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Abstract

The shallow water acoustic channel supports far-field propagation in a discrete set of
modes. Ocean experiments have confirmed the modal nature of acoustic propagation,
but no experiment has successfully excited only one of the suite of mid-frequency
propagating modes propagating in a coastal environment. The ability to excite a
single mode would be a powerful tool for investigating shallow water ocean pro-
cesses. A feedback control algorithm incorporating elements of adaptive estimation,
underwater acoustics, array processing and control theory to generate a high-fidelity
single mode is presented. This approach also yields a cohesive framework for evalu-
ating the feasibility of generating a single mode with given array geometries, noise
characteristics and source power limitations. Simulations and laboratory waveguide
experiments indicate the proposed algorithm holds promise for ocean experiments.
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Chapter 1

Introduction

The shallow water channel is a waveguide for pressure waves, supporting propagation

for a discrete set of normal modes in the far field, [1], [2]. Ocean acoustics problems

such as internal wave tomography [3], [4] remote sensing [5], and noise propagation

[6] [7] often discuss propagation in terms of modes. Numerous experiments have

verified the modal model of propagation in the shallow water [8], [9], [2], [10], [11],

but no mid-frequency (circa 400 Hz) ocean experiment has successfully excited a

single mode in a shallow water environment.

This thesis proposes an algorithm for controlling a vertical array of narrowband

sources such that the pressure field in the shallow water acoustic channel measured

at a reference location consists of only a single mode. While none of the individ-

ual aspects of the proposed algorithm are original, the synthesis of these elements

produces a novel approach to exciting a single mode. The algorithm uses feedback

control to obtain the desired pressure field at the reference hydrophone array. This

technique is commonly used for pressure field control in open-air acoustics applica-

tions such as active noise control [12], [13] but is not often used in the underwater

acoustics community. The specific feedback technique used to control the pressure

field at the feedback array is the method of indirect control as described by Narendra

and Annaswamy [14]. The control algorithm estimates the Green's function between



each element of the source array and each hydrophone of the reference array. This

matrix of estimated Green's functions is then inverted to determine the shading to

apply to the source array in order to obtain the desired pressure field at the feedback

hydrophone array. Both the acoustic model and control algorithm are simple and

standard techniques in their respective fields. Although much more sophisticated

approaches to the feedback control algorithm and ocean acoustics are possible, this

simple approach will allow a clearer understanding of the problem in this preliminary

investigation. If the algorithm proposed using these straightforward ideas proves suc-

cessful here, further investigations can determine if more sophisticated approaches

to both the acoustics and control can provide further gains.

Although the feedback control algorithm requires measurements of the sound

speed profile at the feedback array, it obviates the need for detailed a priori infor-

mation throughout the control volume in order to excite the desired pressure field.

Previous work exciting a single mode in a laboratory waveguide exploited detailed

environmental knowledge and time-invariance to find the array weights for exciting

a single mode analytically [15], [16]. While these experiments successfully controlled

the pressure in laboratory tanks in open loop mode, this approach appears unlikely

to work in an arbitrary ocean situation without detailed knowledge of the environ-

ment. Range inhomogeneities in the environment may couple energy among modes

or from the continuum into propagating modes before the pressure wave reaches the

desired observation volume.

The distribution of propagating modes can be inferred from the pressure field

sampled at the locations of the hydrophones in the reference array. This estimation

problem is known as mode filtering in the ocean acoustics literature [17], [9]. A

variety of algorithms have been proposed for solving this inverse problem. The

sensitivity of this estimate to noise depends on the geometry of the hydrophone array

and the mode filtering algorithm. A crucial issue for this thesis is determining how

the error between the desired and observed pressure profiles is related to the error



between the desired and actual mode distribution propagating in the channel. This

problem and mode filtering are intrinsically related. The control theory framework

developed in this thesis for determining the observability of modes can offer insight

into this problem.

Source Array Feedback Array Observation Array

1-2 km 10-20 km
r=0 r= rF

Figure 1-1: Proposed Experimental Setup

Figure 1-1 shows the proposed experiment configuration. The region between

the source and feedback arrays will be called the feedback volume, while the region

between the feedback and observation arrays will be referred to as the observation

volume. The feedback algorithm attempts to control the pressure field such that

only a single mode is propagating at the start of the observation volume, i.e., at the

feedback array. This allows the observers at the observation array to be confident

the pressure field they measure was generated by a high-fidelity mode impinging on

the observation volume. The source array is tended by a ship, while the feedback

array is located at rF = 1-2 km downrange, at the start of the far field [18]. The

far-field is defined as beginning at the range where all the significant energy prop-

agating in the waveguide is described by the trapped modes. The feedback array &i /

transmits the pressure observed at its hydrophones back to the source ship over a ra-



dio telemetry link. The scientific observation array is deployed 10-20 km downrange

to measure the distribution of modes emerging from the observation region. For the

purposes of the pressure received at the observation array, the feedback array can be

considered a virtual source exciting the ocean at that location with a single mode.

Knowing the pressure field entering the observation volume consisted of only a single

mode, the modes arriving at the observation array can give information about the

oceanographic properties of the intervening water mass.

Several studies have examined the effect of internal waves on acoustic propagation

in the coastal environment. Lee [19] used a ray approach to demonstrate the presence

of internal waves supported on a thermocline intensified the contrast in the shadow

zones compared with a similar environment without the internal waves. Studies by

Zhou, Zhang and Rogers [4] and Peregrym [3] simulated the propagation of acoustic

normal modes through internal wave packets with sinusoidal displacement profiles.

These simulations demonstrated a narrowband resonance coupling energy between

modes when the difference between the modes' horizontal wavenumbers equaled the

spatial wavenumber of the internal wave packet. More recent work by Preisig and

Duda [20] have found the earlier studies may have exaggerated the narrowness of

the resonance by using an unrealistically periodic displacement profile. All of this

work indicates that given the pressure field entering the observation volume contains

only one mode, the modes observed at the observation array contain significant

information about the properties of any internal waves in that volume.

The problem of exciting a single mode using feedback control incorporates ele-

ments of underwater acoustics, mode filtering, control theory, and signal processing.

The subsequent sections of this chapter summarize relevant aspects of each of these

disciplines.

Chapter 2 describes the proposed control algorithm obtained by synthesizing the

material covered in Chapter 1. First, a model is proposed for the acoustic channel

of the feedback volume. The indirect control algorithm developed in this chapter



first estimates the parameters of the channel model, then uses this model to choose

the complex source weights to excite the desired pressure field at the feedback array.

Several different estimators are presented for the identification of the channel model.

The proposed control algorithm is evaluated in Chapter 3 in simulations of a vari-

ety of shallow water ocean environments. All of the environments modeled are based

on measured profiles from the South Continental Shelf off Martha's Vineyard. The

propagation for these environments is simulated using the finite-element parabolic

equation (FEPE) approximation to the wave equation [21].

In addition to the simulations, the thesis presents results from a series of ex-

periments using the algorithm to control the pressure field at a hydrophone array

in a scale model laboratory waveguide. These experiments, described in Chapter

4, demonstrate the algorithm is robust enough to work in real time with actual

sources, hydrophones, and acoustic waves propagating through water. The different

algorithms for estimating the channel model are examined for both steady state and

transient performance.

Chapter 5 makes conclusions about the algorithm proposed based on the simu-

lations and experiments described in the thesis. In addition, this chapter suggests

future directions for developing algorithms for single mode excitation and other pos-

sible uses for feedback control and single mode excitation in ocean acoustics.

1.1 Normal Mode Model for Acoustic Propaga-

tion

The pressure field for a time-harmonic point source located at ro in a range-independent

environment can be described by the wave equation [22],

p(z)V. 1 Vp(r) + k2(z)p(r) = -47r6(r -ro), (1.1)



where r = (r, 0, z) is the observer's location in cylindrical coordinates, ro = (0, 0, zo)

is the source location, and the wavenumber k(z) = w/c(z) is the ratio of the angular

frequency to the depth-dependent sound speed. Assuming cylindrically symmetric

solutions separable in range and depth of the form

p(r, z) = Tm(z)R (T) (1.2)

yields the normal mode solution for the field [22], [23], and [1]. Substituting Eq. 1.2

into the homogeneous form of Eq. 1.1 and separating the functions of depth and

range gives the differential equations specifying the eigenfunctions for each of these

coordinates:

1 d2 Jm(z) d[ 1 d4m(z) km(z)S+ Ip- = 0 (1.3)
p(z) dz 2  dzp(z) dz p(z) m

r d d• k2 ,R(r) = 0, (1.4)rdr dr

where the separation constant is k2 , its square root km is the horizontal wavenumber,

and kzm(z) Vk2(z) - k is the vertical wavenumber.

The total solution for the pressure will be a superposition of all solutions of the

form of Eq. 1.2

p(r, z) = am(zo)Im(z)Rm(r). (1.5)
m

Substituting this expression into Eq. 1.1 and simplifying the resulting equation with

Eq. 1.3 reveals

Rm(r) = i-rHl) (kmr) (1.6)

am(zo) = T,*(zo)/p(zo), (1.7)

where H( 1) (kmr) is the zeroth-order Hankel function of the first kind, and the oper-

ator (.)* denotes complex conjugation. Combining these gives the solution for the



pressure field:

p(r, z) = V '*(zo) 'Tm(z)Ho "(kmr). (1.8)
p(zo) M

For the far field (kmr > 1), the Hankel function can be replaced by its asymptotic

approximation to get

Jreitr/4 eikmr
p(r, z) _

7
_ 

* (z ) em (z ) ikr (1.9)
p(zo)

In general, the sound speed profile c and density p are functions of range as well

as depth. Consequently, the solutions to Eq. 1.3 vary with range. The solutions to

the depth eigenfunction equation for the hydrographic and boundary conditions at a

given range are known as the local modes at that range. The pressure field at range

r can be described as a superposition of the local modes 'm(z; r), or

p(r, z) = dm(r, zo) m(z; r), (1.10)

where dm(r, zo) are the complex mode coefficients. If the channel is linear, the

pressure field excited by an array of sources can be written as a superposition of

solutions of the form of Eq. 1.10. Equivalently, the complex mode coefficients can

be considered to be functions of the source depth vector z, and the complex source

weights w, in addition to r. The pressure field generated by a vertical array of

sources at depths z, weighted by w is

p(r, z) = E dm(r, zs, w) Tm(z; r). (1.11)

The proposed algorithm attempts to choose w such that only one mode coefficient

dmo is non-zero at the feedback hydrophone array at r = rF.

Acoustic propagation of range-dependent modes is categorized as adiabatic or

coupled. The adiabatic model of propagation assumes no energy is exchanged be-

tween different modes although the local modes Jz(z; r) may vary slowly with range.



In coupled propagation, energy is exchanged between the local modes due to range

variations in bathymetry and sound speed [24],[25].

The normal mode formulation for acoustic propagation is especially attractive

in shallow water environments at medium to low frequency. In this scenario, the

horizontal wavenumber spectrum can be segmented into three classes of waves. The

propagating, or "trapped," modes are the solutions to the eigenfunction equations

(Eqs. 1.3 and 1.4) such that the horizontal wavenumber km is real, or at least has only

a very small imaginary part due to medium attenuation during propagation. The

evanescent modes have vertical profiles which are solutions to the depth eigenfunction

equation (Eq. 1.3), but with kzm > k, so km = k2 - km is imaginary. These

modes decay exponentially in range. In an ideal waveguide with perfectly reflecting

boundaries, the trapped and evanescent modes contain all the energy. For a realistic

ocean waveguide, the situation is complicated by the absence of a perfectly reflecting

bottom. The solutions in this environment can be found by taking the limit as the

ideal boundary goes to infinite depth [221. This results in a continuum of horizontal

wavenumbers from the solutions to Eqs. 1.3 and 1.4. A discrete finite subset of these

solutions propagate in range with little or no attenuation; these solutions are the

trapped modes for the waveguide. The rest of the solutions constitute the modal

continuum. The contribution of the continuum is significant at short ranges, but

quickly decays in range to leave only the trapped modes in the far field.

Many shallow water environments have bathymetry that is sufficiently range-

varying to invalidate the adiabatic propagation model. Desaubies [25] quantified

measures indicating the importance of modal coupling in an environment. He found

that the precise conditions when the adiabatic approximation breaks down depends

on the quantity of interest, i.e., pressure, transmission loss, propagation time, etc....

For many of the quantities of interest, Desaubies found the conditions when the

adiabatic approximation became invalid depended in subtle and sometimes intricate

ways on the rate of change of the environment in range. Because the coupling induced



by the bottom or range-inhomogeneities in the water column can be strong, it is very

difficult to compute the source weights w to excite only a single mode without very

extensive and accurate environmental measurements.

Many researchers have investigated and validated the modal model of shallow

water propagation. The seminal work in shallow water modal propagation is the

monograph "Theory of Propagation of Explosive Sound in Shallow Water" by C. L.

Pekeris [2]. This paper develops the so-called "Pekeris waveguide," consisting of an

isovelocity water layer, bounded above by a pressure release boundary and below by

a higher-velocity isovelocity halfspace. Using this model and the theory of normal

modes, the paper predicts the features of the pressure pulse caused by an impulsive

source (TNT detonation) on the ocean bottom [26].

Bucker did significant work verifying the modal model of propagation for the

shallow water channel. In [10], he compared experimental and theoretical mode

curves for explosive sources in the Bering Sea, obtaining close agreement. The time-

frequency distribution of the arrivals allowed him to identify the various modes

in the energy observed at a single hydrophone. In a later paper [27], he computed

expressions for the normal mode shapes for a variety of analytic sound speed profiles,

as well as one measured experimental environment. Bucker used the computed mode

shapes to predict transmission loss as a function of range in that experiment, and

found reasonable agreement with the observed values.

Ferris et al. [11], [8], transmitted time-windowed sinusoidal pulses from a single

400 Hz source to a nine element vertical array of hydrophones 10 km downrange.

The differing group delays of the modes resulted in different travel times between the

source and receiver. These travel times differed by enough that two, and sometimes

three, distinct modes could be temporally resolved at the receiver without any spatial

processing. The vertical profiles of these modes across the array corresponded well

with the computed mode shapes for the sound speed profile. The later paper, [8], also

employed a simple spatial filter which projected the pressure field against samples



of the theoretically derived mode shapes to verify the mode strength as a function

of source depth matched the computed mode shapes.

Tindle et al. [9] performed an experiment very clearly demonstrating shallow

water propagation was well-modeled by modes. They found a site almost perfectly

homogeneous in range and depth. Over a range of 5 km, the bottom depth was

50 ± 1 m, with a sound speed profile that was nearly perfectly homogeneous in depth

and range with value 1508.7+0.3 m/s. The analytically derived depth eigenfunctions

for an isovelocity water column fit this experimental environment very well. By

running experiments transmitting windowed sinusoids centered at 60, 100, and 140

Hz and using the least squares mode filter which is discussed in Section 1.3, they

were able to resolve the predicted arrivals of one, two and three modes, respectively.

Buckingham [28], [29] analytically derived an approximate expression for the

modes for a downslope wedge environment with an isovelocity water column over an

isovelocity halfspace bottom. Although the propagation for this environment can be

approximated with the coupled mode model, he demonstrated the true eigenfunctions

of the wave equation for this geometry were circularly curved wavefronts, centered on

the apex of the wedge, sinusoidally varying in angle. These wedge modes propagate

downslope without coupling energy among them, and thus are the true modes of

the system. Since the wedge possesses spherical symmetry rather cylindrical, it

is intuitively reasonable that the azimuthal angle plays the role depth played in

cylindrical geometry with a flat bottom.

Tindle, Hobaek, and Muir [30], [31] confirmed Buckingham's theory in a series of

thorough and elegant experiments investigating modal propagation in a scale model

downslope environment. Their laboratory tank was 93 cm wide and 10 m long with

10 cm of water at the source over a 20 cm deep sand bottom. The bottom could

be tilted at any angle between 0' and 9' . Their source transmitted pulses centered

on 80 kHz and the pressure field in the tank was measured by a hydrophone moved

between successive transmissions to create a synthetic discrete array. Tindle et al.



observed the signals propagated downslope with curved wavefronts centered on the

apex of the wedge as predicted by Buckingham. They resolved these modes by

spatially filtering the pressure field using the least-squares technique of Tindle et

al. in [9]. Comparing the results obtained using a mode filter designed with the

local vertical modes to those obtained when the filter used the curved wedge modes

demonstrated that only the latter propagated without coupling.

Several experiments examined single mode excitation in laboratory tanks. Clay

and Huang attempted to transmit and receive a single mode in a laboratory tank as

part of an experiment to measure backscattering from fish [15]. The tank they used

had 25 cm of water and they transmitted at a frequency of 220 Hz. The experimen-

tal waveguide had pressure-release surfaces both above and below, thus supported

roughly 70 modes at this frequency. Clay and Huang attempted to excite only the

first mode using 8 source transducers, shading these sources with samples of the

desired mode shape quantized to three levels. The same array and shading were

used as a receiver. Under these conditions of gross undersampling and coarse quan-

tization, it is not surprising that the received pressure field roughly matched the

shading. While Clay and Huang claim this indicates only the first mode was excited,

it also seems possible they synthesized an approximation to this crudely quantized

first mode shape using all the modes as basis functions. Thus, the channel may

not have contained just one mode, but may actually have contained many propagat-

ing modes whose superposition approximated a quantized version of the first mode

shape. Because Clay and Huang's receiver undersampled the channel spatially and

they gave no information about temporal dispersion, it is not possible to conclude

with certainty from their results what modes were propagating in the channel. Also,

their experiment used fixed array weights built into the source/receiver array. The

laboratory environment was almost certainly time-invariant, so the fixed nature of

the weights was probably not an issue. Because it could not respond to any tempo-

ral variations in the channel, this open-loop control algorithm probably would not



perform well in many ocean environments.

One of the best experiments for single-mode generation in a laboratory setting

was performed by Gazanhes and Garnier, [16]. They used a tank with only 57mm of

water over a sand bottom. At their working frequency of 124 kHz, this environment

only supported 5 trapped modes, making control and estimation of the modes much

more tractable than the Clay and Huang experiment. Using the Pekeris model of

propagation, Gazanhes and Garnier computed the mode shapes for the channel and

used samples of these shapes to weight 15 independent piezoelectric transducers.

Although this is not the optimal weighting in the least-squares sense, it is a much

better discrete approximation to the orthogonality condition than Clay and Huang's

very coarse sampling and weighting. Gazanhes and Garnier confirmed that they

excited only a single mode using synthetic aperture arrays in both range and depth.

Although their control scheme is also open loop, it works well because they have a

known time-invariant environment. This is encouraging evidence that it is possible

to excite a single mode given an accurate channel estimate.

This concludes our review of previous work on mode propagation both in the

ocean and in laboratory settings. The next section describes the Green's function

for underwater acoustics. The Green's function is the foundation of our model for

the channel between the source array and feedback array.

1.2 Green's Function

The Green's function characterizes the acoustic propagation between a source and

receiver at a given frequency. To find this function in regions of constant density,

simplify the Helmholtz equation (Eq. 1.1) to obtain

[V2 + k2(r)] p(r) = -47rw(r - ro) (1.12)



for a point source at ro. The solution to this equation, p(r) = G(r, ro), is the

Green's function [22], [32]. In linear system theory terms, the Green's function is

the transfer function between a point source at ro and a receiver at_ _ evaluated at

a single frequency w. The Green's function is a very general model for propagation,

and is still valid in many environments where a discrete set of normal modes cannot

accurately model propagation. For a driving term f(ro) it can be shown the pressure

field is

p(r) = G(r, r ro)dro + 1 G(r, ro) p( - p(ro) 9G(r, ro) dro. (1.13)
ivt 47r Is0o ano 9nO

The first integral incorporates the contribution of all sources in the volume in ques-

tion Vo, while the second integral includes the effect of the boundary conditions on

So, the surface surrounding Vo.

If the acoustic channel between source and receiver arrays is a linear system with

respect to the complex weight vector of the source array, the contribution of the

second integral in Eq. 1.13 must be zero, and there must not be any other significant

sources in the volume. The condition that the second integral of Eq. 1.13 be zero is

the spatial analog of the initial rest boundary condition for a time-domain linear sys-

tem. In physical terms, this corresponds to an absence of sources outside the volume

in question, Vo. In general, the ocean may be considered time-invariant for the rela-

tively brief propagation times between the feedback and source arrays. Under these

conditions, the channel is well-modeled by a linear, time-invariant (LTI) system.

Complex exponentials are eigenfunctions of LTI systems, so the Green's function

completely characterizes the behavior of the channel at the frequency of excitation.

Because it is a very general model for propagation, the Green's function can incorpo-

rate effects from any spatial frequencies in the modal continuum which are not one of

the trapped modes, but still which couple energy back into the propagating modes,

in addition to summarizing any coupling of energy among the propagating modes.



In environments which are completely represented by a discrete set of normal modes,

the depth-dependent Green's function has poles at the horizontal wavenumbers of

the modes, indicating the pressure field consists predominantly of energy propagat-

ing at those spatial frequencies. Because the set of environments where the Green's

function accurately models propagation is a superset of those accurately modeled

by either the adiabatic or coupled mode models, it is a good model for the control

algorithm to use to summarize the acoustic propagation through the feedback vol-

ume. The model allows single mode excitation in any environment well-modeled by

either adiabatic or coupled mode propagation, and possibly in some more complex

environments as well.

1.3 Mode Filters

The problem of estimating the coefficients of the modes propagating at a given lo-

cation from samples of the pressure field obtained at hydrophones, known as mode

filtering, is a common one in ocean acoustics. The feedback control algorithm must

determine how the error between the desired and observed pressure profile at the

feedback array is related to the error between the desired and excited mode coeffi-

cients. These two problems are closely related, and in addition to reviewing common

algorithms used for mode filtering, this section will also examine the similarity be-

tween these problems.

The pressure field generated by M propagating modes spatially sampled by a

vertical array of N hydrophones can be written as

p(zl)

p(zN)

1(jz) l ... IM(Z1)

'1(ZN) ... IM(ZN)

dM

dm

+

n(zi)

n(zN)

(1.14)



or in vector notation

p = Pd + n, (1.15)

where n is the vector of observation noise at the hydrophone locations.

Linear mode filters estimate the mode coefficients as a linear function of the

observed pressure samples. For Sections 1.3.1 through 1.3.3, the mode coefficient

vector will be considered a deterministic but unknown quantity to be estimated.

In This linear function can be represented by a matrix H multiplying the observed

pressure field p, i.e.,

d = Hp = HPd + Hn. (1.16)

The various mode filters discussed in this section correspond to different choices for H

proposed in the literature of generalized inverses [33], [34] and stochastic estimation

[35]. For mode filters of this form, the covariance of the mode coefficient vector

estimate Kaa = E1{ddH} - El{d}E{d H} is

Kaa = HK,,nHH, (1.17)

where Kn. is the spatial covariance of the noise vector n, and (.)H denotes the

Hermitian, or conjugate-transpose, operator. Thus, the covariance of the estimated

mode coefficients depends entirely on the noise process covariance Knn and the mode

filter H. The remainder of this section reviews the common choices for H in the ocean

acoustics literature.

1.3.1 Sampled Mode Shapes Mode Filter

A common choice for H in mode propagation experiments is WPH. The motivation for

this choice is that the mode shapes are orthonormal when integrated as a function

of continuous depth and weighted by the density profile [22]. However, spatially

sampling the modes does not necessarily preserve the orthogonality of the modes,



i.e., IpHWI - I. This lack of orthogonality can introduce a bias into the mode

estimate. Assuming the noise vector n is zero-mean, the expected value of the mode

coefficient estimator is

E{d} = pH %Pd, (1.18)

giving a bias of (I- _ HP)d. Theoretically, as more hydrophones are added to sam-

ple the water column more finely in depth, the sampled modes matrix ' becomes

arbitrarily close to orthogonal, making the effect of the bias negligible. Realistically,

it is impractical to deploy a vertical array of hydrophones spanning the entire sed-

iment layer. Thus, even in the limiting case of a continuous array of hydrophones

spanning the water column, some bias will still be present due to the unsampled

pressure field in the bottom [36]. Many experiments including Ferris [8], and Clay

and Huang [15] used the sampled mode shape mode filter, assuming the samples

of the orthogonal mode functions are themselves orthogonal without examining the

potential bias of the sampled mode shape filter. Tindle, Hobaek, and Muir [31] and

Gazanhes and Garnier [16] used the same mode filter but examined the "cross-talk"

introduced by sampling to verify the bias was negligible for the purposes of their

experiments.

The mode coefficients may be difficult to determine from the pressure samples

taken at the hydrophone locations if the hydrophone array either has fewer hy-

drophones than the number of propagating modes, or if the hydrophones do not

fully span the water depth. The first difficulty will be referred to as undersampling,

while the second will be referred to as poorly-conditioned sampling. The singular

value decomposition (SVD) [37], an orthogonal matrix factorization, provides in-

sight on how these problems affect the mode estimator. The SVD factors 'P as

UWEJVIH, where Up and Vw are orthonormal matrices. Assuming the number



of hydrophones exceeds the number of trapped modes, i.e., N > M,

al 0 ... 0

O .

0 ... 0 aM

0

(1.19)

where aqEl > aU2 > ... > a* M Ž 0 are called the singular values of X. In the

undersampled case, with N < M, the mode filtering problem is underdetermined and

d cannot be uniquely determined from p. Practically, this is usually not a problem

for mid-to-low frequencies in the shallow water environment, since it is not difficult

or expensive to construct an array with more hydrophones than the environment

has propagating modes. Even if N > M, the choice of hydrophone locations may

give a poorly-conditioned problem for determining d. Although the problem is now

nominally over-determined, poorly-conditioned sampling will cause 'F to become

rank-deficient or nearly rank-deficient. This will make it impossible to estimate d

reliably in the presence of noise. Golub and Van Loan [37] demonstrate poorly-

conditioned sampling results in one or more of the singular values am becoming very

small or zero. Rewriting the bias B(d) as

B(d) = (I- _2H*) d

012 0O1 0

- VI, I- ".

20 ak LZ

V4Hd (1.20)

makes it clear decreasing any of the a,'s to zero will increase the bias of the estimator.

Z =



The covariance of the sampled mode shapes estimator depends on the covariance

of the noise vector Kn. Two common models for noise in the shallow water channel

are spatially white noise (Knn = a I) and the Kuperman-Ingenito surface noise

model [6]. The Kuperman-Ingenito model proposes that when the noise is dominated

by surface generated noise, i.e., noise due to wind, surface waves, etc..., it will have

a spatial covariance of the form

0 ... 0
di

o ao
d2

0

0 ... 0 adM

where u ,... a2- are functions of the mode profiles and surface noise processes.dl " dM

The vector d is the mode coefficients of the noise process at the array.

For the spatially white case, Eq. 1.17 becomes

M

Kaa = q- mVmVqmH, (1.22)
m=1

where vem are the columns of VI,. The Kuperman-Ingenito model gives

Kaa = HmVmVVmH)

aU 0 ... O
di

do a2

0 ... 0 a2
dM

Poorly-conditioned sampling decreases some values of arem, but its effect on the es-

timator covariance does not grow more extreme as the conditioning of %F becomes

Knn = A *H = WKa n , (1.21)

Sm 2VqMVqH (1.23)m=1 M



more severe. Once a particular singular value grows negligible compared to other

singular values, further decreases in its value are insignificant in the covariance com-

putations in Eqs. 1.22 and 1.23. At the other extreme, when the channel is highly

oversampled, i.e., N 00oo, the acr's approach 1, so

M

•HmVmVmH - VWVWH = I (1.24)
m=1

and Eqs. 1.22 and 1.23 simplify to Kaa = oaI and Kaa = Kaa, respectively.

Thus, poorly-conditioned sampling of the water column by the hydrophone array

will increase the bias of the sampled mode shape filter, but will not effect the estima-

tor covariance significantly. Oversampling the channel so that the inner product of

the sampled mode shapes closely approximates the integral of the continuous mode

shapes can reduce the bias to leave only a small contribution from the unsampled

bottom, and result in an estimator covariance reflecting the underlying nature of the

noise process.

1.3.2 Pseudo-Inverse Mode Filter

The pseudo-inverse mode filter results from choosing d to minimize the squared

error between %Rd and p. Tindle et al. [9] appears to be the first reference in the

ocean acoustics literature to formulate the mode estimation problem in this least

squares sense. The resulting mode filter H = (jpHq)-1%pH, denoted Vt, is called

the pseudo-inverse or Penrose-Moore inverse of ' [37], [33]. This name results from

the fact PtP = I. A consequence of this property is that if E {(n = 0, the mode

estimate obtained using H = Pt is unbiased. However, if the hydrophone array gives

a poorly-conditioned sampling of the modes, this estimator becomes very sensitive

to noise.



For the spatially white noise model, Eq. 1.17 gives

Kaa = aVEt (E, t) HVWH

M

2a 2 UEVmV im H (1.25)
m=1

Although this estimate will remain unbiased so long as N > M, for very short

aperture arrays the estimator will have a very large covariance as one more or more

singular values a'm go to zero. When a full aperture array oversamples the channel,

the singular values of T approach 1, and Eq. 1.25 approaches anI.

Substituting the Kuperman-Ingenito noise model and the pseudo-inverse mode

filter into Eq. 1.17 gives

Kaa = jt jKaaIdHpHtH

= Kaa, (1.26)

which is intuitively sensible, as Kaa is the covariance of the noise process as it is

coupled into the channel by the modes. Ideally, this covariance is unchanged by

reductions in the array aperture. Practically, the mode filter Vt is usually based on

an estimate of ' computed by numerical integration of an observed or estimated

sound speed profile. As the am's of the true %F grow smaller as the array aperture

decreases and the sampling becomes poorly-conditioned, the bias and covariance of

the pseudo-inverse mode filter can become very sensitive to errors between the 'P

obtained by numerical integration and the actual ' of the ocean channel.

For the spatially white Gaussian noise case, the pseudo-inverse mode filter can be

shown to be the maximum-likelihood (ML) estimator. In general, it is not an efficient

estimator and does not attain the Cramer-Rao Bound (CRB) for the variance of

unbiased estimators unless all the singular values ahm are equal. Poorly-conditioned

sampling of the channel can push the covariance of this mode filter arbitrarily far



from the CRB as some of the singular values grow very small. If an efficient estimator

exists, it is the ML estimator [35]; since the ML estimator is not efficient, no efficient

estimator exists for the spatially white noise model.

The pseudo-inverse mode filter is also the ML estimator for the Kuperman-

Ingenito noise model. For this case, this conclusion is not very informative since

n is defined to be in the range of xI from the formulation of the noise model. The

existence of the ML estimator depends on the Kuperman-Ingenito model perfectly

describing the noise process, since if n contains any component in the orthogonal

complement to the range of %, the conditional probability density ppID(p ld) = 0

[38], and the ML estimate is meaningless since no set of mode coefficients d could

have produced the observed signal. For this noise model, the Fisher Information

Matrix can be shown to be K--, so the CRB for the mode estimator is Kaa , the

variance of the underlying noise process in each mode. The pseudo-inverse mode

filter attains this bound on the variance, and is an efficient estimator.

1.3.3 Diagonal Weighting

As noted above, when the array has poorly-conditioned sampling of the modes, one

or more of the singular values of % will grow very small. This causes X H X to be

singular or nearly singular, and the computation of the inverse of this matrix can grow

numerically sensitive. One method of compensating for this is to modify the error

function being minimized to include a term proportional to the magnitude squared

of the estimated mode coefficient vector d [39]. The quantity to be minimized is

then

e = I1p -_PdIa2 + 3lldll2 (1.27)



where 3 is a scale factor indicative of the relative importance of the two terms in

the error expression. The estimator minimizing this quantity is

dDw = (%H + I) - 1  Hp .  (1.28)

This expression is very similar to the pseudo-inverse, except for a small diagonal ma-

trix pI has been added to pH x before inversion to alleviate conditioning problems.

The 6I term is often referred to as the white noise sensitivity term. The addition

of this term places a lower bound of 0 on the singular values of (WH + PI), and

thus limits the covariance of the estimator shown in Eq. 1.25, since no a, for the

diagonally-weighted inverse can exceed 3-2. For this reason, this approach is often

referred to as diagonal loading or weighting. While this estimator does not possess

many of the nice theoretical properties of the pseudo-inverse mode filter, in many

scenarios it is computationally more stable, especially at relatively high noise levels.

1.3.4 Maximum A Posteriori Mode Filters

The maximum a posteriori (MAP) mode filter chooses dMAP to maximize the prob-

ability density function pDIp(dlp) based on the observed pressure field, p. This

approach assumes the mode coefficient vector d is an unknown, random quantity to

be determined. The mode filter also assumes knowledge of the probability density

functions of both the stochastic processes generating the mode coefficients d and the

noise n. For the case when both these processes are Gaussian, the MAP estimate

is identical to the minimum mean-squared error estimate (MMSE) [35]. A very im-

portant feature of the MAP mode filter is that in many environments it gracefully

transitions from the pseudo-inverse filter to the sampled mode shape filter as the con-

ditioning of %F deteriorates. Between these extremes, the performance of the MAP

filter exceeds either of the other two filters, and the MAP filter never exhibits the

poor performance shown by the pseudo-inverse or sampled mode shape filters when



these filters are applied to a problem whose conditioning is inappropriate for their

strengths. If the mode coefficients are well-modeled by a Gaussian process with zero

mean and covariance Kdd, while the noise is also Gaussian, zero-mean, uncorrelated

with d, and has covariance Knn, the MAP mode filter can be written as

dMAP = KnxxpHHK;p, (1.29)

where
K - 1 = K~- + WHKn1%. (1.30)

Some insight into the performance of this mode filter may be gained by consider-

ing the somewhat unrealistic case when the modes are independent and identically

distributed, i.e., Kdd = adI, and the noise is spatially white with Knn = o2I. As-

suming there are more hydrophones than modes (M > N), Eq. 1.29 reduces to

O'd 0 -I-
- -

0 2 2 n

0

0 ... 0 U2O'M
od o'%M

0
UqHp. (1.31)

Eq. 1.31 has an appealing interpretation as a generalization of the discrete spatial

Wiener filter (DSWF) [40]. Multiplying by UH rotates the problem into the coordi-

nate frame where the spatial components are uncorrelated. Each component is then

weighted by the Wiener gain for the ratio of the mode power to the noise power for

that component 4,m,2/(a •,md + a2). These estimates of the components are then

multiplied by the inverse singular values a- before being transformed into mode

coefficients by Vq. For the case when all the singular values are 1, V* = I and Uq

is the appropriate set of samples of complex exponentials, Eq. 1.31 reduces exactly

to the DSWF.

dMAP = VT



Eq. 1.31 provides theoretical justification for the pragmatically-motivated mode

filtering algorithm proposed by T. C. Yang in [41]. Yang's algorithm suggested

deleting very small eigenvalues of PH % before inverting this product for the pseudo-

inverse mode filter. His paper proposes this approach to ensure numerical stability of

the inverse and uses some rough a priori assumptions about the values of the mode

coefficients. His approach is a limiting case of Eq. 1.31 as some of the singular values

of % get very small compared to ad and a,. Under these conditions, Yang's ad hoc

"dropped eigenvalue" method is an approximation to the MAP mode filter obtained

when the array gives a poorly-conditioned sampling of the mode shapes and some

of the diagonal elements in Eq. 1.31 approach zero.

If the Kuperman-Ingenito noise model applies, and the process generating the

modes has diagonal covariance Kdd with elements adl,... , ~ , the MAP estimator

is

+ d d
a2

0d

1 -+--

20 0a20
d .2

0

0 ... 0 dM
dM +djM-

,Itp. (1.32)

Because both the signal and noise processes are independent random variables trans-

formed by the same linear transformation (xI), multiplying p by the pseudo-inverse

performs the discrete spatial Karhunen-Loeve transform, decorrelating the mode es-

timation problem into M independent problems. Unlike the spatially white noise

model, the physical basis of interest (mode space) coincides with the mathematical

basis in which the underlying processes are independent. The diagonal elements in

Eq. 1.32 become the Wiener gains for each of the independent components. Thus



the structure of Eq. 1.32 shows that the estimation problem becomes M indepen-

dent MAP problems once p is multiplied by Vt. When the random processes have

probability density functions which are symmetric about their means, such as the

Gaussian distribution, Eqs. 1.31 and 1.32 are also the minimum mean-squared error

(MMSE) solutions [35].

1.3.5 Relation of Mode Filters to Target Pressure Vector

As mentioned earlier, the variety of mode filtering algorithms corresponds to a variety

of choices for the target pressure vector for the control algorithm. It is possible to

formulate the control problem in terms of the desired pressure field rather than

the desired mode coefficients. Section 2.2 discusses the circumstances when it is

preferable to use this approach. The control algorithm uses an estimate of how the

pressure field observed at the hydrophone p is a function of the source array weight

vector w to choose w to obtain some target pressure vector Pd. Formulating the

problem as a mode filtering problem at the feedback array gives insight into the best

choice of Pd. The target pressure vector should be the pressure vector which would

yield the desired mode coefficient vector dd when the most appropriate mode filter

for the ocean environment and feedback array geometry is applied.

The most obvious choice for Pd is %Fdd. This target pressure vector corre-

sponds to the pseudo-inverse mode filter, since ItPd = %tPdd = dd. Thus, if

this choice for Pd were observed at the feedback array, the pseudo-inverse mode filter

would indicate the pressure consisted of the desired modes. Alternatively, the choice

Pd = W(jHp)-ldd corresponds to the sampled mode shape filter, since IFHpd would

give pHJi(p@Hq)-ldd = dd. Similar expressions can be derived for the MAP mode

filters with the various noise models.

The algorithms described in this thesis will use Pd = 'dd. The feedback array

is assumed to sample the channel sufficiently that the pseudo-inverse mode filter

is the best choice of mode filter. This is a reasonable assumption for the relatively



shallow water environments and mid-frequency transmissions examined in this thesis.

Also, over the relatively short range between the source array and feedback array,

the signal-to-noise (SNR) ratio at the feedback array should be high if the signal

is going to be observable at the distant observation array as shown in Fig. 1-1. At

high SNR, the MAP formulations reduce asymptotically to Pd = %Fdd. If these

favorable conditions do not apply, the target pressure vector should be chosen based

upon the appropriate mode filtering algorithm for the environment and geometry,

but generally this means the algorithm will not be able to produce a single mode

with high fidelity.

1.4 Control Theory

The field of control theory provides some important insights into the single mode

excitation problem. The classification of control systems as either open-loop and

closed-loop systems is one of the fundamental distinctions in control theory [42].

Both kinds of systems use a control law for determining the control input to attempt

to attain the desired behavior of the output of the plant, or system controlled. For

the mode excitation problem, the input is the source array weights, w, the plant is

the ocean between the source array and the feedback array, the output is the samples

of the pressure field observed at the feedback array, p, and the desired behavior is

the target pressure Pd. For an open-loop system, the input is chosen based solely

on a priori or assumed knowledge of the system. All prior work on single mode

excitation used open-loop control [15], [16]. The behavior of a plant controlled with

this approach can be very sensitive to inaccuracies in this a priori information or in

the model of the plant. The algorithm proposed in this thesis uses feedback control

to obtain the desired performance. Feedback control modifies the input to the plant

based on the difference between the observed and desired output of the plant. This

allows the control system to compensate for inaccuracies in the a priori information



about the plant as well as respond to time-variations in the plant. Figs. 1-2 and 1-3

below illustrate the two approaches for the single mode excitation problem.

p

Figure 1-2: Open-loop Control For Single Mode Excitation

Figure 1-3: Closed-loop Control For Single Mode Excitation

Another useful concept from control theory is the use of state space models for

systems with complicated but linear dynamics. Many feedback control algorithms

use such a model to estimate the behavior of a plant they wish to control. Applying

this model to the acoustic propagation between the source and feedback arrays pro-

vides important insight into several aspects of the single mode excitation problem.

For the discrete-time case, the state-space model describes the evolution of the 1 x M

state vector x[n] by

x[n] = A[n - 1]x[n - 1] + B[n]u[n] + f[n] (1.33)

where u[n] is the 1 x L input vector for the system, and f[n] is a zero-mean white

Gaussian noise with covariance Pff which is uncorrelated with all other signals in

the problem. The output of the system y[n] is a 1 x N vector

y[n] = C[n]x[n] + D[n]u[n] + n[n],

Pd

(1.34)



where n[n] is zero-mean, white Gaussian observation noise uncorrelated with all

other signals in the problem, with covariance Pnn. Defining the state vector x[n] as

the modes d[n] present at the feedback array at the nth iteration, the input as w[n],

the complex source weights, and the output y[n] as p[n], the pressure observed at

the feedback array, the state space model for the modal propagation between the

source and feedback arrays simplifies to

d[n] = B[n]w[n] + f[n] (1.35)

p[n] = ' [n]d[n] + n[n]. (1.36)

In these equations, the B[n]w[n] term is the portion of the total pressure field excited

the source array, the f[n] term is the propagating background noise which satisfies

the Kuperman-Ingenito noise model, and n[n] represents the sensor noise. The devel-

opment that follows does not fully exploit this general model, but it is a conceptually

appealing model for scenarios when there are different noise sources with differing

spatial covariance structures. The matrix B[n] incorporates the effects of the mode

shapes at the source array on the energy initially excited in each mode (Eq. 1.7),

as well as any coupling of energy among the discrete modes between the source and

feedback arrays. Note that Eq. 1.36 has the same form as the mode filtering problem

(Eq. 1.15). Modeling the modal propagation in this way allows the application of

several powerful results from control theory to the single mode excitation problem.

Reachability and observability are two control theory concepts germane to the

mode excitation problem as formulated above in Eqs. 1.35 and 1.36. A system is

said to be reachable over the interval [no, ni] if it is possible to drive the system to

any final state x[nl] from any initial state x[no] using u[n]. The effect of the input

u[n] on the state x[nl] can be written as cb[nl, n]B[n]u[n], where 4 [nl, n] is the

state-transition matrix from time n to ni for the undriven system. In the absence

of inputs, x[nl] = 4[nl, n]x[n]. The total effect of the input over the interval [no, nl]



on the state at nl can be written as

x[n1 ] = B[ni] I4[n, ni - 1]B[ni - 1] ... I[ni, no]B[no]

u[ni]

u[ni - 1]

u[no]
(1.37)

For a system to be reachable, the partitioned matrix containing the B and D terms

must have full rank. The controllability gramian Wl[no, nil] of a system is defined to

be the correlation of this matrix. A system is reachable if and only if Wi[no, nl] has

full rank. For the simple state space model of Eqs. 1.35 and 1.36, the controllability

gramian is

W, [no, ni] = B[nI]BH[n 1 ], (1.38)

so the system is reachable over [no, nl] if and only if B[ni] has full row rank M. A

system is defined to be completely reachable if it is reachable over some interval,

and is uniformly completely reachable if there exists some a and m such that the

smallest eigenvalue of W 1 [n, n + m] is greater than a for all n. Because the modes

present at the feedback array for this model depend only on the input weights from

the current iteration, properties like uniform complete reachability depend solely on

B[n].

A system is described as observable over the interval [no, nl] if the state x[no]

can be uniquely determined from knowing u[n] and y[n] over this interval. It can

be shown this property is equivalent to the observability gramian M[no, n l] having

full rank M [43]. The very simple state space model of mode propagation has the

following observability gramian:

M[no, ni] = IH[no]0[no0].



Thus, the coefficients of the modes present at the feedback array can only be uniquely

determined if the sampled mode shape matrix 'r [n] has full column rank.

Framing the mode excitation problem in the state space model clearly separates

the two primary issues of the problem. The first issue is whether it is possible to excite

the desired modes in the channel. The second issue is whether the control algorithm

can recognize the desired mode profile by observing samples of the pressure field.

The first issue corresponds to the reachability of the system as described by the state

space model for mode propagation. The reachability depends on the source array

geometry and the propagation conditions between the source array and feedback

array. For the ranges and depths discussed in this thesis, the propagation is usually

predominantly determined by the bottom composition and bathymetry. Since the

source array is the only factor effecting reachability under the control of the scientist,

care must be taken to design the source array to ensure reachability over as wide a

range of ocean conditions as possible.

The ability of the algorithm to recognize the desired mode profile from pressure

observations corresponds to the observability of the system in the state space formu-

lation. The observability of the system depends on the mode shapes and feedback

array geometry. The mode shapes are a function of the sound speed profile and bot-

tom properties at the array location, and are not under the control of the observer.

Thus, the feedback array must be designed carefully to guarantee observability over

as wide a range of sound speed profiles and bottom properties as possible to ensure

the experiment's success.

An informative experiment and persistency of input are two additional important

concepts from system identification and control theory. An experiment is said to be

informative if it allows the unique identification of a single set of system model

parameters out of the class of proposed system models [44]. A necessary condition

for an experiment to be informative is that the control input sequence be persistent.

A persistent input sequence is one whose autocorrelation matrix has full rank. This



criteria will be formulated more precisely in Chapter 2 where the class of channel

models used by the control algorithm is presented. The conflicting requirements of

keeping the source weights fixed to obtain a high fidelity mode and varying them

enough to get a persistent input for system identification will be an important issue

for the control algorithm to address.

1.5 Matched Signals

Single mode excitation at a feedback array location can be viewed as a general-

ization from the time domain to the mode domain of the matched signal problem

addressed by Parvulescu and Clay [45], [46], [47]. Parvulescu and Clay investigated

the time-domain dispersion due to propagation through underwater acoustic chan-

nels. Specifically, they were interested in finding a signal which when transmitted

from a single source through a given channel would give an "impulse-like" signal at

a single receiving hydrophone. They observed that when they transmitted a short

impulsive waveform, the received signal exhibited the well-known multi-path arrival

structure. The matched filter whose impulse response is the time-reversed version

of the received signal is the best linear detector for this signal in the presence of

white noise [35]. Parvulescu and Clay noted that if the transmitted signal is a

time-reversed version of the channel impulse response, the acoustic propagation will

perform the matched filtering operation, and the received signal should be temporally

concentrated. No matched filter will be necessary at the receiver. They successfully

implemented a simple version of such a system using a reel-to-reel tape deck and

two ships about 18 km apart in 2 km of water connected by a radio link. The source

ship transmitted an impulsive signal, and the signal observed at the receiving ship

was recorded on the tape deck over the radio channel. The source ship then trans-

mitted a time-reversed version of the recorded impulse response by playing the tape

backwards, and the received waveform was the desired temporally-concentrated sig-



nal. In addition, by making several successive transmissions using the same reversed

impulse response, Parvulescu and Clay attempted to estimate the coherence time

of the channel from the deterioration of the received impulse. Unfortunately, they

could not separate the effects of channel variability from those due to the source ship

drifting. The combination of these effects resulted in the received signal being almost

completely decorrelated with the matched filter after about 30 minutes. Because the

source ship had drifted approximately 500 m over this time interval, Parvulescu and

Clay proposed this displacement was the primary factor causing the mismatch, but

acknowledge without a rigorous control for the experiment it would be impossible to

say conclusively.

DiNapoli et al. attempted a similar experiment over a much longer range (50-

150 km) and lower frequencies (10-30 Hz) in the Arctic [48]. Because the Arctic

environment is fairly stable, they believed computational models could predict the

impulse response of the propagation path, and no attempt was made observe the

actual impulse response as Parvulescu and Clay did. The transmissions DiNapoli et

al. made using a reversed version of the impulse response predicted by computational

models failed to give a clearly identifiable, temporally concentrated arrival. The most

likely causes for this disappointing result are inaccuracies in their environmental

knowledge and in the Arctic acoustic models used to predict the impulse response.

The impulsive nature of noise in the Arctic due to ice dynamics also would make it

difficult to identify the desired arrival amidst the ice noise.

The single mode excitation problem generalizes this approach from attempting

to create a waveform which is concentrated over a short time interval one which is

concentrated at a single mode. The challenge is to determine which transmitted

source array weights will give the desired mode coefficients at the feedback array.

If the channel is assumed to be range-invariant, the source array weights exciting a

single mode can be computed from the sound speed profile and bottom composition

at the source array. This is analogous to assuming the channel is dispersionless and



has no multi-path interference for the time-domain experiments of Parvulescu and

Clay. Most shallow water channels are not range-invariant. In many range-varying

channels, the weights computed assuming the channel is range-invariant will excite a

variety of modes at the feedback array location, and not just the desired single mode.

The source initially excites a single mode which is then distorted by propagation

through the channel, coupling its energy into several modes. The question then

arises how best to excite an initial distribution of modes at the source array which is

pre-compensated for this distortion such that the coupling caused by the channel will

cancel out all the modes except the desired one when the pressure field is observed

at the feedback array. The feedback control algorithm attempts to estimate the

matched signal for the channel coupling between the source and feedback arrays

adaptively. This multiple input/multiple output problem is more complicated than

the single source/single hydrophone one addressed by Parvulescu and Clay, but the

underlying strategy of matching the transmitted signal to the environment is the

same.

1.6 Summary

As noted at the start of this chapter, the primary contribution of this thesis is the

synthesis of ideas from several disciplines to produce a new algorithm for exciting a

single mode. This chapter has reviewed the relevant background information that

will be used to derive the control algorithm in the next chapter. The section on

mode filtering yielded an important perspective on the relationship among the MAP,

pseudo-inverse, and sampled mode shape mode filters. The MAP filter was also

shown to provide a theoretical justification for Yang's ad hoc dropped eigenvalue

mode filter. Chapter 2 will show how observability and reachability can provide

insight into how the source and feedback array geometries affect the ability of the

algorithm to excite a single mode.





Chapter 2

Control Algorithm

This chapter presents an algorithm for single mode excitation using indirect control

[14]. An indirect control algorithm explicitly estimates a model of the plant, then

uses this model to compute the control input giving the desired behavior. The

algorithm proposed for single mode excitation begins with some initial estimate of

the acoustic propagation through the feedback volume. Based on this estimate, it

computes the best set of source array weights w to get the desired pressure vector Pd.

After exciting the channel using w, the algorithm compares the observed pressure

vector p to 1, the pressure predicted by the current channel estimate. The channel

estimate is updated based on the difference between the observed and predicted

pressure, and the process begins again. Figure 2-1 shows the result of incorporating

this type of control algorithm into the scenario of Figure 1-1. While this control

scheme is fairly simple, it clearly demonstrates the potential of feedback control

for exciting a single mode. If this straight-forward scheme proves successful, more

advanced control schemes like robust control [49] [50] [51] can be investigated for

this problem.

The control algorithm uses the replica matrix described in Section 2.1 to model

the propagation between the source and feedback arrays. Section 2.1 also presents a

more precise definition of persistent excitation as first discussed in Section 1.4. The
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source array weights are computed from the current estimate of the channel replica

matrix using the least squares method described in Section 2.2. The replica matrix

estimator is an important part of the control algorithm, and this chapter presents

three different estimators for the replica matrix. Section 2.3 develops the condition

number-limited least squares algorithm for estimating the channel replica matrix.

The replica matrix estimation problem can also be formulated as a Kalman filtering

problem, and Section 2.4 presents the resulting replica matrix estimator. Section

2.5 develops the least mean squares (LMS) [13] estimator for the replica matrix.

This common adaptive algorithm will be compared with the other two estimation

algorithms in the experimental work of Chapter 4.

2.1 Propagation Model

The control algorithm presented in this chapter models the pressure received at the

feedback array p as a linear function of the complex source array weights w, i.e.,

p = Qw, (2.1)

where Q is the replica matrix for the channel. The eth column of Q is the replica

vector at the feedback hydrophone array for the fth source array element. Equiva-

lently, the (i, j)th element of Q is the Green's function between the jth source and ith

receiver evaluated at the transmission frequency. Considering the state space mod-

els of Eqs. 1.35 and 1.36, the replica matrix is Q[n] = 'r[n]B[n]. Thus, this model

combines the effects of the feedback array hydrophone locations on I, [n] with the

transmission properties of B[n] summarizing the source locations and mode coupling.

Poor conditioning in Q[n] can be caused by any or all of the following phenomena:

poor hydrophone sampling of the modes at the feedback array, poor placement of

the source array elements for exciting the modes at the source array, or unfavorable

mode coupling between the source and feedback arrays.



The validity of Q[n] as a propagation model depends on the time scales of varia-

tions in the channel relative to the propagation time between the source and feedback

arrays. As noted in Section 1.2, the replica matrix model is valid for continuous wave

(CW) propagation in linear, time-invariant propagation environments. For the typi-

cal scenario shown in Fig. 1-1, the propagation time from source to feedback array is

1-2 sec. The oceanographic features and processes dominating shallow water acous-

tics such as internal waves, tidal mixing, and bottom bathymetry are believed to

vary on timescales much longer than this. Observations in the recent SWARM ex-

periment indicated the predominant energy in the internal waves in a typical coastal

environment had timescales on the order of five to seven minutes [52]. Based on

these observations, it appears safe to assume the channel is time-invariant over the

propagation interval between the source and feedback arrays.

The iteration time for the algorithm will depend both on the distance ro from

the source to feedback array and the group velocities of the modes as determined by

the sound speed profile c(r, z). After changing the source array weights, the control

algorithm must wait long enough for the slowest mode to propagate from the source

array to the feedback array before observing the pressure field and updating its esti-

mate of the channel replica matrix. The control algorithm samples the propagation

environment with sampling period equal to its iteration time. The Nyquist sampling

theorem [53] indicates that setting the iteration time to be at least the propagation

time for the slowest mode means that oceanographic processes at timescales shorter

than twice this propagation time will be aliased in the observations of the environ-

ment. This best case limit on the bandwidth of observable processes must be taken

into account when designing the experiment. Due to the averaging and windowing

of data employed by the estimators described in this chapter, the limit on the fastest

processes the control algorithm can expect to track is much slower than the limit

specified by the Nyquist sampling theorem.

A sequence of inputs w[0],..., w[n] is said to be persistent if it allows unique



identification of one set of model parameters out of all possible models in a given

model class [44]. Since the replica matrix model for propagation defines the space of

possible models to be all N x L complex matrices (CNxL), persistency can be defined

more precisely than the general discussion in Section 1.4. To identify a unique Q,
the sequence of input vectors must span CL. Thus, persistency over the interval [0, n]

is equivalent to [w[0] Iw[1] I ... Iw[n]] having rank L. This condition is also equivalent

to the square matrix E w[i]wH[i] having full rank.
i=O

Because the control algorithm attempts to hold the pressure field observed at

the feedback array fixed, the input signal usually will not vary after an initial con-

vergence transient if the replica matrix estimate Q is accurate and the channel is

quasi-stationary. Later discussions will illustrate how this impersistent or nearly

impersistent input sequence affects the convergence and transient behavior of the

estimators. If the steady state source array weights w,, are orthogonal to the er-

rors in the rows of Q[n], these errors will not be revealed by the algorithm in the

steady state. Although the errors in Q are undetectable by w,,, w,, may not be the

source array weight vector giving the best performance. The control algorithm does

have fixed points other than the global optimum WLS = Qtpd, and thus may con-

verge to a non-optimal solution for w. In the simulations and experiments described

later in this thesis, the performance of the algorithm was limited by the observation

noise, and not by convergence to non-optimal solutions. The fixed points at these

non-optimal solutions are generally unstable equilibria, so observation noise should

provide sufficient impetus to propel the control algorithm away from them. This

likely explains why no evidence was observed of the algorithm getting stuck at non-

optimum source weights in the simulations or laboratory waveguide experiments.



2.2 Source Array Weight Selection

The least squares solution to the system of linear equations

Pd = Qw (2.2)

yields the best source array weight vector for obtaining the desired pressure Pd given

the current replica matrix Q. Assuming N > L, the singular value decomposition of

Q is

aQi 0

0 'QL

0

VqH, (2.3)

where UQ is N x N, VQ is L x L, the partitioned matrix on the right-hand

side is N x L, and the diagonal elements of that matrix are ordered such that

0 Q1 Ž UQ2 ... _ U QL >_ 0 [37]. The pseudo-inverse of Q, Qt, is defined to be

Qt = Vq,

0

0-1o·QL

O0 UQH, (2.4)

except that any aqi's equal to zero are not inverted, but left as zero. If all the

singular values aqi are non-zero, w = Qtpd gives the unique source array weight

vector minimizing the error between the desired and obtained pressures. If the

propagation is completely described by M trapped modes, and M < L, there will be

singular values of Q that are zero, and the solution minimizing the magnitude of the

error is not unique. In this case, w = Qtpd gives the minimum norm source array

Q=UQ



weight vector with the minimum squared error between the observed pressure p and

the desired pressure Pd for the true channel replica matrix Q. The weight selection

step uses the same method to find w except Q is replaced by the current replica

matrix estimate Q. For the nth iteration, the source array weights are determined

by
w[n] = (Q[n]) t Pd, (2.5)

where Q[n] is the estimate of the channel replica matrix at the nth iteration. This

gives the source array weight vector that would be the best fit if the current channel

estimate Q[n] were correct.

The weight selection step proposed in Eq. 2.5 minimizes the error in the pressure

domain, which does not generally give the minimum error in the mode domain. It is

possible to compute w to minimize the error in the mode domain using an estimate

of B[n] from the state-space model of Eq. 1.35. The weight selection step then uses

solves Eq. 1.35 in the least-squares sense assuming the state noise f[n] is zero. The

resulting source array weight vector

w[n] = (B[n])tdd, (2.6)

should minimize the error in the mode domain. In practice, this approach can be

problematic for numerical reasons discussed below.

It is necessary to develop a precise framework to discuss the important issues

that arise when some of the matrices in the control algorithm computations are not

mathematically singular, but have very large condition numbers. Golub and Van

Loan define the c-rank, re, of the matrix Q to be the number of singular values ai _ E,

i.e., if r, = rank(Q, e) = m, then aQi > aQ2 > ... Qm > C > UQm+l Ž (7QL > 0

[37]. It is straight-forward to extend this idea and define the C-span of a matrix with

c-rank r, as the span of {ul,... , ur, }, where the ui are the columns of UQ, the left

orthogonal matrix of the SVD. Similarly, the e-nullspace of the matrix can be defined



to be the space spanned by vr,+1 ,... , VL, where the vi's are the columns of VQ,

the right orthogonal matrix of the SVD.

If Q[n] has e-rank less than M for some e appropriate to the scale of the exper-

iments, it indicates the system is either numerically unreachable or unobservable,

either of which may be problematic for mode excitation. The terms nearly unreach-

able and nearly unobservable will be used to describe these numerically troublesome

conditions. If the system is nearly unreachable, both the pressure and mode domain

approaches for computing w[n] may have difficulty exciting the desired mode. In

practical terms, this condition corresponds to the scenario where the source element

locations and propagation conditions in the feedback volume combine unfavorably

so that some modes cannot be excited to any significant level given the power lim-

itations on the sources. If the desired pressure Pd E E-span{Q}, then the desired

pressure field may be obtained within the power limits of the practical system as

reflected by the choice of E. Otherwise, the power required to excite this particular

mode exceeds the limitations of the sources. It is possible that for a given source

array geometry and propagation conditions which result in numerical unreachability,

some modes will still be excitable and others will not, depending on the e-span of Q.

If the E-rank deficiency of Q [n] is because the system is nearly unobservable,

there may be undesired trapped modes propagating at the feedback array even when

the observed pressure p[n] is a close fit to the desired pressure Pd. Numerical un-

observability can be due to one or more causes. Some modes may be sampled at

or close to a pressure null, so that any energy in these modes cannot be seen over

the observation noise. Alternatively, if one the columns of the sampled mode shapes

can be written as a linear combination of other columns, the pressure field cannot

be uniquely resolved into modes. These conditions are equivalent to the poorly con-

ditioned sampling for %F discussed in Section 1.3. If the feedback array sufficiently

samples the water column such that the system is observable, the issue is not as im-

portant. In this case, exciting a pressure field close to the desired Pd will correspond



to a mode coefficient vector d[n] close to the desired dd.

The weight vector minimizing I IPd-p[n] Iwill not generally minimize I dd-d[n] I.

The errors in the two domains are related by a linear but generally non-unitary

transformation %:

Pd - p[n] = •P(dd - d[n]). (2.7)

To see why the minimum error in the pressure domain does not necessarily correspond

to the minimum error in the mode domain, consider the extreme case when %I

possesses a non-trivial null-space, i.e., when the system is unobservable. Let d[n]

be the mode vector minimizing the error in the mode domain, and p[n] be resulting

pressure vector, i.e., p[n] = 'P[n]d[n]. Any d[n] = d[n] + Ad, where Ad is in the

null-space of IF will attain the same pressure domain error, but not minimize the

mode domain error. The argument is somewhat more involved when 'I does not

have a null-space, but so long as the singular values of % are not all equal, the

problem exists. If the system is well-sampled such that the ai's of ' are at least

commensurate with each other if not equal, the weight vector giving the minimum

error in the pressure domain will give a small if not minimum error in the mode

domain. In the limiting case with the array spanning the entire water column as

N -+ o , the aUi's approach one and the solution minimizing the error in one domain

also minimizes it in the other. As noted in Section 1.3 the difficulty of observing the

pressure in the bottom prevents the singular values from actually reaching one, but

generally they will come very close to it.

To see more clearly the difficulty in explicitly estimating d[n] when 'P is nearly

singular, consider the scenario where the observation noise n has a Gaussian, spa-

tially white component with variance an, and the propagation physics ensure the

magnitudes of all mode coefficients are bounded by some constant dmax, i.e.,

max IId,[n]|1 < dmax. (2.8)



If rank(P, an/Ad) Z min(M, N), the observations d[n] = Ptp[n] will be dominated

by noise. One or more of the uýi on the diagonal of %Ft will be large enough that it

will make the white noise component in the vi direction larger than the coefficients

of the propagating modes. This will slow the convergence of the algorithm since

the estimator will have to average many observations of d[n] to obtain an accurate

estimate of B from these low signal-to-noise ratio observations. Because B[n] will

converge slowly and fluctuate significantly due to noise, the weight vector given by

Eq. 2.6 will vary considerably. Under these conditions, the pressure vector observed

at the hydrophone will be unsatisfactory for two reasons. Because the system is

nearly unobservable, undesired modes may be propagating at the feedback array

which are not visible over the observation noise. In addition, fluctuations in B[n] will

make w[n] and consequently p[n] vary significantly from one iteration to the next.

The pressure field at the feedback array may not only contain undesired modes, but

may not even consist of the same modes on successive iterations. For these reasons,

the pressure at the feedback array will be a poor source signal for oceanographic

observers further downrange at the observation array.

If the modes are nearly unobservable, formulating the problem in the pressure

domain will not alter the fact that the pressure field may consist of many modes,

rather than the desired single mode. If the observation noise n[n] is relatively weak

compared to the pressure due to the propagating modes, the pressure observed at

the feedback array will not vary much when w[n] stays fixed. Because the noise is

not amplified as it was when estimating d[n], the observations p[n] are more reliable,

and the estimate Q[n] will converge faster than B3[n] and be less sensitive to noise.

In this case the pressure domain approach will give a pressure field at the feedback

array which is at least consistent over time even if it does not give the desired single

mode. Although from the perspective of the oceanographic observers a high-fidelity

single mode is the best source, a consistent mode distribution of lower fidelity is

preferable to the erratic mode coefficients obtained by computing w[n] from B[n]



when 'I,[n] is poorly-conditioned.

If the spread of singular values of x is such that the modes are practically ob-

servable, i.e., (rank(P, an/Ad) = M), but the w[n] minimizing IlPd - p[n]II gives

unacceptably large errors in the mode domain, the weight selection step can be

reformulated as a weighted least squares problem using an error metric where all

components in the mode domain are equally weighted. The source array weights w

are chosen to minimize

116[n]112 = IIRe[n]l 2 = (p[n] - pd)HR(p[n] - Pd), (2.9)

where R is an N x N positive semi-definite Hermitian matrix. Choosing

-1S0

0 -1

0

0

0

UH (2.10)

gives the weighted pressure domain error whose minimization corresponds to the

minimum error in the mode domain. Note that R has the same orthogonal comple-

ment as Vt, indicating pressure domain errors orthogonal to the columns of XF are

irrelevant to this metric. This is reasonable since if %F is accurate, errors in these

directions could not be due to the modes and must be observational noise. Solving

the resulting least squares problem gives the new criteria for selecting the source

array weight vector:

win] = (QH[n]R2Q[n]) t Q[n]R2pd. (2.11)

R = U4



If the replica matrix estimate Q[n] = xIB[n], Eq. 2.11 reduces to

w [n] = (B [n]) t (qtpd) = ( [n])tdd (2.12)

which would be the weight vector minimizing the error in the mode domain if an ex-

plicit estimate of B [n] were available to the weight selection step. The weight vector

that minimizes the weighted pressure domain error defined with Eqs. 2.9 and 2.10

gives the desired weight vector minimizing the error in the mode domain.

This section has developed a method for estimating the best source array weight

vector w[n] to excite the desired pressure profile. This estimate depends on the

current estimate of the channel replica matrix Q[n]. The remaining three sections

of the chapter develop three different methods for estimating Q[n] for the feedback

volume.

2.3 Condition Number-limited Least Squares

The source array weight vector w[n] is a function of the current estimate of the replica

matrix, Q[n]. In order to determine w[n], the control algorithm must compute Q[n],

the estimate of Q at the nth iteration, from the information available about the

channel, specifically, the sequence of source array weights w[0],..., w[n - 1] and the

pressures observed at the feedback array p[0],..., p[n - 1]. Each of the N rows of

[n]=

qN[n]

(2.13)

can be estimated independently of the other rows using the observed pressure at the

hydrophone of the feedback array corresponding to that row of the replica matrix.



If the rows of Q[n] are assumed to be constant, the sequence of source array

weights and feedback array pressures form a system of linear equations:

[pi [0] ... Ipi[n - 1]] = qi [w[O]I ... Iw[n - 1]], (2.14)

or

Pi[n - 1] = qW[n - 1], (2.15)

where

Pi[n - 1] = [p,[0]l ... pi[n - 1]] (2.16)

W[n - 1] = [w[O] ... Iw[n - 1]]. (2.17)

The least squares solution to this system provides ti[n]

&l [n]= Pi[n - ]W [n- 1] (W[n- 1]WH[n - 1]) - 1 . (2.18)

This equation can be manipulated into a recursive form by following the devel-

opment of the Recursive Least Squares (RLS) algorithm [54]. Although the matrix

inversion lemma used in that algorithm is a tempting means of avoiding the inversion

in Eq. 2.18, the lemma is too numerically sensitive to be useful for this problem in

practice. The extreme conditioning of W[n - 1]WH[n - 1] and the numerical issues

associated with it will be discussed in more detail later in this section. Because

W[n - 1]WH [n - 1] is not a function of i, the row number, the matrix inverted is

the same for each row of Q. This allows all rows of the replica matrix estimate to

be computed simultaneously. The same algebraic manipulations used to derive the

RLS algorithm in [54] yield a partially recursive form of the least squares estimator

for the channel replica matrix:



Q[n + 1] = Q[n]+a[n]kH[n] (2.19)
a[n] = p[n]- Q^[n]w[n] (2.20)

k[n] = 4-l[n]w[n] (2.21)

4[n] = w[i]wH[i] = H [n- 1] + w[n]wH[n]. (2.22)
i=O

Although this estimator must invert 4)[n] for each iteration, it is recursive in the

sense that computing Q[n + 1] requires only the current observations (p[n] and

w[n]), the previous estimate Q [n] and the source weight correlation matrix 4 [n],

itself easily updated. The complete sequence of source array weights and feedback

array pressures need not be saved. Note that a[n] is the error signal between the

observed pressure and the pressure predicted by the current estimate Qc[n].

The algorithm must be initialized with a replica matrix Q[0] and source weight

correlation 4~[0]. These can be obtained by sequentially turning on each element of

the source array with gain 1, then collecting the observed pressures into the columns

of Q[0] and setting 4[0] = I. Alternatively, Q[0] can be set equal to some a priori

guess at the replica matrix, and I [0] = 61 for some small constant J.

In realistic ocean environments, Q will not usually be constant, but slowly vary-

ing. The estimator specified in Eqs. 2.19-2.22 can be modified to include an expo-

nential forgetting factor 7 to depreciate older observations and allow the estimator

to respond to changes in the ocean environment [54]. This forgetting factor can be

incorporated into the estimator by modifying Eq. 2.22 to

4[n] = 74[n - 1] + w[n]wH[n], (2.23)

where 0 < 7 < 1. Multiplying by y at each iteration modifies the estimator to

choose 4i [n] to minimize E -Y-'lpi[j] - ~i[el]w[e] 12. This new error criteria reduces
1=0



the importance of old observations until they are eventually insignificant. The best

choice of y will depend on the bandwidth and intensity of the oceanographic pro-

cesses affecting acoustic propagation and the iteration time of the control algorithm.

Choosing y to be too small will not allow the estimator to average enough observa-

tions to reduce the effects of observation noise. Too large a choice for 7 will not allow

the estimator to respond expeditiously to changes in the propagation conditions. The

choice of - must compromise between these conflicting demands.

The discussion of persistency in Section 2.1 observed that single mode excitation

will generally require w[n] to be constrained within a small region of CL. The con-

dition for a persistent input sequence given there is equivalent to 4[n] as defined

in Eq. 2.22 having full rank. An impersistent input causes problems for this algo-

rithm because as w[n] remains constant or nearly constant, 4I[n] will become poorly

conditioned. This causes difficulty computing I-l[n] before .P[n] is mathematically

singular.

The large condition number of 4[n] will cause the estimator to become overly

sensitive to observation noise even before problems computing the inverse arise. A

large sample of noise may make the error vector a[n] : 0 even when ([n] is accurate.

The resulting small perturbation in ([n] will cause a slight perturbation in w[n]

away from the correct source array weight vector. As the subsidiary eigenvalues of

Q4[n] grow arbitrarily small, even a minor perturbation in w[n] from its fixed value

will cause k[n] to have a very large norm. This could result in a large correction

to Q[n], and subsequently a large error in w[n] and p[n] for the next iteration.

Although the estimator will quickly recover from this noise-induced transient, these

excursions produce undesirable spikes in the error between the desired and observed

mode coefficients. These spikes detract from the feedback array's value as a single

mode source to observers further downrange in the scenario of Figure 1-1.

These transients may be prevented by limiting the condition number of the inverse

of 4[n] to be no greater than some threshold r7. To define this condition number-



limited inversion more precisely, let the eigenvalue decomposition of 4 [n] be

)A1~ 0

0 APL

V.H, (2.24)

where Api _> AX2 ... > AL > 0. The condition number-limited inverse 4g'[n] is

defined to be

[n] = v.

xAl

Lx-
L.

V H , (2.25)

where Ai = max(Ai, Al/7r). This insures the condition number of 4I-[n] is never

greater than r7, while A1, the eigenvalue corresponding to the predominant eigen-

vector, is correctly inverted. Using -1i[n] to compute k[n] insures that no compo-

nent of w[n] is unduly amplified, and thus the norm of k[n] never grows too large.

Replacing 4)-' [n] by 4D1l[n] in Eq. 2.21 completes the definition of the condition

number-limited least squares (CNLLS) algorithm. Note that the source weight cor-

relation matrix D[n] propagates with unlimited condition number. If the channel or

desired mode changes abruptly, the transient response is faster if 4 [n] has not been

condition number-limited. Appendix A contains a simple example demonstrating

the importance of limiting the condition-number of the inverse and not I[n] itself.

Another consequence of an impersistent excitation is that the CNLLS estimate of

the replica matrix may converge to an inaccurate estimate. From Eqs. 2.19-2.22, it

is apparent that any value of Q[n] yielding a[n] = 0 is a fixed point of the estimator.

Writing p[n] = Q[n]w[n] reveals that a[n] = 0 is equivalent to (Q[n] - Q[n])w[n] = 0

or (AQ[n]l)w[n] = 0 where AQ[n] is the error in the current replica matrix estimate.

[n] = Vip



This condition does not imply AQ[n] = 0, but only that the error in each row

of the estimate is orthogonal to w[n]. Consequently, (Q[n] - AQ[n])tpd does not

necessarily give the w[n] minimizing I(p[n] - Pdl. As discussed in Sec. 2.1, these

fixed points are unstable equilibria, and in practice the observation noise appears

to prevent the algorithm from stalling at these incorrect channel replica estimates.

The resulting jitter in w[n] keeps the input persistent enough to prevent any severe

errors in Q[n].

2.4 Kalman Filter Estimator

The rows of Q[n] can also be estimated as the state vectors for N separate Kalman

filters. In order to apply the Kalman filter to the problem, the rows of Q[n] are mod-

eled as evolving as separate first-order Gauss-Markov processes [55]. The covariance

of the Gaussian process driving the state equations must be observed, computed from

oceanographic models, or assumed. If the rows of Q[n] propagate independently, the

state space equations can be written as

qi[n + 1] = aiqi[n] + fi[n] (2.26)

pi[n] = qi[n]w[n] + ni[n], (2.27)

where fi[n] is the Gaussian random process driving the state update equations with

covariance Pf [n], pi [n] is the pressure observed at the ith hydrophone of the feedback

array, and n2 [n] is the observation noise at that hydrophone, with variance aU..

Note the assumption of independence is very conservative in this context, as the

estimators do not attempt to exploit any correlation between the rows of Q. This

also prevents the estimators from suffering any deterioration in performance due to

possible mismatch between the true values of the correlations and the values used

by the estimator.

Equations 2.26 and 2.27 are identical to the formulations of the state-space model



in [43] and [55], except the format has been appropriately modified to make qi[n]

a row vector instead of a column vector. Exploiting the development of [43], the

Kalman filter estimate of - [n] can be written as

Prediction Step

q [nln - 1] = aic [n- 1n - 1] (2.28)

P[nln - 1] = a P[n- ln - 1] + Pf (2.29)

Update Step

[nln ] =-1]+(pi[n] - Iqn[n1n - 1]w[n])wH[n]P[nln - 1] (2.30)wH[n]-[nln - 1]w[n] + a2,

Pnin] = P[nn- ]- P[nn- 1]w[n]wH[n]P[nln - 1](2.31)wU[n]P[n]n - 1]w[n] + an,

where 4i[nIn] and qi[njn-1] are E {q[n]jpi[O], ... , pi[n]} and E {q[n]pi [O], ... ,pi[n - 1]}

respectively. The covariance matrices are defined as

P[nln] = cov {q[n] - q[nln]} (2.32)

P[nln - 1] = cov {q[n] - q[nln - 1]}. (2.33)

If Pfr and ai are assumed to be identical for all the rows of Q, and the observation

noise n[n] is spatially white and Gaussian with variance o2, the row estimates may

all be computed simultaneously as

Prediction Step

t[nln- 1] = aQ[n- 1In- 1] (2.34)

P[njn- 1] = a2P[n- lln- 11]+P (2.35)



Update Step

(p[n] - Q[nln - 1]w[n])wH[n]P[nln - 1]Q[nln] = Q[nn - 1] + a(2.36)
P[nIn] = P~nn- 1] - P[nln - 1]w[n]wH[n]P[nln - 1] (2.37)

wH[n]P[nln - 1]w[n] + an

The Kalman filter algorithm begins with initial estimates Q[010] and P[010]. These

may be obtained as specified for the CNLLS algorithm by sequentially activating each

element of the source array, or estimated from a priori knowledge of the environment.

The Kalman filter estimator has an advantage over the CNLLS algorithm because

the former provides mechanisms for incorporating and exploiting any additional in-

formation available about the spatial correlation of the noise or replica matrix evolu-

tion over time. For instance, if the observation noise is dominated by sea surface noise

matching the Kuperman-Ingenito model, the an2 terms can be set appropriately for

each row. Currently, no detailed and experimentally-verified models exist describing

how the statistics of replica matrices are affected by oceanographic processes such as

internal waves and tidal mixing. If experiments using single mode propagation and

other techniques yield such models, this information can be incorporated into the

estimator in two ways. First, these models could give predictions for Pf,. Second, in

many conditions such as internal wave propagation through the control feedback vol-

ume, the updating of the qj's will not be independent. An accurate model of internal

wave dynamics could estimate the correlation between the rows of Q[n]. If the rows

are combined into one large 1 x NL state vector, these correlation estimates would

give Pf for this new state vector, and the Kalman filter would exploit the correla-

tion structure of these rows in updating its estimate of Q[n]. The Kalman filter's

ability to assimilate such information as it becomes available recommends it over

the least squares approach. As noted earlier, the possible benefits of including such

information in the model comes with the risk of concomitant mismatch problems if

the information is incorrect.



Two recent papers have presented preliminary results on the statistics and dy-

namics of interval wave processes. Lynch et al. [56] measured travel-time variation

in acoustic propagation due to large scale internal tides in the Barrents Sea Frontal

Region. Unfortunately, equipment failure prevented the determination of directional

spectra of the internal wave field, and also scuttled plans to observe propagation

along a path which would have isolated internal wave effects on acoustics from the

effects of frontal dynamics and bottom layer fluid dynamics. Candy and Chambers

proposed a discrete-time state-space model for internal wave dynamics [57]. They

used this model to enhance the signature of internal waves observed by a horizon-

tal current meter array. The state space model required careful hand-tuning of the

covariance matrices for the specific environment and waves in order to detect the

internal waves. As more data is obtained about internal wave dynamics, a careful

evaluation of the potential benefits versus risks must be made before incorporating

the model statistics into the Kalman filter.

The Kalman filter estimator suffers when the input sequence is not persistent.

The input sequence w[n] plays the role of the output matrix C[n] in Eq. 1.34. A

system is defined to be uniformly completely observable if there exist a and m such

that the smallest eigenvalue of the observability gramian M[n, n + m] is greater

than a for all n [43]. The Kalman filter to estimate the state of a system in the

form of Eqs. 1.33 and 1.34 will have exponentially stable dynamics if the pair of

matrices (A[n], K1/2[n]C[n]) are uniformly completely observable, and the pair

(A[n], Kff[n]) are uniformly completely observable. The former criteria is the crit-

ical one for the Kalman filter replica matrix estimator. For the state space model

described in Eqs. 2.26 and 2.27, the observability criteria applies to (ad, anlw[n]),

giving an observability gramian

n+m

M[n, n + m] = a 2  2(n+m-1 )W]wH[f]. (2.38)
e=n



If w[n] converges to a fixed value, this matrix will not satisfy the condition for

uniform observability. If |Icl < 1, it will only exacerbate this conditioning problem

since w[n]'s earlier excursions away from the final value will be weighted even less.

The control algorithm's tendency to produce an impersistent input sequence means

the Kalman filter cannot theoretically be guaranteed to converge. However, the

algorithm had no difficulty converging in either simulations or laboratory waveguide

tests.

2.5 Least Mean Squares Estimator

The Least Mean Square (LMS) Algorithm [13], [54] is a computationally simple and

commonly used algorithm. In terms of the variables of the replica matrix estimation

problem, the algorithm adaptively chooses a row vector $q[n] to give the best least

squares solution to

pi[n] = qji[n]w[n]. (2.39)

The LMS algorithm approximates the steepest descent algorithm by using the instan-

taneous values of pi[n] and w[n] to estimate the cross-correlation vector E {pi[n]wH [n] }
and autocorrelation matrix E {w[n]wH[n]}. The resulting estimator is

4i[n + 1] = 4i[n] + p (pi[n] - 44[n]w[n]) wH[n], (2.40)

where 1 is a scalar controlling the correction step size at each iteration. If the in-

put vectors w[n] are independent and persistent, and w[n] and pi[n] are mutually

independent Gaussian random variables independent of all earlier values of pi[n], the

LMS algorithm can be shown to converge in the mean to qio, the Wiener estimate

of qi[n] as n -+ oo. Even when these stringent conditions are not satisfied, the LMS

algorithm is often still effective and used in practice because of its computational

simplicity compared to algorithms such as those described in the previous two sec-



tions. One problem with the LMS algorithm given by Eq. 2.40 is the norm of the

correction l(pi[n] - etj[n]w[n])wH[n] depends on the norm of the input vector w[n].

This can result in a convergence rate that depends on the input sequence. To reduce

this dependence, the normalized LMS [54] algorithm uses p = of/(c + IIw[n]112). The

factor of |w[n] 112 normalizes the step size by the norm of the input vector, reduc-

ing the dependence of the convergence rate on the input sequence. The constant c

prevents p from growing too large if JIw[n] 112 grows very small.

The normalized LMS algorithm can be used to estimate all the rows of Q[n]

simultaneously by

[n + 1] = Q-[n] + 2 (p] - [n]w[n]) wH[n]. (2.41)
C + I -Wn F÷

This equation reveals the normalized LMS estimator has the same fixed point as the

CNLLS estimator. When the estimator errors for the rows of Q[n] are orthogonal to

the source array vector w[n] the LMS estimator will have same convergence problems

caused by an impersistent input sequence as the CNLLS estimator. Comparing

Eqs. 2.41 and 2.19-2.22 indicates the LMS estimator is equivalent to the CNLLS

estimator with 4[n] held fixed at pI. Thus, the LMS estimator is not using any

information about the past values of w[n] to update Q[n]. The CNLLS estimator

will generally converge and respond to transients better because of its use of this

information. If the weight sequence w[n] is distributed such that the E {1} = I,

the CNLLS and LMS estimators will be equivalent in the mean sense. However,

the constraint of exciting a fixed pressure field will generally require w[n] to remain

fixed or nearly fixed once the estimate of Q[n] has converged close to the true Q,

and thus generally E {I} b I. In this situation, the LMS estimator is not expected

to perform as well as the CNLLS estimator. The experiments presented in Chapter

4 verify this.



Chapter 3

Simulation Results

This chapter presents the results of using the control algorithm presented in the

last chapter in several simulated ocean environments. All of the environments were

simulated with the finite-element parabolic equation (FEPE) model for acoustic

propagation [21]. This is an especially good model to use for these simulations

because it is not a mode-based propagation model. Consequently, this eliminates any

concerns about the propagation model generating a single mode because it assumes

the propagation takes place in discrete modes. The shallow water environments are

based on observed sound speed profiles from the continental shelf in the region of 410

N 710 W [58]. Figure 3-1 indicates the specific transect where the profiles used in the

experiments were measured. Section 3.1 confirms the algorithm works for a simple

range- and time-invariant environment. Sections 3.2 and 3.3 simulate two common

shallow water bathymetric features: a rock outcropping and a downsloping wedge.

Both of these features affect acoustic propagation and would cause problems for

an open loop control algorithm which assumed the modes propagated adiabatically

downrange. The final section, Section 3.4, simulates the propagation of a solitary

internal wave through the feedback volume over the course of roughly twenty-five

minutes. The successful performance of the feedback control algorithm in all these

environments offers encouragement for its successful deployment in an oceanographic



experiment.
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Figure 3-1: Hydrographic Transect Providing Environmental Data for Simulations

3.1 Range-Invariant Environment

The simulations in this section verify that the feedback control algorithm works for a

simple but realistic shallow water environment. In addition, the performance of the

algorithm is evaluated over a range of estimator parameters. For the CNLLS esti-

mator, the parameter was the exponential forgetting factor, while the Kalman filter

trials varied the autoregressive parameter a and the innovation covariance Pf used

by the Kalman filter's state space model for the replica matrix dynamics in Eqs. 2.34-

2.37. The environment used was time-invariant and homogeneous in range with the

vertical profile shown in Figure 3-2. The experiments were all configured with the

source and feedback arrays separated by 1 km, and the propagation frequency was

400 Hz. At this frequency, the environment supports nine trapped modes. All of the

evanescent modes and continuum energy will be completely attenuated over the km

distance between the source and feedback arrays [18]. The source array consists of



10 omni-directional point sources, and the feedback array of 19 hydrophones. The

replica matrix at this frequency for the environment was computed using a version

of FEPE modified to give complex replica vectors rather than transmission loss.

5

10

15

20

E25
N

30

35

40

45

An
1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550

c(z) (m/s)

Figure 3-2: Vertical Profile of Range-Invariant Environment

Figure 3-3 plots the mode shapes for the nine trapped acoustic modes of this

environment as computed by FEMODE, a finite-difference mode computation pro-

gram. Figure 3-3 also displays the shape of the sound speed profile at the left edge

of the plot for purpose of comparison with the mode shapes. The feedback array

samples the mode shapes well, and so XFR has a condition number of roughly 1.25.

Because XFR is well-conditioned, choosing the source array weights to minimize the

error between the desired and obtained profiles in the pressure domain will give a

high fidelity single mode.

The experiments each consisted of 100 independent trials attempting to excite

mode two. Each trial started from a random Q[0] and then allowed the algorithm

to converge for 250 iterations. The observation noise at the feedback array was

Water pw = 1.0 g/cm 3

, = 0.0 dB / .

cb = 1770 m/s

Bottom Pb = 2.0 g/cm3

pb = 0.5 dB / X
I I I I I I I I I
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Figure 3-3: Mode Shapes for Range-Invariant Environment

spatially white, and 20 dB below the energy in the desired pressure profile for mode

two. This SNR is relatively high but realistic given the short distance between the

source and feedback arrays. For the scenario shown in Fig. 1-1, the excited field must

be strong at the feedback array if it is to be measurable at the observation array,

which is much further downrange. If the pressure field at the feedback array is not

significantly above the observation noise, the observation array may have difficulty

separating the signal due to the mode input to the observation volume from noise.

Figure 3-4 shows the convergence of the control algorithm using the CNLLS

estimator for Q. The figure plots the mean performance over 100 trials for three

different forgetting factors, as well as the least squares bound obtainable from perfect

knowledge of Q. The three forgetting factors correspond to effective window lengths

of 50, 100 and 200 iterations, where the effective window length N, for a forgetting



factor y is defined to be the number of iterations required for it to decay to 0.1, i.e.,

7 NM = 0.1.

The curves in Figure 3-4 plot the mean signal-to-error ratios (SERs) averaged over

all trials for each experiment. The SER is defined to be the ratio of the energy in

the desired pressure profile to the energy in the error at each iteration, i.e.,

10 logo10 ([ - 112)
ý jPd - p[n] 112

where p[n] is the pressure observed at the feedback array for the current iteration

including all observation noise. The error term IIPd -[n11 2 appears in the denomina-

tor of the SER expression, while the numerator I Pd 112 is fixed for these experiments.

Thus, decreasing the error between the desired and observed pressure vectors will in-

crease the SER. The experiments indicate that the performance does not vary much

with changes in forgetting factor. The "LS Bound" at 55 dB is the least-squares

bound on the performance that could be attained with perfect knowledge of Q and

no observation noise. This bound is finite because of numerical differences between

the methods for computing the pressure profiles for mode two and the replica matrix

Q. As a result, a small component of Pd is not in the span of Q.

Because the observed pressure includes noise, there is a practical bound on the

curves in Fig. 3-4 considerably below the LS bound. Even if the algorithm perfectly

excited the desired pressure field, the observation noise would still limit the per-

formance to 20 dB. Figure 3-5 shows the results of several experiments using the

CNLLS estimator with decreasing observation noise (increasing SNR). Again, each

curve is the average performance over 100 trials of the same experiment. In each

case, the SER approaches the SNR demonstrating the performance of the algorithm

in this environment is limited by the level of the observation noise. Figure 3-6 shows

the desired pressure profile at the feedback array against the pressure obtained by a



typical trial of this experiment with effective window length 100. While the pressure

obtained is not a perfect fit to the desired profile, it is a good approximation.
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Figure 3-4: Ratio of Energy in Desired Profile to Energy in Mean Error for CNLLS
Estimator

Figures 3-7 through 3-9 show the results of several simulations using the Kalman

filter channel estimator with different values for a and Pf in the Kalman filter's state

space model for the dynamics of Q. Note that this is only changing the parameters

of the model used by the estimator, and does not change the properties of the real

channel, which is time invariant. These experiments were performed with the same

configuration, initialization and number of trials as the CNLLS experiments. For

a = 0.98 and 0.99, the experiments indicate the control algorithm performed best

when a relatively large innovation covariance Pf was used in the Gauss-Markov

model for the evolution of the rows of Q i.e., Eq. 2.26. Choosing Pf = 10-61 gave

the best performance for these values of a. The mean absolute value of the elements

of the true Q is 1.2 x 10- 3 , so the standard deviation of the innovation process for
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Figure 3-5: SER for CNLLS Estimator at different SNR levels
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Figure 3-6: Vertical Profile of Pressure for Typical Trial of CNLLS Estimator



these elements is on the same order as the mean replica matrix element. When

a = 1.0, Figure 3-9 shows the estimator with Pf = 10-6I does noticeably worse

than the others. Solving for the steady-state error covariance of the Kalman filter

reveals that for a = 1.0 the error covariance of the Kalman filter is much larger for

Pf = 10-6I. It is sensible that a large value of Pf would make the error variance grow

even faster and cause worse performance than smaller values of Pf when a = 1.0 so

there is no decay. For all three values of a shown here, experiments using even larger

values for Pf caused worse performance. This is reasonable because a larger Pf would

mean the innovation portion of the Gauss-Markov process f would overwhelm the

true values of the time-invariant Q the algorithm is attempting to estimate. Figure

3-10 plots the desired and obtained vertical pressure profiles for a typical trial with

a = 0.99 and Pf = 10-6I. Similar to the result shown in Figure 3-6, the profile

obtained by the control algorithm is a close but not perfect fit to the desired profile.

Figure 3-11 plots the results of a simulation comparing the CNLLS with y = 1

to the Kalman filter with a = 1 and Pr = 0. It can be demonstrated that for

these parameter choices, the estimators are equivalent if the condition number is

not limited in the CNLLS estimator. The curves in Fig. 3-11 are very close but

not identical. Two factors may have caused this discrepancy. First, each curve is

an average of 100 trials with the appropriate estimator. Each trial started with a

different randomly chosen Q[0]. In the limit of an infinite set of trials, these averages

should agree, but the sample averages for each estimator need not be identical after

100 trials. Second, the CNLLS estimator did limit the condition number of 4-l[n],

so the estimators are not exactly equivalent when 4 becomes poorly conditioned.

The increasing difference between the curves with increasing n supports this expla-

nation. If the condition number-limiting is a factor, it will only matter once w[n] has

converged and 4[n] becomes poorly-conditioned. This will take several iterations,

and the effect will become more severe as 4 becomes more poorly conditioned over

time. The curves in Fig. 3-11 start very close together and only diverge slowly as the



would be expected as the conditioning of 4 grew worse. This supports the hypothe-

sis the condition number-limiting is the primary factor responsible for the difference

between the estimators. On the whole, the close agreement between the estimators

in this experiment offers reassurance that the estimators are correctly implemented.
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Figure 3-7: Ratio of Energy in Desired Profile to Energy in Mean Error for Kalman
Filter Estimator with a = 0.98

3.2 Rock Outcropping

This section examines the performance of the control algorithm when the region be-

tween the source and feedback arrays includes a rock outcropping. Such features are

common in shallow water environments, and the strong interaction of the pressure

field with the bottom means these bathymetric features have an important effect

on propagation. Given very accurate and detailed environmental measurements, an

open loop control algorithm could theoretically still generate a single mode in the
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presence of such an outcropping. An echosounder survey could give a reasonably ac-

curate bathymetric profile of the environment, though it would still have uncertainty

in depth on the order of a quarter to half wavelength (1-2m). The acoustic effect

of this uncertainty would probably be small, but not insignificant. Measurements

of the geophysical parameters for the specific location would require exhaustive core

and sediment sampling. However, representative measurements of these parameters

exist for most coast regions, and generally these measurements would be acceptable

approximations. The open loop algorithm would start with the available environ-

mental data and try to compute the replica matrix from acoustic propagation models.

The source array weights would then be set to be those the computed replica ma-

trix predicted would give the desired pressure field at the start of the observation

volume. In contrast, the feedback control algorithm estimates the replica matrix di-

rectly from acoustic observations, removing the intermediate step of computing the

replica matrix from hydrographic and bathymetric observations. To whatever extent

the geophysical parameters of the environment are relevant to the mode excitation

experiment, they should manifest themselves in the observed pressure data.

Figure 3-12 shows the propagation environment with the outcropping. Other

than the 6 m tall outcropping at r = 200 m, this environment is identical to the

range-invariant environment used in Section 3.1. The source array is at r = 0 m and

the feedback array at r = 1000 m. The outcropping has physical properties similar

to those of limestone or basalt [32]. The experiments in this section will assume

the extreme scenario that no a priori information was available about the rock out-

cropping. The open loop algorithm assumes it is operating in the range-invariant

environment shown in Fig. 3-2. Generally, better information will be available, but

this exaggerated mismatch demonstrates the attractive possibility of using the feed-

back array without any a priori knowledge of the environment.

The presence of this outcropping has a strong effect on the acoustic propagation.

Figure 3-13 plots the performance of the feedback control algorithm using both
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Figure 3-12: Rock Outcropping Environment

estimators, as well as for an open-loop controller which assumes the environment is

homogeneous in range with the vertical profile observed at the source array. All the

curves are the average over 100 trials initialized with random replica matrices. The

CNLLS estimator used an effective window length of 100, while the Kalman filter

had a = 0.99 and Pf = 10-6I. The figure shows both estimators converge to allow

the feedback controller to excite a single mode. However, the very poor performance

of the open loop controller indicates the importance of accounting for the effect of

the outcropping on propagation. By assuming the environment was range-invariant

and that modes would propagate adiabatically, the open-loop controller generated a

pressure profile in the far field which was a poor approximation to the desired pressure

profile, and likely unacceptable as a source signal for oceanographic observations.

Figure 3-14 shows vertical pressure profiles at the feedback array for one trial after

the estimators had converged. From these plots, it is apparent that the feedback

control algorithm gives a good approximation to the desired pressure profile using



either estimator. The open-loop controller generates a profile that is unacceptable

as a single mode source.

Iteration

Figure 3-13: Performance of Estimators For Rock Outcropping Environment

Figures 3-15 and 3-16 present a revealing contrast between the pressure fields

excited by the open loop and feedback control algorithms. Both figures plot acoustic

intensity as a function of range and depth, where high intensity is indicated by a

light shading. The intensity has been normalized to remove the effect of cylindrical

spreading. The desired mode was mode two and the environment was the rock

outcropping environment shown in Figure 3-12 in both cases. Figure 3-15 shows the

pressure profile versus range and depth for the field excited by the open loop control

algorithm, as well as the vertical profile of the magnitude of the desired pressure field

for mode two on the left side of the figure for reference. Close to the source array,

the pressure field can be seen to be settling towards mode two, with nulls developing

at the surface and z = 24 m. When the wave is incident upon the outcropping at

r = 200 m, the energy is scattered into several modes, generating the complicated

io
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Figure 3-14: Vertical Profile of Pressure for a Typical Trial in Rock Outcropping
Environment

interference pattern seen downrange of the outcropping. Based on this pattern, it

is clear the pressure field entering the observation volume consists of several modes,

and not the desired single mode.

Figure 3-16 plots the intensity for the feedback controller using the CNLLS es-

timator. For this algorithm, the source array initially excites a very complicated

interference pattern containing a rich variety of modes. When this pressure field

impinges upon the rock outcropping, the energy scatters such that all the undesired

modes cancel out, leaving only mode two propagating. By the time the field reaches

the feedback array at the start of the observation volume (r = 1000 m), there is a

well-developed pressure null at a depth of z = 24 m. This corresponds well with the

desired vertical pressure profile shown at the left side of the figure. The feedback

control algorithm successfully estimates and compensates for the scattering effect of

the rock outcropping to produce the desired pressure field in the far field.
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These results can be interpreted in terms of the matched signal paradigm dis-

cussed in Section 1.5. The open loop algorithm assumes an adiabatic environment

and transmits the signal desired at the feedback array immediately from the source

array. The outcropping distorts the transmitted mode two, coupling the energy into

several modes. The feedback control algorithm estimates the environmental effect

on the propagation, then transmits a complicated waveform which is matched to

the environment so the pressure field at the start of the observation volume consists

solely of mode two. This is analogous to the work done by Parvulescu and Clay [46],

[45] only here the desired waveform is concentrated in the mode domain rather the

time domain. The feedback control algorithm transmits a waveform that is initially

not concentrated in the mode domain such that the pressure field at the start of

the observation volume contains a single mode. The open loop controller does not

account for any channel effects, and the field it generates at the start of the obser-

vation volume is not concentrated in the mode domain, but has energy in several

modes.

3.3 Downsloping Wedge

A downsloping wedge is a common feature in many shallow water environments.

This section presents the results of simulating the deployment of the feedback con-

trol algorithm in a 2° downsloping wedge using the profiles observed in [58]. For the

portions of the wedge deeper than the bottom used in the previous section, the deep-

est measurement of sound speed from the previous section is extended downward to

form a isovelocity layer above the bottom in the wedge. The experiments described

in this section will compare the performance of the feedback control algorithm to

the open-loop algorithm, which assumes the modes excited at the source array prop-

agate downslope without coupling. In reality, the slope causes coupling among the

modes as they propagate downrange so the field excited by the open-loop algorithm
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contains several undesired modes when it enters the observation volume. The feed-

back control algorithm successfully compensates for the coupling introduced by the

sloping bottom to excite the desired pressure field at the start of the observation

volume.

Source Array

Pw = 1.0 g/cm3

, = 0.0 dBM

cb = 1770 m/s

Pb = 2.0 g/cm3

N = 0.5 dB/)L

Feedback Array

c(z)
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Figure 3-17: Downsloping Wedge Environment.

Figure 3-17 shows the environment used for this simulation. The ten element

source array is located at r = 0, and the nineteen hydrophone feedback array is at

r = 1000 m. The depths at the source and feedback array locations are 30.75 m

and 65.75 m, respectively. For the transmission frequency of 400 Hz, the channel

supports eight modes at the source array and nineteen modes at the feedback array.

The depth at the source array is only slightly shallower than the cutoff depth for

mode nine. Mode nine is initially an evanescent mode, but as the channel becomes

deeper, it becomes trapped before the energy propagating at that wavenumber has

been significantly attenuated. This phenomenon, known as mode capture, has been

observed both in laboratory experiments [31] and numerical simulations , [60]. The
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simulations in this section verify that the replica matrix model for propagation used

by the feedback control algorithm incorporates continuum effects in propagation

sufficiently to model mode capture in downslope propagation. The sound speed

profile and other environmental parameters are the same as those used in Section 3.2.

One hundred trials of the feedback control algorithm were run using both the

Kalman filter and the CNLLS estimators. The Kalman filter estimator used Pf =

10-6I and a = 0.99 and the CNLLS used a forgetting factor giving an effective

window length of 100 iterations. Each trial was initialized with a random Q[0] and

was allowed to run for 250 iterations attempting to excite mode one. The observation

noise was spatially white and 20 dB below the energy of the desired signal, Pd. Figure

3-17 shows the desired pressure field shape as a dotted line near the feedback array.

Figure 3-18 shows the mean SER for these trials, as well as the performance of the

open loop algorithm. The open loop algorithm chooses the source array weights to

excite mode 1 assuming the mode would propagate adiabatically downslope from the

source array. The figure shows that both the Kalman filter and CNLLS estimators

work well, but the error in the open loop controller exceeds the energy of the desired

signal. Figure 3-19 plots the vertical profile of pressure magnitude for typical trials

using each estimator and the open loop algorithm. Regardless of which channel

estimator is used, the pressure field generated by the feedback controller is a closer

approximation to the desired pressure profile than the field generated by the open

loop controller.

3.4 Solitary Internal Wave

This section examines the performance of the feedback control algorithm in a simu-

lated environment with a propagating solitary internal wave. The previous simula-

tions in this chapter studied environments where time-invariant mode coupling was

induced by bathymetric features such as a sloping bottom or rock outcropping. One
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of the primary motivations for developing a single mode source such as the feedback

control algorithm is to study the acoustic coupling introduced by internal waves in

the observation volume. If the feedback control algorithm is to function successfully

as a single mode source in such an environment, it must be capable of exciting a

single mode even when solitary waves are propagating through the feedback volume.

This simulation models the time-varying acoustic mode coupling between the source

and feedback arrays introduced by a solitary internal wave propagating through the

feedback volume. Based on studies of internal waves supported on density gradients

in coastal regions [61] [62] [63], the thermocline at z = 10 m of the simulated envi-

ronment is displaced by 10sech 2((r - 1300 +t)kint) m for 1000 < r < 1600, where the

horizontal wavenumber of the internal wave is kint = (2ir/300)m - 1. Starting with a

typical sound speed profile observed in [58], this displacement profile gives the sound

speed profile shown in Fig. 3-20. In this figure, lighter regions indicate water with a

higher sound speed, while darker regions indicate colder water with a slower sound

speed.

The source array is located at r = 0 m, and the feedback array at r = 1000 m. The

solitary wave propagates towards r = 0 m with a velocity of 1 m/s, consistent with

the velocities observed for these waves in [61]. The replica matrices were computed

every 10 m (or equivalently every 10 seconds) using FEPE. The frequency is 400 Hz,

which gives nine trapped modes for the water depth of 34 m. The simulation used the

same bottom parameters and source and feedback arrays as Section 3.1. The feedback

control algorithm attempts to excite mode two starting from a randomly chosen

([0] and using an iteration time of 1 sec. The slowest mode in this environment

propagates from the source array to the feedback array in roughly 0.8 sec, so this

choice of iteration time insures the field observed at the feedback array reflects the

most recent source array weights. The observation noise is again spatially white and

20 dB below the pressure profile for mode two.

The simulation was run with both the CNLLS and Kalman Filter channel estima-
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Figure 3-20: Sound speed profile c(r, z) for solitary internal wave with sech 2 profile

tors. The former used a forgetting factor of 7 = 0.9772, giving an effective window

length of 100 iterations. The Kalman filter estimator set a = 0.99 and Pf = 10-6I.

Figures 3-21 and 3-22 show the performance of the feedback control algorithm using

the CNLLS and Kalman filter estimators, respectively. Because the internal wave

is propagating with velocity 1 m/s, the time axes of Figs. 3-21 and 3-22 can also

be interpreted as the initial range location in Fig. 3-20 of the sound speed profile

currently located at the source array. Each figure also shows the performance of the

open loop algorithm in the same environment.

Figures 3-21 and 3-22 clearly demonstrate the feedback control algorithm using

either estimator performs better than the open loop algorithm in exciting the desired

mode. The open loop control algorithm observes the initial sound speed profile at

the source array, and assumes the feedback volume is range-invariant with this profile

throughout the experiment. Initially, this assumption is valid and attains the limit

on SER imposed by the observation noise. Once the solitary wave starts entering
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the feedback volume the open loop algorithm's performance deteriorates severely and

does not recover until the wave has largely propagated past the source array. The

Kalman filter, in particular, tracks the time-varying coupling introduced by the soli-

tary wave to maintain a consistently high fidelity mode after an initial transient. The

pressure at the feedback array for the CNLLS has significant oscillations, making its

pressure field a less desirable source for downrange observers than the field generated

by the Kalman filter. The CNLLS algorithm assumes the dynamics of the rows of

the replica matrix are stationary over the length of the effective window introduced

by the forgetting factor. The deterministic propagation of the solitary wave through

the feedback volume violates this assumption. Simulations run with time-invariant

environments chosen from the replica matrices representing the solitary wave inside

the feedback volume show the CNLLS estimator converges under these conditions.

This also suggests the oscillations are caused by the nonstationary environment. The

Kalman filter does not assume the replica matrix is stationary, and is able to ex-

cite a high fidelity single mode while a strong solitary wave propagates through the

feedback volume inducing time-varying coupling.

3.5 Summary

This chapter has demonstrated that the feedback control algorithm is a viable

method for exciting a single mode in several simulated coastal environments ranging

from a simple adiabatic range- and time-invariant channel to a complicated range-

and time-varying propagation environment generated by a propagating solitary inter-

nal wave. These encouraging results suggest that the next logical step is to evaluate

the performance of the feedback control algorithm in a scale model experiment. Such

an experiment will introduce the limitations of real-time hardware and the vagaries

of physical acoustic propagation, testing the robustness of the algorithm. The next

chapter describes a set of experiments which study the feedback control algorithm



under these conditions.





Chapter 4

Laboratory Waveguide

Experiments

This chapter describes a series of experiments using the feedback control algorithm

to control the pressure field in a laboratory waveguide. These experiments investi-

gated the performance of the feedback control algorithm implemented on real-time

hardware and with actual rather than simulated acoustic propagation. Section 4.1

describes the laboratory waveguide used for these experiments as well as the trans-

ducers and signal processing hardware. The acoustic characteristics of the waveguide

are discussed in Section 4.2. The first set of experiments confirmed that the feed-

back control algorithm could successfully control the pressure field in the waveguide

without a priori knowledge of the propagation characteristics. Section 4.3 describes

these experiments as well as a second series of experiments that explored which

parameters of the channel estimators gave the best performance in the waveguide.

Section 4.4 presents the results of a series of experiments investigating the transient

response of the feedback algorithm when an acoustic scatterer was introduced into

the waveguide after the algorithm had been allowed to converge.



4.1 Waveguide and Equipment Description

The laboratory waveguide, or flume, used for these experiments was originally de-

signed for fluid dynamics rather than acoustics experiments. Consequently, the flume

is not an ideal acoustic waveguide, and little information is available about the as-

pects of construction germane to its acoustic properties. Much of what follows about

the materials or structure is conjecture based on inspection of the flume, since no

records or plans exist from the waveguide's construction. The tank is roughly 20 m

long, 1 m deep and 1.2 m wide from front to back. The front face is constructed of

plates of 3/8-inch thick plexiglass, joined by aluminum brackets to each other and

10 cm thick concrete pilings roughly every 2 m. Fortunately, the distance the pilings

project into the flume is insignificant compared to wavelength of these experiments.

The back wall appears to be constructed of concrete roughly 10 cm thick. The back

wall and bottom of the flume were thickly painted or coated with a latex-type ma-

terial in a manner that left large (20-30 cm) bubbles irregularly spaced in several

locations on the bottom. The bottom appeared to be largely solid concrete but a

strip of significant width (30-40 cm) sounded hollow, perhaps fiberglass over a chan-

nel containing plumbing for the pumps used to generate hydrodynamic flows in the

tank.

Two baffling plates were installed at either end of the tank for these experiments

to reduce the amount of energy reflected, making it a closer approximation to an

infinitely long waveguide. Each baffler was a steel plate covered with a layer of VRC

PB 1-94 anechoic tiles manufactured by Vector Research Corporation under con-

tract from Seaward International and generously loaned to us for these experiments.

This material consists of polyurethane encapsulated gaseous microspheres, and was

molded into pyramids roughly 2 cm square at the base and extending 6 cm out from

the plate. The material was designed for 20 kHz, rather than the 8 kHz operat-

ing frequency used in these experiments. Preliminary calibration data from Vector

Research indicates even at these lower frequencies the panels should still provide



roughly 10 dB of echo reduction at this lower frequency. The flume was filled with

fresh water to a depth of 66 cm at the source array, which gave a depth of 69 cm

at the feedback array due to a slight slope in the bottom of the flume. Assuming

a frequency of 400 Hz in the ocean experiment, scaling these depths by the same

factor of twenty as the frequency indicates this would be equivalent to a 13-14 m

water depth for an ocean experiment.

The source array consisted of six Channel Industries 3013 ceramic cylinder 8-

15 kHz acoustic sources, spaced 10 cm apart and offset 5 cm from the surface of

the water. The feedback array consisted of seven Benthos AQ2TS hydrophones

spaced every 8 cm. The hydrophones, along with their pre-amplifiers, were sealed

in a polyurethane tube filled with mineral oil to minimize the acoustic impedance

mismatch with the surrounding water. A tapered lead weight ballasted the base of

the feedback array, allowing it to be tensioned to remain vertical. The pre-amplifiers

were calibrated before insertion into the array so that all the pre-amplifiers had

gains of 36.5 ± 0.1 dB per WHOI standard [64]. Figure 4-1 provides a schematic of

the physical layout of the waveguide for the experiments. The arrays were centered

width-wise in the waveguide, roughly 60 cm from the front and back walls. If the

source array is defined as the origin in range, with range increasing towards the

feedback array, the baffling plates were located at r = -1.6 m and r = 12.95 m. The

feedback array was located at r = 10.9 m.

The feedback control algorithm was implemented in the Acoustic Modem Sys-

tem (AMS-2.0), a MATLAB-like real-time signal processing environment for the

Texas Instrument TMS320C40 DSP chip. AMS was developed by Mark Johnson

and Matt Grund of the Acoustic Telemetry Group at the Woods Hole Oceanographic

Institution to assist rapid development of real-time signal processing applications in

underwater acoustics [65]. The A/D and D/A conversion required for measuring

the pressure at the feedback array and transmitting the source array weights were

handled by two of the modems also developed by the Acoustic Telemetry Group.



Figure 4-1: Configuration of Laboratory Waveguide Experiments

One modem sampled the pressures observed at the hydrophone array, while the sec-

ond modulated the complex source array weights onto narrowband sinusoids. These

sinusoids were fed to six independent power amplifiers, which drove the source array.

4.2 Acoustic Properties of the Laboratory Waveg-

uide

This section describes the acoustic properties of the laboratory waveguide for the

experimental configuration outlined in Section 4.1. The water depth in the waveguide

was 66 cm at the source array and the frequency was 8 kHz. The temperature

of the fresh water used to fill the waveguide was consistently 25°C, which gives a

sound speed of 1490 m/s. The ideal isovelocity constant-depth waveguide with a

pressure-release surface and rigid bottom [22] supports six trapped modes for this

water depth and frequency. The bottom of the flume is not a homogeneous perfect

acoustic reflector, making the flume unlikely to be a good approximation to this



ideal waveguide. In addition, the boundary conditions imposed across the width of

the flume by the plexiglass front wall and back wall of unknown composition further

complicate the acoustic propagation. Since the flume has a rectilinear geometry, the

width and depth eigenfunctions of the waveguide should be separable. The width

eigenfunctions should superimpose at the location of the vertical feedback array to

form modes with the vertical profiles of the depth eigenfunctions.

Preliminary experiments verified that the acoustic propagation between the source

array and feedback array was well modeled by an LTI system. Sequential excitation

and scaling of source array elements confirmed the channel satisfied linearity. Long

term experiments using the same set of source array weights indicated the channel

was effectively time-invariant, with a correlation time on the order of hours when

the water in the waveguide was calm. These experiments also indicated that the ob-

servation noise present in the system was more than 40 dB below the desired signal

levels.

The sequential excitation experiments also provided an estimate of the replica

matrix for the waveguide. Computing the SVD of this matrix revealed that only three

modes of the system accounted for over 99% of the energy received at the feedback

array. Figures 4-2 and 4-3 plot the singular values (ua) and pressure modes (U4)

for the first four modes of the estimated replica matrix Q. The very high SNR in

the waveguide means this should be an accurate estimate of the true replica matrix.

For the remainder of the discussion in this chapter, the replica matrix estimated by

sequentially exciting the sources will be considered to be the true Q, and the caret (0)

will be reserved for replica matrices estimated by the feedback control algorithm. In

general, the columns of UQ will not equal the sampled mode shapes, but they should

span the same space as the acoustic modes. Projecting the theoretical modes shapes

for an isovelocity waveguide with a rigid bottom onto the observed UQ will indicate

how well these theoretical modes fall in the observed span of the system. Performing

this projection reveals a significant portion of the energy in the first three theoretical



modes falls outside the span of the first three columns of UQ. This indicates the

laboratory waveguide is not a good approximation to an isovelocity waveguide with

a rigid bottom. This is not surprising given the unknown composition and irregular

construction of the bottom of the flume.

Repeated estimations of Q indicate the tank is well-modeled as LTI over the

time-scales considerably longer than the propagation time between the source and

feedback arrays. Although the singular values do vary slowly over time, they remain

roughly the same size as those shown in Fig. 4-2. Based on the values plotted in

Fig. 4-2, three, or at most four, modes propagate in the laboratory waveguide.
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Figure 4-2: Singular Values of Replica Matrix for Laboratory Waveguide

The remainder of the experiments described in this chapter use the columns of

UQ, or system modes, for the desired pressure profile. In a well-designed ocean

experiment, the acoustic modes fall within the span of the columns of UQ, allowing

the feedback control algorithm to excite the desired mode. Demonstrating the al-

gorithm is capable of obtaining pressure profiles in the numerical span of Q in the
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Figure 4-3: Pressure Magnitude for System Modes of Laboratory Waveguide

flume should give us confidence that the algorithm will be successful in exciting the

desired acoustic mode in a well-designed ocean experiment.

4.3 Time-Invariant Waveguide

The experiments in this section demonstrate the feedback control algorithm can suc-

cessfully excite the desired pressure profile in a time-invariant laboratory waveguide.

The initial Q[O] is the true Q with noise added 20 dB below the true values. Starting

with this initial Q[0], the feedback control algorithm was allowed to run for 100 iter-

ations with a 0.9 second iteration time. The desired pressure profiles were the system

modes, i.e., the columns of UQ. The experiments were run on a different day with a

slightly different Q than the replica matrix measured in the last section. As a result,

the desired pressure profiles and relative energies were similar but not identical to

those shown in Figs. 4-3 and 4-2. The gains of the desired pressure profiles were
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scaled to prevent saturation of either the source array D/A or the feedback array

A/D. Both the Kalman filter and CNLLS estimators were used in these experiments.

The Kalman filter used a = 1.0 and Pf = 10- 5I; the CNLLS used a forgetting factor

of 'y = 0.9550 and limited the condition number of D-l[n] to 200. This limit on

the condition number is much more severe than the 106 used in the simulations of

Chapter 3 due to numerical sensitivities in the eigenvalue library implemented in

single precision on the TMS320C40. Experiments described later in this section ex-

plore other parameter choices for the channel estimators and confirm that although

these may not be the ideal parameter choices for the estimators they are reasonable.

Figure 4-4 shows the performance of the feedback control algorithm exciting system

mode one. Both estimators give a very high SER: the Kalman filter estimator attains

nearly 50 dB of SER, while the CNLLS estimator levels out around 45 dB SER. The

Kalman filter experiment shows several drop-outs of the signal. These were caused

by network delays during the experiment. The transmitter and receiver modems

used a semaphore protocol via files on the NFS server to synchronize the sampling

of the pressure field at the feedback array. Unfortunately, network delays sometimes

disrupted this synchronization and the receiver did not sample the pressure until

after the source array stopped transmitting. These glitches are regrettable, but they

do allow the Kalman filter estimator to demonstrate its robustness to this sort of

error. Other experiments shown later in the chapter indicate the CNLLS and LMS

algorithms are also robust to this sort of error. This is encouraging for the ocean

experiments because the radio telemetry link shown in Fig. 1-1 between the feedback

array and source ship will likely experience similar intermittent disruptions.

Figures 4-5 through 4-7 show the performance of both estimators for system

modes two through four. All of these experiments demonstrate that the feedback

algorithm is capable of exciting high fidelity modes. The fidelity of the excited

pressure profile for mode four is particularly impressive, since the singular value

corresponding to this system mode is more than 20 dB below the singular value
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Figure 4-4: SER Performance for System Mode 1 in Time-Invariant Waveguide

for mode one. This can be seen in Fig. 4-2, where the magnitude of the pressure

profile of system mode four is far below that of system mode one. The performance

for mode four shown in Fig. 4-7 indicates this mode is both numerically reachable

and observable for the conditions in the flume. Figure 4-8 shows the performance of

the feedback control algorithm when the desired pressure profile was system mode

one plus 0.4j times system mode two. The high SER for this experiment confirms

the algorithm can excite linear combinations of the system modes as well as the

individual modes. If the desired acoustic mode in an ocean experiment is not one

of the system modes but falls within the appropriate numerical span of the system

modes, the feedback control algorithm should be able to excite the pressure profile

of the acoustic mode with high fidelity.

Figures 4-9 through 4-11 show the performance of the channel estimators with

different choices of parameters. All the experiments shown in these figures started

with no a priori knowledge of Q, i.e., random Q[O], and attempted to excite system
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Figure 4-6: SER Performance for System Mode 3 in Time-Invariant Waveguide
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mode one. Figure 4-9 shows the performance for the Kalman filter estimator for

various values of Pf when a = 1.0. The mean magnitude of the elements of Q

is 0.16 for this experiment. All of the covariance matrices for the experiments in

Fig. 4-9 are far below the steady value of most elements of the replica matrix.

With a = 1.0, the covariance of the Kalman filter estimator will grow in all direc-

tions except w. This may explain why the smallest Pf gives the best performance,

as the estimator's covariance matrix will grow the slowest for this small innovation

covariance. From examining this figure, it is tempting to suggest the high frequency

content of the SER increases as Pf decreases. Plotting the spectra of these curves

reveals that the Pf = 2 x 10-6I trial has more high frequency content in the SER

than the Pf = 10-61 trial. More importantly, SER is not necessarily a good indicator

of the frequency content of the errors. Consider the case when the observed pressure

p[n] = Pd + Apej wn. This would have constant SER plotted against time regardless

of the frequency w in the error term. Thus, the frequency content of the pressure

error may not be reflected in the SER. It is also important to remember that the

curves in Fig. 4-9 are from a single trial. The limited time available for experiments

precluded running extensive trials in the flume to allow averaging of performance

over many trials.

Figure 4-10 plots the performance of the CNLLS estimator with different choices

for the forgetting factor y. The relatively smallest forgetting factor (• = 0.9, effec-

tive window length = 22 samples) converges the fastest of the experiments shown,

although -y = 0.925 reaches a slightly higher final SER. The strong performance of

these relatively short windows is not surprising because the noise level in the flume

is so low. Consequently, the channel estimator does not need to average many it-

erations to minimize the effect of the observation noise. The tighter limit on the

inverse of 4[n] introduces more bias into the channel estimate than was seen in the

simulation results in Chapter 3. This explains why the CNLLS performance does

not equal the SER obtained by the Kalman filter in the waveguide, although the
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CNLLS often performed slightly better than the Kalman

time-invariant ocean channels.
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Figure 4-9: Comparison of the SER for System Mode 1 in the Time-Invariant Waveg-
uide for different Pr in the Kalman Filter Channel Estimator

Figure 4-11 shows the SER of the LMS channel estimator for two different choices

of a. The algorithm converges faster and to a higher SER for a = 0.5, although it

does not match the performance of the Kalman filter or CNLLS estimators. It is

reassuring that these latter estimators do obtain better performance than the LMS

for the additional computational complexity they require. Figure 4-12 plots the

pressure magnitude profile against depth for all three algorithms, as well as the

desired profile for mode one. The Kalman filter and CNLLS estimators generate a

pressure profile which is almost indistinguishable from the desired pressure profile.

The LMS estimator does not match the desired profile quite as closely, but does still

give a good approximation to the profile of system mode one.
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Figure 4-12: Depth Profile of Pressure Magnitude for All Channel Estimators after
100 Iterations

4.4 Time-Varying Channels

The experiments presented in this section investigate the transient performance of the

feedback control algorithm. These experiments consisted of allowing the algorithm

to iterate for a fixed amount of time, then inserting a scatterer to change the acoustic

propagation in the waveguide. The scatterer used was a 40 x 19.5 x 19.5 cm cinder

block. The block was suspended in a manner allowing it to be consistently placed

at r = 3.15 m in the waveguide such that the bottom of the block was at a depth

of roughly z = 25 cm. The dynamic characteristics of the insertion were hand-

controlled by a human operator, and were not as consistent between trials as the

location was. This difficulty resulted in the two strategies for transient experiments

outlined in the following sections.

All the experiments attempted to excite system mode one starting from a cor-

rupted version of the true Q. The Kalman filter estimator used Pf = 10-5I and
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a = 1.0, while the CNLLS estimator had 7 = 0.95 (effective window length ; 45

iterations) and a condition number limit of 200. The normalized LMS estimator

used a = 0.5. The physical configuration of the waveguide and arrays were the same

as described earlier in this chapter.

4.4.1 Abrupt Channel Change

These experiments changed the acoustic properties of the waveguide such that from

the estimators' point of view the change occurred instantaneously. To implement

this, the feedback control algorithm ran for 100 iterations with an open waveguide,

then paused. The cinder block was lowered into the waveguide, the water waves

excited in the tank were allowed to calm down, and then the algorithm resumed

with the same state and desired pressure profile it had when it paused. From the

estimators' vantage, the brick appeared instantaneously between iterations without

disturbing the water. This experiment was repeated for each of the channel esti-

mators. This method of modifying the acoustic properties of the channel allowed

the experiments to focus on the transient behavior of the estimators independently

of the settling time of any wave dynamics introduced by the lowering of the cinder

block.

Figure 4-13 presents the SER curves for these experiments. The presence of the

block does alter the replica matrix and thus the modes of the system. The desired

pressure profile at the feedback array is kept unchanged as the first mode of the open

waveguide. Projecting this pressure profile on the first three modes of the replica

matrix with the block in place reveals more than 99% of the energy of the desired

profile still falls in the span of the first three system modes, i.e.,

II (I- Z uQBSiuQBiH) PdhI2 < 0.01 (4.1)
where U s the column of the replica matrix Q with the block inserted in

where uQsi is the ith column of the replica matrix Q with the block inserted in
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the waveguide, and Pd is the first mode of the system for the open waveguide. The

dotted line at roughly 30 dB indicates the best possible performance exciting mode

one with the block in place. This bound on the SER is down from a theoretical

limit of 150 dB in the absence of noise for the open tank without the block. As the

observation noise limits the performance to 45-50 dB of SER, inserting the block

changes the environment from one where the performance is noise-limited to one

where the performance is propagation limited by the coupling induced by the block.

The Kalman filter estimator adapts to the new channel in roughly 12 iterations.

The CNLLS and LMS estimators take longer to converge after the change in the

channel. The CNLLS estimator takes about 40 iterations to converge, while the

LMS algorithm hasn't converged 100 iterations after the block appears. Both of these

convergence characteristics could probably be improved by modifying the estimator

parameters: decreasing y for the CNLLS or increasing A for the normalized LMS.

While these changes would increase the convergence rate, they would also make the

estimators more sensitive to observation noise. Decreasing 7 would decrease the

effective window length the CNLLS estimator averages over, while a larger A makes

the LMS estimator more sensitive to noise even after it has converged. In noisy

ocean experiments, this sensitivity would be a more serious issue than in the very

quiet and controlled laboratory waveguide setting.

4.4.2 Gradual Channel Change

In the experiments described in this section, the feedback control algorithm ran con-

tinuously while the cinder block was lowered into the waveguide, rather than pausing

as in the experiments described in the previous section. The planned sequence was

to allow the algorithm to run for 50 iterations, then gradually insert the block over

the next ten to fifteen iterations while trying to minimize the water waves excited

in the tank by the disturbance. The execution was not always successful in terms of

the timing of the insertion or minimizing the fluid dynamic transient.
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Figure 4-13: Transient Response of Channel Estimators for Abrupt Change in Chan-
nel

Figures 4-14 through 4-16 present the results of these experiments. The different

line types on each figure represent successive trials of the same experiment. It is not

easy to extract the sort of quantitative results obtained in the previous section from

these plots. The Kalman filter clearly converges the fastest in these experiments,

with the CNLLS and LMS estimators following in that order. Both the Kalman

filter and CNLLS estimators come very close to the LS bound on SER with the

block in the waveguide. This bound for these trials is not necessarily the same as

the one shown in Fig. 4-13 since the waveguide characteristics drift and these trials

were performed at a different time and took longer to complete. Consequently, the

extent to which Pd fell within the numerical span of Q varied from trial to trial. This

bound only varied by a few dB over the experiments shown in this section.

The longer convergence times of all the estimators in these experiments when

compared to Fig 4-13 could be due to a combination of several factors. The acoustic
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properties of the waveguide are changing every iteration for roughly a dozen iterations

due to the lowering of the block into the waveguide. In addition, the water waves

excited by inserting the block will also affect the acoustic propagation. Even a very

gentle touch lowering the block into the channel excited water waves that took several

iterations to settle.

M)(1)

0 20 40 60

Figure 4-14: Transient Response
Change in the Waveguide

80 100 120 140 160 180 200
Iteration

of Kalman Filter Channel Estimator fo

A rough quantitative estimate of the increase in convergence time can be obtained

by starting from the observation that in most of the trials in these experiments the

block was completely lowered by iteration 65. Looking closely at Fig. 4-14 reveals the

Kalman filter estimator generally converged within 25 iterations after the block was

in place. This was about twice as long as the convergence time observed in Fig. 4-13.

A similar examination of Fig. 4-15 reveals an increase of convergence time to roughly

70 iterations, rather than the 40 iterations observed in Fig. 4-13. The LMS algorithm

never completely converged in either set of experiments, making it impossible to
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Figure 4-16: Transient Response of LMS Channel Estimator for Gradual Change in
the Waveguide
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make a similar comparison for this estimator. Comparing these transient response

times to those seen with the abrupt channel change, one qualitative conclusion that

can be made is water dynamics slow the convergence of the estimators. While the

insertion of the block was not perfectly consistent for each trial, the water waves

were excited in roughly the same way. The varying transient response times among

the estimators indicate that the estimators experience differing levels of difficulty

tracking the water dynamics. If the dynamics were slow enough that the estimators

could perfectly track the changes in Q, all of the transient times of the estimators

would be the settling time of the water dynamics. The variation of the response

times in Figs. 4-14 through 4-16 confirm the estimators are unable to keep up with

the changes in Q due to the hydrodynamics. The Kalman filter does not assume

the replica matrix dynamics are a stationary process, so it is not surprising that

it adapts most quickly. In fact, the transient time for the Kalman filter might be

taken as a rough estimate of the settling time for the dynamics of the water waves.

The CNLLS and LMS estimators assume Q is stationary, so they won't be able to

make substantial progress converging on the new Q with the block in place until the

non-stationarity introduced by the water waves dies out. For the CNLLS estimator,

the increase in convergence time from the abrupt channel change experiment should

reflect the settling time for the water dynamics. The increase in convergence time

of roughly 30 iterations is commensurate with the estimate of the time constant for

the hydrodynamics obtained from the Kalman filter transient. The duration of the

ripples in the LMS SER in Fig. 4-16 also supports this estimate of the hydrodynamics

time constant. As noted in the discussion of Fig 4-9, time characteristics of the SER

do not necessarily reveal all the underlying dynamics of the error, but here the SER

curve for the LMS estimator does corroborate the estimated settling time for the

water waves obtained from the CNLLS and Kalman filter SER curves.

The estimators' difficulty tracking the flume water dynamics are not necessarily

cause for concern in the ocean environment. Visual observation indicated the waves
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excited by lowering the block propagated the 8 m from the block to the feedback array

in less than 3 seconds. Scaling up by a factor of 20 for a 400 Hz ocean experiment, this

indicates that in an ocean experiment the estimators could not track water dynamics

propagating 26 m/s, an excessive velocity for ocean phenomena. The simulations of

the solitary wave in Section 3.4 suggests the Kalman filter can track ocean processes

propagating at least as fast as 1 m/s, which is a generous estimate for the group

velocity of these waves.

4.5 Summary

This chapter presented a sequence of experiments using the proposed feedback con-

trol algorithm in a laboratory waveguide. These experiments demonstrate that the

algorithm performs well in time-invariant channels when implemented on real-time

signal processing hardware connected to real sources and hydrophones. This en-

vironment provided a very useful test bed for verifying the algorithm was feasible

and making some preliminary investigations of its transient behavior. More de-

tailed investigations of the tracking performance of the estimators would require a

well-controlled means of introducing a fluid dynamic disturbance of the appropriate

bandwidth in the waveguide. The results obtained in the experiments described in

this chapter are encouraging for the success of an ocean experiment. In addition, the

experiments provided some valuable experience for the deployment and debugging

of a real-time system implementing the feedback control algorithm.
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Chapter 5

Conclusions and Future Directions

The work presented in this thesis develops an adaptive feedback controller to excite

a single mode in the shallow water channel. No mid-frequency (circa 400 Hz) ocean

experiment has successfully generated a single mode in this environment. A single

mode source in this frequency range would be very useful for studying oceanographic

processes in the coastal environment. The control algorithm incorporates elements of

control theory, adaptive estimation, array processing and underwater acoustics. The

controller iterates between choosing the source array weight vector, and updating

its estimate of the replica matrix between the source and feedback arrays. Three

channel estimators are developed based on different models for the properties and

statistics of the replica matrix.

The work leading to the control algorithm also yielded two additional results.

The first is a formulation of the maximum a posteriori (MAP) mode filter. This

filter segues between the pseudo-inverse and sampled mode shape filters as the hy-

drophone array aperture decreases. This result provides a theoretical basis for an

earlier ad hoc "dropped eigenvalue" mode filter proposed by Yang [41]. The MAP

mode filter also has an appealing interpretation as a generalization of the discrete

spatial Wiener filter. The investigation of controllability and observability provides

a cohesive framework for examining numerical issues germane to a practical exper-
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iment. Specifically, criteria are given for determining when a desired mode can be

excited and observed given proposed array configurations, observation noise charac-

teristics, source power limitations and approximate acoustic attenuation in range.

A series of simulations presented in Chapter 3 investigate the performance of the

proposed algorithm in several realistic shallow water environments: a range-invariant

waveguide, a rock outcropping, a downsloping wedge, and a propagating solitary in-

ternal wave. The performance of the various channel estimators in each environment

are compared to each other and the performance of an open loop controller. The

Kalman filter and CNLLS estimators both generated high fidelity modes in these

simulations, with the latter usually performing slightly better.

The proposed algorithm was also evaluated in a series of laboratory waveguide

experiments. The algorithm successfully excited several different modes of the sys-

tem. The Kalman filter channel estimator proved more robust to the computational

limitations of the real-time DSP hardware in these experiments. The waveguide

experiments also provided some preliminary data on the transient response of the

channel estimators. The Kalman filter also performed better than the other estima-

tors in the transient experiments. The success of the algorithm in the laboratory

waveguide is encouraging for the prospects of an ocean experiment.

Several aspects of the single mode excitation problem present intriguing directions

for future research. One possible improvement in the feedback control algorithm

would be in the weight vector selection step. Rather than choosing the source array

weight vector w[in] to minimize the squared error between the predicted pressure

Q[n]w[n] and desired pressure vector Pd, w[n] could be chosen to minimize the ratio

of the energy in all modes to the energy in the desired mode. In the limit with only

mode mo excited, this ratio would be 1. More precisely, the optimization problem

the new weight selection step would solve is

w[n] = arg min w H[n [n]w (5.1)
W wHbmoH[] bmo[n]W
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where B[n] is an estimate of the source weight to mode coefficient transfer matrix

from Eq. 1.35 and mo,,[n] is the mth row of that estimate. As formulated in Eq. 5.1,

the optimization does not have a unique solution, but by introducing an additional

constraint, a unique solution can be obtained. The constrained optimization is

w[n] = arg min wHIBH[n][n] w subject to bmo [n]w = 1. (5.2)

and it is clear any solution to this optimization will also be a solution to Eq. 5.1.

The constrained problem in Eq. 5.2 has the same form as the Minimum Variance

Spectral Estimator [66], [40]. The solution to this optimization can be written in

closed form:

[ bm] [ (H[n] B[ [n]) bfmoH [n]

The performance of this weight selection criteria would need to be evaluated in simu-

lations and laboratory waveguide experiments and compared against the performance

of the least-squares criteria used in the thesis.

The proposed algorithm uses a very basic model for the acoustic propagation

in the feedback volume and also a simple feedback control algorithm. The simu-

lations and laboratory experiments indicate these straightforward approaches can

successfully excite a single mode. This success encourages further investigations in-

corporating more sophisticated control algorithms and ocean models to see if these

advances can provide even better performance. Specifically, the field of robust con-

trol contains many important results that may provide additional insight into the

single mode control problem [49], [50], [51]. In pursuing these advances, a balance

must be made between improved performance exciting a mode and greater sensi-

tivity to mismatch errors in either the ocean acoustics or estimated plant. While

the algorithm proposed here is very modest in its technical scope, it is flexible in

responding to a wide range of ocean environments. Any more sophisticated control

algorithm will want to preserve this robustness as much as possible.
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Another possible improvement would be a more aggressive temporal sampling

strategy for the feedback volume. The iteration time could be reduced from the

propagation time of the slowest mode between the source and feedback arrays to the

difference between the travel times of the fastest and slowest modes. This would

require accurate estimates of the mode group velocities. These estimates could be

obtained numerically from the sound speed profiles at the source and feedback ar-

rays [32] and if the estimates are sufficiently accurate and reliable, several packets

of modes could be en route between the source and feedback arrays simultaneously.

This decrease in the iteration time for the control algorithm would allow the channel

estimator to track a higher bandwidth of oceanographic processes. For the ranges

and environments examined in this thesis, the conservative iteration interval set by

the propagation time of the slowest mode sufficiently samples the most important

processes, so the incremental gains obtained by decreasing the iteration time do not

merit the significantly increased risk of poor performance if the estimated group ve-

locities are incorrect. Inaccurate group velocity estimates could cause mode packets

that are no longer temporally distinct at the feedback array. Future deployments of

the algorithm may occur in environments with ocean processes operating on shorter

time scales, or with a greater distance between the source and feedback arrays. In

such scenarios, the benefits of reducing the iteration time might merit the additional

complexity and risk associated with this strategy. A specific instance where this

could prove valuable would be scenarios where surface wave processes have a signif-

icant effect on the mode propagation. Surface waves have much shorter time scales

than most internal ocean processes and reducing the iteration time of the control

algorithm could prove crucial to allowing the estimators to track these processes.

The single mode source provided by the feedback control algorithm can be used

for other acoustic measurements besides estimating the horizontal wavenumber spec-

tra of an internal wave packet. When the propagation in the observation volume is

well-modeled by a discrete set of propagating modes, the mode coupling over that
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volume gives a simple parametric model for predicting the propagation through that

volume. Long-term measurements of these coupling statistics could provide use-

ful measurements of the dynamics of acoustic propagation in coastal regions which

could be exploited by more sophisticated ocean acoustics signal processing algo-

rithms. Currently, very little data is available about the statistics and dynamic

behavior of propagation in these regions.

The feedback control algorithm may have other oceanographic applications be-

sides a single mode source. Gingras [5] proposed a single mode source as a method

of minimizing environmental backscatter for an active sonar system. While a sin-

gle propagating mode is a useful conceptual approach to visualize which portions

of the water column would be illuminated by such a system, such a pressure pro-

file may not be the optimal transmitted pressure field to minimize backscatter from

the bathymetry. The feedback control algorithm could adapt the source array to

minimize the backscattered energy in the absence of targets.

Another possible but highly speculative use for the feedback control algorithm

would be in a communication scenario. Different messages could be modulated

onto distinct modes for a communication network. This would allow simultaneous

communication at the same frequency by exploiting the modal diversity of the en-

vironment. Any communication system proposed utilizing this modulation would

have to address many issues such as mode coupling due to range-inhomogeneities in

the water column or bottom bathymetry between the feedback array and receiver.

The concept is attractive and bears closer examination.

The ideas presented in this section are intriguing as extensions or improvements

on the algorithm presented in the thesis. At the current time, the most pressing

future work to be done is an actual ocean test of the algorithm proposed. Significant

engineering challenges such as the radio telemetry link from the feedback array to

the source ship and continuous mode shape estimation at the feedback array location

must still be addressed. The simulations and laboratory experiments indicate that
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the feedback control algorithm should be capable of exciting a single mode. If this

experiment is successful, more advanced uses can be explored. If the trial reveals

unexpected shortcomings or difficulties with the feedback control algorithm, these

problems can be addressed. Without such an experiment, any future work performed

with the algorithm must be viewed as speculative at best.
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Appendix A

Transient Response of the CNLLS

Estimator

Section 2.3 describes the CNLLS estimator and notes that it is important to limit

the condition number of b-1 at each iteration and not the condition number of 4

propagated by the algorithm. Specifically, the estimator may respond more slowly

to abrupt changes in the desired mode or the channel if the condition number of

4 is limited. To understand why, consider the simplified case where w[n] = wo

for n = 1,..., 21j, where r is the limit on the condition number. The eigenvalue

decomposition of 4[277] can be written

0 .0 0
00

(A.1)

where

v = W0 V2 I (A.2)
VL .
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Suppose the desired mode changes abruptly at n = 277 such that w[n] is now or-

thogonal to wo for n > 277. Note that if w[n] is orthogonal to wo, we may assume

w[n] = v 2 without loss of generality, since we can pick the vi to be any orthonormal

basis of orthogonal complement of wo. Moreover, assume Q[n] has errors that were

orthogonal to w0 but are not orthogonal to v 2 , i.e., (Q[n] - Q[n])v 2 $ 0. The change

of w[n] to V2 will cause Q[n] to converge to a more accurate estimate of Q[n] such

that (Q[n] - Q[n])v2 = 0.

The rate of this convergence depends on which of 4 or 4-1 has its condition

number limited. From Eqs. 2.21 and 2.22, the correction to Q[n] is a[n]kH[n], where

a[n] is (p[n] - Q[n]w[n]) = (Q[n] - Q[n])w[n] and k[n] = -l1[n]w[n].

Let ki [n] be the gain vector when 4 [n] is propagated with its condition number

limited, and let k 2[n] be the gain vector when 4[n] propagates without any limit

on its condition number, but the condition number is limited at each iteration when

4Ic I is computed per Eq. 2.25. The notation (')cL denotes the operation of limiting

the condition number of its argument to be q while leaving the first eigenvalue

unchanged. Then

k 1[2[ + 1] = ((')CL [2 + 1])-1 w[2i + 1] (A.3)

27 0 ... 0

3

0 2 0

0 ... 0 2

S(A.4)
V4HV2 (A.4)

= v2/3. (A.5)
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Contrastingly, for the CNLLS estimator given in Sec. 2.3,

k2[2 + 1] = (-') [2 + 1]w[2 + 1] (A.6)

277 0 ... 0

1 ".

0 0 0

0 ... 0 0L

VHV2 (A.7)

I L•T

= v 2/2 (A.8)

The gain vector k[n] has the same direction in each case, but takes a larger step for

the case where the condition number is propagated without limiting, then limited

after inversion. If the correlation matrix 4I is propagated with condition number

limiting, the gain of the correction is reduced even the first step after w[n] changes.

In fact, if k2 1[27 + 2] will still be V2/2, while k 1[2 + 2] = v 2 /4. As long as w[n] = V2,

kl[n] and k2[n] will have the same direction, but Ilkl[n]JI < Ilk2 [n] , so k 2 [n] will

have a faster transient response.

The scenario here simplifies the case in several aspects, but the underlying results

are still valid: propagating 4[n] with its condition number unlimited then limiting

the condition number at the inversion for each iteration gives better transient per-

formance than propagating a 4[n] whose condition number is limited.
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