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ABSTRACT

This thesis provides new computational models for electromagnetic surface scat-

tering which allow large one and two dimensional problems to be considered through

the use of efficient numerical algorithms and parallel computing techniques. This is

in contrast with previous numerical studies that have been limited to relatively small

surfaces rough in one dimension only. The new numerically exact models are applied

to several problems of current interest, and allow studies of phenomena not predicted

by any available analytical theories. In addition, comparisons are made with predic-

tions of standard analytical models to obtain an assessment of their performance.

A one dimensional model for VHF propagation is the first numerical model

considered. Comparisons with measurement data show the model to produce accu-

rate results, and conclusively demonstrate the importance of terrain measurements in

propagation predictions. Comparisons with approximate models allow their appro-

priate regions of validity to be determined.

Polarimetric thermal emission from two dimensional periodic surfaces is stud-

ied using an extended boundary condition (EBC) numerical solution. The model is
applied to generate the only numerically exact results for two dimensional surface

polarimetric thermal emission currently available, and demonstrates that properties
of UB, the third Stokes emission parameter, remain similar to those observed previ-
ously for one dimensional periodic surfaces. The response of UB to level of medium
anisotropy is also investigated.



A Monte Carlo study of backscattering enhancement from two dimensional per-

fectly conducting random rough surfaces follows, using a recently developed more

efficient version of the method of moments which allows the large two dimensional

surfaces investigated to be treated. Comparisons with bistatic scattering data from

machine fabricated random surfaces taken at the University of Washington illustrate

the first such validation of a two dimensional numerical scattering model to date.

Backscattering enhancement is observed in both theoretical and experimental results,
and theory and experiment are in good agreement.

Scattering from the surface of the ocean is studied using a two dimensional

perfectly conducting surface Monte Carlo simulation. A simple power law spectrum

model is chosen for the ocean surface, and variations with spectrum low frequency

cutoffs are illustrated in the simulation. Both forward and back scattering from

the ocean are considered, and comparisons are made with the standard composite

surface model of ocean scattering which indicate appropriate choices of the "cutoff'

wavenumber in the composite model. The validated composite surface theory is

then used with more realistic ocean surface models to compare with measured ocean

backscattering data.

Polarimetric thermal emission from the ocean is studied using a penetrable two

dimensional surface Monte Carlo simulation. An extension to the standard penetrable

surface method of moments is made to avoid greatly increasing the required number

of surface unknowns for a highly lossy surface such as the ocean. Comparisons are

made with the SPM and composite surface models for ocean scattering, and with

available experimental data.

Thesis Supervisor: Professor Jin Au Kong

Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Background and Motivation

Rough surface scattering plays an important role in many electromagnetic applica-

tions, including both active and passive remote sensing, wave propagation, and optical

and radar system design. Although approximate analytical techniques exist and work

well for certain types of surfaces, a general analytical solution to the rough surface

scattering problem remains to be discovered. At present, scattering from surfaces

whose properties render the analytical theories invalid can be accurately calculated

only through the use of numerical methods. Although numerical models are usually

too computationally complex for general use in most practical applications, they pro-

vide a valuable means for evaluating other approximate scattering models and for

decoupling uncertainties in the electromagnetic theories applied from uncertainties in

other areas, especially in specification of input surface properties. Additionally, phys-

ical insight gained from numerical solutions can potentially aid in the development of

future extended analytical theories. The ever increasing speed of moden computers

also motivates the development of numerical models, since practical problems can be

21
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solved with more reasonable amounts of computational time than in the past, and

potentially with even less time in the future. The research of this thesis involves nu-

merically exact models for surface scattering and their application in remote sensing

and propagation problems.

A canonical rough surface scattering problem is illustrated in Figure 1.1, where

an incident time harmonic electromagnetic plane wave impinges upon a boundary,

described by the function z = f(x), between two semi-infinite linear, homogeneous,

isotropic, and time-invariant media. Such LHITI materials are the only electromag-

netic media considered in this thesis. Determination of the resulting electromagnetic

fields in the space above and below the surface profile defines the problem to be inves-

tigated. The configuration of Figure 1.1 could represent a wave from a radar system

incident upon an ocean surface, for example, from which measurements of scattered

fields or power could potentially be used to determine physical properties of the

ocean. Alternatively, knowledge of the same scattered fields could be used to derive

brightness temperatures of an ocean surface observed by an airborne or spaceborne

radiometer. The configuration of Figure 1.1 could also model a laser beam incident

upon a optical grating, a VHF field propagating over Earth like terrain, a synthetic

aperture radar system observing soil moisture, or any number of other applications.

This wide range of possibilities motivates the study of rough surface scattering and

the desire for accurate and useful solutions to the rough surface scattering problem.

A well known solution to the problem of Figure 1.1 exists in the special case

z = 0 or z a linear function of x, for which the fields consist of a specularly reflected

wave above the surface profile and a specularly transmitted wave below. However,
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z

Region 0
z=f(x)

Figure 1.1: Geometry of a canonical rough surface scattering problem
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(a) (b)
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Figure 1.2: Mechanisms of rough surface scattering (a) Single scattering (b) Multiple

scattering (c) Diffraction (d) Shadowing

solution of the boundary value problem for more general surface profiles is much more

difficult, given the many possible scattering mechanisms which can exist on a rough

surface. Heuristically, effects such a multiple scattering, diffraction, and shadowing,

all illustrated in Figure 1.2, can exist singly or in combination, thereby making the

prediction of scattered fields very difficult. These scattering mechanisms can also

exist either locally (within an isolated region of the surface) or non-locally (coupling

distant regions of the surface), further complicating the physics involved.

I

Do-
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The above discussion considered surface profiles to be functions of coordinate

x alone. This type of surface is known in the literature as a one dimensional (1-

D) surface. More general surface profiles are functions of two spatial directions,

z = f(x, y), and are classified as two dimensional. Scattering behavior of rough

surfaces can be very different in the one and two dimensional cases, especially given

the decoupling of TE and TM polarizations associated with in-plane incidence in a

1-D problem. Due to the wider angular range over which scattered fields can exist

in a 2-D problem, scattered fields at specific in-plane angles are usually expected to

be lower than their 1-D counterparts. In addition, polarization coupling is inherent

in 2-D scattering and further reduces copolarized fields compared to 1-D. For reasons

to be discussed later, numerical models for 1-D surface scattering have received much

more study in the past. This thesis is concerned with both 1-D and 2-D numerical

models, but greater emphasis is placed upon the less studied 2-D case.

A final distinction exists between the random surface and deterministic surface

cases. Figure 1.1 illustrates the deterministic case, for which a fields are calculated for

a specified function describing the surface profile. However, since an exact functional

description of surfaces observed may not always be available, many applications re-

quire a random surface model. In the random surface case, the surface profile function

is modeled only in terms of its statistical properties as a stochastic process. Figure

1.1 could then be considered only to represent scattering from one realization of this

stochastic process, with an ensemble average of scattered fields or power over surface

realizations required to obtain statistical information about scattered field random

variables. A statistical rather than deterministic description of scattered field quanti-
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ties is clearly more useful in some instances, for example the ocean scattering problem

mentioned above. Information about scattered fields from one specific configuration

of the ocean surface is of little use since the surface itself changes both in time and

with observation location. However, statistical properties of these observations when

averaged over several observation times or locations are much less sensitive to such

variations.

Statistical description of the surface profile stochastic process involves speci-

fication of the joint probability density function for an infinite number of random

variables describing the height of the surface profile at individual values of coordinate

x. However, if the stochastic process is assumed to be a Gaussian process, meaning

that each of the individual surface height variables has a Gaussian height distribu-

tion, and to be stationary, meaning that its statistical properties are invariant with

respect to a shift of origin, a complete description of the process is given by knowl-

edge of its covariance function alone. Although realistic rough surface profiles are not

necessarily well described as stationary Gaussian stochastic processes, the immense

reduction in statistical complexity associated with such processes makes them highly

advantageous. Both deterministic and random surface profiles are considered in this

thesis, but only Gaussian process models are used in the random surface case.

The remaining sections of this chapter provide a brief overview of the theory

of rough surface scattering. In Section 1.2.1, integral equation formulations of sur-

face scattering are reviewed, and notations for scattered field, power, and brightness

temperatures to be used throughout the thesis are introduced. Three commonly used

approximate theories for surface scattering are then discussed in Section 1.3, and a
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review of numerical methods for electromagnetics follows in Section 1.4. Finally, an

overview of the chapters of the thesis is provided in Section 1.5.

1.2 Basic Surface Scattering Formulation

1.2.1 Integral equations for surface scattering

The standard dyadic Green's function formulation of Huygens' principle [1] states

that time harmonic fields of frequency w in a source-less volume V' bounded by a

surface S' can be related to the equivalent tangential electric and magnetic fields on

surface S' by

E(T) = /dS' {iw,~(f, T'). [' x H('·)] + V x [' x E()] (1.1)

7H(T) = J dS' -iweG(T, T'). [' x E(f')] + V x =G- [fi' x H(T)] (1.2)

where n~ is a unit normal vector to surface S'. The above equation assumes the

medium inside volume V' to be a homogeneous, isotropic medium described by electric

permittivity e and magnetic permeability Iu, and a time dependency of e-wt is implied.

In addition, the observation point T is assumed to lie inside volume V' but not on

surface S'. The dyadic Green's function of the above equations is given by

v1 eikI|-F' (1.3)
G + _(1.3)k2 47rT - T'I

where I represents the unit dyadic and k is the electromagnetic wave number wVfLf.

For observation points lying on surface S', so that a singularity at T = F' is encountered
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in the integral equations, an infinitesimal spherical exclusion zone around the point

f is applied [2] and a limiting process yields

F(T) = JdS' {wp( '). [i' xH ()+ xC[x (1.4)

72 dS' (-iwcG(:, ') [' x ()] + V x . [' x H()] (1.5)

where the integral f dS' is now performed as a principal value integration.

For semi-infinite half spaces separated by a surface boundary as in Figure 1.1,

a radiation condition argument can be applied which illustrates that the surface at

infinity does not contribute to the electromagnetic fields [1]. Thus, the above integral

equations state that knowledge of tangential electric and magnetic fields on the surface

profile bounding two semi-infinite half spaces determines fields throughout all of space.

For observation points on the surface profile, equations (1.4) and (1.5) constitute

coupled Fredholm integral equations of the second kind, whose solution yields the

unknown tangential fields which can then be used to determine fields throughout all

of space.

The problem of Figure 1.1 can be cast into an integral form by separately

considering the regions of space above and below the surface profile respectively. For

region 0 above the surface profile, a vector product of n with equations (1.4) and

(1.5) yields

2 x Eo( x Ei-~nx + I x /dS' {iwI(tG , V). [i' x

+VxG -[n^' X V(f)j (1.6)
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xHo(2 )= Ax •ine + A x dS' {-iweG(, f). [ T' x ()]

+Vx G. [i' x H(')]} (1.7)

where the contribution of the source fields, Einc and Hin, are now included. For

region 1 below the surface profile, the equations are

2 = -, .x " fdS' (iw•a,••,(T,T). [i,' x H(f)]

+ Vx ~, [i' x (e)]} (1.8)

n x H1 (T) = - x/dS' {- (, '). x
2

+ Vx G~, [n' x 7H()] (1.9)

where the incident field is no longer included since there is no source distribution

in the space below the surface profile, medium properties are modified to 61 and IL,

and the minus sign results from an assumed upward pointing definition for A'. Note

that the continuity of tangential electric and magnetic fields is implicit in the above

equations, since the same sources produce the total fields above and below the surface

profile. Equations (1.6-1.9) are the equations that will be solved for surface profile

tangential fields throughout this thesis. These four vector equations, however, are

not independent, as the magnetic field integral equations can be derived by taking a

curl of the electric field equations. Thus, use of one or a combination of equations

(1.6-1.7) along with one or a combination of equations (1.8-1.9) is required in order

to model the rough surface scattering problem. Chapters 3 and 6 of this thesis follow
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this procedure to formulate the problem of scattering from a penetrable rough surface.

In the limit that the medium below the surface profile is perfectly conduct-

ing, tangential electric fields on the surface profile vanish and the relavent equations

become

0 = i x Ei,, + i x dS' {iwmpG(Ti') - [W'x H(f')]} (1.10)

x Ho) - [(1.1)
2 x Hinc+ x f dS' Vx G. [' x H(')] (1.11)

known in the literature as the electric field integral equation (EFIE) and the magnetic

field integral equation (MFIE) respectively [3]. Either of these equations can be used

to solve the perfectly conducting halfspace medium problem, although there are some

important distinctions for thin conductors [4] which are not considered here. Since

the MFIE formulation usually results in a better conditioned numerical solution [3],

it is applied in Chapters 4 and 5 of this thesis to the perfectly conducting surface

problem.

Another simplification of integral equations (1.6-1.9) is possible in the 1-D sur-

face case. The symmetries associated with a I-D problem allow knowledge of all field

components to be obtained from knowledge of the transverse electric and magnetic

field components, E, and Hy in Figure 1.1. Thus, solution of the surface scattering

problem requires knowledge of these field components alone on the surface profile.

Furthermore, for fields incident in the x - z plane alone, there is no coupling between

these TE and TM fields, so that two sets of three field components exist independently.

Following [1], the Huygens' principle integral equations above can be manipulated into
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the vector Kirchhoff diffraction integrals,

= Einc + dS' (7') g, g (, 7') (1.12)

for the electric field in region 0 and similar equations for the electric and magnetic

fields in regions 0 and 1. Since fields in the I-D problem are determined by knowledge

of Ey and Hy alone, equations for the I-D problem become

Ey()= Eiy+ dS' Ey(7') g(,) g (, 7') Ey(?) (1.13)

H ) = Hinc + dS H, (') g( g, (7') ;, H') (1.14)2 _n On
E,2(( ') (, ') o

Sdr Eg(') )(OE-') (1.15)

2y( -; dS' Hy(T')Og) (' ) -gT (T T') ( OHy(') (1.16)
2 On On

where continuity of tangential field components yields

OEy(7') __/E()')n a a(OF (1.17)

aH, (') OH( (1(18')On = - \jOn ) (1.18)an an

where a = 1 for the TE case (non-magnetic medium) and / = 1 for TM and in-planeE2

incidence is assumed. Furthermore, integration of these equations can be performed

over y, along which tangential field components are constant, to obtain a Green's
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function of

gj(p') Ho" - ) (1.19)
4

where Ho1 ) indicates the zeroth order Hankel function of the first kind and P reflects

the x - z plane distance as opposed to the three dimensional distance Y. One di-

mensional surfaces are studied in Chapter 2, and the above equations are used to

determine surface profile tangential field components.

1.2.2 Definition of field vectors

In this thesis, a spherical coordinate system will often be used to describe incident

and scattered field directions. For an incident electromagnetic plane wave, ýie i i,

propagating in direction ki, the following definitions are used:

kix = k sin Oi cos qi

kiy = k sin Oi sinq i

kiz = -kcosOi (1.20)

where Oi refers to the incident polar angle, qi to the incident azimuthal angle. Two

unit vectors labeled hi and iji, for horizontal and vertical polarizations respectively,

orthogonal to this direction are defined as

hxkih i = < -~ sin Oi + ý cos Oip x kil
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ji = hi x ki = -x cos Oi cos Oi - ý cos 0i sin Oi - z sin Oi

Scattered fields are observed in the far field, where they consist of outward

propagating spherical waves, and scattered field propagation and polarization vectors

are defined as

ksx = k sin 0, cos 0,

ksy = k sin O0 sin 0,

ksz = k cos 0, (1.21)

xxk 8hs = x = -_ sin q, + ý cos o,

8, = hS x ks = I cos 0, cos q, + ± cos 0, sin 4, - z sin O,

where 0s refers to the scattered polar angle, 0, to the scattered azimuthal angle. In

this notation, the forward scattering direction corresponds to 0, = Oi and 0, = 0i,

while backscattering is represented by either 0, = -Oi, /, = Oi or O, = 0i, 8, = 0i +7r.

1.2.3 Definition of active remote sensing quantities

Knowledge of the electric and magnetic fields throughout all of space implies a com-

plete solution of the problem of Figure 1.1 in the deterministic surface case. Knowl-

edge of the statistical properties of electric and magnetic field random variables is

implied in the random surface case. However, many systems used in active and pas-
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sive remote sensing measure only a small fraction of this information, and often report

scattered field amplitudes alone with no phase information. The specific terminology

used to describe scattered powers received in active remote sensing is reviewed in this

section.

Active remote sensing involves use of a radar system to transmit an incident

electromagnetic wave onto the medium under view and measurements of scattered

fields or power are reported. The power received in an ideal monostatic radar system

for a power transmitted Pt is given by the radar equation as

G2 A2
Pre = Pt (1.22)

(4r)3R4

where Gt represents the gain of the radar antenna, A is the wavelength, R the range

from transmitter to target, and a is a quantity describing the target known as the

radar cross section. Radar cross section a is defined as the area of an equivalent

isotropic radiator that would produce the same scattered power at the receiver as the

target, and is a function of frequency, incidence and scattered angles, polarization,

and target physical properties. In the remote sensing of geophysical media, radar cross

sections are usually reported as normalized cross sections, aO, defined as ( where A

is the area illuminated by the transmitted antenna pattern. Only normalized radar

cross sections will be reported in this thesis, so the a notation will be used to indicate

0o only henceforth.
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A specific definition for the far-field normalized bistatic cross section is given by

cep (Os, 40 , Si, q1) = lim 4irR 2 fEaj 2  (1.23)
R-*oo AIE ') 12

where a, 3 = h, v represent the polarization of the scattered and incident waves re-

spectively, R is the range from the target to the observation point, E8 is the scattered

field amplitude, E i is the amplitude of the field incident from direction (Oi, ij), and

A is the geometric area of the target. The above cross section is defined so that

integration of ahep + U, over all of space should give 4ir cos Oi for power conservation.

Monostatic radar systems measure the radar cross section only in the backscattering

direction. Both monostatic and bistatic radar system configurations are considered

in this thesis.

An alternate quantity 7, =, is also commonly used and will be defined ascos Oi

the normalized bistatic scattering coefficient in this thesis. This scattering coefficient

is normalized by the integration of ift Sinc, where Sinc is the Poynting flux density of

the incident wave, over the surface profile rather than SincA used for a. The factor

of cos Oi above results for plane wave incident fields.

For random surfaces, oa• is defined in terms of the ensemble average scattered

intensity as

47rR2 1 Ea |2
acp(0s, ¢s, 0i, 0i) = lim (1.24)

R-4oo A E 2

where the < - > notation above indicates an ensemble average over realizations of the

surface stochastic process. Furthermore, the above quantities can be separated into
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a coherent and incoherent part, defined as

4R 2 E > 12
Z' (0s, C s, 0i, 1i) = lim (1.25)

aaoo AE i)12

and

41rR2 < Eap > 12
OW (Os, IA, Ai, -- lim < > (1.26)

aRoo A|E ) 2

where the sum of the incoherent, u , and coherent, auo, parts is the same as (1.24).

This distinction will prove useful in Chapter 5 when comparing finite size surface

simulations with infinite size surface theories.

In polarimetric active remote sensing, measurements are made of correlations

between polarization amplitudes in addition to the power measurements discussed

above. The most commonly used additional parameter in polarimetric active remote

sensing is the Thh, a,, correlation parameter, p, defined as

p = lim <EhhE'v > (1.27)R-Ioo hIEv I

Measurement of rho implies a radar system capable of measuring phase differences

between received polarization amplitudes. The rho parameter has been shown useful

in identifying the similarity of hh and vv scattering mechanisms, since large values of

rho imply similar phases in these scattered fields.
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1.2.4 Definition of passive remote sensing quantities

In passive remote sensing, radiometers are used to measure thermal noise power emit-

ted from the object under view. The level of noise power measured is described in

terms of a brightness temperature, which is again a function of frequency, observation

angle, polarization, and medium properties. In addition, correlations between hor-

izontally and vertically polarized brightnesses are measured in polarimetric passive

remote sensing. The brightness temperature Stokes vector measured in polarimetric

passive remote sensing is defined as

(EhE*)

TB = 1- _ U IE (1.28)C U 7C 2Re(EEh)
V 2Im(EE) (1.28)

In the above equation, Eh and E, are the emitted electric fields received from the

horizontal and vertical polarization channels of the radiometer, 77 is the characteristic

impedance, and C = K/A2 with K denoting Boltzmann's constant, A the wavelength.

The first two parameters of the brightness temperature Stokes vector correspond to

received powers for horizontal and vertical polarizations, respectively. The third

and fourth parameters correspond to the complex correlation between electric fields

received by the horizontal and vertical channels. These four parameters are labeled

TBh, TBv, UB, and VB respectively in this thesis.

It is shown in [5] that the third and fourth Stokes parameters may be related to

the brightness temperature in a 45 degree linearly polarized measurement (TBp) and
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a right-hand-circularly polarized measurement (TBr) as follows:

UB = 2TBp -TBh -TBv (1.29)

VB = 2 TBr -TBh -TBv (1.30)

Thus, to compute all four parameters of the Stokes vector, the brightness temper-

atures in horizontal, vertical, 45 degree linear, and right-hand-circular polarizations

are first calculated, and the above equations are used to obtain UB and VB.

The emissivity of an object is defined as the ratio of the brightness temperature

emitted by an object to its actual physical temperature, under the assumption that

the object is at a constant physical temperature, Tphys,

TBa = ea,(, ¢)Tphys (1.31)

In the above equation, the subscript a refers to the polarization of the brightness

temperature, 0 to the polar observation angle, and ¢ to the azimuthal observation

angle. Through the principles of energy conservation and reciprocity, Kirchhoff's Law

relates this emissivity to the reflectivity of the surface [6]:

ea(0, ¢) = 1- ,ra(9, ) (1.32)

The reflectivity ra(9, €) for the given incident polarization a is defined as the

fraction of the power incident from direction (0, ¢) that is rescattered and can be

evaluated by integrating the bistatic scattering coefficients Yba(8', 0'; 0, €) over all
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scattering angles in the upper hemisphere and summing the results of both orthogonal

scattering polarizations:

ra(0, ) = d' sin 9' j de'%Yba(0', 1'; 9, 0) (1.33)

In the expression of the bistatic scattering coefficient, (9, q) and (0', 0') represent

the incident and the scattered directions, respectively, and the subscripts a and b

represent the polarizations of the incident and the scattered waves, respectively.

Thus, to calculate the fully polarimetric emission vector, the bistatic scattering

coefficient for each of four polarizations is first calculated and integrated over the

upper hemisphere to obtain the reflectivity for that particular polarization. Multipli-

cation of the corresponding emissivity by the physical temperature of the object under

view yields the brightness temperature for this polarization. The fully polarimetric

brightness vector is then calculated as described previously.

1.3 Review of Approximate Theories

The solution of integral equations (1.6-1.9) is very difficult, given the arbitrary surface

profile S'. Analytical solutions to date have only been possible through the use of

approximations to reduce problem complexity. The approximations made are valid

for certain types of surfaces and scattering mechanisms, but neglect the contribution

of other scattering mechanisms and thus are not accurate in general. A variety of such

approximations have been studied in the literature for 1-D and 2-D, perfectly con-

ducting or penetrable surfaces [6]-[27]. Two of the most commonly used approximate
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theories are the physical optics approximation, or Kirchhoff approach, and the small

perturbation method. Each of these approximations are discussed in more detail be-

low, followed by brief sections on the composite surface model to be investigated in

Chapter 5 and on other surface scattering theories proposed in the literature.

1.3.1 Physical optics approximation

In the physical optics (PO) approximation, discussed in [8], tangential fields on the

surface profile are assumed to be the same as those that would exist on a plane tangent

to each point on the surface, as shown in Figure 1.3. Thus, given an incident field and

the height and first derivatives of the surface at a given point, the tangent plane can

be constructed, the incident field resolved into its locally TE and TM components,

and the total field calculated as the sum of the incident and reflected fields on the

interface. This procedure is repeated for every point of the surface profile to generate

tangential fields over the entire surface, which constitutes solution of equations (1.6-

1.9). The solution process is simple for a deterministic surface, and can be applied in

a Monte Carlo simulation for randomly rough surfaces. However, the simplicity of the

physical optics approximation also lends itself well to analytical averaging techniques

in the randomly rough case, especially for a Gaussian stochastic process.

For a perfectly conducting 2-D Gaussian process surface, the PO approximation

yields [6]

k2 1 + cos Oi + cos 0 - sin Oi sinOs 2

7F cos Oi + cos 0,

Sdx' Jdy'e"I 2k {e2k C(x',y') 1eikdxX'+ikdy' (1.34)
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Figure 1.3: Physical optics approach to surface scattering
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for the normalized incoherent co-polarized bistatic cross section in the plane of inci-

dence q = 0, where kd = k- - ks, o2 is the variance of the rough surface, and C(x', y')

is the surface correlation function. A numerical evaluation of this integral will be used

in Chapter 5 to determine PO cross sections for an ocean surface model. However,

an examination of this equation reveals it to be an integration of a rapidly decaying

function in the large kad, case, making numerical evaluation of this integral difficult

for arbitrary C(x', y') and a. An analytical evaulation of the above integral is possible

for some specific correlation functions, including a Gaussian correlation function, and

results in an infinite series expression. A stationary phase integration method can

also be used in the large ckdz case, which results in the geometric optics (GO) limit

to equation (1.34) [8]:

k2 1 + cos Oi + cos 08 - sin Oi sin O0 2

7F cos Oi + cos 08

4- k 2 + k y

2kexp2 2 C"(0) 2eC( (1.35)

The GO expression above can be interpreted as the cross section of a flat plane

multiplied by the probability of obtaining a tilt angle such that the plane is normal

to the incident plane wave. The a2 C"(0) terms above can be shown to be equal to

the variance of the slope of the Gaussian stochastic process describing the surface.

Note that both the PO or GO solutions above predict no differences between

hh and vv results for perfectly conducting surfaces, and both also predict no cross

polarized fields in the backscattered direction. These results can be explained due to

the single scattering nature of the PO and GO solutions [28]. Effects such as shadow-
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ing and feature diffraction are also neglected, although attempts have been made to

include shadowing through the use of "shadowing functions" in the analytical aver-

aging procedure [10]. Physical optics solutions are therefore expected to be accurate

only when multiple scattering, shadowing, and diffraction do not contribute signif-

icantly to the final field solution. Thus, surfaces with fairly small slopes and large

radii of curvature, which limit multiple scattering effects, and near-forward scatter-

ing observations, which limit the effects of shadowing, are required. No restrictions

are placed on overall surface rms variations however, as long as slopes remain small.

Studies of the validity of the PO and GO approximations have been performed for

1-D surfaces through comparison with numerical methods [29]-[33], primarily for sur-

faces with Gaussian correlation functions, and have quantified the above conditions

somewhat. However, comparisons for 2-D surfaces are much more limited.

1.3.2 Small perturbation method

A second approximate method for solving the rough surface scattering problem in-

volves a perturbation theory originally proposed in [7]. Field solutions are expanded

in perturbation series assuming that kizf(x', y'), kizif(x', y'), 9f W',) and 6f(x'"Y') are

small parameters, where k1zi is the 2 component of the transmitted wave vector.

Thus, the small perturbation method (SPM) requires that surface heights be much

smaller than a wavelength and small surface slopes in order for the series to con-

verge, as shown in Figure 1.4. The zeroth order solution consists of the specularly

reflected and trasmitted coherent waves, and the first order term contributes only to

the incoherent scattered fields. The second and higher order solutions modify both
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z

Figure 1.4: Small perturbation approach to surface scattering

the coherent and incoherent fields, but are much more computationally complex.

For a perfectly conducting 2-D Gaussian process surface, the SPM approxima-

tion yields

Oab(Oi, 08) = 16r cos 2 08, cos 2 OifabW(kxs - kxi, kys - kyi) (1.36)

for the normalized incoherent bistatic cross section in the plane of incidence to first

order, where

= 1Ah
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(1 + sin 2 0i)4fAV = (1.37)cos4 O0

fhv = fvh=0. (1.38)

and W(k,, ky) is the power spectral density (or "spectrum") of the surface,

W(k,, k,) = 12 J dx dy e kik k±+ikyy 2C(x, y) (1.39)

The SPM result above illustrates the "Bragg" scattering response in rough surface

scattering, which approximates the cross section as proportional to the spatial fre-

quency in the surface which would cause a periodic surface Floquet mode to prop-

agate in the observation direction. Note the polarization dependence of the above

cross sections which contrasts with the physical optics result obtained above. The

discrepancy between PO and SPM cross sections in the small surface height limit, for

which both theories should apply, has been addressed in the literature [28] and elim-

inated through an iteration of the PO result. Thus, the predicted SPM polarization

difference is accurate for small surface heights and slopes. Although the first order

solution predicts no depolarization in the plane of incidence, second order incoherent

fields yield a cross polarized contribution [34].

While the SPM is an exact perturbation solution, and therefore includes contri-

butions from all possible scattering mechanisms for surfaces for which it converges,

it clearly is limited by the accuracy of its zeroth order solution. For surfaces where

significant scattering occurs, energy in the specularly reflected and transmitted waves

is extinguished and spread into other propagation directions, invalidating the zeroth
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order fields and increasing the number of required terms in the perturbation solution.

Studies of the validity of the SPM approximations have been performed for 1-D sur-

faces through comparison with numerical methods [31]-[33], [35], again primarily for

surfaces with Gaussian correlation functions. Comparisons for 2-D surfaces again are

much more limited.

1.3.3 Two scale model

A third approximate method in surface scattering is used for surfaces which contain

a large range of spatial scales, so that small surface variations can be considered

to overly larger scale variations as shown in Figure 1.5. An ocean surface is an

example of such a "composite" surface, due to presence of both long gravity type ocean

waves and short capillary type waves simultaneously. Theories for composite surfaces

have been considered by a number of authors [36]-[43] and involve a combination

of the PO or GO solutions, which model the large spatial variations, and the SPM

solution, which models the small spatial scale contributions. Additionally, the SPM

contribution is averaged over a distribution of tilt angles due to the tilting effect of

the larger spatial scales. The composite surface, or two scale, model has had great

success in matching experimental backscattering data from the ocean at a variety

of frequencies [42]. However, the theoretical basis of this model remains unclear, as

the separation between "small" and "large" scales in the ocean requires choice of a

spectral parameter. The composite surface model will be considered in more detail in

Chapter 5 when a numerical study of two dimensional ocean scattering is performed.
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z

Figure 1.5: Composite surface approach to surface scattering
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1.3.4 Other methods

A number of additional analytical theories have also been proposed for the rough

surface scattering problem, especially within the last decade, based on alternate ap-

proximate methods [17]-[27]. None of these approaches, however, have been as gener-

ally accepted or as widely used as the three theories mentioned previously. There is

currently a great deal of interest in evaluation of these new approaches and in com-

parison of their predictions with numerical and other analytical solutions. However,

since the primary concern of this thesis involves the application of numerical models

to physical problems of interest, an evaluation of these alternate scattering theories

will not be pursued. Future studies of the new analytical models should be possible

with the numerical methods developed in this thesis, however, and could potentially

lead to a better understanding of the usefulness of these approaches.

1.4 Numerical Methods for Surface Scattering

Many numerical methods have been applied to the solution of Maxwell's equations,

each with its own distinct advantages and disadvantages. The method of moments

(MOM), developed in the mid 1960's [44]-[45], was the first widely used exact nu-

merical technique for electromagnetics. The method of moments solves an integral

equation at a single frequency for the unknown fields in a volume or on a surface by

discretizing the integral equation into a matrix equation and then solving the matrix

equation. Also proposed in the 1960's was the finite difference time domain (FDTD)

algorithm of Yee [46], which solves Maxwell's equations in the time domain using a
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centered difference, time marching approach. Since the 1960's, numerical methods

for solving Maxwell's equations have greatly proliferated to include finite element,

boundary element, multipole, transmission line, and a number of other methods [47].

Although many numerical methods have been applied to the rough surface scattering

problem [48]-[51], the most widely used has been the method of moments. The method

of moments is particulary advantageous for single frequency surface scattering prob-

lems because it requires discretization in a maximum of two dimensions compared

to the three dimensional discretization needed in finite element and finite difference

techniques, resulting in a much smaller number of unknowns to be determined by the

numerical method.

Numerical surface scattering models based on the method of moments have

been previously applied in a number of areas [29]-[33], [35], [52]-[56] and have been

successful in predicting many phemonena. Standard approaches to the MOM perform

the required matrix inversion using a direct matrix solver, for which computational

time scales as the third power of the number of unknowns in the matrix. This rapid

increase in computational requirements with number of unknowns limited previous

simulations to relatively small surfaces rough in one direction only. However, more

efficient approaches to the method of moments have recently been developed [57]-[60]

which enable the solution of much larger problems, so that surfaces rough in two

dimensions or very long surfaces rough in one dimension can be studied. These more

efficient algorithms and parallel computing techniques will be applied in this thesis

to investigate very large scale one dimensional and two dimensional rough surface

problems.



CHAPTER 1. INTRODUCTION

The next section reviews the derivation of the method of moments, and a brief

discussion of matrix equation solution methods follows. A more detailed description

of the method of moments can be found in reference [3].

1.4.1 Method of moments

As mentioned previously, a method of moments solution to equations (1.6-1.9) involves

discretizing these equations into a matrix equation which is then solved to obtain the

expansion coefficients of unknown surface tangential fields. Unknown tangential fields

are expanded into a set of "basis" functions as

.-• x H()] = EanP,(T) (1.40)
n

0.a )] = ZbnPn(T) (1.41)
n

S" [ X E (r)] = E cPn() (1.42)
n

9-ft FT] = ZdnPn(f) (1.43)

where an, bn, cn, and dn are the unknown constant expansion coefficients of these

fields and Pn(T) is a user selected basis function, which should in some sense provide a

good approximation to the expected behavior of surface fields. Basis functions Pn (T)

can be chosen to be non-zero only over a small portion of the domain of interest

("subdomain" basis functions), or may range over the entirety of the domain ("entire

domain" basis functions). An exact expansion of arbitrary fields into a specified

set of basis functions is possible only for a very limited set of solutions, and may
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often require a large set of expansion functions to achieve high accuracy. However,

the advantage of the method of moments lies in the fact that its solutions can be

shown to satisfy a variational principle, so that they are stationary to first order with

respect to basis function variations [3]. A demonstration of convergence of method

of moments solutions with respect to the number of unknown basis functions used is

still always required, however, to insure that an accurate representation of tangential

fields is being obtained. Common choices for basis functions include pulse (equal

to one only over a small portion of the domain, equal to zero elsewhere), triangular

(piecewise linear over a small portion of the domain, zero elsewhere), and sinusoidal

(entire domain) functions.

Substitution of equations (1.40-1.43) into (1.6-1.9) converts the surface integrals

of these equations into sums of constants times integrals involving vector products

of the Green's and basis functions. However, evaluation of these integrals is not

possible since the observation coordinate of the Green's function is still unspecified.

An inner product approach is used to solve this problem, where another user specified

set of functions, known as the "weighting" functions w,,('), is multiplied into each

equation, and an integral over the domain of the weighting function is performed. This

procedure leads to the aforementioned matrix equation, since inner products with each

weighting function result in a single equation, or row of the matrix, involving sums

of the unknown expansion coefficients, which make up the column vector multiplied

by the matrix:

(1.44)
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The right hand side column vector, b results from the inner product of the weighting

functions with the source terms of Einc and Hinc in the integral equations. Individual

matrix elements of Z correspond to double surface integrations over the domains

of the weighting and basis functions respectively which involve vector products of

the weighting, basis, and Green's functions. Evaluation of these integrals can be

performed either analytically, numerically, or through the use of approximations.

Solution of this matrix equation yields the expansion coefficients an to dn which

can then be used in a Huygens' priciple integral to evaluate scattered fields for any

specified observation location.

The moment method codes of this thesis will use exclusively pulse basis func-

tions and delta weighting functions, so that integral equations (1.6-1.9) are satisfied

at a discrete set of points on the surface profile. This technique, known as "point

matching", has been applied successfully to a number of problems in the literature

[3] and found to require a sampling rate ranging from 4 to 10 points per electro-

magnetic wavelength to obtain reasonable accuracy. Although pulse basis functions

represent a low order expansion of surface tangential fields, the reduction in com-

plexity associated in matrix element integrals makes the iterative matrix equation

solution techniques to be discussed in the next section possible. Higher order basis

and weighting functions have been found in the literature to reduce the number of

unknowns required to solve a given problem, but the complex integration of matrix

elements required can sometimes be much more time consuming. Such integrations

make the matrix equation solution techniques of this thesis more difficult, and there-

fore are not considered. Demonstration of model convergence with respect to the
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number of unknowns used will be performed throughout the thesis to indicate that

an accurate solution is indeed being obtained by the point matching method. Note

that sampling is strictly required on the scale of the shortest electromagnetic wave-

length in the problem, so that problems involving high dielectric constant materials

can potentially cause a great increase in the number of unknowns. Chapter 6 will

discuss a method for avoiding this problem for the case of a highly lossly dielectric

medium.

1.4.2 Matrix equation solution methods

The solution of matrix equations such as (1.44) is a standard mathematical proce-

dure which is often required in numerical methods. However, for matrix equations

which involve more than a few thousand unknowns, standard direct inversion tech-

niques become very limited [61]. Given the very large matrix equations to be studied

in this thesis, more efficient techniques are required if solutions are to be obtained

with reasonable amounts of computational time. Higher efficiency in solving matrix

equations is obtainable through the use of iterative, instead of direct, solutions [62].

Iterative matrix equation solutions have been studied extensively, and have greatly

proliferated within the past decade to include a wide range of techniques. Most of the

commonly used iterative approaches are based on variants of the conjugate gradient

algorithm of [63], which minimizes matrix equation residual error at each iteration by

expanding the solution into a set of orthogonal vectors. For the non-symmetric, com-

plex matrices of this thesis, a variant known as the bi-conjugate gradient-stabilized

algorithm (BiCGSTAB) is used [62],[64], which has no guarantee of convergence, but
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has been observed to converge more rapidly than other techniques for these matrices.

The BiCGSTAB algorithm is

Initialize, for an initial guess xo:

n- I

begin loop:

Pn-1 (Tn-)

if n= 1 then

Pn - rn-1

else

3n-- 1 ýPn-1wn-1
Pn-2an-1

n n-1 -1 (-1 - Wn-1U-1

endif

n +- Z5n

S9n - Tn-1 - nvn

tn -Z-n

Wn (ti, - n) / (t, ti)

Xn - Xn-1 + nPn + Wn-n

Tn -9n - wntn

test for convergence

CHAPTER 1.
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exit if converged

end loop

where the (~, b) notation refers to the complex inner product ,n a*bn. Convergence

is tested for in the complex norm of the F vector, which is the residual error of the

matrix equation at a given iteration.

The BiCGSTAB algorithm requires two matrix multiplications on each iteration,

and therefore is an order N2 algorithm. Although this represents a great improve-

ment over the order N3 direct methods when the iterative solution converges rapidly,

even order N2 techniques can be prohibitive for large matrices. Chapters 2 and 4

of this thesis describe recently developed iterative techniques, known as the banded

matrix flat surface iterative approach (BMFSIA) [57] and the sparse matrix flat sur-

face iterative approach (SMFSIA) [59] which further improve the efficiency of the

BiCGSTAB algorithm by peforming matrix multiplies more rapidly. It is these new

algorithms which enable the large scale surface scattering simulations of this thesis

to be performed.

1.4.3 Computational facilities

All of the numerical results to be presented were generated using either a DEC AXP

3000 - M800 workstation with 416 megabytes of onboard RAM, capable of approx-

imately 375 MFLOP operation, or the IBM SP2 400 node parallel computer at the

Maui High Performance Computing 'Center (MHPCC) [65], where access has been

allowed in the initial startup phase on this new center. The IBM SP2 is a collec-

tion of 400 RS-6000 (based on a POWER2 CPU) workstations, capable of around
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250 MFLOP operation individually, networked through a high performance commu-

nication system to allow groups of nodes to operate in combination as a parallel

processor. Software libraries are available at the center to implement inter-process

communications using simple routine calls, so that development of parallel codes is

relatively efficient. The codes of this thesis implemented with the MHPCC used the

parallel virtual machine (PVM) message passing library [66], which is a public do-

main package for UNIX communications. Since many of these codes involved Monte

Carlo simulations, inter-process communication was often limited to simple process

starting and monitoring routines. However, the codes of Chapters 2 and 6 make use

of parallel computations and therefore involve more process communications. The

parallel algorithms used will be described further in their respective chapters.

1.5 Overview of Thesis

The remaining portion of this thesis consists of five distinct applications of numerical

methods to surface scattering problems followed by a concluding chapter.

In Chapter 2, a 1-D numerical model for VHF propagation is developed using

the BMFSIA. VHF fields are used for both radio and television broadcasting, and also

for low resolution radar measurements, and understanding field strengths produced

by transmitting sources over inhomogeneous terrain is important in both commer-

cial and military applications. Model predictions are compared with experimental

data from Lincoln Laboratory and with other approximate methods. Results of the

study indicate the level of sensitivity of propagation models to input terrain profiles,

and validate use of the parabolic wave equation technique for further propagation
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predictions.

Chapter 3 presents a numerical model for the prediction of 2-D periodic surface

polarimetric brigthness temperatures. An extended boundary condition (EBC) ap-

proach is adopted based on the electric field integral equations, resulting in a mode

matching type solution for the Fourier expansion coefficients of tangential surface

fields. A study of pyramidal surface polarimetric passive remote sensing is performed,

and illustrates the sensitivity of the third Stokes parameter, UB, to medium azimuthal

asymmetry. The model developed can also potentially be applied for treatment of

grazing angle scattering problems and for microwave absorber design.

Backscattering enhancement from 2-D perfectly conducting randomly rough sur-

faces is studied in Chapter 4. Backscattering enhancement is primarily a multiple

scattering effect which can occur for surfaces with large slopes, and therefore is not

predicted by any of the analytic theories. A numerical model using the SMFSIA

in a Monte Carlo simulation is developed in Chapter 4, and simulation results are

compared with millimeter wave laboratory data from the University of Washington.

Gaussian surface processes are assumed, and a Gaussian correlation function is further

specified. Simulations are performed for surfaces with rms heights of one wavelength

and correlation lengths of 1.41, 2, and 3 wavelengths, and clearly show backscattering

enhancement effects.

Active remote sensing of the ocean is studied in Chapter 5, again with the 2-

D perfectly conducting randomly rough surface SMFSIA model applied in a Monte

Carlo simulation. The SMFSIA approach is extended using a canonical grid expan-

sion of weak matrix terms so that the very large surface sizes required to eliminate
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edge effects in backscattering simulations can be treated. Both forward and backscat-

tering are investigated, and an assessment of the analytical approximations in both

of these regions is obtained. In addition, the physical optics approximation for ocean

scattering is investigated through Monte Carlo simulation and used to validate the

method through comparison with the analytically evaluated physical optics integral.

Comparisons with experimental data are made using the composite surface model

suggested by comparison with numerical simulations.

Chapter 6 studies passive remote sensing of the ocean with a penetrable surface

SMFSIA formulation applied again in a Monte Carlo simulation. A modification of

the SMFSIA which enables efficient calculation of fields scattered from a highly lossly

surface such as the ocean without increasing the number of unknowns is developed.

The modified SMFSIA approach is based on the observation that any rapidly varying

fields in the ocean medium are effectively averaged when multiplied by the slowly

varying free space Green's function, so that an averaging of matrix elements in the

ocean medium to free space scale is reasonable. The code is applied to provide some

initial results in a study of ocean polarimetric thermal emission, although computa-

tional limitations prevent a detailed assessment, and the small azimuthal variations

of ocean brightness temperatures obtained make accurate calculations difficult. Re-

sults concerning the influence of different ocean wavelength regions on azimuthal

variations are found to agree with those of the approximate models, and further sim-

ulations using the composite surface model emphasize the importance of an accurate

ocean spectral model in the prediction of ocean polarimetric brightness temperatures.
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A Method of Moments Model for
VHF Propagation

2.1 Introduction

Site specific VHF propagation models remain a subject of continuing interest. A

number of approximate methods exist and have been applied successfully in specific

cases, but the limitations of the approximations of these models remain unclear. One

such model, known as SEKE (Spherical Earth with Knife Edges) [67], uses a weighted

average of analytic solutions for the multipath, spherical earth, and knife edge diffrac-

tion contributions which depends on the transmitter, receiver, and terrain geometries.

Although SEKE has been shown to have good general agreement with experimental

data, some cases exist for which SEKE's predictions are substantially different from

measurements. Another approach which has been studied extensively involves the use

of the parabolic approximation to the Helmholtz equation [68]-[70]. Methods based on

the parabolic wave equation (PWE) neglect the contribution of backscattered fields,

which can become significant when obstacles are near the transmitter. Again, com-
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parisons with measurement data show good general agreement with problems in some

specific cases. For both the SEKE and PWE models, clarification of discrepancies is

difficult given uncertainties both in the underlying approximations and in the input

terrain profiles.

Numerically exact methods have also been investigated for small obstacles [71]-

[72], but the large electromagnetic distances involved in more general propagation

problems makes numerical methods impractical. Given that at 150 MHz, one kilo-

meter of terrain corresponds to 500A, and that typical VHF propagation problems

involve distances in the tens of kilometers, a numerical model needs to be able to

solve problems with profiles the order of tens of thousands of wavelengths long. Such

electromagnetic distances are usually considered too large for numerical methods.

A numerically exact model is desirable because it avoids any approximations in the

solution and can therefore be used to validate other non-exact methods and to demon-

strate conclusively the sensitivity of the true solution to input terrain parameters.

In this chapter, a numerically exact model based on the recently developed

banded matrix iterative approach (BMIA) [57]-[60] to the method of moments is

presented which enables the solution of practical propagation problems. Although

this model remains computationally complex, the iterative method used results in

greater efficiency in the method of moments solution, so that predictions can be

generated from a single DEC AXP 3000 workstation in approximately two CPU days

for a ten thousand wavelength problem. Section 2.2 describes the basic propagation

configuration and reviews the formulation of the method of moments solution. The

method is then. validated in Section 2.3 through comparison with exact solutions
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for some simple geometries, and a parallel implementation which allows the solution

of larger problems in reasonable amounts of time is discussed in Section 2.4. A

comparison of model predictions with experimental data in Section 2.5 shows overall

agreement between the model and measurements to be good, and demonstrates the

sensitivity of terrain based propagation models to input terrain parameters. Section

2.6 compares these predictions with the SEKE and PWE methods, and Section 2.7

presents final conclusions.

2.2 Review of Formulation and Numerical Method

A typical VHF propagation problem involves predicting the power measured by a

receiver as a function of altitude at a given distance away from a like polarized

transmitter and above an inhomogeneous terrain profile, as shown in Figure 2.1.

When distances separating the transmitter and receiver are very large and the terrain

is not rapidly varying on an electromagnetic scale, a Fresnel zone argument can be

applied which illustrates that terrain outside of the plane of incidence has little effect,

so that a two dimensional model is sufficient to capture the physics of the problem.

Thus, the method of moments formulation will assume a surface profile which is rough

only in the plane of incidence (taken to be the x - z plane) and constant perpendicular

to the plane of incidence (the y direction).

As discussed in Chapter 1, for in-plane incidence in a two dimensional problem,

Maxwell's equations decouple into dual equations for TE and TM waves, and a scalar

Kirchhoff diffraction integral in terms of Ey for the TE case and Hy for the TM

case can be applied using the two dimensional Hankel function form of the Green's
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Figure 2.1: Geometry of propagation problem
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function. Equations for a dielectric surface medium are [58]

fda' {Gj(p,1 •)i-. V1 j(pY) - sj(p)Dn. V'Gj(P, IY)} = h1 J'(-8)

where T = Ey for the TE case and Hy for the TM case, j = 1, 2 signifies regions 1

(free space) or 2 (dielectric), hi = 0.5, -0.5 and h2 = 1, 0 for j = 1, 2 respectively.

Also, in the above equation

da'fi = - d' ] dx'd- V (2.1)

(2.2)

and

G ~s ') = 'H(k p,- p40 (2.3)

where kj = wV-f- is the propagation constant in medium j. Boundary conditions

at the interface between region 1 and 2 are

T1(0) = T2(9) (2.4)

for both the TE and TM cases and

i -VIQ1(7 ) = af -V22(.p)

Ps = ix + 9y

(2.5)
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where a = 1 for the TE case (non-magnetic medium) and ' for TM.

The above formulation gives two integral equations in two unknowns (91 and

iA VTJ1) on the surface profile. Applying a point matching method of moments

technique as in reference [58] results in a matrix equation in terms of the unknown

pulse basis function expansion coefficients of these fields, which can be written as

ZI = V (2.6)

where I is a vector containing the expansion coefficients, and V contains the incident

field evaluated at points on the surface profile. Elements of the impedance matrix Z

are proportional to Hankel functions of order zero or order one evaluated at arguments

corresponding to distances between individual points on the surface profile. Tables of

the zero and first order Hankel functions are stored in the computer code implemented

to avoid multiple calls to Hankel routines.

In the banded matrix iterative approach (BMIA) of reference [58], the above

matrix equation is solved iteratively by expressing the matrix Z as the sum of a

strong matrix Z , which contains the elements of Z to within a specified bandwidth

=(w)
from the diagonal, and a weak matrix, Z , which contains the remaining elements.

The weak matrix contribution is included iteratively, so that the solution is obtained

by solving

Z(S) = V (2.7)
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initially and then iterating

Z(s)I(" ) = V - (2.8)

until convergence is observed in 7(n) . The BMIA requires solution of the banded ma-

trix equation on each iteration and then a weak matrix multiply, so that the overall

method is O(N 2) for an N by N matrix, but convergence is typically faster than

other O(N 2) methods. Direct solution of the banded matrix equation is practical

when enough memory resources are available to store the banded matrix. However,

in the case of propagation problems, even storage of the banded matrix is impossi-

ble if a reasonable bandwidth is desired in the computations. Also, relatively large

bandwidths are required in the BMIA due to the fact that weak terms are neglected

entirely in the banded matrix equation solution.

In this chapter, a method similar to those applied for surfaces rough in two

dimensions [59]-[60] is adopted in an attempt to alleviate some of the problems as-

sociated with the BMIA. In this method, known as the banded matrix flat surface

iterative approach (BMFSIA), the original matrix Z is decomposed into the sum of
=(s) =(fa)

the same BMIA strong matrix Z , a new 'flat surface' matrix, Z , which con-

tains an approximation to the terms of the BMIA weak matrix, and a new weak

matrix, Z , which contains the difference between BMIA weak matrix elements and

elements of the flat surface matrix. The flat surface matrix approximates coupling

between points on the surface by assuming that they lie at the same elevation, so
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that matrix elements are evaluated using

G )(f , ') = Ho • jx - x'J) (2.9)

and

n V VG ) (ip, p)Y• = 0 (2.10)

instead of Gj and ~i V'Gj as in the BMIA weak matrix.

Again, the weak matrix contribution is included iteratively, so that the solution

is obtained by solving

(Z + z ())7 (l) = V (2.11)

initially and then iterating

((s) " (fs))7(n+1) V (w)- n ) (2.12)

until convergence is observed in 7(n) . However, in the BMFSIA another iterative

method is used to solve the strong plus flat surface matrix equation on each weak

iteration, resulting in nested iterative methods analogous to those of reference [59].

The advantage of the 'inner' iterative technique, which uses BiCGSTAB solver dis-

cussed in Chapter 1, is that inclusion of flat surface terms is not computationally

expensive since flat surface matrix multiplies can be performed using the FFT. Also,

the conjugate gradient solver of the inner iteration is more easily parallelizable than
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a direct banded matrix solver with no storage, as will be described in Section 2.4.

Once the induced fields on the surface are obtained, the Kirchhoff diffraction

integral can again be used to calculate the scattered field at the receiver and therefore

the total power received. Transmitting antennas are modeled as either electric or

magnetic line sources for the TE and TM cases respectively, so that a zero order

Hankel function incident field is produced on the surface. Although a vertical electric

dipole antenna does not have the same pattern as a horizontal magnetic dipole, the

long distances involved in propagation problems again result in only minor effects due

to differences in antenna patterns.

2.3 Model Validation

To validate the model, comparisons with published results and with exact solutions

for some simple geometries were performed. Issues to be considered in the method of

moments model are the discretization level required, the effect of finite surface size

on the simulations, the importance of retaining all weak iterations in the BMFSIA,

and the necessity of modeling surface medium dielectric properties.

Figure 2.2 compares predicted excess one-way propagation loss (defined as the

ratio of power at the receiver over terrain to the power at the receiver if it were in

free space) at a range of 236 wavelengths for a horizontally polarized (TE) line source

above a flat perfectly conducting plane with the analytical solution. Surface currents

were sampled at four points per electromagnetic wavelength, and the model is seen to

accurately capture the multipath interference effects of this problem. Surface currents
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for a TM line source above a flat impedance plane and for a TE line source in front

of a perfectly conducting semi-cylinder were also compared with references [71] and

[73] respectively and found to be in excellent agreement. Four points per wavelength

sampling was again found sufficient for the TM line source case, but a higher sampling

rate of twenty points per wavelength was required in the TE comparison due to

the need to accurately sample the geometry of a 0.5A radius semi-cylinder. The

simple point matching method of moments used requires high sampling in cases where

surface structures are rapidly varying on an electromagnetic scale. However, since

terrain profiles to be studied with the model are extremely undersampled on an

electromagnetic scale, and therefore very slowly varying, four points per wavelength

sampling is sufficient to model the obtained field variations.

To investigate the effect of finite surface size on model predictions, simulations

were run for the perfectly conducting wedge geometry of reference [74], shown in

Figure 2.3, at 100 MHz and TE polarization. Results for total surface sizes, L, of 5

km (1, 666A) and 10 km (3, 333A) are plotted in Figure 4, and demonstrate that finite

surface size has little effect on model predictions. Predictions for a surface size of 5

km were also compared with the GTD approach of reference [74] and again found to

be in excellent agreement.

Since typical propagation problems involve very large distances, an initial con-

sideration of the BMFSIA technique suggests that complete neglect of the weak matrix

might be reasonable. This issue is studied in Figure 2.5, where the results of Figure

2.4 for a surface size of 1, 666A are plotted at each weak iteration of the BMFSIA,

using a bandwidth of 1000 points or 250A. These curves clearly demonstrate the im-
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Figure 2.3: Wedge geometry for surface size tests
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portance of including weak matrix contributions, especially in the diffraction region,

where a convergent result is not obtained until an error of less than 0.1 % is reached

in the BMFSIA.

A final issue in the method of moments model involves the importance of mod-

eling surface medium dielectric properties. As is discussed in [69], both TE and TM

polarized model predictions are usually fit well by assuming a TE polarized transmit-

ter and a perfectly conducting surface. This is demonstrated in measurement data as

well, where little difference is observed for the same profiles measured in TE or TM

polarizations. Modeling the surface as being perfectly conducting is advantageous

since one of the two unknown fields on the surface vanishes and the matrix equation
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reduces in size by a factor of two. In addition, the need to sample surface fields

on the scale of the wavelength inside the medium is eliminated. To investigate this

point, simulations were run for the wedge geometry of Figure 2.3, using both perfectly

conducting and penetrable media in TE and TM polarizations. A dielectric constant

of E = (6., 0.63) was assumed for the penetrable case for matrix sizes of 6, 664 in

the perfectly conducting code, and 32,768 in the penetrable code. The additional

factor of V-6 in penetrable matrix size results from sampling surface field unknowns

on approximately the scale of the wavelength in the surface medium.

Predicted one way propagation losses are shown in Figures 2.6 for TE and TM

polarizations. The comparison shows little difference between the penetrable surface

TE and TM predictions and the perfectly conducting TE prediction. The perfectly

conducting TM prediction is seen to differ, as can be explained by observing that for

TM polarization, the Brewster angle effect results in a reflection coefficient of +1 in

the perfectly conducting case as one approaches grazing, but -1 in the penetrable

case for angles closer to grazing than the Brewster angle. Due to similarity of the

TE and TM predictions, simulations in the following sections were run only for TE

polarization and a perfectly conducting surface profile.

2.4 Parallel Implementation

One particular terrain profile of interest, Magrath NW37, which will be described in

more detail in the next section, has a length of 37 km, or 20, 600A at the 167 MHz

frequency where measurement data were taken. An additional 14 km buffer zone was

added to the terrain profile to avoid any potential edge effects, for a total of 113, 500
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unknowns in the BMFSIA solution. The BMFSIA code was run for this case on a

DEC AXP 3000 Alpha workstation and was found to require approximately one week

of CPU time. To reduce this large time requirement, a parallel implementation of the

BMFSIA was developed and is described in this section.

Since the BMFSIA is composed of two iterative methods which both require

matrix multiplies with a vector, parallelization of the code is achieved by performing

these multiplies in parallel. A simple master-slave configuration is used, in which

the master program broadcasts the vector to be multiplied to S slave programs,

which then perform the multiplication for N/S rows of the matrix. These slaves

then broadcast their individual solutions back to the master program, which adds up

the results to obtain the matrix vector product. This code was implemented on 16

nodes of the IBM SP/2 parallel computer at the Maui High Performance Computing

Center, using the public domain Parallel Virtual Machine (PVM) code described in

Chapter 1 as the message passing library. Due to the large size of the problem and the

need for recalculation of all matrix elements on every iteration, communication costs

represent relatively little of the overall program time, so that the parallelization for

this code is relatively efficient. Comparison of the workstation and parallel versions

showed a parallel speed-up factor of approximately 70% of the number of nodes used

in the calculations.

Several additional methods were used to reduce computational time as well.

A physical optics initial guess was used to begin the iterative process and found

to reduce the number of conjugate gradient iterations required in the first order

solution. A diagonal block pre-conditioner was used in the conjugate gradient method,
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and matrix multiplies made use of the semi-symmetric properties of the impedance

matrix. Finally, an asymptotic expansion of the Hankel function was used in the slave

program weak matrix multiply routines, so that storing the Hankel function table at

large distances was not required.

2.5 Comparison with Experimental Data

A large database of propagation measurements for sites in Canada has been compiled

by Lincoln Laboratory, as is described in [67], for both TE and TM polarizations.

Terrain profile data were obtained from both hand-read Canada Map Office (CMO)

maps and Defense Mapping Agency (DMA) digital files at resolutions of 30 and 100

m, respectively. Three locations (called Beiseker N15, Magrath NW27, and Magrath

NW37, respectively) for which SEKE predictions deviated from measured data were

selected for use in the method of moments simulation. Measurements were taken

at 167 MHz with a transmitting antenna height of 18.3 m above ground level. At-

mospheric and Earth curvature effects were included in the model by assuming the

standard 4/3 Earth radius approximation for a linear atmospheric refractive index

profile, so that specified terrain elevation data were fit to a sphere of radius 4/3 times

the true Earth radius.

Figures 2.7 to 2.9 show comparisons between model predictions and measure-

ment data for the three locations using CMO terrain profiles. Overall agreement is

observed to be very good for these cases, and the method of moments model is seen

to capture the multipath and diffraction contributions accurately both in the interfer-

ence and shadowed regions. However, some discrepancies, particularly in the location
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of the first multipath null, exist which require clarification.

One possible source of these differences is the accuracy of input terrain profiles.

Figures 2.10 to 2.12 compare the CMO and DMA profile method of moments predic-

tions for the same three locations. Results are seen to be very sensitive to input terrain

data, especially in the Beiseker N15 case (Figure 2.10), where profile differences close

to the transmitter location influence the specular point slope and significantly alter

predictions. Predictions using the higher resolution CMO profiles are seen to be closer

to measurements for all three cases. Figures 2.10 to 2.12 demonstrate that accurate

terrain profile measurements are required in order to obtain accurate predictions of

propagation loss.

2.6 Comparison with Other Propagation Models

Figures 2.13 to 2.15 compare SEKE, PWE, and method of moments predictions for

both CMO and DMA profiles of the three locations. The 1994 beta version of SEKE

was used in these comparisons, which is a revision of the 1986 version described in

reference [67] with improvements to the four basic SEKE propagation loss algorithms

for single- and multiple- specular multipath, knife edge diffraction and spherical Earth

diffraction. PWE results were generated using a split-step Fourier algorithm similar

to reference [69] developed at MIT [75], and assumed a standard atmospheric profile

and a Gaussian beam initial field distribution. Terrain profile inputs to the PWE code

were smoothed with a five point averaging filter to avoid large second derivatives, and

calculations were performed for 1 m and 25 m step increments in height and range

respectively. Figures 2.13 to 2.15 show a good overall level of agreement between the
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three methods, demonstrating that the PWE and SEKE models are giving an accurate

prediction for the terrain profile input. However, some differences are observed which

illustrate the limitations of the SEKE and PWE methods.

SEKE predictions become inaccurate in cases where both multipath and diffrac-

tion contributions are significant, and underestimate the strength of the first max-

imum above the shadowed region in particular as shown in Figures 2.14 and 2.15.

Similar underestimations are observed for knife edge diffraction routines in reference

[74] when compared to wedge diffraction. Inaccuracies in SEKE's spherical and knife

edge diffraction weighting algorithm are seen in low altitude regions (less than 20

m) as well, although improvements to SEKE for clutter modeling in this region have

been studied and are currently being implemented [76]. SEKE also fails to obtain

the small maximum at receiver height approximately 50 m in Figures 2.14 and 2.15,

which the PWE shows to be due to a bounce from a wave diffracted by the hill in the

Magrath profile. Finally, the discrete nature of SEKE's routines is evident in Figure

2.13 (a), where the multiple specular contribution abruptly begins at receiver height

200 m and is neglected below.

Agreement between PWE and MOM predictions is remarkable throughout Fig-

ures 2.13 to 2.15, and illustrates the accuracy of the paraxial approximation for the

terrain profiles investigated. The high accuracy of PWE results and their additional

ability in modeling atmospheric structure clearly favors use of the PWE for prop-

agation predictions. One disadvantage associated with the PWE is sensitivity to

parameters used in the numerical simulation such as computational domain size,

width of the initial field distribution, and properties of the upper absorbing bound-
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ary. For example, predictions generated for the Beiseker N15 profile of Figure 2.13

were originally found inaccurate when a fairly narrow initial beam was used. Use

of a wider initial field distribution eliminated these problems, but caused errors due

to spurious reflections from the 500 m fixed Gaussian taper computational domain

upper boundary in longer range problems such as Magrath NW37. Although these

errors were subsequently eliminated by doubling computational domain height from

8192 to 16384 m for Magrath NW37, an appropriate choice of numerical simulation

parameters is clearly required if reliable predictions are desired from the PWE. How-

ever, the relatively small amount of computational time required for the PWE makes

an iterative procedure to determine simulation parameters feasible, and the results

of this study show that an iterated PWE technique should be a very accurate and

practical tool for propagation prediction.

2.7 Conclusions

A numerically exact model for VHF propagation based on an iterative version of

the method of moments has been developed. While this model remains computa-

tionally intense, its usefulness has been demonstrated in validating and studying the

limitations of other approximate methods. Results have been shown which illustrate

the accuracy of the numerical method, and which show the sensitivity of propaga-

tion models to input terrain profiles. Comparisons with the SEKE and PWE models

showed that these models overall give reliable predictions except in cases where un-

derlying approximations become invalid. SEKE was found to follow the overall trends

of the method of moments in all cases, but to have problems in predicting propagation
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loss in regions where multiple phenomena were important. Agreement with the PWE

was found to be excellent in all cases after steps were taken to insure that initial field

distributions and computational domain sizes were appropriate.
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Chapter 3

Scattering and Thermal Emission
From a Two Dimensional Periodic
Surface

3.1 Introduction

Scattering from a one dimensional periodic surface has been studied extensively with

a large number of techniques, including both approximate [7]-[8],[77], and numerically

exact [78]-[85] methods. Models for one dimensional periodic surface scattering have

found application in a wide range of areas, ranging from optical grating design [82]

to the prediction of wave propagation over the ocean [84]. In a more recent applica-

tion, theories and experiments involving passive remote sensing of one dimensional

periodic surfaces [85]-[90] have conclusively demonstrated the existence of a third

Stokes parameter component of the thermal emission, UB. Assumed to be non-zero

only in polarimetric passive remote sensing, UB is known to respond to the azimuthal

anisotropy of the medium under view [5] and thus is currently being investigated for

application to remote sensing of wind direction over the ocean [91]-[94].
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The one dimensional periodic surface studies previously performed allow sur-

faces to be rough in one spatial direction only. Surface profiles do not vary perpen-

dicular to this direction, so that a "row" type structure results as shown in Figure

3.1. While there are many interesting surfaces which do have a row structure, more

general surfaces vary in two spatial directions as shown in Figure 3.2 and therefore

render the one dimensional models invalid. Scattering from two dimensional periodic

surfaces has previously been studied in reference [95], in which a volume equivalent

current moment method was applied to investigate the reflection characteristics of

microwave absorbing materials. However, to date no numerically exact results for

two dimensional surface polarimetric thermal emission have been presented, so that

the extension of UB properties observed in the one dimensional case to the two dimen-

sional case remains uncertain. For example, a one dimensional periodic surface model

allows no insight into the effect of varying levels of surface azimuthal anisotropy on

UB signatures since a one dimensionally rough surface represents only a limiting case

of anisotropy.

In this chapter, a numerically exact model for scattering from a two dimensional

dielectric periodic surface is presented, based upon an extension of the extended

boundary condition (EBC) technique for one dimensional periodic surfaces [81] to

the two dimensional case. Although the limitations of the EBC method for surfaces

with deep corrugations are well known [96], previous one dimensional periodic surface

studies showed the EBC to perform efficiently for non-steep surfaces when compared

to a method of moments approach [90]. Use of the EBC method for two dimensional

surface profiles is motivated by the fact that computational requirements are much
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Figure 3.1: Geometry of a one dimensional periodic surface
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Figure 3.2: Geometry of a two dimensional periodic surface
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greater than in the one dimensional case, so that efficiency becomes an even more

important issue if a thorough study is to be performed. Since properties of UB for two

dimensional surfaces can be studied within the limitations of the EBC, the method is

adequate for the goals of this chapter. Computational efficiency is further improved

by performing required integrals analytically over an arbitrary faceted surface profile.

The model is applied in a study of the response of UB to the level of anisotropy

of the medium under view. Calculations are performed for simple pyramidal sur-

faces, which reduce computational complexity and provide physical insight into the

mechanisms which generate third Stokes parameter emission. Sensitivities of UB to

observation angle, pyramidal surface heights and lengths, and surface dielectric con-

stants are studied, and illustrate that properties of UB observed for one dimensional

periodic surfaces remain similar in the two dimensional case.

The formulation of the extended boundary condition method is detailed in the

next section, followed by a discussion of required integral evaluation in Section 3.3.

The model is validated in Section 3.4 through reduction to the one dimensional pe-

riodic surface case, and convergence of predicted brightnesses with the number of

surface field unknowns is discussed for two dimensional surfaces. A study of pyrami-

dal surface polarimetric thermal emission in Section 3.5 is followed by conclusions in

Section 3.6.
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3.2 Formulation and Numerical Method

The extended boundary condition technique for periodic surface scattering involves

solution of the Huygens' principle type integral equations for unknown tangential

electric and magnetic fields on a surface separating two homogeneous dielectric regions

of space, labeled regions 0 and 1, as discussed in Chapter 1. The standard electric

field integral equation (EFIE) can be written as

dS' iw (I+ go(, 90( ')[' x H(7')] + Vgo(T,') x [' x E(T')]

EinEo () z > z(X,) (3.1)
0 z < X,(x, y)

where Ein, represents the incident electric field, taken to be a single incident plane

wave with propagation vector ki = -ckxi + pky, + kzii in the following discussions,

and z,(x, y) is a function describing the surface profile separating regions 0 and 1.

It is assumed that the observation point T does not coincide with any of the source

points V' in the integral equation, so that no singularities are encountered. The scalar

Green's function in the above equation is

eikj If-f'|

9g ( = 47r) = - ' (3.2)

where kj represents the electromagnetic wave number in regions j = 0 or j = 1

respectively. A similar integral equation can be written for the electric field in the
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region below the surface,

-J S' {i0 0+ -) g(t ')[i ' x H(')] + Vg(fT') x [' r(e)]

SE() z < zX(x, y) (33)
0 z > zs(x, y)

If the surface height function is assumed to be periodic in both the x and y

directions, so that z,(x + P., y) = z,(x, y) and z,(x, y + P,) = z,(x, y), integration

regions in the above integral equations can be reduced to a single period through the

use of a periodic Green's function. Such Green's functions are well known and have

been derived elsewhere [3] as

gPi= Z 1 eilkn(x-x')+kym.(y-y')+kzimn z-z'2 (3.4)

where the spectral form of the periodic Green's function has been used, kxn = k• -,

kym = ky, + 2m and kz = nm k -k k2 - k2 m. The branch cut of the square root

function for kzjim is defined so that v-T = +i. Upon substitution of this Green's

function into the integral equations, and assuming observation points above or below

the points of maximum and minimum surface height respectively, integral equations

(3.1) and (3.3) become

in( + cT + E E m -mn =E() z > z8 o(X, y)max (3.5)
m=-oo n=--oo
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E- () + E
m= -oo n=-oo

E : -mnei
m=-oo n=-oo

dm n e
m=-oo n=-oo

2 dSPP
2PxPykzom• fp

bmne ikmno
"

.-mn
?,kmnn

=0

= -E0(r)

"' = 0

(3.6)Z < Zs(X, Y)min

z < zs(x, Y)min

z > zs(x, Y)max

(3.7)

(3.8)

{iwy (- knokmnO) [W x nH(')]+

ikno x [h' x E()]

i JdS'e-ik-no- i2PxPykzomr -o

(3.9)

(- kmnok nOn [ft) xH(

(3.10)

PdSieikmn" i (- km~ ) x (')]+2PxPykZim rnp

ikmnl x [ x' ((3')]1

where

amn

bmn

Cmn

l"

e--i-mo

€-ilrnno'r

ikmno x [h' x P(')]}

(3.11)
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imn = 2PxPykzl,, dS'e-'. ( - k n l) [k' x

ikl x [X1' x ()] (3.12)

and

1± = M + jkm + nkZjmn

From equations (3.5) and (3.7), it is clear that the scattered field in region zero

above the surface profile and the transmitted field in region one below the surface pro-

file consist of a sum of upgoing and downgoing plane wave fields respectively, known

as Floquet modes, with unknown vector amplitudes ,imn and Emn. These unknown

amplitudes can be determined from equations (3.9) and (3.11) once tangential electric

and magnetic fields at the surface boundary are known.

The formulation of equations (3.1) to (3.12) is general for two dimensional pe-

riodic surfaces. The EBC approach is based upon solution of vector equations (3.6)

and (3.8) for the unknown tangential electric and magnetic fields, which involve the

regions of "no-interest" in the Huygens' formulation. Use of these equations is ad-

vantageous because a knowledge of both tangential fields on the surface profile and

the total fields above or below the surface profile Eo0 and E 1 is not required as in

equations (3.5) and (3.7), and a simple mode matching technique can be applied to

their solution. However, the non-local nature of equations (3.5) to (3.8) cause the
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previously mentioned conditioning problems for steep surfaces, as evanescent waves

generated within the surface profile are modeled only after having been exponentially

attenuated.

Applying the orthogonality property for plane wave fields in equations (3.6) and

(3.8) yields the following vector equations

bmn = -- i6mno (3.13)

dmn 0 (3.14)

where 6mno is one for m = n = 0 and zero otherwise and a plane wave incident field

of Ein, = Bie ki ' has been assumed. Next, unknown tangential fields on the surface

profile are written as

Y'= J J ay V

(Oz Oz_

where

roz8z, 0z8z, __z, _z,A = - - y / 1+ +
Ox' y'f 1 'J y'

and unknown surface field amplitudes are expanded in Fourier series as

Jx = EE qopeiko.,x'+±ikpy' (3.15)
op

100



3.2. FORMULATION AND NUMERICAL METHOD

Jy = E•ropeikzoz'+ikvpy'
o p

MX = - EE ope i k o,,'+
i k ypy'

op

My = -EE topeik.ox'+ik
ypy '

o p

(3.16)

(3.17)

(3.18)

Vector equations (3.13) and (3.14) each consist of one set of m times n equations

for three Cartesian components. However, these six sets of equations are restricted

to four by the divergenceless condition of plane wave fields. Using the x and y

components of these equations and substituting in the Fourier series expansions (3.15-

3.18) results in the following matrix equation:

AxOA-+
Azzl

yxl

AXyO

AyyoAxyl
-+

A, +

q[op]

t[op].glop]

xO

BzolB-
---+Be1
ByX

[ Ex[mn]
- Ey[mn]

0
L0J

(3.19)

where

A  J ] [mn][op]

B [mn][op]

--dy -W e- i (k zn - k xo)z ' - i (krym - kyp)y' - i(± k zs m• )z ' (3.20)

ax1 + ()2 a z

= dz'dy' e-i(ken-kzo)x'-i(kym-kyp)y'-i(±kzjmn)z'
I'd 2PPykz mn

1+ 2' 2 & kmnj · X z( ) (3.21)ax, ay apanl I
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and

Ea[mn] = -&. •i ~imn (3.22)

In the above notation, [mn] references the row number of the matrix, while [op]

references the column. These indices actually are a single number, which is obtained

by consecutively labeling the set of m times n scattered modes in two dimensions and

the set of o times p Fourier series coefficients. The above matrix equation is infinitely

large in theory, but must be truncated in order to be inverted. Convergence of model

predictions with the number of equations retained will be discussed in Section 3.4.

Matrix elements can be calculated once the surface profile is specified, and the matrix

can be inverted to obtain Fourier series expansion coefficients of unknown surface

fields, qop, rop, s,, and t,,. These expansion coefficients can then be substituted into

equations (3.9) and (3.11), which involve integrals similar to the matrices A and

B above, to determine vector amplitudes of the reflected and transmitted Floquet

modes, a[mn] and ?[mn] respectively, as

AzXo AYO Bzzo0 By 0  q[ a mn++- + =_ q[o] az[mn]
Auto A~yo Byzo Bo r[o] a[mn] (3.23)

AX my1 xx1 By1 slop] Cx[mn]
A- A y T , A- B-o B t[op] i Cy[mn] J

Components of d[mn] and [lmn] in the ^ direction are obtained from the divergence

condition as

azmn] = 1 (knax[mn] + kImay[mn])
a[mn] -kzomn
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Figure 3.3: Geometry of a two dimensional pyramidal surface

1mn

3.3 Evaluation of Required Integrals

Construction of matrix equation (3.19) requires evaluation of the integrals of (3.20)

and (3.21) for each combination of [mn] and [op] indices. There are many options for

evaluating these integrals, ranging from a fully numerical integration scheme to an

FFT based method in which the e- i(±k imj )z' term inside the integral is expanded in a

Fourier series. In this chapter, a method in which the surface profile is assumed to be

made up of triangular facets is adopted, and resulting integrals over individual surface

facets are performed analytically. This approach should be an efficient technique for

surfaces that are accurately described in terms of a small number of triangular facets,

such as the pyramidal type surface illustrated in Figure 3.3.
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Py

StI
.'Y 9

ye

Y7

y6

Ay)

Y4

y•

X1 x1,.5 x 2
doAxNO

X 2.1 X 3 X 3., X1 X 4.5 X5

Px

Figure 3.4: Triangular grid in x - y plane for surface specification

Consider a triangular grid in the x - y plane, shown in Figure 3.4, for which

surface heights above the x-y plane are specified at each of the points zx = ('- 1)Az,

y = (6 - 1) Ay on the grid, with y = 1, 3/2, 2, ... and 6 = 1, 2, 3,.... A 4 x 8 point

grid is assumed in Figure 3.4, with the lines x = x 5 and y = y9 equivalent to x = xl

and y = yl respectively due to surface periodicities. The particular structure of the

grid in Figure 3.4 is chosen to enable simple construction of pyramidal type surfaces,

as will be discussed in the Section 3.5.

Since the integrals of (3.20) and (3.21) are over one period of the surface pro-

file, matrix elements can be rewritten as a sum of the integrals over each individual

triangular facet making up the profile. In addition, surface derivatives, 'Os and 9
e, Oy'

><><X
K><X
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3.3. EVALUATION OF REQUIRED INTEGRALS 105

remain constant on an individual planar surface facet, so that vector product terms

can be factored out of facet integrals. The resulting matrix elements are

[ j] [mnop] 2PxPykzj f 1 + ± 2 (7- nj nj)

0+ z,)I dx'dy'e-i(kn -ko)x'-i(kym-kyp)y'-i(±kzimn)z (3.24)

[ [mnI[op] 2PxPkzjmn + 2 ( 2

i& [nj x + )] f dx'dy'e- i(k n - k~)x' - i(km - k p)y' - i(kzim)z } (3.25)

where Ff indicates the particular facet over which the integral is to be performed.

From the above equations, it is clear that evaluation of the sixteen matrix elements

for each [mn] and [op] combination actually requires calculation of only two integrals

for each surface facet.

The surface profile of each triangular facet is simply a plane passing through

the three points bounding the triangle. The equation of this plane is

z' = ax' + by' + c (3.26)

where

Z2 - Z1a =-

b 3 - (z+ zj )/2
Ay
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(X,+ 0.5,Y6 + 1I Z3)

(X,, ya, ZI) (x, + 1, y,, z2)

= ax' +by' +c

Figure 3.5: Definition of surface plane through triangle

c = - ax, - by6

and zI, z2, z3, Zi, and yj are as defined in Figure 3.5.

Upon substitution of this equation for z' into (3.24) and (3.25), integrals over

each surface facet can be performed analytically. The necessary integrals are

1 = e-i(±kzimj) fc
,-yJ J Ff

dx'dy'e-tX'-tIly'

ti = i(kym - kyp ± kzj.nb)

where

(3.27)
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t2 = i(kxn - kXo kzjmna)

and the domain of the integral corresponds to triangles on the grid of Figure 3.4.

A closer examination of Figure 3.4 reveals that there are four types of triangular

domains to be considered, isolated and referred to as triangles u, d, 1, and r in Figure

3.6, each with a unique domain and definition of a, b, and c. Integrals for each of these

triangles must be performed separately. In addition, integrals for the special cases of

tl = 0, t 2 7 0 and tl # 0, t2 = 0 must be considered. Results of these integrations are

Triangle :

tl = 0, t2 # 0

= 2 e-12( - et2Ax/ 2 ) 2  (3.28)

t l # 0, t 2 = 0

S= AXe-t6 (1 - (1 - e-Y)) (3.29)

t1 0O, t2 4 0

Ax t 2  5 4I = 2 Ayle-t2 (X+ )-t +Y){ 1 - etSAx/2  1- e-t4ax/2

(3.30)

Triangle d:

tl = 0, t 2 - 0
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Ai ~ e- t2x (1 - et2Ax/2 (3.31)

1 -y -- e-tytly(1 + 1 (1 - e - t1ay)) (3.32)

tl # 0, t2 # 0

13 2Ay Ie-t2(x,+ n),-t1(Yb -y)
Ax t2

+1 et4Ax / 2  (3.33)
t4

_ 2Ay
St 2

2 (1 -t 2Ax/2 )

t 2 AX

t l # O, t2 = 0

I+• 2 Ax $ -ti(ys+A) ((1 etlAY) e 2 tlAy (1- etlAy))
2Ayt1

tl # 0, t 2 - 0

i: --- e--tl (Y5-Ay)
Y6 tl

1 - et5Ax/ 2  1 - et4Ax/ 2 }
5  - e2tiAy

t5 t4

Triangle r :

tl = 0, t 2 # 0

Triangle 1:

tl = 0, t 2 # 0

(3.34)

(3.35)

(3.36)

1_ e - t 5A x / 2

t5
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14 = - e2 -t2(x,+Ax/2) + 2  (1 - t2Ax/2 (3.37)

tl 0, t2 = 0

ILx e -tl(yj-Ay) ((1 - etZ) + e- 2 tAy(1 - etlAY)) (3.38)
4- 2Ayt -

tl O#, 0t 2 # 0

I, et1 1-(Y6+AY)e-t2(x+Ax/2) e2tAI -- e-t`Ax/2 1 - e-t4A•/ 2

tl t5  - t42

(3.39)

where

t4 = -t2- t 120
Ay

t5 = - t2 + t12 AV
Ax

and xZ, Y6, Ax, and Ay are as defined in Figure 3.4.

Thus, evaluation of the matrix elements for equation (3.19) requires summing

the analytical expressions above for each facet of the surface profile multiplied by

the appropriate vector products for each of the eight matrix elements involving this

integral. This procedure is repeated for every combination of the [mn] and [op] indices,

with the final number of operations proportional to m x n x o x p x f x 2 where f is

the number of facets making up the profile. Since integrals are performed analytically

in this formulation, the only numerical approximation used involves truncation of the

surface field unknown Fourier series.
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a = (Z- 2zl)/
b = (z3 - (Z2 + 2) / 2) / Ay

c = z1- a * x - b* y-

(xy, ya, Zi) (Xr + 1, y8, Z2)

Triangle u

(xr, y8, Zi) (X7 + 1, y3, Z2)

(xy+ 0o.5, y8 - 1, Z3)

Triangle d

+ 1, Z3)

a = (2 - z) / Ax

b = -(z3 - (Z2 + z) / 2) / Ay
c = zi - a * Xr - b * y,

(xy+ 0.5•, + 1, Z3)

(XryS, Zi) (Xr, y,, Zi)

(Xr - 0o. , y 1, Z2)

Triangle I

b = (z3 - 2) / Ay

a = 2(zi- (Z3 + Z2) / 2) / Ax

c = Zi - a* x,- b * y,

(Xy + 0.5, y - , Z2)

Triangle r

b = (z3 - 2)/ Ay

a = -2(z,- (Z3 + Z2) / 2) / Ax

c =zi - a * x, - b *y,

Figure 3.6: Types of triangles in surface grid
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3.4. MODEL VALIDATION

A direct LU inversion technique was used for the matrix equation (3.19), al-

though more efficient methods could potentially be applied. Note that a direct in-

version of the matrix equation requires retaining an equal number of m x n scattered

modes and o x p Fourier series coefficients. Individual indices m, n, o, and p do

not necessarily range over the same values, although a symmetric expansion about

zero seems reasonable, especially for a normally incident plane wave field, and was

adopted in the results to be presented. Although only direct solutions with square

matrices are considered in this chapter, use of non-square matrices inverted with a

singular value decomposition technique has been reported for one dimensional peri-

odic surfaces in the literature [84] and has shown potential for avoiding the EBC's

conditioning problems.

3.4 Model Validation

To validate the code developed, comparisons were made with both EBC [87] and

moment method codes [85] for a one dimensional sawtooth surface profile as shown

in Figure 3.1. The triangular grid of Figure 3.4, however, is unable to model a one

dimensional surface profile due to the presence of triangles I and r along the lines

x = x1 and x = Px respectively. The modified triangular grid shown in Figure 3.7 is

used instead, which now contains four new triangular domains, lu, Id, ru, and rd, for

which the I4+ integrals must be evaluated. Results are

Triangle lu :

tl = 0, t 2 : 0
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t=Ay
t2

2
t2A ( 1- e-t2Ax/2)) (3.40)

tl7 , t2 = 0

Ax
46 2Aytl e (-(1 - e- tlay) + Ayt1 ) (3.41)

t1 0, t2 # 0

1 -tl(ys+Ay)

tl

1 - et5Ax/2

t5

1 - e- t 2Ax/ 2 }

Triangle Id :

tl = O, t 2 #0

I4 = Ay
t2

2
t2Ax (1 - e-t2Ax/2))

tl 0, t 2 = 0

Ax e
2Ayt2e (- etlAY(1 - e-t'1A) + Aytl)

tl # 0, t 2 #0

•± - - 1 -tl(y6+Y) re - e-t2Ax/2

IY - e-ty+Ay) e Ayt1 t2
S t 4t/2y (3.45)

t4

Triangle ru :

tl = 0, t2 # 0

(3.42)

(3.43)

(3.44)
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1, -A -t2 x
YJ t2

2+ (1
t2AX

- et2Ax/2)) (3.46)

t l : 0, t2 = 0

IAyt e-tl(y6 Ay)
,Y8 - ý - eAyiet:y + e-2tAy( -etiA))

t l 7 0, t2 # 0

I± - e-tly Ye-t2Xy
b tl

1 - et4Ax/2

t4

Triangle rd :

ti = O, t2 7 0

I -Ay t2(xy+Ax/ 2 )

2
+ (1
+t-•~

- e2A/2))

tl : O, t2 = 0

176 - 2Žýyt. et1( ( -ytie-t1') + (1 - e-tlAY))

t l # 0, t2 0

I± 1 e-tlYse-t2 X {et5Ax/ - 1Y6 j t5
1 e- - t2Ax/2- t (3.51)

Construction of a sawtooth profile now requires only two points specified on the

surface profile, (xl,yi) and (x3/ 2 , y2) which are set equal to 0 and h, the height of

(3.47)

1 - e- t2A x/ 2

+ t2 (3.48)

(3.49)

(3.50)
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Figure 3.7: Modified triangular grid in x - y plane for 1-D wedge profile
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the sawtooth profile, respectively. Calculations were performed for a surface height of

0.5A, period 3.01A, dielectric constant (6, 0) and a normally incident plane wave field.

Predicted values for the induced currents on the surface profile are plotted in Figure

3.8 for the one dimensional EBC, one dimensional MOM, and two dimensional EBC

codes. A total of 13 Fourier series terms were used with the one dimensional EBC,

169 terms with the two dimensional EBC (using m = -6 to 6 and n = -6 to 6 as the

period in the x direction was set to 3.01A also), and 50 pulse basis functions in the

point matching MOM code, corresponding to 6 points per wavelength sampling in

the dielectric medium. Surface currents My and Jx are plotted in Figures 3.8 (a) and

(b) for a vertically polarized incident field, meaning that the unit magnitude incident

electric field is directed along the row direction of the surface profile, while surface

currents Mx and Jy are plotted in Figure 3.8 (c) and (d) for a horizontally polarized

incident field. Power conservation for all three codes was within 1%, and predicted

brightness temperatures as discussed in the next section differed by less than 0.5 K

under the assumption of a 300 K surface temperature. These comparisons show that

the two dimensional EBC model correctly reduces to the one dimensional surface case,

and also that the extended boundary condition approach yields an accurate solution

when compared to the method of moments for the sawtooth profile considered. Note

that the accuracy of the EBC for this profile is not immediately obvious, as induced

surface currents near the edges of the surface have potentially singular behavior.

Moment method results were also generated using larger numbers of basis functions

and showed that no strong singular behavior occurred near the edges of the wedge

profile.
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x (m)

x (m)

x (m)

x (m)

Figure 3.8: Comparison of induced currents on one dimensional wedge profile (a) My
(b) Jx (c) Mx (d) Jy
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Figure 3.9 illustrates the convergence of predicted reflectivities with the total

number of surface field Fourier coefficients retained for a pyramidal type surface as

shown in Figure 3.3. A surface height of 0.5A, period in the x and y directions of

3 and 6 A respectively and a dielectric constant of (6, 0) is used, and total reflected

powers are plotted in Figures 3.9 (a) and (b) for a normally incident plane wave in

horizontal and vertical polarizations respectively. The resulting power conservation

corresponding to Figures 3.9 (a) and (b) is also plotted in Figures 3.9 (c) and (d),

and illustrates a clear convergence as the number of surface field mode amplitudes

approaches and exceeds 121. Convergence of the predicted total reflected power

is of primary concern since this quantity determines the brightness temperature as

described in the next section. The results of Figure 3.9 indicate the accuracy of the

EBC approach for the relatively smooth pyramidal surfaces to be considered in this

chapter, and show that 169 surface field Fourier coefficients should be sufficient to

model induced current variations. The remaining calculations of this chapter were

generated using 169 coefficients, which results in a matrix size of 676 by 676, and

required approximately 70 seconds of CPU time on a DEC AXP 3000-M800 for each

brightness temperature point.

3.5 Pyramidal Surface Thermal Emission

To assess the response of the third Stokes brightness temperature to degree of surface

azimuthal anisotropy, the two dimensionally periodic surface scattering model devel-

oped is applied in a study of polarimetric thermal emission from pyramidal surfaces,

as shown in Figure 3.3, for which the faceted surface model approach should be very
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Figure 3.9: Convergence of total reflected power with number of Fourier coefficients

(a) Horizontal incidence (b) Vertical incidence (c) Horizontal power conservation (d)

Vertical power conservation
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3.5. PYRAMIDAL SURFACE THERMAL EMISSION

efficient. The pyramidal surfaces studied are made up of only 4 triangular facets,

corresponding to including only the points (xl, yl) and (x3/ 2 , Y2) in the surface profile

description, with remaining surface facets generated by the required periodicities.

As discussed in Chapter 1, brightness temperatures corresponding to all four

modified Stokes parameters are investigated in polarimetric passive remote sensing.

The brightness temperature Stokes vector is defined as

Ih (EhE*)
1- 1 I, 1 ( EE *)T = -I= (E) (3.52)C C U r7C 2Re(EEh)

V 2Im(EE*) I

and is calculated through evaluation of the total power reflected for each of four

incident polarizations. The reflectivity ra(0, ¢) for the periodic surfaces of this chapter

is evaluated through calculation of the scattered mode amplitudes imn. Due to the

periodic nature of the surface profile, the net power reflected from the surface travels

only in the 2 direction, so that the total reflectivity of the surface can be written as

r( ) = Re {kom. 1im 2 (3.53)
mn n kzil

The total power transmitted into the surface medium can also be calculated similarly

from the ,mn amplitudes, and a power conservation check can be performed to insure

code accuracy.

Thus, to determine polarimetric thermal emission from a pyramidal surface,

reflected mode amplitudes -,mn are calculated for an incident field polarized in each

of four directions. Note that this requires only one matrix generation and inversion
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procedure since only the right hand side of the matrix equation varies with different

incident fields. Reflectivities, emissivities, and polarimetric brightness temperatures

are then calculated from these modes as described previously. A physical temperature

of 300 K is assumed for all of the surfaces studied in this section.

Figure 3.10 presents predicted polarimetric brightness temperatures for a pyra-

midal surface with a height of 0.5A, period in the x direction of 3.01A and a varying

period in the y direction, ranging from 3.01 to 24.08A. A dielectric constant of (6, 0) is

assumed for the surface medium, and the power conservation check was within 1 % for

these calculations. Note that the slopes of this surface are no greater than those for

which the wedge profile validation was performed in the previous section, so that the

EBC approach should be valid for this surface. Brightness temperatures are plotted

for a 0 degree polar observation angle, (nadir looking), and for azimuthal angle, q,

varying from 0 (along the +x direction) to 90 degrees (along the +y direction). The

expected sin 2¢ variation of the Us brightness required for nadir observation due to

the reflection symmetries of the surface profile [92] is observed. Also, the Py = 3.01A

curve illustrates the small values of UB obtained from a nearly azimuthally symmet-

ric medium. The response of UB to the level of anisotropy of the surface is clearly

demonstrated in Figure 3.10, which shows that values of UB predicted assuming a

very large value of Py significantly overestimate UB values obtained in the P, = 2P,

case. However, the convergence of Us results for Py > 4P. illustrates that azimuthal

anisotropy beyond this level has little effect.

The response of the polarimetric brightness temperatures to pyramidal surface

height is plotted in Figure 3.11, for nadir observation, P1 = 3.01A, Py = 6.02A, and a
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Figure 3.10: Predicted polarimetric brightness temperatures from a pyramidal sur-

face: Variation with Py (a) TBh (b) TB,, (c) UB (d) VB
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dielectric constant of (6, 0). The response of UB to surface slope, as indicated by higher

UB values for larger surface heights, is demonstrated in Figure 3.11. This response

has been observed in the literature for 1-D periodic surfaces [85],[90]. Surfaces with

heights less than 0.25A and maximum slopes consequently less than 0.08 are seen to

produce negligible UB emission.

The response of the polarimetric brightness temperatures to polar observation

angle is plotted in Figure 3.12, for pyramidal surfaces with height 0.5A, P, = 3.01A,

P, = 6.02A, and dielectric constant of (6, 0). The response to polar angle variation

is very strong for these relatively low dielectric constant materials, again as has been

observed for 1-D surfaces [85]. However, simulations in the literature with much

higher, ocean like dielectric constant media show smaller variations with polar obser-

vation angle in this range [90]. Also, VB is observed to show some response to polar

observation angle, although it is quite small.

The response of the polarimetric brightness temperatures to the real part of the

surface dielectric constant is plotted in Figure 3.13, for pyramidal surfaces with height

0.5A, P, = 3.01A, Py = 6.02A, and nadir viewing observation. Although the TBh and

TBs brightnesses are influenced very strongly by variations in dielectric constant, UB

is affected less significantly and still shows the same azimuthal signature. Increasing

Us values obtained are observed to saturate in simulations performed with dielectric

constants higher than (12, 0).

The response of the polarimetric brightness temperatures to the imaginary part

of the surface dielectric constant is plotted in Figure 3.14, for pyramidal surfaces

with height 0.5), P, = 3.01), Py = 6.02A, and nadir viewing observation. Again, the
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Figure 3.11: Predicted polarimetric brightness temperatures from a pyramidal sur-

face: Variation with surface height (a) TBh (b) TB, (c) UB (d) VB
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Figure 3.13: Predicted polarimetric brightness temperatures from a pyramidal sur-

face: Variation with real dielectric constant (a) TBh (b) TB, (c) UB (d) VB
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linearly polarized brightness temperatures show large variations as the imaginary part

of the dielectric constant is increased, but UB remains relatively unaffected, showing

only slight increases with increasing imaginary part.

3.6 Conclusions

A model for the prediction of scattered Floquet mode amplitudes from a surface

periodic in two spatial directions has been developed. This model applies the extended

boundary condition approach, and uses an analytical evaluation of matrix elements

over an assumed triangularly faceted surface profile. This method should be very

accurate and efficient for surface profiles which are represented in terms of a small

number of triangular facets, such as the pyramidal surfaces studied. The model was

applied in a study of polarimetric passive remote sensing, and demonstrated that

properties of UB observed in the one dimensional periodic surface case are similar

in the two dimensional rough surface case. Also, the response of UB to the level of

anisotropy of the medium under view was studied, and pyramidal surfaces with x to

y period ratios greater than 4 were found to show little variation in predicted UB

brightnesses. Other applications of this model include the design of pyramidal type

absorbing materials and simulation of scattering from two dimensional surfaces at low

grazing angles, where the large surface sizes involved in a periodic surface simulation

are required.
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Figure 3.14: Predicted polarimetric brightness temperatures from a pyramidal sur-

face: Variation with imaginary dielectric constant (a) TBh (b) TB, (c) UB (d) VB
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Chapter 4

Backscattering Enhancement from
Two-Dimensional Perfectly
Conducting Rough Surfaces

4.1 Introduction

Backscattering enhancement from random rough surfaces is a topic which has been

of recent interest in electromagnetics. Enhanced backscattering has been observed

experimentally [97]- [103] from several rough surface types. One such type involves

surfaces with relatively large slopes for which predictions of the standard Kirchhoff

approach or small perturbation method are inaccurate due to the small slope lim-

itations of these approximate theories [6]. The limitations of the analytic methods

for large slope surfaces and the increasing power of modern computers have recently

generated more interest in numerical approaches to the large slope surface problem

based on Monte Carlo simulation of waves scattered from random rough surfaces.

Monte Carlo simulations have been applied in the literature [54]-[56] and have been

successful in predicting backscattering enhancement. As discussed in Chapter 1, the
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most common of the numerical approaches previously used is the surface integral

equation method and its solution by the method of moments, in which the integral

equation is discretized into a matrix equation and then solved by matrix inversion.

Because the matrix equation solving time scales as N3 (where N is the number of

surface field unknowns) for direct matrix inversion techniques, all of the previous

simulations except for a few have been restricted to one-dimensional (1-D) random

rough surfaces, as two dimensionally rough surfaces require a much larger number of

surface field unknowns.

To increase computational efficiency so that 2-D surfaces could be treated, the

Kirchhoff iteration method, also known in mathematics as the Neumann expansion,

has been used [56], [104]-[106]. Recently, the Kirchhoff iteration technique has been

applied in a Monte Carlo simulation of electromagnetic scattering at 0O incidence

angle from a 2-D, randomly rough, perfectly conducting surface with 8192 surface field

unknowns using 16 points per square wavelength (4 points per wavelength) sampling

[105] and from a 2-D, randomly rough, metallic surface with 98,304 surface field

unknowns using 100 points per square wavelength (10 points per wavelength) sampling

[106]. However, it has been shown that the Neumann expansion has convergence

problems for surfaces with large slopes and/or large incidence angles [104].

In the last few years, another efficient method called the sparse-matrix flat-

surface iterative approach (SMFSIA) has been developed for the rough surface scat-

tering problem [59]-[60]. The SMFSIA is similar to the BMFSIA of Chapter 2 in that

interactions between two points on the surface are distinguished as either neighbor-

hood strong interaction or far field interaction in the matrix equation of the method
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of moments. As with the BMFSIA, this classification allows the original matrix to

be separated into the sum of a strong matrix, a block Toeplitz flat-surface part, and

a weak remainder. However, in the SMFSIA, the strong matrix is sparse instead of

banded, due to the fact that points in a two dimensional grid cannot be labeled con-

secutively with all their nearest neighbors. An iterative procedure is again applied

until convergence is achieved for the error norm of the matrix equation. The approach

always converges since the neighborhood distance can be adjusted to insure conver-

gence. Using this approach, scalar wave scattering from a 2-D random rough surface

with a surface area of 81 square wavelengths (A2) and 4096 surface field unknowns

was studied [59].

In this chapter, an extension of the method to vector electromagnetic wave

scattering from a two-dimensional perfect electric conductor with a randomly rough

surface profile is used [60]. Numerical results are illustrated for an incidence angle of

200, up to 131,072 surface field unknowns, surface areas of 256 square wavelengths

and 1024 square wavelengths, and up to 600 surface realizations. Surfaces with both

a Gaussian height distribution and correlation function, rms height 1 wavelength, and

correlation lengths 1.41, 2 or 3 wavelengths are considered. Backscattering enhance-

ment is exhibited for both co-polarized and cross-polarized components. Comparisons

with controlled laboratory millimeter wave experimental data at 20' incidence angle

are also presented. The use of millimeter wave frequencies for the experiment al-

lows a calibrated comparison of scattered power to incident power [100]-[101], so that

the absolute value of the bistatic scattering cross section as normalized by the inci-

dent power is measured. Thus, absolute values of bistatic scattering cross sections
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are compared between Monte Carlo simulations and experiments without the use

of "arbitrary units". Results show numerical simulations to be in good agreement

with experimental data in terms of both absolute magnitude and bistatic angular

dependence and in view of the fact that there are no adjustable parameters.

In the next section, the numerical model used in the simulations is described.

Section 4.3 reviews the experimental method, and in Section 4.4, results from theory

and experiment are presented for a range of surface statistics.

4.2 Formulation and Numerical Method

The numerical model used for the comparison is a Monte Carlo method utilizing an

exact numerical solution of the rough surface scattering problem. In Monte Carlo

methods, a large number of finite area surface profiles with specified statistics are

generated using a Fourier transform technique [100]. The scattering of an incident

field from each surface realization is then computed using a numerical method, and

the resulting bistatic scattering cross sections from all of the realizations are averaged

to obtain the Monte Carlo estimate of bistatic scattering cross sections.

Consider an incident wave with magnetic field Hi(x, y, z) and time dependence

exp(-iwt) impinging upon a 2-D perfectly conducting rough surface with a random

height profile z = f(x, y). The height function z = f(x, y) has zero mean. Let

T' = Xx' + Yy' + 2f (x', y') denote a source point and 7 = zx + +-y + -f (x, y) denote

a field point on the rough surface. As discussed in Chapter 1, the magnetic field

integral equation (MFIE) on the perfectly conducting rough surface for T and 7' on
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the surface is

2i x Ht ine + Ax JdS' {Vg x [i' x H(F')] (4.1)

where the above integral f represents the principal-value integral,

Vg = ( - T')G(R) (4.2)

G(R) - (ikR - 1) exp (ikR)
G(R)= (4.3)4rR3

and R = (x - x')2 + (y - y') 2 + (f(X, y) - f(X y)) 2 .

The SMFSIA, described in more detail in reference [60], solves this integral

equation with a standard point matching method of moments technique, except that

the matrix inversion is performed iteratively. In matrix notation,

Z-' =b (4.4)

is the exact matrix equation of the method of moments using pulse basis functions

and delta testing functions. In the SMFSIA, the original matrix is decomposed into

the sum of a strong matrix, a block Toeplitz flat-surface part, and a weak remainder:

=(() + =(FS) + =(W))• = b (4.5)

In the above equation, Z is a sparse matrix which contains the exact matrix ele-

ments up to a certain distance from the testing point, known as rd, and zeros oth-
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=(FS)
erwise. Z , known as the "flat-surface" matrix, is a block Toeplitz matrix whose

elements are the MOM integrals using the Green's function of a flat surface for dis-

tances larger than rd from the testing point and zeros otherwise. This is based on

the observation that for two points far away on the rough surface, the exact Green's

function is well approximated by that of a flat surface. The weak remainder matrix,

Z , contains the differences between the exact matrix elements and the flat surface

approximated matrix elements for distances larger than rd from the testing point and

zeros otherwise, so that the sum of the three matrices is exactly the original matrix.

The matrix equation is then rearranged to take an iterative form. For the first-

order and higher order solutions, the calculation procedure is

(Z(S) + Z(Fs)) 1) = b (4.6)

(Z() +Z•FS )(+) =(+1) (4.7)

L(n+1) = L_ =()_() (4.8)

The above matrix equations are solved using the BiCGSTAB technique, in which

the required matrix multiplies are performed rapidly due to the decomposition of

the matrix into a sparse matrix, which can be multiplied efficiently, and a block

Toeplitz matrix, which can be multiplied using the FFT [107]. This iteration method

is different from the Neumann iteration of references [56],[104]-[106] in that it can

be shown to converge for arbitrarily large surface slopes and incidence angles, given
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that the neighborhood interaction distance, rd, is made large enough. Note that the

simulations of this chapter do not use a parallelized BiCGSTAB routine as in Chapter

2, but rather achieve full parallelization by performing calculations for individual

surface realizations in the Monte Carlo simulation on individual nodes of the parallel

computer.

One issue in Monte Carlo simulations involves the effect of finite surface size.

Experimental results to be compared with are both illuminated and observed by an

antenna, whose pattern limits the spatial extent of the scattering surface. To model

this pattern, incident fields in the simulation are "tapered" with a Gaussian beam

amplitude pattern, which confines the illuminated rough surface to the surface area

L, x L, so that surface edges do not contribute strongly to obtained scattered fields.

For an incident field centered in direction ki = sin O8 cos ixj + sin Gi sin oig - cos 0iE

with wave number k, the incident magnetic field of the tapered beam is

1 +oo +oo
Hi(x, y, z) = +- dk dky exp(ikxz + ikyy - ikzz) I(kx, ky)H y -o o 0 0 k -o o

{-Ehii(kx, ky) + E hi(kx, ky)} (4.9)

where

kz = Vk2 - kx - k

, hi and ·i) are the incident polarization vectors defined in Chapter 1, and r7 is the

impedance of free space [6]. In (4.9), '(ks, ky) is the spectrum of the incident wave,

1~··~·11~·--·--·1111~- 1~
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defined as

) 1 ++o +o
S(k, ky) =~r2 dx dy exp(-iklx -ikyy) exp(i(kizx + kiyy) (1+ w)) exp(-t)

(4.10)

where

t = tX + ty = (2 + Y2)g' 2  (4.11)

(cos 0i cos qix + cos 0i sin ¢iy)2
t = cos2  (4.12)g12 COS2 0,

(- sin €ix + cos ¢iy)2t = in + (4.13)

and

1 [(2tx - 1) (2t - 1)(4.14)W = + Y (4.14)k2 • 12 COS2 0i g2

The parameter g' controls the tapering of the incident wave and is set to Lx/2 = Ly/2

in the simulations of this chapter. While this tapering size does not correspond to that

of the physical antennas in the experiment, the large number of surface correlation

lengths contained within the pattern for the simulations performed insures that a

reasonable result for the normalized backscattering cross section should be obtained.

In addition, the chosen tapering lengths cause field amplitudes to be reduced by a

factor of e- 2 at surface edges compared to the center, so that any edge contributions

to scattered fields are made less significant. The w and t terms are introduced to
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approximate the tapered wave solution that was previously used for the scalar wave

case [59]. However, in (4.9), a spectrum of vector plane waves is used so that the

incident wave obeys Maxwell's equations exactly. For horizontally polarized incidence

(meaning the electric field is polarized along hi), Eh = 1 and E, = 0, while for

vertically polarized incidence, Eh = 0 and E, = 1. Variations with taper width in

these simulations are discussed in [60] and were not found significant for the near

normal incidence cases of this chapter. These variations become more significant as

the incidence angle increases, however, as will be discussed in Chapter 5.

Numerical simulation results will be presented in terms of the normalized bistatic

cross section, as defined in Chapter 1. For a scattered wave in a polarization and an

incident wave in 3 polarization,

ap (O8 , ,8 ) = 2rPic cos 0 (4.15)

where a, / = h, v and the observation direction is k, = sin 8, cos O4, + sin 8, sin 0,j +

cos 90,. The incident power is

-ine = - dkxdk (kx, k) 2 (IEhI2 + IE1j2) (4.16)
kp<k

and £, for a = h, v are respectively

S= 2 j dx'dy' exp(-ikr') {Fx(x', y')(- sin 0,) + Fy(x', y') cos q,} (4.17)

137



CHAPTER 4. BACKSCATTERING ENHANCEMENT

and

S= ik4 f dx'dy' exp(-ik-') Fx (x', y') Of', -Y) sin 9, + cos cos s

+Fy(x', y') - sin x' , + cos 0, sin ' (4.18)

where

7' = X' sin 0, cos q, + y' sin O8 sin ~, + f(x', y') cos 8, (4.19)

and, for 7 on rough surface S,

( 2f (fy)(X)2

Fx(+) = 1 + ) y n x H(() (4.20)

and

Fy (T) = 1 + (af+ )y ) x H(T) .'7 (4.21)

are the unknown functions proportional to the x and y components of the tangential

magnetic field solved for in the method of moments. The above equations for scattered

field amplitudes arise from use of the Huygens' principle integral in the far field, and

from dot products with the hs and iV, scattered field polarization vectors defined in

Chapter 1.
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4.3 Experimental Procedure

Experimental data is obtained from controlled laboratory millimeter wave exper-

iments performed at the University of Washington Electromagnetics and Remote

Sensing Laboratory, described in more detail in references [100]-[103]. Although mil-

limeter wave systems have wider angular resolution when compared to the optical

measurements previously performed, a millimeter wave system was chosen for these

experiments due to a desire for accurate calibration of measured data with highly

controlled surface statistical properties. The larger length scales associated with mil-

limeter wave frequencies allowed surface profiles to be constructed in plastic by a com-

puter controlled milling technique, so that their statistics were specifiable. Surfaces

were then coated with several layers of nickel paint to make them highly conducting.

The reflectivity of the nickel paint used is 0.95 with a relative phase of 175 degrees

at the frequency of interest, and the transmittivity of a 0.2 mm layer is at least -40

dB down compared to air. Thus, the finite conductivity of this paint is expected to

have only a minor effect on measured results. Surfaces with both a Gaussian height

distribution function and correlation function were fabricated, so that their surface

statistics were described by an rms height, chosen to be one wavelength, and a cor-

relation length, chosen to be either 1.41, 2, or 3 wavelengths. The corresponding rms

slopes of these surfaces range from 0.471 to 1.0 and contain regions where backscat-

tering enhancement effects are known to exist. The 2-D surface spectrum is given

by

W(Klh exp (K212 K2 (4.22)
W(Kx, K,) = exp 1h x  Ky (4.22)4rx 4 4
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where I4, ly, are the correlation lengths in the x and y directions respectively, K,

and Ky are the spatial frequencies in the x and y directions respectively, and h is the

surface rms height. Only isotropic surfaces with 1 = 1= = ly are considered in this

chapter.

The experimental apparatus consists of a network analyzer and separate trans-

mit and receive antennas, which can be oriented to measure the bistatic scattering

pattern from an angle of -70 to +70 degrees in polar angle. Bistatic data for incidence

angles of 0, 20, and 40 degrees from normal and both h and v polarizations was taken

and is presented in [101]. A dual polarized receive antenna is used to measure both

co- and cross polarized bistatic returns, and the single polarization transmit antenna

is rotated to generate varying incident polarizations. Half power spot sizes of the

transmit and receive antennas are approximately 50 and 32 wavelengths diameter.at

97.5 GHz respectively at normal incidence. Since fabricated surfaces were much larger

than the antenna spot sizes, experimental results were averaged over approximately

80 observations of varying surface locations. Additionally, results were averaged over

a 5 GHz frequency band, for which the data showed little variation, centered at 97.5

GHz to provide a total of approximately 400 independent samples.

Calibration of experimental data is performed by comparison with a known

radar cross section target, a flat metallic plate. This calibration enables the magnitude

of the scattering cross sections as normalized by the incident power to be measured

accurately in the experiment. An accuracy of better than 10% is expected for the

cross section values presented in this chapter.
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4.4 Comparison of Results

Previous simulations [60] have shown that a surface area of at least 16 x 16 wave-

lengths in numerical simulations is needed in order to obtain an accurate model of

the experiments. The case of electromagnetic waves with a sampling rate of 8 points

per wavelength will result in a 128 x 128 grid with 2 unknowns per point for a total

of 32,768 surface field unknowns. This large number of unknowns is prohibitive for

standard approaches to the method of moments. However, the use of the SMFSIA

makes the solution of this problem possible. In this section, results from Monte Carlo

simulations for an incidence angle of 200 are compared with the experimental data for

a surface area of 256 square wavelengths using 8 points per wavelength sampling, and

a surface area of 1024 square wavelengths using both 4 and 8 points per wavelength

sampling. Bistatic scattering cross sections in the plane of incidence are compared.

Numerical simulations were performed using the 400 node parallel IBM SP/2 at the

Maui High Performance Computing Center and required approximately 4 CPU hours

per node per realization for 32,768 unknowns.

Figure 4.1 (a)-(d) shows the comparison for surfaces with rms height one wave-

length, correlation length two wavelengths for both h and v incidence and a surface

area of 256 square wavelengths in the numerical simulation. The forward (, - 0= ,

00 < Os < 900) and backward direction (,S = 1800, 00 < O, < 90') are indicated

in the plots as positive and negative angles, respectively, so that the backscattered

direction corresponds to observation angle = -200, indicated by the dashed line in

the figures. The number of realizations averaged for a particular case are indicated

in parenthesis in these figures and throughout the rest of this chapter. Backscat-
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tering enhancement is clearly visible in both the numerical and experimental results

for the hh co-polarized return, the vv co-polarized return, and for both the vh and

hv cross-polarized returns. Overall, the agreement between experiment and theory

is observed to be good, especially given that the absolute values of the normalized

bistatic scattering cross sections are compared on a linear scale with no adjustable

parameters. However, the predicted cross-polarized level seems to be slightly lower

than the experimental data for both h and v incidence, and the forward scattering

peak in hh returns is not reproduced in the simulations.

Figure 4.2 (a)-(d) presents the same comparison, but with a surface area of 1024

square wavelengths and 8 points per wavelength sampling for a total of 131,072 surface

unknowns in the Monte Carlo simulation. The h incidence agreement is seen to be

better for this case, especially in the cross polarized results, but vv co-polarized results

are somewhat worse. The minor differences obtained between theory and experiments

in Figures 4.1 and 4.2 are difficult to clarify, but could potentially be due to differences

between the theoretical and experimental antenna patterns, the additional frequency

averaging in the experimental data, and inaccuracies in the rough surface profiles that

were fabricated.

Since the SMFSIA approach is effectively an order N2 solution technique, the

four fold increase in number of unknowns in Figure 4.2 results in sixteen times the

computational requirements for this 131,072 unknowns case. A comparison of the

131,072 unknowns (8 points per wavelength sampling) results with the 32,768 un-

knowns (4 points per wavelength sampling) results for the 1024 square wavelengths

case in Figure 4.3 (a)-(d), however, shows that 4 points per wavelength sampling

142



4.4. COMPARISON OF RESULTS

1

0

zir
Scattered angle (deg)

-- o -60 -30 0 30
Scattered angle (deg)

Scattered angle (deg)

Scattered angle (deg)

Figure 4.1: Comparison of Monte Carlo SMFSIA with experimental data. Surface

area of 256 square wavelengths with an rms height of 1 wavelength and correlation

length of 2 wavelengths. (a) ahh (b) Uvh (c) ahv (d) av

143

I
I
I
I
I
I

S Exp
-- SMFSIA (431) -

I
I
1

I~r -~1

i ~4

I ~i
,cC I

I `i:iI
11111111111111111

~r~ 11 11-111-.

i'so so



CHAPTER 4. BACKSCATTERING ENHANCEMENT
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Figure 4.2: Comparison of Monte Carlo SMFSIA with experimental data. Surface

area of 1024 square wavelengths with an rms height of 1 wavelength and correlation

length of 2 wavelengths. (a) ohh (b) 'vh (c) ohv (d) avv
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should be sufficient, at least for the surface statistics compared. Note the smoother

4 points per wavelength curve obtained due to the larger number of realizations run

for this less computationally intensive case. Further Monte Carlo simulations were

limited to 32, 768 unknowns. In addition, the substantial agreement between 256 and

1024 square wavelength surface area results shows that a 256 square wavelength sur-

face area should be sufficient in the numerical simulations for these surface statistics.

In Figure 4.4 (a)-(d), SMFSIA and experimental results are compared for sur-

faces with rms height one wavelength, correlation length 1.41 wavelengths and surface

area 256 square wavelengths. In this very rough surface case, backscattering enhance-

ment is observed for both h and v incidence co- and cross- polarized returns. Again,

the agreement between experiment and theory is observed to be good, although the

predicted cross-polarized level remains slightly lower than the experimental data and

the forward scattering peak for hh is still not reproduced in the simulations. Pre-

dictions for this case using a sampling rate of 4 points per wavelength and surface

area 1,024 square wavelengths were found significantly inaccurate due to the rougher

surface statistics.

Figures 4.5 and 4.6 (a)-(d) illustrate the same comparisons for surfaces with rms

height one wavelength, correlation length 3 wavelengths, and surface areas of 256 and

1024 square wavelengths respectively. For this smoother surface case, backscattering

enhancement is not observed in the hh co-polarized experimental results, although

some small effects are seen in both vh and vv cross-polarized components and in the

vv co-polarized component. Also, the forward scattering peak in the hh experimental

results is more pronounced. The Monte Carlo simulations are again shown to repro-

~IYP~rrmCI----· ii I-----i-
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Figure 4.3: Comparison of Monte Carlo SMFSIA with varying sampling rates. Surface

area of 1024 square wavelengths with an rms height of 1 wavelength and correlation

length of 2 wavelengths. (a) ohh (b) ovh (c) ohv (d) av,
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Figure 4.4: Comparison of Monte Carlo SMFSIA with experimental data. Surface

area of 256 square wavelengths with an rms height of 1 wavelength and correlation
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duce the overall trends and level of the experimental data, with the larger surface area

results giving better overall agreement due to the inclusion of more surface correlation

lengths for this long correlation length case.

As discussed in Chapter 1, polarimetric active remote sensing involves mea-

surement of correlations between scattered field amplitudes in addition to the power

measurements illustrated in Figures 4.1-4.6. Although a polarimetric system was not

used in the experiments, polarimetric calculations are possible with the SMFSIA.

Figure 4.7 presents an example of such calculations, where the hh - vv correlation

coefficient, p, is plotted for the Monte Carlo simulations of Figures 4.1 and 4.6. Both

the real and imaginary parts of p are illustrated in this figure, and are seen to have

distinct variations between the rms height one, correlation length two wavelengths

case (Figures 4.7 (a) and (b)) and the rms height one, correlation length three wave-

lengths case (Figures 4.7 (c) and (d)). The results of 4.7 are of interest because the

standard analytical theories always predict Ipl values very close to one, which is clearly

at variance with the small values of p predicted by the SMFSIA. Such small values

of Ipl indicate a distinction between hh and vv scattering mechanisms, although the

exact nature of this distinction is still unclear.

4.5 Conclusions

The results of this chapter clearly demonstrate the capability of Monte Carlo meth-

ods for simulating backscattering enhancement from surfaces randomly rough in two

directions. The use of an efficient version of the method of moments, the SMFSIA,

has enabled problems involving up to 131,072 unknowns to be treated so that an ac-
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curate numerical model of scattering from these surfaces could be created. The close

agreement between Monte Carlo predictions and results of a controlled laboratory ex-

periment shows the accuracy of the Monte Carlo method. Polarimetric calculations

of the hh - vv correlation coefficient p were also illustrated, and showed that small

values of p not predicted by the analytical theories can be obtained from the very

rough surface types investigated.



Chapter 5

A Numerical Study of Ocean
Scattering

5.1 Background and Motivation

Previous chapters of this thesis have dealt with surfaces whose properties were well

known. The terrain profiles of Chapter 2, pyramidal surfaces of Chapter 3, and

fabricated realizations of a Gaussian random process in Chapter 4 all allowed very

accurate descriptions of the scattering surface to be included in the numerical model.

Beginning in this chapter, a random surface whose statistical properties are much

more difficult to describe is considered for use in a Monte Carlo simulation. The

surface to be studied is that of the ocean, which has spatially and temporally varying

properties affected by both local and non-local interactions that can be extrememly

complex. Since this thesis is concerned primarily with electromagnetic scattering

models and not with the physical forces that govern properties of the ocean surface,

the description of the ocean surface used will be limited only to the relatively simple

models currently available in the literature. The limitations of these descriptions
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therefore also will limit the accuracy of the numerical simulation, so that this study

can only be considered an initial investigation of scattering properties for an ocean-

like surface model. The results, however, should allow some insight into the physics of

ocean scattering which can be useful in future numerical studies with a more realistic

ocean surface model.

Scattering from the ocean surface has been of interest since the development and

application of radar in maritime environments in the 1940's [108]. Since backscatter

from the ocean is the principle source of clutter for a monostatic radar operating at

sea, its characterization is important for accurate radar system design and description.

The backscattering cross section of the ocean also has been found to depend on local

wind speed over the ocean, so that measurements allow wind speed and also direction

over the ocean surface to be detected remotely. Forward scattering from the ocean is

important for communication or radar systems operating at sea since it governs the

degree to which multipath interference is significant. Forward scattering has been less

studied, however, since its measurement requires a bistatic sensor for non-normally

incident configurations. Although the numerical model to be applied in this chapter

is able to provide scattered field predictions for all possible bistatic scattering angles,

only the backscatter and forward scatter regions will be considered due to the above

motivations and to the immense amount of information contained in a full bistatic

scattering pattern.

A review of previous studies of ocean scattering follows in the next section.

More detailed reviews can be found in [109] and [110].
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5.1.1 Previous studies of ocean scattering

Although many studies of sea scattering were performed in the late 1940's to early

1950's [108], little progress in understanding the mechanisms of sea clutter was made

until the mid 1950's, when it was observed that ocean backscatter at mid range

incidence angles seeemed to be determined by waves in the ocean surface whose

wavelengths were half that of the incident electromagnetic wavelength [111]. This

phenomenon, known as Bragg scattering, agreed qualitatively with the predictions of

the SPM, and created a link between electromagnetic scattering models and a power

spectrum description of the ocean surface as discussed in Chapter 1. Interest in veri-

fication of this idea led to a series of measurements performed by the Naval Research

Laboratory in the mid-late 1960's [112]-[115], and eventually to the development of

a composite surface model for ocean backscatter in which SPM predictions are av-

eraged over a slope probability density function which models the long wavelength

portion of the ocean spectrum's influence on short wavelength Bragg scattering [36]-

[43]. Initial comparisons between composite surface model predictions and the NRL's

measurements showed a good quantitative agreement overall after some adjustments

to account for variations in the assumed probability density functions in the data

processing [115].

The initial success of these studies led to further interest in refining models for

ocean scattering and to more detailed experimental campaigns. One such campaign

was that of the NASA AAFE airborne K& band sensor, whose circular flights over

the ocean revealed a wind direction dependent signal which showed a maximum cross

section in the upwind direction with minima in the cross wind direction and a lesser
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maximum in the downwind direction [116]. The accurate measurements of observation

direction relative to wind direction of this data allowed new models of the ocean

spectrum to be proposed which included an anisotropic high frequency portion [41].

In addition, the AAFE campaign clearly showed the potential for remote measurement

of ocean wind speed and direction using microwave wavelengths.

Many other experimental campaigns have been carried out since 1977, including

flights of a K, band scatterometer on the SEASAT satellite and a number of airborne

and platform measurements [117]-[123]. More recently, the availability of larger data

sets of spaceborne ocean SAR imagery have increased interest in the phenomena

which govern formation of these images [109],[124]-[127]. However, these campaigns

have primarily been used to refine empirical models of ocean scattering at specified

frequencies and polarizations, with no significant variations in the composite surface

model used in theoretical comparisons having been proposed. Although the composite

surface model has been successful in producing a qualitative agreement with most

available ocean scattering data, its basis remains a heuristic one, as the division of

the ocean surface into a "small" and "long" scale remains an unclear process. This

chapter, therefore, is primarily concerned with investigation of the composite surface

model

The next section gives an overview of the ocean surface models to be applied in

this chapter. A desciption of the numerical scattering model used follows, and a brief

review of approximate theories for ocean scattering is given in Section 5.4. Studies

of ocean backscattering and forward scattering are described in Sections 5.5 and 5.6

respectively for a power law ocean spectrum. Section 5.7 considers the composite sur-
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face model for more realistic ocean spectra, and conclusions are presented in Section

5.8. A method for evaluating the physical optics integral for an isotropic power law

ocean spectrum is described in the appendix.

5.2 Description of the Ocean Surface

Although the equations of fluid dynamics allow some basic relationships to be derived

between the forces which produce ocean surface waves and their character [128], the

overall process by which rough ocean surfaces are created remains too complicated

for present theories. Interactions between different scales of roughness, the presence

of non-locally generated waves which propagate into the region of interest, and the

forces of wind stress and surface tension combine to make ocean surfaces difficult

to characterize. A statistical description of the ocean surface has been a subject of

research in oceanography for quite some time, especially given the motivation of its

importance in the composite surface model. The work of Cox and Munk [129] in

1954 provided such a description through analysis of the speckle patterns produced

by optical glare off the ocean surface. Cox and Munk found their data to be well fit

by modeling the ocean as a skewed Gaussian process, whose slope probability density

function was that of a Gaussian function times a polynomial. In addition, Cox and

Munk derived relationships between the local wind speed and the slope variance of

this process, which effectively determines the width of the optical glare pattern. The

Cox and Munk data provides enough information to model scattering from the ocean

in the geometrical optics limit, which requires only a slope variance for the ocean

to produce predictions. However, the SPM portion of the composite surface model
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requires description of the ocean spectrum or correlation function as well.

Measurements of the ocean spectrum have been pursued extensively, primar-

ily through the use of wave height recording buoys on the ocean and measurements

made in indoor wave tanks [110]. These measurements actually record wave heights

versus time, which then determines the temporal frequency spectrum of the ocean.

Under an assumption of a particular dispersion relation for ocean waves (which is

non-linear and varies between gravity and capillary type waves [128]), the temporal

frequency spectrum can be transformed into the spatial frequency spectrum desired.

It should be noted that the portion of the spatial frequency spectrum of most interest

in the composite surface model corresponds to the same spatial scales as that of the

electromagnetic wavelength. Therefore, at microwave frequencies, accurate measure-

ments of ocean waves of decimeter sizes or less are required. Such measurements are

not usually possible in a real ocean environment, given the presence of much larger

waves which mask these smaller variations, but instead have been performed almost

exclusively through the use of wave tanks. Extrapolation of wave tank spectra to

ocean spectra remains an uncertain proposition, but at present wave tank measure-

ments comprise the only reliable data for the high frequency portion of the spectrum

needed.

Although the ocean random process itself is clearly not a purely Gaussian ran-

dom process, its deviation from a Gaussian process is relatively small and as such

may be neglected in an initial model [130]. The reduction in complexity associated

with a purely Gaussian surface model further motivates this simplification. Note that

use of a stationary Gaussian ocean process removes any potential upwind-downwind
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assymetry in predicted ocean scattering behavior, as such a process must have sym-

metric properties when viewed in opposite directions [131]. Variations between up

wind and cross wind scattering behaviors are still retained however. Third and higher

order statistics of an ocean process have been incorporated in an approximate scat-

tering model in [27], again primarily to obtain the relatively small up-down wind

assymetry observed in ocean backscattering.

A number of different models for the ocean spectrum have been proposed, based

either on ocean or wave tank measurements or on empirical fits to radar backscat-

tering data through the composite surface model [128],[130]-[138]. These models also

are based on an equilibrium assumption, which implies that the wind forces which

generate the spectrum have been applied for a sufficient time and over sufficient dis-

tances to cause an equilibrium to be reached between the applied wind forces and the

dissipation mechanisms of friction and breaking. A brief description of three recent

models for the ocean spectrum available in the literature and applied in this thesis

follows.

5.2.1 Power law spectrum

One of the simplest models available for the ocean spectrum and applied in the

literature [42] is that of a power law

Il(k, q) = aok-4 (5.1)

where T represents the ocean spectrum amplitude in m4 , k represents the spatial

wavenumber of the ocean, € represents the azimuthal angle of the two dimensional
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spectrum, and a0o is a specified constant. A k -4 dependence for the ocean spectrum

has been proposed by a number of authors based on purely physical requirements

[130], although other authors have proposed slight deviations from this form [118].

Also, the proposed power law spectrum is only valid for a specified portion of the

ocean spectrum given by kdl < k < kd,, as evidenced by the singularity of the

spectrum at k = 0. Measured ocean spectra are well fit qualitatively by a truncated

k - 4 spectrum near the Bragg scattering portion for microwave frequencies, although

variations with wind speed and azimuth angle are not included in this description.

For such a truncated power law spectrum, the surface variance is given by

-2 dk k d2 1 (k, ¢) (5.2)
Jkdl 0

- lrao 2 k u  (5.3)

since the ocean spectrum is defined by

T'I(kx, ky) = (2?)2- dx J dy R(x, y) eikzz+ik y  (5.4)

where R(a, 0) =< f(x, y)f(x + a, y + 0) > is the covariance function of the Gaussian

process, f(x, y) represents one realization of this process, and a change from polar to

rectangular coordinates has been made in the spectrum for convenience. Similarly,

the total slope variance of the k- 4 spectrum can be obtained from

s2 = dk k d3 de2 d (k, 0) (5.5)
kd 0

= 2-rao log Ikdu/kdll (5.6)
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From these relationships, it is clear that the variance of a power law spectrum

ocean is dominated by its low frequency components since they comprise the highest

amplitude portions of the spectrum, while the slope variance is determined by the

width of the spectrum. Note that this slope variance dependence emphasizes the

need for a cutoff wavelength in the composite surface model, as the slope variance of

such a surface could be made very large by extending the spectrum into very short

wavelegths beyond the Bragg scatter region which are known to have almost no real

effect on ocean scattering.

5.2.2 Durden-Vesecky spectrum

A second model for the ocean spectrum from the literature is that of Durden and

Vesecky [135]. This spectrum is based on empirical fits to radar backscattering data

under an assumed composite surface model, and has been applied in the literature to

match passive ocean measurements as well [92]-[93]. The Durden-Vesecky spectrum

is given by

1

-0.74(

9  

)2

a (1 + (l e-(k/89.44)2  fe0174( .5k < 2
S(k, c) -= 2 1 + •s s 1.e S 2 0.225log10 (k/2) k 2

1 9.81+7.25x 10-5k2

where u, is the wind friction velocity at the ocean surface in m/s,

Uh = log h(5.7)
0.4 0.0000684/u, + 0.00428u2 - 0.000443

is the windspeed in m/s at h meters above the ocean surface, and ao is a constant

originally set equal to 0.004 in [135] but modified to 0.008 in [93] to achieve a better
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fit to measured data. The constant c which determines the azimuthal dependence of

the spectrum is given by

2(1 - R)/(1+ R)
S-= (5.8)

where

0.003 + 1.92 x 10- 3 U1 2.5

3.16 x 10-3U 12.5

D- f0" dk k2 S(k) e- (k/ 89.44) 2

fo dk k2 S(k)

and S(k) is the spectrum divided by (i1 + c(1 - e-(k/9.44) 2 ) cos 2Q).

Clearly, the Durden-Vesecky spectrum is much more complicated than the power

law spectrum described previously, but contains variations with both azimuthal angle

and wind speed. Note that the azimuthally varying portion of the spectrum is similar

to that proposed in [43] and preserves the ratio of upwind to crosswind slope variances

R measured by Cox and Munk. The degree of azimuthal anisotropy of the spectrum

is a function of spatial wavenumber, with higher frequency (shorter) waves being

more anisotropic as is needed in the composite surface model to reproduce measured

azimuthal variations. The exponential rolloff of the spectrum for k < 2 represents a

well studied portion of the ocean spectrum, as buoy measurements on the open ocean

are possible for such large waves. However, the portion of the spectrum for k > 2 is

based on fits to backscatter data alone and effectively represents a deviation from a

pure power law spectrum (given by the k-4 portion of the spectrum) as a function
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Figure 5.1: Amplitude of Durden-Vesecky spectrum for 4 wind speeds

of wind speed. Figure 5.1 plots the Durden-Vesecky spectrum for three wind speeds

on a log T versus log k scale to illustrate the k- 4 dependence for ao = 0.008. Note

the changes in the low frequency cutoff predicted by the spectrum, indicating a much

larger surface rms height at the higher wind speeds, as well as the small increase in

spectrum amplitude at the higher frequencies. This increase at the higher frequencies

is important, since changes in high frequency amplitudes directly cause variations in

the Bragg scatter ocean cross section with wind speed in the composite surface model.

163

3m/s
---.- 6.5 m/s
........ 13.5 m/s

--.... . 23.6 m/s

h i I ,0

I

- . I I .
I i
.I I



CHAPTER 5. A NUMERICAL STUDY OF OCEAN SCATTERING

5.2.3 Donelan-Banner-Jahne spectrum

A final model for the ocean spectrum presented in [130] is based upon empirical fits

to the wave tank frequency spectrum measurements of Donelan, Banner, and Jahne

(DBJ), and has also been applied with an SPM model to match vertically polarized

backscattering data at several frequencies. The DBJ spectrum is given by

'I'(k, $) = -e-(0.14+5(kp/k) 1.3)2 e-(kp/k) 2 -(k/6283) 2 1 7 exp [ - (kl/2 - k / 2)2/(0.32 k p)]

+ (k/ )+ S(0.8k sech[(k - 400)/450]) (5.11)

where

9.81
k, = (5.12)V2u2
S = 10( - 4.95 + 3.45(1 - e - u/4. 7)) (5.13)

and u is the windspeed at 10 meters above the ocean surface in m/s. The DBJ spec-

trum is composed of several individually derived portions which determine its behavior

in specific wavenumber regions, from its rolloff at both high and low frequencies to

its eventual saturation with increasing wind speed. The amplitude ao is set equal

to 0.000195 to insure a reasonable variance obtained for the ocean process when the

spectrum is integrated as with the power law spectrum discussed previously. Again,

the DBJ spectrum is based primarily upon a k- 4 dependence for the ocean spectrum,

with additional factors added to fit the observed variations with wind speed in certain

spectral regions. Note also that the azimuthal variation of the DBJ spectrum, defined
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for -7r < ¢ < 7r, makes the longer waves more anisotropic that the shorter waves,

so that a Bragg scatter mechanism cannot explain observed azimuthal variations in

ocean cross section for most microwave frequencies. The distinction between the

Durden-Vesecky and DBJ spectra on this issue emphasizes the current lack of knowl-

edge on true ocean spectra in the capillary wave region and the difficulty in measuring

these spectra. Note also that the azimuthal dependence of the DBJ spectrum is not

that of a stationary Gaussian process, as the exponential azimuth angle dependence

is not origin symmetric. For use in stationary process scattering theories, the spec-

trum must be symmetrized as in [130] by using J'(k, ¢) = [I(k, ¢) + I(k, 0 + r)] /2.

Figure 5.2 plots the DBJ spectrum for three wind speeds, again on a log X versus

log k scale. Similar behavior to the Durden-Vesecky spectrum is observed, with the

difference in azimuthal behavior not illustrated in this one dimensional plot. Figure

5.3 overlays both the Durden-Vesecky and DBJ spectra times k4 , known as the curva-

ture spectrum, to compare the wind speed variations of the two descriptions. Overall,

similar trends are observed in the two spectra, although the high frequency rolloff of

the DBJ spectrum is not included in the Durden-Vesecky spectrum. This distinction

is not expected to have effects on scattering below frequencies of 30 GHz (k = 628.3)

since the corresponding Bragg wavenumbers lie below the beginning of the DBJ high

frequency rolloff.

5.3 Numerical Model for Ocean Scattering

Given a choice of spectrum description for the ocean surface, a numerical model

similar to that described in Chapter 4 can be applied to produce predictions of average
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Log base 10 of spatial wavenumber k (k in rads/m)

Figure 5.2: Amplitude of DBJ spectrum for 4 wind speeds

166

."
E

E

E

-100
-J



5.3. NUMERICAL MODEL FOR OCEAN SCATTERING

Log base 10 of spatial wavenumber k (k in rads/m)

Figure 5.3: Comparison of Durden-Vesecky and DBJ curvature spectra
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scattered electromagnetic power through a Monte Carlo simulation. In contrast to

the narrow band Gaussian spectrum surfaces of Chapter 4 however, the ocean surface

models to be investigated are comprised of a wide range of spatial scales ranging

over several orders of magnitude both larger and smaller than the electromagnetic

wavelength. Inclusion of all these scales in a numerical simulation is impossible,

given their large range and the computational costs associated with two dimensional

surface scattering problems. Use of a numerical simulation will inherently imply a

low and high frequency cutoff wavenumber in the portion of the ocean spectrum

simulated, since the finite size of surfaces used limits their low frequency content

and the non-zero discretization size used limits their high frequency content. As a

result, direct extrapolation of numerical model results to a full ocean spectrum is not

immediately possible, and is warranted only if convergence with respect to the high

and low frequency spectral cutoffs can be demonstrated. These variations are also of

interest themselves, as they should illustrate some of the physical processes at work in

ocean scattering, at least as described by the composite surface model. Since varying

the low and high frequency cutoffs of the spectrum does not affect the Bragg spectral

component (unless it is directly cutoff) but does affect the slope variance of the entire

spectrum simulated (as given in equation (5.5)), these variations should illustrate any

tilting affects due the "long" wavelength portion of the spectrum simulated.

The numerical model to be applied models the ocean surface as being perfectly

conducting. Sea water actually is a fairly high loss medium, with a dielectric con-

stant of approximately (39.7, 40.2) at K. band [139] which increases with decreasing

frequency primiarily due to ionic conductivity. A model for ocean scattering which
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includes the effect of this loss will be discussed in Chapter 6 when passive remote

sensing is considered. However, in active remote sensing, the finite conductivity of

the ocean surface is expected to have only a fairly small influence on ocean cross

sections, especially when considered on a decibel scale. Given the much greater com-

plexity associated with the penetrable surface numerical model of Chapter 6 and the

fact that only perfectly conducting surface models will be compared in this chapter,

use of a perfectly conducting surface for the ocean should not significantly influence

the results of this study. Comparisons with experimental data made in Section 5.7

will include the effect of surface conductivity through the composite surface model.

5.3.1 Canonical grid approach

As stated previously, the numerical model of this chapter is essentially the same as

that of Chapter 4: a method of moments solution for finite size realizations of the

perfectly conducting ocean surface random process illuminated by a tapered beam

incident wave. However, some problems with the model of Chapter 4 occur when

simulating ocean surface back scattering which necessitate improvements. The prob-

lems are due to a desire for simulation of ocean surface backscattering cross section

at incident polar angles ranging from 0 to 60 degrees, for which cross section values

can vary by a scale of more than 40 dB. The very small values of ocean backscattered

cross section at an incidence angle of 60 degrees make simulations very sensitive to

any edge scattering effects due to the finite size of the surface modeled. Although

these contributions can be reduced by increasing the tapering of the incident beam,

such an increase has the effect of increasing the angular width over which scattered
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cross sections are averaged and thereby reducing angular resolution of scattered field

predictions. Edge contributions can also be reduced by increasing the simulated sur-

face size while maintaining a constant incident beam size if the associated increase in

computational domain size remains within computational limitations. It is this latter

approach that motivates an increase in computational efficiency so that larger surface

sizes can be included to reduce edge effects.

The method used to increase computational efficiency is a canonical grid (CAG)

approach as described in [60]. Recall that the SMFSIA of Chapter 4 was composed

of nested iterative methods for inversion of the method of moments matrix equation

given by

((s) + (Fs) (1) = (5.14)

(iZ() + =(FS))y(n±) - (n+1) (5.15)

(n+) = - (w)() (5.16)

where solution of the above matrix equations was accomplished using a CG-FFT ap-

proach since flat surface multiplies could be performed with a fast Fourier transform.

However, the above method remains an order N2 technique, since the weak matrix

multiplies of each iteration are order N 2 . The canonical grid approach avoids this

problem by expanding weak matrix elements into a translationally invariant Taylor

series whose individual terms again can be multiplied using the FFT. This series can
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be written as

G(R) - GFS(PR) = (ikR - 1) exp(ikR)
471rR 3

(ikpR - 1) exp(ikpR) M 2

4p am(P)( 2)R

where zd = f(x, y) - f (x', y'), and the first few terms of this series are

eikp
a1 = S41rp 3

eikp
a2 = 42 -7rp3

eikp
a3 =4

47rp3

3 a ( )p)23)1 - ikp2 - 3
-15\ (1 . 2(kp) 2  .(kp) 3

1) I- ikp - +
k8 5 15

35( - ikP 3(kp)2 + 2(kp)3 + (kp)4
16 7 21 105

with higher order terms easily derived using a symbolic mathematical program. Note

that this expansion is similar to an expansion of the Fresnel term ei 2p which occurs

in standard diffraction problems as 1 + i -  -... . Clearly such an expansion is2p

useful only for surfaces with relatively small slopes, as the power series above con-

verges reasonably only for fairly small values of . It is this convergence requirement

that eliminated the possibility of the more efficient canonical grid approach for the

terrain profiles of Chapter 1, which often had variations of several hundred wave-

lengths within reasonably short horizontal distances. However, the ocean spectra to

be considered in this chapter have relatively small variations compared to the electro-

magnetic wavelength given that only the portion of the spectrum near this wavelength

is able to be simulated. The number of terms necessary in the CAG series to retain

accuracy will be considered in the following sections.
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5.3.2 Neumann iteration

A second approach which can be applied to increase program efficiency is that of

Neumann iteration, which essentially is a Born series solution to the MFIE

SxH(T) = 2i x Hin,+2e x •dS' {VxE. I[' x H (')] (5.20)

which approximates tangential magnetic fields on the surface as

[ix ( =)] 2n x Hine + 2i x dS' {+V 2x In x H(f')]( 1) (5.21)

with [i x H](0) = 2i x Hinm, the physical optics approximation. Equation (5.21)

above can be iterated to achieve higher order Neumann solutions, each of which

corresponds to given order of scattering. Note that a discretized version of equation

(5.21) results in expressing higher order tangential magnetic fields as proportional to

the same matrix as the method of moments times present order tangential magnetic

fields. Thus, the same techniques for more efficient matrix multiplication as in the

method of moments can be applied to the Neumann iteration, with the result being

effectively the same procedure as the SMFSIA except that the conjugate gradient

solution step of the SMFSIA is replaced by a Neumann iterative solution.

A comparison of the SMFSIA and the Neumann iterative approach clearly shows

the SMFSIA to produce superior convergence properties. As discussed in Chapter 4,

the Neumann series approach has been shown to have convergence problems when

used at large incidence angles or for surfaces with large slopes. This is due to the

fact that the Neumann series uses the same coefficient weightings for the contribu-
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tion of each previous order of scattering regardless of how significant each of those

contributions may be for a given surface. In contrast, a conjugate gradient solution

adjusts these coefficients in an attempt to minimize the current residual of the matrix

equation, so that its convergence properties are almost by definition superior. How-

ever, the Neumann series is appealing in that its terms correspond physically to the

contributions of individual multiple scattering terms, and as such may indicate the

possibility of eventually obtaining improved analytical approximations through inclu-

sion of these terms. In addition, a single Neumann iteration requires only one matrix

multiplication while a single conjugate gradient iteration requires two. Thus, for sur-

faces for which the Neumann iteration technique converges to a desired accuracy after

one iteration, the method has a computational advantage as well.

Comparisons between full method of moment results and single Neumann iter-

ation results will be made in Section 5.5.

5.3.3 Separation of coherent and incoherent terms

For an infinitely large ocean surface, reflected and transmitted coherent fields consist

of individual propagating plane waves whose amplitude is reduced as the surface

height fluctuations increase. However, surfaces simulated numerically are of finite

size, and the coherent field is no longer a plane wave but rather spreads over a

range of scattered angles. Since scattering from the ocean is primarily incoherent

at microwave frequencies, only incoherent scattered powers are of interest in the

numerical simulation. Thus, the removal of any coherent fields which remain due to

finite surface size effects is required in the Monte Carlo simulation. This removal is
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performed by calculating incoherent scattered powers as

< Pinc >=< I- <E > 12 > (5.22)

where, in the Monte Carlo simulation, < - > indicates averaging over the number

surface realizations simulated, and PVc" represents the incoherent scattered power for

a specific configuration. In the simulation results presented in Sections 5.5 and 5.6,

surface rms heights ranging from 0.02 to 0.64 wavelengths are considered, so that

coherent fields are clearly present in the lower rms height cases. The above procedure

allows their influence to be removed so that only incoherent scattered powers can be

compared.

5.4 Approximate Models for Ocean Scattering

Standard approximate theories scattering from the ocean are based on either a physi-

cal optics (PO), geometric optics (GO), SPM, or composite surface approximation as

discussed in Chapter 1. The PO approximation results in an expression for bistatic

cross sections which requires integration of an exponential function involving the sur-

face correlation function. Since this integral is usually difficult to perform, especially

for surfaces with large rms variations on an electromagnetic scale, a further station-

ary phase approximation can be made which defines the geometric optics approxi-

mation. Both the PO and GO approximations predict no polarization dependence

to co-polarized cross sections for perfectly conducting surfaces, which is at strong

variance with observed off-normal backscattered cross sections but in agreement with

observed forward scatter cross sections. Thus, PO and GO results are expected to be
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more accurate for forward scattering.

The physical optics approximation can also be used in a Monte Carlo simula-

tion. Although the ensemble average calculated in the Monte Carlo simulation can be

obtained analytically with PO approximated surface currents, difficulties associated

with evaluation of the resulting expression limit use of the analytical solution. The

appendix of this chapter discusses a method for calculation of the analytical PO solu-

tion, but the approach is limited to a power law ocean spectrum and relatively small

rms height surfaces. Monte Carlo simulations of PO approximated scattering can be

performed for arbitrary ocean spectra or rms height surfaces. One clear distinction

between Monte Carlo ensemble averages and analytically calculated ensemble aver-

ages is the finite number of realizations inherent in the Monte Carlo approach. Also,

Monte Carlo PO results are calculated for finite size surface realizations as opposed

to the infinitely large surfaces of the analytical solution. Comparison of Monte Carlo

PO results with their analytically evaluated counterparts will provide a useful tool for

assessing the influence of these factors on Monte Carlo predictions. A good agreement

between the Monte Carlo and analytical PO results indicates that a sufficient number

of realizations has been used in the simulation and that the effects of finite surface

size are not important.

The SPM predicts incoherent scattering from the ocean surface to be propor-

tional to one spatial frequency component of the ocean spectrum alone to first order

as discussed in Chapter 1. The SPM also predicts a strong polarization dependence

to co-polarized scattering coefficients which increases as the incident observation an-

gle increases. It is this polarization dependence which favors use of the SPM at
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higher observation angles, where observed ocean backscattering data shows a large

polarization difference, with vertically polarized cross sections exceeding horizontally

polarized cross sections by 10 dB or more in some cases at 60 degree observation.

However, the small surface height assumptions of the SPM derivation are not appli-

cable to an ocean spectrum in general, so that the theoretical basis for using the SPM

in ocean scattering is unclear [110].

The final ocean surface scattering model considered is the composite surface

model, which expresses scattering from the ocean surface to be the combination of the

geometric optics results in the near forward scattering direction and SPM results away

from forward scattering. SPM results, however, are now tilted over an underlying

Gaussian slope distribution as described in [39]-[40], for which the primary result

is an increase in hh cross sections at large incidence angles. The slope distribution

used to tilt SPM contributions and in GO predictions models the "long" wavelength

portion of the spectrum, while SPM predictions contain only the "short" wavelength

portion. Division between these two regions is made at a specific wavenumber, labeled

Kd, which effectively is a parameter of the model. Note, however, that the rms surface

height contained in the SPM portion of the spectrum increases as Kd is decreased

so that strictly speaking SPM predictions become less valid. References from the

literature [15] suggest choice of this wavenumber as approximately k/3 where k is the

electromagnetic wavenumber, corresponding to a 3 wavelength spatial scale cutoff.

Numerical simulations have also been performed for one dimensional surfaces [140]

which indicate that backscattering errors can be minimized for a range of incidence

angles by choosing Kd as k/2. Appropriate choices for Kd which provide minimum
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error when compared to the two dimensional surface simulations performed will be

considered in the following sections.

5.5 Backscattering

As mentioned previously, numerical calculation of backscattered cross sections from an

ocean surface model is difficult due to low scattered field strengths in the backscatter

direction. The contribution of edge effects can significantly affect model predictions

for non-normal angles where scattered field strengths become extremely low. Numeri-

cal results will be presented in this section using the CAG approach, which allows the

much larger surface sizes required to reduce edge effects to be simulated. Figure 5.4

illustrates the convergence of predicted normalized backscattered cross sections (as

defined in Chapter 1) with surface size simulated for a power law spectrum with high

and low frequency cutoffs of kdl = 73.3 (4A) and kd, = 586.4 (A/2) at a frequency of

14 GHz. An amplitude of a0o = 1.273 x 10- 3 was used for the power law spectrum,

which corresponds to the 0.008 amplitude used for the Durden-Vesecky spectrum and

results in a ku product of 0.25. The small rms height of this surface shows that SPM

predictions should be valid, and should therefore provide a check on edge effects in

the simulation. Numerical simulations were run with sampling rates of 8 unknowns

per wavelength and surface sizes of 16A x 16A, 32A x 32A and 64A x 64A for total

matrix sizes of 32,768, 131,072, and 524,288 respectively. Incident fields in the

simulations were kept constant as surface sizes were increased by increasing the g

parameter correspondingly since the exponential taper width used for the incident

field is g' = L/g. A taper width g' of 16A was used in all of the simulations for
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incidence angles of 20 degrees or greater, while a plane wave incident field was used

for incidence angles less than 20 degrees to avoid a reduction in angular scattered

field resolution in this high scattered power region where edge effects should not be

significant. Results were generated using the CAG approach with a strong matrix

bandwidth of 15 points and with a physical optics initial guess in the conjugate gra-

dient solver, and tests with a single surface realization were performed to determine

the importance of retaining CAG series terms. Contributions of the weak matrix

CAG terms to the final predicted cross sections were found insignificant (within 0.1

dB), so the weak matrix was neglected entirely in subsequent realizations. Results

plotted in Figure 5.4 are averaged over 20 realizations, and comparisons with SPM

predictions clearly show that the model is yielding accurate results. Results for the

three surface sizes are within 1 - 2 dB of one another at all incidence angles except

for 50 and 60 degree incidence, where significant differences are observed in the very

small horizontally polarized cross sections. A surface size of 64A x 64A, however, is

seen sufficient to reduce any edge contributions below the predicted SPM levels so

that a good agreement can be obtained.

Further results in section 5.5.1 will be presented using a surface size of 64A x 64A

and 524, 288 unknowns, for which single realization calculations require approximately

5 hours of SP2 node time at the Maui High Performance Computing Center. Surfaces

with larger rms heights than those of Figure 5.4 will also be considered, so that

weak matrix contributions potentially become more important. Single realization

tests performed with the roughest surfaces showed that neglecting CAG series terms

causes no greater than a 1 dB inaccuracy for all of the surfaces considered. The much
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Figure 5.4: Comparison of MOM and SPM backscattering predictions for cutoff

wavenumber kdl = 73.3: Convergence with respect to surface size

greater computational time required to include CAG series terms makes a Monte

Carlo simulation impossible. Therefore, all the results to be presented neglect CAG

series terms with a resulting error of approximately 1 dB.

5.5.1 Backscattering from a power law spectrum ocean

Given the simplicity of the power law spectrum, the only spectral variations to

be considered are those associated with varying the high and low frequency cutoff

wavenumbers of the spectrum. Although amplitude variations are also possible, the

ao = 1.273 x 10-3 value used previously roughly corresponds to the overall ampli-

tude of the other spectrum models, and therefore will not be varied. Figures 5.5
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(a) through 5.10 (a) compare simulation results with SPM predictions for low fre-

quency cutoff wavenumbers varying from 146.6 (2A) down to 4.58 (64A), all with a

high frequency cutoff of 586.4 (A/2). Single realization simulations including surface

frequencies above this high frequency cutoff showed no effect on predicted results, so

only low frequency cutoff variations are considered. Rms heights of the simulated

surfaces range from 0.02 to 0.64 electromagnetic wavelengths, and Figures 5.5 to 5.10

illustrate the effects of this increase on scattered cross sections for the power law

surface considered. Note that SPM predictions vary only in the location of the cutoff

region between figures, as Bragg scatter portions of the spectrum are not altered by

changing the low frequency cutoff. Simulation results are plotted for both hh and vv

cross sections, and both hv and vh cross sections, which differ by less than 1 dB and

indicate the accuracy of the SMFSIA solution, are included as well. Figures 5.5 (b)

through 5.10 (b) illustrate the corresponding comparison between Monte Carlo physi-

cal optics results (generated for the same set of surfaces as the results of Figures 5.5 (a)

through 5.10 (a)) and analytical physical optics predictions evaulated by the method

of Appendix A. The good comparison between Monte Carlo and analytical PO results

in Figures 5.5 (b) to 5.10 (b) (within 1-2 dB at all incidence angles) demonstrates that

the finite surface size and number of realizations in the Monte Carlo simulation are

not having a large impact on model predictions. A slight underestimation at higher

incidence angles is observed which is believed to be due to the tapered beam of the

Monte Carlo simulation. A minimum of twenty surface realizations were averaged

for each of the points of these figures, with simulations of independent sets of twenty

surface profiles showing convergence to within 1.5 dB. While a larger number of real-

izations is desirable to reduce this uncertainty, computational limitations prohibited
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further simulations, so that a final accuracy of approximately 2.5 dB results for this

study.

An examination of Figures 5.5 to 5.10 reveals that overall, little change is ob-

served in model predictions at large incidence angles as the low frequency cutoff

frequency is varied, which is consistent with all of the approximate theories. The

primary change in predicted cross sections is seen to occur near normal incidence,

where the width of an angular cutoff region is seen to decrease as the rms height of

the surface increases. This cutoff phenomenon is predicted by the SPM and com-

posite surface models, which obtain a zero scattered power (minus infinity dB) at

angles related to cutoff regions in the surface spectrum. Method of moments results,

however, are non-zero and are well fit by the physical optics approximation. This can

be explained by the fact that SPM predictions generated are first order only, with

higher order SPM terms containing a convolution between scales in the spectrum

which should produce some scattered power in the cutoff zone. Changing scattered

field strengths near normal incidence illustrate the transfer of energy from coherent

to incoherent fields as surface rms height increases. The lower rms height surfaces of

Figures 5.5 to 5.7 still allow a large coherent reflected wave to exist, so that reduced

incoherent powers are observed in the forward direction. However, Figures 5.8 to

5.10, where the ka product is 1 or greater, show no such cutoff phenomena since the

coherent field strength is already significantly reduced.

Comparison of Figures 5.5 (b) to 5.10 (b) with Figures 5.5 (a) to 5.10 (a) shows

that the physical optics approximation fits MOM results extremely well up to 20

degree incidence for all of the surfaces considered. Beyond 20 degree incidence, how-

181



CHAPTER 5. A NUMERICAL STUDY OF OCEkANCATTERING

I I I I I I I I

o MOM, v
- - - SPM, v

* MOM, h
SPM, h

A KA^lR If..

A

"0 5 10 15 20 25 30 35 40 45 50 55 60

Observation angle (deg)

(b)

, 20

0 10

00

a 0

S-10

O

N.

z

60 5 10 15 20 25 30 35 40 45 50 55 60

Observation angle (deg)

Figure 5.5: Cutoff wavenumber kdl = 146.6, ka = 0.125 (a) Comparison of MOM and

SPM backscattering predictions (b) Comparison of Monte Carlo and analytical PO

backscattering predictions

182

I I

0mr.

z0
h._

U

z

20

10

0

-10

-20

-30

-an

I I I I I I I I I I I I

Monte Carlo PO
Analytic PO

-·

I 1 I

I 1 4 1| |-4U • • • • • •

-

I I I I



183

i II I I I II I I

o MOM, v
--- - SPM, v

* MOM, h

A A

20

a) 2

-10

"-20

z
=,

I I I I i I
0 5 10 15 20 25 30 35 40 45 50 55 60

Observation angle (deg)

(b)

0 5 10 15 20 25 30 35 40 45 50 55 60

Observation angle (deg)

I I

Figure 5.6: Cutoff wavenumber kdl = 73.3, ka = 0.25 (a) Comparison of MOM and

SPM backscattering predictions (b) Comparison of Monte Carlo and analytical PO

backscattering predictions

5.5. BACKSCATTERING

I ft I J

20

0 10

0

S-10

L_

m -20

Es- -30
z

-1

I I I I I I I I 1 I I I

* Monte Carlo PO
- Analytic PO

II I ---
I-

__

.all

i

-al - -- --

-



CHAPTER 5. A NUMERICAL STUDY OF OCEAN SCATTERING
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Figure 5.7: Cutoff wavenumber kdl = 36.6, kc- = 0.5 (a) Comparison of MOM and

SPM backscattering predictions (b) Comparison of Monte Carlo and analytical PO
backscattering predictions
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ever, PO results fall between vertically and horizontally polarized results and fail to

reproduce the observed polarization dependence. Note that the physical optics ap-

proximation predicts almost no variation in cross sections for incidence angles greater

than 40 degrees for the entire range of surface rms heights. This observation contrasts

with the geometrical optics model, which predicts much smaller cross sections at high

incidence angles which increase as surface rms heights (and slopes) increase.

To summarize, the results of Figures 5.5 to 5.10 illustrate that SPM predictions

indeed remain qualitatively accurate for incidence angles larger than 20 degrees as

surface rms heights are increased dramatically beyond regions where SPM predictions

are expected to hold. In addition, physical optics predictions are observed to be

accurate for incidence angles less than 20 degrees regardless of surface rms height.

Both of these results favor general assumptions of the composite surface model. More

specific aspects are considered in the next section.

5.5.2 Comparison with composite surface model

Although the theoretical basis of the composite surface model has been somewhat

justified by the comparisons of the previous section, a more detailed comparison with

composite surface model predictions should allow further insight into the choice of

cutoff wavenumber inherent in the model. Figures 5.11 through 5.13 plot variations in

vv, hh, and hv cross sections with low frequency cutoff for four of the cases previously

studied. For incidence angles greater than 20 degrees, these figures show very little

variation in vv, larger variations in hh, and the largest variation in hv cross sections.

Variations in both vv and hh cross sections are small enough to make their distinction
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Figure 5.11: Variation in vv backscatter cross sections with low frequency cutoff

from the 2.5 dB model uncertainty difficult, but variations in hh are clearly larger

than their vv counterparts. Only the variation in cross polarized cross sections is

significant enough to provide a quantitative test of an approximate theory.

For comparison with the composite surface model, two separate angular backscat-

tering regions will be considered: the region between 0 and 30 degrees, for which the

physical/geometric optics models are primarily used, and the region between 30 and

60 degrees, for which tilted SPM predictions are primarily used. Given the success of

the physical optics approximation in matching numerical results up to 20 degrees, the

primary issue in the 0 to 30 degree region concerns the accuracy of the GO approxi-

mation, which is required for non-power law spectra due to the difficulty in evaluating
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Figure 5.12: Variation in hh backscatter cross sections with low frequency cutoff
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the full PO integral. Figure 5.14 compares physical/geometric optics results for four

power law spectra, which begin with the numerically validated kdl = 4.58 case and

extend the low frequency cutoff below regions where numerical simulations could be

run and correspondingly increase surface rms height so that GO predictions should

become more valid. The full surface spectrum was used in defining surface rms slope

for use in the geometrical optics approximation, corresponding to choosing a com-

posite surface model cutoff of Kd = kd,. Geometric optics predictions in this case

are seen to agree with the physical optics approximation very poorly over the entire

range of incidence angles, indicating a poor choice of the Kd parameter. Figure 5.15

presents the same comparison using a cutoff wavenumber of Kd = k/2 for the GO

predictions, and is seen to produce a very good comparison with PO predictions up

to approximately 20 degrees for the rough surfaces simulated. Alternate choices of

Kd were found to produce inferior results, so a choice of Kd = k/2 seems optimal

for backscattering predictions from a perfectly conducting power law surface. This

choice is in agreement with [140], and results in a ko product of 0.126 for the small

scale portion of the spectrum, slightly less than 0.158 value suggested by [15]. Note

that even when including the entire slope variance of the surface as in Figure 5.14,

GO predictions fail to match the incidence angle dependence of PO results beyond

20 degrees, indicating the inherent limitations of the GO approximation in this re-

gion. However, since two scale SPM predictions produce reasonable agreement for

large incidence angles, these limitations should not influence composite surface model

accuracy.

Comparisons between method of moments results and composite surface model

192



5.5. BACKSCATTERING

01%

0

0

N

E

.m0

zo

o(U

*0L.

"0
N

E
o
z

193

Observation angle (deg)

Figure 5.14: Comparison of PO and GO backscattering predictions using Kd = 2k



A NUMERICAL STUDY OF OCEAN SCATTERING

U 1 1U 15 ZU 25 30

Observation angle (deg)

Figure 5.15: Comparison of PO and GO backscattering predictions using Kd = k/2
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predictions for incidence angles between 30 and 60 degrees are shown in Figure 5.16 for

three of the simulated surfaces. Also included is the corresponding untilted SPM re-

sult. A slight underestimation of vv cross sections by the numerical model is observed

at higher incidence angles as with PO predictions. However, the small variations in vv

results with increases in surface slope agree well with the composite surface model.

The magnitude of hh variations also agree well with the composite surface model,

although again these variations are small enough to make an thorough quantitative

assessment difficult. Overall, however, the composite surface model is qualitatively

validated by these comparisons. As mentioned previously, the greatest sensitivity

to tilting effects was observed in the cross polarized numerical results. However,

comparison with the composite surface model is complicated by the fact that SPM

predicted cross polarized cross sections are singular for a perfectly conducting surface

[7]. Comparisons between numerical results and untilted SPM predictions are made

in Figure 5.17 with a surface conductivity of 108 S-m used in the SPM, chosen to

set the level of SPM results near the numerical simulations. No tilting is performed

for the cross polarized predictions, due to computational complexity of evaluating

the SPM second order cross polarized results and the relatively flat curves for which

tilting should have little effect. The comparison shows a reasonable agreement be-

tween SPM predictions alone and numerical results for incidence angles greater than

20 degrees where SPM predictions are expected to be valid. Note that the SPM alone

reproduces variations with low frequency cutoff for cross polarization since second

order fields involve a convolution of scales within the surface spectrum rather than

the single surface scale of first order predictions. Performance for angles less than

20 degrees is seen to be much worse, as with co-polarized cross sections, indicating
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the inaccuracy of SPM predictions for this region. Note that geometrical optics pre-

dictions also produce no cross polarization for backscattering, so that near-normal

incidence cross polarized backscattering is inaccurately predicted by the composite

surface model. However, given the success of the composite model in all the other

regions studied, this limitation seems relatively minor.

5.5.3 Comparison with Neumann iteration results

A final

for the

surface

subject of interest involves the accuracy of single Neumann iteration results

power law spectrum. Since the majority of attempts to extend analytical

scattering theories beyond the physical optics limit are based on a single
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Neumann iteration [19]-[20],[27], a numerical study of the accuracy allowed by this

approach should allow some insight into the potential success or failure of these ex-

tended theories. Figure 5.18 compares backscattering cross sections for the same

set of 20 surface realizations using both the method of moments and a single Neu-

mann iteration for a low frequency cutoff of kdl = 9 (ko = 2.02). The comparison

shows that a single Neumann iteration extends physical optics results to include the

polarization difference predicted by the SPM. This fact has been demonstrated ana-

lytically by Holliday in [28] for surfaces with small rms heights and slopes, and the

good agreement obtained between MOM and Neumann results shows this conclusion

to hold for power law surfaces with larger rms heights. The accuracy of Neumann

iteration cross polarized predictions indicates the second order scattering nature of

cross polarized fields. Some inaccuracies are observed, however, which seem to in-

crease with incidence angle. As mentioned previously, numerical simulations for 1-D

surfaces have been performed which show similar phenomena, including a divergence

of the Neumann series as surface slopes and incidence angles increase to larger values

than the simulations performed here. However, the results of this comparison demon-

strate that an analytical solution with accurately calculated single Neumann iterated

cross sections should produce very good results for incidence angles up to 60 degrees

and could potentially eliminate the need for the heuristic composite surface theory

presently used. The development of such a theory, along with a detailed evaluation

of the approximate Neumann iterated theories of [19]-[20],[27], remains a subject for

further study.
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Figure 5.18: Comparison of MOM and single Neumann iteration backscattering pre-

dictions, kdl = 9.16
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5.6 Forward Scattering

As mentioned previously, predicting forward scattering from the ocean is important

in understanding multipath interference effects for communication and radar systems

operating in a sea environment. For HF and lower frequencies, the large electromag-

netic wavelengths make the ocean appear as an almost specular reflector, so that a

strong coherent reflected wave is obtained. In the microwave frequency range, how-

ever, multipath interference is clearly incoherent for most wind speeds, as the small

wavelengths of microwaves make even small gravity-capillary type ocean waves ap-

pear large on an electromagnetic scale. Important issues to be considered are the

accuracy of standard approximate methods for forward scattering as well as the ef-

fect of parameters such as incidence angle, polarization, frequency, wind speed, and

ocean spectrum model on forward scattered bistatic cross sections.

Numerical results presented in this section were calculated concurrently with

the backscattering predictions of the previous section. As discussed previously and

observed for backscattering, the physical optics approximation is expected to produce

accurate predictions for near forward scattering. Figure 5.19 is an example of the

accuracy of PO results: plotted are the method of moments, Monte Carlo PO, and

analytical PO results for the same power law spectrum as the previous section with

high and low frequency cutoffs of kdl = 4.58 (64A) and kd, = 586.4 (A/2) at a

frequency of 14 GHz. The three plots of Figure 5.19 represent azimuthal cuts through

the bistatic scattering pattern centered on the specular direction of 0, = 60, 0, = 0

for the g' = 16A tapered beam incident field. Only hh cross sections are plotted in

Figure 5.19, as vv and hh results are similar to within 0.5 dB. Figure 5.19 clearly
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Figure 5.19: Cutoff wavenumber kdl = 4.58, ka = 4.0: Comparison of MOM, Monte

Carlo PO, and analytical PO forward scatter co-pol cross sections for 60 degree inci-

dence (a) 0, = 50 deg (b) 0, = 60 deg (c) 0, = 70 deg

illustrates that Monte Carlo PO and method of moments results are in agreement,

so that the physical optics approximation is validated. Small differences within 2 dB

from analytical PO results are due to the finite surface size, tapered incident field,

and finite number of realizations in the simulation. Overall, however, the agreement

between Monte Carlo PO and MOM results and analytical PO results validates the

numerical approach.
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5.6.1 Power law spectrum

As in the backscatter case, only variations of the low frequency cutoff wave number

will be considered due to the simplicity of the power law spectrum. Figures 5.19

through 5.22 illustrate Monte Carlo MOM, Monte Carlo PO, and analytical PO co-

polarized results for low frequency cutoff wavenumbers ranging from 4.58 to 36.6 for

an incidence angle of 60 degrees. Cross-polarized comparisons are shown in Figures

5.23 through 5.26. Forward scattering at large incidence angles is of most interest due

to the near grazing angle operation of many ocean borne radar and communication

systems. However, surface size limitations prevent angles closer to grazing from being

simulated, so that a compromise angle of 60 degrees results. Throughout Figures 5.19

to 5.26, Monte Carlo PO and MOM results are seen to be within 1 dB except for a

few isolated cases both in co and cross polarizations, and a good general agreement

with analytical PO results is also obtained. Note the dramatic changes in forward

scattered incoherent cross sections as surface rms height is decreased. This is similar

to the changes in near-normal incidence backscatter predictions previously observed,

and indicates the gradual transfer of energy between coherent and incoherent cross

sections. Minor differences between PO and MOM results are observed in the "cutoff'

regions, especially at azimuth angle 0 degrees for which analytical (plane wave inci-

dence) PO predictions yield no cross polarized scattering. Monte Carlo PO results,

however, yield some cross polarized amplitudes in this region due to the tapered beam

incident field, which effectively averages scattered fields over a small angular region.

MOM cross polarized fields are observed to exceed PO values by approximately 5 dB,

however, indicating that the PO approximation is inadequate for cross pol predictions
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Scattered azimuthal angle (deg) Scattered azimuthal angle (deg) Scattered azimuthal angle (deg)

Figure 5.20: Cutoff wavenumber kdl = 9.16, ko = 2.0: Comparison of MOM, Monte

Carlo PO, and analytical PO forward scatter co-pol cross sections for 60 degree inci-

dence (a) 8, = 50 deg (b) 0, = 60 deg (c) 8, = 70 deg

in this region.

Figure 5.27 and 5.28 plot co-polarized cross sections for incidence angles of 0 and

30 degrees respectively and kdl = 9.16, and again demonstrate that physical optics

predictions remain valid at these incidence angles. Figure 5.29 and 5.30 illustrate

the variation in predicted PO co-pol and cross-pol cross sections respectively for an

incidence angle of 60 degrees, and clearly shows that particular angular portions of

the near forward scattered fields are dominated by corresponding portions of the

spectrum, in agreement with a Bragg scatter mechanism but modified to some degree

by the presence of other spectral scales.
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Scattered azimuthal angle (deg) Scattered azimuthal angle (deg) Scattered azimuthal angle (deg)

Figure 5.21: Cutoff wavenumber kdl = 18.32, ka = 1.0: Comparison of MOM, Monte

Carlo PO, and analytical PO forward scatter co-pol cross sections for 60 degree inci-

dence (a) O, = 50 deg (b) O, = 60 deg (c) O, = 70 deg
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(a)

Scattered azimuthal angle (deg) Scattered azimuthal angle (deg) Scattered azimuthal angle (deg)

Figure 5.22: Cutoff wavenumber kdl = 36.65, ka = 0.5: Comparison of MOM, Monte

Carlo PO, and analytical PO forward scatter co-pol cross sections for 60 degree inci-

dence (a) 0, = 50 deg (b) 0, = 60 deg (c) 0, = 70 deg
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Figure 5.23: Cutoff wavenumber kdl = 4.58, ka = 4.0: Comparison of MOM, Monte

Carlo PO, and analytical PO forward scatter cross-pol cross sections for 60 degree

incidence (a) 0s = 50 deg (b) 0, = 60 deg (c) 0, = 70 deg
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Figure 5.24: Cutoff wavenumber kdl = 9.16, ka = 2.0: Comparison of MOM, Monte

Carlo PO, and analytical PO forward scatter cross-pol cross sections for 60 degree

incidence (a) 0, = 50 deg (b) 0, = 60 deg (c) 8, = 70 deg
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(c)

Scattered azimuthal angle (deg) Scattered azimuthal angle (deg) Scattered azimuthal angle (deg)

Figure 5.25: Cutoff wavenumber kdl = 18.32, ka = 1.0: Comparison of MOM, Monte

Carlo PO, and analytical PO forward scatter cross-pol cross sections for 60 degree

incidence (a) 0s = 50 deg (b) 0, = 60 deg (c) 0, = 70 deg
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Figure 5.26: Cutoff wavenumber kdl = 36.65, ka = 0.5: Comparison of MOM, Monte

Carlo PO, and analytical PO forward scatter cross-pol cross sections for 60 degree

incidence (a) 0, = 50 deg (b) 0, = 60 deg (c) 0, = 70 deg
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Figure 5.27: Comparison of MOM, Monte Carlo PO, and analytical PO forward

scatter co-pol cross sections for 0 degree incidence with cutoff wavenumber kdl = 9.16,
kr = 2.0 (a) ., = -10 deg (b) 0, = 0 deg (c) 0, = 10 deg
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Figure 5.28: Comparison of MOM, Monte Carlo PO, and analytical PO forward

scatter co-pol cross sections for 30 degree incidence with cutoff wavenumber kdl =

9.16, ka = 2.0 (a) 0, = 20 deg (b) 0, = 30 deg (c) 0, = 40 deg
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As in the case of near normal incidence backscatter, calculation of forward

scattered cross sections for realistic ocean spectra requires use of the geometric optics

approximation due to difficulties associated with evaluating the full physical optics

integral. Figure 5.31 investigates GO accuracy by comparing PO and GO results in

the near forward region for an incidence angle of 60 degrees. A good agreement is

obtained in both co- and cross polarized predictions especially as surface rms height

is increased, but requires use of a different cutoff wavenumber, Kd = k/4, from

the backscattering case. Figure 5.32 plots the same comparisons for an incidence

angle of 0 degrees, and again illustrates a good agreement but through use of the

backscattering cutoff Kd = k/2 as in the previous section. A more detailed study

of forward scattering for the kdl = 1.145 case showed that an reasonable agreement

can be obtained for near forward scattering at incidence angles between 0 and 70

degrees by using a cutoff wavenumber of Kd = k/2 cos 0 in the geometric optics

approximation. Suggested values from the literature are not available for the non-

normal incidence forward scattering configurations considered.

5.7 Composite Surface Model for Non-power Law
Spectra

Based on the results of the previous sections, the composite surface model should

provide reasonable predictions for ocean surface forward and back scattering given

an appropriate choice of the cutoff wavenumber. To consider scattering from surfaces

modeled by the more realistic Durden-Vesecky and Donelan-Banner-Jahne spectra,

the composite surface model is applied in this section and results are compared with
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Scattered azimuthal angle (deg) Scattered azimuthal angle (deg) Scattered azimuthal angle (deg)

Figure 5.31: Comparison of analytical PO and GO forward scatter co-pol cross sec-

tions for 60 degree incidence with varying low frequency cutoffs, Kd = k/4 (a) O, = 50
deg (b) 0, = 60 deg (c) 0, = 70 deg
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Figure 5.32: Comparison of analytical PO and GO forward scatter co-pol cross sec-

tions for 0 degree incidence with varying low frequency cutoffs, Kd = k/2 (a) O, = -10

deg (b) O, - 0 deg (c) O, - 10 deg

216

I I
- PO kdl=4

* GO kdl=4
PO kdl=2

O GO kdl=2
........ PO kdl=1

A GO kdl=1

S-o- - e-e - --- --AI---A--A .IA. - & A --- A I ..

I I l
_ PO kdl=4

* GO kdl=4
PO kdl=2

o GO kdl=2
-....... PO kdl=1

A GO kdl=1

-0- -o- 0- -C -U -0- D-0 -
l•A.. -- A-- - -A A &A - -- A - - - -

I I I
PO kdl=4

- * GO kdl=4
PO kdl=2

S GO kdl=2
........ PO kdl=1

A GO kdl=1

F -0- -0- e-e -0- -0-6- e-e -S,.. . . A..I.--- - .- ... I..

~I I I

49

6 6

Zo



5.7. COMPOSITE SURFACE MODEL FOR NON-POWER LAW SPECTRA 217

the AAFE backscatter data of [116]. Predictions for forward scatter using the geo-

metric optics approximation with these spectra are also presented, although no ex-

perimental data is currently available for non-normal incidence forward scattering

with which to compare model predictions. A finitely conducting ocean surface is

considered in this section, with a permittivity described by the model of [139].

Figure 5.33 illustrates composite surface model results for backscattering using

the DBJ spectrum and compares these results with the AAFE 13.9 GHz upwind

data [116] at four different wind speeds. Geometrical optics, untilted SPM, and

tilted SPM results are all included on the plots so that individual components of the

composite model can be resolved. The model is observed to produce a reasonable

match to this experimental data for both polarizations over the entire range of wind

speeds, although cross sections near 15 degrees are overestimated by the GO for lower

wind speeds and the greatly reduced polarization ratio at 23.6 m/s is not reproduced.

Similar comparisons were made in [130] for vertical polarization, but the slope variance

of the entire spectrum was used for GO predictions and found to produce inaccurate

predictions near normal incidence. The good comparison obtained here gives further

credence to the choice of Kad = k/2 obtained from the numerical model. The obtained

slope variance is also seen to provide a reasonable increase in hh cross sections for

incidence angles of 20 degrees or larger at the lower wind speeds.

Figure 5.34 presents the same comparisons using the Durden-Vesecky spectrum

in the composite surface model with a spectrum amplitude of ao = 0.008. A similar

agreement is observed in Figure 5.34 to that of Figure 5.33, indicating the accuracy of

the Durden-Vesecky spectrum when used in the composite model. This is not surpris-
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Figure 5.33: Composite surface model with DBJ spectrum: Comparison with AAFE

experimental backscatter data (a) Wind speed 3.0 m/s (b) 6.5 m/s (c) 13.5 m/s (d)

23.6 m/s
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ing since this spectrum was derived based on fits to AAFE and similar backscattering

data under a composite surface model [135]. However, the original spectrum chose

a cutoff wavenumber based on limiting the RMS height of the SPM portion of the

spectrum to a specified constant, so that Kd was not equal to k/2 as in Figure 5.34,

and used ao = 0.004. Use of ao = 0.008 as suggested by [93] and Kd = k/2 yields

more reasonable slope variances for the "long" wave portion of the spectrum, as indi-

cated by the good agreement between theory and experiment near normal incidence.

Tilted SPM predictions are also seen to be in better agreement for all but the lowest

wind speed and again indicate reasonable slope variances for the spectrum. AAFE

hh cross sections remain somewhat underpredicted at the highest incidence angles

however. Although the DBJ spectrum has a more sound basis since it is derived from

wavetank measurements of capillary wave spectra, the comparisons of Figure 5.33

and 5.34 indicate that both the DBJ and Durden-Vesecky spectra provide reasonable

predictions when used in the composite surface model, and minor differences between

their predictions emphasize the importance of obtaining an accurate model for the

ocean surface observed at the time and location of scattering experiments.

Figure 5.35 illustrates predicted forward scatter cross sections for the Durden-

Vesecky spectrum at an incidence angle of 60 degrees as a function of wind speed,

using the GO approximation with a cutoff wavenumber of Kd = k/4. Both hh and vv

cross sections are included, as Brewster angle effects begin to introduce a polarization

difference for 60 degree incidence. Results show the sensitivity of forward scatter cross

sections to wind speed, as the changing slope variances in the "long" wave portion of

the spectrum reduce direct forward scatter and increase width of the quasi-specular
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Figure 5.34: Composite surface model with Durden-Vesecky spectrum: Comparison

with AAFE experimental backscatter data (a) Wind speed 3.0 m/s (b) 6.5 m/s (c)

13.5 m/s (d) 23.6 m/s
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(a)

221
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Figure 5.35: GO co-pol forward scatter with Durden-Vesecky spectrum for incidence

angle 60 degrees and Kd = k/4: Variation with wind speed (a) 0, = 50 deg (b)

0, = 60 deg (c) 0, = 70 deg

pattern as in the backscatter case. Comparison of these predictions with experimental

measurements remains a subject for future study as bistatic ocean scattering data

becomes available.

5.8 Conclusions

A numerical model for ocean scattering has been developed and applied in a study

of forward and backscattering from a perfectly conducting power law ocean surface.

The SMFSIA/CAG approach allowed surfaces of 64A x 64A to be included in the

numerical simulation, with a matrix size of 524,288, so that edge uncertainties could
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be reduced and backscattering simulations performed at incidence angles up to 60

degrees with a resulting model uncertainty of approximately 2.5 dB. Comparisons

with analytical theories show the physical optics approximation to work well in the

forward scatter direction and for backscattering up to 20 degree incidence. SPM

predictions were also found to be valid for higher incidence angles as surface rms

height increased beyond typical SPM limits, and slight increases in hh cross sections

were also observed as predicted by the composite surface model. Cross polarized

results were well fit by the standard SPM model as well after the inclusion of a

finite surface conductivity to avoid the singularity in SPM predictions for a perfectly

conducting surface. Further comparisons between analytically evaluated PO and GO

predictions showed an appropriate choice of cutoff wavenumber to be Kd = k/2 for

backscattering and Kd = k/2 cos0 for forward scattering in the composite surface

model. The validated composite surface model was then used with the more realistic

DBJ and Durden-Vesecky spectra in a comparison with experimental data, which

showed both the DBJ and Durden-Vesecky spectra to provide adequate predictions of

backscattered experimental data. Forward scattering simulations were also performed

which illustrated the sensitivity of forward scatter cross sections to wind speed over

the ocean.

The results of this study demonstrate the importance of an accurate model for

the ocean spectrum. Further research into this area continues, as there are many

models in the literature which are at variance with one another as evidenced by

the DBJ and Durden-Vesecky spectra of this chapter. Overall, the success of the

composite surface model when compared to numerical simulations, however, validates
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this approach for prediction of ocean scattering.

5.9 Appendix - Physical Optics for Ocean Scat-
tering

As discussed in Chapter one, the physical optics scattering cross section for a Gaussian

random process is given by

(1 + cos 0i + cos 0,) cos q, - sin O sin 0, 2

cos Oi + cos 0,

dx Idy'e-"k z { e C(',i') _ 1 } ei kdzx'+ikdyy'

where kd = 1i - ,i, a is the rms height of the surface, and C(x, y) is the correlation

function of the random process, defined in terms of the surface spectrum as

C(x, y) (5.24)

For an isotropic, k - 4 spectrum, the above integrals can be simplified by inte-

grating out the azimuthal dependence. Resulting expressions are

caa (Oi, 7s0, Is)
k2 (1 + Cos Oi + cos O) cos , - sin Oi sin 8, 2

7r cos Oi + cos ,1

Sdp'p'e-a2 k {e 2kz C(p) - 1} Jo(kdJ)

caa (0i, 08, O8)

(5.23)
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where Jo indicates the zeroth order Bessel function, kd± = k + kdy, and

C(p) = 2 o j•, dkp k 3 Jo(kpp) (5.26)

Some analytical progress can be made with the above expression for the correlation

function at large values of p by approximating the Bessel function by its sinusoidal

asymptotic series. The resulting form is

2kk2 1 ['-2 sin (kpp - r/4) 29 f -2
(p) - k1, r 28 k42. 28 5k2.5

2 4 2 4
(cos (kpp)[1 + 2k pp - 3(k pp )2] + sin (kp)[1 - kpp - (kp)2])

8 2;5 2 kd5

15kdl

where s(.) and c(-) are the standard Fresnel sine and cosine integrals respectively.

This expression can be further simplified for large values of p by expanding the s and

c functions into their sinusoidal asymptotic series, with the resulting leading order

term

C(p) 2 (k cos (kdlp + r/4) (5.27)

where it has been assumed that kdu >> kdl. However, analytical progress with

the physical optics integral is much more difficult, so that a numerical evaluation is

required.

To evaulate the physical optics integral numerically, a term proportional to the
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Bragg scatter cross section is added and subtracted as

k2 (1 + cos Oi +cos Os) cos , - sin i sinOs 2

cos Oi + cos 0,

{ (21kdz)2~ 2 Tk 2 (kd, kdy) +

Sdp 'p' z { e 2k zC(p') - - 2 k zC(p')I Jo(kdl)} (5.28)

This subtraction enables much of the contribution to the integral from large values

of p to be eliminated. The above integral is evaluated by Gaussian quadrature inte-

gration over a finite range, with the upper limit extended to infinity in an iterative

fashion until convergence in the cross section is observed. Correlation function values

are calculated using a Gaussian quadrature integration of (5.26) and tabled so that

repeated integrations are not performed. Resulting calculations require only a few

seconds on a DEC AXP 3000 workstation for a full set of 60 backscatter calculations.

However, the method breaks down for large rms height surfaces (ka greater than

approximately 30) due to a loss of precision in the numerical calculations. Methods

for PO integral evaluation in this limit have been discussed by [141] and [27].
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Chapter 6

A Numerical Study of Ocean
Thermal Emission

6.1 Introduction

Models for the prediction of ocean surface polarimetric thermal emission are currently

of interest for the interpretation of data from recent airborne microwave radiometer

flights. As discussed in Chapter 3, brightness temperatures of azimuthally anisotropic

media are expected to vary with azimuth angle, and to contain signals in the third

and fourth Stokes parameters, UB and VB. Since a wind generated ocean surface has

such azimuthally anisotropic properties, polarimetric passive remote sensing should

be useful for the remote sensing of ocean winds and is currently under investigation

by a number of organizations [91],[92]-[94],[159]. Although experimental data has

been taken and reveals azimuthal variations similar to those observed in Chapter 3,

a fully validated model for the prediction of ocean polarimetric brightnesses does not

presently exist.

In this chapter, an initial numerical study of ocean polarimetric brightness tem-
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peratures is performed using a penetrable surface version of the SMFSIA of Chapters

4 and 5. Monte Carlo simulations are performed for the Durden-Vesecky ocean model

discussed in the Chapter 5 since this spectrum has been used in previous studies [92]-

[93], and since an azimuthally anisotropic surface model is necessary to obtain UB

and VB brightnesses. Predictions are compared with experimental data and with

predictions of the standard approximate theories, although the larger computational

requirements associated with penetrable surface simulations limit maximum SMFSIA

surface sizes to 8 by 8 electromagnetic wavelengths, and the small azimuthal variations

which occur (usually less than 1.5 K) make accurate calculations difficult. Although

these limitations prevent a thorough quantitative numerical study, the simulations

performed give some indication that present approximate theories yield reasonable

results, and a more detailed study of the influence of ocean spectral models on po-

larimetric brightness temperatures is performed using the composite surface model

approach.

The next section provides a brief review of previous studies of ocean thermal

emission, and Section 6.3 discusses the application of the standard approximate theo-

ries to this problem. The formulation of the penetrable surface SMFSIA is presented

in detail in Section 6.4, and a technique for treating highly lossy media such as sea wa-

ter without greatly increasing the number of unknowns required is discussed. Section

6.5 compares model predictions with experimental data and with the approximate

theories, and the composite surface model is applied to assess variations with ocean

spectrum models in Section 6.6
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6.2 Previous studies of ocean thermal emission

Interest in passive remote sensing of the ocean at microwave frequencies developed in

the late 1960's, with early ground based experiments demonstrating the sensitivity

of ocean brightnesses to sea surface temperature, salinity, and wind speed [142]-

[143]. Models based upon a geometrical optics formulation [144] were proposed, but

found inadequate when compared with experimental data at frequencies ranging from

1.81 to 19.3 GHz. The availability of passive microwave data from the Electrically

Scanning Microwave Radiometer (ESMR) on board the Nimbus 5 and 6 satellites and

the Scanning Multifrequency Microwave Radiometer (SMMR) onboard the Nimbus 7

and Seasat-A satellites led to further interest in the improvement of theoretical models

for ocean brightness temperatures [145] through the mid to late 1970's. Extensions

of the standard composite surface scattering theory to the prediction of brightness

temperatures were made by [146] and [147], and found to provide more reasonable

predictions of variations with incidence angle and wind speed. The importance of an

anisotropic ocean spectrum model in these references was still not recognized, as the

circluar active flights of [116] had yet to be performed. Sufficient experimental data

existed, however, for sensitivities with respect to many physical parameters to be

determined and for retrieval algorithms to be developed [145],[148]-[151]. In addition,

the importance of the contributions of sea surface foam and atmospheric emissions

was recognized, and empirical models for these contributions were derived [152]-[155].

As interest in anisotropic ocean surface models developed, ocean brightness tem-

perature variations with azimuth observation angle began to be considered. Results

in [156] showed that variations with azimuth angle at normal incidence (equivalent
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to polarization variations as well) could be as large as 5 K. Experimental studies

[157] confirmed these variations, and demonstrated the potential for remote sensing

of both ocean wind speed and direction from passive measurements assuming that

radiometers sensitive enough to detect these relatively small variations are employed.

Studies of data from the Special Sensor Microwave/Imager (SSM/I), a more sensi-

tive microwave radiometer flown on several Defense Meteorological Satellite Program

(DMSP) satellites through the 1980's, further illustrated the wind direction depen-

dence of ocean brightnesses, and analysis of this data enabled global scale mean ocean

wind vector maps to be created [158].

Interest in improvement of accuracy for the ocean wind vector retrievals of [158]

has led to the development of polarimetric techniques for ocean passive remote sens-

ing. Since measurement of the UB parameter corresponds to a third polarization

measurement for normally incident observations, the additional information in mea-

sured in polarimetric remote sensing can potentially achieve some improvement in

retrieval accuracy. Methods for the application of this information are discussed in

[92], where an SPM emission model is applied with the Durden-Vesecky ocean spec-

trum to produce predictions of ocean surface polarimetric brightness temperatures.

Comparisons with the 14 GHz, nadir polarimetric passive data of [91] show the SPM

to yield reasonable predictions for azimuthal variations of the UB brightness, and

model sensitivities with respect to various parameters were discussed. A compos-

ite surface model has also been proposed in [93], and compared with experimental

data from an experiment performed by the WINDRAD sensor of the Jet Propusion

Laboratory (JPL) in 1994 [94] in which polarimetric brightness temperatures were



6.3. APPROXIMATE METHODS

measured at 30, 40, and 50 degree incidence angles at 19.35 GHz for a wind speed of

12 m/s. Experimental data has also been measured at 92 GHz in [89],[159]-[160] and

was fit with a geometric optics model. Currently, [91],[94], and [159] form the only

exisiting polarimetric measurements of ocean emission although more experiments

are planned for the future. Accurate theoretical models are thus of interest for the

design of these experiments and for predicting behaviors with various ocean param-

eters. The studies of this chapter should allow some insight into the approximate

theoretical models proposed to date.

6.3 Approximate methods

As mentioned previously, all three of the approximate theories discussed in Chapter 1

have been applied to the prediction of thermal emission from the ocean surface. Ge-

ometrical optics [144],[159], SPM [92], and composite surface [93],[146]-[147], models

have all shown some degree of success, with the SPM and composite surface mod-

els compared most extensively with experimental data. It should be noted that no

models have been based on a full physical optics method, again due to the difficulties

associated with physical optics integral evaluation. An additional problem with an-

alytical evaluation of the physical optics integral arises for penetrable surfaces, since

the Fresnel reflection coefficients vary as a function of incidence angle. Monte Carlo

simulations, however, are not limited by this problem since local incidence angles can

be determined for a given surface realization. All of these methods require integration

of the bistatic cross sections predicted by a given approximate scattering theory as

discussed in Chapter 1, making approximate emission models more computationally
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involved than their scattering counterparts. These integrals are usually performed

numerically, as their evaluation can be difficult for an arbitrary ocean spectrum.

The SPM based emission model of [92] was found to produce reasonable com-

parisons with the experimental data of [91] using the Durden Vesecky spectrum once

second order contributions to the coherent reflection coefficient were taken into ac-

count. It should be noted that a truncated Durden Vesecky spectrum was used,

with the cutoff wavenumber chosen to insure that rms heights of surfaces simulated

remained within limits (approximately ka < 0.4) validated for 1-D periodic power

law spectrum surfaces through comparison with a Monte Carlo method of moments

solution. In addition, comparisons with experimental data were performed only for

the Us and Q = Ts, - TBh brightnesses, so that absolute levels of linearly polarized

temperatures were not illustrated. Use of the SPM implies that these simulations

modeled the bistatic cross section of the ocean as including a specularly reflected

coherent term at 14 GHz, which is clearly at odds with the large ka product when

the entire ocean spectrum is considered.

To address this issue, a composite surface model based on the original for-

mulation of [146] was developed for the anisotropic Durden Vesecky spectrum, and

predictions were compared with WINDRAD experimental data [93] in TBh, TB, and

Us brightnesses. The composite surface model results in the specular coherent wave

of the SPM being tilted over the slope distribution of the long waves, with a more

realistic geometrical optics type behavior resulting for the near forward scattered re-

gion. Again, overall agreement in the azimuthal variations of polarimetric brightness

temperatures was found to be good, although experimental data in the linearly po-
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larized brightnesses exceeded model predictions by as much as 25 K and an empirical

weighting function was included in the model to obtain the observed up-down wind

brghtness asymmetry. Only minor differences between brightnesses predicted by the

composite surface and SPM alone models were observed, indicating that tilting ef-

fects have little influence on azimuthal variations of ocean brightness temperatures.

Differences between experimental and theoretical linear brightnesses were explained

due to effects of foam and atmospheric emissions, which were not included in the

theoretical model. Simulations were also performed using a geometrical optics model

with the Cox and Munk derived slope variances for an ocean surface, and predicted

azimuthal variations were found smaller than those of the composite surface model.

Thus, reference [93] concludes that the most significant source of azimuthal variations

in ocean surface emission is the SPM Bragg scattering contribution.

In contrast, references [89] and [159] propose a GO based model which includes

both shadowing and multiple scattering effects, and obtain reasonable agreement with

measured data from ground based observations of mechanically generated water waves

at 91.65 GHz. Experimental flights of this sensor also were performed, although data

has yet to be fully published. As discussed in Chapter 5, a geometrical optics model

for the ocean emphasizes the long wave portion of the spectrum, since near forward

scattering, where GO predictions are expected to be valid, is dominated by surface low

frequencies. The distinction between these references and [93] emphasizes the limited

state of current knowledge in polarimetric passive remote sensing, and motivates the

numerical simulations of this chapter. Comparisons will be made with both SPM and

Monte Carlo physical optics predictions to obtain some insight into the differences
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between these references.

6.4 Derivation of Penetrable Surface SMFSIA

Calculation of scattering from a penetrable rough surface involves use of one or a

combination of equations (1.6-1.7) along with one of a combination of equations (1.8-

1.9), as discussed in Chapter 1. Since the ocean is a highly lossy dielectric surface

at microwave frequencies, a formulation similar to that of the perfectly conducting

surface case in Chapters 4 and 5 is adopted, although the free space MFIE of this

approach is augmented through use of the EFIE in the lower medium. The integral

equations to be used are thus

nx Ho (()2 ii) x Hin, + Ax dS {-iwo• o(T, 1). [-' x R(V)]

+V x o -[n' x H(V)] (6.1)

in region 0 above the surface profile and

i x E(2 )= _f x dS' {iwpi (T,' ) [n' x H(f)]2

+ V x G~1 [~' x E(1 )] (6.2)

in region 1 below, where i is the vector = (- •- ~ )In contrast to the EBC
formulation of Chapter 3, however, these integral equations are now to be tested and

solved at points on the surface profile, so that the above integrals are principle value

integrals and the factor of 1/2 results from the contribution of the Green's function
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singularity.

Difficulties associated with principle value integration of the self terms in the

above formulation motivate a transformation to the Stratton-Chu integral equations,

as discussed in [1]. The equations then become

fix Ho(f)
2

= ~ x Hi, + fi x fdS' -iwcogo(T, 1)[i' x E(e)]

+(V xgo0) [F' x H('n)] i
--V/o (6.3)

in region 0 above the surface profile and

ix 17(f)
2 = n x dS' {iwm.g(T,•T1'). [w (e)]

+ (V x~gi) [-L' x ( ')] + V.
WL-,, [n' x H7()]Vg ,}

where gj is the scalar Green's function as defined in Chapter 3.

Applying the method of moments to these equations requires expansion of the

four unknown scalar functions on the surface into pulse basis functions, as

x= _ [ii xf1 7()]

F, = y). [ni x H(o)]

G= j·. [AxB)

=X x [ii x c)]

= >FPmnPm,(n)
m n

= ZF~~FPmn()
m n

' Z GPmn(f)
m n

= E E GmPmn(T)
m n

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)
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and substituting these expansions into dot products of equations (6.3) and (6.4) with

x and y respectively. The resulting four scalar equations are

SfHj, + aH = -19Y

-iwEogo [

F 1+ )2 + ?2
+ dx' dy',

1+. af 2 +(af •

1 ) +y-I

Sf Df
y- G,(1+ydy dy' '

yf Of
-G, 'ay a'x

+G30 Fxd, Dy'

i
+--V

w1o

Df
- dz) + F,( f

ay'
xOf

+dzlz'

+ D y + dz G3019Y 1

- )df

(6.9)

(f 2 (f/ 2 +
ox Oy

/ dx' dy' 1 + (f)\ 2 + (,f
x'J (y') -iwcogo [G(1 +

Df af
Dx z',

Df Df]+ G,8y'a ax
+G30 Fx( x ,

WV'.
wl-lo

Df-)dy + F,

d dz+ Ldz]19XG30

x 2 + 2/2+J dx' dy' 1+( , ) 2 2

Of - dz) + G(f
JD9x' Oy

of
(a9

Df
(dy f19YI

Df
+ dx - - dz)]

(6.10)

{ iWogl

+G31

[· y x'

OfGx (dy + da49Y
Sf )dx]
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I

WE 1

F dy + aydzay] G31}

+ ( 2 + 2/2i+

of afOf Of
Ox Ox'

Of
dx + dz I 4

O9xJ

2

1+ 2 • 2

± k1 Oy'
dx' dy'

of af
1y' a,

Of
G,(dy ,ay'
G31

+dx'f - dz)]

(6.12)

which are then tested at the center points of the pulse basis functions to form the

matrix equation of the method of moments. In the above equation,

Vga (T, T') - eikl-F'l
= 4R - (ikj

1
I•- T1)

= RG3j

where

R = '(x - x') + Y(y - y') + £ (f (, y) - f (', y'))

= Mdx + jdy + 2dz (6.13)

Note that the V', - G and V' • F terms require a numerical differentiation of these
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unknown functions, and are calculated as

V a Ax + a Aaxi' ay'

• F (F + ,m - F1 - i m) /(2Ax) + (Fym+1 F m - 1) /(2Ay) (6.14)

where n and m refer to the x and y indices of the pulse basis functions used on

the surface rectangular grid, and Ax and Ay refer to the spacing between these basis

functions in the x and y directions. Surfaces in this formulation are approximated as a

collection of planes, with their heights and first derivatives specified on a rectangular

grid. For basis functions lying on the edge of the surface profile, field unknowns

on adjacent points were approximated as being equal to those at the edges. The

above procedure for the calculation of surface field divergences effectively assumes

that adjacent field values are averaged with the center point to obtain values for

surface fields at the edges of the center pulse basis function, and these values then

derive the divergence through a centered difference derivative. The accuracy of this

approximation was investigated through comparison of results with a 6 unknown

function penetrable code, where surface field divergences were retained as unknown

functions also. Obtained values were found to correspond well with equation (6.14),

and computed scattering coefficients showed only minor differences.

Note also that the gj and V' A functions have self term contributions which

require careful consideration. A small argument expansion of these terms was an-

alytically integrated, and remaining portions of the these,•functions were integrated

numerically to insure accurate self term calculations. Principle value self terms in-
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volving V x gi are zero for surfaces approximated by collections of planes, as can be

seen in equations (6.9-6.12), due to the fact that MFIE matrix elements vanish for

flat surfaces.

The above formulation holds for a lower medium with arbitrary dielectric proper-

ties. Other choices of integral equations could be used as well, but note that the choice

illustrated results in the 1 + ( )2 + (•) 2/2 terms always located on matrix diago-
nals if sets of four equations (6.9- 6.12) are taken together for individual testing points

to construct the matrix equation, and if unknown amplitudes are taken as sets of four

in the column vector multiplied by the matrix. Since the 1 + (x+)2 /2

terms are usually the largest matrix elements obtained, their inclusion on matrix di-

agonals improves matrix conditioning properties and iterative method convergence.

The SMFSIA and CAG techniques of Chapters 4 and 5 can be directly applied to this

formulation to obtain an iterative penetrable surface solution. However, a problem

arises for high dielectric constant materials that is addressed in the next section.

6.4.1 Numerical impedance boundary condition (NIBC)

As discussed in Chapter 1, the method of moments requires sampling at a rate rang-

ing from 4 to 10 points per wavelength of the surface sampled if all surface spatial

scales are properly resolved with this discretization. For materials with high dielectric

constants, the short wavelengths obtained inside the dielectric material can therefore

cause great increases in the number of unknowns required to solve a fixed physical

size problem. However, it is clear that a limit to the discretization level needed should

be obtained for highly lossy media, since solutions for a perfectly conducting surface
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require sampling only on the scale of the free space wavelength.

In the past, the standard impedance boundary condition (IBC) approach has

been applied with both the MFIE and EFIE to address this problem for highly con-

ducting media. The IBC [161] approximates electric fields on the surface profile as

E = Z[inx H] (6.15)

where Z is the characteristic impedance of the lower medium, and is derived from

standard integral equations by assuming a very small skin depth compared with any

of the surface dimensions of interest. The IBC can be related to the matrix equation

of the MOM by observing that it corresponds to ignoring any phase variations of

either surface fields or Green's functions on the scale of the lower medium wavelength,

and approximates equations (6.11) and (6.12) by a single point relationship between

the C and F unknown functions. While the IBC has been successfully applied to

the prediction of scattering from finitely conducting metallic media, its application to

ocean scattering is not directly warranted since sea water conductivities, though high,

are much less than those of metallic materials. Also, the large range of spatial scales

in the ocean spectrum allows surface variations to occur over lengths comparable to

those of the dielectric wavelength, even when a high frequency surface cutoff as in

Chapter 5 is used. Thus, an improved approach is needed for the penetrable ocean

surface case.
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Formulation

The formulation of an improved technique begins by considering equations (6.11) and

(6.12) alone. Clearly, the rapid decay of the Green's function in the lower medium

allows matrix elements beyond a certain distance from the testing point to be com-

pletely neglected, so that weak and flat surface matrix contributions for the lower

region in the SMFSIA can be ignored if a large enough bandwidth is included in

the strong matrix. For example, results presented in this chapter will use an ocean

permittivity of e = (39.7, 40.2) at 14 GHz, which corresponds to that of sea water

at 10 degrees C with a salinity of 30 parts per thousand obtained from the model of

[139]. The resulting wave vector inside the ocean is k = (2033.6,849.8), which decays

to less than one percent in a distance of 5.42 mm, or 0.253 free space wavelengths.

Thus, if a sampling rate of 8 points per free space wavelength were to be used, a

bandwidth of only 2 points in the strong matrix is needed to include contributions

to one percent accuracy. However, this sampling rate still fails to capture the rapidly

decaying behavior of the lower Green's function within the included region.

To address this issue, the matrix equation of the EFIE portion in the method

of moments is written as

[A EH B -= (6.16)
E F G H Gx 0

where the A to H matrices refer to the corresponding Green's functions integrals in

(6.11) and (6.12), Fx through G, represent vectors made up of the unknown constant
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amplitudes of the pulse basis functions,

rearranged as mentioned previously so

adjacently for each testing-integration

be used for convenience however in the

and 0 is a null vector. This matrix is actually

that individual 2 x 4 submatrices are placed

point combination. The notation above will

following equations.

An equation similar to (6.15) can be obtained by solving (6.16) for ? as

= R S Fy
G, F, (6.17)

where

and

(6.18)

(6.19)

R= G= H

A BS E F

except that variations of Green's functions and surface fields are now included. Rewrit-

ing the MFIE portion of the method of moments matrix equation as

F-
S -inc

Gmc

(6.20)

and substituting in (6.17) for 0 yields

-- 1= F, 1F"l
F, JrnCT-UR S (6.21)
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where

T = I J (6.22)

and

K L= (6.23)

where now only the A through H terms contain the lower medium Green's function,

while the I through P terms involve the upper medium Green's function only. The

first T matrix of this equation is exactly that of the MFIE for perfectly conducting

surfaces, so the second product of three matrices modifies the MFIE to include the

effects of finite surface conductivity.

Element averaging

The NIBC approach is based on an assumption that variations of tangential surface

fields on the scale of the lower medium wavelength do not contribute significantly

to scattered fields. Consider equation (6.21) with sampling on the scale of the lower

medium wavelength under this assumption. Since the T matrix contains only free

space Green's functions, any small scale variations in F, and FY are effectively aver-

aged by the slowly varying free space Green's function to the free space scale, which

implies that an average over matrix columns is reasonable. In addition, an average

over matrix rows is also possible given that the right hand side of the matrix equation

contains only slowly varying incident fields as well. These averages should be approx-
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imately equal to the free space sampled MFIE elements, again since only the free

space Green's function is averaged. A similar argument can be applied to illustrate

that an average over the columns of the S matrix and an average over rows of the

U matrix should not introduce significant error, although in these cases the average

should be significantly different from a free space sampling rate since lower medium

Green's functions are involved in this product. Methods for the R matrix are not as

clear since properties of its inverse, which is involved in the matrix product needed,

are more difficult to quantify. A more detailed consideration of this matrix (which

contains the same terms as the MFIE free space matrix except with the lower medium

Green's function), however, reveals it to be well approximated as a diagonal matrix

if the surface is assumed to be made up of planes passing through each free space

scale testing point. This is due to the fact again that MFIE matrix elements are zero

for points located on the same plane, so that most of the near diagonal points when

sampled on the lower medium wavelength scale are zero, and the matrix is domi-

nated by the 1 + ( +)2 2/2 diagonal terms. An average over the rows S is

then possible, since it again multiplies a matrix involving free space Green's functions

which should effectively average out the small scale variations.

Thus, the final NIBC approach samples the T,U and R matrices on the free space

scale as in the perfectly conducting case, with the lower medium Green's function R

matrix being dominated by the self terms so that only minor errors should be incurred.

The S matrix is generated as if the entire problem were sampled on the lower medium

scale, and then averaged over both rows and columns to free space scale to use in the

matrix products required.
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The SMFSIA is applied for the solution of matrix equation (6.21) once the ap-

propriate submatrices are generated. As discussed previously, weak and flat surface

terms are neglected for the A through H matrices, so that weak iterations are per-

formed only on the free space Green's function contributions. Since the BICGSTAB

solver requires a product of the entire matrix of (6.21) with a vector, individual rou-

tines for sub-matrix products are used in succession, and another BICGSTAB routine
-----1

is used to obtain the R product by solving

R Q - S (6.24)

where Q is the desired product with the matrix inverse, and the right hand side of

the equation is known from earlier multiplications.

Verification

A verification of the accuracy of this technique was performed through a study of

a two basis function problem, with matrix products for various averaging methods

compared with those retaining all elements on the lower medium scale and averaging

after all products had been formed. Results showed the above procedure to cause a

greater than 10 percent error in obtained product vector norms, which was reduced

to 1.3 percent by using a row and column averaged U matrix as well. The numerical

differentiation performed by the terms of this matrix evidently requires significant

oversampling in order to obtain accurate results. Use of a row and column averaged

R matrix was not found to cause any improvement in accuracy, nor did use of a row

and column averaged version of the free space MFIE matrix, T. Thus, the NIBC
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approach averages the gj and V' -A terms over rows and columns on the small scale,

and samples Vg x A terms on free space scale. Verification of the technique for

larger problems is complicated by the much greater number of unknowns required to

sample problems on the lower medium scale. Comparisons with analytical models

will be presented in Section 6.5 which illustrate that the technique yields reasonable

accuracy.

Calculation of brightness temperatures

As discussed in Chapters one and three, brightness temperatures emitted by a medium

are proportional to the physical temperature of the medium and to its emissivity.

Emissivities are calculated by determining the total power absorbed into the medium

for a specified incident field and incidence direction, and can also be calculated as

one minus the total power reflected if power conservation is satisfied. To avoid a

time consuming numerical integration of bistatic scattering coefficients over the up-

per hemisphere as in Chapter 1, an integration of the Poynting vector obtained from

the method of moments over the surface profile is used to calculate both reflected

and transmitted powers. This approach has the advantage of allowing a power con-

servation check on numerical results, which is not possible by integrating scattering

coefficients for a lossy medium since transmitted far field propagation is exponentially

attenuated. Power transmitted into the lower medium is computed as

Pt = - dSI 1Re.i ExHt x(6.25)2 --2~ ·c · · ,(.5
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-dx dy 1 f + f 2 1 Re (G, F - G, F (6.26)

and reflected power in calculated as

Pr = dS' 2 Re i ((E- Einc) (H - Hinc) ) (6.27)

= dx' dy' 1 + + 2 Re {(G, - G+inc) (F -Fyin)*

-(G, - Gyinc) (F* - Fxinc)} (6.28)

where ni is assumed to be upward pointing. Power incident on the surface profile, Pinc,

is computed as in equation (6.25) with total fields on the surface profile replaced by

incident fields alone. The sum of Pt/Pine and Pr/Pinc from the above equations should

be unity if power conservation is satisfied, and any deviations from unity give an

estimation of the magnitude of numerical error in obtained brightness temperatures.

For the SMFSIA/NIBC results to be presented in this chapter, power conservation

within one percent was observed, with resulting errors in brightness temperatures of

less than 2.8 K for an assumed 283 K surface temperature. While one percent is a

reasonable accuracy for a numerical simulation, azimuthal variations to be studied

for the ocean surface are typically less than 1.5 K, so that a precise quantitative

assessment from numerical results is difficult. Variations in numerical results with

ocean spectrum cutoffs, however, will still allow insight into the importance of spectral

regions in ocean thermal emission.
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Implementation

The results to be shown in this chapter will use a surface size of 8 by 8 electromagnetic

wavelengths with a total of 64 by 64 free space scale unknowns in the simulation. An

ocean permittivity with fe| = 56.5 implies a scale difference of 7.5 between free space

and the lower medium. Thus, matrix elements for the U and S matrices are generated

over a 512 by 512 grid (the 7.5 factor is rounded to 8) covering a surface profile gen-

erated by linearly interpolating the 64 by 64 profile within the pulse basis functions,

and then averaged back to 64 by 64 scale. Note that this procedure is performed only

within a small bandwidth of the testing point, since lower medium Green's functions

rapidly decay with distance. Simulations with varying bandwidths and scaling factor

ratios were performed, and showed brightness temperatures variations to be within

0.5 K of results obtained using a scale factor of 8 and averaging bandwidth of 3 free

space scale points. A larger bandwidth of 30 points is used to separate the weak and

strong matrix terms in the T and U matrices, since free space element contributions

remain significant for much larger distances.

Averaged matrix elements are stored in the NIBC to avoid their calculation as

part of each matrix vector product required in the SMFSIA. Non-averaged elements

of the R matrix are also stored, since a larger number of multiplies with this matrix
-- 1

are needed in the new BICGSTAB R routine. This storage requirement introduces

potential computer memory limitations as both the averaging bandwidth and surface

size are increased. The 64 by 64 point surface size and averaging bandwidth of 3

points used approached the 128 megabyte memory limitations of individual SP/2

nodes at the Maui High Performance Computing center, so that computations for
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larger surface sizes, though desirable for investigation of edge effects in the simulation,

were not possible with present computational resources. Effects of these contributions

will be assessed through use of a Monte Carlo PO simulation discussed in Section 6.5.

A plane wave incident field will be used for the simulations of this chapter, due to

the normally incident configuration to be studied.

Parallel algorithm

In addition to the increased memory requirements of the NIBC, computational re-

quirements are also larger than the simulations of Chapters 4 and 5 due to the row

and column averaging of U and S performed in the simulation, which dominates all

other sections of the code in terms of CPU time. The greater number of matrix vector

products required at each BICGSTAB iteration and the new BICGSTAB iterations
=-1

required for the calculation of R further increase the computational time needed to

near allowed limits on the IBM SP/2 by its job queueing system. To reduce matrix

generation time so that calculations could be accomplished more efficiently, a parallel

algorithm was developed and implemented with the SP/2. This algorithm is specif-

ically designed for the simulations of this chapter, in which polarimetric brightness

temperatures at 7 azimuth angles ranging from 0 to 90 degrees will be presented.

Since brightness temperatures for a single surface realization can be calculated

at varying observation angles by changing only the right hand side (incident field) in

equation (6.21), a group of 7 SP/2 nodes was used with identical surface profiles and

varying incident fields to obtain predictions at the 7 azimuth angles desired. Since all

7 nodes share the same matrix, generation of the row and column averaged U and S
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matrices is performed in parallel, with each node performing calculations for 1/7 of

matrix rows and communicating the results to the other 6 processes to generate the

full averaged matrices. This parallel algorithm was found to reduce computational

time to within allowed process limits, so that Monte Carlo simulations with the SP/2

could be performed.

6.5 Results

Figure 6.1 illustrates the comparison between SMFSIA/NIBC, Monte Carlo PO and

SPM predictions for 14 GHz nadir observation of a Durden-Vesecky ocean surface at

a wind speed of U19.5 = 10 m/s. A lower cutoff wavenumber of 73.3 and a higher

cutoff of 1172.9 are used in the numerical simulation, which result in a ku product

of approximately 0.29, so that SPM predictions should be accurate. The three plots

of Figure 6.1 show the TBh, TBu, and UB brightnesses for azimuth angles ranging

from 0 (upwind) to 90 (crosswind) degrees. VB brightnesses are not plotted, since

all three models predict negligible VB temperatures for nadir observation. A total of

nine realizations were averaged for the SMFSIA results, and brightness temperatures

were calculated using the total power transmitted into the lower medium. Figure 6.2

illustrates the same comparison, but with brightness temperatures calculated as one

minus the reflectivity of the medium. A comparison of Figures 6.1 and 6.2 shows

differences in linear brightness temperatures to be within 1.5 K, and changes in az-

imuthal variations and UB brightness temperatures to be within 0.5 K, all consistent

with a numerical accuracy of better than one percent. SMFSIA/NIBC results are

observed to be matched well by both SPM and PO predictions, (all within 3 K of one
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another), although PO predictions match linear brightnesses levels better than the

SPM, but seemingly underestimate azimuthal obtained azimuthal variations. Such

comparisons are similar to those reported in [93], where SPM azimuthal variations

were found to be under predicted by a geometrical optics formulation, although a full

ocean spectrum was considered in this case. SPM results are observed to overpredict

both linear and UB brightness temperatures and their azimuthal variations, although

again within a one percent accuracy level. Also included in Figures 6.1 and 6.2 is

the UB experimental data of [91], which was taken for the specified configuration.

Measured Us brightnesses are seen to be slightly larger than those obtained by the

SMFSIA/NIBC method, with the small magnitude of these differences making de-

tailed assessments difficult. Effects of finite surface size on both SMFSIA/NIBC and

PO results are also difficult to assess, but Monte Carlo PO simulations with larger

surface sizes or using tapered incident fields showed brightness temperature variations

to be within 0.1 K.

Although Figures 6.1 and 6.2 clearly show SMFSIA/NIBC accuracy to be in-

sufficient for a detailed study of ocean brightnesses, variations in SMFSIA/NIBC

predictions with spectrum cutoffs can give some indication as to the importance of

spectral regions in ocean thermal emission. Figure 6.3 plots variations in predicted

brightness temperatures with high frequency cutoff wavenumber. SMFSIA/NIBC re-

sults are included for a low frequency cutoff of 73.3 and high frequency cutoffs of 586.5

and 1172.9 in the numerical simulation. Figure 6.3 demonstrates the importance of

the high frequency component in Durden-Vesecky spectrum brightness temperature

azimuthal variations, a result also predicted by PO and SPM. SMFSIA brightness
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temperatures calculated as one minus reflectivity are shown in Figure 6.4 and also

yield a similar conclusion.

Figure 6.5 plots brightness temperatures for the configuration of Figures 6.1

and 6.2 with low frequency cutoffs of 73.3 and 36.6 and with a high frequency cutoff

of 586.5. Brightness temperatures are calculated as the power absorbed. Figure 6.5

indicates that 16w frequency components have little effect on brightness temperatures

with the Durden-Vesecky spectrum, also as obtained by both the PO and SPM ap-

proximations and as discussed in [92] and [93]. Brightness temperatures calculated

as one minus the reflectivity are illustrated in Figure 6.6, and again yield a similar

result.

Further SMFSIA/NIBC simulations were prohibited by limitations on compu-

tational resources. Although the SMFSIA results presented represent only an initial

step in the development of the SMFSIA/NIBC approach for the calculation of ocean

brightness temperatures, the simulations performed demonstrate that the approxi-

mate models applied to date should yield reasonable predictions. Variations with low

and high frequency ocean spectrum cutoffs were found to be in qualitative agreement

with all of the models, again providing some validation for the approximate theories

applied to date. The remaining section of this chapter will study the influence of dif-

ferent ocean spectrum models in the composite theory, and will emphasize the limited

state of current knowledge of ocean polarimetric thermal emission, even with a fully

validated electromagnetic model.
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6.6 Sensitivity to Ocean Spectrum Model

The SMFSIA/NIBC simulations presented in Section 6.5 illustrated that azimuthal

variations of polarimetric brightness temperatures were influenced primarily by the

high frequency portion of the ocean spectrum, and that lower frequencies, corre-

sponding to wavelengths in the ocean longer than a few electromagnetic wavelengths,

had little effect. This conclusion parallels that of [93], where the inclusion of lower

ocean frequencies through a composite surface model caused only extremely small

deviations from SPM predictions alone. However, it should be noted that the ocean

spectrum model used, that of Durden and Vesecky, places the azimuthally anisotropic

portion of the spectrum in the high frequency region, so that lower frequencies are

almost isotropic and therefore inherently do not contribute to brightness tempera-

ture azimuthal variations. In contrast, the Donelan-Banner-Jahne spectrum of [130]

places the azimuthal anisotropy into the lower frequency ocean waves, which can po-

tentially allow a different conclusion regarding the source of azimuthal variations to

be obtained. In this section, comparisons of Durden-Vececky and DBJ ocean spec-

trum brightness temperatures under the SPM and composite surface models will be

made to address this issue. The DBJ spectrum used is modified slightly from that

of Chapter 5 in that the spectrum is made origin symmetric by reflecting the first

quadrant over appropriate axes to generate all four quadrants of the spectrum. An

appropriate scaling factor is used to maintain a constant surface rms height. This

procedure was necessary to symmetrize the DBJ spectrum while maintaining a max-

imum amplitude in the up-down wind direction. Issues to be discussed in this section

depend primarily on the variation of spectrum anisotropy with ocean wavenumber,
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so that this symmetrization should not strongly influence the conclusions drawn.

Figure 6.7 illustrates variations in polarimetric brightness temperatures with

high frequency cutoff wavenumber predicted by the SPM with the Durden-Vesecky

ocean spectrum model. This plot is similar to Figure 6.3, except that more curves

are included for the much less computationally complex SPM results, and shows

the discussed sensitivity to short ocean wavelengths. Figure 6.8 presents the same

comparison for the DBJ ocean spectrum model, and shows a similar result, although

predicted linear brightnesses are somewhat larger than those of the Durden-Vesecky

spectrum as well as their variations with high frequency cutoff. Azimuthal variations

are also somewhat smaller for the DBJ apectrum, since the high frequencies of this

spectrum are less azimuthally anisotropic than the low frequencies.

Figure 6.9 illustrates the effect of longer ocean scales, as composite surface

model and SPM predictions are compared for both the Durden-Vesecky and DBJ

spectra. Composite surface model predictions used the Kd = k/2 cutoff wavenumber

suggested in Chapter 5. The contrasting locations of the azimuthally anisotropic

spectral portions in these two models lead to contrasting results. Longer ocean scales

in the Durden-Vesecky spectrum are observed to have almost no effect, while those

in the DBJ spectrum cause a significant increase in azimuthal variations. Azimuthal

variations with the DBJ spectrum are observed to be smaller than those with the

Durden-Vesecky spectrum, although an assessment of the accuracy of the composite

surface model for long ocean scale modeling has yet to be obtained due to the necessity

of numerically modeling scales much larger than an electromagnetic wavelength. This

simulations of this section, however, show that a better understading of ocean wave
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azimuthal anisotropy is needed before realistic models of ocean polarimetric thermal

emission can be developed.

6.7 Conclusions

An initial numerical study of ocean polarimetric thermal emission has been performed

using the SMFSIA/NIBC approach. The derivation of the NIBC method was pre-

sented, and comparisons with brightness temperatures predicted by the SPM and

Monte Carlo PO models showed SMFSIA/NIBC accuracy to be within one percent

emissivity. Since the azimuthal variations of ocean brightness temperatures obtained

were smaller than this uncertainty, a quantitative assessment was not possible given

the present computational limitations. However, variations in polarimetric bright-

ness temperatures with spectral cutoffs were illustrated, and found similar to those

predicted by the analytical models. In particular, high frequency components in the

Durden-Vesecky ocean spectrum were found to be the principle sources of azimuthal

variations in ocean emission, as predicted by the SPM and PO methods. A fur-

ther application of the composite surface model with both the Durden-Vesecky and

Donelan-Banner-Jahne spectra, however, showed these two spectra to yield conflict-

ing predictions of the sources of azimuthal variations, as DBJ spectrum results were

strongly influenced by low frequency contributions. Thus, the development of future

models for ocean polarimetric thermal emission will require a better understanding

of the azimuthal properties of the ocean spectrum. In addition, improvements to

the SMFSIA/NIBC are necessary before a full numerical validation of the composite

surface model can be performed. An application of the canonical grid method to the
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SMFSIA/NIBC could potentially alleviate some of the problems associated with com-

putational time limitations, and a more detailed validation study could demonstrate

potential approximate methods to further reduce storage and time requirements. The

study of ocean polarimetric thermal emission remains a challenging problem, given

the small magnitude of brightness temperature azimuthal variations, but the future

development of improved ocean passive sensors continues to motivate this area.
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Chapter 7

Conclusions

This thesis has demonstrated the application of improved numerical algorithms and

parallel computing techniques to surface scattering problems which have enabled large

one dimensional and two dimensional surface profiles to be treated. Results have

shown the accuracy of the numerical approach, and have allowed studies of phenom-

ena not predicted by any analytical models to be performed, as well as studies of

analytical model accuracy in appropriate cases. General conclusions show numerical

models to be useful tools for obtaining a better understanding of surface scattering

physics, which can potentially lead to future improved analytical and numerical so-

lutions. In addition, the more efficient numerical models developed are themselves

of interest, as they allow accurate simulations of realistic two dimensional surface

scattering configurations to be performed without simultaneous uncertainties in both

surface specification and electromagnetic approximations. Future work in general

should concentrate on more detailed studies of surface scattering with these numeri-

cal models, as well as further improvements to the numerical algorithms themselves

for specific cases. Individual chapter conclusions and suggestions for future work are
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detailed below.

A method of moments simulation of one dimensional surface VHF propagation

showed good agreement with measured data and with the approximate SEKE and

PWE methods. Use of the parallel BMFSIA method allowed very large surface profiles

(up to 20, 000 wavelengths) to be considered, so that realistic propagation geometries

could be considered. Results showed the sensitivity of propagation models to input

terrain profiles, and illustrated some of the limitations of the analytical algorithms

which comprise the SEKE model. Agreement with the numerical PWE model was

seen to be excellent, so that greater emphasis should be placed on the improvement

and application of this technique in the future. Further extensions to this study

should involve comparisons for a larger set of terrain profiles so that a more thorough

assessment of any limitations of the PWE model can be obtained. In addition, the

method of moments approach can potentially be made even more efficient through

the use of the CAG method for applicable surface profiles or through the neglect of

coupling between some surface regions when appropriate. A more efficient method

of moments model could replace the PWE approach as the solution of choice in the

future.

Chapter three considered scattering and thermal emission from two dimensional

periodic surfaces. The EBC model developed was found to be relatively efficient for

surfaces made up of a small number of facets, although the method was limited to

surfaces with small slopes. Simulations of periodic pyramidal surface polarimetric

thermal emission showed that properties observed in the one dimensional periodic

surface case remain similar for two dimensional periodic surfaces. UB was also found
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to respond to the level of medium anisotropy, as expected. Further work in this

area should concentrate on more detailed studies of periodic surface scattering and

emission, and on the extension of the model developed to more general rough surface

profiles. Scattering from periodic surfaces is currently of interest, as periodic surfaces

are believed to eliminate finite surface size effects in grazing angle scattering simu-

lations, such as those which required the large surface sizes in the ocean scattering

study of Chapter 5. Extensions to the EBC model developed should be based on an

FFT expansion of required integrals, which should be more efficient for surfaces made

up of a large number of facets.

Backscattering enhancement from two dimensional perfectly conducting ran-

dom rough surfaces was studied in Chapter four using the SMFSIA, and Monte Carlo

simulations and experimental data were found to be in good agreement. A tapered

beam incident field was introduced to avoid finite surface size effects on the simu-

lation, although the relatively small incidence angle (20 degrees) of the study made

tapered beam use less critical. Results illustrated the validity of the numerical model

in backscattering enhancement predictions, so that more detailed future studies of

backscattering enhancement physics can be studied with this approach. Future work

should concentrate on performing these more detailed studies, as well as the potential

application of the CAG approach to this problem. In addition, the accuracy of re-

cently developed analytical models based on Neumann iteration should be considered.

Ocean forward and back scattering was studied in Chapter 5 using the SMF-

SIA for perfectly conducting surfaces in a simulation of power law surface scattering.

Results of the study qualitatively validated the composite surface model approach
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to ocean scattering, as variations with power law spectrum low frequency cutoff il-

lustrated the dependencies predicted by the composite model. Choices of the cutoff

wavenumber Kd as k/2 for backscattering and as k/2 cosO in forward scattering

were found to provide reasonable predictions for the GO and tilted SPM portions

of the composite model. Comparison of composite surface model predictions with

the AAFE RADSCAT data showed good agreement using this choice the cutoff pa-

rameter. Further studies in this area should concentrate on more thorough Monte

Carlo simulations, perhaps using a more realistic ocean model than the power law

spectrum applied, and should investigate the validity again of the recently developed

analytical models based on Neumann iteration. The results of Chapter 5 show that

an accurately evaluated single Neumann iteration result should provide reasonable

predictions of ocean backscattering for a range of surface heights, and could therefore

potentially eliminate the need for the heuristic composite surface model.

Polarimetric thermal emission from the ocean surface was considered in Chap-

ter 6, and an extension of the SMFSIA model of Chapter 5 to the case of highly

lossy dielectric media such as sea water was developed. Computational limitations

prevented a detailed numerical study of ocean emission, but some initial simulations

showed the composite surface model to provide correct predictions of the influence

of different spectral regions on ocean brightness temperature azimuthal variations, at

least for the Durden Vesecky ocean spectrum model used in Monte Carlo simulations.

A comparison of composite surface model results with the Durden Vesecky and DBJ

spectra, however, emphasized that the differing azimuthal variations of these spectra

lead to differing conclusions regarding the importance of waves much larger than an
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electromagnetic wavelength on azimuthal variations. A clarification of this issue will

require a better understanding of the true azimuthal properties of a wind generated

ocean surface. Simulations with the SMFSIA should also be continued, and appro-

priate methods for improving the accuracy and efficiency of the method should be

considered, perhaps based on the canonical grid approach or on approximations to

the time consuming numerical integrals of lower medium matrix elements currently

implemented. Simulations with an improved SMFSIA should lead to a better under-

standing of composite surface model accuracy, at least for a given ocean spectrum

model.

The calculation of electromagnetic fields scattered by an arbitrary rough surface

profile remains a challenging problem. The numerical models presented in this thesis

have enabled some previously unanswered questions to be addressed, but many issues

still remain. The development of improved analytical theories remains the principle

goal of surface scattering research, and numerical models form one of the building

blocks, along with experiments and improved analytical methods, for the attainment

of this goal.
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