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Abstract

Continuum, hydrodynamic modeling of the physics of radio-frequency glow-discharges at
high pressures was investigated. One-dimensional simulations were performed to develop
rigorous and efficient numerical methods appropriate to the extremely stiff and time dependent
problem being examined. Simulations were capable of predicting the critical one-dimensional
experimental phenomena. The numerical techniques developed in the one-dimensional
simulations allowed efficient implementation of two-dimensional models. The two-dimensional
simulations allow further comparison with experimental data collected in our laboratory, with
reasonable semi-quantitative agreement. Two-dimensional simulations are shown to converge
spectrally with refinement of the spatial grid, except at the junction of the insulator and the
electrodes where a discontinuity in the ion boundary condition is enforced. The physics of the
two-dimensional discharges is discussed at length, with particular attention paid to the role of the
aspect ratio of the discharge on perturbing the solutions from a simple one-dimensional case. For
both symmetric (equal area for powered and grounded electrode) and asymmetric (smaller
grounded electrode) simulations, the perturbations extend a distance of one gap-spacing into the
discharge radially. Simulations which have aspect ratios much greater than one are well
represented by the one-dimensional solutions near the radial centerline. For the asymmetric
geometries under consideration, the plasma is mostly confined within a region defined by the
smaller electrode, and the larger electrode is not fully electrically active.

Thesis Supervisors: Professor Herbert H. Sawin and Professor Robert A. Brown
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Chapter 1 : Introduction

1.1: Motivation

This work employs efficient and rigorous numerical methods for solution of the

continuum model for plasma physics. Simulations are performed in one and two dimensional

geometries, and compared to experimental measurements carried out in the lab at MIT. The

main contribution of this work is a set of numerically rigorous solutions for the continuum model

and suitable experimental measurements for comparison.

Plasma etching has become the most widely used pattern transfer mechanism as the

critical feature length for micro-electronic devices continues to decrease and greater fidelity of

pattern transfer has become necessary, as discussed by Graves (1989). For etching of large,

shallow features it was not necessary to understand the plasma physics or chemistry to design

etching reactors. However, for today's narrow and deep circuit components, and with the trend

of using larger substrate areas to increase process throughput, a detailed understanding of the

plasma physics which couples into the etching process is greatly desirable. The plasma physics,

plasma chemistry, and surface evolution (etching) are intimately coupled. However, each

process has a very different time scale, so it is most useful to understand each process separately.

One-dimensional modeling is very useful for understanding the basic physics of the

plasma, and examining the differences between electronegative (electron attaching) and

electropositive gases. The results of the one-dimensional model can be used as input for the

simplest chemistry and surface evolution models, and are useful for preliminary design efforts.

Two-dimensional models are necessary for more detailed understanding of the plasma physics in

a real system, especially when the effect of radial non-uniformity of the plasma is to be

incorporated into the surface evolution model. It is expected that the two-dimensional modeling

efforts can contribute to the primary design process for new equipment, as well as suggesting

modification to existing equipment for increased performance. By examining simpler cases and

examining the two-dimensional physics in detail, two-dimensional modeling results will also be

useful for determining the range of parameters to examine when testing out new equipment

which cannot be directly modeled.



To apply the model results to equipment design, the model must be robust,

computationally efficient, accurate, and contain sufficient physics. Without all of these features,

results from simulations are of little value. If the simulation is not robust, too much effort will be

wasted on achieving a solution, and generation of large sets of solutions would be too

cumbersome for equipment design. If the model is not computationally efficient, the cost of the

computations as well as the necessary computation time will exceed requirements for useful

design efforts and plasma physics exploration. Accuracy is required to assure that the numerical

methods are not perturbing the physics which the model encompasses. Finally, if the model does

not include sufficient physics, then application to real systems is of no use, since the model is

not, either quantitatively or qualitatively, correctly predicting the physics in the real system.

This work examines the geometry effects of parallel plate diode reactors for high pressure

etching processes, such as the etching of silicon-dioxide. A specific suite of numerical methods

were selected which are best suited to solving this problem, and the simulations were optimized

for the choice of geometry, physics, and plasma model used. All of the numerical methods which

are useful for simulations of diode reactors can also be used for simulation of next-generation

high-density sources which use RF biasing on the wafer-chuck. The simulations also give the

electron energy as a function of spatial position, which will be useful to couple into chemistry

models used in plasma deposition simulations. Therefore, the present work can be considered to

be not only a set of tools for computation of the physics of simple discharges in parallel plate

reactors, but is also useful preliminary work for solving other problems which are just now

becoming of interest.

1.2: Previous Work

1.2.1 One-Dimensional Modeling

Although the importance of plasma processing in microelectronics fabrication is well

established, the physics and chemistry of plasma-assisted etching is just beginning to be

understood. Many different tools are available for exploring the plasma physics, including

Monte Carlo (MC) simulations, particle in cell (PIC), continuum models (also called fluid

models), and Boltzman calculations. Boltzman simulations are the most rigorous, but are also

extremely computationally intensive, and have generally been solved using very limiting



assumptions. Monte Carlo simulations are the simplest conceptually, but require simulation of

large numbers of particles for convergent statistics. The PIC simulations are a modification of

the MC models in which each particle represents an ensemble of particles, and each ensemble is

allowed to move within a spatial grid. Continuum models treat each species as having a given

distribution function (which is calculated in the Boltzman codes), and each species is considered

concentrated enough that there is an equilibrium for that species at each spatial location. The

connection between the continuum model and the Boltzman equations is discussed in detail by

Gogolides and Sawin (1992). The PIC and MC codes are best applied at lower pressures where

the gas is more rarefied and fewer particles have to be followed, while the continuum model is

applicable at higher pressures where the equilibrium assumptions are not violated. All of these

methods have been used to simulate DC discharges in one dimension. Since the RF simulations

have a time dependent forcing function, the calculations are much more difficult and have long

lagged behind the DC modeling efforts.

Continuum modeling shows promise for quantitative prediction of plasma processing in a

computationally efficient framework. The first application of the continuum model was for

prediction of the breakdown characteristics of SF6 and N2 discharges by Thompson and Sawin

(1986), where it was shown that a simple continuum model is capable of predicting the

breakdown characteristics quite well. Graves and Jensen (1986) used a more complete model to

examine the discharge physics for DC and mixed DC/RF systems. This was the first attempt to

model the complete plasma physics. The authors used a finite element spatial discretization and

a Fourier series to handle the time-periodic forcing of the plasma. Graves and Jensen conclude

that this approach is too computationally expensive to be widely used. There is also the added

difficulty that the number of Fourier components must be chosen in advance, and it is difficult to

estimate where to terminate the series.

Other simulation efforts have been based on finite difference methods and frequently

have introduced artificial diffusion in the spatial approximations to help stabilize the numerical

solution through upwind differencing or staggered grid approaches (Richards et al., 1987, Barnes

et al., 1988; Gogolides and Sawin, 1992; Gogolides et al., 1992). Although these methods are

numerically rigorous, the spatial approximations are low-order accurate and, as a result, fine

meshes are needed to accurately resolve steep layers; otherwise, the approximations are overly



diffusive and predict solutions with gradients of the solution that are overly smooth. The only

method for avoiding the application of artificial diffusion is to accurately resolve the solution

structure and the true diffusive contribution to the conservation equations. This approach is

extremely difficult with low-order accurate finite difference and finite element methods, because

very fine meshes are needed to resolve the solution structure and the diffusive contribution.

Therefore, the accuracy of these simulations is basically unknown, and results from simulations

which use diffusive approximations are suspect. In fact, for the original work of Barnes et al.,

since a poor choice was used for the temporal convergence criterion, the solutions shown are not

converged in time or space, and there is no error estimate available to indicate this. Boeuf (1987)

used a Scharfetter-Gummel scheme for the spatio-temporal discretization, which links the

upwind-differencing to the time and spatial discretizations. Therefore, this work also has an

error of unknown magnitude in the solutions, although the discretization does guarantee that this

error is minimal for a choice of grids.

Park and Economou (1990) simulated both electropositive and electronegative discharges

using cubic-spline collocation on finite elements, and a strict convergence criterion for the

temporal convergence. As with most modeling efforts no attempt was made to show that the

spatial discretization is sufficient. There is adequate evidence in their publication that the plasma

sheath electron energy is not properly refined, and this was ignored by the authors. Instead they

attribute what might well be numerical error to the physics of the plasma in the sheath region.

The physics for this version of the continuum model are also questionable, since the effective

field approximation was not used, and the forms of the rate and transport parameters were

inadequate.

Okazaki et al. (1989) refined the basis for the continuum model by adding in a separate

relaxation time for each process in the energy and momentum balances. It is unclear whether this

refinement made any real difference in the model results, although the authors stated that it was a

necessary part of the plasma physics. However, there is little information on the numerical

techniques that were used, and this work certainly did not examine convergence in any detail.

Paranjpe et al. (1990) was the first work to address the computational cost which comes

with integrating the initial profiles until there is no longer a change over a cycle. The technique

used to accelerate convergence was to examine the plasma on both long time scales, with time-



averaged equations, and on short time scales with the full equation set. This work presents very

useful time averaged and reduced models for the plasma physics, and claims excellent

computational speed. However, the solution technique is reported to have some problems

converging to a solution, and indeed is not guaranteed to converge under any conditions.

Gogolides et al. (1992) was the first work to address this issue by using a Newton-Raphson time

shooting scheme to directly calculate the time-periodic state, although staggered-mesh finite

elements were used which greatly limit the accuracy of the spatial discretization. This time

shooting method is one of the basic numerical tools used in the present work.

Upwind and staggered mesh finite-difference methods inherently pollute the spatial

discretization, leading to solutions which may be unacceptably perturbed. Spectral element

methods, as introduced by Maday and Patera (1989), offer an attractive alternative for this

approach. Here the spatial domain (a line segment for a one-dimensional problem) is divided

into a few subdomains, or elements. Polynomial representations for the field variables are

constructed in each element so that the fields are continuous across inter-element boundaries, as

is usual for Lagrangian finite element approximations. Galerkin's method is used to discretize the

differential equations and boundary conditions. This formulation of spectral elements therefore

greatly resembles finite elements with the capability of using high-order basis functions. The

difference comes when higher-order accuracy is required. Instead of increasing the number of

elements, as is the approach in h-convergent finite element discretizations, the polynomial order

of the approximation is increased with a given element discretization. The family of spectral

element methods described by this procedure is part of the general class of p-convergent spectral

techniques (Gottlieb and Orszag, 1977).

The major advantage of spectral element methods is rapid convergence to the exact

solution for smooth problems. Analysis (Maday and Patera, 1989) shows that for linear elliptic

and parabolic problems without singularities, the spectral element method converges

exponentially to the solution with an increase in the polynomial order, compared to the algebraic

convergence rate with decreasing mesh size that is expected for conventional finite element

discretizations using fixed polynomial approximations.



1.2.2: Two-Dimensional Modeling

With the advent of faster computers, improvement in the numerical techniques, and a

better understanding of the plasma physics which was being simulated, one-dimensional models

became readily solvable. Even so, one-dimensional simulations remained expensive without an

acceleration technique to find a time-periodic steady-state. The generalization to two-dimensions

is trivial, except for changes in the boundary conditions. However, a two-dimensional simulation

is equivalent to steady-state calculations of three-dimensional reaction-diffusion problems due to

the harmonic forcing of the potential on one electrode. In fact, the two-dimensional modeling of

the DC discharge is difficult enough that it was not attempted by Boeuf (1988) until after he had

solved the one-dimensional RF problem. Even so, this first two-dimensional DC effort was not

totally self-consistent since it did not include an energy balance, and treated the boundary

conditions in a rather ad-hoc manner. Certainly, the difficulty of solving the simpler two-

dimensional DC problem initially discouraged solution of the two-dimensional RF problem.

This work addresses this issue by using rigorous techniques to achieve accurate solutions with

reasonable computational resources.

Initial two-dimensional modeling efforts were forced to use a simple geometry with very

restrictive assumptions on the boundary conditions and plasma physics to be simulated. All of

the simulations reported to date are too computationally intensive to use for design work, and are

in the category of preliminary work to demonstrate feasibility of achieving a solution. Tsai and

Wu (1990) simulated electronegative discharges on very coarse meshes using a one-moment

fluid model which was not self-consistent. The only effect examined was the supposed focusing

of the plasma by the negative ions in the radial sheath, but the insulating wall was treated

inconsistently, so any conclusions from the model are highly suspect. This work contributed to

the field by showing that a continuum model is solvable in two-dimensions with very limiting

assumptions. However, the physics in Tsai and Wu's model was inadequate since the local field

approximation was used, which had previously been shown to be questionable at best. The main

advantage of ignoring the bulk of the plasma physics for this study was that the resultant

computation time was only a few XMP-hours. The spatial discretization used was a complex

flux-corrected scheme which adds an unknown smoothing into the solutions, but also allows

computation on coarser grids.



Young and Wu (1993,1993a) refined the model to include the full three moments of the

Boltzman equation and therefore removed the limiting assumption of the local-field equation.

The geometry simulated still incorrectly treats the insulating boundary as not perturbing the

electric fields, and assumes that there is some type of field containing the plasma. This is

incorrect, but is a reasonable first approach to the simulations in order to examine the physics of

electropositive discharges. This study used a staggered grid approach to the spatial discretization

which introduced an unknown amount of artificial diffusivity, but did allow computation on

coarser grids. Even so, computation time on the order of hundreds of XMP hours were required

for convergence since no time-acceleration scheme was used. The interesting feature of this

simulation was that the charge densities were maximum along the axial center of the discharge,

and had a global maximum near the insulating surface. The peak in the density is up to 20%

higher than at the discharge center, and moves toward the center of the discharge decreasing in

magnitude with decreasing pressure. The presence of the maximum in density from such a

simple model is surprising at first, but is easily accounted for by the formation of the sheath on

the insulating wall which creates a high field region and increased ionization.

Dalvie et al. (1993) noted a similar effect in simulating Argon discharges in two

dimensions. They used a more realistic boundary condition on the insulating electrode, treating it

as an ideal capacitor, but still did not account self-consistently for the charging of the insulator,

and therefore would be slightly wrong at the corners. This work was done using a non-perturbed

spatial discretization which should completely preserve the physics that are being simulated. An

ad-hoc acceleration scheme was used which is supposed to save up to an order of magnitude of

computation time. A maximum in ionization near the insulating wall was seen, which moved off

the axial center for non-symmetric geometries (personal communication). The maximum in

density was much less severe than reported by Young and Wu, and it is not clear if it exists for

the case of an infinitely thick insulator, although this may be a function of the physics used to

simulate the insulator.

The previous simulations were all done in close to symmetric geometries, but most

commercial reactors are asymmetric due to a large grounded surface. Passchier and Goedheer

(1993) examined a reactor with a more typical configuration with a large grounded area separated

from the powered electrode by a thin insulator. This work used a Scharfetter-Gummel spatial



discretization on a very coarse mesh. No radial focusing effect was noted, although there was a

maximum in ionization near the corners of the reactor. There was a large axial asymmetry noted

in the profiles, which is interesting although of very little importance for plasma processing.

More importantly, the ion flux increased toward the edge of the powered electrode before

dropping precipitously across the insulating boundary. However, this simulation is still very

computationally intensive (estimated 30 YMP hours), and the presence of the thin insulator

between the powered and grounded electrode effectively introduces a singularity into the

simulation. The electric fields must be singular near that junction, and a large amount of the

observed physics may be due to numerical artifacts from the singularity. Since the Scharfetter-

Gummel scheme effectively smoothes all of the profiles by upwind differencing, it is not clear

how great an effect the singularity has on the results, or on what length scale the inaccuracies will

propagate.



Chapter 2 : The Continuum Model

2.1: A Description

For plasma modeling, there is generally a trade-off between model accuracy and the

computational requirements for solving the model equations. The simplest models treat the

plasma as linear or non-linear circuit elements, and since this model requires next to no

computational effort, the accuracy for calculating plasma physics is quite limited, and the

information content in the model is very small. There also exist many simple analytic models

which treat the plasma, usually only the bulk or sheath, in a very simple manner, and again the

tradeoff is limited information content for reduced computational complexity. The continuum

model and Monte Carlo simulation are the simplest methods which can predict the majority of

the physics of interest for plasma processing. Monte Carlo techniques, generally implemented as

Particle in Cell (PIC) codes, are efficient at lower pressures, and give more information than a

continuum model would, but become very computationally intensive at higher pressures. The

continuum model is most appropriately used at higher pressures, where ions have multiple

collisions in traversing the plasma. At lower pressures, below 200 mTorr, there are not sufficient

collisions in the plasma for the species to truly behave as a continuum fluid. The continuum

model may be applied at lower pressures with adjusted transport parameters (which can be

calculated in a Monte-Carlo simulation, resulting in a type of hybrid continuum/Monte Carlo

code). Another problem exists in the plasma sheaths, where the species are rarefied and suffer

few collisions while receiving large amounts of energy. This implies that the continuum model

is not capable of correctly predicting the physics on the length scales of the sheath, but the

detailed physics of the collisionality of the sheath seems to play very little part in the overall

plasma trends, so using the continuum model is not too bad an approximation.

Different formulations of the continuum model will contain varying amounts of detail for

the plasma physics. Each continuum equation can be viewed as a moment of the Boltzman

equation, with the moments containing information on density, momentum, and energy for the



first three moments. This work uses a modified approach, where the momentum balances are

simplified to yield directly the species fluxes, and the energy balance for ions is neglected as

being unimportant. However, even the full continuum model does not yield the full information

of a Boltzman calculation, which will yield the entire distribution functions for each species, but

is extremely computationally intensive.

The continuum model equations used in this work are identical to those described by

Gogolides and Sawin (1992) and Gogolides et al. (1992), and the derivation of the continuum

equations is therefore not repeated here. For most plasmas of interest it is sufficient to examine

only 3 species balances, electron density (Ne), positive ion density (N,) and negative ion density

(N_), and the energy balance for the average energy per electron (E). Most of the simulations in

the present work are for electropositive gases, where the concentration of negative ions is

insignificant, so the negative ion equation is not used. The continuum equations are then written

in divergence form as:

dN d NEd = _V e F+ tion - Rattach d -VrE - qE ., +RIos
dt dt

Eq. 1
dN dN= -V - F+ + Rion - Rrecomb = -V. - + Rattach - Rrecomb
dt dt

where Ti denotes the species fluxes, q is the electronic charge and Rion and Rioss are energy

dependent reaction rates. From Eq 1 it is obvious that electrons are created by ionization, and

can only be lost due to flux to the boundary, or through attachment to form negative ions (which

is not present in electropositive plasmas). Positive ions are formed in the same manner as

electrons, and are lost either through recombination with negative ions or through flux to the

boundary. Note that there is no mechanism for bulk recombination of electrons and positive

ions, since the cross-section for this reaction is small. Negative ions are created only when an

electron is attached to a neutral, and are lost through recombination with positive ions or flux to a

boundary. The energy balance is interesting because it shows that energy can be gained or lost

through coupling to the electric field, or through flux to the boundaries, and is also lost through

collisions.

The momentum balances are used in a simplified form, split into two components which

describe the motion of each species due to diffusion and convection due to the electric field. The

electrons have very small mass, and therefore respond directly to the instantaneous potential, but



ions are massive and cannot respond instantaneously. Note, that at the higher frequencies used in

microwave discharges, neglecting the mass of electrons is no longer correct. The drift-diffusion

equivalents of the momentum balances are then written as:

D 5
Fe = V-eN, E -eNeE e =-eF, -D,NeVEE 3 Eq. 2
r+ = -D+VN÷ + p+N+Ee "ff _ = -DVN_ - _N_Eeff

where Di is the species diffusivity, with the electron diffusivity a function of the electron energy,

and the gi are the species mobilities which account for the convection of electrons and ions by

the applied potential including collisional effects. The electric field is calculated self-

consistently, and the effective field is calculated as a function of the electric field as:

V 2V= q(Ne+N_-N+) dEef q (E-Eef) Eq. 3
Eo  dt +M+

where Eo is the permittivity of free space and M+ is the mass of an ion. For lower pressures and

at higher frequencies the full momentum balances should be included for accurate simulation.

For two-dimensional simulations, there will be two components for the effective field

corresponding to the two components of the electric field (radial and axial), resulting in one more

equation which needs to be solved.

The equation set (1) - (3) are formally parabolic, but the presence of the drift

contributions caused by the fields leads to substantial convective character, measured by Peclet

numbers that scale the magnitude of the drift to the diffusive contribution; as discussed in detail

by Gogolides et al. (1992). The advantage of this formulation of the continuum model is that the

statement as a convective-diffusive set of equations allows for solution using a Galerkin type

method. Formulation of the continuum model in full three-moment form results in a formally

hyperbolic equation set. Even though the present formulation is formally parabolic, the

convective part of the equations is frequently dominant, making the equations seem hyperbolic

on coarse discretizations. It is this hyperbolic character that compelled other workers to use

upwind finite differencing for the discretization of the continuum equations.

The boundary conditions used to solve equations (1) - (3) are:

eN.= O +y2. 5 Fe==0e+YsecssecF+]W
4 E +3 - Eq. 4

VN+ -W=O0 N_ =0



and are applied on all boundaries. The boundary condition for electrons and electron energy state

that the flux to the surface is the equivalent to an ideal gas (isotropic) reaching the same surface

at a given temperature. The positive ion boundary condition is used to remove a thin boundary

layer which occurs for the correct boundary condition of N+= 0 (fast recombination on surfaces),

which is not important. The plasma is driven by forcing the voltage to vary sinusoidally on one

electrode, while holding the other electrode grounded. The two-dimensional asymmetric

simulations are run with a capacitor between the electrode and the voltage source to allow

computation of the self-bias potential. There is also an insulating portion which is simulated

using Poisson's equation and requiring zero enclosed charge. The insulator introduces extra

equations at the boundary to calculate the discontinuity in the electric field due to the charge

buildup on the electrode:

dC
,EE - 2 E2, = C q(re- F+) Eq. 5

dt
Gogolides et al. (1992) forced the current to vary and enforced continuity of the current at one

node in the finite difference grid by introducing a modification of Poisson's equation. This is

correct and easily applied in a one-dimensional discharge as:

dE 1 = I-Sin(cot) + q(F- F+) Eq. 6
d t Eo So

where Io is the applied current to simulate the imposition of a forcing current. There is, however,

not a proper two-dimensional analog since the current does not need to be constant within the

discharge. Some computations were performed with the current boundary condition in order to

complete a direct comparison to the finite-difference modeling.

2.2: The Weak Form

Since the spectral element technique is a Galerkin method, the weak equations must be

formed. In general one has for a given field variable U(x,t) and a flux J,(U):

ou d V Vr,. +Lower - Order - Terms (LOT). Eq. 7
dt

The only terms which are required to be considered weakly are the second order spatial

operators; the entire flux need not have a weak representation. The effective field has no second

order operator, and is not strictly a PDE, but can rather be considered an ODE. Therefore, the

weak form of the effective field equation will be just a representation of the effective field on the



spectral element grid, with the proper stiffness summation performed to account for the fact that

the electric field need not be continuous at element boundaries.

The initial approach used to create the weak form was tailored specifically to allow use of

a semi-implicit integrator with the diffusive portions split out from the convective portions,

following the work of Maday et al. (1990). In order for this splitting to be computationally

efficient, it is desirable that at least part of diffusive operator for each equation should be time-

independent. This contribution is then used to stabilize the integrator, removing the Courant

condition. This motivated representing only the diffusive portion of the positive ion flux weakly,

and dividing the electron energy and electron density by the electron diffusivity (to maintain a

constant portion in the electron weak forms). For example, for electron density, the result is:

S -- V D, VNe N+ NeE+-(Rion_ -Rattach
De dt De  E De Eq. 8

where only the first term on the right hand side of Eq. 8 will be integrated by parts.

The weak form of each conservation equation is discretized by approximating the field variables

using expansions of Gauss-Lobatto-Legendre polynomials of variable order.

The weak form of the general case in Eq. 7, or the electron density balance in Eq. 8, is

derived by multiplying by a test function W(x) that satisfies essential boundary conditions on

U(x,t), and then integrating-by-parts the contribution from the species flux. These operations

yield

+fwudA=-f'u. VwdA+i-u' vdA + w LOTdA Eq. 9
A A S

and

f WdNe = Vr(-))'I VNe+PeNeE1+
A De dt A De EEq. 10

if Ve Ne + NW E + fW(Rion - Ratach

Simplification of the first term in Eq. 10 yields two parts for the weak form, the first of which is

equivalent to a constant, time-independent, parabolic term, and the second is nonlinear and time

dependent, and the grouping under the second integral is equivalent to LOT's:



fVW.[VN, + N{'Ve+ NE} - W VDe [VN + Ne V.+le E] Eq. 11E D, D, E D,
After the gaussian quadrature is performed, the electron equations are again multiplied by De,

yielding a form with a single term which looks like (VW *DeV Ne )ij. This is the final version of

the weak form used for electron density, even with integrators which don't use any type of semi-

implicit method. For simulations which did not have constant mobility the full flux was

integrated-by-parts for ease of calculation. It was observed that in constant mobility cases,

changing the way that the convective flux was handled for positive ions did not affect

simulations.

2.3: Numerical Methods For Solution

2.3.1: Spectral Element Discretization

For this work, it was desired that all the numerical method used be rigorous and accurate

enough that it would be possible to show that the solution of the continuum model, as it was

formulated, was not perturbed by the choice of discretization, time integrator, or solution

technique to the time-periodic steady-state (TPSS). It was therefore imperative that the spatial

discretization should be accurate, ruling out any type of upwind-differencing or Petrov-Galerkin

method. The spectral element method of Patera (1989) was chosen as a flexible method with

arbitrarily high spatial accuracy. The spectral element method is equivalent to a classical finite-

element method, where the basis functions have been chosen so that the collocation points

(including on the boundaries) and the node points coincide. The spectral element basis functions

yields a diagonal mass matrix, and the choice of an arbitrary order for the basis function is

facilitated. An advantage of this method is that convergence can be demonstrated by relatively

small changes in the total number of degrees of freedom by raising the degree of the interpolating

polynomial. As discussed by Maday and Patera (1989) for linear elliptic equations, the error in

the solution, as evaluated in the L2-norm defined on the domain, converges exponentially, i.e.

IIu(x, t)- Uexac (x, t)lo = Ce-NP Eq. 12



where C is a constant that depends on the derivatives of the exact solution Uexact(x,t). This

exponential convergence with increasing Np should be compared to the algebraic convergence of

typical finite element discretizations, i.e. IIU - Uexact(x)ll2 = O(hP), where p is the order of the

polynomials used in the approximation for U(x).

Given that a Galerkin weak form has already been selected for the continuum model

equation set, the spectral element discretization can be formed. The solution field U(x,t) is

represented in a spectral element approximation (Maday and Patera, 1991) in one dimension as

Neten NP

U(x) = 1 Ui4U,,Dij(x) Eq. 13
i=1 j=1

where the summations are taken over all elements in the subdivision of the domain 0Ox < 1, and

over all nodes within each element. For the two dimensional representation, a tensor product

formulation is used based on the one dimensional basis functions, which is exactly equivalent to

the statement above, but now there are Np2 local basis functions. For the contributions to the

nodal equations, this results in a direct stiffness sum of the components local to each element,

with communication between adjacent elements only active at the element boundaries. The two

dimensional forms are tensor products of the one dimensional basis functions, following the

work of Maday and Patera (1991). As in finite element methods, the coefficients {Uij(t)} are

determined from the discretized equation set and the basis functions are specified to interpolate

the solution in the subdomain. In the spectral element approximation used here the basis

functions {Fij(x)} are taken as the one-dimensional, Gauss-Lobatto-Legendre polynomials of

degree (Np-1); see Maday and Patera (1991) for details. The spectral element approximation

defined by Eq. 13 is continuous across element boundaries, but has only piecewise continuous

first derivatives at these intersections, as is typical of Lagrangian finite element methods. This

degree of continuity is appropriate for solving the weak form of the equation 8 and leads to

compact support in the discrete formulation, albeit the number of degrees-of-freedom that are

coupled increases with increasing polynomial degree.

The specification of the discrete equations 9 is completed by using the {Fij(x) } as the test

functions, i.e. W(x) = Fij(x), i = 1,...Nelem and J = 1,... Np, so that Eq. 9 is equivalent to a

Nelem x (Np - 1) + 1 set of ordinary differential equations. The test functions are calculated using

a set of subroutines provided by Einar Ronquist at MIT.



The Gauss-Lobatto-Legendre polynomials have several unique properties that make them

particularly well suited for the solution of parabolic initial-value problems if the integrals in

Eq. (9) are evaluated at the quadrature points defined by the polynomials; that is at the Gauss-

Lobatto-Legendre points. First, the time derivative on the left side of Eq. 9 gives rise to the

typical mass matrix contribution for finite elements (Strang and Fix, 1973) with terms

d d
MiiU d tu f ikm dA VUi Eq. 14

dt A --jdt

Using Gauss-Lobatto-Legendre quadrature these terms have the particularly simple form Mij =

co 6ij, where 6ij is the Kronecker Delta function and co accounts for the quadrature weights and

element sizes. In other words, the mass matrix is diagonal, as discussed previously. Also for the

contribution of a constant diffusive flux, i.e. IF = DVU, the first integral on the left side of Eq.

(9) becomes

f DVOQj V(aD dA U1  Eq. 15
A

which is the stabilizing contribution to the equation set; see Strang and Fix (1973) for a

discussion of this point. These integrals are evaluated exactly by Gauss-Lobatto-Legendre

quadrature using the quadrature rule for {2 (Np -1) - 1 }th degree polynomials.

The equations discretized by the spectral element formulation for the plasma model can

be written compactly as a set of Differential-Algebraic Equations (DAE's) of the form

du
M = R(u) Eq. 16

dt
where M is the mass matrix, with either the constant weights co or zero on the diagonal and

zeroes elsewhere, R(u) is a nonlinear vector function and u is the vector of coefficients in the

spectral element expansions. The variables u are assumed to be of dimension N, so that M is an

NxN matrix. The zeroes on the diagonal of M arise from discretization of Poisson's equation for

the electric potential and lead to algebraic, not ordinary differential equations, in the Eq. 16.

With the completion of Eq. 16, the spectral element spatial discretization is complete, and this set

of equations will be referenced as the starting set for plasma simulation in the next subsection.

Fine boundary and internal layers exist in the solution fields, leading to a problem notoriously

difficult to solve (Finlayson, 1980).



2.3.2: Time Integration

The DAE's have index one and are solved using an Adam's Moulton integrator that is

second-order accurate in the time step At, as described by Brenan et al. (1989). The nonlinear

algebraic equations that arise at each time step are solved by Newton's method with the Jacobian

matrix computed using one-sided finite difference approximations for efficiency. The algorithm

is programmed with the capability to use full Newton iterations, but this is generally inefficient

since it saves only at most 2 iterations but requires inversion of the Jacobian of Eq. 16 multiple

times per time step (which is the most expensive part of the calculation). In order to further

lower the computational cost, a heuristic was developed whereby the same Jacobian is saved and

used until, at a single time step more than a preset (usually 9) number of iterations are required

for convergence, or until the magnitude of the residuals increases after a correction. This results

in a Jacobian being used for an average of 5-6 timesteps, and can approximately halve the

computational time. For the one dimensional simulations, the LINPACK routine SGBCO was

used to solve the system of linear algebraic equations. For two dimensional simulations a

memory-resident solver would require too much memory overhead, so a frontal-type solver based

on the work of Irons (1970) was used. The frontal solver was provided by Professor Brown's

research group at MIT, and has been optimized to run on several platforms. This also has the

advantage that more of the sparse structure of the Jacobian is incorporated into the solution

instead of simply assuming that the Jacobian is fully banded (the Jacobian for two-dimensional

systems is actually a series of blocks with Np diagonals, where Np is the degree of interpolating

polynomial, and is empty off the block-diagonals).

Other time integration schemes were also investigated. It was found that the Euler

integration method was too inaccurate for our purposes, and the problems with starting up a

higher order method make their application inefficient. A variable-order, variable time-step

scheme was also investigated, in particular the package DASSL, and was found to be

unacceptable. It was noted that the time-periodic forcing of the problem interacts with the error

predictors for the variable-order integrator, and results in an instability which causes the

integrator to stop converging after a few cycles of integration when following transients. This

occurred because the heuristics used in DASSL were constantly adjusting the integrator order and

timestep, and eventually the accumulated errors required a time step small enough to make the



simulations intractable. It was also not clear whether DASSL could be properly applied to

integration of the linearized system for calculation of the TPSS.

The form of the initial guess for solution of the nonlinear system was also investigated. If

the Adams-Bashforth second order predictor is used, an estimate of the integrator accuracy is

readily available. However, it is known that the second order guess is unstable at the desired

time step for the implicit integration scheme, and occasionally the error in the guess will make

the Newton iterations unstable . The first order guess performed better, and for most

computation (especially in the two-dimensional simulations), the solution at the previous time

step was used as the guess for the following time step. When a prediction was within the range

of convergence of the Newton iterations, the accuracy of the prediction did not have any

noticeable effect on the number of iterations required for convergence of the overall scheme.

For the two-dimensional simulations the LU decomposition of the system Jacobian for

solution of the Newton iterations of the implicit time integrator consumes over 65% of the

computation time. The remainder of the computational cost results from the other back-

substitutions against a Jacobian which has already been LU decomposed (for calculation of the

TPSS, the LU decomposition importance with respect to the other inversions is reduced in

importance, but the overall importance of these matrix computations is always over 95%). Since

the two-dimensional simulations were still quite computationally intensive, even with the

heuristic applied to the solution of the implicit integrator, a method for further reducing the

computation time was implemented.

It was originally hoped that a semi-implicit method could be used, which would decouple

the implicit parts of each equation and lower the total number of unknowns for the matrix which

needed to be inverted by a factor of 6, as well as allow computation of the LU decomposition

only a single time. However, the nonlinear boundary conditions on the electron density and

electron energy equations seem to be an insurmountable problem in applying this type of

integrator. However, it was noted by Graves (1994, personal communication) that since the ions

move extremely slowly, the Courant number for the ion equations should allow one to follow

their concentration with an explicit integrator. Since the ions move so slowly it is indeed noted

that the error in the ion equations is always much lower than for other equations, so if the

integrator is stable for a high ion time step, it will be accurate enough. The procedure was



therefore to split the integrator into a fully implicit part for the electron concentration, electron

energy, and potential (since the electron energy is exponentially dependent on the electric field),

and a fully explicit part for the ions and the effective field. Since the Jacobian inversion are

completely dominant in the calculation, and since the LU decomposition of the matrix scales as

N Bw2, where Bw is the Jacobian half band-width, it was expected that this reformulation of the

integrator could result in up to a factor of eight speed enhancement for the simulations. Due to

the lowering of the vector length concomitant with the lowering of the bandwidth of the matrix, a

real speed enhancement of three to four was actually observed.

2.3.3: Time Periodic Solution

As described by Gogolides et al. (1992), the disparate time scales for electron and ion

diffusion make time integration to the TPSS very inefficient. The difficulty with direct time

integration is illustrated in Figure 2-1, with the ratio between the fast and slow time scale lower

than in a plasma for illustrative purposes (the actual ratio is closer to 104, while the figure uses

10). To find the TPSS it may be necessary to integrate for hundreds or thousands of cycles,

while using a shooting technique only a few shooting iterations should be required for

convergence. It is clear that in the case where the cost of calculation of the TPSS shooting step is

on the order of a few cycles of integration, the simulation speed is enhanced by at least an order

of magnitude.

R~-O

Time (R -  0)

Figure 2-1 Time integration to a TPSS versus Newton shooting solution. For plasma simulations, the
short time scale is at least an order of magnitude smaller than shown here.

.Ct



If it were possible to completely decouple the electron and ion equations in a time

averaged sense, an efficient acceleration technique could be formed. This was the approach of

Paranjpe et al. (1990). However, the ions depend too significantly on the electron relaxation

because of the strong coupling through the potential field, and no rigorous splitting is available.

Instead, we used the Newton shooting algorithm described by Gogolides et al. (1992) for direct

calculation of a TPSS; the Newton shooting scheme is only briefly described below; see

Gogolides et al. (1992) for more details. Here Eqs. 16 are integrated over a single period of the

RF cycle with the initial condition updated by a Newton iteration to force the solution to be time

periodic, i.e. so that the solution at the end of the period is equal to the initial condition. This

results in definition of the residual equations:

r(uo) u(t = T, u,,)- u, Eq. 17
which is the mathematical statement of the TPSS. Newton's method is used to find the correct

initial conditions for integration over a single period to force the residual to zero. The algorithm

is a version of the shooting algorithm for solving boundary value problems described by Keller

(1976) and has been used by Doedel and Heinemann (1983) to compute time-periodic solutions

in a CSTR.

The time-periodic shooting technique simply takes an initial value problem in time,

which would otherwise be integrated directly until the residual met some pre-specified tolerance,

and changes the problem into a boundary value problem in time specified by Eq. 17. The TPSS

calculation then is independent of the way that the residuals are formed, and it is possible to

solve Eq. 17 using any desired method. Newton's method is generally applied because it

converges quadratically and usually has a large radius of convergence.

Using Newton's method does require the Jacobian of the system 17, hereafter referred to

as the TPSS Jacobian, which is quite computationally intensive. The mathematical statement of

Newton's method for the TPSS shooting algorithm is:

(A - I)Au = -r(u o) Eq. 18

where A is the Monodromy matrix, du(T)/duo. It is possible to calculate the Mondoromy matrix

by perturbing each variable separately, and see what the resultant perturbation is in the residual

one cycle later, thus yielding the sensitivity matrix after N cycles. However this method of



calculating the Monodromy matrix (A) is very inefficient. The Monodromy matrix is simply a

fundamental matrix used to represent the TPSS, and Gogolides et al. (1992) showed that another

method of computing the TPSS Jacobian is to follow the linearized version of Eq. 16 with an

initial condition of the identity matrix:

dA
M = = J(t)A A(t =0)= I. Eq. 19

Sdt

This computation results in a fundamental matrix representation of the TPSS Jacobian since the

rows are linearly independent perturbations as is discussed by Keller (1976). This can be viewed

as calculating the result of independently perturbing each variable, and seeing how this effects all

the others if the perturbation is small enough (and therefore the equations of evolution are linear).

Although this method still computes by solving N independent perturbations as above, efficiency

is increased because the most expensive part of the computation need only be done one time (the

inversion of the system Jacobian, 1). Since the equations are generally stiff, the linearized set is

as well, and a first order implicit Euler integrator is used to calculate the time evolution of A.

For the one-dimensional simulations, it is most efficient to compute and invert the TPSS

Jacobian to calculate the corrections for solution of Eq. 17, even though this is a full matrix since

its size is relatively small. The linearized equation set is time-integrated using the Euler implicit

algorithm; since the nonlinear equation set is unstable with respect to explicit time-integration,

the linearized system is expected to be unstable as well. The accuracy of the TPSS Jacobian is

not critical, since it is primarily determining the relative magnitudes of the corrections. A larger

time-step for calculation of the TPSS Jacobian is therefore acceptable, and it is not necessary to

use a high-order time-integrator for these calculations. The time-splitting scheme which was

used in the two-dimensional calculations was also applied to the one-dimensional calculations

(the TPSS Jacobian was also computed using the split integrator), and was found to produce

equivalent results with equivalent time-steps. This shows that the ion equations are capable of

using a very large explicit time-step.

For two-dimensional simulations, the size of the TPSS Jacobian prohibits its simple

calculation and inversion since it is a full matrix. However, if one examines how a single

column of the TPSS Jacobian is formed, the calculation consists of a series of sparse matrix



solves which originate from the implicit time-integration scheme in Eq. 19. This is clear

examining Eq. 19 after the implicit integrator has been applied:

A [0 J(to + jAt) A(t = O). Eq. 20

If the number of time-steps required in the calculation is small, then it is simple and efficient to

store the LU decomposition of these system Jacobians, and view the time-integration of the TPSS

Jacobian as a set of successive back-solutions. The difficulty of calculating and inverting the full

TPSS Jacobian is then avoided by applying the GMRES algorithm to iteratively solve for the

Newton step, since GMRES requires only the products of the TPSS Jacobian and a vector.

GMRES solves a set of linear algebraic equations by forming the residual, )Yx-b, and then

projecting unto a Krylov subspace which expands with every iteration. The result for the TPSS

Newton shooting algorithm using GMRES is that only products of A and the correction vector

Au need to be calculated. The algorithm is guaranteed to converge in less than N iterations,

where N is the rank of the matrix, and the residuals are guaranteed to decrease monotonically.

For general systems, it is observed that GMRES will converge with only a few percent of N

iterations, where the exact number of iterations is highly dependent on the convergence criteria

which is chosen. The cost of each iteration is very small, since we are merely performing a few

back-substitutions against a known right-hand-side. In fact, this is exactly equivalent to solving

the Newton iterations for the time integrator for the full system. In the nonlinear case an average

of 6-7 back-substitutions are required for each time step. If we use an equivalent number of

timesteps for GMRES, the cost of the TPSS Newton step will be equivalent to calculating the

residuals as long as the number of iterations is on the order of the number of timesteps used to

follow the linear system for a cycle. The cost of using GMRES is minimal for our simulations

because the matrix-vector multiply (the back-substitutions which are used in Eq. 20) are very

sparse compared to the full matrix-matrix multiply used in the general implemention of the TPSS

Newton shooting algorithm.

It is readily seen that the residual required for GMRES is computed by using the previous

GMRES vector as an initial condition and applying the time-stepping scheme for the linearized

system equivalent to Eq. 20. This method is very efficient because GMRES generally converges

to a sufficient accuracy in less than 200 iterations (typically 50-70 iterations), while the full



matrix has rank or order 25,000. This is a property of the algorithm, since the Krylov space

heavily weights the highest eigenvalues for the system, and eliminates the largest components of

the residual first. It is possible to further enhance this effect by preconditioning the matrix so

that the system appears closer to symmetric positive-definite. This is generally achieved by

multiplying by a matrix consisting of a very limited band around the diagonal (usually either

diagonal or tridiagonal) which can be efficiently inverted. For the two-dimensional simulations

this is not possible, since we are using GMRES mainly to avoid computing the total Monodromy

matrix and the diagonals are therefore not available. GMRES was also tested on the one-

dimensional system, and was found to converge with similar properties to the direct calculation

and inversion of the TPSS Jacobian, and with approximately a 25-30% savings in computation

time.

2.3.4: Computational Cost

The computational cost of varying the discretization is assessed to demonstrate the

difference in using p-type versus h-type refinement for a smooth, well-behaved problem. The

main costs associated with solution of the continuum model for one-dimensional solutions are:

A) B) C) D)

computation of the matrix LU decomposition of computation of the matrix LU decomposition of the

for the nonlinear DAE's Jacobian matrix in A) for iteration to a TPSS matrix in C)

Jacobian (Eq. 16) (Eq. 20)

These four computations make up more than 99% of the total calculation cost. The computation

of pieces A-C is performed at each time-step, so the ratio of their costs is most meaningful.

Computation of piece D, however, is done once per TPSS Newton iteration, so this computation

is always negligible for more difficult computations which require many time-steps per

integration cycle. For two-dimensional calculations, the costs are slightly different, because the

relative costs change as the number of variables increases. In two-dimensional simulations, the

cost of part D is estimated to be at least an order of magnitude higher than the rest of the

simulation, while part C is expected to be nearly two orders of magnitude more expensive. There

is also the difficulty of storing the large full matrix, A, which is estimated to be large enough that

it would not fit in core memory of most of the larger supercomputers. These difficulties are



removed by using the GMRES algorithm. This computation results in the calculation of an

additional Ntpss system Jacobian inversions equivalent to piece B, and NGMRES iterations which

require Ntpss back-solves of the equation set each time. In practice, the result is that GMRES

requires nearly double the computation time as calculating the change of the solution over one

cycle. If it were possible to precondition the iterations, a computational savings for GMRES of

up to a factor of 5 might be possible, but this would result in no more than a doubling of the

overall simulation speed.

For the one-dimensional calculation, the cost of computation A is approximately

NnodesBwCI, where C1 is the cost of computing an entry for the system Jacobian matrix and Bw is

the half-bandwidth of the Jacobian matrix. Ci averages 8-10 operations, but does depend on the

discretization to some extent. The cost of computation B is 2 NnodesBw2. The cost of computation

C is due almost completely to the solution of the Nnodes independent linear systems, since the LU

decomposition has already been performed to solve the nonlinear system in computation B. This

yields a cost for the formation of A of 3 Nnodes2 Bw. The cost of computation D is 1/3 Nnodes3, but

the ratio to the other costs requires a factor of 1/Nsteps since the other computations are performed

at every timestep. The LU decomposition of I is performed only once per integration over an RF

cycle.

The tradeoffs in computation cost between p-type and h-type refinement are considered

by examining these costs in terms of the more primitive variables, Np and Neiem, where Np is the

degree of the polynomial for the discretization and Nelem is the number of spectral elements in the

discretization. This leads to the cost estimates:

A) B) C) D)

C1 N, 2Nelem Nfl2  2 Np3NelemNfl3  3Np3Nelem2 Nfl3  1/3 N 3 N 3Neem3 Nsteps

Comparing these computations with the LU decomposition of Jacobian matrix of the DAE

system (computation B), yields the following relative computation costs:

A) C) D)

Cl/(2NpNfl) 3/2 Nelem 1/6 Nelem2/Nsteps

This indicates that computation A becomes less important as the degree of the interpolating

polynomial increases, computation C increases with the number of elements, and computation D



increases as the number of elements squared. Using p-type refinement only decreases the relative

cost of computation A, while h-type refinement emphasizes calculations C and D.

For one-dimensional simulations, the calculation of the Jacobian matrix of the DAE

system is usually negligible with respect to its LU decomposition, and the importance of back-

solving for a previously decomposed Jacobian can be manipulated by saving the matrix for a

variable number of iterations. Both calculations required for the Newton iteration to find the

TPSS are usually more expensive than the LU decomposition of the DAE Jacobian matrix, but

the most important cost overall is the formation of A, except for very fine spatial discretizations.

Vectorization efficiency of the calculations can greatly affect the relative costs of the different

calculations, although this fact is not apparent from the scalings on operation counts, and only

becomes obvious from timing estimates. For the one-dimensional calculations in this work,

computations A and D vectorize most efficiently, and are not of significant computational cost.

The scaling between computations B and D still does seem to hold.

For two-dimensional simulations, the algorithms have been chosen in such a way to

minimize the overall cost of the system Jacobian inversion, and the calculation of the TPSS

shooting step. Vectorization efficiency seems to keep the relative computation cost

approximately constant with increasing mesh size, and use of the GMRES algorithm assures that

the TPSS calculation will always have similar relative cost to the calculation of the residuals.

The cost of calculating the system Jacobian is quite minimal because of the way the calculations

have been performed.

For both the one- and two-dimensional computations, all functions were hand-inlined for

efficiency. Loops over the equation type (to discriminate between positive ions, electron

concentration, electron energy, voltage, and effective field) were generally written out explicitly.

Furthermore, to increase vector efficiency, multiple loops were chained where ever it was

possible. For example, to do computations for all the local contributions, one can either loop

over the degree of the polynomial and the number of elements separately, or these loops can be

chained using a set of arrays which contain information necessary for unchaining the loops. This

results in extra computations for the indices, but results in very long vector lengths (especially for

the two-dimensional simulations), and increases computation speed by up to a factor of 10.

Some optimization was also done on the vectorization for the calculation of A for the one-



dimensional case. Instead of treating the calculation as an inversion versus N independent right-

hand-sides, the order of the calculations was inverted so that the computation was performed as

an inversion versus all N right-hand-sides simultaneously. This loop inversion results in a speed

enhancement of over a factor of 10, since the number of equations, N, is much greater than the

bandwidth of the matrix being inverted.

The optimization of the simulations results in very efficient computation of a TPSS for

both the one and two dimensional simulations. For the one dimensional case, less than 8 MW of

memory and approximately 1 minute computation time are require on a CRAY C90 to find a

TPSS from an arbitrary starting profile for Argon discharges. The SF6 case requires a smaller

timestep and a much finer discretization, and can be solved in approximately 10 minutes on the

same platform. For the symmetric two-dimensional cases less than 16 MW of core memory are

required, as well as 1 GB of temporary storage for the frontal solver. Computation of one TPSS

shooting step requires approximately 10 minutes of CPU time to calculate the residuals, and

approximately 20-30 minutes of CPU time to calculate the GMRES iterates. For the asymmetric

cases 1-2 GB of temporary storage are required and slightly more than 16 MW of core memory.

There is a concurrent increase in computation time to 20-25 minutes for calculating the residuals

and 45-60 minutes to calculate the GMRES iterates. For the most expensive asymmetric

simulations 10 Newton steps were required to achieve convergence, resulting in a total cost of

approximately 14 CPU hours on a C90. This is not the minimal cost for the simulation since the

discretization was not optimized.



Chapter 3 : One-Dimensional Modeling Results

3.1: Introduction

As a demonstration of the physics, accuracy, and capabilities of the continuum model,

this Chapter will present results from the continuum model in one dimension. The first section

demonstrates the general physics which are included in the continuum model for electropositive

discharges. The results shown are based on bench-mark modeling work for the 44th annual

Gaseous Electronics Conference, and compare very favorably with other works in the field, as is

evident from the comparison presented by Surendra (1995).

The second section shows why the methods used for this modeling effort are superior to

other works which use artificial-diffusion in the spatial discretization, and presents motivation

for using accurate representations of the spatial operators for plasma modeling. Another

advantage of the techniques used for this work is the inherent speed of the computations which is

a result of the higher coupling of the spectral-element basis functions, and hence longer vector-

chain lengths.

The third section shows a brief comparison of the continuum model results to

experimental measurements performed in the lab at MIT. As will be shown in the next chapter,

except when one is examining the physics relatively close to an insulating wall, the plasma is

very nearly one-dimensional. Therefore, one expects that zero- and one-dimensional measures of

the plasma physics, such as the total current versus voltage or the power input to the plasma, and

spatially averaged quantities will compare well with experimental results. The perturbations on

the one-dimensional solution are examined in detail in the next chapter.

The last section in this chapter examines the changes which occur when the plasma is

highly electron-attaching. A detailed description of the physics of an SF 6 discharge is examined,

and the motivation for confining initial two-dimensional studies to electropositive discharges is

discussed.

The model used for all of the simulations is identical, except that for the benchmark

Helium simulations the positive ion transport parameters are allowed to vary as a function of the

effective field to allow direct comparison to other modeling efforts. The transport and rate



parameters for all the simulations, both one and two dimensional, in this work are presented in

Table 3-1. For experimental comparison all parameters are taken to be fixed: no attempt is made

to achieve a better fit by adjusting any of the simulation parameters.

Table 3-1 Transport and reaction parameters for the continuum model

Ion Diffusivity

(cm2 -Torr/ s)

Ion Mobility

(cm2 -Torr/ V-s)

Electron Mobility

(cm 2 -Torr/ V-s)

Electron Diffusivity

(cm2 -Torr/ s)

Ionization Rate

Constant (1/cm 6 -s)

Electron Energy Loss

Rate Constant

(1/cm6 -s)

Electron Attachment

Rate Constant

(1/cm6-s)

Positive/Negative Ion

Recombination Rate

Constant (1/cm 6-s)

Argon Parameters

40

1444

3x105

2/3 Rle

8.7x10 '9 * (E-5.3) *

-4.9

e

8.1x10-9 * (e_5.3)2

0

Helium Parameters

7.8 [E/1P + 378.7

15148
1+O.16E/ P

9.42x10'

2/3 rle E

2.0x10 7 *

-4.7

N-1.8 e
-4.7

2.0x10-7 -1.

_ - 1.8

0

SF 6 Parameters

13

500

1.4x105

2/3 ge,

2.1x10 9 * (e-5.0) *

-6.2
e f-5.o

1.37x10 -8 * (e_5.0) 1.6

8.0x10 -10

7.9x10-

I



3.2: Low Pressure Helium Plasmas

Much previous work has been devoted to the study of the physics of Argon plasmas, and

the two-dimensional simulations in this work are limited to Argon as well. Surendra (1995)

organized a detailed model benchmark comparison for both continuum type models and

PIC/Monte-Carlo simulations to compare speed and accuracy. Only one other group doing

continuum simulations was able to demonstrate any accuracy in the code, and the continuum

model compares quite favorably with the PIC/Monte-Carlo simulations even at 30 mTorr where

the fluid assumptions are dubious at best. The results are also compared qualitatively to some

experimental measurements and are shown to be in reasonable agreement. One of the difficulties

in the comparison is that even though all of the transport parameters are provided, each model

requires slightly different inputs and therefore has to tailor the parameters to specific needs. The

parameters used for simulation of Helium discharges are presented in Table 3-1.

Helium simulations were run at 300 mTorr, 100 mTorr, and 30 mTorr. The continuum

model was expected to work best at the highest pressures, while the PIC scheme was expected to

be more efficient and more accurate at the lower pressures. The results for Helium are similar to

results which were obtained for Argon discharges. The first measure of interest is the plasma

density, which is shown in Figure 3-1 . The shape of the curve is typical for high pressure

electropositive discharge simulations, and occurs because there is no bulk loss mechanism to

offset the production of positive ions other than drift-diffusion. Ions must therefore constantly

decrease in concentration from the center of the discharge outwards. The positive ions are

always modulated in time at a scale much smaller than is visible on the plots, and the electrons

move visibly only in the sheath regions adjacent to the plasma boundary. The sheath becomes

larger as the discharge pressure is lowered, and the overall density of both species decreases,

although not linearly with pressure.
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Figure 3-1 Helium plasma density for electrons and positive ions. Electrons are shown at various phases
in the RF cycle, while positive ions are stationary in time. 13.56 MHz, 6.5 cm gap, 1 mA/cm2 current. a)
300 mTorr; b) 100 mTorr. Sheath formation is evident at both pressures, and the plasma behaves
similarly independent of pressure.

It is interesting to note that the electron concentration becomes vanishingly small in the

plasma sheath region, and that the details of this physics is accurately captured by the spectral

element method. In fact, one of the drawbacks of using a highly accurate method is the necessity



of resolving all the physics in the model even if it is of little consequence. This is highly evident

in the plot of electron energy presented in Figure 3-2 where the leftmost plots contain a small

amount of secondary electron emission to stabilize the model. The goal was to solve the model

with a zero secondary electron emission coefficient, to compare to the other modeling efforts.

This was not tenable because the electron density was vanishingly small on the electrode, forcing

the electron energy equation to be nearly singular. The difficulty with a singular electron energy

balance is evident in Figure 3-2 b), where there is a slight oscillation in the solution near the

bulk-sheath interface. This oscillation is purely numerical, and can be removed through

sufficient mesh refinement.
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Figure 3-2 Helium electron energy shown at 4 phases in the RF cycle. 13.56 MHz, 6.5 cm gap, 1
mA/cm2 current. a) 300 mTorr; b)100 mTorr no secondary electron emission, c) 100 mTorr 10-5
secondary electron emission, and d) 30 mTorr with secondary electron emission. The addition of a small
secondary electron emission stabalizes the numerical methods by maintaining a small electron
concentration in the sheaths, changes the energy in the sheaths, and has very little effect on the global
plasma physics.
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Another approach proved much more valuable in investigating the plasma physics, and

stabilized the solutions by removing the cause of the problem. Providing only 10-5 secondary

electrons per ion striking the electrode greatly changes the electron energy in the sheath, as

shown in Figure 3-2 c), but is only changing the total electron population in the sheath by an

inconsequential amount. Indeed, in any real plasma, there will be secondary electron emission

from all surfaces. Other modeling efforts do not show a problem with the electron energy

because they are not correctly capturing the physics, and therefore ignore this problem. Even

though this small change does not affect the overall discharge model, it emphasizes the

importance of knowing how the numerics affect the overall solution. Note that even though

Figure 3-2 c) and d) show very high electron energy in the sheath, this is for a vanishingly small

number of electrons which probably exist under the plasma conditions simulated. The other

interesting observation is that the secondary electron physics which we are adding is something

that the PIC codes do not model because of the difficulty of accounting for electrons so far out in

the distribution function.

It is also interesting to examine where the plasma power is deposited. If one looks at the

time-dependent power deposition for ions and electrons, as shown in Figure 3-3 , it is clear that

the electrons couple in the majority of the power near the sheath-edge, and lose significant energy

to the plasma during the part of the cycle when the sheath is collapsing as they diffuse against the

field. It is also apparent that this point in the cycle is the most difficult for the simulations, as is

apparent from the small oscillations in the electron power. These oscillations occur because the

power is a product of the electron flux and the electric field, both of which are not required to be

continuous across element boundaries, and converge to smooth solutions with mesh refinement.

The ions gain energy by falling across the time-averaged sheath potential, and will deposit this

energy in the form of heating of the electrodes. Note that the ion power is not constant in time,

and that this is mainly due to a modulation in the effective field, not in the ion current.
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Figure 3-3 Power deposition in a Helium discharge at 300 mTorr. Shown at 4 phases in the RF cycle for
a) Electrons and b) Ions. Ions are always heated by falling through the plasma sheath, while electrons are
cooled for a significant part of the RF cycle while diffusing against the sheath field.

The simplest measure which can be made of the plasma physics is to simply measure the

way the current changes with applied voltage, giving the plasma impedance. This is shown in

Figure 3-4, and for the Helium discharge it is obvious that at this level of detail, there really is

very little difference in the discharge with respect to pressure changes. The discharge is highly

capacitive, and most of the current is due to the capacitance of the sheaths. The electrons flow

into the electrode during a very small part of the cycle when the field has collapsed, and the ions

are a very small component of the current which changes very little over time. As is evident by



the rich physics in the rest of the discharge simulation, a simple model which just deals with

predicting current and voltage will be overly simplistic, and matching just the current is not a

good measure of the plasma physics.
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Figure 3-4 Current components for a Helium discharge. a) 30 mTorr and b) 300 mTorr. The
electropositive discharge is highly capacitive, and the current is not affected by changes in the discharge
pressure.

Although simply examining the current is not a good measure of the plasma physics, the

components of the current contain much more detailed information, especially when viewed



spatially resolved. It is then obvious that although the electrons do not carry the majority of the

current to the electrode, it is the electron current which dominates the bulk of the discharge,

Figure 3-5. The capacitance of the sheaths is very evident in the displacement current, as is the

modulation in the sheath thickness. One can also see that ions generally move outward from the

center of the discharge, and reach some limiting velocity in the sheath, which is slightly

modulated in time. The total current is constant across the discharge since the simulation is one-

dimensional and there is only one path for current to flow (and indeed, one can simulate using a

forcing current instead of a forcing voltage). Here again, the small oscillations in the total

current are due to the numerical approximation for the electron equation: they disappear with

mesh-refinement, and are not significant to the simulation.
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When viewing a discharge, the most apparent feature is a bright glow which is due to the

light emitted when species excited by electron impact relax to their ground state. For this work,

the general approach to modeling the light emission is to look at the ionization rate as equivalent

to excitation, although the threshold for the two processes are different. For the Helium

discharge, however, the excitation cross-sections were given in order to calculate part of the

energy loss rate, so a more direct measure of the glow was available, and can be readily

compared to the ionization rate. One expects to see two brightly glowing regions at the sheath

edges, and a duller glow in the bulk of the discharge for most electropositive discharges. Both

the ionization profile and the excitation profile show this trend, as seen in Figure 3-6. However,

the sheaths span the discharge at 100 mTorr, which is not experimentally observed. The

excitation rate does show the glow decreasing with pressure, while looking at the ionization rate

seems to suggest that the glow should increase as the pressure decreases. To correctly model the

plasma glow, it is evident that the simple energy loss process modeled in the excitation is not

correct, and the ionization rate does not decrease quickly enough with pressure. A population

balance on the metastables should be enforced to rigorously examine the plasma glow, but that is

beyond the scope of this modeling effort.
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3.3: Numerical Convergence Results: Spectral Element Method

The accuracy and computational efficiency of the spectral element, Newton shooting

method is established by a series of calculations with varying time step and spatial discretization.

These calculations were carried out using the properties of the argon plasma described by

Gogolides et al. (1992) for an electrode spacing of 2 cm, a pressure of 1 Torr, and a frequency of

13.56 MHz for varying applied current or voltage.

3.3.1: Temporal Accuracy

High accuracy of the time integration is crucial to take advantage of the exponential

convergence of the spectral element spatial discretization. This point is emphasized by

comparing the accuracy for the integration of the solution for a fixed time step and an arbitrarily

small value for the calculation of the residuals after integration over a single period for varying

values of At; these results are shown in Figure 3-7 with uexact defined by integration for At =

1/6400. The quadratic convergence of the time integrator is obvious. Note that the error in the

integrator for the time step At = 1/200 is approximately 105.Hence, it is expected that the error

in the spatial discretization cannot be smaller than this limit.

The minimum value of this residual at the end of the Newton iterations for each value of

At is plotted in Figure 3-7 and is uniformly smaller than the error in the residual due to the time

integrator. The residual does not attain machine zero due to inaccuracy in calculation of both the

residual and Jacobian. The minimum in the residual at At near 1x10 -3 is caused by the limitation

in the accuracy of the LU decomposition of the Jacobian matrix for the TPS Newton iteration,

which introduces round-off error of approximately 10-8 when LU factorization is performed using

a LINPACK algorithm; the condition number for this matrix is usually in the range of 107 - 109.
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The error in the residual seems to be converging as O(At 3), instead of O(At 2) as expected

from the accuracy of the integration over a single period. The increased accuracy of the TPSS

solution is linked to the accuracy of the integrators for both the nonlinear equation set 16 and the

linear sensitivity equations that are used in the Newton shooting method. There appears to be an

aggregate effect of using higher-order integration for solving both equation sets. This result

suggests that low-order integration of the sensitivity equations may lead to results with the same

accuracy, but at lower cost.

3.3.2: Spatial Accuracy
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The major advantage of the spectral element approximations over conventional finite

element approximations is the higher-order accuracy and the resultant increase in computational

efficiency. The higher-order accuracy will be apparent by comparison of results computed with

different finite element meshes. The increased computational efficiency is a result of the smaller

number of differential equations (smaller N) that are needed to achieve a given level of accuracy,

compared to the discretizations created by finite difference and finite element methods. Since the

cost of the calculations is directly related to the reduced number of degrees-of-freedom (Nnodes) in

the discretization, as described in Chapter 2, reducing Nnodes is an efficient means of limiting

calculation cost.

The discretization error computed for the TPSS solution for the argon plasma is shown in

Figure 3-8 with the error defined as the difference between the solution computed for a given

mesh and the solution computed using 23 elements and 11th degree polynomials, which is taken

as the exact solution. Calculations are shown for holding the degree of the polynomial constant

and increasing the number of elements, as is typical for a finite element or h-type approximation,

and for spectral or p-type refinement where the number of elements is held constant and

polynomial degree is increased. Calculations are shown with two different values of At to verify

that the accuracy of the time integrator is not affecting the evaluation of the accuracy of the

spatial discretization.

The spectral refinements demonstrate exponential convergence as plotted on this semi-

logarithmic graph, except for the data points corresponding to the coarsest and the most refined

approximations. Evidently the coarsest approximation is too crude for the asymptotic error

estimates to be valid; theoretically spectral convergence is only achieved in the limit of a

vanishing error. The finest approximation is too close to the solution defined as the exact result,

so that the computation of the error is no longer reasonable. Spectral convergence also is

demonstrated by the error in the average energy per electron at a point that represents that

maximum value of this variable for the coarsest discretization; this is plotted in Figure 3-9 as a

function of the degree of polynomial used in the spectral approximation with 23 non-uniform

elements. The error in this variable is less than 10-3 even for the coarsest discretization used.
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Because both h- and p-type refinements are produced by changing Nelem and Np,

respectively, the differences in accuracy and efficiency of the two methods can be easily

assessed. For a set polynomial order, the Galerkin approximation with Lobatto-Gauss-Legendre

polynomials reduces to a classical finite element method that should converge as hP, where p is

the polynomial order. Calculations for p = 4 are shown in Figure 3-8 with halving of the finite

element mesh. The error appears to decrease by 24, as expected. Results for p =3 also show the

expected behavior.

Results also are shown in Figure 3-8 for comparable h- and p-type spatial discretizations.

Starting with fourth degree polynomials on a grid of 23 elements and increasing the number of

elements to 46 gives the same number of degrees-of-freedom as 8th degree polynomials on the

original 23 element mesh. The error in the spectral element discretization is nearly 5 times

smaller than the h-type reduction achieved by decreasing the element size. The computational

cost of the spectral discretization, measured in CPU time on the Cray XMP-464 at MIT is nearly

n



double for the p-type discretization, as expected because of the increased bandwidth of the

Jacobian matrices caused by the use of the higher-order polynomials. This increased

computational cost is evident from the scaling arguments in Section 2.4. Lowering the order of

the polynomial in the h-type discretization results in more dramatic results. For discretizations

with the same N, the error in the spectral element results is over 10 times smaller with only a

factor of two increase in computation cost. Clearly, the spectral element approximations have a

distinct advantage if very high accuracy is needed. The need for this high accuracy in the

modeling of rf-plasma discharges is the focus of the discussion in the next section.

We demonstrate the cost of using low-order finite elements for calculations with more

than minimal accuracy by examining the computational cost of finding solutions with an error of

10-5. For the p-type refinement, using 23 elements and 6th order polynomials suffices. This

yields a total of 139 nodes, and relative to the base case of 4th order polynomials on 23 elements,

a relative cost of 3.1. For h-type refinement with cubic polynomials the same calculation

requires more than 300 nodes, with a relative cost greater than 11. For quadratic polynomials,

the savings are even more impressive: the calculation requires more than 2000 nodes and the

relative cost would be more than 480. In other words, using spectral elements instead of

quadratic finite elements saves more than a factor of 150 in computation cost.

3.3.3: Comparisons Between Spectral Element Results and Finite Difference Calculations

of Gogolides et al.

As described in Chapter 1, many of the previous calculations for rf-plasma discharges

have used low-order accurate finite difference discretizations that apply upwind differencing

schemes to stabilize the discretized equations. However, the upwinding scheme may introduce

artificial diffusion into the approximation that incorrectly smoothes sharp gradients in the

solution field and hence gives inaccurate results for fluxes that depend on these gradients.

Accurate computation of these gradients and the resulting fluxes requires higher-order accuracy

in the spatial discretization and is one of the major advantages of spectral element methods. To

demonstrate this point we compare calculations using the p-type spectral element method



described here with calculations using the upwind finite difference approximations of Gogolides

et al. (1992).

The calculations described below demonstrate the effect of the artificial diffusivity

introduced by the upwinding in the finite difference approximations. We have attempted to

mimic this effect in the spectral element calculations by artificially increasing the diffusion

coefficients for electrons and ions to 1.5 and 60 times their proper values, respectively. This

calculation represents a crude attempt at approximating the behavior of the finite difference

approximation, because the effective diffusivities in the upwind approximations should behave

as (Thomasset, 1981)

Def = D + Axv = D + p, AV Eq. 21

or

= D + Ax++ -

where Ax is the mesh spacing in the finite difference discretization. Corrections of the form of

Eq. 21 would be highly nonlinear because of the temporal and spatial dependence of the potential

fields.

Calculations of the current-voltage (I-V) curve and the maximum density of charged

species in the plasma are shown in 3-10 for calculations with the spectral element and finite

difference methods and for computations with the spectral method using modified diffusivities.

For both variables there is a significant difference between the results of the spectral and finite

difference calculations. The IV curves differ by as much as 30% for low values of the voltage,

and this difference is not very sensitive to the value of the diffusivity used in the spectral element

simulation. The difference in the maximum density is also approximately 30% and is much more

sensitive to the values of the diffusivity, This difference is approximately modeled by using the

increased diffusivities given in Eq. 21. This agreement is not unexpected because the maximum

density of the plasma is set by the loss rate of ions from the center of the plasma, where the

contribution of ion drift is extremely small. We believe that only a fraction of this difference is a

result of the difference in boundary conditions used in the calculations (current forcing in the



finite difference calculations and voltage forcing in the spectral results) because the difference is

still 15%, when compared to the spectral calculations performed with current.
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Figure 3-10 Plasma simulations for a 2 cm argon discharge operating at 1 Torr and 13.56 MHz; a)
current-voltage characteristic, and b) the maximum plasma density as a function of voltage.

The differences between the spectral element and finite difference calculations are small

for some variables, as is demonstrated in Figure 3-11 for the variation of the electric field, aVI/x,

as a function of position at three times during the rf-cycle. The difference between the spectral

element and finite difference results is generally decreased by artificially increasing the

diffusivity in the spectral element calculations, indicating that the artificial diffusivity is

responsible for much of the error in the finite difference results. The three calculations have very

similar spatial and temporal behaviors, indicating that the qualitative physics of the plasma is

preserved in all three numerical methods.

The most significant errors caused by the upwind differencing appear in the calculation of

the average electron energy, as shown in Figure 3-12 by the spatial dependence of this variable at

a particular time in the period. The spectral calculations resolve a very thin boundary layer in the

energy density near the electrode at x = 0, which is not present in the finite difference

calculations. Increasing the diffusivity in the spectral element calculations does not explain this

difference.
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The differences in the calculations of the average energy per electron are seen further in

the three-dimensional contours of the entire field as a function of both space and time, which are

shown in Figure 3-13 for calculations using current forcing for the plasma. The calculations with

the spectral element discretization (Figure 3-13 a) predict higher peaks at the electrodes during

the cycle and resolve additional sub-structure near the electrodes during the middle of the period.

Three distinct peaks are clear in Figure 3-13 a, two broad peaks centered around a very sharp

peak.

S

IZ

Figure 3-13 Spatial inaccuracy of the finite-difference approach when upwind-differencing is included.
Average electron energy simulated using a) spectral-element technique; b) finite-differences with
upwind differencing.

The finite-difference calculation (Figure 3-13 b) only shows one very broad peak, which

is most likely a result of smoothing-out the three peaks evident in the spectral-element

calculation. This structure is due to secondary electron emission during the portion of the cycle

when the electric field is highest. Since the finite difference calculations do not correctly predict

the very small electron fluxes away from the electrode during this phase of the cycle, these

calculations are not expected to capture the highly peaked structure that appears in the spectral

element calculations. The differences between the two approximations are made more apparent

by plotting the maximum of the average electron energy as a function of time in the cycle, as

shown in Figure 3-14 , where differences of 50 percent are seen at the beginning and the end of

the period.
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Even though the upwind difference approximation leads to large variations in the electron

energy, the overall predictions of the physics of the discharge are largely unaffected by these

approximation errors. Because the electron concentration is small at the point where the peak

average energy occurs, the error in the total energy in the discharge is small and the peak in the

ion density is changed only slightly: this difference is linked more closely to a larger loss rate of

ions in the upwind difference approximation. The voltage is perhaps the best macroscopic

measure of the discharge physics. It is obvious from Figure 3-15 that the peak voltage may be in

error by as much as 15%, but the details of the voltage profile as a function of space and time are

relatively accurate.

Spectral

e
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0.0 0.5
Time (Period)
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Figure 3-14 Spatial inaccuracy of the finite-difference approach when upwind-differencing is included
shown in the maximum electron energy in 1/2 the discharge.
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Figure 3-15 The global physics for finite-difference and spectral-element techniques compares favorably
for less sensitive variables. Plasma potential simulated using a) spectral-element technique; b) finite-
differences with upwind differencing.

3.3.4: Conclusions

Spectral element approximations for solution of a continuum model for rf-glow

discharges are demonstrated here to be more accurate than simulations with traditional

calculations based on upwind finite difference and low-order accurate finite element methods.

Highly accurate simulation is necessary for modeling of the typical operating conditions for

industrial plasmas, which are known to cause thin boundary layers near the electrodes. The

exponential convergence expected of the spectral approximations is demonstrated.

Direct comparison between calculations with the spectral element approximation and the

upwind finite difference method applied by Gogolides et al. (1992) demonstrates the need for the

increased spatial resolution of the spectral approximation in order to resolve boundary layer

structure that develops in the energy fields adjacent to the electrodes. Errors of over 50% are

seen in the finite difference predictions of the average electron energy and details of the solution

structure are unresolved. For the case of an argon plasma the inaccuracy of the finite difference

method is not overly important to the global discharge physics, since the electron concentration is

very small in the area where the energy is highest.

The cost is prohibitively high for either finite difference or finite element approximations

with equivalent accuracy to the spectral element discretization. As discussed in Section 3.3.2,



the spectral element calculations are expected to be less costly by a factor of 150 for solutions

that are accurate to one part in 10000. This difference is exacerbated when simulations are

generalized to two spatial dimensions, as would be needed to model the geometries of plasma

reactors used in the microelectronics industry.

3.4: Comparison to One Dimensional Experimental Results: Argon
Plasmas

A great deal of attention has been paid to assuring that the physics in the continuum

model is correctly maintained with the solution techniques used for this work. It is also very

important to show that the equations we are solving have some connection with the real plasma

physics; ideally the model should be fully quantitative. This section demonstrates that the

plasma physics simulated using the continuum model is at least qualitatively correct. The two-

dimensional version of the model incorporates more physics, and therefore yields more

quantitative comparison.

A reactor configuration with a one inch gap and two 6.5 inch electrodes surrounded by a

glass surface, with the remaining ground surfaces far away from the reactor, was used to compare

to the one dimensional simulations. This configuration has a high enough aspect ratio that we

expect the slender body approximation to apply over 70-85% of the electrode area. All

simulations were run on the same mesh, and the voltage was varied until the solutions became

unstable. The current is generally predicted to be approximately a factor of two too low, Figure

3-16. One explanation for this put forward by Gogolides et al. (1992b) that the positive ion

mobility was incorrectly modeled in the sheath as a constant. The line in Figure 3-16 labeled 1

Torr modified uses the correct functionality for the ion mobility as Gogolides et al. suggested,

but results in very little modification in the I-V characteristic. Most of the difference that was

previously seen in the computations with the modified mobility was probably due to the

inaccuracy inherent in the spatial discretization for the finite-difference methods.
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Figure 3-16 Comparison of experimental and continuum model current-voltage characteristic for Argon
Discharges at various pressures. The continuum model captures all the important trends, and is in
reasonable agreement with the experimental measurements.

Since we know that at most 85% of the plasma is likely to be one-dimensional, a

systematic error of more than 20% in the current is easily explainable. The comparison of the

model results to the experimental data is better at lower voltage and lower pressure, where the

discharge is more uniform, more one-dimensional, and noticeably fills the reactor more fully.

Therefore, for the experimental results, the actual area that the plasma sees is not very well

known, so calculating the current based on the electrode size probably accounts for the remainder

of the differences in the results. Liu (1992) noted that the current does not scale linearly with the

electrode area, which supports the supposition that the plasma is not maintaining a constant area.

This is consistent with the current in the plasma being mainly capacitive.

The power deposition in the plasma is represented in Figure 3-17, and it is obvious that

the model results match the experiments quite well. Since the power is mainly coupled into the

electrons at the bulk-sheath interface, as well as some bombardment energy from the ions hitting

the electrodes, scaling the power by the electrode area works properly. These are both resistive
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losses, and the non-uniformity in the plasma sheath with varying radius tends to decrease the

plasma density, and increase the resistance, resulting in power deposition which is more uniform

across the discharge than the current to the electrodes.
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Figure 3-17 Comparison of experimental and continuum model Power characteristic for Argon
Discharges at various pressures. The continuum model agrees quantitatively with the experimental
measurements. Note that there are no adjustable parameters contained in the model.

The power input to the plasma decreases with pressure, since the plasma density

decreases, increasing the resistance less quickly than the current decreases. For the lower

pressure plasmas, power into the ions in the sheath becomes more important, and increasing the

voltage does not affect the bulk density as significantly as at higher pressures, where increasing

power results in a large increase in the plasma density, as seen in Figure 3-18. In fact, it is

obvious that the power and the density are intimately linked. The lower pressures have a totally

different power deposition mechanism than at higher pressures, and Liu (1992) discussed in great

detail the difference between bulk and sheath power coupling. Since it appears that the change of
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power with pressure and voltage is modeled correctly with the continuum assumptions, at least

for a first approximation the major power-coupling mechanisms are correct in the modeling.

0.30 -

0)6-T-

0.20 -

0.10 -

0.00

20.00 40.00
' I1

60.00
Voltage

' I
80.00

Figure 3-18 Model density predictions for an Argon discharge at various pressures. Note that density
varies almost linearly with voltage, and therefore with applied power.

It is not surprising to see that the phase difference between the current and voltage, shown

in Figure 3-19, is correctly predicted, since the power has already been shown to match correctly.

Correctly predicting the phase lag also indicates that the physics in the continuum model is

reasonable, since the phase lag indicates the relative importance of the resistive and capacitive

portions of the plasma impedance. It is difficult to sustain a discharge for very low voltages, as

the plasma begins to extinguish. The model result for one Torr shows the extinguishing point for

the plasma quite clearly, as the phase shift rapidly heads for the pure capacitive solution at -90'.
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Figure 3-19 Comparison of the phase shift in an Argon discharge between current and voltage for
experimental measurements and continuum model predictions at various pressures. The model predicts
the experimental phase shifts quantitatively. Note that the 1 Torr simulation shows the turning point
where the plasma is extinguishing.

For surface evolution simulation, the most important input parameters are the ion flux

and the average ion energy, shown in Figure 3-20 and Figure 3-21. The experimental

measurements are made with a three-grid retarding energy analyzer which is accessed through a

pin-hole in the electrode. Measurement of the ion energy and flux is not as simple as measuring

the current and power, and is quite easily capable of perturbing the discharge, although the

analyzer design used here has been shown to be relatively non-invasive by Liu et al. (1990).
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Figure 3-20 Comparison of experimental and continuum model Ion Flux for Argon Discharges at various
pressures. The ion flux is not a strong function of pressure, and varies approximately linearly with power
for both the experimental data and the model results.

The model predicts the flux quite well to within the experimental accuracy, while the

model ion energy is considerably low. The breakdown of the model for ion energy is

understandable, since the continuum assumption for the positive ion breaks down on the length

scale of the plasma sheath. The ion energy is calculated by examining the velocity (mobility

times effective field) at which the ions reach the electrode. However, the assumption that the

ions can be described by a mobility flux in the sheath is quite poor, since ions can gain

considerable energy between collisions, and will not be in thermal equilibrium except at the

highest pressures. The continuum model does predict the general trends in the ion energy, and

for most applications it is expected that a Monte-Carlo simulation of the sheaths will be

necessary to correctly predict the ion energy. The trends in ion energy are still qualitatively

captured by the continuum model, so if some model for a modified mobility were available for

the plasma sheaths, the average ion energy could be correctly predicted.
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Figure 3-21 Comparison of experimental and continuum model Ion Energy for Argon Discharges at
various pressures. The continuum model is not capable of predicting the ion energy because there are not
sufficient ion collisions in the sheath to maintain an equilibrium distribution.

It would be optimal if one could measure the electron density and the electron energy

across the plasma, and indeed Langmuir probes provide a reasonable means for doing so.

Interpreting the results of these measurements are not straight-forward, and the probe will not

yield useful results in the plasma sheath, so for one-dimensional simulations the utility of

Langmuir probe measurements in RF discharges is limited. Measurement of the light emission

from the discharge does not perturb the plasma, and is easily interpreted if one examines only a

single wavelength. The emission is a convolution of the electron density and the electron energy,

so correctly predicting the plasma emission indicates that these variables are correct, although

one is not able to state anything about each variable separately. For this study, the plasma

emission is modeled as the convolution of the ionization rate with the relaxation time for the

excited species. This model is used because the concentration of the excited species is not
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modeled, and excitation and ionization should have similar cross-sections, albeit with different

thresholds.

The results for the model plasma emission are compared with the experimental

measurements in Figure 3-22. The plasma emission is measured both spatially and temporally

resolved, and the model results are computed on the same basis. At 1 Torr, as shown in

Figure 3-22 a) for the experimental data, and Figure 3-22 b) for the simulation results, the model

predicts the trends for emission as both a function of time and space. The experimental results

include an arbitrary offset for the baseline emission which is not added in the model, and is most

likely due to the dark current of the photodiode and ambient light. The sheath thickness, as

measured by the maximum in the glow intensity, is predicted to be about 50% larger in the model

than is observed, but part of this error is due to the difficulty in imaging the plasma near the

electrode, and the limited spatial resolution of the optical system.
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Figure 3-22 Comparison of experimental and continuum model plasma emission for Argon a)
Experimental result 1 Torr, b) continuum model 1 Torr, c) experimental result 100 mTorr, d) continuum
model 100 mTorr.
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The comparison with the continuum model breaks down at 100 mTorr, shown in

Figure 3-22 c) for the experimental data and Figure 3-22 d) for the model results, and this can not

be explained by the failure of the continuum model. At 100 mTorr, the model is at the edge of

applicability, but should still produce reasonable results. The model ionization occurs almost

completely in the center of the plasma, and the sheaths have seemingly collapsed. Examining

Figure 3-22 d) carefully one can see that the peak in ionization occurs slightly off center,

indicating that there is still a spatial separation between the peaks in the ionization. In fact, the

maximum in the electron energy still occurs in the sheath, but the electron density is so small that

the high energy has no effect on the ionization rate. The experimental plasma emission does

show a shape similar to the model results in the bulk of the plasma. The breakdown in the model

is most likely due to the difference in the thresholds for ionization and excitation. If the

excitation is modeled analogous to ionization, except with a lower threshold energy, the effect of

the high energy in the sheath becomes pronounced, and glow at the edge of the discharge will

result.

This section has covered the simple one-dimensional physics which can be compared

directly to experimental data. The comparisons are overall quite promising, and most of the

differences between the experimental and model results are relatively easy to explain; the only

inherent flaw in the model is the inability to correctly account for the ion energy at the electrode,

but this result is not unexpected.

3.5: Electronegative Gases: SF6

Since many of the gases used for microelectronic fabrication are electronegative,

examining only electropositive discharge physics is only part of the necessary modeling effort.

Fortunately SF6 has been studied nearly as well as the noble gases and sufficient data is available

to use for modeling. Note that SF6 is on the other end of the spectrum from Ar and He, in that it

is so highly electron attaching that most of the negative charge is held by the negative ions. The

treatment of the electronegative gas is no different from electropositive gases, except for the

additional equation describing the negative ion concentrations. In theory, solution of the

continuum model for an electronegative gas should be equivalent in computational cost to



solution of the model for electropositive gases. In practice, this is not the case since the

difference in the plasma physics, especially the thinner sheathes, makes the electronegative gas

much more complex.

The negative ions behave similarly to both electrons and positive ions. Like the

electrons, they carry a negative charge and therefore balance the positive ions to allow the bulk of

the plasma to remain quasi-neutral. Like the positive ions, the negative ions are very massive

and only respond to a time-averaged potential. The predicted concentration of the two ion

species is shown in Figure 3-23 a). Neither species shows significant modulation in time, and

except in the very thin sheath region, the two ions very nearly balance. Note that a much larger

forcing voltage (300 V) is required to strike the electronegative discharge with respect to the

electropositive discharge (30 V). The concentration of the ions is much higher for the

electronegative discharge, although the higher density can be attributed to the higher applied

power.

The electron concentration is not as simple in shape for SF6 as the He discharges. The

electron profiles show very strong variation in both space and time, Figure 3-23 b), especially in

the sheath regions. The electrons are created during the phase of the cycle when the sheath is

locally imparting energy to the plasma, and once the sheath is fully formed are quickly lost

through attachment to form negative ions, or as current to the electrodes. This results in the

interesting features in the electron concentration profiles. During the anodic phase of the cycle,

all the electrons in the sheath are depleted for a large portion of the discharge, which is

significantly thicker than the region holding most of the space-charge. During the cathodic phase

when the electrons are being formed they are created in this region and have a steep

concentration gradient much closer to the electrode, balancing out the positive charge since the

negative ions can not move into the sheath on this time-scale.
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The concentration profiles for all the variables are no longer sinusoidal, as is generally

seen in electropositive discharges, because the mechanisms for creation and loss have changed

quite significantly. The addition of the negative ion equation adds a homogeneous loss rate for

the positive ions, which is balanced by the ionization rate. Electrons are mainly lost to attachment

in the bulk, and as current in the sheaths. The power coupling changes quite significantly for

electronegative discharges, as is evident from the modulation of the electron energy in

Figure 3-24. The energy does not exhibit a sharp peak at the bulk-sheath interface, although it

does rise in the sheath during the cathodic phase to create a pulse of electrons. The energy is not

pinned near the ionization threshold in the plasma bulk, as is the case in electropositive

discharges, indicating that power couples into the electrons everywhere in SF6 , whereas power is

coupled to the electrons mainly at the bulk sheath interface in electropositive discharge.

The bulk modulation of the electron energy shows that ionization in the bulk is not

insignificant, and is expected to be a primary means of maintaining the discharge. This is also

evident in Figure 3-25 a) showing the plasma potential which varies quite significantly across the

discharge. In fact, using the typical definition of the sheath as a region where the potential rises

rapidly has little meaning for this discharge, although Figure 3-25 b) shows that the fields in the

sheath are significantly higher than in the plasma bulk. The most interesting feature of the plasma

is hidden when looking at the potential, but is readily seen in the plot of the electric field. The

field is never monotonic, and in fact has a reversal (due to the accumulation of electrons) right

after the cathodic part of the RF cycle. It is this field reversal which traps electrons and allows

them to form a large number of negative ions at the bulk-sheath interface. Note that the negative

ions don't see the field reversal, since they are responding only to the time-averaged field.

It has been shown that the simulations for electropositive gases predict the discharge to be

mainly capacitive, and it is obvious from Figure 3-25 that although the sheaths are still capacitive

and have a significant field, the bulk of the discharge also has a large potential drop. It is

obvious from Figure 3-26 that the current is very close to a sine wave with zero phase-shift,

which is the form of the applied potential. The current in the plasma bulk is now much more

complex than in the electropositive case, with a large displacement current in the bulk of the

plasma balanced by the ion currents, and the electrons still carry the majority of the current. For

SF6, the current at the electrode resembles the electropositive case except for a phase shift toward



zero degrees. The displacement current comprises the majority of the current in the sheath, with

a small electron current being allowed through the sheath at end of the cathodic part of the cycle.

In the sheath, the negative ion concentration is negligible, while the positive ion current is small

and nearly constant.
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Figure 3-24 Electron energy at various phases in the cycle for an SF 6 discharge. The energy is highly
modulated in the plasma bulk, and is not limited to the ionization potential, as opposed to the energy in
electropositive discharges.
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Figure 3-25 Potential variation in an SF6 discharge. a) potential and b) electric field profiles at various
times in the cycle. The bulk of the plasma is highly resistive because the negative ions are much heavier
than electrons, and energy can therefore couple to the plasma both in the bulk and in the sheath.
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Figure 3-26 Components of the current in an SF6 discharge. 1 Torr for a) the center of the discharge and
b) the powered electrode. The bulk current is still mainly carried by the electrons, despite the reduction
in concentration, while the ion current is balanced by the displacement current.

The variation of the current components across the discharge is also quite complex

compared to the electropositive case, Figure 3-27, but this is expected from the spatial variations
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in the electric field. The total current across the discharge is shown to be constant, as is required

by current continuity for a one-dimensional discharge. The bulk of the discharge contains a

small, but non-negligible displacement current which is balanced by the ion currents, and most of

the current throughout the bulk of the discharge is carried by the electrons, even though they are

the minority charge carrier. The change in sign of the electric field within the sheath requires a

non-monotonic displacement current. The displacement current is balanced by the ion currents,

with the positive ion current even changing sign in the sheath (or at the bulk-sheath interface) at

this phase in the cycle.

The physics of the SF 6 discharge are quite different than for He or Ar, but there is nothing

inherently difficult to simulate in the profiles presented up until now. The thinner sheaths merely

mean a small increase in the mesh density, as is required for the higher fields and field reversals.

In fact, it should be easier to simulate SF6 than the electropositive gases because the electron

concentration does not vary as much in the plasma sheath, and the energy is not sharply peaked in

the sheaths. However, these simulations are quite difficult to perform. Even though the electron

balance appears more facile to solve in SF6, the negative ions present an unexpected problem.

Since the negative ions are massive, they should respond only to a time-averaged

effective field, and not to the instantaneous potential across the discharge. However, since the

field is so high in the sheath and the density gradient so steep, the negative ions are modulated on

a very small length scale as shown in Figure 3-28. Although this result should not be

unexpected, since the negative ions are not infinitely massive and have to respond to the applied

field on some length and time scale, the strong modulation of the negative ions near the electrode

is problematic. The full solution for the ions, including the detail of how the concentration

approaches zero, is required in order for the spectral-element method to remain stable.

For the abrupt change in slope evident in Figure 3-28, a very large number of elements

need to be concentrated in this region, even though the physics preserved is probably of very

little importance to the overall simulation. The requirement for small elements also placed a

smaller limit on the maximum time-step allowed for the simulations, making the overall cost

extremely high compared to Ar and He simulation. The magnitude of the negative ion density

near the electrode is small and the overall contribution to the charge balance and current balance

must therefore be proportionately small, so the overall importance to the simulation is



demonstrably small as well. However, there is no simple change in the negative ion boundary

condition which removes this oscillating boundary layer. It is conceivable that some reasonable

change in the physics, such as addition of a field-dependent mobility, would remove the

difficulty with the negative ions. It was decided that this work would remain rigorous to the

plasma physics, and therefore two-dimensional simulations were limited to electropositive

discharges.
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Figure 3-27 Current through an SF6 discharge. 1 Torr near the peak in the current phase (20% of the RF
cycle). The ion currents are nearly equal except in the sheath, and are due to ion drift. Electrons carry
the majority of the current in the plasma bulk.
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Figure 3-28 Negative ion density for an SF6 discharge near the grounded electrode. Expanded view at
varying phases in the cycle. Note that the negative ions respond to the highly modulated field in the
same way that electrons do, but at a much smaller length scale. Capturing the negative ion sheath
requires very fine meshes, resulting in excessive computation time.
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Chapter 4 : Two-Dimensional Modeling Results

4.1: Description of Two-Dimensional Geometry

Two different geometries were used for both the experimental measurements and the

simulation results. The geometries are termed symmetric, because the powered and grounded

electrodes are the same size, and asymmetric, with a smaller grounded electrode. The two-

dimensional effects are limited to the perturbation from the insulating boundary for the

symmetric cases, and are a convolution of the insulating boundary and the difference in electrode

areas for the asymmetric cases. For standardization, all simulation results and experimental

measurements are presented on the same basis. Three different types of graphics are used: vector

plots, contour plots, and surface plots. For all plots, the bottom and top axis represent the

grounded and the powered electrode, the left axis represent the insulating wall, and the right axis

is the center of symmetry, shown in Figure 4-1. For the asymmetric simulations, the smaller
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Figure 4-1 Geometry for presentation of simulation and experimental results a) vector and contour plots
b) surface plots.

grounded electrode starts at the center of symmetry and extends part way to the insulating

boundary, as represented by the dark bar in Figure 4-1. The rest of the lower boundary is an

insulator which extends for a few gap spacings to another ground plane parallel to the grounded

electrode. The exact geometry used for the simulations, including the regions which do not

contain plasma, is shown in Figure 4-2. Note that the model infinitley large electrodes by forcing

the radial field to vanish at the boundary labeled 5 in Figure 4-2, and that the insulating surfaces



labeled 7 and 8 are allowed to charge up self-consistently. The discretization in the confinement

insulator is taken to be coarse since the fields in this region are not of primary importance.

8
5 5
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7 J
3

3
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Figure 4-2 Simulated regions for a) symmetric and b) asymmetric geometry. The regions in the figure are
as follows: 1) Powered electrode, 2) grounded electrode, 3) Confinement insulator, 4) radial symmetry
centerline, 5) edge of insulator, set to symmetry to simulate infinite electrode, 6) plasma region,
7) insulating wall confining plasma, and 8) insulator adjacent to smaller electrode to enforce asymmetry.

For convenience, all of the simulation results are plotted as non-dimensional variables,

except when directly comparing to experimental data. The characteristic length is chosen to be

one inch, so all coordinate axes are equivalent to physical dimensions in inches. All plots are

produced maintaining the correct aspect ratios between the radial and axial dimensions. The

lower axis indicates the distance from the insulating (glass) boundary, and the radial position is

this number subtracted from the total radius of the reactor. For vector plots the arrowheads are of

constant dimension with the length of the vectors proportional to the its magnitude. Time is

always referenced with respect to the percent phase in the RF cycle, so that a time of 0.5 is equal

to 1800, or 7t radians. The brightness of the boundary between shaded regions for the PIE plots is

proportional to the emission intensity, while the shading follows the opposite trend (darker

shading is more intense emission).

For the one dimensional case simply setting a tolerance on the TPSS residual norm is

sufficient to achieve convergence. For the two dimensional cases Determining when a

simulation has converged to a TPSS is more difficult, since variables such as the electron density
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vary over six orders-of-magnitude both in space and time. The difference occurs because the

sheaths intersect at comers (for example, the boundary betwee 1 or 2 and 7 in Figure 4-2),

resulting in a greatly reduced density. Although the exact magnitude of these variables is not

important to the overall simulation, they may have relatively large TPSS residuals. The effective

field is high in this region, and converges slowly to a TPSS, although this has a negligible effect

on the simulations due to the change in the ion boundary condition. It was noted that, for

reasonable initial guesses, the TPSS residual and the structure of the solution is mainly defined

after 3-4 TPSS Newton iterations. The residual norm does continue to decrease, at a much

slower rate, but the changes in the solution are unimportant to the overall physics, and generally

fall well below the error inherent in the model.

Strict convergence criteria were used where possible. From the one-dimensional

simulations it is known that there will always be a minimum in the TPSS residual for a given

timestep and discretization, due to inaccuracy in calculating both the TPSS Jacobian and the

TPSS residuals. For the two-dimensional convergence results in the next section, the initial

profiles are already very close to converged, and are allowed to 3 full Newton shooting steps to

reach a steady state. The result is that for all simulations the TPSS residual reaches its minimum

value, which is different for each grid. The effect of this criteria on the resultant TPSS is

discussed further with the convergence results. For the symmetric simulations the TPSS residual

norm falls below 10-2 within a few Newton shooting steps (usually 3-4), and further simulations

change the TPSS residual very slowly. All symmetric simulations are converged to a final TPSS

residual of less than 10-3. The resultant bulk plasma quantities are then converged to an error of

less than 1%, and have TPSS residuals on the order of 10-8 . All of the large residuals are in the

sheath where the simulation results are not sensitive to the exact values of the variables. For

example, reducing the TPSS residual from 5x10 -3 to 8x10-4 in the 0.1 Torr simulation resulted in

no more than a 5% change in the ion flux to the electrodes, and no significant change in the

overall plasma physics (peak density, current, power, and other important parameters). For the

asymmetric simulations, the singularity in the field at the insulator/electrode boundary results in a

high effective fields which converge slowly. The convergence criterion for these cases is relaxed

to 10-2 for this reason, and all variables not near the insulator/electrode boundary are much more

strictly converged. This is further discussed in the section on the asymmetric simulation resuts.



4.2: Convergence Results in Two Dimensions

Since the major contribution of this work is a set of rigorous computational tools for

solving the continuum model, it was necessary to study the convergence properties of the two-

dimensional simulations to assure that the simulations were accurate. The geometry chosen for

this study was a 1 inch by 1 inch cylindrical plasma with equal area electrodes and an insulating

radial boundary with a pressure of 1 Torr, frequency of 13.56 MHz and 100 Vpp applied

potential. It is expected that the corner where the insulating boundary and the electrodes meet

will introduce discontinuity in one of the higher derivatives for many of the variables, so spectral

convergence is not guaranteed; the solutions are not expected to be infinitely differentiable. This

is especially true for positive ions, since the charging of the insulating boundary leads to a

reversal in the effective field near the corner (where boundaries 1 or 2 meet boundary 7 in Figure

4-2). The change in sign of the effective field necessitates a change in the boundary condition for

the positive ions to exclude aphysical leakage of ions into the plasma from the corner. The

original boundary condition is changed from zero gradient to weakly imposed zero concentration:

n.VN÷ = 0 becomes -n. VNI+CNJ= 0, Eq. 22

where C is a large constant which sets the ultimate magnitude of N,. The change in boundary

conditions on positive ions essentially introduces a discontinuity in the ion fluxes near the corner,

and may destroy spectral convergence of the simulations.

Simulations were performed on a non-uniform grid of 17 axial and 9 radial elements,

with a greater concentration of elements in the radial and axial sheaths than in the bulk region. A

solution was already available for 4th order polynomial basis functions, and was interpolated to

provide a guess for the other polynomial orders. Convergence was tested by examining the

results for 3rd, 4th, 5th and 6th order basis functions, using 8th order basis function results as the

exact solution. The number of degrees-of-freedom for each simulation is shown in Table 4-1.

Simulations were run for 3 Newton iterations, which results in a minimum in the TPSS residual

for all grids. Since the TPSS Jacobian was computed using a large time step, and since there is

significant error in the TPSS residuals from time integration over one cycle, quadratic

convergence of the TPSS shooting method was not observed. It was noted that the minimum

error in the TPSS residuals was the smallest for the lowest order basis functions and higher for

higher order basis functions. The increase in error is attributed to the increase in the Courant



number within the element as the order of the interpolating polynomial increases, decreasing the

minimum separation of nodes. Convergence of the TPSS shooting method with time step for the

integrator or for the calculation of the TPSS Jacobian was not explored due to the expense of

calculating solutions with very small time steps. These calculations scale linearly with the

timestep, and would require a minimum of the cases requiring 2,4,8 and 16 times the cost of the

base case simulations shown in Table 4-1.

Table 4-1 Computational requirements for convergence calculations.

DOF

CPU time (hours)

Degree of Polynomial

3 4 5 6 8

9645 16872 23579 37412 66024

0.2 0.5 1.4 2.5 6.6

The convergence of the spectral element method is tested by plotting the L2 norm of the

error in the variables versus the degree of the interpolating polynomial; spectral convergence is

indicated by a straight line. Spectral convergence is achieved for the two-dimensional

simulations, despite the corner discontinuity, as shown in Figure 4-4. Two different error norms

are presented: the first contains all of the plasma variables, represented by the filled circles, and

the second ignores errors at the corner elements where a discontinuity is expected. Exponential

convergence is only guaranteed for sufficiently fine meshes. For the 3rd order polynomials the

mesh is not fine enough to achieve spectral convergence, and the result is a high error. Both

norms are exponential for the 4th, 5th and 6th order polynomials.

If one considers all of the variables, the discretization error decreases very slowly with

increasing polynomial order, although spectral convergence is achieved. The second norm

ignores the effect of the discontinuity in the corner, and shows a greatly enhanced convergence

rate. Indeed, examining where the largest errors are shows that the effective fields in the corner

have by far the highest errors, and overall 90% of the error is in 1% of the equations in the corner

elements. A high error in the corner is indicative of the discontinuities there, and suggests that

local refinement of the elemental mesh would be much more effective than increasing the

polynomial globally. Indeed, by examining the contours of positive ion density in the corner in

I I



Figure 4-3, it is obvious that there is a sharp drop in positive ion density which is limited to the

corner of the discharge. This is a direct result of the boundary condition we are using, and if one

does not wish to resolve this physics, it is possible to change the physics in such a way to smooth

out or delete the change in ion boundary condition.
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Figure 4-3 Positive ion density contours near the comer of the discharge where the insulating surface
meets the grounded electrode. Note that the spatial scales and the ion density scales are multiplied by
100 to show the fine detail.

The discontinuity produced by the ion boundary condition propagates into all the other

variables through the coupling of the boundary conditions, and through Poisson's equation.

However, the effect of the discontinuity is very localized. The error in the electron energy, which

is a very sensitive plasma variable, illustrates how the overall convergence is affected. Three

different energy norms are plotted in Figure 4-5: the energy at the coner of the discharge where

the discontinuity occurs, the error for the maximum in the energy, and the error for the corner

element, at the node furthest from the corner of the discharge. Except for the energy in the

corner, all the other norms on the energy appear to exhibit spectral convergence. The error in the

maximum energy is higher because it is not normalized to the magnitude of the energy, and the

maximum energy is a factor of 4 higher than in the corner.
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Figure 4-4 Convergence of the Two-Dimensional Simulation with p-Type Refinement. * All simulated
variables, + 2 error from comer elements ignored. The majority of the error is contained in the nodes
near the corner discontinuity, and this error is not affected by using higher-order interpolating
polynomials.

It is interesting to note that the discontinuity does not affect the convergence of the energy

on the node in the first element diagonally opposite from the discontinuity, although all the

variables in the first element are coupled through the spectral discretization. Some of the error in

the corner variables is attributable to the TPSS shooting method, since the variables which have

the highest final TPSS residual are always the ones near a comer of the discharge, and the spatial

and temporal errors may therefore not fully decouple.
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Figure 4-5 Convergence of the electron energy with mesh refinement at different spatial positions within
the plasma. Except at the corner discontinuity, the energy converges spectrally.

4.3: Extent of Two-Dimensional Perturbations

Both the one and two dimensional models are available, and a comparison between the

two is of interest to understand when the much simpler one-dimensional model will be of use.

This is best done by examining the positive ion concentrations since they are neither steep nor

changing in time on the scale of the RF cycle. The positive ion density for the one dimensional

simulation is compared in Figure 4-6 to the density along the radial line of symmetry for 3

different two-dimensional simulations which are different only in the width of the plasma. The

two dimensional simulations were performed with 1, 2.25 and 4 inch radius and a 1 inch gap,

giving an aspect ratio for the plasma of 1, 2.25 and 4. There is very little difference in all of the

simulation results, indicating that even at 1 inch radius the plasma behaves close to one-

dimensional near the radial center of symmetry.
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Figure 4-6 Positive ion density for two-dimensional simulations. Contours along the centerline for
aspect ratio 1, 2.25 and 4 plasmas compared to the results from one-dimensional simulations.

The profiles fo the two plasmas with aspect ratios of 2.25 and 4 are nearly identical at the

centerline, indicating that the effects of the insulating wall no longer perturb the solution above a

certain radius. In fact, both two-dimensional simulations match the results for the one-

dimensional simulation nearly exactly. However, the simulations of a plasma with aspect ratio 1

exhibits nearly a 10% increase in the bulk density. This effect is easily explained by looking at

the full two-dimensional density plots shown in Figure 4-7. All of the two-dimensional

simulations exhibit a maximum in the density not at the centerline, but near the insulating wall,

due to an enhancement in the ionization rate from the presence of a radial electric field.

Therefore, the density increases with increasing radius at any fixed axial position. The loss rate

of ions through diffusion is lower in the two-dimensional simulation because of the second

spatial degree of freedom, since it is partially balanced by the radial flux. Since the one



dimensional simulation cannot model the radial ions flux, the centerline density must decrease as

the aspect ratio increases.
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Figure 4-7 Effect of plasma aspect ratio on continuum model results. Positive ion density for 3 different
aspect ratio plasmas, with constant electrode gap spacing. The perturbation due to the confining
insulator is similar in all cases.

Even in the simulation of the widest two-dimensional plasma, there is a non-zero radial

gradient in the positive ion density, although the gradient is very small. The two-dimensional

spatial effects are easily seen by looking at the positive ion density at the center of the gap as a

function of the radius, Figure 4-8. As the plasma becomes wider, the density at the center of

symmetry decreases slightly, since the gradient has become closer to vanishingly small. This

appears as a small difference between the density at the center of the widest two-dimensional

simulation and the one-dimensional simulation. The peak in the ion density also decreases, more

dramatically, with the width of the plasma. For the aspect ratio 1 simulation, the radial density
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gradient is large enough that the peak density increases by 10%. However, at the center of

symmetry, the ion density is much closer to the prediction from the one-dimensional simulation.

It is also apparent that for the majority of the plasma assuming a one-dimensional solution results

in a very small error. The solution near the insulating wall is identical in every case, suggesting

that the plasma may be divided into 3 radial regions: the one-dimensional uniform region, a

region with a thickness on the order of 1/2 of the plasma gap-spacing due to perturbations from

the insulator (a radial sheath due to ambipolar diffusion), and a matching region for the two

solutions which has a thickness on the order of the plasma gap-spacing.
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Figure 4-8 Changes in the structure of the radial sheath with aspect ratio. Positive ion density as a
function of the radius of the simulated plasma. The simulations approach the one-dimensional solution
one gap-spacing from the insulating wall.

The two-dimensional effects for these 1 Torr plasmas do not extend very far radially into

the plasma. The critical dimension appears to be the gap spacing, since the perturbations die out

close to one gap spacing radially into the plasma. Even the aspect ratio one plasma is very close
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to one-dimensional at the centerline, and the majority of the perturbation occurs for all the

simulations within a 1/2 gap spacing of the insulating wall. Examining the density contours for a

1/2" gap with 2.25" radius (aspect ratio of 4.5), as shown in Figure 4-9, it is apparent that the

figure of merit is indeed the aspect ratio. The perturbation due to the insulator extends almost

exactly 1/2" into the plasma radially, or 0(1) of the gap spacing. For a simulation with 2" gap

and 2.25" radius (aspect ratio of 1.125), the radial perturbations extend the entire width of the

plasma, again demonstrating the scaling of the perturbations with aspect ratio. In this high gap

plasma the physics have changed enough that there is no longer a radial maximum in the ion

density and a different radial sheath structure is present.
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Figure 4-9 Effect of gap spacing on two-dimensional simulations. Positive ion density for an Argon
plasma at 1 Torr with 1/2" gap spacing. The density profiles are similar to those in the 1" gap case at a
similar aspect ratio.

It is interesting to note that the perturbation for the 1/2" gap is almost exactly the same as

for the 1" gap at the same aspect ratio. The functionality in the radial direction for the slender

plasmas is similar enough to suggest that the radial density functions are separable from the axial

density functions. A one-dimensional model could then be used to predict the density across the

gap, with the radial variation expected to be similar for all the simulations.

4.4: Symmetric Plasmas

The following two sections present a synopsis of the physics for the two-dimensional

simulations using equal area electrodes. The general plasma physics have already been discussed

in section 3.1, so the focus of these sections is how the insulating boundary perturbs the one

dimensional solution, and how the simulation results compare to the experimental measurements.
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Here the geometry includes an insulating portion at x=0, with dielectric constant 3, which

completely fills a gap between the electrode extending 2.5 gap lengths beyond the plasma as

illustrated in Figure 4-2 a). Charge accumulates along the insulating surface, resulting in a jump

in the electric field between the insulator and the plasma. A small surface diffusion coefficient

was added into the charge balance to increase numerical stability for the TPS Newton iterations,

but has no noticeable effect on the overall simulations.

4.4.1: Explanation of Plasma Physics

The base case simulation for the results described in this section are from a two-

dimensional simulation with a 1" gap spacing, a 2.25" diameter, 1 Torr pressure, 13.56 MHz

forcing frequency with the transport and rate parameters for Ar. The secondary electron emission

coefficient was set to 0.1 to simulate an oxidized surface, and the secondary electron energy was

arbitrarily set to 1 dimensionless energy unit (5.93 eV). The standard grid consisted of 4th

degree polynomials using 23 axial and 12 radial non-uniform elements, with the greatest

concentration of elements in the sheath regions.

One change in the boundary conditions was found to be necessary for all two-dimensional

simulations. Since the accumulated charge on the boundary leads to a negative time averaged

potential in the comer, the effective field close to the corner of the discharge points away from

the electrode for at least some portion of the RF cycle. The standard boundary condition for ions

results in a ion flux leakage from the corner into the plasma. The most obvious change in

boundary condition would be to set the flux to zero at this point, but this was found to be

numerically unstable for typical cases. A weakly enforced zero concentration on the wall was

used instead. Although this condition results in a stable simulation, the change from zero

gradient to zero concentration introduces a discontinuity in the positive ion boundary condition

which is noticeable in the convergence results.

The current and voltage waveforms for the plasma are one measure which is readily

available in most plasma systems. However, this measurement is inherently zero-dimensional,

and therefore is not likely to be a good indication of perturbations due to the more complex

geometry in the symmetric two-dimensional system. Indeed, examining the components of the

current and the voltage, shown in Figure 4-10, there is very little difference between the two-

dimensional simulation for Ar and one-dimensional simulation results. The discharge current is



almost completely capacitive, with a small electron current flowing to each electrode right after

the cathodic part of the RF cycle. The ion current is very small and is nearly constant in time.
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Figure 4-10 Current components and voltage for two-dimensional Ar plasma simulation at 1 Torr.

Although there is very little information in the current examined in this way, it is

instructive to examine how the current varies across the electrode as one approaches the

insulating boundary. The current density as a function radius divided into 4 sections is shown in

Figure 4-11. The current density decreases by more than a factor of two as the insulating

boundary is approached, and the phase shift increases, indicating that the plasma is becoming

more capacitive. This trend is expected since the ion density is slightly peaked near the

insulating wall, and rapidly decreases as the insulator is approached. The electron density must

also decrease at least as fast to limit the electron current to the surfaces. The result is both an

increased sheath thickness with radius, and a decrease in the plasma conductivity. The increase

in plasma impedance leads to a lower current as the radial wall is approached, and since the bulk

of the plasma is disappearing as the resistance increases, the plasma has a higher capacitance near

the insulator.
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Figure 4-11 Current density in a two-dimensional discharge at different radial sections. Note that the
current is more capacitive close to the confining insulator, and the current decreases as the insulator is
approached.

The flow of the total current through the plasma, Figure 4-1 , illustrates quite well how

the radial insulator perturbs the plasma physics. At 75% of the RF cycle, the upper electrode is a

momentary anode, and the current flows toward the cathode. For most of the discharge width,

the current is essentially one-dimensional. Near the insulating boundary the electrons flow either

inward or outward radially depending on the magnitude of the electric field. The bounding

insulator is perturbing the electron flow in this area in order to keep the plasma confined. The

steep radial gradient in electron concentration allows the electrons to diffuse against the field

near the lower electrode, while the high electric field near the upper electrode reverses the

electron flow. The current will flow in the opposite directions at 25% of the RF cycle.
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Figure 4-12 Total current in an Argon plasma at 2 phases in the RF cycle, a) T=0.75, b) T=1.00. The
electron current is repelled from the insulator when the electric field is high and the current is low. For
the majority of the RF cycle, the current appears mainly one-dimensional.

At the beginning of the RF cycle, the electric fields have mainly collapsed, and the

potential on both electrodes is zero, while the insulating boundary has a complex potential

distribution due to the competing effects of charging and field penetration. The overall effect is

that the insulator barely perturbs the current flow, and the current is essentially one-dimensional

everywhere. The electric field are shown at the same times in the RF cycle in Figure 4-13. In

Figure 4-13 a), the field is a maximum at the upper electrode, while in Figure 4-13 b) the

magnitude of the field is relatively small everywhere. Small changes in the electric field do have

the capability of producing large changes in the current, since the drift component of the flux is

in close balance with the diffusive flux. Figure 4-13 c) shows the time averaged field in the

plasma, showing that the electrons are confined by the plasma sheath both radially and axially.

There is a point of zero average field which corresponds to the maximum in electron and ion

density. All charge carriers, on the average, move away from the density maximum which was

described earlier. The maximum in density must occur because the interaction of the radial and
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axial sheaths produces a point where there is zero time-averaged electric field at which the

electrons accumulate.
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Figure 4-13 Electric fields for a two-dimensional Ar plasma. a) t=0.75, b) t=1.00, c) time average. The
fields are always highest in the sheath regions. The time averaged field clearly shows the regions where
the fields vanish, allowing electrons to accumulate.
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The effect of the radial/axial sheath interaction is more pronounced in the case where the

gap spacing is wider and the overall density is lower, as shown in Figure 4-14. When the upper

axial sheath is nearly fully formed, as in Figure 4-14 a), the current forms what appears to be a

vortex close to the insulator. Again, as in the case with the higher aspect ratio plasma, the

insulator is mainly acting at this point to confine the plasma, and limits the flux of electrons to

the bounding insulator surface. Since the aspect ratio is high for this case, the effect of the

insulator is greatly pronounced. However, when neither sheath is dominant, as in Figure 4-14 b),

the current flows directly between the electrodes, and is almost completely capacitive.
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Figure 4-14 Total current for an Ar plasma with 2" gap. a) t=0.75, b) t=1.00.

It is easy to see how the radial and axial sheaths interact by examining how the electron

density varies in both time and space. The electron density is shown in Figure 4-15 for the

phases of the RF cycle when the upper electrode has just reached ground potential and for the

phase where the upper electrode is the instantaneous anode. In Figure 4-15 a) the density is

nearly symmetric and the upper sheath is forming while the lower sheath collapses. In the same

way, the electron density indicates that the radial sheath is thickest at the lower electrode, and

thinnest at the upper electrode. The rounded corner of the electron density profile indicates that

the sheath at the corner of the plasma is a combination of effects from the radial and axial electric

fields. As the potential on the upper electrode drops negative, the sheath on the upper electrode

builds up, and the sheath on the lower electrode becomes thinner. As the upper sheath builds, it
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interacts with the radial sheath, and the electron density at the corner drops precipitously. It

appears that the radial sheath is expanding and contracting along with the axial sheath. Another

view is that the radial sheath is nearly constant in time, interacting with a time varying axial

sheath which varies in thickness along the electrode surface. This view is reasonable since the

radial sheath thickness is only a very weak function of space and time along the insulating

surface, except at a distance of a few times the axial sheath thickness away from either electrode.

1.00 , I I I , ,

0.80- 0.1

a)0.60-(•

0.40-

0.20- 0 0_10

0.001
0.00 0.50 1.00 1.50 2.00
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Figure 4-15 Electron density for symmetric Ar plasma. a) t=0.50, b) t=0.75. The electrons are forced
from the axial sheath during the anodic phase in the cycle. The radial sheath varies along the insulating
surface, both in space and time.

The interaction of the two sheaths results in an increased local electric field in an area

where the electron density is both non-zero and constantly varying in time. For the conditions

which are being simulated, the main source of energy input into the plasma is coupling from

joule heating near the sheath boundary. One expects that the ionization rate should therefore

increase near the corner of the discharge, which is indeed shown in Figure 4-16. This plot also

shows that the peak in the electron density near the insulating wall cannot be attributed to a local



generation rate, since the maximum in ionization still occurs near the bulk/sheath interface. In

fact, throughout the area where the density is highest, the ionization rate remains nearly zero.

The increase in ionization rate near the corner will lead to an increased plasma glow. Since real

plasmas are generally viewed through the entire discharge, this effect will be masked by the

larger plasma thickness near the discharge center unless the ionization rate is substantially higher

in the comer.

Figure 4-16 Time averaged ionization rate for a two-dimensional Ar plasma simulation.

When the gap spacing increases the effect of the radial insulator is expected to increase,

as discussed in Section 4.3. The extent of the increase is clear in Figure 4-17, where the gap

spacing for the plasma has been doubled. Since the forcing potential has been kept constant, the

power, current and plasma density all decrease dramatically, and the sheaths become

substantially wider. In fact, the radial sheath has become thick enough that it does not interact

very well with the expanding axial sheath and the maximum in the electric field does not result in

a maximum in the electron energy. The peak in ionization near the corners has disappeared, and

the plasma is now sustained by ionization near the bulk/sheath interface near the radial center of

the plasma.

The most useful quantity that the two-dimensional simulation produces for determining

the uniformity of plasma etching is ion flux, which is necessary to predict the etching rate, along

with the time averaged electric field, which gives an order-of-magnitude of the ion energy. The

ion flux must be uniform across the electrode to produce radially uniform etching. The radial

insulator has a considerably negative effect on uniformity, as shown in Figure 4-18. At the

highest pressure examined, the main effect is a decrease in flux near the reactor wall, due to the



decrease in ion density in the radial sheath. As the pressure drops, the maximum in density near

the insulator propagates toward the electrode, and the ion flux peaks near the edge of the

electrode. The effect of the insulator becomes more pronounced as the pressure lowers, although

the peak ion current decreases due to diffusion of ions. The result is that the edge of the

electrode will etch highly non-uniformly. As the pressure decreases, the area where ion enhanced

etching is non-uniform will expand, for a constant applied voltage.
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Figure 4-17 Time averaged ionization for a 2" gap Ar plasma.
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Figure 4-18 Ion Current to the powered electrode as a function of pressure. The current is a weak
function of pressure, and is perturbed by the confining insulator. The extent of the perturbation is a weak
function of pressure, and is mainly confined to within 1 gap spacing from the insulator.

4.4.2: Experimental setup for comparison to simulation results

As previously stated, the modeling effort is of relatively little use if it is not supported

with comparison to a set of experimental data. Very little systematic work has been done to

show that various versions of the continuum model correctly predict plasma physics, mainly due

to the fact that very few one-dimensional measures of the plasma physics are readily available.

The most readily available measures of the plasma physics are the current/voltage characteristic

of the discharge, the plasma induced emission (PIE), and sometimes the electron energy

distribution through Langmuir probe studies. This information is much more useful for two-



dimensional simulations, since the variations in both radial and axial positions can be examined.

Two-dimensional measures are especially useful for the semi-quantitative measures that are

generally available, since for PIE the absolute excitation rate is not known, and for Langmuir

probe studies the theories to calculate density and plasma potential will give the correct shape to

the curves but not necessarily the correct magnitudes.

A reactor with adjustable geometry was built by Liu (1992) to study the scaling laws for

power and current as a function of reactor geometry. This reactor is a simple modification of the

work of Gogolides et al. (1989), which was used to show that the continuum model is capable of

predicting the temporal behavior of the PIE for electropositive and electronegative gases. A brief

description of the reactor and the experimental techniques used in the next few sections are the

subject of the rest of this section.

The reactor consists of a quartz shell which is sufficiently uniform for optical

measurements. The quartz thickness is nominally 2.5 mm, and the outer diameter is 135 mm.

Shells are fabricated for varying gap spacing, and one and two inch gaps were used for this work.

The electrode is made of aluminum with an anodized coating, and is surrounded by a Teflon

spacing ring in an attempt to confine the plasma, Figure. The top electrode has an array of

pinholes forming a showerhead to introduce gas into the reactor. There is a gap of 5 to 20 mil

between the Teflon and the quartz to allow pumping of the reactor, with the smaller gap allowing

higher power but slower pumping speeds. The aluminum electrodes are 4.5 inches in diameter

for the symmetric configurations, and the lower (powered) electrode is changed to 3 inches for

the asymmetric configurations.

(I-
a) b)

Figure 4-19 Electrode geometry for a) symmetric and b) asymmetric reactor configuration.
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A signal of 13.56 MHz is applied to the lower electrode by using a function generator and

a 250 kHz to 150 MHz broad-band amplifier. A matching network assures that the reflected

power is minimal, and applied power is measured both by a Bird Power meter at the apparatus

and at the amplifier. The current and voltage waveforms are also measured very close to the

electrodes and collected by a digital oscilloscope, and can be used as a separate measurement of

the applied power. The pressure is controlled by setting the gas flow on a mass-flow controller

and the conductance to the pump using a throttle valve. Although no specific pressure control

was used, the pressure was noted to vary no more than 3% over a 5 hour period.

Plasma induced emission (PIE) was collected using a 0.6 m Jobin-Yvon monochromator

set to at 7503 nm imaged onto a silicon photomultiplier. A slit width of 300 gm and a slit height

of 1 mm were used to assure proper spatial resolution as well as line resolution on the

monochromator. Two lenses of approximately 12 in focal length were used to collimate the light

between the reactor and the monochromator, and a series of simple mirrors were used for

alignment. The alignment was manually adjusted by passing a He-Ne laser (6328 nm) through

the monochromator in place of the photomultiplier, and was adjusted to better than 2 mm both

vertically and horizontally. This also allowed for proper registration of the electrode and the

glass to ensure that the measurements were at known positions. Spatial position was varied by

keeping the optics fixed and using computer controls to move the whole reactor using a set of

XYZ stepping motors. By performing realignment at the end of a set of runs, it was determined

that the misalignment due to skipping of the stepping motors was less than 1 mm.

The Langmuir probe design used was similar to that described by Surendra (1985). A

series of 10 tuned inductors (J.W. Miller 180 gtH) were initially used, while later probes used a

mixture of 10 of these inductor with 12 other tuned inductors of varying sizes (140,160,200, 220

gH). The impedance of the probes was measured to be 500 kQ to 660 k~, at 13.56 MHz, and

remained above 20 kQ between 3 and 23 MHz. It is unclear whether or not this impedance is

high enough to satisfy the criteria described by Godyak et al. (1992) to assure an undistorted

probe characteristic. However, there was no significant difference in the results from different

probes or probe tips. The inductors were soldered in series, attached to a gold feedthrough on

one end and a solid wire on the other, then sealed in a 6 mm Pyrex tube using Torr seal. The

reactor was modified by fusing a 10 mm ID quartz tube into the standard configuration to allow
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the probe to pass through. A set of Teflon rings were constructed to assure that the space

between the probe assembly and the inside of the tube was minimal. Vacuum integrity was

maintained by using a Cajon VCO reducing union hand tightened onto both the tube and the

probe assembly. This allowed the probe to move into the reactor or rotate (for two dimensional

measurements) by loosening one of the seals. The probe tip was formed by spot welding a 3 mil

tungsten wire onto a 20 mil soft stainless wire, and encasing these in a 20 mil ID Teflon sheath.

A small amount of Torr seal was used to plug the end of the tube to ensure that the plasma was

only connected to the exposed tungsten. The feedthrough was also covered by a Teflon sleeve

and Torr seal to assure that no plasma electrons leaked in through the connection to the stainless

wire. The probe tip was cut to a length of 3 mm, the stainless wire was bent to 90 degrees to

allow rotation around the axis, and the tungsten tip was bent parallel to the electrode surface.

New probe tips were conditioned by running at high positive voltage, attracting all the plasma

electrons and causing the tips to glow, for at least 2 minutes.

The Langmuir probe signal was collected by ramping the voltage on the probe tip and

measuring the collection current. The voltage was set by driving a voltage follower with a gain

of 50 with a signal of -2.5 to +2.5 volts from the computer using an A/D board. The probe

voltage at any given time was then known accurately, and could be ramped at the desired speed

within the limits of the A/D board. The current was then measured using a transimpedence

amplifier and the same A/D board to read the current signal. The output voltage to the Langmuir

probe, and the measured current were examined on an oscilloscope to ensure that no signal

pollution was occurring in the electronics. Typical scan rates were 3-10 Hz (for a total scan of

1024 points) and 50 scans averaged. One further modification was necessary to the reactor for

Langmuir probe studies: a stainless steel disk was attached to the lower electrode to assure to a

good DC ground. It was found initially that the anodization on the electrode prevented the flow

of the DC currents necessary for proper probe measurements. With the stainless steel disk, it was

also found that the probe could not be run into the electron saturation region, as indicated by a

visible perturbation of the plasma. Langmuir probe scans were cut off at a positive voltage

which would not perturb the plasma. Run to run stability of the probe was checked, and the

plasma parameters were found to vary by less than 5% over the course of an hour.
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4.4.3: Comparison to Experimental Measurements

It is necessary to use an approximate model to predict the PIE from the simulation results,

since a balance is not included for the metastable states which produce light upon relaxation.

The cross-sections for excitation and ionization are known to be very similar, although they have

different thresholds. To predict the time dependent ionization rate, one would therefore use the

ionization rate convoluted with the exponential relaxation of the excited state. For time averaged

results it is sufficient to examine the time-averaged ionization rate. The measurements are made

viewing the entire cross-section of the plasma, so comparison of the model results requires

deconvolution of the measurement to the emission from a single plane. Since there is

unavoidable noise in the experimental measurements, it is generally easier to integrate the

predicted emission for the cross-section being viewed in the experimental setup. All the

simulated PIE results have this taken into account. It should be noted that the experimental

system is not exactly comparable to the simulated geometry, since there is a Teflon spacer

between the glass and the electrode to contain the plasma. For comparison between the model

and the experimental data, the spacer is treated as equivalent to the beginning of the glass wall.

The comparison between the simulated PIE profiles and the experimental measurements

is shown in Figure 4-20 and Figure 4-21. For each pressure, the simulated emission is shown

above the experimental PIE, and is displaced to the right to align the insulating boundary with the

electrode in the experimental system. The comparison in the features between the experimental

data and the simulation results is excellent for the higher pressures as shown in Figure 4-20. At

100 mTorr the continuum model predicts that the peak ionization occurs in the center of the

plasma, while distinct sheaths are still visible in the experimental data. The differences at 100

mTorr are due to two effects: the difference between the ionization and excitation thresholds,

and the rapid thermalization of the secondary electrons in the continuum assumption. It is most

probably that at 100 mTorr the electron energy distribution is no longer close to maxwellian, but

has a higher percentage of high-energy electrons. The discharge is known to be sustained by

bulk-sheath ionization at higher pressures, but at 100 mTorr the contribution of secondary

electrons is probably important.
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Figure 4-20 Simulated and experimental plasma induced emission at high pressures. a) 1 Torr, b) 500
mTorr, c) 250 mTorr, d) 100 mTorr. The model predicts the trends in the emission, but overpredicts both

the sheath thickness and the bulk glow.

Overall, there will be differences between the model and the experiments because the

concentration of metastables is not directly modeled. It is therefore significant that the model is

doing a fairly good job at predicting how the sheath thickness varies with pressure, except at 100

mTorr. The model also predicts that the ratio of the intensity of the emission with respect to the

emission at 1 Torr should be 1:0.91:0.66:0.66, and the experimental trend is similar,

1:0.69:0.09:0.07, although the magnitude of the change is different.
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Figure 4-21 Simulated and experimental plasma induced emission at low pressures. a) 250 mTorr, b) 100

mTorr. The continuum assumptions do not hold at 100 mTorr, but the model still does a reasonable job

at predicting the plasma glow.

The model predicts that the emission should become more diffuse as the pressure is

lowered, and in fact although there is no distinct sheath present in the 100 mTorr simulation

results, the experimental results do show that the center of the plasma is glowing quite a bit

brighter than at higher pressures: the model results merely over predict (for all pressures) how

bright the emission at the center of the discharge is compared to the maximum at the bulk-sheath

interface. Simulations also show that the radial confinement of the plasma, except at 100 mTorr,

is very weakly dependent on the pressure, and the experiments show this trend as well. At 100

mTorr the simulated plasma appears to have a smaller radius, while the experimental results

show no significant change. The difference between the simulations at the lower pressure is

again probably due to oversimplified treatment of the secondary electrons.
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A simulation was also performed for a 2" gap spacing to compare to the experimental

results, shown in Figure 4-22. The simulation predicts that the sheath thickness should increase

with respect to an equivalent condition with a 1" gap spacing, but the experimental results show

that the sheath thickness is constant. The simulation also predicts that the plasma radius should

be smaller than in the 1" gap spacing case, but the experimental data shows that the plasma is

contained in pretty much the same way, regardless of the gap spacing. For the real system, the

plasma brightness at the sheath edge has increased with increased gap spacing, while the

simulations predict that the emission should decrease to a level below the emission at 100 mTorr.

Clearly for this low aspect ratio plasma the sustaining mechanism for the simulations is

not the same as in the real system, and as with the low pressure plasma, the reason is probably

due to the secondary electrons. To fix this problem, another equation would need to be

postulated to account for the non-thermal secondary electrons in the sheath. The other difference

which is likely to result in difficulties in the comparison is the difference in geometry between

the simulation and the experimental setup. The simulation results suggest that the peak plasma

density should decrease by nearly 25%, which will decrease the bulk conductivity of the plasma.

This increases the importance of the bulk of the plasma with respect to the plasma sheath. The

presence of a sharp corner on the electrode in the experimental geometry, between the confining

glass wall and the actual active electrode surface, results in a high field at the edge of the plasma.

The enhanced ionization at this point, and the propagation of the discontinuity along the

electrode surface, may account for the difficulty in the comparison. The same effects are also

present for the 100 mTorr simulation and explain part of the difference in that comparison as

well.

The other two-dimensional measures which are available are from Langmuir probe

measurements. For these measurements, one places a wire in the plasma and measures the

current it draws versus the potential at which it is biased. The only primary information available

from the measurement is the floating potential, measured as a zero current when the electron

current equals the ion current. Since the Langmuir probe is such a simple measurement to make

on plasma systems, it has been studied in great detail. However, there is still quite a bit of

disagreement as to how to interpret the probe results (see for example Godyak et al. (1992),
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Turkot and Ruzic (1993), and Sudit and Woods (1994)). The results achieved using any one

theory should be consistent for a given geometry, yielding at least semi-quantitative results, so

the simple theory of LaFramboise is used in this work for interpreting probe results.
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Figure 4-22 Plasma induced emission for a wide gap 1 Torr plasma.
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If one assumes that the electron energy distribution is Maxwellian, then the electron

energy is easy to extract from the Langmuir probe scan by plotting the logarithm of the electron

current versus the applied potential. More rigorously, the second derivative of the I/V

characteristic will yield the electron energy distribution function. Using the theory of

LaFramboise, one can then predict the plasma density from the region where electrons are

repelled from the probe. However, the entire theory for extracting information out of the probe

scans is derived for lower pressure plasmas, where the mean-free path is much greater than the

probe thickness. At 1 Torr with our small probe geometry, the probe theories are at best pushed

to their limits, which results in difficulties in quantitative interpretation of the results. The probe

design also limits the accuracy of the measurements, and calculation of the full EEDF as

suggested by Godyak et al. (1993) is not possible.

The Langmuir probe scans do not span the whole plasma, since the probe cannot function

in the plasma sheath where the plasma is not quasineutral, since there are not both positive and

negative charge carriers to collect. Data was taken for the full range the probe views: within 2

mm of each electrode, and within 3 mm of the radial wall. The extent of the sheath changes with

pressure, and it is not obvious where the probe will function beforehand. Probe traces appear

distinctly different in the sheath and bulk regions, as shown in Figure 4-23, and the quality of the

fit to probe theory was used as the criterion for accepting or rejecting a specific data point. The

electron energy is extracted as a single temperature, assumed to be Maxwellian, and all

distributions are assumed to have a single temperature. The fit to a single temperature is not

justified, but as shown in Figure 4-24, the typical probe characteristic has the distinct regions for

the end of the ion saturation regime, the electron transition regime, and the electron saturation

regime. The floating potential is readily measured using a Langmuir probe, and the plasma

potential can be predicted to be V,=Vf + 5.4 Se by using the Bohm sheath criterion.
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Figure 4-23 Langmuir probe characteristics for Argon Plasmas. a) Normal characteristic b) sheath
characteristic. The shape of the probe characterstic is used to determine which data is included in the
experimental data set for comparison to the model results.

The comparison of the experimental to simulated plasma potentials for the higher

pressure conditions is shown in Figure 4-25. The trend is accurately predicted by the model, with

a constant potential throughout the bulk of the plasma at both pressures. The potential does not

vary significantly with pressure, as is correctly predicted by the simulations. It is important to

note that the experimental data does not extend into the plasma sheaths where the majority of the

curvature is seen in the simulation results. The simulation results apparently under predict the

plasma potential by almost a factor of 2, but it seems likely that the error lies with the

experiments instead of the simulation. The probe tip was designed so that the error should be

acceptable at higher pressures. This design leads to some capacitive coupling of the plasma to

the probe tip, which probably increases the measured potential by the 20 volt difference seen in

Figure 4-25. Unfortunately, the increase in plasma potential will also lead to an erroneously high

calculation of the plasma density using LaFramboise theory, although the overall shape of the

profile will still be correct.

At lower pressures the comparison between the model and the experiments begins to

break down. The model predicts, Figure 4-26, that the potential is no longer constant across the

bulk of the plasma, but should have significant curvature. The maximum in the plasma potential

is predicted to be slightly higher as pressure decreases, and the experimental data show this
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clearly. The curvature at the edges of the experimental data is a result of the inaccuracy of the

electron energy near the bulk/sheath boundary, before the probe fully enters the sheath and the

data is considered invalid. The main difficulty in these comparisons is that as the pressure is

reduced, the amount of reliable experimental data decreases as well, and the spatial resolution of

the probe becomes a limiting factor.
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Figure 4-24 Electron Current characteristic for Langmuir probe showing fit to electron energy as a
Maxwellian.
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Figure 4-25 Plasma potential in the symmetric Ar plasma at high pressures. a) 1 Torr simulation b) 500
mTorr simulation c) 1 Torr experimental, d) 500 mTorr experimental. The experimental data does not
extend into the sheath region, where the simulation results have the greatest drop.

The electron energy should be much less strongly perturbed by the coupling of the

probe sheath to the plasma, so the comparison between model and experimental results is quite a

bit better, Figure 4-27. The outlying edges for the experimental data are generally exaggerated

because the plotting routine extrapolates the data from the nonuniform spacing of data points.

For both the simulation results and experiments the electron energy is highest at the bulk/sheath

edge, and decreases toward the center of the discharge. The experimental data show that the

electron energy in the center of the discharge should be around 3.5 eV, while the simulation is

pinned near 5.5 eV because of the ionization cross-sections which were used. The maximum

measured energy is 5-7 eV, depending on the conditions, and the simulation shows that the

maximum energy at the bulk/sheath interface should be higher than 6 eV. There is no significant
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radial structure to the measured electron energy, and the simulations predict that the only

variation in energy radially occurs in the sheath, where no experimental data is available.

Figure 4-26 Plasma potential in the symmetric Ar plasma at low pressures. a) 250 mTorr simulation b)
100 mTorr simulation c) 500 mTorr experimental, d) 100 mTorr experimental. The experimental data
does not extend into the sheath region, where the simulation results have the greatest drop.

At lower pressures, the match between the experimental and simulated electron energy is

still quite good, Figure 4-28. The simulations indicate that the bulk energy is slightly higher,

around 6.5 eV, and that the maximum energy in the sheath is increased to around 7.5 eV. At

250 mTorr, there was less valid data for the experimental measurements, so there is no indication

of the energy at the bulk sheath interface, but the profile has more curvature in the plasma bulk,

as is seen in the simulation results. At 100 mTorr, the energy is not really constant anywhere in

the plasma, and is between 6-7 eV at the bulk/sheath interface. The simulation predicts that there

is increased curvature for the energy as well as a higher maximum at the bulk/sheath interface.
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Figure 4-27 Electron energy in the symmetric Ar plasma at high pressures. a) 1 Torr simulation b) 500
mTorr simulation c) 1 Torr experimental, d) 500 mTorr experimental. In all cases, the electron energy is
nearly constant in the plasma bulk, probably set by the ionization threshold for argon.

The results for the plasma density are a little more difficult to interpret, because the

density is not measured but is calculated using LaFramboise theory. A prerequisite for accurate

calculation of the plasma density is an accurate evaluation of the electron energy, which should

be reasonable as previously discussed, as well as an accurate calculation of the plasma potential.

Since it seems likely that the plasma potential may not be accurate from the experimental

measurements, the baseline for the plasma density is expected to be considerably higher than in

reality. This effect is evident in Figure 4-29, where the measured densities are more than an

order of magnitude higher than the simulations predict. The experimental trend of higher density

with lower pressure is probably an artifact because LaFramboise theory was used at the highest

pressure. The experimental results show curvature in both the radial and azimuthal directions, in

good agreement with the simulation results, and the radial sheath is less than 0.5" in thickness, as
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shown in the simulated density profiles. The simulations show that there should be a maximum

in density near the insulating wall, which is not apparent in the experimental data. However, at

the higher pressures the maximum is a small perturbation on the overall profile, and may be

smaller than the experimental error.

Figure 4-28 Electron Energy in the symmetric Ar plasma at low pressures. a) 250 mTorr simulation b)
100 mTorr simulation c) 250 mTorr experimental, d) 100 mTorr experimental. . In all cases, the electron
energy is nearly constant in the plasma bulk, probably set by the ionization threshold for argon.

At the lower pressures the probe theory is expected to perform better in accurately

representing the plasma density. At 250 mTorr, Figure 4-30, the measured density profile is

more strongly curved, and closely resembles the simulated results, although the maximum near

the insulating wall is still absent. The maximum in the experimental density profile has not

changed significantly with respect to the higher pressures, although the simulation predicts that

the density should nearly double with a doubling of the pressure. For 100 mTorr, the density has

decreased by a factor of close to 10, and is more closely approaching the simulation results. In
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fact, it appears that the maximum in the measured density is no longer at the center of the

discharge. The increase in experimental plasma density very close to the wall is an artifact of the

extrapolation from the plotting package, since these points are in the plasma sheath. However,

the experimental data definitely show a maximum around 1/2" from the wall. It is likely that

only the 100 mTorr density is accurate, due to the combination of the coupling of the plasma to

the probe sheath, and the inapplicability of LaFramboise theory at higher pressures. For the

experimental data, it appears that the plasma density is less curved as the pressure increases, and

is nearly flat at the highest pressure. The simulated plasma density profiles are similar in shape

at all pressures, except near the insulating wall. It is not clear whether the differences are due to

inaccuracy in the measurements or an inadequate model for the ion diffusivity and mobility.

0,

0,

Figure 4-29 Plasma density in the symmetric Ar plasma at high pressures. a) 1 Torr simulation b) 500
mTorr simulation c) 1 Torr experimental, d) 500 mTorr experimental. The overall shapes of the curves
are correct, but the theory used to generate the experimental data results in uncertainty in the absolute
value of the density measurements.
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Figure 4-30 Plasma density in the symmetric Ar plasma at low pressures. a) 250 mTorr simulation b)
100 mTorr simulation c) 250 mTorr experimental, d) 100 mTorr experimental. The overall shapes of the
curves are correct, but the theory used to generate the experimental data results in uncertainty in the
absolute value of the density measurements.

4.5: Asymmetric Plasmas

The following two sections examine the physics of two-dimensional discharge where the

grounded electrode is smaller than the powered electrode. Previous sections have dealt with the

general plasma physics in one-dimension, and the effect of an insulating bounding wall. The

focus of these sections is the effect of asymmetry in the geometry on the simulation results, and

how well the simulations compare to experimental data.

It was shown in an earlier section that the change in boundary conditions where the

insulator meets the grounded or powered electrode in the symmetric cases results in a solution

which is not as smooth. Since the density of both electrons and positive ions is very low in the

corner of the discharge, the discontinuity is effectively hidden and does not seriously affect the
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convergence of the simulations. For the asymmetric simulations, the electric field is formally

singular at the point where the insulator meets the smaller electrode. The ion density is not

expected to be small at this boundary, and the overall convergence properties of the simulation

are expected to change.

The singularity at the insulator/electrode boundary seems to have the greatest effect on

the charging of the insulator adjacent to the electrode. The iterative solver (GMRES) for the

Newton shooting method was observed to converge very slowly for the asymmetric cases. It was

shown that the major change in convergence rate was due to the charging of the insulator next to

the electrode. Since the electron density is very sensitive to changes in the local electric field,

and the insulator charge is very sensitive to the electron density, these variables are very strongly

coupled. Charge was allowed to diffuse along the boundary to mitigate this problem. The

diffusion constant for insulator charge was chosen so that the characteristic diffusion length was

less than 1 cm for timescales on the order of the ambipolar diffusion time. Since the overall

plasma physics is not very sensitive to the charge on the insulating boundary, this change should

not affect the simulations significantly.

Changing the diffusion constant on the boundary charge by two orders-of-magnitude for

the symmetric case lead to a change of less than 5% in the boundary charge, and less than 1%

charge in all variables not directly related to the surface charge (since the voltage on the charged

surface is directly proportional to the charge, it changes by 5% as well). It was necessary to use a

surface charge diffusivity three orders-of-magnitude higher in the asymmetric cases with respect

to the symmetric cases, for stability of the numerical methods, so a greater perturbation to the

solution is expected. Changing the surface charge diffusion constant by one order-of-magnitude

results in less than 10% difference value of the charge far away from the corners, where the

charge reaches its maximum value. However, the charge near the insulator/electrode boundary

is reduced by up to two orders-of-magnitude, which does effect the other variables near the

charged surface. The differences in the TPSS are minor, with less than a 10% change in the

positive ion density everywhere, the electron energy and electron density change by less than

10% outside the sheaths (but can change significantly near the insulator and near the singularity

since they are already close to 0), and the effective field changes by less than 10% where it is not

close to the insulator and does not vanish. Overall, the changes in the solution are less than 10-2
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except very close to the insulating surfaces, and the overall physics is not greatly perturbed by

even a large change in the surface charge.

Even with this small change in the plasma physics, converging the simulations to a

rigorous TPSS is very difficult. At some point in the RF cycle, the electron density at the

boundary between the insulator and the electrode becomes very small, and rises rapidly to either

side. The effective field also varies quite strongly near the singularity, and generally is the last

variable to converge to a TPSS. Simulations for the asymmetric cases generally have a higher

final residual in finding the TPSS ( I U(T)-U(0) 12 near 10-3) than the symmetric cases. The 0.5

Torr and more asymmetric discharges were the most difficult to converge, and therefore have the

highest error in the TPSS. Lower pressure simulations were not possible on any discretization

which was tried. At lower pressures the plasma can exhibit longer range coupling of variables

because the diffusivities increase. The singularity at the interface between the smaller electrode

and the insulator for these cases probably perturbs the plasma physics on a longer length scale,

resulting in our difficulty in finding a suitable discretization.

Finally, a blocking capacitor (100 nF) was added between the forcing voltage and the

powered electrode to examine the effect of the asymmetry on the self bias potential. The

simulations do not appear to be at all sensitive to the DC potential across the blocking capacitor

(the DC potential may change by 50% without a 5% change in any plasma parameters not

directly related to the potential on the powered electrode), but the potential is very sensitive to all

the variables close to the powered electrode. The DC self-bias potential calculated by the

simulations is therefore not a reasonable measure of the plasma physics. It was not possible to

tell whether or not the DC self-bias had converged to a TPSS, since the TPSS residual for the DC

potential always remained small, but even small changes in any of the variables close to the

powered electrode could result in a change in the DC self-bias of up to 10%.

4.5.1: Explanation of Plasma Physics

The base case simulation for the asymmetric simulations is an Argon discharge at 1 Torr,

13.56 MHz, with a 1" gap spacing, larger (powered) electrode 4.5" in diameter, and smaller
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(grounded) electrode 3" in diameter. This is directly comparable to the symmetric base case

simulations: the only significant change is that the lower electrode is smaller in the asymmetric

case. The effect of geometry is examined by changing the gap to 2" while maintaining the other

plasma and geometric parameters constant, and with a highly asymmetric case at 1 Torr with a

1.5" lower electrode.

The main effect having of asymmetric geometry on the plasma physics is to change where

the maximum in density occurs. For symmetric cases, the perturbation from the insulating wall,

which is present to contain the plasma, results in a maximum in density approximately 0.5 gap

spacings from the wall. For the asymmetric case, Figure 4-31, the density generally increases as

the radial center of the plasma is approached, and there is a minor maximum near the smaller

electrode: there is not a high enough radial field near the insulating wall to greatly affect the

plasma confinement. Higher fields near the smaller electrode lead to a higher generation of

species, and a slight asymmetry in the axial density profiles. The plasma is maintained mainly at

the bulk/sheath interface, and diffuses out to be collected at the electrodes, resulting in a gently

sloping region from the smaller electrode to the insulating wall. Even though the entire large

electrode is treated the same way, the plasma is mostly confined in the region shadowed by the

smaller electrode.

1.

0.

0.
0.0 0.5 1.0 1.5 2.0

Figure 4-31 Positive ion density contours for an asymmetric Argon plasma with an area ratio of 2.25. 1
Torr discharge, 13.56 MHz, 1" gap spacing. The density profile is not highly asymmetric, and the radial
sheath thickness increases with respect to the symmetric case.

The singularity in the field does effect the density profiles, creating a maximum in

ionization at the boundary between the electrode and the insulating surface. The maximum in
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density is a minor effect, but since the major source of charged species is moved far away from

the insulating wall, the density in the corners decreases dramatically. The singularity in the

electric field also propagates into the effective field which is seen by the ions. The sudden drop

in the ion convective velocity results in a small oscillation in the ion concentration at the

boundary, but this effect is on a length scale which is too small to be of any great importance, see

Figure 4-32. Since the singularity is completely a local effect, perturbations in the ion density are

limited to at most the two elements closest to the insulator/electrode boundary. The perturbation

in electric field is slightly longer range, but still on a relatively small length scale with respect to

the overall geometry of the simulation.
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Figure 4-32 Positive ion density at the grounded electrode for the same conditions as Figure 4-31.

The singularity in the electric field is not evident in Figure 4-33 because of the coarseness

of the mesh used to generate the vector plot. All of the important features of the asymmetric

discharge previously discussed are evident in the time averaged electric field. There is a very

slight asymmetry which can be noted by finding the point where the electric field vanishes. The
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field vanishes at the same point on the small and large electrodes, and begins to disappear at the

point where the electrode meets the insulator on the lower surface. The difference between the

symmetric and asymmetric discharges is very evident in Figure 4-33 as well, in that the absolute

minimum in the electric field is now much further away from the insulating wall, and the radial

field is higher in a much larger section of the plasma. This occurs because the plasma is mainly

generated at the bulk/sheath interface in the area shadowed by the smaller electrode, and a radial

electric field is necessary to maintain a net neutral charge flux to the insulating wall.
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Figure 4-33 Time averaged electric field for 1" gap, 1 Torr, asymmetric Argon plasma. The point of
minimum field occurs closer to the edge of the smaller electrode, and the radial maximum in plasma
density is minimized.

The total current flow also shows quite clearly that the plasma is asymmetric, Figure 4-

34. For symmetric cases, the current is a mirror image with respect currents at a phase 1/2 RF

cycle later, but for the asymmetric simulations the current at any phase in the RF cycle is unique.

Again for the current, the effect of the insulating wall is reduced, and the currents in the corner

region are very small. The current is also always small in the area which is not shadowed by the

smaller electrode. In Figure 4-34 a) and c) we see the main effect the geometry has on the total

current flow. When the current is flowing toward the smaller electrode, the radial fields cause

the total current to be constricted toward the smaller electrode, while the current spreads out

when flowing mainly toward the larger electrode. This is, however, for the parts of the RF cycle

when the current is close to a minimum, and this represents mainly the flow of electrons. When

the current is at its peak value, near the time slices shown in Figure 4-34 b) and d), there is very

little current spreading, and the current is very small in the area outside the smaller electrode.

120

,p • I I I I I 1
i, A i .t A A At A A A A A A A A

-'ý h A A A AAAý A AA A A AV PAt t )Itt 0-i *Abi M
t w I IV I I

.4• A AAA AY V V P'YY V V T
,4 H , . tIv i ii i I ii

Ut, ...,, I I I II Hl I i _____ I



When the largest current is passing through the discharge, it flows almost directly from the

smaller electrode to the larger electrode. In this way, the simulation is very similar to a two-

dimensional case with smaller electrodes.

Examining the current to the larger electrode, Figure 4-35, it is obvious that the overall

perturbation to the simulation by changing the geometry is not a first order effect. The

asymmetric current is identical in form to the symmetric current, with a small ion component, a

pulse of electrons once per RF cycle, and the displacement current dominating the current at the

electrode. Because the area and the density of the plasma are both reduced, the total current is

slightly reduced as well. The asymmetric geometry does not, however, result in any significant

higher harmonics in the current through the plasma. Similarly, if one examines the current

density to the larger electrode, Figure 4-36, the density drops off away from the center of the

discharge and the discharge becomes more capacitive exactly the same trends seen in the

symmetric simulations. However, the current density has already dropped off by 15% by the

point where the smaller electrode stops. Because the plasma is dominated by the smaller

electrode, the current is reduced over a much larger fraction of the large electrode than is seen in

the symmetric case.

When the area ratio of the smaller to larger electrode is increased the plasma does not

become increasingly nonuniform, but rather tends to become more and more confined in the area

defined by the smaller electrode. The positive ion density, Figure 4-37 ,shows the effect of the

lower electrode best. The density is maximum in the area defined by the smaller electrode, and

decreases rapidly radially (through ambipolar diffusion). The asymmetry in the plasma is limited

to a very minor spreading of the plasma between the two electrodes, so that the plasma

effectively sees an upper electrode of similar size to the smaller electrode.
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Figure 4-34 Current for asymmetric 1" gap discharge. Simulations at 1 Torr for different phases in the
RF cycle: a) 0.25, b) 0.50, c) 0.75, d) 1.00. The asymmetry in the current flow near the edge of the
smaller electrode is clear. Most of the discharge between the small and large electrodes is still 1D.
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Figure 4-35 Current at the powered (larger) electrode for the asymmetric Argon Discharge at 1 Torr.
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Figure 4-36 Total current density on the powered electrode for an asymmetric Argon discharge at 1 Torr.

Examining the time averaged electron energy, potential, and positive ion density in Figure

4-38, it is evident that all of these quantities are nearly constant from a radial distance from the

insulating wall of 1.5" and upward. The electron energy plot has very low values (below the

ionization threshold) everywhere except at the bulk sheath interfaces, and even on the larger

electrode is very low outside of the area defined by the smaller electrode. The potential is nearly

constant inside the active plasma volume, and has two well defined sheaths near either electrode.

One interesting effect of the highly asymmetric discharge is that the DC potential on the larger

electrode has become negative. This occurs because the plasma is sustained mainly at the

smaller electrode, the density near the smaller electrode is higher, and the structure of the sheath

has changed significantly to confine the plasma.

123



0.

0.
0.0 0.5 1.0 1.5 2.0

Figure 4-37 Positive ion density contours for a highly asymmetric Argon discharge. Simulation at 1 Torr
with an electrode area ratio of 9. The results are asymmetric, with the highest density near the smaller
electrode. The plasma is mostly confined by the smaller electrode.

The easiest way to see the difference in sheath thickness between the small and large

electrodes is to examine the predicted PIE profile for the highly asymmetric case, Figure 4-39,

which is essentially equivalent to the ionization rate within the plasma. The maximum in the PIE

occurs one third closer to the smaller electrode, and the intensity at the smaller electrode is nearly

double. If we take any of the lower contours as the visual sheath edge, the upper sheath appears

to have a larger radius than the lower sheath, although it still does not even come close to

covering the larger electrode.

The asymmetric discharges can be related very closely to the symmetric cases because

area ratio of the two electrodes does not have an effect, to the first order, on the simulation

results. Since the plasma remains confined by the smaller electrode, and since the relevant

quantity for the symmetric discharges was the ratio of the radius to the electrode gap, the relevant

ratio for the asymmetric system should be the ratio of the radius of the smaller electrode to the

gap spacing. The positive ion density at the centerline of the discharge and at the edge of the

smaller electrode is shown in Figure 4-40; the symmetric profiles are shown for comparison. For

the low aspect ratio plasma, at the plasma centerline we are well beyond one gap spacing away

from the edge of the smaller electrode (which is 1.5" long), so the plasma behaves almost

identical to the symmetric and one-dimensional cases. If the aspect ratio of the asymmetric

discharge is not close to one, since there is a DC bias on the larger electrode, there is not an

exact equivalent in a one-dimensional simulation unless a DC component is added onto the RF

forcing potential. For the high aspect ratio plasma, which has a small electrode which is less than
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one gap-spacing long, even at the centerline the discharge does not approach the symmetric

simulation results.

Figure 4-38 Time averaged quantities for a highly asymmetric Argon discharge. a) Electron Energy,
b) Potential, c) Positive ion density.
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Figure 4-39 Simulated Plasma Emission for a highly asymmetric Argon plasma. The plasma is clearly
active in the area defined by the smaller electrode.
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Figure 4-40 Effect of plasma asymmetry on the positive ion density a) at the radial centerline, b) at the
edge of the smaller electrode. In b) the density for the area ratio 1.0 case is plotted at the radial
centerline instead of at the edge of the electrode, which would be on the insulating wall surface.
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If the plasma were totally confined by the smaller electrode, we would expect to see the

positive ion density approach zero at the edge of the smaller electrode. This is clearly not the

case in Figure 4-40 b), although the density has decreased by 20% from the value it attains at the

radial centerline of the discharge for both aspect ratios. Since the distance between the edge of

the smaller electrode and the insulating wall is less than a gap spacing, one does not expect the

lower aspect ratio density to reach zero for any radius. The distance between the edge of the

small electrode and the insulating wall is greater than a gap spacing for the high aspect ratio

simulation, and indeed the positive ion density is essentially zero beyond one gap spacing from

the electrode edge. These observations indicate that for asymmetric discharges of the type

examined here, the aspect ratio defined as the ratio of the smaller electrode radius to the

discharge gap spacing is the important spatial scaling.

The aspect ratio of the plasma determines how much the asymmetry perturbs the plasma

physics in the bulk of the discharge, but unlike in the symmetric case, the radial boundary layer is

quite different for different aspect ratios, Figure 4-42. The radial boundary layer changes

significantly because the distance ions can diffuse to reach the insulating wall has changed

significantly, and the discharge is being sustained differently at very low aspect ratios. Note that

the density for the lowest aspect ratio case does not approach the symmetric solution even at the

centerline. Since the effective aspect ratio for this simulation is less than 1.0, we can expect that

the simulation will not resemble the symmetric case at any spatial position. For a simulation

with the same electrode area ratio, and a gap spacing of 1/2", the results should be nearly one-

dimensional beyond for a distance of greater than 2" from the insulator, and comparable to the

1/2" gap symmetric case at the radial centerline, since the effective aspect ratio would be 1.5.

This is indeed the case as demonstrated in Figure 4-41.
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Figure 4-41 Positive ion density contours for a 1/2" gap, highly asymmetric argon discharge. The plasma
is clearly contained by the smaller electrode, and has minimal radial variation more than 1 gap-spacing
away from the edge of the smaller electrode.
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Figure 4-42 Positive ion density at the radial centerline of the discharge for various sized smaller
electrodes. The effective aspect ratio is the ratio of the small electrode length to the gap spacing.

Although the majority of the plasma physics is relatively unchanged by changing the area

ratio of the electrodes, for plasma etching the most critical parameters are what the wafer actually

experiences. The absence of large changes in the bulk plasma physics implies that the plasma

should be relatively unchanged above the smaller electrode regardless of the ratio or the areas of

the small and large electrodes. Examining the ion flux to the lower electrode (smaller electrode
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and adjacent insulator),Figure 4-43, it is evident that there are some changes in the ion flux

which may have a significant effect on the etching of a wafer placed on the lower electrode. The

ion flux in all cases increases away from the center of the plasma until a maximum 15% higher is

reached about 1/4 of a gap spacing away from the insulator/electrode boundary. The singularity

in the field causes a large rise in the ion flux at the boundary between the insulator and the

electrode, along with a large radial ion flux (not shown).
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Figure 4-43 Ion current to the grounded (smaller) electrode at various pressures and aspect ratios.

The effect of pressure on the ion flux is relatively small, as was the case for the

symmetric simulations. Lowering the pressure from 1 Torr to 500 mTorr only slightly raises the

ion current to the electrode, and results in a very similar shaped profile. Even changing the size

of the smaller electrode to the point where the plasma is not expected to be radially uniform at

any point (a change in the aspect ratio between the smaller electrode radius and the gap spacing

from 1.50 to 0.75) only results in a 25% decrease in the total ion flux. The ion flux profile across

the grounded surface is still similar to the case with a larger grounded electrode, although since
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the electrode is now nearly the same size as the gap spacing the minimum in ion flux is never

reached, and the ion flux across the electrode appears more uniform.

When the gap spacing is increased, the effect of the insulator bounding the plasma has

already shown to be more significant. Since the plasma is already quite two-dimensional for an

aspect ratio close to one, reducing the radius of the lower electrode by one third does not have a

very significant effect. The main difference between the symmetric and asymmetric simulations

in this case is that the density is asymmetric due to an increase in the ionization rate near the

lower electrode. The peak in the positive ion density is also nearly 25% less for the asymmetric

case than for the symmetric case. The maximum in the ion density is lower because the effective

aspect ratio for the geometry is now significantly less than unity so the plasma is not even close

to one-dimensional at the radial centerline.
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Figure 4-44 Positive ion density for 1 Torr, 2" gap asymmetric Argon discharge.

4.5.2: Comparison to Experimental Measurements

The comparison between the asymmetric simulations and the experimental results is done

the same way as the symmetric simulations. Since there is still a Teflon spacer between the

insulating glass wall and the upper electrode, a direct comparison is not possible. Instead, all
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simulation results are compared to the experimental results assuming that the bounding insulator

is effectively the same as the insulating wall. The comparison of the predicted PIE to the

experimental data is facilitated by correctly juxtaposing the two data sets, and assuring

consistency of the spatial scales.

A direct comparison of the simulation results and experimental measurements is shown in

Figure 4-45. The simulation results match the experimental measurements at least as well as in

the symmetric case, and all of the qualitative features are correctly captured: the sheath at the

lower electrode is glowing about two times brighter than at the upper electrode, the sheath at the

small electrode is slightly thinner than at the upper electrode, the glow covers more of the large

electrode than on the small electrode, the glow diffuses out more at lower pressures and becomes

overall more uniform, and the intensity of the maximum glow decreases with pressure. For the

experimental PIE profiles the brightest glow on the lower electrode does not extend beyond the

electrode edge, while there appears to be a small but significant glow beyond the edge of the

electrode. This is the one point where the comparison between the simulation and the

experimental data seems to fail. The most likely reason that the simulation result is different is

that the a perfect insulator with a small charge leakage term is not a good approximation under

plasma bombardment. Besides the absence of the confining ring between the insulating wall and

the electrode, the simulation also has one other difference in geometry which will affect the

comparison. The ground plane on the lower electrode in the experimental geometry is very

complex, and may be as close as one gap spacing away from the edge of the smaller electrode,

while in the simulations the approximation is that the ground plane is nearly infinitely far away

(2.5 gap spacings, which should be beyond the range of perturbation of the plasma). Certainly

having a ground plane much closer to the plasma should result in a less asymmetric discharge,

and will change the simulation results, but simulation of the exact experimental geometry is

beyond the scope of this thesis.
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Figure 4-45 Comparison of simulated plasma induced emission for asymmetric discharges. The top plot

is model results, and the experimentally measured emission is presented in the bottom. a) 1 Torr and b)

0.5 Torr.

For larger gap spacings the asymmetric simulations have about the same short-comings as

in both the symmetric simulations with wide gaps, and in the high-pressure low-gap spacing

asymmetric cases. The simulation correctly predicts that the sheath at the smaller electrode is

both brighter and thinner, it appears that there should be a smaller sheath on the upper electrode,

while the experimental observation shows that the sheath on the larger electrode is the same size

for 1" and 2" gap spacings. There is obviously, as with the 1" gap spacing, a significant

difference in the way the plasma is being sustained in the simulation versus the experimental

setup. There is also the possibility that the measurement of the applied power is in error, so that

the power being applied is significantly different between the experiments and simulations.
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Figure 4-46 Plasma induced emission for wide gap, asymmetric discharges. Comparison of model (top)to experimentally measured plasma emission (bottom) for a 1 Torr, 2" gap spacing asymmetric Argonplasma. The simulation results are dominated by edge effects since the aspect ratio is close to one.
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The comparison of the time averaged potential for the simulations and the measured

plasma potential using a Langmuir probe is shown in Figure 4-47. For both the simulations and

the experimental data the potential is essentially flat throughout the plasma except in the sheath

regions, and does not change very significantly with pressure. The experimental plasma potential

is always higher than the simulated potential, as was seen in the symmetric cases. In fact, there is

virtually no difference in the experimental results for the symmetric and asymmetric cases, while

the simulations require that there is a positive DC potential on the larger electrode. The exact

value of the simulated DC floating potential is not very well determined as discussed earlier due

to problems in convergence of the TPSS shooting algorithm, but it does appear to decrease by at

least a couple of volts when the pressure is decreased from 1 Torr to 0.5 Torr.

Figure 4-47 Plasma potential for asymmetric plasmas. a) 1 Torr and b) 0.5 Torr; simulation results c) 1
Torr and d) 0.5 Torr; calculated from Langmuir Probe measurements. There is no experimental data in
the plasma sheath, where the simulations contain the largest variations.

The electron energy for the simulations and as measured by Langmuir probe is shown in

Figure 4-48. For the pressures investigated both the experimental and simulated electron
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energies are between 4 and 6 eV in the bulk of the discharge, and are essentially as flat as the

plasma potential. The only difference between the simulated electron energy for the symmetric

and the asymmetric cases is that the energy is higher next to the smaller electrode. For the

experimental measurements, this effect is not detectable because predicted the increase in

electron energy occurs in the sheath where the Langmuir probe measurements are not possible.

Figure 4-48 Time averaged electron energy for asymmetric discharges. a) 1 Torr and b) 0.5 Torr;
simulation results c) 1 Torr and d) 0.5 Torr; calculated from Langmuir Probe measurements. All results
show a nearly constant energy in the plasma bulk.

The plasma density in the quasi-neutral region of the plasma should be directly

comparable to the density profile as predicted by Langmuir probe measurements. As was seen in

the symmetric comparison, however it is very difficult to interpret the density calculated from

LaFramboise theory at higher pressures. With the measured densities for the asymmetric cases,

Figure 4-49, we again see a decrease as the pressure increases, and a discrepancy of an order of

magnitude between the simulation results and experimental measurements. However, for these

cases there is more radial variation, both for the experimental and simulated density profiles.

The experimental plasma density is relatively constant radially next to the smaller electrode, and
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slowly decreases as the radial insulator is approached. The simulated results show a very similar

trend. The main difference is that the slope of the density seems to be gentler for the

experimental results, but this is partly because of the difference in the geometry between the

simulation and the experiments. The simulations also show that the density does not drop off as

quickly at lower pressures, but the experimental error makes it difficult to tell how different the

slopes are at different pressures.

Figure 4-49 Time averaged positive ion density for asymmetric discharges. a) 1 Torr and b) 0.5 Torr;
simulation results c) 1 Torr and d) 0.5 Torr; calculated from Langmuir Probe measurements.
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Chapter 5 : Argon Plasmas In Complex Geometries

The continuum model results predict one well defined characteristic feature that should

be readily observed experimentally: a strong enhancement of the ionization rate where the

insulator meets the electrode surface. However, when one accounts for the averaging effect that

is produced since the PIE is viewed through an entire cross-section of the plasma, the

enhancement of ionization in the corner is nearly wiped out for the simulated PIE profiles. This

occurs because the enhanced ionization is taking place at a point where the smallest cross-section

is being viewed, and all other cross-sections also contain a view of the enhanced ionization. The

difference in the cross-sections is shown by the lines on the upper electrode in Figure 5-1 a): as

the scan one proceeds from the left to the right, the optics average over a larger area of plasma.

In order to demonstrate the enhanced ionization, it is necessary to produce a geometry

where the enhanced ionization will occur at a point where the plasma cross-section is near its

maximum. Experiments were performed with rings and bars, shown in Figure 5-1, to capture

this effect. The following sections deal with the experimental observation of a few such systems,

and an explanation of the physics based on simplified arguments from the simulations. The units

of distance shown on the plots are in centimeters.

I - I

a) b)
Figure 5-1 Geometry for perturbation studies with a) ring b) angled bar on lower electrode.
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5.1: Symmetric Plasmas with Focusing Rings

Clamping rings are a common feature in industrial plasma etching tools. The purpose of

these features is merely to hold the wafer in place, in which case very little effort is usually spent

on designing the geometry of the clamp. Focusing rings are used to increase the plasma

uniformity across the wafer, and are designed by trial and error for this purpose. Since one

already would predict from the plasma modeling that a ring with a right angle to the electrode

surface should produce an enhancement in the ionization rate, we examined four separate cases at

two different pressures. The difference in the 4 cases were the thickness of the ring, which

should affect the magnitude of the perturbation, and the material of construction, since a

conducting or insulating ring should have significantly different effects on the plasma.

The PIE scans for all four geometries at 1 Torr are shown in Figure 5-2. The dashed

square in the figure is equivalent to the cross-section of the ring in Figure 5-1 a) at the center of

the plasma. The first obvious feature is that the emission intensity is greatly enhanced near the

corner where the ring meets the electrode, at a distance of about one sheath thickness above the

electrode surface. The position of the enhanced emission is not sensitive to the size of the

focusing ring or the material of construction. Since the ring blocks most of the rest of the

electrode, the rest of the lower sheath is not visible on the plots, and a similar enhancement

occurs inside the ring which is also not visible in the PIE scans. The enhancement seems to be

significantly greater for a thinner focusing ring, although it still is not as intense as the sheath is

on the powered electrode. There is also an enhancement at the top edge of the focusing ring,

which is due to the exterior corner of the ring. For the thinner rings, these two effects apparently

interact to further enhance the plasma emission.
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Figure 5-2 Plasma emission for 1 Torr Ar plasmas with focusing rings on the electrode. a) 1/2" Al ring

b) 1/2" Teflon ring c) 1/4" Al ring d) 1/4" Teflon ring.

The second interesting effect noticeable in the PIE in Figure 5-2 is that the aluminum ring

does seem to focus the plasma glow from the center of the gap toward the electrode, and is more

effective for a thinner focusing ring. The Teflon ring, on the other hand, seems to have the

opposite effect, enhancing the plasma emission through most of the center of the discharge. The

conductive ring apparently results in stronger fields near the electrode, while the insulating ring

bends the electric fields and allows for more of the bulk of the discharge to effectively see the

ground plane.

The model predicts that the sheath thickness should greatly increase with decreasing

pressure, and that the effect of the corner should become less important (at 100 mTorr, for the

insulating wall only one peak in ionization occurs, on the centerline of the plasma, with a

characteristic length scale of 1/2"). Therefore one expects that as the pressure decreases and the

focusing ring becomes contained in the sheath region, the perturbation to the plasma should
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diminish. The effect of the insulating rings does indeed diminish as the pressure decreases, as

shown in Figure 5-3. The critical length scale for plasma perturbations has been shown to be the

aspect ratio of the plasma. For the rings, the pertinent dimension is the ring height. For all ring

geometries, the plasma does not appear to be perturbed more than one ring-thickness away. For

the 1/2" rings, the enhancement in ionization is still noticeable since the ring is more than double

the thickness of plasma sheath. When the ring is only 1/4" thick, which is on the order of the

sheath thickness, it sits mainly within the sheath and no longer greatly focuses the plasma toward

the electrode. In this case, the plasma sheath simply follows the contour of the ring, and the

geometry and material of construction are of secondary importance. For the 1/4" rings the lower

sheath reappears, but since the position of the sheath is different at the ring surface and at the

electrode surface, the intensity at the bulk/sheath interface is greatly reduced at the lower

electrode.

2 4 6

Figure 5-3 Plasma emission for 100 mTorr Ar plasmas with focusing
ring b) 1/2" Teflon ring c) 1/4" Al ring d) 1/4" Teflon ring.

2 4 6

rings on the electrode. a) 1/2" Al
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Two-dimensional scans with a Langmuir probe were performed to see how the rings

perturbed the electron energy profiles within the plasma. Since the enhanced glow occurs in a

sheath region, we do not expect to observe a large peak in the electron energy using the Langmuir

probe. Since the rings should perturb the electric fields throughout the plasma, the electron

energy should also change globally. Scans were performed near the powered electrode, near the

center of the plasma, and close to the electrode with the ring. The scans near the electrodes are

not shown because they contain too many points which fell within the sheaths, and no significant

trends were observed. The perturbation of the electron energy at the center of the plasma by the

rings is shown in Figure 5-4 for high and low pressures.

Figure 5-4 Electron energy as determined by Langmuir probe for the center of a perturbed Ar discharge.
a) 1 Torr b) 100 mTorr.

At 1 Torr, the electron energy is not affected by the rings in any significant way, and is

almost constant across the plasma. Although the 1/2" Teflon ring appears to have lower energy,

the differences are within the experimental error. For the 100 mTorr scans, the energy is again

mostly unchanged, with no variation across the radius of the plasma. The 1/2" rings have

electron energies nearly identical to the case with no ring. For the 1/4" rings, the electron energy

is still nearly constant across the discharge, but appears to be around double the energy for the

other cases. The PIE shows no enhanced glow for these discharges to indicate that there should

be higher energy. The most likely explanation for the difference is that these runs were the last 2

performed, and either the contact to ground was not sufficient or the runs which had lower energy
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had a small air leak. As little as 0.5% air in Argon would produce this change, as discussed by

Surendra (1985).

5.2: Symmetric Plasmas with Bars

The PIE studies for Argon plasmas with focusing rings showed that an enhancement

occurs in the plasma emission due to the ring, but it is still possible that this apparent

enhancement was due to the way the plasma traverses the ring. It is not reasonable to suggest

that the enhanced glow is merely an experimental artifact due to the cross-section of the plasma

that is viewed at the edge of the ring, since the glow at that point is already at least as strong as at

the center in the upper sheath. Since it is possible that the ring geometry obscured some of the

physics, we looked at bars which completely traversed the plasma as a simple limiting case.

Since the bar traverses the whole plasma, the effect of a limited cross-section for viewing the

perturbation is not important.

The bars used for this study were made of either Teflon or Aluminum, and were 1" wide

and 3/8" high. A bar was fabricated with a 450 angle to see how important the right angle is to

the perturbation of the plasma. The angled bar is used in two different configurations: up, where

the bar forms an angled step of 135' with respect to the electrode, and down, where the bar forms

a retrograde angled step of 450 with respect to the electrode. For reference, the geometry with

the bar angled up is shown in Figure 5-1 b). The plasma emission for aluminum bars with all

three geometries is shown in Figure 5-5. The striking feature is that the corners do greatly

enhance the plasma emission well above the base level which is seen just from the glow of the

bulk/sheath interface. In Figure 5-5 a), the bar is symmetric with respect to the centerline of the

plasma, and the plasma glow is symmetric except for a slight mis-alignment of the bar with the

collection optics. The plasma sheath follows the surface of the bar pretty consistently, and is not

significantly perturbed by the upper edge of the bar. The corners represent an increase of more

than a factor of two in the plasma emission.

The enhanced emission is not surprising in light of the model results showing that the

ionization rate should be enhanced where the two surfaces meet, since the sheaths along both

surfaces will interact complexly. In the case where both surfaces are conductors it is reasonable
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to view the interaction of the sheaths as being additive at a small enough length scale, since in the

absence of a corner there would be separate non-interacting sheaths on each surface. The result

of the doubling of the sheath at the corner is that the electrons are pushed out with a field which

is much greater, and energy coupling at the corner is much higher.
I I I I I
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Figure 5-5 Plasma perturbations by Al bars placed on grounded electrode at 1 Torr.

In light of this explanation, the results in Figure 5-5 b) and c) are easily explained. Since

the effect of the corner is a vector summation of the field which couples energy into the

electrons, as the angle decreases the effect becomes higher. Even though the field should be

excluded at a small enough gap, the electrons will still be pushed out more strongly from any

point they can reach. With greater block angles, the effect lessens until at 1800 the effect

disappears. Note that the intensity from the corner furthest to the right is nearly identical in all 3

configurations, as is the sheath brightness where it is not perturbed. This indicates that there is

no long range coupling, and over a length scale of 1" in the plasma the geometry does not

interact.
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Equivalent emission contours are shown for Teflon bars using the same configurations in

Figure 5-6. Even though the sheath on the insulating surface has a very different structure, as is

apparent from the emission profiles above the Teflon blocks, the effect in the corner is very

similar. The plasma is still concentrated in the corner, and the intensity of the perturbation still is

inversely proportional to the angle between the block and the electrode. The biggest difference

for the Teflon block is that the plasma no longer follows the contour of the block, but is weaker

along the insulating surface. The Teflon bars also have a smaller effect on the emission, and the

intensity is less perturbed for every case.

0 1 2 3 4 5 6

0-
0 1 2 3 4 5 6

1 2 3 4 5 6

Figure 5-6 Plasma perturbations by Teflon bars placed on grounded electrode at 1 Torr.

In fact there is a very interesting effect along the upper edge of the insulating surface. For

the aluminum bars the plasma followed the surface contour, and decreased monotonically toward

the center of the discharge. There appears to be a weak glow directly above the Teflon bars,
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which is followed by a region which has decreased glow with respect to the bulk plasma. The

most likely explanation for this phenomenon is that the insulator surface is charging up, and the

result is a weaker field directly above.

The perturbation is significantly lessened at lower pressure, as shown in Figure 5-7 and

Figure 5-8. All of the features persist at the lower pressures, but the enhancement of the

ionization is diminished, and the length scale over which the perturbation exists increases. The

effect of angle is the same as at higher pressures, although the upper angle now apparently

decreases the plasma emission slightly. These effects are mostly due to the fact that the block is

now approaching the length-scale of the sheath which it is perturbing, as was seen with the very

thin rings. However, it is important to note that the plasma is still perturbed by the small angle

even though it is excluded from most of the area below the angle. This indicates that the

perturbation in the electric field from the corner reaches out into the plasma at least one sheath

thickness.

a) 0
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Figure 5-7 Plasma perturbations by Al bars placed on grounded electrode at 100 mTorr.
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The Teflon bars still perturb the plasma differently then the aluminum bars, and there is

still a hole in the plasma above the Teflon bars. At 100 mTorr, the inverted angle is perturbing

the plasma much less than at 1 Torr, and the increase in intensity over the right angle bar is

almost within the experimental error. For this low pressure, since the field can penetrate the

Teflon, the inverted corner has very little additional effect.
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Figure 5-8 Plasma perturbations by Teflon bars placed on grounded electrode at 100 mTorr.
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Chapter 6 : Conclusions and Future Work

6.1: Conclusions

A suite of efficient numerical techniques were developed to solve the continuum model

equations for both one- and two- dimensional simulations. The spectral element technique

allows use of relatively coarse discretizations while maintaining very highly accurate solutions.

Spatial discretizations designed to work well for hyperbolic equations contain artificial diffusion

which leads to significant differences in the resultant solutions. Application of the spectral

element technique allows calculation without this limitation, and allows rigorous computation of

the exact plasma solutions. Convergence of the spectral method with grid refinement is possible

even for the two-dimensional case because a solution approaching the exact solution can be

readily calculated by merely doubling the order of the interpolating polynomial. Two-

dimensional simulations show spectral convergence in the spatial grid except at the corner, where

there is a discontinuity in the boundary conditions. The effect of the discontinuity is limited to

points very close to the corner node, and overall convergence of the method is still spectral.

Direct calculation of the time-periodic steady-state is at least an order-of-magnitude more

efficient than following the full transients in the simulations. The combination of direct

calculation of the TPSS and the spectral discretization results in a more efficient and accurate

simulation effort at the GEC benchmark. For the two-dimensional simulation, the cost of the

TPSS Newton shooting algorithm is further reduced by iteratively solving the Newton problem

instead of computing the full TPSS Jacobian. The cost of the two-dimensional simulations is

minimized by using a split explicit/implicit integrator intead of the fully implicit integrator used

in the one-dimensional simulations. The final result is a nearly equal split between the cost of

calculating the change in the solution over one cycle, and the cost of calculating one TPSS

Newton step.

The aspect ratio of the plasma is the most important quantity in determining the overall

uniformity of the discharge, both for symmetric and asymmetric discharges. The perturbations

from the insulating wall bounding the plasma become more important at lower pressures, and are

less severe as the area ratio of the electrodes increases. The presence of the insulating wall can
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account for nonuniformity in the ion flux up to one gap-spacing away, which would directly

affect the radial uniformity during etching processes. For the asymmetric geometries, which

include an insulator between the smaller electrode and the insulating wall confining the plasma,

radial nonuniformity decreases, but is most significant next the electrode/insulator interface.

Plasmas with aspect ratios greater than one approach the one dimensional solution within a few

percent a gap spacing away from the insulating wall, and can be modeled as one dimensional

further away. Plasmas with aspect ratios near one will not approach the one dimensional solution

at any point, and exhibit a decreased density at the radial centerline.

The asymmetric geometry used for this study results in a plasma which is defined by the

smaller electrode, and therefore does not look highly asymmetric. The singularity at the

boundary between the smaller electrode and the insulator results in a more challenging

simulation, but does not appear to greatly affect the local physics. However, this limited the

simulations to higher pressures where a stable spatial grid was easily obtained. There is a strong

coupling between the potential near the coupling, the electron properties, and the surface

charging on the insulator adjacent to the small electrode which results in a very stiff coupling for

the time periodic shooting problem. A similar difficulty exists in defining the DC floating

potential on the blocking capacitor between the voltage source and the larger electrode.

However, the simulation is not sensitive to the exact value of any of these variables.

Comparison of the two-dimensional model to experimental results shows good agreement

for the pressure range where the continuum model is expected to work best. All of the major

trends in the PIE are correctly predicted for high aspect ratio plasmas. Edge effects may become

important enough in the lower aspect ratio plasmas to force the comparison to break down.

Comparison to Langmuir probe studies indicates that the model is predicting the right trends, but

experimental uncertainty limits direct quantitative comparison. Experimental examination of

some more complex geometries shows interesting effects in the PIE at comers due to interaction

of the radial and axial sheaths, which should be readily evident in model results for the more

complex geometries.
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6.2: Suggestions for Future Work

The greatest difficulty for the simulations is finding a grid which is not overly refined but

still contains a stable solution. The simulations are very sensitive to the exact grid chosen for the

plasma sheath region, and it is very easy to "waste" degrees-of-freedom assuring that the method

remains stable. This is especially true in asymmetric geometries, and would be much worse on a

complex, non-rectangular simulation. The electron energy presents the most problem in all

cases, and might be simulated on a separate, refined grid. It would be possible to use either the

same degree polynomial for all variables, or the energy could be represented with a higher order

approximation. A locally refined, adaptive meshing scheme would be most useful to select and

maintain a stable spatial grid, and is a necessity in order to simulate more complex geometries.

This would allow a much more complete investigation of the effect of geometry on the plasma

physics. The spectral element method is very useful for proving that the simulations converge

with mesh refinement, but the results are generally more accurate than is justified by the

complexity of the model or the accuracy of available experimental data. The accuracy of cubic

polynomials is generally sufficient for plasma modeling, and the increase in computational

efficiency for higher order spatial grids is small enough to be unimportant. Future efforts for

two-dimensional simulation should therefore use either cubic or quadratic basis functions to

represent the spatial discretization.

It was shown that the physics of the one-dimensional electronegative discharge is very

complex, with the negative ions responding in the sheath on a very small length scale

analogalously to electrons in the electropositive case. This structure is on a very small length

scale with respect to the overall plasma dimension, and is very difficult to simulate in two-

dimensions, especially since the bulk of the plasma is not as simple as for electropositive cases.

It would be of great interest to find a substitute set of transport parameters or boundary

conditions which would eliminate the negative ion sheath behavior in the simulation. Since the

discretizations for electronegative discharges are already much finer than for electropositive

discharges, a nonconforming mesh scheme would prove most effective in limiting the

computation cost. This would then allow simulation of many other complex and reactive gases

which are generally used for industrial applications. The paradigm for modeling electronegative

gases has been SF 6, but most gases of industrial interest are generally not as strongly attaching.
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The should be a significant difference in the plasma physics when the concentration of the two

negative species are of the same order of magnitude, and there are multiple references in which

such plasma are shown to have bifurcations to two or more spatial configurations. If the model,

as it is posed in this work, is capable of predicting these bifurcations, it would be excellent proof

that sufficient physics have been included. A full set of accurate rate and transport parameters

for CF 4 or C2F6 would also be of great benefit for this purpose.

The operator splitting for the time integrator worked quite well, but could not be

implemented for the TPSS Newton shooting algorithm during this project. It is not clear whether

this was due to a programming error or is related to the sensitivity of the insulator charge to the

local variables. In the final form, the cost of the simulations has nearly equal contributions from

the time integration and from the Newton shooting step. Since the Newton shooting step is based

on the integrator used to calculate the change of the nonlinear system over an RF cycle, any

improvement in the time integrator for the nonlinear system translates into an equivalent

improvement in the Newton shooting computation. Proper implementation of the integrator

splitting for the TPSS Newton shooting algorithm would reduce storage and computational

requirements by approximately a factor of 4, making the simulation much more useful for

equipment design and to further investigate the two-dimensional plasma physics. A further result

would be that the simulations should then be readily performed on a high end workstation.

Since both the calculation of the transient simulations for a single RF cycle and the

GMRES Newton shooting step have similar costs, totally eliminating the GMRES calculation

will at best result in a factor of three enhancement of the simulation speed. Preconditioning the

GMRES iterations is therefore useful, but will not have a huge effect on the overall simulation

cost. The most efficient way to reduce the cost of the simulations would be to find an alternative

time integrator which would either reduce the bandwidth or the total degrees-of-freedom used in

the matrix algebra. This is the driving idea behind both the semi-implicit scheme which was not

used in this work, and the integrator splitting which was used for the two-dimensional

simulations. Similarly, any technique which allows the use of a coarser spatial discretization will

greatly enhance the simulation speed.
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