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ABSTRACT

A cooperative autopilot is developed for the control of the relative attitude, relative
position, and absolute attitude of two maneuvering spacecraft during on orbit proximity
operations. The autopilot consists of a open-loop trajectory solver which computes a nine
dimensional linearized nominal state trajectory at the beginning of each maneuver and a
phase space regulator which maintains the two spacecraft on the nominal trajectory during
coast phases of the maneuver. A linear programming algorithm is used to perform jet
selection. Simulation tests using a system of two space shuttle vehicles are performed to
verify the performance of the cooperative controller and comparisons are made to a
traditional "passive target / active pursuit vehicle" approach to proximity operations. The
cooperative autopilot is shown to be able to control the two vehicle system when both the
would be pursuit vehicle and the target vehicle are not completely controllable in six
degrees of freedom. The cooperative controller is also shown to use as much as 37% less
fuel and 57% fewer jet firings than a single pursuit vehicle during a simple docking
approach maneuver.
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CHAPTER 1

INTRODUCTION TO PROXIMITY OPERATIONS

1.0 Introduction

As the frequency and complexity of space missions increase, the scope of the tasks

to be performed on orbit will grow beyond the capabilities of single spacecraft and will

necessitate collaboration among multiple specialized vehicles. The safe and efficient

operation of multiple spacecraft in close proximity to one another will place new demands

on both pilots and flight control systems in the near future. Inflight construction of the

space station and other complex on orbit tasks will require a flexibility and spontaneity

beyond current proximity operation techniques. Operations between the space station,

orbital maneuvering vehicles, free flyers, and the shuttle will continue to depend on the

ability to routinely perform complex rendezvous, formationkeeping, and docking

maneuvers. 10 Though shuttle crews can perform many of these tasks manually, extended

duration formationkeeping requirements and the introduction of highly maneuverable

unmanned vehicles will cause crew workloads to increase and will necessitate the

development of automatic systems to handle standard proximity operations.

The proximity operations problem has usually been solved using an 'active' pursuit

spacecraft to establish a desired position and attitude relative to a 'passive' target vehicle. 12

This pursuit vehicle approach neglects both the ability of the 'passive' vehicle to perform

complementary attitude and translation maneuvers and the superior fault tolerance of a

system employing two active vehicles. Consequently, the pursuit vehicle maneuver

sequences are less efficient and more constrained than those generated using the control

authority available from both vehicles.

This paper presents a cooperative autopilot approach to the control of joint

maneuvers of two spacecraft during proximity operations. The cooperative approach

considers the two spacecraft as a single system and exploits the rotational and translational

capabilities of each spacecraft in order to control the state of this system. The efficiency

and robustness to jet failures of this new autopilot design is demonstrated.



1.1 Background

Previous treatments of spacecraft proximity operations have focussed on the control

of the motion of a single maneuvering vehicle in a reference frame fixed to a target

vehicle. 18,2 1,22 This pursuit vehicle initiates rendezvous and docking, performs

formationkeeping activities, and implements collision avoidance maneuvers. Though the

target vehicle may perform some independent attitude control during the approach phases of

the rendezvous, the commanded attitude of the target vehicle is pre-determined and is not

updated to account for the actual state of the pursuit vehicle. The closed-loop control used

in this approach to proximity operations formulates reaction control jet firing commands for

the pursuit vehicle in order to minimize the fuel consumed, the time to reach the target state,

and/or the final state error.

Single vehicle control was successfully applied to terminal phase proximity

operations and docking during the Apollo and Skylab missions. On these missions the

target spacecraft remained essentially passive while the pursuit vehicle performed simple,

manually controlled approach maneuvers. During the shuttle era, the target spacecraft have

been science platforms or communication and observation satellites which have not been

designed for extensive orbital maneuvering. Consequently the space shuttle performs most

of the proximity operations maneuvers even though it is more massive than most of its

rendezvous partners. The use of single vehicle control avoids the complexity of the

cooperative maneuvering problem and in current space shuttle operations does not

significantly impact the performance of the two vehicle system due to the imbalance of

control authority between the vehicles.

The introduction of the next generation of advanced spacecraft will add a new

dimension to proximity operations. Spacecraft like the Orbital Maneuvering Vehicle

(OMV) will be unmanned, maneuverable, and designed specifically for the rendezvous

mission. Future enhancements to the shuttle autopilot will make the shuttle a more agile

and more efficient proximity operations vehicle. Artificially constraining one of these

advanced vehicles to remain passive during proximity operations eliminates the natural

synergism that exists between two agile spacecraft. Conversely, employing the control

authority of both spacecraft to perform coordinated maneuvers will provide an increased

level of flexibility and a greater margin of safety during proximity operations.

In many mission scenarios spacecraft will be required to operate at a range of only a

few vehicle lengths. Control of the relative attitude and position of two spacecraft in this



operating regime is especially difficult due to stringent plume impingement constraints and

"fail-safe" collision avoidance rules. 14

Many spacecraft rely on hot gas reaction control jets to perform on orbit maneuvers.

The space shuttle reaction control system utilizes bipropellent (nitrogen tetraoxide and

monomethyl hydrazine) hypergolic jets.4 These jets expel a plume of high velocity gas

when fired that could damage or disrupt a neighboring vehicle during close proximity

operations. While vehicles with delicate optical instruments or solar panels are particularly

sensitive to the chemical effects of the jet plume, spacecraft with flexible or articulated

appendages may experience adverse perturbations due to the force of the plume

impingement. Vehicles operating in close proximity to the space station will be required to

orchestrate maneuvers such that the thruster exhaust does not impinge on the station. 10

When operating in close proximity to a spacecraft which is sensitive to jet plume

effects, the space shuttle crew manually disallows jet firings which may impinge upon the

target spacecraft. For example, if the shuttle passes beneath such a vehicle all upwardly

firing jets are disallowed. 14 In each situation where a jet or set of jets is to be disallowed

the controllability of the maneuvering vehicle must be re-evaluated. During single active

vehicle proximity operations, the pursuit vehicle must be capable of avoiding a collision

with the passive target vehicle under a variety of limited failure modes. The types of

maneuvers a pursuit vehicle may perform become extremely limited under collision

avoidance and plume impingement constraints as the spacecraft get very close. If a large

number of jets on the pursuit vehicle are deselected or have failed, the maneuvers available

to the crew will probably be fairly fuel inefficient and in the extreme case, the pursuit

vehicle may become unable to control the relative states of the two vehicles.

The cooperative control scheme developed in this thesis exploits the natural

redundancy provided by the actuators on the target vehicle in order to make the two vehicle

system more robust to jet unavailabilities.

1.2 Application

The cooperative autopilot approach to the control of two vehicle proximity

operations is applicable to any two spacecraft. This thesis develops the concept for a

system of two shuttle vehicles. As the principle support vehicle for construction of the



space station, deployment and retrieval of advanced spacecraft, and other maintenance and

resupply operations, the shuttle will continue to conduct rendezvous missions well into the

next century. In addition, the shuttle's asymmetrical mass distribution and complicated

configuration of forty-four reaction control jets make it a fine example of a general class of

complex, highly maneuverable spacecraft. Two identical spacecraft are employed to ensure

that the difference in performance between the standard single vehicle control architecture

and the new cooperative control architecture is not a consequence of introducing a more

efficient or otherwise superior spacecraft in place of the non-maneuvering target vehicle.

Specifically, the use of two shuttle vehicles will facilitate direct comparisons between

cooperative control and traditional 'shuttle as a pursuit vehicle' proximity operations

solutions.

The general scenario to be considered in this thesis is a joint maneuver by two space

shuttles operating in low earth orbit (LEO). The shuttles are in nearly identical 90 min (300

nm) circular orbits at a relative range of less than 3000 ft. The maneuver will typically last

less than one orbit. The initial attitude of each vehicle is unconstrained. The two spacecraft

are idealized as three dimensional rigid bodies; the mass (m), inertia (I), and center of mass

location (ran), of each vehicle is constant and known in the vehicle's body fixed coordinate

frame. Similarly, the locations (rj), and the thrust vectors (fj), of the 44 reaction control jets

on each orbiter are known in the body fixed frames. The attitude and position of each

vehicle in an earth centered inertial coordinate frame is available from onboard navigation

devices. The relative states of the vehicles are assumed to be available either as a direct

measurement (by a laser ranger for instance) or as the difference of the inertial states.

These sensor and estimator requirements are not unique to a cooperative control architecture

and have already been proposed for use during traditional proximity operations.22

The cooperative autopilot resides on the 'master' vehicle; the other vehicle is

designated the 'slave'. A communication link similar to those proposed for use by

remotely piloted spacecraft such as the OMV is assumed to exist between the two

spacecraft. The slave vehicle provides mass property parameters, jet status data as well as

current position and attitude information to the master vehicle. The master vehicle passes

the numbers of the jets to be fired and the corresponding firing times to the slave vehicle.



1.3 Overview of the Cooperative Controller

The cooperative controller is a two tiered system consisting of an open-loop

maneuver planner block and a closed-loop regulator block. The maneuver planner employs

a linearized model of the vehicles to plan an open-loop trajectory consisting of an

acceleration burn, a coast period, and a deceleration burn. During the coast phase of the

maneuver the regulator monitors the state errors and computes any necessary corrective jet

firings in order to keep the system following the pre-planned trajectory. Figure 1.1 is a

block diagram of the cooperative controller.

The trajectory solver (chapter 5) accepts a state command form a guidance algorithm

or pilot interface module and computes a trajectory consisting of an acceleration burn, a

coast, and a deceleration burn which carries the system from the current state to the

commanded final state. The acceleration and deceleration jet firing commands are

determined by a simplex jet selection algorithm (chapter 4) which minimizes a cost function

based on total jet firing time. The trajectory itself is optimized to minimize the final state

error.

Once a satisfactory trajectory has been determined the trajectory solver passes the

acceleration jet firing commands, the desired value of the system state at the beginning of

the coast phase of the trajectory, and the deceleration jet firing commands to the trajectory

sequencer. The trajectory sequencer initiates the planned maneuver by passing the jet firing

commands to the jet sequencer which actually implements them. At the end of the

acceleration burn the trajectory sequencer initializes the nominal trajectory state generator

(section 5.3) with the pre-computed value of the system state at the beginning of the coast

phase and activates the phase space regulator (chapter 6).

During the coast phase of the maneuver the nominal trajectory generator updates the

target value of the system state at 12.5 hz using a linearized model of the two vehicle

system. The state error is then computed as the difference between the current state and the

target state. The phase space regulator compares the state error to a set of predetermined

thresholds and determines when a corrective jet firing is required. To implement a

corrective jet firing a velocity impulse request is passed to the simplex jet selection

algorithm which computes an optimum set of jet firing commands. These feedback

initiated jet firing commands are immediately passed to the jet sequencer and implemented.
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At the end of the coast phase of the maneuver the pre-computed deceleration jet

firings are implemented. At the end of the deceleration jet firing sequence the two bum

maneuver is complete. A new maneuver is then commanded or the coast phase feedback

loop is reactivated to maintain the two vehicle system at the commanded state. In the latter

case the output of the trajectory state generator is the commanded state and is constant.

1.4 Outline of this Thesis

Chapter 2 develops the rotational equations of motion for a body in space and

derives an expression for the relative motion of two rigid bodies.

Chapter 3 presents a derivation of the Clohessy - Wiltshire equations for the

translational motion of a body with respect to a neighboring circular orbit. These equations

are then used to develop an expression for the relative motion of two maneuvering

spacecraft.

Chapter 4 develops the cooperative control jet selection algorithm. The two vehicle

jet selection problem is first formulated as a linear programming problem. The properties

of linear programming problems are then presented and the revised simplex algorithm

introduced as a solution technique. Finally the practical aspects of the application of the

revised simplex algorithm to the jet selection problem are discussed.

Chapter 5 develops the two vehicle trajectory solver which determines the open-

loop trajectory for the two burn maneuver. First, the linearized algebraic equations

describing the final state of the system in terms of the initial state and the coast velocity

parameters are derived. An iterative method for determining the values of the coast velocity

parameters which minimize the final state error is then presented. The coast phase nominal

state trajectory generator is formulated.

Chapter 6 formulates the phase space regulator for the two spacecraft cooperative

control problem. The velocity to be gained algorithm and the concept of the phase sphere

are introduced as the basis for general phase space control. The application of phase space

control to the cooperative control problem is then discussed.



Chapter 7 contains a description of the tests used to verify the operation of the

cooperative controller for the two space shuttle example. A detailed analysis of the results

of the tests is presented and comparisons are made between the pursuit vehicle approach

and the cooperative control approach to proximity operations.

Chapter 8 contains a summary of this investigation and outlines some key areas for

further research which should be addressed prior to an actual flight test of this system.



CHAPTER 2

ROTATIONAL MOTION DURING PROXIMITY
OPERATIONS

2.0 Introduction

The rotational motion of a spacecraft is based primarily on rigid body angular
momentum principles. This section provides a derivation of Euler's Momentum Equations.
Though a general closed form solution of Euler's equations does not exist, in certain cases
good approximations may be made and accurate solutions formulated. The essential
approximations to be employed during the development of the cooperative autopilot are
introduced and the linearized rotational equations of motion formulated. Quaternions will
be employed to express the angular displacements between reference frames and are briefly
introduced.

2.1 Kinematics of a Rigid Body 7,8

Consider a rigid body of mass m as a collection of particles with individual mass mi
(figure 2.1). The ith particle has instantaneous position Ri and instantaneous velocity Ri
with respect to an inertial reference frame. The linear momentum of this particle is given by
Newton's Second Law:

Pi = mi Ri (2-1)

The moment of this momentum about an arbitrary point O located at Ro is defined as

hoi = ri x mi Ri (2-2)

where ri is the instantaneous position of the ith particle with respect to an intermediate
coordinate frame centered at the point O. Since Ri = Ro + ri , the first derivative of Ri is
Ri = Ro + ii and the moment of momentum becomes

ho, = ri x mi ii + ri x mi (2-3)



Figure 2.1
Position of particle mi in an

inertial and a rotating reference frame.

The first term in this expression is the angular momentum of the particle observed
in the intermediate coordinate frame and the second term is the correction due to the motion
of the point O.

The total angular momentum of the body about point O is the vector sum of the
angular momenta of the i particles.

Ho =  = rixmiii - Rx Xrimi (2-4)
i i i

If the point O is constrained to correspond to the center of mass of the rigid body, then by
definition

ri mi = 0 (2-5)

and the angular momentum equation becomes

Ho = X ri x miii (2-6)

The time derivative of the position of the ith particle in the intermediate frame with respect
to the inertial reference frame is



ii = r. + x ri (2-7)

where rr indicates differentiation of ri with respect to time in the intermediate coordinate
frame and ao is the angular velocity of the body with respect to the inertial frame. Since the
body is rigid and the intermediate reference frame is fixed in the body, r0 = 0 and

ii = ax ri (2-8)

Substituting this expression into the expression for Ho yields

Ho = x ri x mi(c x ri) (2-9)

As the number of particles in the body is allowed to increase while the individual mi
decrease such that m = I mi remains constant, the particle model of the body approaches a
continuum model. In the limit, this summation over the particle mass elements becomes an
integration over the differential elements of mass, dm.

H. = r x (o x r) dm (2-10)

The argument of this integral is evaluated by expressing the vector products in component
form along the body fixed coordinate directions.

rx (cox r) = ( cox (y2+Z2) - oy (xy) - Oz (xz)) 1
+ (-ox (xy) + coy (x2+z2) - (y)) (2-11)

+ ( -o (xz) - Oy (yz) + o (x2+y2)) i
The components of the angular momentum along the body axes are then

Hx= cxf (y2+z2) dm - y (xy) dm - zf (xz) dm

HY = -x (xy) dm + cyJ (x2+Z2) dm - (yz) dm (2-12)

Hz = -oxf (xz) dm - yJ (yz) dm + oJ (x2+y2) dm

The integrals in the above equations are constant in any coordinate frame fixed to the rigid
body. By convention,



S (y2 2) dm = (x2 2) d = f (x2+y2) dm (2-13)

are defined as the moments of inertia and

=xy= f(xy) dm Ixz = f (xz) dm Iz = f (yz) dm (2-14)

as the products of inertia. The components of the angular momentum may be rewritten in
terms of these constants.

Hx = Ixxtox - Ixyoy - Ixzoz

Hy =- IxyOx + IyyOy - IyzOz (2-15)

Hz = -Ixzox - IyztOy + IzztOz

Matrix notation is often the most convenient way to write an expression for the total angular
momentum.

Ho = I (2-16)

The matrix I is the inertia tensor

[Ixx - Ixy Ixz
I = - Ixy Iyy -Iyz (2-17)

l-Ixz -yz Izz

The rate of change of the angular momentum is calculated by taking the derivative
of this last expression for Ho with respect to time.

Ho = 1i + I, = I*' + oxIo + Io* + I (ox o) (2-18)

Here I* and o'* are the derivatives of I and co in the body fixed reference frame. Since the
inertia tensor of a rigid body is constant in a frame fixed in the body, I* = 0 and hence the
first term on the right hand side of this equation is zero. Since (o x o = 0, the last term on
the right is also zero. The rate of change of the angular momentum is then expressed

Ho = Is) + 0xlO (2-19)



2.2 Euler's Moment Equation 7,8

Newton's second law relates the force on a particle, Fi, to the linear momentum of
the particle, pi.

(2-20)

where

Pi - mi Ri (2-21)

Since the mass of a particle is constant, Newton's second law may be written

Fi = mi Ri (2-22)

From equation 2-6, the total angular momentum of the body can be written in terms
of the of the momenta of the individual particles

Ho = ri x miri (2-23)

Differentiating this expression for the angular momentum with respect to time and noting
that i'i x ri = 0

Ho = X ri x miji (2-24)

Since ri = Ri - Ro

Ho = X ri x miRi
i

+ 0 x miri
i

The origin of the body coordinate frame has been constrained to be the center of mass of
the rigid body. Thus by definition of the center of mass

Smiri = 0 (2-26)

and the rate of change of the angular momentum is

Ho = ri xmiRki

(2-25)

(2-27)



The factor miki is the time rate of change of the linear momentum of the it h particle and
may be replaced using the above expression for Newton's second law

Ho = ri x Fi (2-28)
i

If the external force on the ith particle is defined as Ei and the force exerted on the
ith particle by the jth particle is defined as fij, then the total force exerted on the ith particle is

Fi = Ei + C fij (2-29)

Substituting this expression for the total force into equation 2-28

Ho = X ri x Ei + X ri x fij (2-30)
i i j

The double summation in this equation is composed of pairs of terms of the form

(ri x fij) + (r x fji) (2-31)

From Newton's third law

fij = -fji (2-32)

so that the double sum may be rewritten

, ( ri - rj )x fij (2-33)
i j

In an ideal rigid body, ( no particle deformation ), the mutual forces between particles act
through the particle centers. Consequently, the direction of the fij force vectors correspond
with the direction of the the relative position vectors ( ri - rj ) and each cross product in the
double summation is zero. The rate of change of the angular momentum vector of a rigid
body is

Ho = ri x Ei (2-34)

Ei is the total external force vector applied to the ith particle. The corresponding moment
applied to the rigid body by this force is given by

ri x Ei (2-35)



. and the total external moment applied to the rigid body is

Mo = ri xEi (2-36)

Finally, combining equation 2-34 and 2-36 we arrive at the familiar governing equation for
the rotational motion of a rigid body

IHo = Mo (2-37)

When the total external moment applied to the body is zero, this equation is merely
a statement of the principle of the conservation of angular momentum. In addition, if the
kinematic expression for the rate of change of the angular momentum (equation 2-19) is
substituted for Ho , this equation becomes

Mo = Io + CxI (2-38)

This is the matrix form of Euler's Moment Equations. These three coupled, non-linear
differential equations completely describe the rotational motion of a rigid body about its
center of mass. Though a general closed form solution of Euler's equations does not exist,
in special cases when the body is axisymmetrical, the angular velocity is small, or the
applied moments are large, good approximations can be made and simple closed form
solutions to the resulting linear differential equations derived.

Euler's equations may be written in component form as

Mx = (IxxO - IxyOy - IxzOz)

- IxzCOxOy - IyzCo + Izz"OZ)

+ IxyOxOz - IyyOyO)z + IyzO)2

My= (- Ixyx + Iyyy - IyzOz)

+ Ixx,)xOz - IxyOyOz - IxzCJ)Z (2-39)

+ IxzQ + IyzOxO y - IzzOxCOz



Mz - (- IxzO)x - lyz(Oy + IzzOz)

- IxyO + Iyy(O)xO)y - Ixz()xOz

- IxxCOXOY + Iy + IxzOyCOz

If the angular rates ox, oy,

these equations reduced to

oz are small, the second order terms may be neglected and

Mx = IxxOx - Ixycy -

My = - IxyC x + IyyOy - IyzOjz (2-40)

Mz = Ixz - Iyzy- y + Izzi

Which may be re-written in matrix form as

M= Ic (2-41)

so that the rate of change of the angular velocity is

(2-42)

If in addition, the external moment applied to the

equations of motion become

co = constant

vehicle is zero, then the spacecraft

(2-43)

Many spacecraft employ reaction control jets to perform attitude and position

control. Each reaction control jet on a spacecraft is described by its location (rj) and its

force vector (fj). The moment applied about the spacecraft center of mass (rcm) by the jth

jet is

Mj = (rj -rn) X fj (2-44)

Define aj, the angular acceleration due to the jth jet, as

aj = I Mj (2-45)



If a control vector u is defined such that

UJ1 when the jth jet is firing
Uj 0 otherwise (2-46)

then the equation 2-42 governing the rotational motion of the spacecraft may be written

N

i = aj uj
j=1

(2-47)

where N is the number of reaction control jets on the spacecraft.

2.3 Attitude Displacements 17,20

Consider a coordinate frame rotating with a constant angular velocity co with respect

to a reference coordinate frame. The angular velocity vector may be written as

o = Ii = d~- xi + m i, + n z) (2-48)

Integrating this constant angular velocity over the period At = tl - to

ti t1

Scodt = adO I (2-49)

This angular displacement vector represents a rotation by an angle AO = d (At) about an

axis i~. A more convenient representation of this rotation is Hamilton's four element

quaternion.

q a
q _ =

(2-50)

8, a, 03, y are the Euler Parameters and are defined as

dO At) i
dt



8 = cos ~AO
2 a = sin 1AO2 S= m sinlAO2

From this definition it is clear that

q = aix + + ylz = (sin 2A 0)

and that

a2 + 0+ 2+ 2 1

(2-52)

(2-53)

The new orientation of a reference frame following a rotational displacement 0
about an axis i is given by

qf = qo qe (2-54)

where qo is the quaternion representation of the original orientation of the reference frame
and quaternion multiplication is defined by

ql q2 = 812 - qTq2 + 12+ &2q1 + q1 X q 2

-a1 -01

a 581

71 61

'Y1 -1 X1 561

82

a2

02

7Y2 -

(2-55)

= S(ql) q2

A vector may be rotated thru an angle represented by the quaternion q in the
following manner. Define the four element vector io as

(2-56)

then the rotated vector is

r=q ro q (2-57)

y = n sin -AO2 (2-51)

i

-al

o =



2.4 Relative Rotational Motion of Two Spacecraft

Consider the rotational motion of two rigid spacecraft. Define the relative angular

velocity as

OR = 02 - 01 (2-58)

where co and w2 are the angular velocity of vehicle #1 and vehicle #2. The rate of change

of the relative angular velocity is the derivative of this equation in an inertial reference frame

(WR = 6)2 - (1 (2-59)

Euler's Moment equation provides an expression for the angular acceleration experienced

by each vehicle in terms of the external moment applied to the vehicle. Thus wR may be re-

written

(OR = 12-1(M2 - 02 X 2 0)2) - I1-1(M - (01 X 11 (01) (2-60)

As before, if the angular velocity of each vehicle is small, the second order rate terms may

be neglected. Since the external moments experienced by each spacecraft are primarily due

to reaction control jet activity, the moments M1 and M2 may be expanded as the sum of the

moments applied by the individual jets.

N2 /N

R = 2-1 (r2j -r2m) x f2j - I •(rij -rlcm) Xflj (2-61)
j=1 1(2-61)

The additional subscript has been added in this expression to indicate the vehicle

referenced. As before, if the angular acceleration of the spacecraft due to firing the jth jet is
aj the this equation may be re-written as

WR =c2 j u2j -j 1j (26u j)
=l \j=1 l (2-62)

where ul, u2 are the control vectors for the two vehicles. When none of the jets in the two

vehicle system are active, the angular momentum of the system is conserved and the

governing equation for the relative attitude of the vehicles becomes

CR = 0 OR = constant (2-63)



CHAPTER 3

SPACECRAFT TRANSLATION DYNAMICS

3.0 Introduction

The translational motion of a spacecraft is based upon the linear momentum of an

equivalent mass particle under the influence of external forces. This section derives the
equations of motion for a rigid body undergoing pure translation. The predominant

external force on a spacecraft is the gravitational force of the planet it is orbiting. A
formulation of the general two-body problem is presented. Though a treatment of the

methods generally employed to solve the resulting non-linear second order differential

equations is beyond the scope of this thesis, these equations serve as the basis of a

derivation of the Clohessy - Wiltshire 18 (Euler-Hill) equations for motion relative to

reference point travelling in an unperturbed circular orbit. The primary interest of this

thesis is the control of the relative motion of two active spacecraft. The equations of

relative motion are derived in a "local vertical local horizontal" reference frame.

3.1 Translational Motion of a Rigid Body 7

Consider a rigid body of mass m as a collection of particles with individual mass
mi. The ith particle has an instantaneous position Ri and instantaneous velocity Ri with

respect to an inertial reference frame. The linear momentum of this particle is defined as

Pi = mi Rki (3-1)

Define ri as the instantaneous position of the ith particle with respect to an intermediate
coordinate frame centered at the point O such that Ri = Ro + ri , where R o is the

instantaneous position of the point O in the inertial frame. The linear momentum of the ith
particle is then

Pi = miRo + miii (3-2)

The total linear momentum of the body is the sum of the linear momenta of the i particles



P = mikR + miii (3-3)
i i

Since the mass of the ith particle is constant,

i miii = (i miri (3-4)

If the point O is constrained to correspond to the center of mass of the rigid body, then by
definition

ri mi = 0 (3-5)

and the linear momentum equation becomes

p = XmiRo = Ro mi (3-6)
i i

By definition m = C mi so that the total linear momentum of a rigid body reduces to
i

p = m]k (3-7)

which is just the linear momentum of a point mass m located at the center of mass of the
body. The rate of change of the total linear momentum is the derivative of this expression
with respect to time

= mR0  (3-8)

If the external force on the ith particle is defined as Ei and the force exerted on the
ith particle by the jth particle is defined as fij, then the total force exerted on the ith particle is

Fi = Ei + fij (3-9)

The total force on the body is the sum of the total force acting on each particle

F = Fi = Ei+ fij (3-10)
i i i j

From Newton's third law it is clear that

fij = -fji (3-11)



and thus that the double summation over the internal force vectors in the total force
expression is zero. The total force is then the sum of the external forces applied to the
particles in the body.

F = Ei (3-12)

Applying Newton's second law (Fi = pi) permits p to be eliminated between
equation 3-8 and equation 3-12 and yields the governing equation for translational motion
of a rigid body.

m -= Ei (3-13)

As expected, the pure tanslational motion of a rigid body in the presence of external
forces is equivalent to the motion of a single particle of equivalent mass located at the center
of mass of the body translating under the influence of a single force equivalent to the vector
sum of all the external forces.

3.2 Two Body Problem 17

Consider two bodies with instantaneous positions R1 and R2 with respect to an
inertial reference frame. If the bodies are far enough apart, of have sufficiently spherical
mass distributions and are not in contact with each other, then their mutual gravitational
attraction will act through their mass centers and they may be treated as particle masses ml
and m2. Newton's law of gravitation states that any two particles attract one another with a
force of magnitude

F - Gm1m2
2  (3-14)R12

acting along the line joining them. Here G is the universal gravitational constant and R12 is
the distance between the particles.

R12 = R21 = V(R2 - R1)T(R2 - R1) (3-15)

The vector representation of the gravitational force experienced by each body is



S= Gm(R2 - R) F2 = Gm lm (RI - R 2)
R321 (3-16)

Newton's second law states

F = mk (3-17)

and may be applied to the gravitational force equation for each vehicle to yield two
differential equations describing the motion of the two bodies in the inertial reference
frame.

S= Gm2(R2- RI)
R312 (3-18)R2 = (RI - R2)

R321

The motion of m2 relative to ml is obtained by differencing these equations

(2 - 1) = -G(ml + m 2 ) (R 2 - R 1)
R321

(3-19)

Thus the basic differential equations of relative motion for the two body system is

R+ R R=O
R3

(3-20)

where 9. = G(ml + m2).

In this thesis, the primary interest is the motion of a rigid body about the earth. In
this case, the center of mass of the two body system very nearly corresponds with the
center of mass of the earth. Thus the relative motion differential equations (3-20) may be
interpreted as a description of the motion of a rigid body about a center of attraction.

3.3 Translational Motion with Respect to a Nominal Circular Orbit 18, 7, 11

Consider a reference point travelling in an unperturbed circular orbit about the earth.
The motion of the point in an earth centered inertial reference frame is given by

Io + L Ro = 0
R3

(3-21)



Define a "local vertical - local horizontal" reference frame centered on and moving with this
reference point. The LVLH unit vectors are defined as:

iz Ro iy = Ro xRo = 3-22R 7- y - x = iy Xiz (3-22)l

In other terms, iz is defined opposite the instantaneous orbital radius vector, iy is defined

opposite the angular momentum vector of the orbit, and ix is defined to complete the right
handed coordinate system.

Consider a spacecraft travelling in a separate orbit and experiencing an external

perturbation force such as drag from the upper atmosphere, gravitational anomalies, or
reaction control jet activity. The motion of this vehicle in an earth centered inertial reference
frame is governed by

I1 + R =
1 = a (3-23)R3

where al is the force per unit mass of the perturbation force. The motion of the spacecraft

relative to the reference point is described by the difference of the second order equations

describing the individual motions in inertial space.

i = (1- ) =  R- _ R3 + a (3-24)

Here rl is defined as the instantaneous position of the spacecraft relative to the reference
point O.

The position of the reference point, Ro, and the relative position vector, rl, are
easily expressed in the LVLH coordinate frame as

Ro = [ 0 -RoIT  (3-25)

rl = [x y z ]T (3-26)

Since R1 = Ro + rl, the inertial position of the spacecraft may also be expressed in the
LVLH coordinate frame

R1 =[x y (z- Ro) ]T (3-27)



The ratio

- (lT RoP" (n RTRI)R ( (R R 1  (3-28)

may be expressed in terms of the LVLH coordinate variables by substituting the expression
in equation 3-25 for Ro and the expression in equation 3-27 for R1.

= R3 (x2 + y2 + (z - Ro)2) -3/2 -29)
R3 (3-29)

During proximity operations rl << Ro and therefore x, y, z << Ro. Under this condition,
the second factor in equation 3-29 may be expanded as a binomial series and the equation
re-written as

SR (Ro - )-3 R -5(x2 + y2) + H.O.T. (3-30)

Expanding the (Ro-z) terms as binomial series and collecting similar terms yields
= 1 + 3 (x2 + y2) + 5 + H.O.T. (3-31)

Since -x_ Y _ << 1 second order terms involving these ratios are neglected leaving
Ro Ro Ro

R3 = 1 + 3 (3-32)

Substituting this expression into equation 3-24

r= (Ro -(1 + 3 R) + al (3-33)

and noting again that R1 = Ro + r

i= R - 3-R - 3 -r,) + a1  (3-34)
R3 Ro Ro

z
Since RO << 1, the last term in the brackets represents a small fraction of the LVLH
coordinate displacements and may be neglected without introducing significant errors.



With these simplifications the linearized differential equation governing the motion of a
spacecraft relative to a unperturbed reference orbit becomes

-xJ
ji = ~ -yi + al (3-35)

2zI

The complete derivative of the position of the spacecraft relative to the orbiting
reference point may be written as

ri = r, + co x r (3-36)

where ri is the derivative with respect to the LVLH coordinate system and o is the
angular velocity of the LVLH frame relative to the earth centered inertial frame. The
complete derivative of this relative velocity is the relative acceleration.

ii = rI + 2( X r) + 6x r1 + Wx ()x rl) (3-37)

Since the LVLH coordinate frame is aligned with the instantaneous radius vector of the
reference orbit, the angular velocity of the LVLH frame is equal to the instantaneous
angular velocity of the reference point about the center of the earth. For a general
unperturbed reference, this angular velocity is time varying and equal to

o = h = _ (3-38)
dt R

where h is the massless angular momentum of the orbit.

When the reference orbit is defined to be an unperturbed circular orbit, Ro is a
constant and equal to the semi-major axis of the orbit. From Kepler's Second Law (equal
areas in equal time) the angular velocity of the circular orbit is constant and equal to the
mean motion of the orbit

CO= h = -Ioly (3-39

Here rlo is the mean motion and iy is the cross-plane unit vector of the LVLH frame. Thus
for a circular reference orbit the complete derivative of the relative position vector may be
written



x1 -zi xI
y ** 0 2112 0 (3-40)

ri = + 2 0]0 - 2120

Eliminating ii between this kinematic expression and equation 3-35 yields the set of three
second order linear differential equations for the relative motion of a spacecraft in the
LVLH reference frame.

Xl = 2Tlo z1 + ax

Y**= - Tloyl+ ay (3-41)

z* = - 21 0 x + 3lozl + az

These equations are known as the Clohessy - Wiltshire (Euler - Hill) equations and are
often expressed is state space form (X = A X + B f ) as

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

o 0 0 0 0 21

0 -192 0 0 0 0

0 0 3r12 -2rn 0 0

xl

Yi
Z1

0 0 0
00 0 fx

+ 0 0 0 fy (3-42)
mi' 0 0 f'
0 mi1 0

S0 0 mi'

- _ .1 _g-j t

where al has been replaced by mi'f.

The character of the motion of an unpowered satellite may be ascertained by
inspection of equations 3-41 or equation 3-42. The motion of the satellite in the direction
perpendicular to the orbital plane (iy ) is uncoupled from the motion along the other LVLH
directions and is a simple harmonic oscillation with a period equal to the orbital period of
the reference point, 2. Qualitatively, this motion is the consequence of a slight difference

in the inclination of the spacecraft and reference orbits.

The motion along the x and z axes is a coupled oscillation. Note however, that
when the vehicle is positioned on the LVLH x axis (zi = 0) with zero inplane velocity
(O1, ii = 0) the second derivatives of x and z are also zero and the vehicle is at an

Yl
xl

x1

Yil



equilibrium point. Consequently, positions along the x axis are efficient points at which to
stationkeep and are commonly exploited during many types of proximity maneuvers.

The complete solution of the Clohessy-Wiltshire (C.W.) equations is the sum of
their homogeneous and particular solutions. Equations 3-41 may be written as a set of
unforced differential equations

x= 2r7io

S= _- i2 y (3-43)

z = - 210 i + 3"12 z

For simplicity the subscript 1 has been dropped and the '*' replaced with '' though the
derivative is still to be carried out in the LVLH frame. As noted above, the second equation
represents a simple harmonic oscillation and thus the equation governing the motion in the
cross-plane direction is

y = yo cos lot + - sin riot
r10 (3-44)

with first derivative

S= •o cos 1 0t - yo T0 sin rlot (3-45)

Yo and 'o are respectively the initial out-of-plane position and the initial out-of-plane
velocity.

To solve the remaining two coupled differential equations describing the in plane
motion, integrate the first equation and evaluate the resulting integration constant at the
initial condition (tO-0, x=xo, z=zo, etc.)

i = 2TIo0 + (io - 2To zo) (3-46)

Substitute this expression for x into the third equation and collect common terms.

.= - 12 z + (4112 zo - 200io) (3-47)

The solution to this equation will take the form z = Acos7it + BsinTrt + C, where A, B, and
C are constants to be determined from initial conditions. The solution is



z = 2io 3zo cos 7ot +\11 0 (3-48)

and has first derivative

z = zo cos riot - (2o - 3iozo) sin riot (3-49)

Substitution of this expression for z into the above equation for 3 yields

= (40 - 6blozo) cos rit + 2iosin olt + (6TIzo - 3io) (3-50)

Since each of the coefficients in this equation is constant, the governing equation for x may
be obtained by direct integration. The resulting integration constant is again evaluated at the
initial condition, t = 0.

x _ 40 - 6zo sin lot 2'o cos rot + (6iozo - 3o) t + xo + 2ýo1o 0o
Unlike the other equations, this equation contains the secular term (6ilozo - 3io) t.

This term drives the spacecraft in the positive x direction if zo > 0 (spacecraft is below the
reference point) and in the negative x direction if zo < 0 (spacecraft is above the reference
point). This characteristic of the relative motion is primarily due to the small difference in
the semi-major axis (and thus the period) of the two orbits.

These

organized in a

six equations for x, y, z, i, f,, i in terms of
matrix structure and written as

their initial values may be

0 6riot- 6S 4 S-3t
TIO

0

.2 (1- C)
rbo

4C- 3

0

-2S

0

1S
rlo

0

0

C

0

2(1
rio

0

1-S

2S

0

C

where 'C' and 'S' have been substituted for the expressions 'cos riot' and
homogeneous solution is in state transition matrix form,

Xh(t) = (D(t) x(to)

'sin riot'. This

(3-53)

(3-51)

x

z
Yl

Zt

0 C

0 0
0

-rloS

0

C)
0

4-3C

6rio(l- C)

0
31oS

xo

Yo

zo

(3-52)

zo sin riot +
ro

1

4zo - 2do\ Bol



The complete solution may be evaluated using the sum of the particular and the
homogeneous solutions.

Sotf

x(t) = Q(t) x(to) + D(r) B(r) f(t) dt

The matrix B(t) is the control weighting matrix identified in equation 3-42. Since B is
constant for a fixed vehicle configuration, the integral in equation 3-54 may be evaluated
for periods of constant thrust ( f(t) = f ).

Q 0(r) B(t) f(-) dT = Q(rt) dT B f = F(t) mi'f
1J 1

(3-55)

F(t) is a matrix and is dependent only on the length of the period of constant thrust and the
mean motion of the reference orbit.

1(t) =

4 (1 - C)- 3t 2

2
0

4S- 3t

rloZ( -C

0

(1 - C)2

r1o

0

0

-(1 - C)2

2 (1 - C)
rio

0

-1-S
rno

(3-56)

The complete solution of the Clohessy Wiltshire equations for a
thrust in matrix can be expressed using matrix notation as

x(t) = dQ(t) x(to) + F(t) mi'f

period of constant

(3-57)

3.4 Relative Translational Motion of Two Active Spacecraft

Consider two spacecraft travelling in very similar near circular orbits. In addition
define an LVLH coordinate system attached to a reference point travelling in a neighboring

(3-54)



unperturbed circular orbit. The motion of each spacecraft with respect to the reference
point is described by equation 3-57. The relative position of the two spacecraft is

XR(t) = x2(t) - xI(t) (3-58)

which may be expanded as

XR(t) = O(t) XR(tO) + 1(t) (n61 f2 - mlfi ) (3-59)

Since the perturbation forces are primarily due to reaction control jets the external forces fl
and f2 may be expanded in terms of the contributions of the individual jets. The equation
for the relative position of the two spacecraft becomes

S N2i N
xR(t) = D(t)XR(tO) + F(t) In f-2j m il f1j (3-60)

j~



CHAPTER 4

JET SELECTION FOR COOPERATIVE CONTROL

4.0 Introduction

The cooperative jet selection algorithm must select an appropriate set of reaction
control jets on each spacecraft and compute the corresponding firing times in order to
simultaneously implement the rate change requested by the control system and minimize a
linear fuel expenditure function. A linear programming solution to the single vehicle jet
selection problem was incorporated into the shuttle OEX autopilot and successfully flight-
tested on missions STS 51G and STS 61B in 1985. The extension of this algorithm to a
two spacecraft system was first performed by B. Persson at the C.S. Draper Laboratory 16.
This section presents a discussion of this extended linear programming solution to the
multi-vehicle jet selection problem.

4.1 The Two vehide Jet Selection Problem.

The cooperative autopilot developed in this thesis controls the attitude of the master
vehicle with respect to an external reference frame, the attitude of the slave vehicle with
respect to the master, and the position of the slave vehicle with respect to the master.
Define an activity vector, Aj, to be the second derivative of the control variables in response
to a firing of the jth jet.

Aj = OR (4-1)

where Woaj is the rate of change of the angular velocity of the master vehicle, coRj is the rate
of change of the relative angular velocity vector, and vRj is the rate of change of the relative

linear velocity. Expressions for each sub-vector in this nine dimensional activity vector
may be derived from the treatment of rotational and translational motion provided in chapter
2 and chapter 3.



The rate of change of the relative angular velocity is the difference of the angular
accelerations experienced by the individual spacecraft.

R = (j2 - •1 (4-2)

Similarly, the rate of change of the relative linear velocity is

vR = i2 - Vl (4-3)

Each reaction control jet on a spacecraft applies a linear force and a moment about
the spacecraft center of mass when fired. The linear and angular acceleration of the
spacecraft in response to a firing of the jth reaction control jet are

1j = m-1fji (4-4)

j = I-1((rj - rC) x fj) (4-5)

Here I is the vehicle inertia matrix, m is the vehicle mass, rj is the location of the jth jet,
r. is the location of the center of mass of the vehicle, and fj is the jet force vector.

The jets on the master vehicle have a direct effect on the angular velocity of the
master, but as seen in equations 2-62 and 3-60 an opposite effect on the relative angular
velocity and relative linear velocity. The nine dimensional activity vector for a master
vehicle jet is defined to be

Oa [I I 1 ((rlj - rcm) x f1j )

A = R = (-I1 ((rlj- r 1cm) x f1j (4-6)

LVR -j -mi1 f lj

The jets on the slave vehicle have a direct effect on the relative angular velocity and the
relative linear velocity of the system, but have no effect on the angular velocity of the
master vehicle. The nine dimensional activity vector for a slave vehicle jet is

ma 0
A2j 1=  R = 2( (r2j- r2cm) X f2j (4-7)

-VR 2j L 11 f2j



The impulse provided to the system by a master vehicle jet firing is the integral over
time of the rate of change of the velocities effected by the jet.

AWj- = [AVRj

[AVR. 1j

dt =
=o A ljdt= I l q i

-I-' ((rj - ricm)x fl1 )dt

1-ml flj dt

Similarly, the impulse provided to the system by a slave vehicle jet firing is

A(a
AW2j A R = A2jdt =

LAVR- I2j

If each vehicle may be accurately modelled as a rigid body with constant mass, the
parameters rj, rcm, I, and m will remain constant during the integration if it is performed in
the respective body fixed frame. For a non-throttleable reaction control jet fj is also
constant. Under these assumptions the nine dimensional impulse provided by the jth
master vehicle jet and the jth slave vehicle jet reduce to

I" ((ril - ricm) x flj
AWlj = -I11 ((r lj - rcm) x flj) (tl - to) = Alj Alj Atlj

-mj1 fij

0
AW2j = 2-1 (r2j - r2cm)x f2j )(tl - to) = A2j At2j

n~1 f2j

(4-10)

(4-11)

(4-8)

Jl t 1

mTl f2j dt

(4-9)

rlcm) x flj )dt

1l((r2j - r2cm)X f2j )dt

1 l 8 q

Ir"l ((rlj -



The total impulse provided by firing a group of jets on both vehicles is the sum of
the impulses provided by the individual jets.

Ni Nz
AW = AW 1 + AW 2 = C Alj Atlj + 1 A2j At2j (4-12)

j=1 j=1

Here N1 and N2 are respectively the number of jets on the master and the number of jets on
the slave vehicle. For those jets not fired during the sequence, Atj = 0.

The components of the activity vectors defined in equation 4-10 and equation 4-11
are expressed using body fixed parameters of the two spacecraft. Combining these vectors
as suggested in equation 4-12 requires that the elements of the activity vectors be expressed
in a common coordinate frame. Define a general activity vector

Aj = (4-13)A.L aR

where aa is the angular acceleration of the master vehicle expressed in the master vehicle
body frame, aR is the rate of change of the relative angular velocity expressed in the master
vehicle body frame, and aR is the rate of change of the relative linear velocity expressed in
the reference LVLH frame. In terms of the components of the body frame activity vectors
and the appropriate rotation quaternions this general activity vector is written

00'l[ II1 ((rlji - rlcm) x flJ

S-II 1 ((rlj -rcm) x fj) for 1 j : N1

qlL VR 41LJlj -mll 91L flj _JL

Aj= L Oa 0 (4-14)
q211RR 2r11 -= 21 21 (r r2 m)x f2  1  for N j +N2

AMLRL1 ml2j L q2L f2j 2L

Here q1L is the quaternion representation of a rotation from the master vehicle body frame
to the reference LVLH frame. Similarly,2Lt is the rotation from the slave vehicle body
frame to the reference LVLH frame, and -21 is the rotation from the slave vehicle body



frame to the master vehicle body frame. qlL , q2L , and q21 are assumed to be known and
constant during the jet firing sequence. This approximation is appropriate whenever the
vehicles have small angular velocities and the jet firing duration is short.

Equation 4-12 for the total impulse applied to the two spacecraft system can be now
be written

N1+N2
AW = Aj Atj (4-15)

j=1

or in matrix notation as

AW = At (4-16)

where A is the 9x(N 1+N2) matrix of activity vectors

(a1) (a2) " aa(N1) a(N1+1) "' a(N+N2)

A = [aR(1) aR(2 ) " ( aR(N,) aR(Ni+1) "... (R(NI+N 2) (4-17)

aR~1)- aR(2 ) "' aR(N,) aR(N,+1) "'" aR(N1 +N2)

and t is the (NI+N2) dimensional firing time vector

t = [ t1  t2  ... tN, t1N1+l .. tNI+N 2] T  (4-18)

If the total impulse AW to be delivered to the system of two vehicles by a jet firing
sequence is specified by the cooperative autopilot as AWe , then the jet select algorithm
must determine an appropriate set of jet firing times t to satisfy

AWe = At (4-19)

If the rank of matrix A is nine (full rank) then there exists at least one subset (basis)
of nine linearly independent activity vectors which span nine dimensional space. Since any
other nine dimensional vector may be expressed as a linear combination of a set of basis
vectors, the structural constraint equation has at least one solution. If the rank is nine and
N1+N2 > 9 then the system of equations is under-constrained, the basis set is not unique,
and an infinite number of solutions are possible. Of these possible solutions, only those
solutions where tj > 0 for j= 1 to NI+N2 need to be considered since negative jet firings are
not feasible. The objective of the jet selection algorithm is to select the optimum solution
from this "smaller" infinite set.



The optimum solution will satisfy the constraints in equation 4-19, be non-negative,
and minimize a linear fuel expenditure function (cost function)

F(t) = c1 t1 + c2 t2 + . -- + CN-1 tN-1 + CN tN (4-20)

where cj is the cost coefficient for the jth jet and is determined based on fuel usage, the
lifetime of the jet, and vehicle geometry heuristics. In this equation N (= NI+N 2) is the
total number of jets on the two spacecraft. It is no longer necessary to differentiate between
jets on the master vehicle and those on the slave vehicle.

The jet selection problem as stated in equations 4-19 and 4-20 is formulated as a
linear programming problem. The characteristics of linear programming problems and their
solutions are discussed in the following sections.

4.2 Linear Programming 6

The general linear programming problem is to determine the values for the
unknowns tl, t2, ...tN which minimize a linear objective function

F(t) = CT t (4-21)

subject to the m linear structural constraints

At _<P (4-22)

and the N non-negativity constraints

ti 2 0 for i = 1,2,...N (4-23)

Two important characteristics of linear programming problems are utilized in most
solution algorithms:

- The solutions to the set of m+N constraint equations form a convex set

- The optimal solution lies at an extreme point of this set

A convex set is defined as a set of points defined such that a line segment joining
any two of the points in the set lies entirely within the set. Figure 4.1(a) shows a two



dimensional convex set where the line segments joining any two points x1 and x2 lies
completely within the set. In figure 4.1(b) it is possible to define a line segment x1x2 such
that a portion of the segment lies outside the set. This set is not convex.

EXTREME POINTS

Figure 4.1(a)
A convex set.

Figure 4.1(b)
A non-convex set.

Each of the m+N inequality constraints in equations 4-22 and 4-23 describes a
halfspace on and below a hyperplane which partitions the m-dimensional space in two.
The hyperplane is the constraint boundary and is described by the equation formed by
replacing the inequality with an equality. The intersection of these halfspaces is by



definition a polygonal convex set and represents the solution space of the set of
inequalities. In two dimensions a hyperplane is a line and the halfspace defined by a <
inequality is the halfplane below the line. The trapezoidal region in figure 4.1(a) is the
intersection of four such halfplanes and represents the set of feasible solutions to a set of
linear equality constraints. In contrast, the notch region in figure 4.1(b) cannot be
constructed as the intersection of a set of halfplanes. Note that points xl and x2 are on
opposite sides of the perimeter segment PiP2 and thus cannot both satisfy an inequality
formulated about the line containing the PiP2 segment. This region cannot represent the
solution set for a set of linear equality constraints.

An extreme point is a point in the convex set which does not lie on any line segment
connecting any two other points in the set. For a convex set defined in N dimensional
space, all the extreme point solutions lie at the intersections of N of the m+N hyperplanes.
Note that not all such intersections are extreme points of the convex solution set. In two
dimensions the extreme points lie at the intersections of the constraint lines. In figure
4.1(a) the corners of the trapezoidal region are the extreme points but the point 'a' is not.

While any point in the convex set described by the m structural and N non-
negativity constraints is a "feasible" solution to the linear programming problem, extreme
point solutions are "basic feasible solutions", (i.e. only m of the tj are non-zero). To
demonstrate this, note that the structural inequality constraints may be re-written as
equalities by introducing m "slack" variables to preserve this solution space.

At + s = P where s = s2 (4-24)

The values taken by the slack variables indicate the location of the solution with respect to
each inequality constraint. If si > 0 then the left side of the inequality is less than the right
side and the constraint is satisfied; if si = 0 then the two sides are equal and the solution
point lies on the constraint boundary; if si < 0 then the left side is larger than the right and
the constraint has been violated. Obviously si > 0 for all feasible solutions.

The extreme points of a convex set lie at the intersections of N of the constraint
boundaries and thus simultaneously satisfy N of the m+N constraints in their equality
form. If k of these N satisfied constraints are structural constraints then the corresponding
k slack variables are zero. The other N-k boundary equations satisfied at the extreme



point correspond to non-negativity constraints and thus N-k of the tj are also zero. Since
there are N+m total variables, k + (N-k ) of which are zero, the extreme point solution has
at most m non-zero values and is thus a basic feasible solution.

Since a extreme point solution has at most m nonzero tj, equations 4-21 and 4-22
may be written in terms of a vector i containing the m non-zero tj, a square matrix B
containing the corresponding m columns of the structural constraint matrix A, and the
vector C containing the m corresponding cost coefficients.

Bt = P (4-25)

F(t) =Ct (4-26)

In addition, an extreme point of the convex set is defined as a point that does not lie on a
segment between any two other points in the set and therefore may not be expressed as a
combination of any two other solutions. Consequently, t is a unique solution to equation
4-25. From linear algebra, if B is not full rank then an infinite number of t will satisfy
equation 4-26. Therefore the m columns of B must be linearly independent and form a
vector basis for m dimensional space.

The optimal solution to the linear programming problem is the member of the
convex set of solutions to the inequality constraints that also minimizes the objective
function. To demonstrate that the optimal solution is an extreme point of the convex
solution set, define the gradient of the object function as

G [dF(t) dt)] =. CT (4-27)

Since the objective function is linear, G is constant and specifies the direction of maximum
decrease of the objective function. The point on the convex set which extends furthest in
this direction is the optimum solution and will be an extreme point of the set. In the
unusual case that the gradient vector is perpendicular to a hyperplane segment between two
extreme points, every point on the segment is optimal and all have equal cost.

In figure 4.2 a gradient line representing the direction of maximum decrease of an
objective function has been superimposed on the two dimensional convex solution set of
figure 4.1(a). Point 'a' extends the furthest in the specified direction and is therefore the
minimum cost solution.
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Figure 4.2
Gradient method for finding the optimal extreme point solution.

In a two or three dimensional system involving a small number of inequality
constraints, it may be acceptable to simply evaluate the objective function at each extreme
point and select the solution that corresponds to the minimum result. If the dimension of
the system is large, a more efficient method of selecting the optimal solution point from the
numerous (but finite) set of extreme points is required. The Revised Simplex algorithm is
an efficient method for systematically evaluating the extreme point solutions to the
constraint equation and determining the optimal solution. The next section discusses the
theoretical basis for the simplex method and presents as overview of the algorithm itself.

4.3 The Revised Simplex Algorithm 6,2

The previous section established two important facts:

(1) The optimal solution of the linear programming problem lies at an extreme point
of the convex set of feasible solutions.

(2) Each extreme point is a basic solution (t) and is associated with a set of m basis
vectors (B) and a value of the objective function (F( )).

The Simplex algorithm provides a systematic method to move from the current
extreme point solution to one with a lower objective function value by replacing a basis
vector with a column of the structural constraint matrix A. The incoming column vector is
chosen based on its effect on the value of the objective function. The outgoing basis vector

46



is selected to insure the feasibility of the new solution. Simplex iterates on this vector by
vector replacement process until either the optimal solution has been found or it has been
established that no feasible solution exists. The Revised Simplex algorithm actually
implemented in this research operates in the same manner but is computationally more
efficient than the standard Simplex method.

From equation 4-25 an extreme point solution is described by the matrix of basis
vectors B and the basis solution vector i

Bi = P (4-28)

Since B is a basis set, every column of the structural constraint matrix A may be expressed
as a combination of the columns of B

Aj = B Yj (4-29)

This equation defines the combination coefficients for the non-basis vector Aj as

Yj = B-1Aj - Yj Yj
Ymi (4-30)

Using equation 4-29 to both add and subtract i units of the the non-basis vector Aj
from the left hand side of the extreme point solution in equation 4-28 yields

B(t - Y) + ~ Aj = P (4-31)

Thus the addition of 3 units of Aj requires a reduction of each ti by Pyij in order to
preserve the equality. As 3 increases the coefficient of the ith basis vector will decrease if
the corresponding combination coefficient element yij is positive. (If none of the yij are
positive then the optimal solution corresponds to the current extreme point.) Eventually the
coefficient of one of the basis vectors (say bk) will become zero; effectively removing it
from the basis solution. This occurs when

tk = fyij i.e. at tk
yij (4-32)

At this point the coefficients of the other m- 1 basis vectors may be calculated according to



ti = ti - PYij = ti - tkYij
Ykj (4-33)

and equation 4-31 re-written as

bi t1 + b2t2 +... + bk(0) + --- + bmtm+ Aj = P (4-34)

Since the coefficient of bk is 0 the left side of this equation is still the weighted sum of only
m column vectors. The new basic solution and objective function value may be expressed
in matrix notation by replacing the outgoing basis vector bk with the incoming non-basis

vector Aj, setting the corresponding element tk = J and the corresponding cost coefficient

Ck = Cj

Bt =P (4-35)

F(it) = C t (4-36)

The feasibility of the solution has been preserved by selecting the outgoing basis vector to
.. ti

be the vector corresponding to the minimum positive ti ratio.yij

In terms of the objective function, the reduction per unit of Aj of the ii by yij
corresponds to an improvement of C Yj, however, the addition of a unit of Aj into the

solution represents an increase in the objective function of cj. The net decrease in the
objective function per unit of Aj is

AF = T Yj - cj (4-37)

Substituting the expression for Yj from equation 4-30 this becomes

AF = T B- 1 Aj - ci (4-38)

The net decrease of the objective function is calculated for each non-basis vector in the
constraint matrix A . A row vector may be defined as

AF =[AF 1 AF2 ... AFN]

[ ATB-A1 - c1  TB1A2 - 2 ... TB-1AN - CN

=CTB-1[ A A2 ... AN ] - [Ci c2..CN] (4-39)



= T B1 A - C

The member of the constraint matrix A selected to be included into the basis is the vector
corresponding to the maximum positive element of the vector AF. The value of the
objective function at each extreme point is (equation 4-26)

F)= •t (4-40)

From equation 4-25

S= B-1 P (4-41)

So that the value of the objective function may be expressed for any basic solution as

F() = T B- 1 P (4-42)

Note that in order to select the incoming vector, the combination coefficients for each
column of A must be computed and AF formed using equation 4-30. These operations are
computationally very intensive. A more direct manner performing the basis update is
required.

It is useful to define a partitioned matrix T representative of the "simplex tableau"
described in much of the literature on linear programming.

I
-FtI (4-43)

I F(t)J

Here Y is the matrix of combination coefficient vectors corresponding to the columns of the
constraint matrix A and is calculated using the current extreme point basis B.

Y=[ Y1  Y2  ... YNI

= [ B-1A 1  B-1A 2  " B-'AN ] (4-44)

= B-1A

Substituting equations 4-30, 4-39, 4-41, and 4-42 into this partitioned matrix yields

T



which may be factored as B-1A B-PT= ICB-A - C 0 B-1P

B 0 -- 1- A P

-C 1 -C 0 (4-46)

"• -1 ^,

B A

Note that the AF vector may now be computed as an inner product of the successive
columns of A with the last row of B •. The combination coefficients need only be
computed after the incoming basis vector has been selected from the columns of the
constraint coefficient matrix. In addition, the (m+l)x(N+1) matrix A is not affected by a
change of basis and remains constant during the Simplex iterations. The B matrix
however, must be updated each time a new vector is swapped into the basis.

An efficient method of performing the update of the B matrix may be developed
as follows. Each column of the augmented basis B is

bj forj = 1 to m bm+l (4-47)

The incoming constraint matrix column Ak corresponds to the kth column of A which is

Ak = -k (4-48)

and may be expressed as a linear combination of the columns of the augmented basis B

Ak = BYk (4-49)



If the I 't basis vector (bl) is replaced by Ak then the new basis (B) may be written as

B =BE

where E is an "elementary matrix"

1 0

0 1

o 0

o o

... Ylk

.-. Y2k

• " - Y/k

...- Y(m+lk 1

(4-51)

Taking the inverse of each side of equation 4-50

(B) 1

1 0

0 1

0 0

0 0

= E-1 B-1

-Ylk

Y/k
-Y2k
ylk

1
Y/k

-y(m+i)k

Ylk

(4-52)

0

0

0
•

O

(4-53)

The update of B inferred by this equation may be implemented on an element by element

basis as

b J Yi k II for i / i=ltom+l

j = 1 to m+1

and

(4-50)

(4-54)



bij = for i=/ j=ltom+l
SYlk (4-55)

Thus by updating the inverse of the augmented basis directly the computation of the
(m+1) dimensional inverse B - and a full set of combination coefficients has been avoided.

4.4 Implementation of the Revised Simplex Jet Select Algorithm 216

The jet select algorithm employed as part of the cooperative autopilot developed in
this thesis is a nine dimensional implementation of the Revised Simplex method described
in the last section. The principle input to the algorithm is the nine dimensional rate change
request (AWe) generated by the steering algorithms. The jet select software assigns
appropriate firing times to the reaction control jets on a pair of spacecraft in order to
implement the requested impulse.

The example under study in this thesis is a system of two space shuttles. Each
shuttle has a complement of 44 stationary reaction control thrusters; 38 primaries (870 lbf)
and six verniers (24 lbf). Each jet is described by its body fixed position vector, body
fixed thrust direction vector, an availability flag, and a scalar cost coefficient. Table 4.1
gives the location and thrust direction of each jet in the shuttle body frame. The primary
thrusters on each shuttle are grouped into 14 clusters of two to four jets, ( see figure 4.3).
The jets within each cluster have similar locations, similar thrust directions, and
consequently, deliver similar torques and forces. Though the six vernier jets are physically
located adjacent to the primary jet clusters, the magnitude of a vernier activity vector is
significantly smaller than those of the neighboring primaries. For the purpose of jet
selection each available vernier jet is considered to be a separate single jet cluster and is
included in the formulation of the constraint coefficient matrix A.

Due to the similarity of the activity vectors of the primary reaction control jets in
each cluster, a single primary jet is designated as the cluster representative and (at least
initially) is the only jet included in the constraint coefficient matrix. This approach provides
substantial computation benefits and does not significantly affect the maneuverability of the
shuttle during normal operations.
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Each reaction control thruster also has an associated availability flag and cost
coefficient. The availability flag indicates whether or not a jet may be included in the jet
selection solution. A jet may be designated as unavailable by the crew, a failure detection
module, or a heuristic supervisor module ( e.g. a plume avoidance algorithm). If a cluster
representative is unavailable the jet select module attempts to replace it with another member
of the cluster. If all members of a cluster are unavailable, the linear programing problem is
formulated without a representative from the cluster and the dimension of the constraint
coefficient matrix (A) is decreased by one. This flexibility is one of the major benefits of
formulating the jet selection task as a linear programming problem.

The optimum solution of the linear programming formulation of the jet selection
problem is selected from among the set of feasible solutions based on the value of the linear
objective function

F(t) = CT t (4-56)

The cost coefficients (cj) associated with each jet are a quantitative representation of an
operational preference to be applied during the jet selection process. A preference among
the available jets may be motivated by several different objectives. The principle objective
in this development is fuel conservation, thus all primary jets are costed equally and more
heavily than the verniers, ( Cprimary = 1.0, cvernier = 0.0287). Alternative realtime
algorithms for the cost coefficients may be motivated by a need to perform fuel
management either between the two spacecraft or among the propellent tanks on a single
vehicle. Cost functions could also be developed to heavily penalize the use of jets which
which may 'plume' a neighboring spacecraft. This approach to plume avoidance leaves the
jet in the range of possible simplex solutions, so that it may be selected during an
emergency maneuver. Designating a jet as unavailable removes it from the solution space
and thus may adversely affect the controllability of the vehicle(s).

The simplex approach to linear programming systematically progresses from one
basic feasible solution to a 'better' basic feasible solution until the optimal solution is
achieved. The feasibility of the final optimal solution is therefore dependent on the
feasibility of the initial solution. Though in some linear programming applications an initial
basic solution is easily discerned , the complexity of jet selection problem makes this
impractical. The initial basis must satisfy the constraint equation

Bt = AWe, (4-57)



span nine dimensional space (it must be invertible), and it must provide a feasible solution t
via

t = B-1 AW (4-58)

Even if a basis could be easily derived form the combination coefficient matrix, performing
the inversion of B required to seed the revised simplex method is also computationally
burdensome.

To circumvent these difficulties, nine additional variables are introduced with a
basis of corresponding "artificial activity vectors" B0. If the artificial vectors are defined as

Boi = Ij SIGN (AW) (4-59)

where Ij is the jth column of a 9x9 identity matrix then

B0o = B0  (4-60)

and

S= ABS (AW) (4-61)

Since the artificial vectors are mutually orthogonal, the inverse in equation 4-60 is
guaranteed to exist. Equation 4-59 confirms that the initial solution satisfies the non-
negativity constraints. Thus the addition of a set of slack variables avoids both a difficult
search for an initial basis and the computational burden of inverting the basis to seed the
revised simplex algorithm.

The artificial activity vectors are not however, representative of real reaction control
jets and thus cannot appear in a real optimal solution. To ensure that these columns of B
are rotated out of the basis during the simplex operations, the cost coefficient
corresponding to each artificial activity vector is set to a maximum positive value. Simplex
must iterate at least nine times to eliminate all the artificial vectors from the basis. Once
removed from the basis the artificial vectors are discarded and are never used as potential
incoming vectors.

Once the initial basis solution is set up, the jet select algorithm proceeds to solve the
linear programming problem using the revised simplex method. Several pragmatic



implementation issues may have a significant impact on the performance of the jet select
algorithm.

The activity vectors are calculated under the assumption that neither vehicle
experiences a significant translation or rotation during the jet firing. During large AW
maneuvers, some jets are assigned fairly long firing times as part of the optimal solution.
If the vehicle has a significant angular velocity during the firing, the net translational
impulse provided by a jet will not be aligned with the expected impulse vector. Several
solutions have been proposed to alleviate this problem.

The revised simplex algorithm implementation by Persson and Cooke16 compares
the longest firing command in the optimal solution to a predetermined threshold. If the
firing time exceeds the threshold, it is set equal to the threshold value and all the other jet
firing times are scaled to preserve the direction of the impulse delivered.

tj t='d afd

t, (4-62)

Since the magnitude of the impulse delivered by this method will be less than the magnitude
of the original impulse request, the state of the vehicles at the end of the burn is measured,
a new AWe calculated, and the jet selection algorithm immediately run to complete the
maneuver. In this manner an extremely long burn may be accurately implemented in a
piecewise optimal sense.

A revised simplex algorithm modified to incorporate an upper bound on the each
solution variable tj has been implemented for control moment gyros by Paradiso 3. In this
algorithm the value of the tj is compared to a threshold after each simplex iteration. If tj

exceeds this upper bound the corresponding actuator is considered saturated and it is
removed from the basis and saved as a special adjunct command. The impulse provided by
this saturated actuator is used to adjust the impulse request passed to the remaining true
basis solution set. As the algorithm progresses toward the final basic solution it may be no
longer be optimal for tj to remain at the maximum value. To allow this saturated actuator to

become 'unsaturated' during the course of simplex convergence the sign of the
corresponding activity vector is switched and re-admitted into the set of potential incoming
activity vectors. If this anti-vector is selected then the firing time of the saturated jet is
decreased and it is re-admitted into the basic solution in its positive sense.



The most striking feature of this approach is that more than 9 jets could be fired
simultaneously as part of a single solution. This enhancement of the linear programming
approach to jet selection is promising and should be investigated further as a method of
incorporating the secondary jets in each cluster.

In any iterative algorithm there exists a potential for build up of round off errors.
The effect of the round off errors induced during the direct update of the B-1 matrix may be
checked by calculating the impulse delivered by the current solution against the impulse
request. The firing time solution vector is given by

i = B-' AW (4-63)

where B-1 is calculated during the most recent simplex iteration. Since the activity vectors
corresponding to these firing times are columns of the known matrix A (equation 4-22) the
actual basis Ba may be easily constructed and the actual impulse calculated as

Bat = AWa (4-64)

The error in the velocity change due to the inaccuracy of B-1 is simply the difference
between the actual and commanded velocity impulse.

AWe = AWa - AWe (4-65)

If the magnitude of this error vector exceeds 1% of the magnitude of AWe, the actual basis
Ba is inverted and substituted for the current value of B-1. The round off errors do not
grow rapidly and thus the basis is not re-inverted very often.



CHAPTER 5

TWO VEHICLE TRAJECTORY SOLVER

5.0 Introduction

The cooperative trajectory solver generates a model trajectory consisting of a list of
the jets to be fired, the corresponding burn times, and the state variable time histories which
carry the two vehicle system from the initial state to a commanded final state. A solution to
single spacecraft combined rotational and translational maneuvers has been presented using
an open-loop "feed-forward" trajectory solver as part of a "feed-forward / feedback"
closed-loop control architecture 9. This section develops a similar open-loop trajectory

solver for two vehicle cooperative maneuvers.

The two shuttle vehicles under consideration in this thesis are characteristic of a

larger class of spacecraft which employ reaction control jets to perform rotational and
translational maneuvers. Each shuttle reaction control jet applies a force along at least two

of the vehicle body axes and (consequently) a torque about all three body axes. Current
spacecraft control system designs tend to approach attitude and translation control as two
separate, decoupled control problems. In addition, attitude and translation control is often

performed by a set of uncoupled single axis controllers. Since the vehicle dynamics are

coupled through the reaction control jets, attempts to control one set of the control variables

with an uncoupled controller will often introduce large disturbances in other control

variables. Compensating for these control induced disturbances consumes additional fuel
and may cause the number of jet firings to drastically increase.

It has been demonstrated that optimal, three degree of freedom rotational maneuvers
of a single linearized spacecraft model employ a jet activity profile which contains an
acceleration phase, coast phase, and a deceleration phase', (see figure 5.1). The "staircase"
clustering of the acceleration and deceleration jet firings at to and tf increases the average
vehicle rate during the firings and thus decreases the overall maneuver time. During the
intermediate coast period the external torque on the vehicle is assumed to be zero and the
spacecraft angular velocity remains constant. This jet firing profile is the basis for the nine
degree of freedom feed-forward trajectory solver developed here.
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Figure 5.1
The Two Burn Jet Firing Profile.

5.1 Final State Equations

The two vehicle coordinated trajectory solver plans combined master vehicle
rotations, slave/master relative rotations, and slave/master relative translations using the
available reaction control jets on both vehicles. The rate of change of the velocity of each
of the control variables induced by the jth reaction control jet is described by a nine
dimensional activity vector Aj. As defined in chapter 4,

Aj = aR (5-1)
aR j

where a. is the angular acceleration of the master vehicle expressed in the master body
frame, aR is the rate of change of the relative angular velocity expressed in the master
vehicle frame, and aR is the rate of change of the relative linear velocity expressed in the
LVLH frame.



The linearized equations governing the absolute attitude of the master vehicle and
the relative attitude of the slave vehicle with respect to the master vehicle were derived in
chapter 2 under the assumption that each vehicle is experiencing a small angular rate. Since
the sub-vectors of the general activity vector (aa,aR) represent the angular accelerations
induced by the jth jet, these equations may be written

NI+N2

(Oa = o ,a uj (5-2)
j=1

N1+N2

(R = (XRj uj (5-3)
j=1

Here u is the NI+N2 element control vector defined as

S1 when the jt jet is firinguj = 0 otherwise (5-4)

Integrating equation 5-2 from to to tf while following the jet firing profile in figure
5.1 yields:

Ni+N 2

oa(tc) = I , atj + oa(to) (5-5)
j=1

Ni+N 2

mCa(tf) = ( atj + COa(tc) (5-6)
j=1

NI+N2 Ni+N2

a(tf) = a (tj -it + ()2 + a(to) tf + Oa(to) (5-7)
j=1 j=1

Similarly, integrating equation 5-3 for the attitude of the slave vehicle with respect to the
master vehicle yields

NI+N2

COR(tc) = aRitj + O)R(tO) (5-8)
j=1

N1+N2

OR(tf) = jtj + OR(tc) (5-9)
j=1



N1+N2

OR(tf) =I aRji(tf tj-t 2 ) +
j=1

Ni+N2

X 1 i (tj)2 + 0R(to) tf + OR(to)
j=1

(5-10)

In equations 5-5 thru 5-7 and 5-8 thru 5-10 the o4~, aoR, and tj are the angular accelerations

and firing times corresponding to the jth jet during the deceleration burn. As was shown in
chapter 4, the activity vectors corresponding to the jets on the slave spacecraft are a
function of the relative attitude of the two spacecraft. The set of activity vectors employed
during the second burn must therefore be recomputed at the beginning of the deceleration
burn. Since each burn is assumed to be impulsive, the relative attitude of the two
spacecraft at the initiation of the second burn is considered to be equal to the commanded
relative attitude for the purpose of activity vector calculation.

In chapter 3 the translational motion of a single spacecraft in a local vertical - local
horizontal (LVLH) reference frame was shown to be governed by the Clohessy - Wiltshire
equations. The complete solution of the C.W. equations for a period of constant external

force was shown to be

x(t) = [(t) = Q(t) x(to) + r(t)
N

Sajuj
j=1

where 1(t) is the state transition matrix,
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F(t) is the control weighting matrix,

(5-11)
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aj is the translation acceleration sub-vector of the jth activity vector, and u is the control
vector defined in equation 5-4. For simplicity, 'C' and 'S' have been substituted for
'cos riot' and 'sin riot' in the above expressions. Often the state transition matrix is written

in terms of its 3x3 sub-matrices as

(l(t) = r (t)(r (t) t) (5-14)
Dvr (t) •Dv, (t)

Since the relative motion of the master and slave spacecraft is defined by

XR(t) = x 2(t) - X1 (t) (5-15)

the equation governing the relative motion of the two spacecraft during any period of
constant thrust is

SN+N 2

XR(t) rR(t) = (t) XR(tO) + F(t) Y aRuj (5-16)
j=1

This equation may be applied to each period of constant thrust along the accelerate,

coast, decelerate jet firing profile of figure 5.1 to determine the final relative position states
of the two spacecraft. The constant thrust periods during the acceleration and deceleration
phases are very short compared to the period of the reference orbit. (A circular Low Earth
Orbit has a period of approximately 90 min. and a mean motion rio = 0.00116 rad/sec; a
typical period of constant thrust during the jet firing phases is < 5 sec.). Since t is small
during the acceleration and deceleration phases, riot is a small angle and truncated series
approximations for sIN and cos may be used without introducing significant errors.

Neglecting terms of the order of r12 and higher yields:



1 0 0 t 0 0 000-
0 1 0 0 t 0 000
0(t) = 0 0 1 0 0 t It) 0 0 0 (5-17)
0 0 0 1 0 2nlt t O O
0 0 0 0 1 0 t 0
S0 0 0 -2not 0 1 . 0 0 t

The velocity coupling terms 2rit << 1, and thus the velocity update performed by equation
5-16 is dominated by the effect of the thrusters during the acceleration and deceleration
phases of the jet firing profile. If the change in velocity due to these coupling terms is
neglected during short reaction control jet firings equation 5-16 becomes

NI+N2
rR(]) I t][ rR(to) + [ N1+N2
VR(t) [ I VR(tO) It 1 auj (5-18)

Here I is the 3x3 identity matrix. It should be noted that equation 5-18 represents simple

rectangular integration of the initial velocities and constant forces to attain the new position

and linear velocity. Using equation 5-18 to propagate the relative position state across each

period of constant thrust during the acceleration burn, the relative position state at the end

of the acceleration burn is calculated as

N1+N2

rR(tc) = rR(tO) + VR(t0) te + t ar4t tj -1t-) (5-19)
j=1

N1+N2

VR(tc) = VR(t0) + aR tj (5-20)
j=1

There are no feed-forward jet firings during the coast period. The state transition
matrix is used to propagate the relative position state from the end of the acceleration burn
to the beginning of the deceleration burn.

rR(tD) [ rr (tDo-tc) rv (to-tc) rR(tc) (5-21)
LVR(tD) [(vr (tD-tc) VV (t4-t) LVR(tc)

The final relative position state is determined by propagating XR(tD) and VR(tD) thru

the deceleration burn using equation 5-18 across each period of constant force.

N1+N2

rR(tf) = rR(to) + VR(tD)(tf-tD) + j (5-22)
j=1



N1+N2

VR(tf) = VR(tD) + aj (5-23)
j=1

In the above equations the contribution from each available reaction control jet has
been included in the summations over 1 to NI+N2. If the jth jet is not firing during a
portion of a maneuver then tj = 0 during the corresponding integration step.

5.2 Trajectory Solution Algorithm 9

The trajectory solver must solve the algebraic equations 5-7, 5-10, and 5-22 for the

first and second burn firing times (tj and t,) in terms of the boundary conditions and the

activity vectors Aj, Aj for j=1 to N1+N2. Since no manageable closed form solution is

possible, the problem is parameterized in terms of the velocities at the beginning of the

coast period, (wa(tc), oR(tc), VR(tc)) and solved iteratively using Newton's Iterative Method

(Newton-Raphson Method). Each iteration consists of two computational phases:

* Solve the rate equations for the tj and tj based on the current values of the coast

velocity parameters and the initial and final velocity boundary conditions.

* Update the coast velocity parameters based on the final state error calculated using

the jet firing times derived from the rate equations.

Since the rate equations for each burn are linear algebraic functions of the

corresponding set of firing times, the first stage of the iteration process may be formulated

as two separate problems; one for each burn. The acceleration burn rate equations 5-5, 5-

8, and 5-20 may be written together in matrix form as

O)a(tc) - Oa(to) 
tl

OR(tc) - R(tO)= A A2 K AN+Nl 1 + t2  (5-24)
VR(tc) - VR(tO) L

4 N1+N2)

The relative translational velocity at the end of the acceleration period may be propagated to
the end of the coast period once the acceleration burn firing times are known

VR(t) = [ r(tD-tc) (Dv (tD-tc)] R(tc) (5-25)

and the deceleration rate equations may be written as



tj
Oa(tf) - Oat(tc)
OR(tf) - OR(tc) = A, A2  ... N,2 K (5-26)
VR(tf)- VRO(tD)

These equations for acceleration and deceleration (5-24, 5-26) may be considered as

the structural constraint equation of a linear programming problem of the form

Minimize F(t) = CT t

subject to AW = At (5-27)

and tj > 0 for j = 1,2,...,N1 +N2

The Revised Simplex method of solving this nine dimensional linear programming problem

is developed in detail in Chapter 4 of this thesis. The revised simplex algorithm selects a
set of at most nine reaction control jets and computes the corresponding firing times tj such

that the structural and non-negativity constraints are satisfied and the objective function F(t)
is minimized. In this application F(t) is a fuel usage function. The nine activity vectors Aj
corresponding to the nine reaction control jets selected by the revised simplex algorithm for
each burn may be collected into a basis matrix B. The corresponding nine firing times tj
are collected into the 9-vector t.

The second stage of the trajectory solver is the update of the values of the
optimization parameter vectors 0a(tc), oR(tc), vR(tc)) in order to decrease the final state

errors.

The final values of the control variables Oa(tf), OR(tf), rR(tf), are a function of the

values of the corresponding coast velocity parameter vectors. Define the error functions

gl (oa(tc)), g2(cOR(tc)), g3(VR(tc)) as

gl(O)a(tc)) = Oa(tf) - ~8a (5-28)

g2(cOR(tc)) = OR(tf) - 0Rd (5-29)

g3(VR(tE)) = rR(tf) - rR, (5-30)

The optimal choice of the coast velocity parameters will result in gl, g2, g3 = 0. If these
error functions are not zero then the coast parameters must be altered. The required values



of the coast velocity vectors may be written as the current value plus the required

adjustment

(oa. = Oa(tc) + Aoa (5-31)

M = COR(tc) + AOR (5-32)

VR. = vR(tc) + AVR (5-33)

If the current value of the coast parameters are close to the optimal values, the adjustment

vectors are small and each of the gi, g2, g3 may be expanded in a Taylor series. Keeping

only up to the first derivative terms

gl(Oat) = gl(O)a(tc)+Aoa)= gl(coa(tc)) + ý ACOa (5-34)
aOg

2(R ) = g2(OR(tc)+ACIR) g2(wR(tc)) + a92 AR (5-35)

g3(v1R) = g3(vR(tc)+AR) g3(vR(tc)) + 9 AVR (5-36)
aVR

Since the left side of the each approximation will be zero for the optimum parameter value,

the approximate change required in each coast velocity vector is given by

ACOa = - •-gl (Oa(tc)) (5-37)

AOR = - g-2oR(tc)) (5-38)

AvR= -[-• =3(VR(tc)) (5-39)

Since the command values of the control variables are constant, the partial derivatives of the

error functions may be evaluated using equations 5-28 thru 5-30

ag1  aea(tf)
a ( o, (5-40)

ag 2  0 aeR(tf)
•oR OOR (5-41)



ag3 _ OrR(tf)
aVR aVR (5-42)

Substituting these expressions into equation 5-37 thru 5-38 and combining the results with
equations 5-31 thru 5-33 yields the three parameter update equations

[a()a(tf) 1.1
(Oa(tC) = ca(tc) - a )j (a,(t) -

fWR(t += OR(t) I 1) (OR(tf ) -f

R(t) = VR(tc) - (t) (R(tf) - rR
VR~t•÷ - R~t• -[vs(tc).

(5-43)

(5-44)

(5-45)

The partial derivatives in these equations are 3x3 Jacobian matrices. Since expressions for
the final control variable values in terms of the coast velocity parameters is not available, a
chain rule expansion is used in place of each Jacobian.

a0a(tff)Uae(tf) at aea(tf) ai'
DO)a(tc) at- aoa(tc) at a+actc

aeR(tf) aR(tf) a aOR(tf) a•
aoR(tc) ai aO)R(t) + t' D0R(tc)

arR(tf) arR(tf) at arR(tf) ai'
aVR(tc) at aVR(tc) a' ' VR(tc)

The 9x9 matrix B has been defined as the
burn. Since each activity vector consists
partitioned into three 3x9 sub-matrices

collection of basis activity vectors for
of three sub-vectors, the basis matrix

BB

B= BR

BaR

(5-46)

(5-47)

(5-48)

the first

may be

(5-49)

The partial derivatives of the final values of the control variables with respect to the first set
of firing times t are then determined from equations 5-7, 5-10, and 5-22.



aea(tf) - B c diag[(tf - i)]
at dag

(5-50)

(5-51)

arR(tf) = (rr + (tf - toD) VB diag9[(tf - )] + (r + (tf - to)Iv ) BaR (5-52)
ai

If B' is the basis matrix corresponding to the second burn, the partial derivatives of the final

values of the control variables with respect to the second set of firing times i are then

determined from equations 5-7, 5-10, and 5-22 and written as

a(tf) B diag9 tj

at '

at

ar = Bd diag9 j'

(5-53)

(5-54)

(5-55)

The structural constraint equation for each burn may be re-written in terms of the

basic solution provided by the revised simplex algorithm. Since the collections of activity

vectors in the bases B and B' are by definition an linearly independent sets, they may be

inverted.

[)a(tc) - O)a(to)
B R(tc) - R(0)

VR(tc) - VR(tO)

Oa(tf) - a(tc)
B'-1 OR(tf) - OR(tc)

.VR(tf)- vR(tc)

The partial derivatives of the firing times with respect to the coast parameters are

at

= B_aO)R(te) -B

ai' = k_

SB -1i
aVR(tc) a

avR(tc)

(5-57)

(5-58)

and

Daca(tc)

ai B'
aoa(tc)

(5-56)



For convenience the inverse basis matrices B and B' have been partitioned into 9x3 sub-
matrices

0B :1 B B (5-59)

B' =[B, B I | B•'] (5-60)

Newton's method requires an initial approximation for the coast velocity parameters

in order to begin the iteration process. The initial estimate of the rotation rate parameters
for the absolute and relative attitude maneuvers is computed by approximating the entire

maneuver as a constant rate eigenaxis rotation. The eigenaxis is defined as the unit vector

perpendicular to the initial and final attitude quaternions. If q0 represents the initial attitude

and ~qf is the final attitude, then the maneuver quaternion qmn satisfies

qf = 0o Qm (5-61)

and thus may be calculated as

q _ a jol (5-62)

6, a, f, y are the Euler Parameters of the rotation. The quaternion ijm represents a rotation
by an angle

p = 2 Cos18 (5-63)

about a unit vector

14 =(i a. 7 (5-64)

A constant rate rotational maneuver can then be described by the angular velocity vector

oroast = 10c i (5-65)

where

S= d• (p (5-66)
dt At



The initial approximations for the coast angular velocities for the absolute and relative
rotational maneuvers are computed using equations 5-61 thru 5-66.

The initial relative translational velocity approximation is derived from the
Clohessy-Wiltshire formulation for the relative motion of the two spacecraft (equation 5-
11). Since the initial velocity estimate should be chosen to provide a final relative position
near the commanded position, the estimate is computed from the first three of the six C-W
equations. If the initial and final bums are truly impulsive, then the displacements of the
vehicles will only take place during the coast portion of the maneuver and the position
equations are written as

rR(tf) = rr rR(to) + Orv VR(tc) (5-67)

-1This expression is solved for the desired coast velocity by multiplying thru by cr I and
rearranging terms:

VR(tc ) = ( [rR(tf) - i rR(to)] (5-68)

The state transition matrix sub-matrices in these expressions are computed for the fixed
length of the maneuver. Equation 5-68 provides a reasonable estimate of the translation

coast velocity parameter as long as the inverse (, exists. From equation 5-12

4 S-3r1ot 0 2(1- C)
rv(t) 1 0 S O (5-69)

2 ( 1 - C) 0 S

and the inverse is

S2 0 -2S( 1- C)
(D - 3t) = - l10 -) 2  0 S(4S- 3o 0 + 4( - C)2  0 (5-70)

2S( 1- C) 0 S(4S- 31o_0

This inverse will exist everywhere except where the denominator of the coefficient term is
zero. The factors in the denominator may be expanded and like terms collected yielding

S(S(4S - 3riot) + 4(1 - C)2) = S(8 - 8C - 3lotS) (5-71)



By inspection this last expression is zero whenever sin Tiot is zero. The factor in
parenthesis is also zero when sin riot = 0 and cos riot = 1. Figure 5.2 shows a plot of this
function for the range 0 5 Tot < 41c.

-1
Characteristic Equation of ,. (.t)

0 2 4 6 8 10 12

( (radians)

Figure 5.2

Determinant of Xrv vs 9 = 0iot D does not exist at the zero crossing angles.

In addition to the zeroes at multiples of x, (riot = 0, ix, 2t, 3 ... ), a zero occurs at
approximately 2.81346R. At the zeroes the state transition sub-matrix Drv becomes

,rv(t) = [
(rv(t) = L11o

- 3r1ot
0
0

- 3r 0ot
0
4

for riot = 0, 2t, ...

(5-72)

-4
0 for riot = x., 37, ...
0 - (5-73)



-24.30400 0 3.66628
= 0 0.55306 0 for r1ot = 2.834161

-3.66628 0 0.55306 - (5-74)

Equation 5-72 shows that the out-of-plane and radial components of the final position are
not effected by the coast velocity during maneuvers lasting one reference orbit period.
Equation 5-73 demonstrates that the out-of-plane final position is also not effected by the
coast velocity for maneuvers lasting half a reference orbit period. The first and third

columns of the matrix in equation 5-74 are parallel vectors and therefore the change in the x

and z components of the final position cannot be independently varied by adjusting the

coast velocity when the maneuver is scheduled for approximately 1.4 nominal orbits.
-1When the inverse 4~ does not exist the system is not completely controllable using a single

two burn maneuver. To reach the final state a sequence of maneuvers must be performed.
The planning and optimization of these multi-maneuver sequences is beyond the scope of
this thesis.

5.3 Nominal Trajectory Generator

The trajectory solution algorithm described in the last section determines a set of
feed forward jet firing commands for both the acceleration and deceleration burns of the
two burn maneuver based on a linearized model of the two vehicle system. During the
coast portion of the maneuver a feedback controller is employed to compensate for non-

linearities in the actual vehicle dynamics and unmodelled environmental disturbances. The

primary inputs to the feedback controller are the current values of the desired attitude of the
master vehicle with respect to an external reference frame, the desired attitude of the slave
vehicle with respect to the master, and the desired position of the slave vehicle with respect

to the master. The nominal trajectory generator computes the desired states at each point in
the coast phase of the maneuver using the linearized models employed by the trajectory
solution algorithm.

The linearized equations governing the absolute attitude of the master vehicle and
the relative attitude of the slave vehicle with respect to the master vehicle have been derived
under the assumption that each vehicle is experiencing a small angular rate. In section 5.1
it was shown that the angular velocities at the end of the acceleration burn are
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N,+N2

Oa(tc) = Y, aotj + Oa(to) (5-75)
j=1

Ni+N 2

OR(tc) = Y OaRjtj + OR(tO) (5-76)
j=1

Integrating these equations across the acceleration burn (to to tc) while following the
jet firing profile in figure 5.1 yields the angular displacement vectors at the beginning of the
coast phase.

Ni+N2

Oa(tc) = X , (tctj - 2tj) + (t0 )a(to)t- to) (5-77)
j=1

N1+N2

OR(tc) = aRj (tctj -it2) + OR(t) (t - to) (5-78)
j=1

During the coast phase of the maneuver the vehicles are assumed to be experiencing
torque free motion. The equations of motion may be written

ma = 0 a =constant (5-80)

(ýR = 0 = OR =constant (5-81)

Integrating each of these equations from the end of the acceleration burn to the
current time yields an attitude change vector which is used to update the quaternions

representing the absolute attitude of the master vehicle and the attitude of the slave relative
to the master.

AOa(t - t) = oa(t - t) for tc 5 t 5 tD (5-82)

AOR(t - t) = OR(t- tc) for tc 5 t 5 tD (5-83)

The quaternions representing the rotations A0a and AOR are (see equation 2-50)

qAa(t-tc) = [qA QR(t-tJ) =8 (5-84)

where the 3-vectors qa and qR are defined in terms of the magnitudes of the rotations
AOa and AOr and the corresponding rotation axes la and iR as



qa = (sin AGa) a (5-85)

SqR = (sin AOR IR (5-86)

te Euler parameters Ba and SR are defined as

6a = Cos AOa (5-87)
2

R = COS LAOR (5-88)2

Similarly, the attitude quaternions at the end of the acceleration burn are calculated

• Oa(tc) and Oa(tc) as

Sa(tc) SR(tc)
qa(tc) = R1 (tc) = (5-89)

L qa(tc) LqR(tc)J

:Pdesired absolute and relative attitude quaternions are then calculated during the coast

iase from the expected attitude at the end of the acceleration burn and the quaternions

presenting the change due to the constant coast rate.

* a(t) = qa(tc) •a(t-t) (5-90)

qR(t) = R(tc) R(t-tc) (5-91)

The translational motion of the slave spacecraft relative to the master in a near

r~lar orbit was shown to be governed by the Clohessy - Wiltshire equations in Chapter

The relative position and translational velocity of the two spacecraft at the end of the

:celeration burn are given by

NI+N 2

rR(t) = rR(tO) + VR(tO) t + aRitc tj -t) (5-92)
j=1

N1+N2

VR(tc) = VR(t0) + aRj tj (5-93)
j= 1

There are no feed-forward jet firings during the coast period. The homogeneous

rm of the C.W. equations is used to propagate the relative position state from the end of

e acceleration burn to the current time.
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FR(t) Orr (t-tc) rv (t-tc) rRi(tc)
VR(t) vr (t-tc) Dw (t-tj) VR(tc)

The quaternions qa(t), qR(t) and the vectors 0a, (OR, rR, VR are computed on each
autopilot pass during the coast phase of the two burn maneuver and passed to the feedback
level of the cooperative autopilot.



CHAPTER 6

PHASE SPACE REGULATOR

6.0 Introduction

During the coast phase of the two burn maneuver the two spacecraft are perturbed
from the nominal trajectory by environmental disturbances, the unmodelled non-linear
dynamics and the granularity of the reaction control jet firings. A feedback control loop is
used to generate jet firing commands in order to compensate for these effects and keep the
spacecraft tracking the desired trajectory within a specified tolerance. In this thesis a Phase
Space Regulator 2 is employed as the feedback controller.

The Phase Space control law was developed for the control of a single spacecraft
performing six degree of freedom on-orbit maneuvers and was successfully flight tested as
part of the shuttle OEX autopilot in 1985. The Phase Space control law combines the
velocity to be gained principle with concept of a phase sphere in order to compute a
velocity impulse request to drive the system to the commanded state. This section presents
the Phase Space control law and develops the nine degree of freedom cooperative control
phase space regulator.

6.1 Velocity to be Gained

Originally developed as a method of formulating guidance equations, the velocity to
be gained algorithm computes the change in the velocity required for the system to follow a
coasting trajectory from the current state to the specified target state. The state of a general
n-degree of freedom system is described by the n-dimensional state vector x and the first
derivative of the state x. Given a target state Xd and a target velocity id the state error and
velocity error are defined as

xe=x- Xd (6-1)

S= - d (6-2)



The velocity to be gained vector vg is defined as the difference between the velocity
required to satisfy the coast to target constraints (vr) and the current velocity of the system.

vg = Vr - x (6-3)

The determination of an appropriate expression for the required velocity vr in terms of the
current error state of the system is a central issue in most guidance problems. For the
phase space controller the required velocity is expressed as the sum of a convergent
velocity vc and the desired velocity at the target state xd.

Vr = Vc + id (6-4)

The velocity to be gained can be re-written in terms of the convergent velocity as

Vg = vc+ Xd - i

Svc - ie (6-5)

This states that the velocity to be gained is simply the convergent velocity minus the current
velocity error. The purpose of the convergent velocity is to drive the current vehicle state x
toward the desired state xd and thus the state error vector toward zero. An efficient method
of driving a vector to zero is to align the time rate of change of the vector with the vector
itself. Thus the convergent velocity vector is aligned with the current state error vector and
may be written as

V = - c le (6-6)

Here ie is the unit vector in the direction of the state error and 'c' is the desired convergence
rate. The velocity to be gained is thus written in terms of the direction of the state error
and the velocity error as

Vg = -cle + Xd- i

S-cle - Ie (6-7)

Ideally this velocity to be gained control law precisely controls the state and the
velocity of the system at the desired state. In practice however, several difficulties arise.
In systems employing on/off (bang-bang) actuators, precise control of the system velocity
is especially difficult. Each actuator provides a finite acceleration and thus truly impulsive
rate changes are not possible. As a result the implementation of the velocity requests lags



the velocity to be gained computation. Additional rate errors are introduced during the
implementation of the velocity request due to the minimum impulse and discrete on/off
switch time constraints on the actuators. These small rate errors cause the system to
overshoot or drift away from the target state. Consequently attempts to control the system
state to an exact target point will result in excessive actuator activity. In the next section the
phase sphere concept is introduced as a method of accommodating these rate errors while
controlling the system state to a desired accuracy.

6.2 Phase Sphere

A standard method of circumventing the difficulty of imprecise rate control inherent
in the use of on/off actuators is the introduction of a small target region representing the
acceptable levels of error in each state variable in place of the single target state. The target
region is defined as an n-dimensional deadband in which actuator activity is inhibited and in
which the system is allowed to coast freely. This approach increases fuel economy and
decreases the number of actuator on/off cycles at the cost of a small amount of accuracy.

The control objective of the deadband control approach is to maintain each element
of the state vector xi within a specified 'deadband' of the corresponding target state element
Xdi. The target region is described by the n deadband constraints

-dbi < xei < +dbi (6-8)

The full set of these n double sided constraints on the n state variables defines a 2n sided
rectangular parallelepiped centered on the origin in the n-dimensional error space. The
length of a side of this rectangular parallelepiped is twice the value of the corresponding
deadband dbi. Figure 6.1 shows a deadband volume defined in 3-space.

Since the numerical values of the individual dbi may be very different, the error
vector xe indicates the direction of the largest errors rather than the direction in which the
state variables are furthermost from the established target volume. In practice the
numerically largest element of the error vector could be within its deadband while the
numerically smallest element could be outside its deadband. In order to apply control in a
direction which will cause the state to most rapidly converge on the deadband volume a
new normalized error vector is calculated by normalizing each component of the error



Figure 6.1
A deadband volume in the 3-dimensional

state error space.

vector xei by the corresponding deadband value dbi. The elements of the normalized error
vector are

- Xdi - Xi

dbi

= Xd - Xi (6-9)

Where ~idi and Wi are the ith elements of the normalized desired state and current state
vectors. Note that though e, -4, and -i are referred to as normalized vectors, in general,
they are not unit vectors and their direction is not the same as the original x, Xd, Xe. vectors.
In addition note that each element of these normalized vectors is a dimensionless quantity.

The deadband constraints of equation 6-8 are expressed in the n-dimensional
normalized error space as

-1 < . < +1 (6-10)

In this form the constraints define a hypercube centered at the origin of the n-dimensional
normalized state error space. The length of each side of the hypercube is 2.

A simpler, though slightly more restrictive deadband volume is described by the n-
dimensional unit hypersphere inscribed in the hypercube, (figure 6.2). Using this simpler
deadband volume the n control objective constraints (equation 6-10) may be replaced by a
single scalar constraint in terms of the normalized state error vector 5e

[~4 5e] < 1 (6-11)

.000-ý



The inscribed hypersphere is referred to as a phase sphere. The unit radius phase sphere
represents the state target region in the normalized error space.

2

2

Figure 6.2
The unit phase sphere in the 3-dimensional

normalized state error space.

6.3 Phase Space Control Law

The Phase Space Control Law utilizes the phase sphere concept as the primary
method for scheduling the values of the convergence rate parameter (c) in the velocity to be
gained calculation (equation 6-7). When the normalized error state lies within the unit
radius phase sphere the state control objective is satisfied and the convergence rate
parameter is set to a small value. Conversely, outside the phase sphere the state error has
exceeded the acceptable threshold and the value of the convergence rate parameter is
increased in order to supplement the velocity error correction with a velocity component
along the current error vector and drive the state back toward the deadband region.

As discussed the in the previous section, the convergent velocity component of the
velocity to be gained vector should be aligned in the direction of the largest state excursion
relative to the defined deadband region rather than in the direction of the numerically largest

7



error. The velocity to be gained calculation is thus modified to incorporate the normalized
state error unit vector in the convergent velocity calculation.

g = -cg + Xd -X (6-12)

Due to the inability to precisely control the system velocity in the presence of
environmental disturbances, actuator restrictions and/or state measurement errors, the phase
space controller is unable to maintain the system state at the commanded value with zero
velocity error. Consequently the state of the system tends to drift away from the target state
and toward the perimeter of the deadband region. Ideally, when the state error encounters
the edge of the phase sphere, control is applied and the component of the drift velocity in
the direction of the normalized error is reversed. The system then coasts back through the
deadband volume with the new convergent velocity until it again reaches the perimeter of
the deadband volume and an additional velocity correction is made. As this process
continues the system tends to oscillate within the deadband region. This oscillation about
the target state is the well known limit cycling phenomena.

It is impractical to attempt to reverse the velocity at the precise moment when the
state error reaches the edge of the phase sphere. During the finite amount of time required
to implement the velocity change request the system state will travel beyond the phase
sphere boundary. The amount and direction the system will overshoot the specified control
tolerance is determined by the effectiveness of the actuators and the velocity of the system
at the time it encounters the phase sphere perimeter.

To prevent any control variable from exceeding its maximum allowable value the
velocity correction must be initiated before the normalized state error intercepts the
perimeter of the unit radius phase sphere. As a divergent drift rate in the ith control
direction (xi) is driven to zero by a constant actuator acceleration component in the ith
direction (ai) the system will travel a distance

xi = 2

2ai (6-13)

Expressed as a fraction of the specified maximum allowable error in the ith control variable
direction (dbi) this becomes

Axi _:i2bi = Axi i2 (6-14)dbi 2aidbi



Thus in order to prevent undesirable excursions of the system state away from the target
state a new set of error thresholds described by

-(1-bi) < ei < +(1 + bi) (6-15)

must be employed to determine the appropriate points at which a corrective maneuver
should be initiated. These n double sided constraints describe a parallelepiped in the n-
dimensional normalized error space. Since the values used for ii and ai are not precisely
known and may vary with disturbance levels and the state of the system, a second n-
dimensional hypersphere is defined as a practical approximation of this complex surface.
The radius of this second phase sphere is calculated as

r, = 1 -b (6-16)

where

b-

2ai idbi (6-17)

The values used for i,. and ai., are anticipated maximum and minimum values and should
be determined empirically for the specific system under consideration. The inner sphere
convergence rate parameter 'c' is a reasonable first approximation for 7ii.

This second phase sphere provides an error threshold at which control may be
applied with a high confidence of reversing the divergent drift velocity before any error
state exceeds its maximum allowable value. The second phase sphere is centered at the
origin of the normalized error space, concentric with the original unit radius phase sphere.
The two phase spheres partition the normalized error space into three distinct regions,
(figure 6.3).

Region 1: The volume inside the inner phase sphere. When the normalized error
vector lies within the inner sphere actuator activity is inhibited and the
convergence rate parameter (c) is set to a small value.

Region 2: The buffer region between the two phase spheres. In this region the
actuators may be employed to implement the calculated velocity change
request (vg). The convergence rate parameter (c) is set to a small value
since the normalized error vector still lies within the unit phase sphere.



Region 3: The region outside the unit phase sphere. In this region the actuators
may be employed to implement the calculated velocity change request
(vg). The convergence rate parameter (c) is set to a large value since the
normalized error vector lies outside the unit phase sphere; indicating at
least one of the control variables has travelled an unacceptable distance
from the target state.

ie2

II

................................................................................................................................... -........... ............................................. ...

Figure 6.3
Two dimensional cross section of the

phase sphere geometry

The value of the convergence rate parameter takes on two distinct values. In regions
1 and 2 the convergence rate is selected to be large enough to generate at least the minimum
impulse velocity request required to drive the system away from the phase sphere perimeter
and small enough to provide a reasonable coast time between limit cycle velocity
corrections. The value of the convergence rate in region 3 must be large enough to provide
a timely convergence on the target region but must not exceed any system velocity
constraints.

Figure 6.4 is a limit cycle error trajectory. At the point a the system is at the target
state but has a small drift velocity. The normalized error grows as the system drifts away
from the target state until it intersects the inner phase sphere (point b). A corrective velocity
change is then implemented and the system re-enters the inner phase sphere at the point c.
Actuator activity is then inhibited and the system coasts until it encounters the perimeter at
point d and another corrective velocity change is implemented.
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Figure 6.4
Two dimensional view of a limit cycle trajectory.

Each corrective velocity change adds the calculated velocity to be gained to the
current system velocity.

+ = - + v-g

Sx+ -c + Xd- (6-18)

= xd - Cq

The new velocity to be gained is then calculated as

v9 = -ciq + Xd -X

= -c + Xd- ( -c (6-19)

Ideally the velocity imparted to the system is exactly the calculated v9 and the direction of
the normalized error vector is not altered significantly during the burn. In that case the new



velocity to be gained is a very small vector. As the system coasts through the inner phase
sphere the direction of the normalized error will change and the velocity of the system will
be altered in response to system dynamics and external disturbances. The velocity to be
gained gradually increases as the system travels away from the state corresponding to point
b.

Figure 6.5 is a convergent normalized error trajectory. The system state is initially
outside the acceptable state error range (point a). A velocity correction, or a series of
velocity corrections, are implemented in order to provide and maintain the appropriate
convergence velocity. The system state encounters the outer phase sphere at b and the
convergence rate parameter is reduced to the limit cycle rate value. At the point c the
velocity has been reduced to this smaller convergence rate and the limit cycle motion
begins.

Figure 6.5
Two dimensional view of a convergent trajectory.



6.4 The Cooperative Control Phase Space Regulator

The application of interest in this thesis is the control of the motion of two space

shuttles operating in close proximity. The linearized equations of motion of the vehicles are

derived in chapters 2 and 3. The 9-dimensional state of the two vehicle system is specified

by the current attitude of the master vehicle with respect to the M50 inertial coordinate

frame (OA), the attitude of the slave vehicle with respect to the master vehicle (OR), and the
position of the slave vehicle with respect to the master (rR). The velocity of the system is

the first derivative of the state, (COA, OR, iR)

A cooperative maneuver is commanded by specifying a final command state, final

command velocity, and a coast time of flight. The nominal trajectory generator provides a

nominal trajectory consisting of an open loop set of jet of acceleration jet firings, nominal

time histories of each state variable during the coast phase of the maneuver, and an open-

loop set of deceleration jet firing commands. During the coast phase of this maneuver the

system will be perturbed from this nominal trajectory as a result of the actual non-linear

vehicle dynamics, environmental disturbances, and the granularity of the reaction control

jets. The purpose of the cooperative control phase space regulator is to compensate for

these effects and keep the two vehicle system tracking the nominal linear trajectory to

within the specified tolerance by commanding corrective jet firings.

The phase space regulator for this 9-dimensional system is formulated as three

separate 3-dimensional phase space algorithms; one for the absolute attitude channel, one

for the relative attitude channel, and one for the relative position channel. Each 3-

dimensional phase space is described by a set of three deadband values (dbi), a low and

high convergence rate parameter (c12, c3), and an inner sphere radius (rp2). The three

phase space algorithms are operated in parallel, each generating a three dimensional velocity
to be gained vector.

The velocity to be gained vector for each control channel is computed as described
in the last section. The normalized error vector is calculated and its magnitude compared to
the radii of the phase spheres in order to determine the value of the convergence rate. The
convergent velocity is calculated as the product of this convergence rate and the negative of
the normalized error unit vector. The velocity to be gained is the difference between the
convergent velocity and the velocity error.



A corrective jet firing is executed whenever any of the three normalized error
vectors

(1) traverses its inner phase sphere boundary from region I to region II of the

normalized error space,

(2) traverses its outer phase sphere boundary from region II to region II of the

normalized error space,
(3) lies in region II of its normalized error space and is increasing,
(4) lies in region III of its normalized error space and the corresponding 3-

dimensional velocity error exceeds a specified threshold.

The third condition for initiating a feedback jet firing causes the state to converge more

rapidly to the desired target rather than remain near the outer sphere boundary. This has the

effect of lowering the value of the average error during a maneuver. The fourth condition

for initiating a feedback jet firing is included to ensure a sufficiently rapid convergence of

large state errors while keeping the number of jet firings reasonably small.

When at least one of the above conditions is met the three 3-dimensional velocity to

be gained vectors are assembled as a single 9 dimensional velocity request and passed to
the jet selection algorithm (Chapter 4). The jet selection algorithm determines the

appropriate jets and corresponding firing times to impart the nine dimensional velocity

change. Thus though the velocity requests are computed on a channel by channel basis all

channels are compensated when one channel satisfies one of the three conditions above.



CHAPTER 7

PERFORMANCE VERIFICATION TESTS

The development and verification testing of the cooperative controller included both
module level and system level testing. This section describes the test environment and
presents a discussion of the system performance. Three test scenarios demonstrating the
features, operation, and performance of the cooperative controller are examined in detail:

(1) A long duration maneuver consisting of a commanded change in the attitude
of the master vehicle with respect to the M50 frame, the attitude of the slave
with respect to the master, and the position of the slave with respect to the
master.

(2) A short duration translation maneuver performed both with and without
reaction control jet failures.

(3) A V-bar docking approach using different jet cost coefficient values in the
jet selection cost algorithm.

In each case the ability of the system to design a satisfactory maneuver, execute this
planned trajectory within specified accuracy limits, and to hold the specified final state after
the maneuver is complete is evaluated.

7.1 The Test Environment

The system level tests of the cooperative controller are conducted using the C.S.
Draper Laboratory two vehicle simulator. This simulator is a derivative of the Draper
Space Station simulator and has been adapted to run on an IBM PS2 Model 50 desk top
computer. The simulator is coded in FORTRAN and is currently running under IBM DOS
3.3.

The simulator models the independent rigid body motion of two active spacecraft.
Each spacecraft is modelled using an input deck containing the vehicle mass properties
(I, r,,, m) and the locations and thrust directions of the reaction control jets. Due to the
relatively short duration of the maneuvers of interest in this thesis, the mass property values
are modelled as constants. The rotational motion of each spacecraft is modelled using the
non-linear Euler's Moment Equations. The translational motion of each spacecraft is



modelled using Kepler's equation for the motion of two bodies using a spherical gravity
field. The equations of motion are integrated using a Fourth Order Runge-Kutta method.

The simulator provides a sequencer to supervise the execution of the environment
and flight control software. Data links from the flight control modules to the sensor and
actuator modules are provided. In this thesis, no attempt to model sensor dynamics or
other sensor noise sources has been made. All controller inputs are thus the truth values
computed by the environment software.

Data recording is performed at approximately 1.04 hz. (every 0.96 seconds).

7.2 Long Maneuver Test

The cooperative controller employs the "two burn" trajectory solver (chapter 5) to
generate a linearized trajectory which carries the two spacecraft from the initial state to the
commanded final state. During long maneuvers small rate errors generate attitude and
position errors large enough to require the cooperative controller to command midcourse
correction maneuvers. A failure to perform appropriate midcourse corrections will allow
the system state to diverge from the planned trajectory and will result in large final state
errors. The accuracy of the implementation of the midcourse corrections is limited due to
reaction control jet minimum impulse constraints and the granularity of the on/off switch
times. As a result new small rate errors are introduced as the system compensates for
current state errors. The cooperative control system should drive the two shuttle system to
the commanded state using a reasonably small number of corrective jet firings. The
purpose of the long duration maneuver test is to demonstrate the ability of the cooperative
controller to plan and track a somewhat complex relative motion trajectory and then
formationkeep at the final commanded state. For comparison purposes the maneuver is
also implemented using two separate single vehicle maneuvers. The fuel efficiency of this
cooperative maneuver is then compared to a similar maneuver implemented using two
separate single vehicle maneuvers.

7.2.1 Cooperative Control During a Long Maneuver

In this test, the two space shuttles are travelling in a circular low earth orbit with
zero relative translational and relative rotational velocity (figure 7.1). Both vehicles are
initially aligned with their respective LVLH coordinate frames. The slave vehicle is
positioned forward of the master vehicle. Neither spacecraft is rotating with respect to its
LVLH coordinate frame: i.e. the inertial angular velocity vector of each vehicle is equal to



the angular velocity vector of the circular orbit. The quaternions describing the initial
attitude of the master vehicle with respect to the M50 coordinate frame and the initial
attitude of the slave vehicle with respect to the master vehicle are respectively

QB_M50 =[ .452676
QV2_B = [ .9999998

.845757
0.0

.280830
.00001157

-.030224 ]
0.0 ] (7-1)

The initial relative position of the two shuttles is

REL_POS =[ 507.6 0.0 0.0 ] (ft)

The initial angular velocity of the master vehicle with respect to the M50 frame and the
initial angular velocity of the slave with respect to the master are respectively

oV1 =[ 0.0 -.001161 0.0 ] (rad/sec)

)_V2_Vl = [ 0.0 0.0 0.0 ] (rad/sec) (7-3)

The initial relative translational velocity is

REL_VEL = [ 0.0 0.0 0.0 ] (ft/sec) (7-4)

The two vehicle system is commanded to a new state described by:

Q_B_M50 = [ .0320071 -.3752774 -.5317485 .7585419]

Q_V2_B =[ 0.0

REL_POS =[ 100.0

CoV1

0.0 -1.00000 0.0 ]

0.0 60.0 ] (ft)

= [ 0.0 0.0 0o.o0 ] (rad/sec)

o)_V2_V1 = [ 0.0 0.0 0.0 ] (rad/sec)

REL_VEL = [ 0.0 0.0 0.0 ] (ft/sec)

(7-2)

(7-5)
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Figure 7.1
The initial state of the two vehicle system

and the acceleration phase jet firings.

The commanded final attitude of the master vehicle has been specified such that at
the end of the maneuver the vehicle will be in a 900 pitch down orientation with respect to
the final LVLH coordinate frame. The slave vehicle is commanded to a final orientation
pitched 1800 with respect to the master vehicle. The relative position command places the
center of mass of the slave shuttle 100 ft below and 60 ft ahead of the center of mass of the
master shuttle, (figure 7.2). The commanded coast time for the maneuver is 500 seconds.

SLAVE

MASTER

100 FT

60 FT

Figure 7.2
The final state for the two vehicle system

and the deceleration phase jet firings.
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The commanded final translational velocity, angular velocity of the master with respect to
the M50 inertial coordinate frame, and the angular velocity of the slave with respect to the
master are all zero. Note that since the vehicles are originally aligned with the LVLH
frames and thus rotating with respect to M50, the controller must perform the maneuver
and dissipate the initial angular velocity of the two spacecraft

In addition to initial state and commanded state values, the cooperative controller
requires an array of nine deadband values (one per control variable), a value for the radius
of the inner phase sphere and convergent rate for each of the three control channels, as well
as cost coefficient values for the primary and vernier reaction control jets on each
spacecraft. Table 7.1 and table 7.2 give the values of these parameters used in this test.
These values have been selected as a nominal set and are not intended to represent an
extreme controller configuration.

Table 7.1
Phase Space Regulator Parameters

Master Attitude Rel Attitude Rel Position
Parameter Phase Space Phase Space Phase Space

Inner PhaseSphere Radius .85 .85 .85
Convergence rate (Reg 1&2) .0005 rad/sec) .0005 (rad/scc) 0.05 (ftW/

Convergence rate (Reg 3) .00284 (rad/ec .00284 (rad/sec) 0.10 (stc)

deadband (x,y,z) .05, .05, .05rada .05, .05, .05rada 5.0, 5.0, 5.0ft)

Table 7.2
Reaction Control Jet Cost Coefficients.

RCS Cost Coefficient
Veh #1 Veh #2

Primary Jets 1.0 1.0
Vernier Jets 0.0287 0.0287

The cooperative controller computes and then implements a maneuver profile
consisting of an acceleration phase, a coast phase, a deceleration phase, and a
formationkeeping phase. Figure 7.1 shows the original configuration of the two shuttle
system and indicates the jets fired during the acceleration phase. The jet numbers and



corresponding firing times for the acceleration burn are shown in table 7.3. Since the flight
control software module is executed at 12.5 hz. the on/off status of a jet may only be
changed every 0.08 seconds. The times given in table 7.3 are the actual implementation
times; the commanded firing time rounded to the nearest 0.08 seconds. Note that jet
number 29 on the slave vehicle was not actually fired since the commanded firing time was
less than 0.04 seconds.

Table 7.3
Acceleration phase jet firings.

Master Slave
Jet # Time Jet # Time

27 1.52 1 2.96
15 1.42 33 0.72
24 0.40 21 0.64
36 0.40 13 0.08

29 0.00

Figure 7.2 shows the configuration of the two shuttles at the end of the maneuver
and the jets fired to eliminate the residual coast velocities and bring the system to rest at the
desired state. The corresponding jet numbers and firing times are in table 7.4. Note that
three of the jets selected by simplex for this deceleration firing were assigned firing times
less than 0.04 seconds and thus were not fired by the jet sequencer.

Table 7.4
Deceleration jet firings.

Master Slave
Jet # Time Jet # Time

33 1.60 15 2.72
21 1.52 27 2.64
7 1.12 6 0.08

27 0.0 33 0.00
11 0.00

The relative position trajectory in the x-z plane of the reference LVLH coordinate
system centered on the master vehicle is shown in figure 7.3. The pitch profiles of the
master vehicle with respect to the reference LVLH frame and the slave vehicle with respect
to the master are shown in figures 7.4 and 7.5.
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Test 3.2: Pitch Angle -- Veh #2 wrt Veh #1
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Figure 7.5
Pitch Profile of Slave Vehicle with respect to Master

During the 500 sec. coast phase of the maneuver the Phase Space Regulator
(chapter 6) monitors the state and velocity errors, formulates a velocity to be gained
request, and determines when corrective jet firings should be implemented. Eleven
corrective actions were implemented during the coast phase of this maneuver. The average
time between corrective actions was 45 sec.; the longest time between corrective actions
was over 100 sec. Table 7.5 summarizes the jet firing activity during the coast phase of
this test.

Table 7.5
Coast Phase Reaction Control Jet Activity.

Master Slave Total
Primary 20 / 3.12 14 / 2.32 34 / 5.44
Vernier 5 / 1.76 0 / 0.00 5 / 1.76

Total 25 /4.88 14/2.32 39/7.20

values are (# of firings ) / { aggregate firing time)

The velocity to be gained request to be implemented during a corrective set of jet
firings is often small, thus the simplex jet selection algorithm frequently assigns firing
times which are below the minimum jet on time. As a result most of the corrective
maneuvers are performed with fewer than nine reaction control jets and do not deliver the

4
Inn

............

Be&i formatiorikeeping

........... ............... ............ .............I ...........

· '-- -- -- --· ''..............··-~-- -- -- --

.........



precise velocity requested by the phase space controller. Small rate errors are responsible
for the cycling of the state variable errors visible in figures 7.6 thru 7.8.

Test 3.2: Veh #1 Attitude Error
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Figure 7.6
Attitude Error: Master Vehicle wrt M50
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Attitude Error: Slave Vehicle wrt Master
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Figure 7.8
Relative Position Error.

During the formationkeeping phase of the maneuver (505.76 - 650.88 sec.) the
phase space regulator is used to maintain the current state at the commanded state value. In
this 145 sec. period the cooperative controller implements three corrective maneuvers.
Table 7.6 summarizes this jet activity.

Table 7.6
Formationkeeping Reaction Control Jet Activity.

Master Slave Total
Primary 11 / 1.44 7 / 0.66 18 / 2.10
Vernier 3 / 3.92 0 / 0.00 3 / 3.92

Total 14/5.36 7 / 0.66 21 / 6.02

values are (# of firings ) / { aggregate firing time)



The cooperative controller maintained each of the control variable errors within its
specified deadband throughout the 650 sec. test, (figure 7.6 - 7.8). As described in chapter
6, the phase space regulator initiates a corrective action whenever the normalized error state
crosses the inner phase sphere. Figure 7.9 shows the magnitude of each of the normalized
error vectors and indicates the cross over points corresponding to the initiation of corrective
jet firings.
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Test 3.2: Magnitude of the Normalized Error Vector

300 400

Time (seconds)

500 600 700
= Feedback correction firing
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Figure 7.9
Magnitude of the Normalized Error Vector.

The state variable errors at the end of the coast phase, at the end of the deceleration
maneuver, and at the end of the test are given in table 7.7. All compare favorably with the
specified deadbands.
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Table 7.7
State Variable Errors.
@ end of @ end of @ end of

coast phase deceleration test
-.00072 .0006689 .0282891

V1_Att_Err .01589 .0160397 -.0127713
(rad) .0264407 .0266003 -.0099812

.0088385 .0114901 -.000264
RelAtt_Err .0040098 .0033326 .0094189

(rad) -.0272224 -.0277083 -.003866

.7540 .0108 .2240
Rel_Pos_Err -. 1973 -. 1362 .1010

(ft) 1.3516 1.0914 .2285

7.2.2 Non - Cooperative Maneuver

In this test the cooperative maneuver described in the last section is divided into two

single vehicle maneuvers. The slave vehicle performs a +90 degree pitch maneuver and

translates 407.6 ft. aft and 60 ft. down relative to an LVLH reference coordinate system

centered on the location of the master vehicle. The master vehicle holds its position relative

to the LVLH frame and performs a -90 degree pitch maneuver. Each vehicle plans its own

trajectory and performs its maneuver without knowledge of the motion of the other vehicle.

This test emulates a scenario where two separate autopilots agree to perform a pre-planned

coordinated operation.

This test involved two computer runs: one for the slave vehicle motion and one for

the master vehicle motion. The motion of each vehicle is controlled using the cooperative

controller designed in this thesis with the jets on the other vehicle flagged as unavailable.

The command input for the "ghost" vehicle state is set at its initial state so that its error state

could not cause feedback initiated corrective maneuvers.

The final state command for each vehicle is selected so that the final state of the two

vehicle system is identical to the final state command used in the cooperative control case.

Table 7.8 shows the jet firings used by the two vehicles during the acceleration burns.
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Table 7.8
Acceleration phase jet firings.

Master Slave
Jet # Time Jet # Time

6 .24 1 6.0
24 .16 33 .72
1 .08 21 .56

36 .08 13 .32
9 .24

29 .08

Table 7.9 gives the deceleration burn activity for each vehicle.

Table 7.9
Deceleration jet firings.

Master Slave
Jet # Time Jet # Time

9 .24 27 2.48
13 .24 15 2.40
21 .16 6 1.36
33 .16 33 1.28
1 .16 21 1.04

A comparison of these tables to the corresponding acceleration and deceleration tables in the
last section show that the jets selected in each case are very similar. Table 7.10 summarizes
the jet firing activity for both the cooperative control and the non-cooperative open-loop
maneuvers. The cooperative and non-cooperative open-loop trajectories use the same
amount of total fuel (18 sec) even though the fuel usage is different on each vehicle. In the
non-cooperative case the slave spacecraft performs the entire translation whereas in the
cooperative case each vehicle performed a portion of the translation. The rotational
maneuver performed by each vehicle is the same in both the cooperative and non-
cooperative tests.

Since the two spacecraft are identical and are aligned during the acceleration and
deceleration burns, the amount of fuel consumed performing the translation maneuver is
expected to be insensitive to to variations in the percentage of the translation performed by
each vehicle. If the two spacecraft are not aligned during the acceleration and deceleration
burns, have different mass properties, different actuator characteristics, or are otherwise
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not equally efficient in translation then the fuel usage in the cooperative and non-
cooperative case would not be equal.

Table 7.10

Feed-F< rward Jet Firin

g

Activity

Comarison

Master Slave Total

Cooperative Control Accel 3.74 4.40 8.14

Decel 4.42 5.44 9.86

total 8.16 9.84 18.00

Non-Cooperative Accel 0.56 7.92 8.48
Control

Decel 0.96 8.56 9.52

total 1.52 16.48 18.00

(values are seconds of jet activity)

Table 7.11 compares the corrective jet firing activity for the two tests. In the non-
cooperative case each vehicle attempts to independently compensate for the small rate errors
which cause its state error to exceed the phase sphere threshold. In the cooperative control
architecture each corrective maneuver is computed to compensate for error components in
all 3 control channels. For example, using cooperative control the relative position error
rate will be reversed when a corrective firing is initiated due to errors on either the absolute
attitude or the relative attitude channels. In the non-cooperative control case jet firings on
one vehicle do not effect the errors on the other vehicle. The cooperative control approach
eliminates the duplication of effort inherent in the non-cooperative corrective jet firings. As
a result the cooperative controller performed coast phase regulation of the state of the two
vehicle system using 68 % less fuel and implementing 51% fewer jet firings than the non-
cooperative approach.

Table 7.11
Corrective Jet firings.

Master Slave Total

Cooperative Control 25 firings 14 firings 39 firings
4.88 sec 2.32 sec 7.20 sec

Non-Cooperative 31 firings 49 firings 80 firings
Control 15.62 sec 6.96 sec 22.58 sec
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73 Jet Failure Test

The purpose of the short maneuver test is to investigate the effects of jet failures on
the performance of the cooperative controller during a simple translational maneuver. The
test is executed under four different conditions:

(1) All reaction control jets available on both the master and slave vehicle.

(2) Forward jets on the slave vehicle unavailable. This situation could arise if
there was a major failure in the forward RCS system or if firings of the
forward jets were inhibited by the crew in order to prevent jet plume
impingement on the master vehicle during a nose first close inspection or
docking approach maneuver.

(3) Forward jets on the slave vehicle and all the down (+Z in body frame) firing
jets on the master vehicle are unavailable. In this scenario neither the master
or slave vehicle is completely controllable in six degrees of freedom. This
test investigates the ability of the cooperative controller to exploit the
available control assets on both vehicles in order to control the state of the
system.

(4) Forward jets on the slave vehicle and all the primary jets of the master
vehicle unavailable. The remaining jets on the master vehicle provide low
authority attitude control only; they do not provide translational control.
This scenario is designed to demonstrate the effect of unavailable jets on the
performance of a single maneuvering vehicle during an approach to a
vehicle which is only capable of performing attitude corrections.

Identical initial state and final commanded state values are used in the four test
cases. In each test case the two space shuttles are initially travelling in low earth orbit as
shown in figure 7.10(a). The master vehicle is in a circular orbit and is aligned with the
LVLH coordinate frame. The slave vehicle is orbiting above the master and is pitched -900
with respect to the master vehicle. Neither vehicle is rotating with respect to the LVLH
frame.
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Figure 7.10
Initial state (a) and final state (b) of the

(b)

two vehicle system.

The attitude quaternions, position vector, angular and linear velocity vectors describing the

initial state of the system are given as:

=[ .452676 .845757 .280830 -.030224 1
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0.c
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)68 0.0 .70710
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-.001161 0.0

0.0 0.0] (rad/sec)
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The desired maneuver for this test is a relative translation of -100 ft. in the direction
of the master vehicle Z body axis. The coast time for the maneuver is set at 90 sec. The
relative position in the x and y directions as well as the relative attitude are commanded to
remain constant. The attitude of the master vehicle is command to be aligned with the
reference LVLH frame at the end of the coast period. The slave vehicle therefore remains
in a -90 pitch attitude with respect to the master vehicle and the LVLH frame. The values
describing the commanded final state for this test are

QB_M50 = [ .4365087 .8428057 .3053541 -.07679619 ]

Q_V2_B =[ .7071068 0.0 .7071068 0.0 ]

REL _POS =[ 25.0 0.0 -125.0 ] (ft)

CO_V1 = [ 0.0 0.0 0.0] (rad/sec) (7-7)

c)__V2_V1 = [ 0.0 0.0 0.0] (rad/sec)

REL_VEL = [ 0.0 0.0 0 ] (ft/sec)

The phase space parameters used in this test are the same as those used in the long
duration maneuver described in the last section. The values of the inner phase sphere radii,
the convergence rates, and the deadband values are given in table 7.1 and 7.2. The
following sections present the results from each test cases.

7.3.1 All Jets Available

The "all jets available" test case provides a performance benchmark against which
the cases using a partially depleted set of reaction control jets may be compared. In this run
the full set of 38 primary jets and 6 vernier jets are "available" on each vehicle for a total of
88 jets. As outlined in chapter 4, the jets on each vehicle are considered as clusters of
similar jets for the purpose of jet selection. A representative jet from each of the 20 clusters
on each vehicle (40 jets total) is used as an input to the simplex jet selection algorithm.

In this test the cooperative controller computes and then implements a maneuver
trajectory which satisfied the initial and final states specified above. Figure 7.11 shows the
original configuration of the two spacecraft and indicates the jets fired during the
acceleration phase of the "all jets available" maneuver. The corresponding firing times are
given in table 7.12.
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SLt

MASTER

Figure 7.11
Acceleration jet firings. (All jets available)

Table 7.12
Acceleration jet firings (All jets available)

Master Slave
Jet# Time Jet # Time

2 2.00 27 3.92
9 0.16 15 3.84
13 0.16 9 0.16
29 0.0 13 0.16
43 0.0
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Figure 7.12 shows the vehicles at the command state and indicates the jets fired
during the deceleration phase of the maneuver. The corresponding firing times are
provided in table 7.13

MASTER

Figure 7.12
Deceleration jet firings. (All jets available)

Table 7.13
Deceleration jet firings (All jets available)

Master Slave
Jet# Time Jet # Time

21 1.12 1 3.84
33 1.12 33 0.64
7 1.04 21 0.56
17 0.0 11 0.08

29 0.0

Note the extensive use of jet #1 on the slave shuttle during the deceleration firings.
Though at the time of the deceleration firings the mass centers of the vehicles are separated
by 125 ft in the master vehicle z-body axis direction, this jet is located approximately 67 ft
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forward of the center of mass of the slave vehicle. The hot gas plume from this jet is
impinging upon all equipment in the open payload bay of the master vehicle. From an
operational standpoint this is undesirable and should be avoided.

The simple relative position trajectory of the spacecraft is shown in figure 7.13 in
the x-z plane of the reference LVLH coordinate frame centered on the master vehicle. Since
the commanded final attitude of the master vehicle is specified with respect to M50 and the
relative position of the slave vehicle is specified in the master vehicle coordinate system, the
relative position vector appears to rotate in the LVLH frame during the formationkeeping
phase of the test.

Test 4.0: Position -- In-Plane (LVLH)

v-har--

- - ---- t----- o

0 50

X Position (ft)

100 150

Figure 7.13
Relative Position Trajectory (LVLH)

During the 90 second coast phase and the 83 second formationkeeping phase of the
maneuver the phase space regulator monitors the state and velocity errors, computes the
velocity to be gained request, and initiates corrective jet firings when these errors approach
the specified thresholds. Figure 7.14 shows the magnitude of the normalized error vectors
for this test case. The errors remained small during the coast phase of the maneuver and no
corrective burns were required. However, as a consequence of the granularity of the
individual reaction control jet firing times during the implementation of the deceleration
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burn, slightly larger relative angular velocity errors are induced and the relative attitude
error eventually exceeds the inner phase sphere threshold at 125.44 seconds. Table 7.14
shows the actual firing times for this corrective maneuver.

Test 4.0: Magnitude of the Normalized Error Vectors
Inner Phase Sphere = 0.85

S= Feedback correction firing

= Open - loop deceleration firing

.. . .. .......
/N

/
S-.............. ......... ........

. e.Attide Error .Veh #1 Att Error
--" - .... ..... ....... ............." ..... . . ........... ........

SRel Posi ion Error

I ' -- -s .. .

20 40 60 80 100 120 140 160

Time (seconds)

Figure 7.14
Magnitude of the Normalized Error vectors.

Table 7.14
Corrective Jet Firings, initiated @ 125.44 sec.

Master Slave
Jet # Time Jet # Time

2 0.24 15 0.08
9 0.08 24 0.08
17 0.08 36 0.08

180

The final state errors at the end of the coast phase, the end of
and the end of the test are in table 7.15. Figures 7.15 - 7.17 are

the deceleration burn,

respectively the time
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histories of the master vehicle attitude error, the relative attitude error, and the relative
position error. In all cases the errors are within the specified deadband tolerances.

Table 7.15
State Variable Errors.

@ end of @ end of @ end of
coast phase deceleration test
-.000737 -.001014 .023130

Vl_Att_Err -.004279 -.004587 .003542
(rad) -.001572 -.001657 .004288

.003114 .0037338 -.003068
Rel_Att_Err .022364 .0231894 .024800

(rad) .006493 .006673 .005888

.7447 -.3771 1.9310
Rel_Pos_Err .0353 .0396 -.6427

(ft) -.1943 -.0740 -.1709

test 4.0: Veh #1 Attitude Error

20 40 60 80 100 120 140 160 180

Time (seconds)

Figure 7.15
Attitude Error: Master Vehicle wrt M50. (All jets available)
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Test 4.0: Relative Attitude Error
Deadb•nd +.05 :ad
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Figure 7.16
Attitude Error: Slave Vehicle wrt Master (All jets available)

test 4.0: Relative Position Error (Veh #1 Body Frame)
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Figure 7.17
Relative Position Error. (All jets available)
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73.2 Slave Shuttle's Forward Jets Unavailable

The system is commanded to perform the z axis transition described by the initial
and final states given in equations 7-6 and 7-7 above. In this case however, primary jets
#1 thru #14 and vernier jets #39 and #40 on the slave shuttle are flagged as unavailable.
This set comprises the entire suite of reaction control jets forward of the center of mass of
the slave shuttle and effectively removes 8 of the 40 cluster representatives nominally
available to the two spacecraft simplex jet selection algorithm. Since these jets are
unavailable, the simplex jet selection algorithm cannot employ them as part of acceleration,
deceleration or any of the feedback initiated corrective jet firings.

The cooperative controller computes an open-loop trajectory consisting of an
acceleration phase, a coast phase, and a deceleration phase. Figure 7.18 shows the initial
configuration of the two spacecraft and indicates the acceleration jets fired to begin the
maneuver. Note that slave vehicle jets #9 and #13 (forward-down-left and forward-down-
right) are not selected as in the "all jets available" case; slave aft jets #21 and #31 are fired
instead. Table 7.16 gives the complete set of jet firings and the corresponding firing times
for the acceleration phase of the maneuver.

Table 7.16
Acceleration jet firings.

Master Slave
Jet # Time Jet # Time

2 2.64 27 4.00
9 0.24 15 3.92
13 0.24 33 0.24
43 0.08 21 0.16

17 0.0
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SLAVE

MASTER

Figure 7.18
Acceleration jet firings. (Slave forward jets unavailable)

The deceleration burn is executed as the vehicle reaches the commanded state.
Figure 7.19 shows the jets fired and table 7.17 contains the corresponding jet firing times
for the deceleration phase of the maneuver. Note the absence of slave vehicle jet #1 from
the firing pattern and the significant increase in the firing times of the upwardly firing jets
(#7,21, 33) on the master vehicle. The cooperative control trajectory planner has computed
a new accelerate, coast, decelerate trajectory which can be flown using only the available
reaction control jets. The resulting relative position trajectory of the two spacecraft in the x-
z plane of the reference LVLH coordinate frame centered on the master vehicle is shown in
figure 7.20.
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MASTER

Deceleration jet
Figure 7.19

firings. (Slave forward jets unavailable)

Table 7.17
Deceleration jet firings.

Master Slave
Jet # Time Jet # Time

33 2.40 21 0.16
21 2.32 33 0.16
7 2.24 29 0.0
15 0.80
27 0.80
4 0.0
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Test 4.1: Position -- In-Plane (LVLH)

-50 0 50
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100 150

Figure 7.20
Relative Position Trajectory (Slave forward jets unavailable, LVLH frame).

The performance of the system during the coast maneuver is only slightly degraded
by the unavailability of the slave shuttle's forward RCS jets. Figures 7.21 - 7.23 show the
errors in the master vehicle attitude with respect to M50, the relative attitude errors, and the
relative position errors. In this test case slightly larger rate errors are induced by the
granularity of the jet firings than in the "all jets available" case. Consequently the relative
attitude error exceeds its inner phase sphere threshold at 52.56 seconds and the master
vehicle attitude error exceeds its inner sphere threshold at 120.56 seconds.
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Test 4.1: Veh #1 Attitude Error
Deadbdnd+0.05 .ad.... .... ---------
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Figure 7.21
Attitude Error: Master Vehicle wrt M50. (Slave

120 140 160 180

forward jets unavailable)

Test 4. 1: Relative Attitude Error
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Figure 7.22
Attitude Error: Slave Vehicle wrt Master (Slave forward jets unavailable)
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Test 4.1: Relative Position Error (Veh #1 Body Frame)
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Figure 7.23
Relative Position Error. (Slave forward jets unavailable)

Note that the rate of change of the normalized magnitude of the master vehicle
attitude error is not rapidly reversed as the normalized error exceeds the inner phase sphere
at 120.56 sec (figure 7.24). During this corrective maneuver, simplex assigned long firing
times to a pair of the low acceleration vernier jets instead of selecting the higher acceleration
primaries and the correspondingly shorter firing times. The simplex cost of each jet firing
is directly proportional to the firing time of the jet and includes no additional penalty for
undesirably long firing times. Thus the optimal choice is dependent on the direction of the
9-dimensional velocity to be gained vector and the cost per second of each of the available
jets. In this case the velocity to be gained vector is more closely aligned along the direction
of the activity vectors of master vehicle verniers #39 and #44 than any primary jet.

To implement an excessively long set of jet firing commands, the cooperative
controller scales each firing time such that the longest corresponds to a value of 4.96
seconds. In this manner the direction of the velocity change is preserved though its
magnitude is diminished. At the end of the 4.96 sec firing a new velocity correction is
computed and immediately implemented. Using this method a long corrective maneuver is
implemented in a piecewise optimal sense.
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12 Test 4.1: Magnitude of the Normalized Error Vectors
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Figure 7.24
Magnitude of the Normalized Error Vector. (Slave forward jets unavailable)

Figure 7.24 shows that during the corrective maneuver (120.56 - 132.08 sec) the
rate of change of the normalized master vehicle attitude error is decreased. However due to
the duration of the maneuver the error has drifted beyond the unit phase sphere threshold.
When the next segment of the corrective maneuver is computed at 132.24 sec the larger
"region #3" value of the convergence rate (c) is used in the velocity to be gained calculation
(equation 6-12). In order to deliver the new larger velocity change simplex selects a set of
primary jets and the errors on all three phase space channels are rapidly decreased.

Since the slave shuttle reaction control jets have no effect on the absolute attitude of
the master shuttle with respect to M50, the unavailability of the forward slave vehicle jets
did not interfere with a rapid reversal of the master vehicle attitude rate error. This behavior
was a consequence of the relative weight assigned to the primary and vernier jets in the
simplex cost function. The determination of a method of blending vernier and primary jet
commands while satisfying maximum firing time constraints is an area of possible future
study.
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Table 7.18 summarizes the feedback initiated jet activity during the coast and
formationkeeping phases of this test.

Table 7.18
Feedback initiated jet firings. (Slave forward jets unavailable)

Master Slave Total
Primary 22 / 3.12 12/2.56 34/5.68
Vernier 7/ 17.04 0 /0.00 7 / 17.04

Total 29 / 20.16 12 / 2.56 41 / 22.72

values are (# of firings ) / ( aggregate firing time)

7.33 Slave's Forward Jets & Master's +Z Jets Unavailable

In this test the system is commanded to perform the z axis translation described by
the initial and final states given in equations 7-6 and 7-7 above. In addition to the slave
vehicle forward jets disallowed during the last test (#1 thru #14, #39, #40), all the down
firing (+z) jets on the master shuttle are flagged unavailable (9,10,13,14,24,25,26,
36,37,38, and verniers 39,40,42,44). Specifically, jets used in the last test and their
obvious replacements are now unavailable; this test stresses the ability of the system to
accommodate jet failures. In this configuration neither of the individual shuttles is
completely controllable in 6 degrees of freedom, and therefore neither is capable of
performing a single pursuit vehicle approach to the other.

The cooperative controller computes an open-loop trajectory consisting of an
acceleration phase, a coast phase, and a deceleration phase. Figure 7.25 shows initial
configuration of the two spacecraft and indicates the acceleration jets fired to begin the
maneuver. Note that since the +z jets on the master vehicle are unavailable, the cooperative
controller uses jets #21 and #33 to provide the required + pitch impulse. Table 7.19 gives
the complete set of jet firings and the corresponding firing times for the acceleration phase
of the maneuver.
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Figure 7.25
Acceleration jet firings. (Slave forward and master +Z jets unavailable)

Table 7.19
Acceleration jet firings.

Master Slave
Jet # Time Jet # Time

2 2.88 27 4.48
33 0.32 15 4.40
21 0.32 21 .24
43 0.08 33 .24
4 0.0
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The deceleration burn is executed as the vehicle reaches the commanded state.
Figure 7.26 shows the jets fired and table 7.20 contains the corresponding jet firing times
for the deceleration phase of the maneuver. Similar to the last test, the impulse provided by
the #1 jet on the slave vehicle in the "all jets available case" has been replaced by a
significant increase in the firing times of the up firing jets (#7,21, 33) on the master
vehicle. The resulting relative position trajectory of the two spacecraft in the x-z plane of
the reference LVLH coordinate frame centered on the master vehicle is shown in figure
7.27.

2133
331

'E

MASTER

Figure 7.26
Deceleration jet firings. (Slave forward and master +Z jets unavailable)

Table 7.20
Deceleration jet firings.

Master Slave
Jet # Time Jet # Time

33 2.40 21 0.16
7 2.32 33 0.16

21 2.32 29 0.00
27 0.80
15 0.72
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Test 4.4: Position -- In-Plane (LVLH)
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Figure 7.27
Relative Position Trajectory

(Slave forward and Master +Z jets unavailable, LVLH frame).

Though neither spacecraft is completely controllable in six degrees of freedom, their
relative motion and the absolute attitude of the two vehicle system is controllable as a 9
degree of freedom system. The cooperative controller accurately controls the relative states
of the two vehicles in a scenario where either vehicle acting as a single pursuit vehicle could
not. Figure 7.28 - 7.30 show the errors in the master vehicle attitude with respect to M50,
the relative attitude errors, and the relative position errors.
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Test 4.4: Veh #1 Attitude Error
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Time (seconds)

Figure 7.28
Attitude Error: Master Vehicle wrt M50.

(Slave forward and Master +Z jets unavailable)

Test 4.4: Relative Attitude Error
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Figure 7.29
Attitude Error: Slave Vehicle wrt Master

(Slave forward and Master +Z jets unavailable)
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STest 4.4: Relative Position Error (Veh #1 Body Frame)
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Figure 7.30
Relative Position Error.

(Slave forward and Master +Z jets unavailable)

Test 4.4: Magnitude of the Normalized Error Vectors
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Figure 7.31
Magnitude of the Normalized Error Vector.

(Slave forward and Master +Z jets unavailable)
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The plot of the magnitude of the normalized error vectors in figure 7.31 shows that

as in the other test cases the errors are well controlled and remain within the unit phase
sphere. In this test a single corrective jet firing maneuver was required at t = 129.92

seconds during the formationkeeping phase of the test.

7.3.4 Slave's Forward Jets & Master's Primary Jets Unavailable

Traditional proximity operations are conducted using a single pursuit vehicle to

approach or formationkeep with a passive target vehicle. The target vehicle may not

actually be passive and may be capable of performing independent attitude control. This
test case investigates the performance of this traditional approach during a period of
degraded control authority of the pursuit vehicle.

Similar to the test case described in the last section, primary jets #1 thru #14 and
vernier jets #39 and #40 on the slave shuttle are flagged as unavailable to simulate either a

serious reaction control system failure or a desire to avoid forward jet plume impingement
on the target (master) vehicle. In addition to these jets all the primary jets on the master
vehicle (jets #1 thru #38) are also flagged as unavailable. The translational control
authority provided to the master vehicle by the remaining low acceleration vernier jets is
insignificant and the vehicle may be considered only capable of attitude control. Under
these conditions the master vehicle provides an adequate approximation of a passive target
vehicle.

The system is commanded to perform the z axis translation described by the initial
state and commanded final state in equations 7-6 and 7-7 above. The cooperative controller
parameters used in this test case are identical to those used in the previous two test cases
and are given in table 7.1 and table 7.2.

The cooperative controller attempts to compute an open-loop trajectory consisting of
an acceleration phase, a coast phase, and a deceleration phase which carries the system to
the commanded final state. Due to the degraded control authority of the system, the
simplex jet selection algorithm is unable to select a set of reaction control jets to satisfy the
velocity change requirements. In both the "all jets available" and the "forward slave jets
unavailable" test cases the acceleration maneuver utilized primary jet #2 on the master
vehicle, (see tables 7.12 and 7.16). This jet provides an impulse in the -x direction without
applying a torque to the slave spacecraft. In this test case all the primary jets on the master
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vehicle are unavailable and no combination of the jets available on the slave spacecraft can

provide an equivalent relative velocity impulse without also generating a significant relative

rotational velocity impulse. In the terminology used in chapter 4, the set of jets available in

this test fails to span the 9 dimensional velocity space and thus the system is not completely
controllable.

7.3.5 Summary of Jet Failure Tests

In this section the robustness of the cooperative controller to reaction control jet
unavailability was investigated. The four test cases conducted provided examples of
varying degrees of degraded control authority of the two vehicle system.

In the first test case (all jets available) both the master and the slave vehicle are
completely controllable. The cooperative controller performs the commanded maneuver
using a total of 19.44 sec of jet on time; the smallest amount used in any of the four cases.

In the second case the slave vehicle is uncontrollable in 6 degrees of freedom. The
cooperative controller is able to control the 9 dimensional state of the two vehicle system by
exploiting the natural actuator redundancy provided by the reaction control jets available on
the "healthy" master vehicle.

In the third test case neither the slave or the master spacecraft is completely
controllable in six degrees of freedom. Even so, the cooperative controller is again able to
coordinate reaction control jet firings on the two vehicles and control the system in the nine
dimensional state space.

The fourth test case is the traditional pursuit vehicle control approach to proximity
operations. Since the master vehicle is completely passive in translation, the controllability
of the relative position of the two vehicles is entirely dependent on the controllability of the
pursuit vehicle. Since the forward jets on the pursuit vehicle are unavailable, the pursuit
vehicle is not completely controllable in translation and the maneuver cannot be
accomplished.

The ability of the cooperative controller to maintain control of the system of two
spacecraft when the single pursuit vehicle control system cannot control the relative states
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of the vehicles is a principle benefit of the cooperative control approach to proximity
operations.

7.4 V-Bar Approach Test

The purpose of this test is to demonstrate the ability of the cooperative controller to
exploit the control assets available on both vehicles in order to perform fuel efficient
maneuvers. The cooperative controller is exercised in several test cases using different jet
costs and jet availability configurations. Performance comparisons are made based on the
jets selected, the duration of the jet firings (fuel consumed) and the behavior of the two
vehicles. A standard docking approach along the mean velocity vector of the target vehicle
is commanded in each instance.

In the Clohessy - Wiltshire equations developed in chapter 3, (equation 3-43),
when z-0, and x, z = 0 then x, z = 0. The x axis of the local LVLH coordinate system is a
locus of equilibrium points which may be exploited during proximity operations. Since the
direction of the x-axis corresponds to the direction of the orbital velocity vector of the
reference circular orbit, this direction is referred to as V-BAR. Standard pursuit vehicle
rendezvous operations often involve a v-bar approach.

In the v-bar approach test the master and the slave vehicle are travelling in the same
circular orbit, (figure 7.32a). The slave vehicle is positioned 150 ft forward of the master
vehicle. The master vehicle is pitched +900 with respect to its LVLH frame and the slave
vehicle is aligned with the master. The complete description of the initial state of the two
shuttle system is given by the absolute and relative attitude quaternions, the relative position
vector (body frame), the absolute and relative angular velocity vectors, and the relative
linear velocity vector.

QB_M50 =[ .518667 .619413 -.121514 .576669 ]

QV2_B =[ 1.0 0.0 0.0 0.0 ]

REL _POS =[ 0.0 0.0 150.0 ](ft)

_V1 [0.0 0.0 0.0 0.0] (rad/sec) (7-8)

_V2_V = [ 0.0 0.0 0. 0 ](rad/sec)

REL_VEL = [ 0.0 0.0 0.0 ](ft/sec)

127



do 150 FT.

ESLAV]

SLAVE

MASTER

MASTER

(b)
Figure 7.32

(a)The initial state of the two vehicle system
(b) The commanded final state of the two vehicle system.

The vehicles are commanded to decrease the distance between them to 50 ft while
maintaining the attitude of the master vehicle with respect to the M50 frame and the attitude
of the slave vehicle relative to the master vehicle constant, (figure 7.32b). The coast time
for the maneuver is 100 seconds. The final state of the maneuver is given by

QB_M50 = [ .518667 .619413 -.121514 .576669 1

Q_V2_B =[ 1.0 0.0 0.0 0.0]

REL _POS =[ 0.0 0.0 50.0] (ft)

)_V1 = [0.0 0.0 0.0 (rad/sec)

)_V2_Vl = [ 0.0 0.0 0.0 (rad/sec)

REL_VEL = [ 0.0 0.0 0.0 (ft/sec)
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This test is executed four times using different actuator descriptions in order to
demonstrate the ability of the cooperative controller to perform the maneuver using different
subsets of the jets residing on the two vehicles. The differences in both fuel efficiency and
the behavior of the system will be highlighted. The cases presented are:

(1) Master vehicle reaction control jets unavailable. All slave vehicle jets
available.

(2) All reaction control jets available on the both vehicles.

(3) Master vehicle reaction control jets twice as fuel efficient as slave reaction
control jets. All jets available.

(4) "Upward firing" (-z in body frame) reaction control jets on both the master
and the slave vehicle are three time less fuel efficient than the other jets. All
jets available.

These test cases are discussed individually in the following sections.

7.4.1 Master Vehicle Jets Unavailable

In this test case all of the reaction control jets on the master shuttle are flagged as
unavailable and may not be fired by the cooperative controller. This test case reduces to the
single vehicle pursuit solution to the proximity operations problem. The entire maneuver is
performed by the slave vehicle. Figure 7.33 shows the initial state of the two shuttles and
indicates the jets fired during the acceleration burn. Table 7.21 contains the actual firing
times for each jet.

1

MASI

Figure 7.33
The initial state of the two vehicle system

Acceleration jet firings indicated.
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Table 7.21
Acceleration phase jet firings.

Master Slave
Jet # Time Jet # Time

- 0.0 24 3.44
36 3.44
13 1.76
9 1.76
1 1.52

The slave vehicle coasts toward the master at a velocity of approximately 1 ft/sec.
After 100 sec the slave performs the deceleration set of jet firings in order to null the
relative velocity and begin formationkeeping at the target 50 ft point. Figure 7.34 shows
the jet firing pattern at the final state. Table 7.22 gives the actual firing times.

SLAVE MASTER

Figure 7.34
The final state of the two vehicle system

Deceleration jet firings indicated.
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Table 7.22
Deceleration phase jet firings.

Master Slave
Jet # Time Jet # Time

0.0 33 2.48
6 2.40

21 2.08
27 0.08

Firing the up (-z) jets on the slave shuttle nulls its velocity in the LVLH frame and
concludes the two burn maneuver. The slave then begins to formationkeep at the
commanded final state. The master shuttle has not been perturbed from reference circular
orbit and thus the two vehicle system is not translating with respect to the reference LVLH
frame.

During this maneuver the phase space regulator commanded two corrective sets of
jet firings, one at 16.80 sec (during coast) and one at 124.88 sec. (during
formationkeeping). These two corrective maneuvers account for 12 jet firings and for a
total of 3.84 seconds of firing time.

7.4.2 All Jets Available

In this test case all reaction control jets on both the master and the slave vehicles are
available to the cooperative controller. The cooperative controller selects the most efficient
combinations of jets based on the geometry of the activity vectors and the thrust level of
each jet. In the jet select cost function the cost coefficient value used for all the primary jets
is c=1.0, for all the vernier jets c=0.0287. Figure 7.35 show the acceleration jets fired in
this test case. Table 7.23 shows the actual firing times used for each jet.

Table 7.23
Acceleration phase jet firings.

Master Slave
Jet # Time Jet # Time

7 2.40 - 0.0
33 2.40
21 2.24
15 0.08
27 0.08
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E MAST

Figure 7.35
The initial state of the two vehicle system

Acceleration jet firings indicated.

From the firing pattern in figure 7.35 it is clear that the cooperative controller is
performing a single vehicle approach by the master vehicle. This solution is primarily a
result of an asymmetry in the reaction control jets on a shuttle spacecraft. Though each
primary reaction control jet used on the shuttle is identical to all the other primaries, the
effectiveness of each jet is altered by its placement on the vehicle. Specifically, on the
space shuttle the aft downward firing (+z) jets impinge upon the shuttle itself. This
impingement has the effect of decreasing the net thrust attained by firing the jet.

The cost coefficients for the aft +z jets are traditionally set to the same value as the
other primary jets (see section 7.2.4 below) because they consume fuel at the same rate.
Since the two vehicles in this test have been commanded to perform an approach maneuver,
the cooperative controller must select the acceleration jets to be fired from either the set of
down firing jets on the slave vehicle or the up (-z) firing jets on the master. Since the up
jets do not impinge on the vehicle, and cost the same as the down jets, they are more
efficient and are selected.

It must be emphasized that the shuttle reaction control jet model accounts for the
forces and torques on a shuttle due to impingement from its own jets. It does not account
for impingement effects due to jets from a neighboring vehicle.
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The vehicles coast for 100 sec and then perform the open-loop deceleration firings.
Figure 7.36 shows the firing pattern and table 7.24 contains the actual firing times.

SLAVE MASTER

Figure 7.36
The final state of the two vehicle system

Deceleration jet firings indicated.

Table 7.24
Deceleration phase jet firings.

Master Slave
Jet # Time Jet # Time

0.0 33 2.48
6 2.40

21 2.08
27 0.08

In the deceleration maneuver the relative efficiency of upward firing (-z) jets is
again the dominant consideration in optimizing the fuel consumption of the two burn
approach. In order to null the relative approach velocity the cooperative controller must
select the deceleration jets from either the master vehicle -z jets or the slave vehicle +z jets.
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Firing the less efficient master vehicle +z jets will cause the velocity of the master vehicle in
the LVLH frame to decrease and the two vehicle system to formationkeep about a fixed
point in the LVLH frame. The cooperative controller selects the more efficient solution,
and fires a set of -z jets on the slave vehicle. As a result the slave vehicle accelerates to
match the LVLH velocity of the master vehicle. The two vehicles attain the commanded
final state and formationkeep about a point moving slightly faster than the reference circular
orbit.

During this maneuver the phase space controller did not initiate any corrective jet
firings.

7.4.3 Master Vehide More Efficient Than Slave Vehicle

In this test case the cost coefficient for the jets on the master vehicle are set to values
equal to half the values used for the jets on the slave vehicle. The smaller cost coefficient
indicates to the cooperative controller that the master vehicle jets use fuel at half the rate of
the slave vehicle jets. In this test all reaction control jets on both the master and the slave
vehicles are available to the cooperative controller. The cooperative controller selects the
most efficient combinations of jets based on the geometry of the activity vectors, the thrust
levels of each, and the cost per second of firing time. Figure 7.37 shows the acceleration
jets fired in this test case. Table 7.25 shows the actual firing times used for each jet.

E MAST

Figure 7.37
The initial state of the two vehicle system

Acceleration jet firings indicated.
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Table 7.25
Acceleration phase jet firings.

Master Slave
Jet # Time Jet # Time

7 2.32 - 0.0
21 2.24
33 2.24
27 0.08

The firing pattern in figure 7.37 shows that in this case the most efficient solution to
the two burn maneuver employs the master vehicle -z jets during the acceleration burn. As
a result the master vehicle closes at approximately 1 ft/sec on the slave vehicle which
remains in an unperturbed circular orbit.

The vehicles coast for 100 sec. and then the deceleration set of jet firings is
implemented. Figure 7.38 shows the jet firing pattern and table 7.26 contains the
corresponding jet firing times.

SLAVE MASTER

Figure 7.38
The final state of the two vehicle system

Deceleration jet firings indicated.
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Table 7.26
Deceleration phase jet firings.

Master Slave
Jet # Time Jet # Time

36 3.52 - 0.0
24 3.44
9 1.76
13 1.76
2 1.44

In this test the decrease in the cost of the master vehicle primary jets has offset the
inefficiency of the +z primaries discussed in the last section. The +z jets on the master
vehicle are fired, the closure velocity reduced, and the final command state reached. As in
the test case presented in section 7.4.1 the system is not translating with respect to the
LVLH frame at the end of the deceleration burn.

It should be noted that the cooperative controller did not "blend" jets from both
vehicles during the maneuver due to constraints on the attitudes of the vehicles. Each jet
provides a torque as well as a linear force. Thus to perform a pure translation the torques
on each vehicle must sum to zero. It would be inefficient to fire "translation" jets on both
vehicles and additional "torque nulling" jets as well.

7.4.4 Upward Firing Jets Less Efficient

In this test case the cost coefficient parameters for the upward firing (-z) jets on
both vehicles are set to a value three times the standard value used for the other jets. This
situation could actually arise if a spacecraft had two sets of very dissimilar actuators. In
this test all reaction control jets on both the master and the slave vehicles are available to the
cooperative controller. The cooperative controller selects the most efficient combinations of
jets based on the geometry of the activity vectors, the thrust levels of each, and the cost per
second of firing time. Figure 7.39 shows the acceleration jets fired in this test case. Table
7.27 shows the actual firing times used for each jet.
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MAST

Figure 7.39
The initial state of the two vehicle system

Acceleration jet firings indicated.

Table 7.27
Acceleration phase jet firings.

Master Slave
Jet # Time Jet # Time

15 0.80 36 3.28
27 0.64 24 3.20
33 0.08 9 1.52

13 1.52

33

The jet firing pattern in figure 7.39 is different than the pattern observed in the three
prior approach cases. Due to the high cost of the master vehicle up firing (-z) jets, the
down firing (-z) jets on the slave vehicle are used to impart the required translation velocity
to the system. This combination produces an additional velocity component in the +x body
axis direction which caused jet #1 on the slave vehicle to be employed during the single
vehicle case presented in section 7.4.1 (figure 7.33). In this test case the cooperative
controller employs the +x jets on the master vehicle (these jets were unavailable during the
single vehicle test). Jet #33 is used for only one control cycle to counter the small torque
associated with the jet 15 & 27 combination.
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The slave vehicle coasts toward the master for 100 sec and then the deceleration jets
are fired. Figure 7.40 shows the firing pattern and table 7.28 contains the actual firing
times.

SLAVE VIASTER

Figure 7.40
The final state of the two vehicle system

Deceleration jet firings indicated.

Table 7.28
Deceleration phase jet firings.

Master Slave
Jet # Time Jet # Time

24 3.28 15 0.72
36 3.28 27 0.56
9 1.60 33 0.08
13 1.60
44 0.32

In this deceleration maneuver the cooperative controller selects the down (+z)
master vehicle jet combination over the costlier up firing slave vehicle jets. The master
vehicle is thus accelerated until its translational velocity matches the approach velocity of
the slave vehicle. The cooperative controller compensates for the additional velocity in the
+x body direction induced by the 9,13,24,36 jet combination by commanding short firings
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of the +x jets on the slave vehicle. The two vehicles attain the commanded final state at the
end of the deceleration burn and formationkeep about a point moving slightly slower than
the reference circular orbit.

During this test the phase space controller initiated 3 corrective maneuvers
consisting of 25 individual jet firings for a total of 8.72 seconds of firing time.

7.4.5 Summary of V-bar Tests

This series of four tests demonstrated the fuel efficiency and the versatility of the
cooperative controller. In each test case (master jets unavailable, all jets available with cost
coefficient = 1, master jet costs=1/2, -Z jet costs=3) the cooperative controller planned and
executed a two burn trajectory which carried the two spacecraft system from the initial to
the commanded final states. In all four test cases the phase space regulator feedback loop
maintained the state errors within the specified deadbands during the coast and
formationkeeping phases of the test. Table 7.29 summarizes the reaction control jet activity
for each test case.

Table 7.29
Summary of jet activity for the V-bar tests.

TEST CASE OPEN- LOOP FEEDBACK COST
No of Jets Total Time No of Jets Total Time

Master Jets Unavailable 9 18.96 12 3.84 22.80
All Jets Available; Std Cost 9 14.24 0 0.0 14.24

Master Jet Cost = 1/2 9 18.80 5 2.72 10.76
Both Veh. -Z Jets Cost = 3 15 22.48 25 8.72 31.40

In table 7.29 the fuel savings of the two vehicle cooperative control approach (case
2) over the single pursuit vehicle approach (case 1) is evident. The two vehicle all jets
available maneuver used 57% fewer jet firings ( 9 vs 21) and 37% less fuel (in these cases
fuel usage is directly proportional to aggregate firing time; 14.24 vs 22.80). The
cooperative controller solution is more efficient as a direct result of the use of more
effective master vehicle jets in place of some of the slave vehicle jets employed by the
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single vehicle pursuit solution. The increased fuel economy resulting from the
incorporation of the actuators on both spacecraft into the maneuver solution is a principle
advantage of the cooperative control approach to proximity operations.

In the nominal cooperative control test the cost parameters associated with each jet
are unity. Consequently the jets are selected based on the their effective thrust and the
geometry of the problem. In the third and fourth test cases the ability of the cooperative
controller to blend actuators of dissimilar fuel consumption rates was demonstrated. In test
case #3 the cost parameter for all master vehicle jets was set equal to 1/2. Though the
aggregate firing time increased (14.24 to 21.52 sec.) as low cost geometrically less efficient
master vehicle jets were included into the solution in place of high cost slave vehicle jets,
the fuel usage cost decreased (14.24 to 10.76).

In case four the cost parameter for all up (-z) firing reaction control jets was set to
3. In order to avoid the increased fuel costs associated with these jets the cooperative
controller substituted geometrically less effective unity cost down (+z) firing jets during
both the acceleration and deceleration maneuvers. The resulting cost of the maneuver is of
course larger than the cost computed in case 2, but it is lower than the cost of the case 2 jet
firing profile with recomputed using the higher cost parameter value.

In addition to verifying the fuel efficiency of the cooperative controller these four
tests also demonstrate the controller's versatility. In the third test case (master vehicle jet
costs = 1/2) the cooperative control solution reduces to a single active pursuit vehicle
approach. Unlike the true single vehicle approach to proximity operations however, the
cooperative control approach guarantees that the vehicle performing the pursuit maneuvers
is the more efficient of the two vehicles. The relative efficiency of the two vehicles may
change drastically due to changes in the availability of the actuators, mass properties, the
relative geometry of the vehicles, or the commanded maneuver. The cooperative controller
adapts to all these changes in real time.

In the second and fourth test cases, the cooperative controller fires a combination of
reaction control jets from each spacecraft in order to implement the two burn trajectory
solution. The initial burn in each solution accelerates one of the vehicles to an appropriate
approach velocity. To complete the maneuver a second open-loop burn is commanded at
the end of the coast period. Rather than decelerating the approaching vehicle, this burn
accelerates the second vehicle until the relative velocity of the two spacecraft is nulled and
the commanded relative position is attained. This type of coordinated proximity operations
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maneuver is unique to the cooperative control approach. It cannot be performed using only
one active vehicle and would be extremely difficult to perform accurately and efficiently
using two independently controlled vehicles
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CHAPTER 8

SUMMARY AND CONCLUSIONS

8.0 Conclusions

A new controller capable of controlling the joint maneuvers of two general "active"
spacecraft during proximity operations has been developed. This 9 degree of freedom
cooperative controller controls the attitude of the master vehicle with respect to an inertial
coordinate frame as well as the attitude and position of the slave vehicle with respect to the
master. The cooperative control design developed in this thesis is a two-tiered system; an
open-loop trajectory solver is used to plan a linearized two burn (accelerate, coast,
decelerate) maneuver trajectory and a phase space regulator is used to maintain the system
of two vehicles on this trajectory. A simplex algorithm is employed to determine the
minimum fuel combination of reaction control jets on both the master and the slave vehicles
which satisfies each velocity change request. The cooperative controller has been
successfully implemented for a system of two space shuttle spacecraft conducting joint
maneuvers in low earth orbit.

Preliminary tests of the cooperative controller using the two shuttle example have
verified that cooperative control is a viable alternative to the traditional "pursuit vehicle"
approach to proximity operations. The ability of the open-loop trajectory solver to plan a
complicated two vehicle maneuver which drives the system to a commanded final state has
been demonstrated. The ability of the phase space regulator loop to maintain the system
state on the planned nine degree of freedom linearized trajectory and perform
formationkeeping functions within specified tolerances and with an acceptable level of
reaction control jet activity has also been verified.

The cooperative controller has been shown to be more robust to jet failures than a
single vehicle control system. When several reaction control jets on the pursuit spacecraft
were designated "unavailable", the vehicle was no longer completely controllable and was
unable to perform the commanded approach to the target vehicle. In this same situation the
cooperative controller was able to exploit the available control authority of the control jets
on both the pursuit vehicle and the "healthy" target vehicle in order to control the two
vehicle system and complete the commanded maneuver. Furthermore, in a case where
neither the target or the pursuit vehicle was completely controllable, the cooperative
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controller was able to control the nine degree of freedom system and direct it to the
commanded final state. In all cases examined, the additional redundancy achieved by
including the target vehicle reaction control jets in the set of usable actuators made the
cooperative controller more robust to jet failures than the single pursuit vehicle control
system.

Two cooperatively controlled vehicles were also shown to be more efficient than a
single pursuit vehicle. During a 100 second v-bar approach maneuver, the cooperatively
controlled two-vehicle system performed 57% fewer jet firings and used 37% less fuel than
a single pursuit vehicle performing the same maneuver. In addition, during a more
complicated 500 second maneuver the cooperatively controlled system was demonstrated to
be more efficient than a set of two non-cooperative maneuvering vehicles. In this case the
cooperative controller commanded 51% fewer jet firings and used 68% less fuel than the
two independently controlled vehicles. Though the savings of the cooperative control
approach vary depending on the maneuver and the efficiency of the available reaction
control jets, the cooperative controller is never less fuel efficient than either a single pursuit
vehicle or pair of maneuvering vehicles.

8.1 Contributions

This thesis has emphasized the extension and integration of several existing
approaches to single spacecraft control to the more complex problem of the cooperative
control of two spacecraft. The significant contributions of this work are:

(1) The formulation of the nine degree of freedom, two spacecraft, joint
maneuver trajectory solver.

(2) The formulation of the nine dimensional phase space algorithm for the two
vehicle system. This system utilizes a separate phase space representation
of each of three 3-dimensional control channels and a single 9-dimensional
velocity to be gained vector.

(3) The development of the proximity operations Cooperative Controller. This
controller is a new approach to the solution of the proximity operation
control problem; it exploits the maneuverability of both the target and the
master spacecraft in order to control the relative position and attitude of the
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two spacecraft and the attitude of one of the vehicles with respect to an
inertial reference frame. The controller is robust to reaction control jet
failures and performs fuel efficient proximity operations maneuvers.

(4) The validation of the cooperative controller design using a software
simulation of a two space shuttle system and by comparison to the
performance of a single vehicle controller in similar proximity operations
scenarios.

8.2 Recommendations for Additional Work

The cooperative controller controls nine degrees of freedom of the two spacecraft
system. During various phases of the mission it may be operationally desirable to control
the two spacecraft in 12, 6, or even 3 dimensions. (If the two vehicle system is not
completely controllable in 9 dimensions it would be desirable to attempt to control just the
relative position and relative attitude.) Since the jet selection algorithm is readily formulated
for each of these cases it may be desirable to expand the basic cooperative controller to
include these specialized control modes.

As currently formulated the jet selection algorithm returns a solution which includes
"imaginary jets" when the two vehicle system is not completely controllable (chapter 4). It
may be advantageous to incorporate a "controllability alarm" which directs specific action
(eg. reduce the order of the controller) when the system is unable to perform a commanded
maneuver. (The shuttle OEX autopilot incorporated such an alarm.)

A major cause of state error drift rates observed in the testing performed on the
cooperative controller is the minimum impulse and on/off granularity of the reaction control
jets. If control actuators with various control granularities could be blended in such a
manner as to eliminate a large portion of the drift rates the frequency of corrective jet
activity could be drastically reduced and additional fuel savings would result.

The cooperative controller computes a single two burn trajectory to transfer the two
spacecraft from the initial state to the commanded final state. In some instances this single
maneuver trajectory may be fuel inefficient or even impossible. (In chapter 5 it was shown
that the out-of-plane position is not controllable for transfers spanning integer multiples of
half an orbit.) A method for planning and optimizing a multi-segment trajectory could be
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used to provide intermediate state commands to the cooperative controller. Such a system
will certainly be required if the cooperative controller is to be applied to the control of a pair
of autonomous or semi-autonomous spacecraft.

Finally, in this thesis the cooperative controller was assumed to reside on the
"master" spacecraft. While this designation was convenient for the discussion purposes,
the algorithm does not have to reside on a particular vehicle. In fact it will be desirable to
have the cooperative controller running on both spacecraft simultaneously. In this manner
neither vehicle is "surrendering control" to the other spacecraft. Both spacecraft are
computing the cooperative solution and then comparing answers. If at any point the
separate controllers loose synchronization or disagree, the cooperative maneuver is broken
off and the vehicles transition to a single vehicle control mode.. This architecture is
especially attractive for operations within the proposed spacestation command and control
zone. Spacestation will be required to provide "direct command and control of unmanned
vehicles and support monitoring and advising of manned spacecraft operating within the
within the command and control zone". 10
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