms

of degradation are introduced (e.g. gate sinking, ohmic contact degradation).

Because the negative shift in VT involves the de-trapping of electrons that is driven by electric

field, the only way to mitigate this change under electrical stressing is to eliminate the formation of

traps in the first place. However, since the change in VT is mostly recoverable with unbiased storage

at room temperature, and does not have as deleterious effects on Pet, there is not too much concern

in addressing this effect. The decrease in Rs is also not of major concern, but as it is a permanent

effect it may be more easily addressed. A more thorough "burn-in" which exhausts this decrease

could be implemented, such that Rs will remain more or less stabilized upon further stressing. This

could possibly be done by biasing the device at high drain current (~ 450 mA/mm) for a short

period of time (~ 5 minutes). However, caution must be taken since during this period of stressing,

RD will begin to increase. Thus the conditions for this source burn-in must be carefully chosen

as to exhaust the decrease in RS as much as possible but minimize any degradation introduced to

RD-

Regarding non-uniformities in degradation across the width of the device, it is important to

minimize any non-uniformities in the recess geometry which will introduce non-uniformities in elec-

tric field distribution. During device fabrication, process steps must be modified to ensure uniform

etching across the entire width of the device. This should result in more uniform distribution of

electric field, which should help improve device reliability.
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6.3 Future Work

Although in this work we have identified a number of physical mechanisms behind degradation in

GaAs PHEMTs, there are still a few issues that could use further investigation. As mentioned in

the previous section, improvements to device passivation should help in preventing corrosion of the

semiconductor surface. Thus, a thorough investigation into improved deposition methods and/or

alternate dielectric materials for higher-density, more impermeable passivation layers would be a

good topic for future research.

Also, the work in this thesis focused on the gradual (non-catastrophic) degradation of PHEMTs

under electrical stress. However, as the issue of catastrophic burnout is also of serious concern in

PHEMT reliability, it is important to understand the mechanisms involved there as well. Studies

investigating the underlying causes of device burnout in GaAs PHEMTs should help to further

improve overall electrical reliability.
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Appendix A

Extraction of Thermal Resistance

As mentioned in Sec. 3.5.1, in order to estimate the channel temperature of a PHEMT under

specific biasing conditions, an estimate of the thermal resistance of the device is required. Thus the

thermal resistances of the PHEMTs studied were extracted by comparing pulsed I-V characteristics

to static (DC) I-V characteristics. Theoretical values for the thermal resistance using analytical

formulas were also calculated.

A.1 Experimental Measurements

As discussed in [54], measurements performed on a very short time scale (pulsed measurements)

eliminate the effect of self-heating. As a result, for pulsed I-V curves, the channel temperature is

approximately constant (independent of bias point), as it is only determined by the power dissipa-

tion at the quiescent bias point [55]. In the case of where pulsed I-V measurements are taken from

a quiescent bias point of zero power dissipation (as in all of our measurements described here), the

channel temperature is simply equal to the ambient temperature [56]:

Teh = Tamb (A.1)

This is in contrast to regular DC I-V measurements, where the channel temperature varies
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according to the power dissipation of the specific bias point, as per Eq. 3.1 (repeated here for

convenience):

Tch = Tamb + Pdiss~jc (A.2)

One can usually assume that at points of same VGS and VDS where two I-V curves share the

same current value, the device has roughly the same channel temperature [57]. Thus, one can use

the point of intersection of a pulsed I-V curve to the DC curve to determine Th for that given bias

point. This allows the thermal resistance to be extracted via Eq. A.2.

In order to perform pulsed I-V measurements, a setup different from the one described in Sec. 2.2

was necessary. We implemented two different types of pulsed-measurement setups: one setup to

pulse the gate, and another to pulse the drain. The former setup and the measured data will be

discussed first. This setup is similar to that described in [58]. Fig. A-1 shows a diagram of this setup.

The device is probed on a Cascade Microtech probe station, using Picoprobe GSG 150 microwave

probes. A Windows PC controls the oscilloscope (Tektronix TDS 640A), the pulse generator

(Agilent 33250A) and the power supply (Agilent E3631A) via GPIB commands in MATLAB. The

chuck temperature was controlled via a Temptronix temperature controller.

Using this setup, pulsed measurements were performed by applying a pulse to the gate of the

device and measuring the response at the drain with the oscilloscope. The gate was pulsed from

VGS = -0.6V (near the pinch-off region) to a moderate positive voltage (e.g. VGS = 0.4 V). A

pulse width of 2 ps with a period of 1 ms was typically used (duty cycle = 0.2 %). As a result,

during measurements the device was normally off (with zero power dissipation), except for during

the short pulses.

A typical output (drain) pulse in response to the input (gate) pulse is shown in Fig. A-2. Here,

VDD is held at 3 V and VGS is pulsed from -0.6 V to 0.4 V (not shown). From this graph one

can see that initially the drain voltage is at VDS = VDD = 3 V, since the device is initially off and

therefore there is no voltage drop across the load resistor. However, once the gate is turned on,

VDS drops to about 0.6 V and stays there for the duration of the pulse (2pis). This is a result of the

voltage drop induced by the drain current drawn through the load resistor. Using reverse load-line
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Figure A-1: Diagram of measurement setup for applying pulse to gate of transistor. R = 47Q2,
C = 0.1pF

analysis, one can then calculate the drain current for this value of VDS. For this particular output

pulse, the change in VDS was 2.428 V, which gives ID = 51.7 mA.

In this manner, one can implement different values of VDD and obtain the corresponding ID

for different values of VDS. Thus by sweeping over a range of VDD, one can generate a pulsed I-V

curve for a given value of VGS. Using this method, pulsed I-V curves as well as DC I-V curves

could be measured. For the DC measurements, a very long pulse width (700pts) and period (1 ms)

were used, such that the self-heating had enough time to take effect.

Fig. A-3 shows the DC I-V curves measured at 25*C, along with pulsed I-V curves taken at

various ambient temperatures, for VGS = 0.4 V. As one can see, the pulsed I-V curves intersect with

the DC curves at different points, depending on ambient temperature. As the ambient temperature

increases, the pulsed curves tend to intersect with the DC curve at points corresponding to higher

power dissipation levels.

In comparing pulsed curves with DC curves, one would expect that, for a given temperature,

the pulsed data to give higher current levels than the DC data. However, one should note that
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for the pulsed measurements shown in Fig. A-3, the drain currents for the pulsed measurements

are actually lower, at least for lower VDS values (compare pulsed data with DC data at 25'C).

The problem here seems to be the effect of current collapse for the pulsed measurements, as seen

previously in [47]. This is likely due to delays caused by trapping at surface-states on the gate-

drain access region, which tend to form a negatively-charged parasitic gate, as described in [59].

Unfortunately, due to the presence of these effects on the drain current, one cannot extract accurate

value of the thermal resistance.

So in an attempt to work around this problem, a different setup was created, where a pulse

was applied to the drain instead of the gate. This setup is shown schematically in Fig. A-4. Here,

the bias on the gate was maintained by the power supply, whereas the bias on the drain was

controlled via the pulse generator (VDS = Vpulse - IDR). The pulse generator was pulsed from zero

(Vpuise = VDS = 0) to a positive voltage, while the gate bias was kept constant. A trace of Vule

and corresponding VDS are shown in Fig. A-5. Here, VGS is kept constant at 0.3 V, while Vul,,

is pulsed from 0 V to 2.37 V. This causes the drain bias to go from 0 V to 1.1 V. Using reverse

load-line analysis, one can calculate the drain current as ID = 27.27 mA.

Similar to what was done previously with the pulsed-gate measurements, a pulsed I-V curve can

be obtained by varying the high-level value of Vpise. Fig. A-6 shows the DC I-V curves measured

at 25 0C, along with pulsed I-V curves taken at various ambient temperatures, for VGS = 0.3 V, on

a device of Wg = 160pm. As one can see, the effect of current collapse is not present here; for 25 C,

the current for the pulsed data is higher than the DC data, which is what we would expect. And

as the ambient temperature increases, the current for the pulsed data steadily decreases, which

makes sense. Unfortunately, the data is more noisy in this case, likely due to inaccuracies caused

by ringing and oscillations, in both the DC and pulsed measurements. However, one can still use

this data to approximate the channel temperature, as the pulsed data give an indication of the

channel temperature of the DC data. By focusing on the data at higher VDS (VDS > 3 V), one

can gather that the channel temperature of the DC curve at high VDS is close to 800C. Since the

last five data points of the DC and pulsed data tend to overlap with one another the most, the

point of intersection is chosen at VDS = 4.32 V (shown as circled in figure), which corresponds to
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by oscilloscope, for pulsed-drain measurement. VGs= 0.3 V, Vpte pulsed from 0 V to 2.37 V.
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Figure A-6: DC I-V curve (at 250C) and pulsed I-V curves taken at 25, 40, 60, 80, 100*C for
Vgs = 0.3 V (VDS pulsed from 0 to about 5 V). W = 160pIm.

a power dissipation of 0.205 W. So if we assume this point has 80*C, then by Eq. A.2 this gives

0.7 = 269*C/W.

However, rather than just assuming this value of 6je for all of our experiments, we need to take

into account for its dependence on temperature. First of all, one must note that for GaAs, the

thermal conductivity r decreases with temperature as per the following equation [321:

n(T) = ref ( T (A.3)
Tref -

Note that all temperatures are in Kelvins. For GaAs, a = 1.25 [32]. Since the thermal resistance

is inversely proportional to the thermal conductivity, then the thermal resistance will increase with

temperature. This dependence can thus be written as [32]:

Ojc(Tamb) = 9 jc,ref (Tambef) (A.4)

However, this just covers the dependence of Ojc on the ambient temperature. One must also

149



Appendix A. Extraction of Thermal Resistance

Tamb [0C] Ojc,O(Tamb) [0C/W|
25 241
30 246
35 251
40 256
50 266

Table A.1: Calculated values of Ojp at zero power dissipation, for various ambient temperatures.
For devices of Wg = 160pm.

consider that, due to self-heating, a device under test will have an even higher temperature than

the ambient temperature, which will increase Oje even more [32]. Thus 0
3c is not only a function

of ambient temperature, but of the dissipated power as well. These dependences are somewhat

complicated, but after linearizing some dependences as described in [32,60] one can approximate the

channel temperature as a function of ambient temperature and power dissipation by the following

equation:

Tch = Tamb ( + (1 - )Pd93 cO(Tamb)) (A.5)
Tamb

Here Ojc,o is the thermal resistance at zero power dissipation. With this equation, one can then

calculate the thermal resistance at the channel temperature as OJc(Pdi, , Tamb) = (Tch - Tamb)/Pis -

So mentioned previously, from our calculations we had obtained jc = 269*C/W, for Tch = 80'C and

Pdiss = 0.205 W. Inverting Eq. A.5, we can solve for 0jc,o at Tamb = 25'C, which gives 241*C/W.

One can now use this value in Eq. A.5 for future calculations of Tch for experiments done at ambient

temperatures of 25*C. For conditions employing different ambient temperatures, Eq. A.4 is first

used to calculate 0 jc,o for that specific ambient temperature. Table A.1 illustrates the values of 9 j,,o

extracted for a variety of ambient temperatures. These values and the average power dissipation

during stressing are used in Eq. A.5 to calculate Tch for specific stressing experiments.

Also, it should be mentioned that Ojc depends on device width, so all the values shown so

far are only valid for experiments on Wg = 160pm devices. Separate pulsed measurements need

to be performed for devices of different widths. To obtain the thermal resistance of devices of
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Figure A-7: DC I-V curve (at 25*C) and pulsed I-V curves taken at 25, 40, 50*C for VGS = 0.3 V
(VDs pulsed from 0 to about 5 V). W = 100pm.

width Wg = 100pm, pulsed measurements were performed on these devices as well. Fig. A-7 shows

the DC and pulsed I-V curves measured for a W. = 100pm device, where a pulse was applied

to the drain and the gate was held constant VGs = 0.3 V. From this graph, one can note that

due to the narrower width, the currents were significantly smaller, thus making the data a bit

harder to analyze for these devices. However, from the clear overlap of the DC data with the

pulsed data taken at 50*C, it does appear that that channel temperature for the DC curve in

the saturation regime must be around 50*C. The intersection point was selected at moderate VDS

(VDs = 3.0 V), corresponding to a power dissipation of Pdias = 0.0846 W. The extracted thermal

resistance at this point is 295*C/W, which gives 6jc,o = 281*C/W, for zero power dissipation (at

T.mb = 250C). And as mentioned previously, Ojc,o varies with ambient temperature so for different

ambient temperatures, Oje,o must be calculated per Eq. A.4. Table A.2 shows the values of Ojc,o

extracted for a few ambient temperatures.
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Tamb [C ] Ojc,O(Tamb) [0C/W]
25 281
50 311
75 341

Table A.2: Calculated values of
For devices of Wg = 100pm.

Ojc at zero power dissipation, for various ambient temperatures.

a
b

' t '45
9.C

Figure A-8: Basic model for theoretical calculation of thermal resistance. Heat source is upper
rectangle of dimensions a x b, and t is the thickness. From [61].

A.2 Theoretical Calculations

The thermal resistance of devices can also be calculated based on analytical equations for heat flow

from a device. Fig. A-8 shows the model used to calculate thermal resistance in this manner. The

rectangle at the top is the heat source with dimensions of a x b, and the thickness is t. The thermal

resistance R9 of that region can be thus calculated from the following equation [61]:

1 f 1 dx

K (a + 2x)(b + 2x)

1 1 a(b+2t)
r 2(a - b) b(a + 2t)

(A.6)

(A.7)

Here, n is the thermal conductivity of GaAs at room temperature (0.46 W/cm0 C). Fig. A-9

shows the model for calculating the thermal resistance of a multi-fingered device. As one can see,

in this model there are two regions, one thin one near the device surface (Region 1) and a thicker

one extending up to the backside of the chip (Region 2). One can then think of the total thermal

resistance as the total thermal resistance for Region 1 (thermal resistance of each finger in parallel
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Figure A-9: Model for theoretical calculation of thermal resistance, illustrating multi-fingered device

and regions for calculating individual thermal resistance values. From [61].

with on another) plus the thermal resistance of Region 2. Putting in all the device dimensions (e.g.

unit finger width, number of fingers, substrate thickness, etc), one can thus calculate the overall

Oje for the device.

Based on these calculations, the thermal resistance for a Wg = 16 0 pm device (4 fingers of 40pm

each) is estimated to be Ojc = 254 0C/W (at room temperature). This is in good agreement with the

value extracted from experiments (as described in previous section) of 6jc,o = 241'C/W (for zero

power dissipation, at room temperature). For devices of Wg = 100tm (2 fingers of 50pm each),

the thermal resistance calculations yield a value of 365 0C/W, which is somewhat higher than the

experimental value of 281'C/W. However, from [62], we know that the accuracy of the theoretical

calculations tends to increase for smaller devices. Thus for our calculations of Teh in this thesis, we

have used the thermal resistance values extracted from the experimental measurements (values in

Table A.1 and Table A.2), along with Eq. A.5.
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A.3 Summary

For the purposes of extracting the thermal resistance of our PHEMTs, we have performed both

experimental measurements and theoretical calculations. For the experimental measurements, we

have implemented two different pulse-measurement setups to obtain pulsed I-V characteristics. The

first consisted of applying a pulse to the gate and measuring the response on the drain. However,

the measurements obtained from this setup exhibited the problem of current collapse, and thus

could not really be used to extract the thermal resistance. So a second setup was created where

the gate bias was kept constant, and a pulse was applied to the drain through a load resistor. The

pulsed and DC I-V curves obtained from measurements using this setup were compared and thermal

resistances were extracted. Although both the pulsed and DC data are somewhat noisy, the data

was able to nonetheless give a reasonable estimate for the thermal resistance in our devices. The

values of thermal resistance obtained experimentally are in reasonable agreement with calculated

theoretical values. In this thesis, for calculations of channel temperature, the thermal resistances

extracted from experimental measurements were used, while taking into account the dependences

on ambient temperature and power dissipation.
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