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ABSTRACT

Dense linkage maps facilitate high resolution mapping, permit epidemiological studies,
allow isolation of genes by positional cloning methods, and serve as important frameworks
for complete genomic sequencing. As the Human Genome Project moves towards its final
stages, scientists have begun to construct a third generation of genetic map, which will
eventually consist of thousands of single nucleotide polymorphic markers. The ability to
detect these polymorphisms in large scale using new technologies such as the oligonucleotide
probe arrays promises to make this new map more powerful than the maps of previous
generations.

JAMALAH is a prototype software system for rapid detection of potential single nucleotide
polymorphisms. The system allows the identification of potential polymorphisms by
sequence comparison analysis alone. Its operation requires minimal human intervention,
making the system ideal for repeated use. Experimental studies have validated the
system's potential and provided incentive for future expansion.
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Title: Director, Whitehead/MIT Center for Genome Research
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Chapter 1
Introduction

The Human Genome Project (HGP) is an ongoing international research effort

to construct detailed genetic and physical maps of the human genome and the

genomes of several model organisms. The project's ultimate goal is to

determine the genomes' complete nucleotide sequences, and to localize the

many thousands of genes in each. The biological information generated by the

Human Genome Project has already proven to be invaluable towards our

understanding of some human genetic diseases, and is expected to have a

profound impact on how biomedical research is done in the twenty-first

century.

The initial objective of the genome mapping project was to construct STS-

based genetic and physical maps of the human and mouse genomes. Aided by

the introduction of computers and automated robots to the genome mapping

efforts and the development of a variety of new laboratory technologies for

genomic and genetic research, this objective was achieved by the end of 1995

[Collins 1995].



The first generation of these genetic maps consists of hundreds of restriction

fragment length polymorphism (RFLP) markers, while the second-generation

maps have thousands of simple sequence length polymorphism (SSLP)

markers. So far, they have proven to be sufficiently dense to provide a solid

foundation for the construction of high-resolution sequence maps of the

genomes. However, scientists have begun to construct a third generation of

genetic map based on single nucleotide polymorphism (SNP). This map

promises to be more powerful than the maps of previous generations.

JAMALAH is a modular software system made up of a collection of small

programs. The system is designed to identify potential bi-allelic nucleotide

polymorphisms by analyzing a large collection of DNA sequences, most of

which have been made available by the expressed sequence tag (EST)

programs. The system receives as its input sets of sequences, and outputs a

list of polymerase chain reaction (PCR) primers which can be used for the

ultimate confirmation of the identified polymorphisms by comparative DNA

sequencing. The system allows the user to specify a set of parameters by

which potential polymorphic nucleotides can be discriminated from probable

non-polymorphic ones. It operates automatically with little direct human

supervision, and is ideal for repeated use.

1.1 Overview

Figure 1 gives an overview of the JAMALAH system. The sequence assembler

accepts as its input a set of sequences which have been segregated into

clusters according to their resemblance to each other. The sequence

assembler performs assembly on the sequences in each of the clusters. If a



single contig can be successfully assembled, the sequences, along with

alignment information, are passed on to the Single Nucleotide Polymorphism

Detector (SNPD). SNPD then aligns the sequences to each other, according to

the alignment instruction generated by the sequence assembler.

Using a set of user-specified criteria, SNPD examines the aligned sequences

nucleotide by nucleotide as it searches for potential single nucleotide

polymorphisms. If a potential polymorphic nucleotide is identified, SNPD

generates a consensus sequence containing the polymorphic nucleotide, which

it passes on to a primer-picking program. The primer-picking program

analyzes the consensus sequence and attempts to choose a pair of forward and

reverse PCR primers that flank the potential polymorphic locus. If the

primers are picked successfully, they are added to a primer purchase order,

along with other data such as the consensus sequence and the locations

polymorphic nucleotides the primers flank.

The Primer Order and SNP Data Processor translates the output from the

primer picking program to its "human-readable" form, and sends the

translated information to a file format converter. This file format converter

converts the information into Macintosh BinHex-encoded Microsoft Excel files.

The encoded files are then sent by electronic mail to the user, and are

eventually converted by the user's Macintosh electronic mail client into

Microsoft Excel readable files. The user checks the primers in the files, before

the primer purchase order is sent to an outside company. Ultimately,

sequencing is performed to confirm the existence of the identified

polymorphisms, before they are mapped onto the genetic map.



EST,
Genomic DNA 5' and 3' reads Genomic DNA,

i DN i segmented

Sequence Cluster Processor

4 Clustered Sequences

Sequence Assembler (Phrap)

i Sequence Assembly

Single Nucleotide
Polymorphism Detector

* Polymorphisms

Consensus Sequence
Generator

SConsensus Sequences and
Polymorphism Analysis Data

PCR Primer Picker (Primer)

Consensus Sequences,
Polymorphism Analysis Data,
and PCR Primers

Primer Order and SNP
Data Processor

Analysis Data and
PCR Primer Files

File Format (Unix-to-
Mac Binhex) Converter

-Analysis Data and PCR Primer
Macintosh Binhex Files

Macintosh Email Program

Macintosh Excel Files
Figure 1: An overview of the JAMALAH system. The dotted line separates the UNIX
components from the end-user's desktop Macintosh. Given as its input a dataset of clustered
sequences, the system outputs a list of PCR primers which can be used for sequencing to confirm
the existence of the single nucleotide polymorphisms identified by the system.



1.2 Background and Motivations

1.2.1 Why Genetic Maps?

Genetic maps have many uses. Sufficiently dense genetic linkage maps

facilitate high resolution mapping, permit epidemiological studies, allow

isolation of genes by positional cloning methods, and serve as important

templates for complete genomic sequencing. They are constructed by

determining how frequently two markers (i.e., a physical trait or a detectable

DNA sequence) are inherited together. Genes that are close to each other on a

chromosome have a much higher chance of being inherited together than genes

that lie much farther apart. Genetic studies of families, by determining how

frequently two traits are inherited together, can be used to construct genetic

maps in which the distances between genes are measured in centimorgans.

Two markers one centimorgan apart on the genetic map correlates with a

recombinant frequency of one percent.

The first generation of genetic maps were constructed using restriction

fragment length polymorphism (RFLP) markers [Botstein 1980]. RFLPs are

fragments that are produced when DNA is cut with a restriction enzyme. Due

to the fact that nucleotide substitutions occur in the DNA, different individuals

occasionally vary in the size of the cleaved DNA fragments. These differences

can be assayed by hybridization with radioactively labeled probes and

autoradiography.

Although early genetic maps used RFLPs as markers, the use of simple

sequence length polymorphisms (SSLPs), or microsatellite markers, has



become the gold standard. SSLPs are polymerase chain reaction assays

flanking the short tandem repeats that are scattered throughout the

mammalian genomes, including those of humans and mice [Weber 1989; Love

1990]. These repeat DNA markers--the most common repeat type of which is

(CA)n--are interspersed at a relatively high frequency, and are useful because

their length, or number of repeats, varies among human individuals and

between two or more strains of mice[Weissenbach 1992; Dietrich 1992].

Moreover, almost completely automated systems to identify the SSLP

markers have been developed. One such system is the SSLP Pipeline

developed at the Whitehead/MIT Center for Genome Research [Stein 1994].

As of March 1996, the most detailed and informative genetic map of the

mouse, compiled by Dr. Eric Lander and colleagues at the Whitehead

Institute/MIT Center for Genome Research, contains 6,580 such SSLPs and

almost eight hundred RFLPs [Dietrich 1996]. The average spacing between

markers on this map is about 0.2 centimorgans, or approximately 400

kilobases. At about the same time, Dr. Jean Weissenbach and his team at

G6nethon in Paris have also incorporated 5,264 such microsatellites into the

human linkage map, which has an average spacing of 1.6 centimorgan [Dib

1996].

1.2.2 A Current Challenge and One Solution

Although SSLP-based genetic maps are an improvement over RFLP-based

maps, they still suffer from some shortcomings, the most significant of which

is the lack of means to detect SSLP markers rapidly and in large scale. As is

the case for RFLP markers, current methods to detect SSLP markers still rely



heavily on gel-based electrophoresis sequencing techniques, the throughput of

which remains to be limited by their sequential nature.

One new class of polymorphic markers, however, holds the potential of solving

the bottleneck problem traditionally associated with genetic marker detection.

This new class is bi-allelic single nucleotide polymorphisms. Bi-allelic

nucleotide markers have several advantages over SSLP and RFLP markers.

Two such advantages are their abundance (estimated 1.4 x 107 polymorphic

nucleotide sites in the human genome due to neutral mutations [Kimura 19831)

and their suitability for high-throughput parallel detection methods such as

allele-specific oligonucleotide hybridization on DNA arrays [Pease 1994].

Another potential advantage is the possibility that these markers can one day

be automatically scored. Unlike microsatellites whose detection requires

length measurements, single nucleotide polymorphic markers can be scored

using high-throughput plus-minus detection systems (like oligonucleotide probe

arrays) [Wang 1996a].

The Whitehead Institute/MIT Center for Genome Research has already begun

to construct a third generation map of the human genome consisting of bi-

allelic single nucleotide polymorphic markers [Wang 199a; Wang 1996b].

Although individual bi-allelic polymorphisms are usually not as informative as

microsatellites, multiple closely linked markers can be combined into

haplotypes that can be as informative as a repeat polymorphism [Nickerson

1992]. A study has already suggested that a map consisting of these markers

can be as informative as a map composed of microsatellites, if its density is

higher by a factor of approximately two [Kruglyak 1995].



1.2.3 Finding Single Nucleotide Polymorphic Markers

The National Center for Biotechnology Information (NCBI) has been receiving

more than six hundred human complementary DNA (cDNA) sequence

fragments daily from the Washington University - Merck Human EST

Sequencing Project and other EST sequencing projects, since the EST

sequencing program went full-scale in January of 1995 [Marra 1996]. Since

then, more than 258,000 single-pass sequence reads have been deposited into

the NCBI EST collection, increasing the total number of publicly available

ESTs to more than 334,000, as of February 1996.

ESTs, or expressed sequence tags, are DNA sequences generated from single-

pass, partial sequencing of oligo(dT)-primed cDNA clones from either the 3' or

the 5' end, or both [Adams 1991]. They are sequenced from many different

human subjects and cover a wide variety of genes from a wide range of organs

and tissues. In many cases, the "same gene" is sequenced from the cDNAs of

many different individuals [Adams 1995]. As of August 1995, more than half

of all human genes have been sequenced [Boguski 1995].

The large number of publicly available sequences and the inherent high level of

redundancy among the large number of EST sequences suggest that it might

be possible to detect single nucleotide-based polymorphisms by analysis of the

sequences alone. To begin to identify these bi-allelic, nucleotide-based markers

hidden within this large, growing collection of sequences, a prototype system

called JAMALAH has been developed. The system is discussed in detail in this

thesis.



1.3 Overview of the Document

Chapter 2, Related Work and Background, reviews various work and research

systems related to single nucleotide polymorphism detection technologies.

Historic sequence comparison algorithms are also discussed briefly, as some

understanding of them will be necessary for discussion in Chapter 5.

Chapter 3, Single Nucleotide Polymorphism Screening Methodology, describes

in detail the approach used by the JAMALAH system to detect potential single

nucleotide polymorphisms. The algorithms used by some of the components in

the system are also described.

Chapter 4, Design and Implementation of the JAMALAH System, describes the

design and implementation of the JAMALAH system. The interactions

between various components of the system are explained here.

Chapter 5, An Evaluation of the JAMALAH System, presents the results of an

actual session with the system.

Chapter 6, Strengths and Limitations of the JAMALAH System, discusses the

limitations of the current version of the JAMALAH system, in its design and

as revealed by actual experimental confirmation of its analysis. Comparisons

to Demigloss, a similar system being develop by CHLC, are also made.

Chapter 7, Conclusions and Future Directions, makes some concluding remarks

about the thesis, and outlines future directions for the JAMALAH system.



Chapter 2
Related Work and
Background

This chapter reviews other researches which have addressed issues related to

this thesis.

2.1 Oligonucleotide Probe Arrays

High-density oligonucleotide probe arrays, or DNA chips, represent the latest

in DNA sequencing technologies. They have applications in the areas of

pathogen detection, genetic testing, mRNA expression monitoring, and de novo

sequencing, and offers the main advantage of speed. Unlike traditional

electrophoresis-based sequencing technologies, nucleic acid sequence analysis

using oligonucleotide probe arrays is not limited in its throughput by the

sequential nature of the conventional electrophoresis techniques [Lipschutz

1995].

Oligonucleotide arrays are created using a combination of photolithography

and oligonucleotide chemistry. Using a proper sequence of photolithographic

masks and chemical coupling steps, specific oligonucleotide probes can be



densely displayed on the surfaces of the arrays in an information-rich format

[Pease 1994]. Subsequent hybridization of a fluorescently labeled nucleic acid

target to the oligonucleotide arrays directly yield sequence information. If the

target has regions complementary to probes on the arrays, then the target will

hybridize with those probes. In general, probes matching the target hybridize

more strongly than probes with mismatches, insertions and deletions.

Confocal fluorescence microscopy is used to detect the hybridization pattern of

the fluorescently labeled target to the probe arrays. Fluorescence signals from

complementary probe-target hybridization are 5 to 35 times stronger than

those with single or double base-pair mismatches [Pease 1994].

The significant instability of internal probe-target mismatches, relative to

perfect matches, can be exploited to design arrays of probes capable of rapidly

discriminating differences between nucleic acid targets and detecting single

nucleotide polymorphisms. For example, to determine the identity of unknown

nucleotide in a target sequence, four different probes can be synthesized.

Each of these probes would be designed to be perfectly complementary to the

region containing the unknown nucleotide, except each of them would contain a

different nucleotide at the position opposite the unknown nucleotide. When

examined by fluorescence microscopy, the probe with the highest

complementarity would exhibit the highest intensity. Since the identities and

the locations of the probes are pre-defined, the identity of the unknown

nucleotide can be determined.

Such an application of oligonucleotide probe arrays is, in fact, being explored by

a team at the Whitehead Institute/MIT Center for Genome Research.

Collaborating with the California-based company Affymetrix, the Whitehead



team is currently developing probe arrays specifically for assaying bi-allelic

single nucleotide polymorphisms. Based on the preliminary experimental

results, it might be possible to use high-density oligonucleotide probe arrays for

parallel detection of several thousand single nucleotide polymorphisms [Wang 1996a;

Wang 1996b].

2.2 Sequence Comparison Algorithms

As will become more clear in Chapter 3, a key procedure that is performed by

JAMALAH is sequence assembly. Sequence assembly is the piecing together

of several sequence fragments into a single, long contiguous sequence

commonly referred to as a contig--a procedure that requires the sequences

involved in the assembly to be compared against and aligned to each other. In

many cases, the strengths and weaknesses of an assembly programs is

directly linked to its choice of sequence comparison algorithm. In the rest of

this chapter, a brief treatment of several standard sequence comparison

algorithms is given. A basic comprehension of them is necessary to

understand some behaviors of the JAMALAH system, which will be discussed

in Chapter 5, An Evaluation of the JAMALAH System.

2.2.1 Dynamic Programming Algorithms

Various types of algorithms have been used for sequence alignment and

comparison; however, dynamic programming algorithms have proved to be

most potent. Dynamic programming is a class of algorithms typically applied

to optimization problems in which a set of choices must be made in order to



arrive at a solution with the optimal value [Cormen 1994]. The solution is

referred to as an optimal solution, as opposed to the optimal solution, because

there may be several solutions that achieve the optimal value. A dynamic

programming algorithm has the property that it solves every subproblem just

once and remembers the answer to the subproblem. Thus, it avoids the work

of recomputing the answers to all previously encountered subproblems.

Dynamic programming algorithms for DNA (or protein) sequence comparison

calculate alignment scores that consider possible nucleotide substitutions,

insertions, and deletions in the sequences. The alignment score can be

calculated as a similarity score (more similar sequences produce a higher

score) or a distance score (more similar sequences produce a lower score). In

both cases, the algorithms guarantee the calculation of the optimal score for

the set of match, mismatch, insertion, and deletion score parameters that are

used [Pearson 1992].

To compare two sequences to each other (i.e., to find their optimal alignment to

each other), a matrix comparison is done. The matrix comparison provides all

possible alignments between the sequences, and can be examined to reveal an

optimal alignment of the two sequences. Figure 2 illustrate such a comparison

matrix for the alignment of two sequences of characters. The illustration

shows that the process of finding an optimal alignment involves computing the

score for each cell moving forward and through the matrix to find a path that

maximizes or minimizes the final score. As it shows, in many instances, there

are more than one way to align two sequences and still obtain the optimal

score. Assume for the example shown in Figure 2 that a match has a

bonus/penalty weight of +2; a mismatch, deletion or insertion has a weight of



-1; and the goal of the search is to attain the highest score possible. It is then

clearly better to align the subsequence "L" in "MATCHLESS" and the

subsequence "IN" using a mismatch and an insert/deletion rather than three

insertions/deletions. However, if a mismatch has a score of-2 and a deletion or

insertion has a score of -1, then the choices become equivalent.

TCHLESS
M
A
C
H
I
N
E
S

-C

'I

Matching character

Mismatching character

Insertion in MATCHES or deletion in MACHINES

Deletion in MATCHES or insertion in MACHINES

Figure 2: A standard comparison matrix for dynamic programming algorithms that align two
sequences. The shaded cells indicate a matching character. Different types of arrows indicate
either a mismatch or a need to shift one of the sequences to attain alignment of subsequent
characters.
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Variations of dynamic programming algorithm for biological problems have

been developed and will be discussed next in the chapter. Most efficient

implementations of these algorithms for comparing two sequences of length N

have a running time proportional to the product of the lengths of the

sequences, or O(N 2), and require memory space proportional to the sum of the

two lengths, O(N) [Pearson 1992].

2.2.2 Needleman-Wunsch Algorithm for Global Similarity

Needleman and Wunsch have been the first to apply dynamic programming to

a biological problem [Ginsburg 1994]. The Needleman-Wunsch algorithm is

characterized as one that achieves the best total alignment. It finds all

possible matches and assigns weights to every pair according to each pair's

similarity, and assigns penalties to insertions and deletions using a gap penalty

that is independent of the length of the gap.

The algorithm utilizes a two dimensional array as its comparison matrix. All

alignments between the two sequences are represented by paths through the

matrix. There are a number of ways to move through the matrix, and the sum

of weights, or score, is generated by adjusting the score according to the

direction of the path the search takes, as illustrated in Figure 2. An optimal

alignment is eventually found by tracing back through the matrix from the cell

with the highest score [Needleman 1970].



2.2.3 Smith-Waterman Algorithm for Local Similarity

Unlike the Needleman-Wunsch algorithm, the Smith-Waterman algorithm

achieves the optimal local sequence similarity, and is more suitable for

functional or structural analogies. However, when the sequences are highly

similar over a long stretch, the Smith-Waterman algorithm will also achieve

global alignment [Smith 1981].

For the Smith-Waterman algorithm, every cell in the matrix is considered a

starting point and no penalties are attached to overhangs of either sequence;

weights and penalties are assigned as usual to matches, mismatches,

insertions, and deletions. During a search through the comparison matrix, if

the total score falls below a certain threshold at a cell, the current path of the

search is stopped. The score is reset, and the cell is then used as a new

starting point for a search. Like the Needleman-Wunsch algorithm, the Smith-

Waterman algorithm identifies regions of greatest similarity by backtracking.

In comparison to the Needleman-Wunsch algorithm, the Smith-Waterman

algorithm is more ideal for use in an assembly program. Assembly often

involves piecing together several pieces of sequences that may not exhibit

great global similarity but have regions that are highly similar, and overlap

localized regions on other sequences. Therefore, the use of an algorithm that is

sensitive towards finding these highly similar localized regions is more

appropriate.



2.3 Seauence Assembly Software

One of the most important but labor intensive procedures in biology is

sequence assembly. Sequence assembly is the piecing together of related

sequence fragments into one contiguous sequence called a contig. The

procedure involves several stages. First, the sequence of each fragment must

be accurately entered into the computer. Next, the vector regions must be

recognized, and either deleted or marked so they are not included in the

assembly. Then the fragments must be accurately aligned and formed into

contigs. Finally, the overlapping fragments in the contig must be examined

and the conflicts and ambiguities in the sequences must be resolved to produce

a consensus sequence.

Most programs available today are capable of handling potential deletions,

insertions, and substitutions in the sequences, with a few programs such as

XBAP and PC/Gene, which expect carefully edited sequences as input, being

the more notable exceptions [Miller 1994]. In general, more capable

algorithms search exhaustively for all the best possible initial alignments, even

after some alignments have been accepted at some stringency level. Failure to

do so usually results in erroneous alignments. For many algorithms, when the

consensus sequence is ambiguous, many of them resort to the "majority wins"

rule to handle ambiguity that might have arisen due to gaps and nucleotide

substitutions [Miller 1994]. In many of the programs, Insertion/deletion

misalignment of the sequences is a significant source of consensus error or

ambiguity.



One of the more powerful assembly programs available today is the

phragment assembly program, or Phrap, by Phil Green. Phrap is a program

for assembling shotgun DNA sequence data [Green 1995]. One of its key

features is its ability to use a combination of user-supplied and internally

computed data quality information to improve accuracy of assembly in the

presence of repeats--a major source of difficulty in sequence assembly [Green

1995]. It utilizes a very efficient implementation of the Smith-Waterman

algorithm to perform pair-wise comparisons of the sequences, to generate

internal quality scores for all nucleotide positions on the sequences, and to

delineate the high quality regions of the sequences that it can use to construct

the contig.

Phrap is capable of performing large-scale assembly of sequences. Apart from

available memory of the computer running the program, there are no intrinsic

limits to the number or the length of sequences that Phrap can assemble in

one session. Moreover, the speed of assembly by Phrap is limited mainly by

the number of repeats in the target sequences, rather than the total number of

sequences, since repeats disproportionately increase the number of Smith-

Waterman comparisons that need to be performed [Green 1995].



Chapter 3
Single Nucleotide Polymorphism
Screening Methodology

This chapter describes the current protocol used for screening sequence data

for bi-allelic single nucleotide polymorphisms. The procedures performed by

the JAMALAH system and the algorithms used by the system are described.

Exact values for the parameters used by the algorithms are not offered in this

chapter, but are withheld for later discussion in Chapter 5, An Evaluation of

the JAMALAH System. The relevant design issues pertaining to the

implementation of the system are described later in Chapter 4. A flowchart of

the protocol is shown in Figure 3.

3.1 Sequence Clustering

The first major step in the protocol (step 1 in Figure 3) involves collapsing all

the available sequences in NCBI GenBank into clusters of sequences that are

most likely to be derived from the same gene. This is necessary to facilitate

the subsequent sequence assembly, as it is difficult to perform high quality

assembly with a large number of sequences in a timely fashion.



Figure 3: Single Nucleotide Polymorphism Screening Protocol. The first six steps of this protocol
are the identification of potential single nucleotide polymorphisms from sequence data. The
remaining steps are performed to confirm the existence of the identified polymorphisms.

Clustering is not a trivial task for the following reasons: GenBank, the official

genetic sequence database of the National Institute of Health, is a

comprehensive and historical collection of sequence data and thus contains a

1. Segregate sequences into clusters

2. Check size of each cluster •- REJECT: too few sequences

3. Assemble sequences - -REJECT: cannot assembleSsequences into one contig

4. Align sequences to contig

5. Tabulate the number of each base (G,
A, T, C, N) at each nucleotide position

6. Identify potential polymorphic nucleotides -*.REJECT: no polymorphicSnucleotides identified

7. Generate consensus sequence containing
identified potential polymorphic nucleotides

8. Determine suitability of consensus >~ REJECT: consensus
sequence for primer picking sequence not ideal

9. Find PCR primers flanking
potential polymorphic nucleotides

10. Review analysis and confirm primers

11. Order primers and wait for receipt

12. Do comparative sequencing to - ~ REJECT: identified
confirm identified polymorphisms nucleotides not polymorphic



large number of sequences, many of which are multiple representations of

essentially the same data [Boguski 1995]. A gene can have both genomic

clones and messenger RNAs in their partial or full-length form. Different gene

sequence entries can possess differing amounts of flanking and intron

sequences, and messenger RNA sequences can contain variation because of

alternate splicing. In addition, ESTs are both fragmentary and have a higher

error rate.

The JAMALAH system does not perform sequence clustering. Instead, it uses

as its input a set of previously clustered sequences, called the UniGene set,

obtained over the Internet from the National Center for Biotechnology

Information. The clusters are made up of sequences that share statistically

significant similarity in the 3' untranslated region [Boguski 1995; Schuler

1996].

3.2 Sequence Assembly and Alignment

Each sequence cluster is checked to see if it contains a sufficient number of

sequences for potential single nucleotide polymorphisms to be identified (step 2

in Figure 3). If the cluster have enough sequences--suggesting that it might

have a sufficiently high redundancy to allow any variation detected in the

sequences to be statistically significant--assembly of all the sequences in the

cluster is performed (step 3 in Figure 3). The sequences must be aligned to

achieve maximum, if not complete, overlap, as illustrated in Figure 4, so that

variations of a single nucleotide nature among the assembled sequences can be

easily located.



Figure 4: Sequence assembly. To assemble the sequences in a cluster, the sequences are
compared against each other to maximize overlap.

To carry out sequence assembly, JAMALAH makes use of a readily available

program called phragment assembly program, or Phrap, provided courtesy of

Phil Green. Phrap is a program for assembling shotgun DNA sequence data

[Green 1995]. One of its key features is its ability to use a combination of

user-supplied and internally computed data quality information to improve

accuracy of assembly in the presence of repeats--a major source of difficulty in

sequence assembly [Green 1995].

Since the emphasis of this thesis is not on sequence assembly algorithms, only

a brief summary of the main steps in Phrap's assembly procedure [Green

1995] is given here. Phrap reads in all the sequences that are going to be

involved in the assembly, and trims any low quality sequences that consist

GCATGACTATTTAAGCTACCTTtan -
a acGGAATCAACTAGC * TGAATATTTAAG -

- ATCAACTAGCATGACTATNTAAGCtnnnnn

- gGAATCAANNAGCATGAATATTTAAGCTA-
- ACTAGCATGACTATTTAAGCTACCTt a-

GCATGACTATTTAAGCTACCTTtan-
a acGGAATCAACTAGC *TGAATATTTAAG -

- ATCAACTAGCATGACTATNTAAGCtnnnnn

- gGAATCAACNAGCATGAATATTTAAGCTA-
- ACTAGCATGACTATTTAcgc t aCCTT-



predominantly of a run of single bases (for example, poly A) from the ends of

the sequences. This is necessary since such sequences can create spurious

matches in the subsequent alignment. Phrap then constructs complementary

sequences to all the input sequences, compares them and their complements,

and rejects duplicate sequences. Phrap also checks for probable vector regions

and eliminates them from further analysis.

Phrap then performs pairwise comparison of the sequences and their

complements using an efficient implementation of the Smith-Waterman-Gotoh

algorithm. This is done to determine the degrees of similarities among the

sequences, and their best alignments to each other. The alignment information

from the pairwise comparisons is used to revise sequence quality information

in the following fashion. If part of a sequence is confirmed by another sequence

to which it is complementary (either a user-supplied sequence or the

complementary sequence of a user-supplied sequence), the quality values of

the nucleotides within the confirmed region are augmented to reflect increased

confidence in the likely accuracy of that region of the sequence. Similarly, if

part of a sequence is confirmed by another similar sequence, its quality value is

also augmented, though to a lesser degree. After this is done, Phrap attempts

to identify probable chimeric and deletion reads, and excludes them from

subsequent assembly analysis.

Based on qualities of matching and mismatching nucleotides, Phrap computes

loglikelihood ratio (LLR) scores for various alignments of the sequences, and

identifies the highest quality sequences among them (ones with highest LLR

scores among several overlapping sequences). It then constructs contig layout

for the sequences using a greedy algorithm, and generates a contig sequence



using the highest quality parts of the layout sequences. Finally, the individual

sequences are then aligned to the contig sequence.

After Phrap has completed sequence assembly, a separate program in the

JAMALAH checks the result to make sure that only a single contig sequence

was generated. If multiple contig sequences are assembled from the sequences

in a cluster, then the cluster is rejected from further analysis.

3.3 Identification of Potential Polymorphic Nucleotides

If the sequences in a cluster can be successfully assembled into one contig

sequence by the sequence assembler, this suggest that the sequences are

probably highly similar. Using the alignment information generated by the

sequence assembler Phrap, the Single Nucleotide Polymorphism Detector

(SNPD) reconstructs the overlapping of the sequences by aligning the original

cluster sequences or their complements to the contig (step 4 in Figure 3).

SNPD then performs polymorphism identification analysis on the aligned

sequences using a set of user-specified parameters to discriminate nucleotide

positions likely to contain polymorphisms from those where differences are

likely due to sequencing or alignment error.



- GCATGACTATTTAAGCTACCTTtan-
- acGGAATCAACTAGC * TGAATATTTAAG-

- ATCAACTAGCATGACTATNTAAGCtnnnnn-
- gGAATCAANNAGCATGAATATTTAAGCTA-
- ACTAGCATGACTATTTAcgc taCCTT

GC-ATGATAT TT ,AGCTACCTTtan
- acGGAATCAACTAkC*TGAATTT AG-

- ATCAACT GCATGACTATNTIAAGCtnnnnn-
- gGAATCAACNIPGCATGAMýrTATTTIAAGCTA-

- ACTPIGCATGATrATThcgc taCCTT -
Consensus A TX'CAA ACILTAYGCAT AT iAI"~V~ AA\GCT1AC C ----

12345678901234567890123/467/89012345678
G 112 5 4
A 23 34 45 4 52 5 4 54 2
T 3 3 5 555 2
C 3 4 5 3 3 2222
g 1 1
al 1 1
t 2 1
c 1 1 1
N 1 1
n 11111
* 1

Figure 5: The number of each nucleotide (G/A/T/C/g/a/t/c) at every contig position is tabulated.
Ambiguous nucleotides (N/n) and padding characters (*) are also counted. Padding characters are
inserted into the gaps of certain sequences to allow their alignment to the contig (or consensus)
sequence. High-quality nucleotides, as determined by Phrap, are displayed in uppercase. Low-
quality nucleotides are shown in lowercase. The nucleotides displayed in outlined font (in the
center of the picture) constitute an identified polymorphic nucleotide, with a minor allele
frequency of 0.4. The quality check window is enclosed in dashes.



To identify potential nucleotide-based polymorphisms from the sequence

assembly, SNPD tabulates the numbers of guanine (G/g), adenine (A/a),

thymine (T/t), cytosine (C/c), no-call (N/n), and padding character (*) at each

nucleotide position in the sequence assembly, as demonstrated by the example

in Figure 5 above. No-call "nucleotides" are present in sequences, where the

exact identify of the nucleotide is not known, i.e., the sequencing data is noisy

at that particular nucleotide. Padding characters are characters inserted by

Phrap (and other popular sequence assembly programs) into the gaps of

certain sequences to allow the sequences to be aligned to the contig and other

sequences.

For each nucleotide position, the most frequently-occurring nucleotide, the so-

called major allele, is identified, and the allelic frequency for each nucleotide is

calculated using the formula below:

Occurrence of X
Allele Frequency (X) =--------------------------------------------------------

Occurrence of X + Occurrence of Major Allele

If the allele frequency for nucleotide X is at least min_minor_allele_freq,

and nucleotide X is confirmed by at least minreads_per_allele reads, i.e.,

there are at least two sequences that show nucleotide X at that particular

position in the sequence assembly, then nucleotide X is marked as a potentially

valid base for that particular position. If a nucleotide position has multiple

potentially valid bases, then that nucleotide is temporarily marked as being

potentially polymorphic. After this, a window that extends

qual_window_size bases to the left and to the right of the potential

polymorphic nucleotide is examined (see Figure 5). The total number of no-



calls and padding characters is determined. If this number exceeds

qual_windowthreshold percent of the total number of bases within the

window, then the potentially polymorphic nucleotide in question is rejected from

consideration as a potential polymorphic site. This last check ensures that the

identified potential polymorphisms are not due to poor sequence assembly or

poor sequence reads.

Many sequence analysis programs provide information about the quality of a

sequence by showing the high quality regions of the sequence in uppercase and

the low quality regions in lowercase. SNPD has been designed to take

advantage of this common feature. The user is allowed to specify whether or

not the SNPD algorithms should only consider high quality parts of the aligned

sequences. This is done by specifying the parameter use_high_qual_only

as being TRUE or FALSE. (Please refer to Appendix A for a listing of the default

values for the parameters that are used by the SNPD algorithm. These

parameters include minminorallele_freq, min minorallele_freq,

min_reads_per_allele, qual_window_size, qual_window_threshold,

among others.)

3.4 Generation of Consensus Sequence

If a potential nucleotide-based polymorphism is identified, SNPD will attempt

to generate a consensus sequence, so that the polymorphism can be ultimately

confirmed by comparative DNA sequencing (step 7 in Figure 3). The identity of

each nucleotide position in the consensus sequence is determined by

considering the identities of all the nucleotides at the corresponding position in

the aligned sequences. Starting from the identified potential polymorphic site,



SNPD sequentially scans the sequence assembly, nucleotide by nucleotide, in

the upstream direction. At each nucleotide position, it makes the following

determination. If all the overlapping sequences exhibit the same nucleotide X

at that position, it generates nucleotide X at the corresponding position in the

consensus sequence (plain face nucleotides in Figure 6). If the number of

occurrences of the most frequently occurring nucleotide X is at least 3 times

greater than that of the second most frequently occurring nucleotide Y (no-call

and padding character are considered), nucleotide X is generated in the

consensus sequence (underlined nucleotides in Figure 6); otherwise, a no-call

(N) is used instead (italicized nucleotides in Figure 6). A no-call is always

generated for nucleotides identified to be potentially polymorphic (shadowed

nucleotide in Figure 6). As shown in Figure 6, this determination is performed

at every nucleotide position until the number of aligned sequences that overlap

drops below min_consensusoverlap. The same procedure is then

performed in the downstream direction.

I

I I
I I

S CGATACCAC

I I
GGATACNAC

I I
I GGATCCCAC

GGNTCCAAC

Figure 6: Generation of consensus sequence (top) from aligned sequences (bottom four). The
sequence is generated as described above with the default setting. The value of
min_consensus_overlap is 3 for this example.
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After a consensus sequence is generated, the sequence is checked to ensure

that it contains at least one unambiguous region of at least

min_primer_length bases both upstream and downstream of the identified

potential polymorphism (regions to which the forward and reverse polymerase

chain reaction (PCR) primers can potentially anneal; step 8 in Figure 3). The

existence of these regions would suggest that a forward primer and a reverse

primer could potentially be picked upstream and downstream of the identified

potential polymorphism, respectively, such that the resulting PCR product

would span the identified potential polymorphism and allow its identity to be

confirmed. In addition, the region for the forward primer must be at least

min_marginupstream bases upstream of the identified polymorphism;

similarly, the region for the reverse primers must be at least

min_margin_downstream bases downstream of the polymorphism. These

margins are necessary, as nucleotides too close to the PCR primers cannot be

read accurately from the sequencing data [David Wang 1996b]. Lastly, the

sequence is checked to ensure that it can potentially have a PCR product at

least min_consensus_length bases long, as a PCR product that is too short

is inherently noisy and difficult to read after sequencing [David Wang 1996b].

If the consensus sequence survives all of the tests, it is considered a usable

consensus sequence. (See Figure 7 for an illustration of these various regions.)



Figure 7: Various regions of a relatively ideal consensus sequence. The top strand is the
consensus sequence generated by SNPD Detector.

In some instances, multiple potential polymorphic nucleotides can reside on

the same consensus sequence. When this is the case, SNPD will attempt to

generate one consensus sequence containing all the potential polymorphisms,

if possible. Whether this is possible or not depends on how far apart the

polymorphisms are, since an optimal length for PCR product for the dye primer

sequencing technology used for comparative DNA sequencing is between 200

and 400 bases [Wang 1996b].

The parameters described can be arbitrarily chosen to generate a reliable

consensus sequence. So far, using the default values for the parameters (see

Appendix A for a listing of the values), this algorithm has proven to be quite

reliable. Actual experimental results which support this claim are discussed

later in Chapter 5.
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3.5 Primer Picking

Once the consensus sequence is generated, primer picking is performed (step 9

in Figure 3). The selection of the forward and reverse primers is carried out

using a piece of software called PRIMER. The original version of PRIMER was

developed at the Whitehead Institute/MIT Center for Genome Research by

Steve Lincoln, Mark Daly, and Eric Lander [Primer 19961. The program picks

primers for PCR reactions, according to a set of conditions specified by the

user. Primer considers factors like melting temperature, concentrations of

various solutions in PCR reactions, primer bending and folding, and other

conditions when attempting to pick the optimal primer pair for a reaction.

After selecting all the primer pairs for all the consensus sequences, JAMALAH

automatically generates a primer purchase form, which is sent by electronic

mail to a human authority. The primers in the purchase form are verified by

the authority (step 10 in Figure 3), before an order is placed with a

biotechnology company (step 11). Sequencing is performed when the

synthesized primers arrive from the company (step 12). The result of the

sequencing is used to confirm the existence of the identified potential

polymorphisms.



Chapter 4
Design and Implementation
of the JAMALAH System

This chapter describes the principles that guide the design of the JAMALAH

system. It also describes the software implementation details of the system.

A complete listing of the programming code is provided in Appendix F.

4.1 Design Objectives

The following objectives were set for the design of the system:

* Must be functional and robust

* Require little or no human supervision to operate

* Modular design

* Easy for user to manipulate and analyze output

* Portable on UNIX workstations

* Use existing software where possible

* Easy to test, maintain and upgrade



Some of design principles and goals stated above were motivated by a previous

paper describing the informatics group at the Whitehead Institute/MIT Center

for Genome Research [Stein 1994]. The paper delineates the following

important points about the dynamics of a typical genome mapping laboratory:

* Laboratory protocols are always changing and being improved.

* Laboratory scientists prefer the user-friendliness of desktop personal

computers, particularly the Apple Macintosh computers. They are

familiar and satisfied with the "off-the-shelf' software that runs on

their Macintosh computers, and prefer not to have to master new

applications

* Electronic mail is a good way to inform the user upon the completion

of the tasks that require more than a few minutes, or even a few

seconds, to complete.

Most of the objectives listed at the beginning of this chapter are achieved by

the current prototype of the JAMALAH system. To accomplish the

objectives, the followings decisions were made at a very early stage of

developing JAMALAH. The UNIX operating system was chosen as the

operating system on which the system would be built. The choice of UNIX as

the operating system is advantageous for several reasons: First, in general,

UNIX computer workstations are computationally more powerful than most

desktop computers that are available today, and the proven reliability of their

UNIX operating system is highly desirable. Second, UNIX is an open system

that runs on many platforms; many programs written for UNIX are, therefore,



portable and can run on many different types of machines. Third, the UNIX

operating system has been used by the scientific research world for a long

time, many UNIX applications for analyzing biological data (including sequence

assembly and primer-picking programs) are available in the public and

commercial domains [Stein 1994]. This would accelerate the development of

JAMALAH, as appropriate existing software could be adapted to perform

certain tasks involved in detecting single nucleotide polymorphisms; this avoids

the writing of thousands of lines of new code. Lastly, the superior inter-process

communication architecture of the UNIX operating system promotes a tool-

based approach to designs, and facilitates the design of modular systems.

Modular, as opposed to monolithic, systems offer the advantages of ease of

maintenance, ease of upgrading, and simplicity of testing. A modular design is

also important for easy integration of existing software into the JAMALAH

system. However, the UNIX operating system is not the preference of most

laboratory scientists, as previously discussed [Stein 1994]. Attempts to

remedy this problem have been made and will be described.

4.2 Implementation of the System

Figure 8 shows the components of the JAMALAH system. The components

consist of a collection of UNIX programs connected serially through UNIX

pipes. Simply, a pipe is a way to connect the output of one program to the

input of another program directly, without generating any temporary

intermediate file. Most of the programs within this so-called pipeline have been

implemented as UNIX input-output filters (programs that read in some input,

perform a transformation on it, and write some output). More specifically,



they receive their input from some UNIX standard input and generate output

to some UNIX standard output.

which runs on an Apple Macintosh PC, all components shown run on the UNIX operating system.
They include analytical programs such as Phrap, SNP Detector and PRIMER; and a number of
auxiliary programs whose jobs are to act as translators between the other components. Each
component in the "pipeline" is implemented as an UNIX input-output filter, and the components
are connected together through UNIX pipes. The system reads in a large sequence file through
the input end of the pipeline. The user eventually receives the results of the SNP detection
analysis in two Microsoft Excel files on a Macintosh Computer, if he or she so desires.

]



In a typical session for JAMALAH, the program at the beginning of the

pipeline reads in the sequence data from a file residing on an UNIX

workstation. Some time later, the program at the very end of the pipeline

gathers up the final results of the analysis, formats them, and sends them to

the user via electronic mail. Each component in the JAMALAH system will be

described in more detail below.

4.2.1 Sequence File Parser and Phrap-to-SNPD Translator

The first component in the JAMALAH pipeline is a Perl program that parses

the UniGene sequence data (UniGene cluster format) into a format that the

sequence assembler Phrap can accept (FASTA format), and converts the

result of the sequence assembly into a format that SNP Detector, the next

component in the pipeline, can understand. This first program is made up of

two sub-components--Input Sequence File Parser and Phrap-to-SNPD

Translator. (See Figures A-B in Appendix B for samples of the UniGene

format and the FASTA format.)

The Input Sequence File Parser sub-component reads the input file containing

all the clustered sequences, extracts all the sequences in a cluster, writes the

sequence to a temporary file, and executes the sequence assembler (Phrap) to

perform assembly on the sequences in the temporary file. When the sequence

assembler is done assembling the sequences, the Phrap-to-SNPD Translator

sub-component reads the analysis files generated by the sequence assembler,

reformats the assembly and alignment data in one of the files, and sends the

reformatted data to the next component, the SNP Detector. For each cluster

it looks at, this program also checks to make sure that the cluster contains a



sufficient number of sequences, and that the sequences are successfully

assembled into one contig by the sequence assembler. The steps described are

repeated, until all the clusters have been read and subjected to sequence

assembly.

Perl (Practical Extraction and Report Language) was chosen as the

programming language for this component, because Perl offers elegant and

powerful means to manipulate text-based data [Wall 1991]. The language has

been optimized for scanning and extracting information from large amounts of

arbitrary text, and offers sophisticated pattern matching techniques. In

addition, Perl programs are extremely portable.

4.2.2 The Sequence Assembler

To carry out sequence assembly, JAMALAH makes use of a readily available

program called phragment assembly program, or Phrap, as previously

described in Chapter 3, Single Nucleotide Polymorphism Screening

Methodology. Phrap is a relatively large C program for assembly of DNA

sequences. It is widely used and has been proven to be quite robust. It is

important that the sequence assembly component is robust and that the

result of its assembly is as accurate as possible, since a low quality assembly

will significantly affect subsequent analysis by other components in the

pipeline.

When Phrap is invoked by the Input Sequence File Parser, it reads in all the

sequences from the file generated by the Sequence File Parser It then

performs assembly analysis on the sequences, and outputs the result in



several files. As described in the previous section, the analysis data in one of

the files, specifically the so-called "ace" file, is read by the Phrap-to-SNPD

Translator and eventually used for analysis by SNPD. The "ace" file contains

the following information: the sequences of the padded contig and sequence

reads, the locations of the sequence reads with respect to the contig sequence,

and information about how the contig sequence is pieced together as a mosaic

of the high quality parts of the reads. (See Figure C in Appendix B for

additional information on the "ace" format.)

By adapting Phrap for the JAMALAH system, the development time for the

system has been dramatically reduced. The modular design of the JAMALAH

system has made the integration process relatively painless, and the use of

Perl makes the task of extracting information from the "ace" file generated by

Phrap straightforward.

4.2.3 The Single Nucleotide Polymorphism Detector (SNPD)

The next major component in the pipeline is the Single Nucleotide

Polymorphism Detector (SNPD), sometimes also referred to as the SNP

Detector. The SNPD program is written in C++. This particular programming

language's strong support for code abstraction has been most helpful in the

development of the program. Its excellent performance in terms of speed is

also desirable.

Through its UNIX standard input, the SNPD program receives the contig

sequence, sequence reads, and the assembly alignment information generated

by the sequence assembler. The Phrap-generated data have been translated



by the Phrap-to-SNPD Translator into a format SNPD expects (see Figure D

in Appendix B for a sample of the format). SNPD aligns each sequence to the

contig according to the alignment instructions provided by Phrap, and performs

SNP identification analysis on the aligned sequence using the algorithm

described in Chapter 3, Single Nucleotide Polymorphism Screening

Methodology. If it identifies a potential single nucleotide polymorphism, it would

attempt to generate a consensus sequence using an algorithm also described in

Chapter 3.

Through its UNIX standard output, it writes out the consensus sequence and

other information the primer-picking program--the next component in the

pipeline--needs to select a pair of primers that flank the identified potential

SNP. The format it uses is called Boulder IO, a text-based, input/output

format developed at the Whitehead Institute/MIT Center for Genome

Research [Boulder IO 1996]. Basically, the format is a series of tag-value

attributes in the form TAG=VALUE. For example, the tag for an attribute pair

could be "SEQUENCE" and its corresponding value could be "GNAATTCTATCAT".

(A sample of the output SNPD generates is shown in Appendix C. Additional

explanation is also provided in Appendix C.)

The SNP Detector can generate detailed analysis reports, including a complete

compilation of the analysis for each nucleotide position. These additional

reports are currently produced as plain UNIX text files.



4.2.4 The Primer Picker - PRIMER

The primer picking component comes immediately after SNPD. The specific

program JAMALAH employs for this component is PRIMER, a C program

developed by the Whitehead Institute/MIT Center for Genome Research

[PRIMER 1996]. PRIMER picks primers for PCR reactions, according to a set

of conditions and parameters specified by the user. These conditions and

parameters include melting temperature, optimal length of primer,

concentrations of various solutions in PCR reactions, location of the target

region. If the value for a condition or parameter is not specified provided,

PRIMER resorts to using the default value [PRIMER 1996].

The PRIMER parameter TARGET deserves special discussion here. It allows

JAMALAH to specify a region or a list of regions in the consensus sequence

that the chosen primers should flank but not touch. Specifically, SNPD

provides PRIMER with the instruction to pick the primers around the identified

potential SNP site and to pick them far enough upstream and downstream of

the site so that the primers do not intrude the mandatory margins discussed in

Section 3.4, Generation of Consensus Sequence. Like all other parameters, this

parameter is specified using the Boulder IO format, as shown in Appendix C.

PRIMER communicates solely through UNIX standard input and output using

the Boulder IO format described in the previous section and illustrated in

Appendix C. A sample of the output that PRIMER has generated from data

provided by SNPD is also offered in Appendix C.



4.2.5 The Primer Order/SNP Data Processor and BinHex

The output from the primer picker is directed to the Primer Order and SNP

Data Processor. The Processor is a simple Perl program that parses the

Boulder IO data generated by PRIMER to produce human-readable primer

purchase orders and SNP data-related files. After the "files" have been

generated, they are passed via UNIX pipe to a program called BinHex.

BinHex, by Lincoln Stein, is an utility program that encodes text or binary

data using the Macintosh BinHex format. It allows one to convert text files in

such a way that when the files are decoded on a Macintosh, they appears as

normal Macintosh file. In their encoded state, these encoded files are in ASCII

and can be sent easily as electronic mail messages.

The JAMALAH system uses BinHex to encode the "files" generated by the

Primer Order and SNP Data Processor as files which would eventually be

recognized by the Macintosh operating system as belonging to the program

Microsoft Excel, a popular spreadsheet application for the Apple Macintosh.

The encoded files are then sent to the user via electronic mail. Since BinHex is

a format supported by many electronic mail clients for the Macintosh

computers which are preferred by laboratory scientists, files encoded in

BinHex are usually recognized and automatically decoded when the user reads

his or her mail. Moreover, many electronic mail clients provide automatic

notification of new mail arrival. Thus, sending the primer purchase order and

SNP data to the user upon the completion of the time-consuming SNP

analysis is an elegant way to inform the user that the analysis has been

completed. This approach frees the user from constantly checking up on the

progress of the analysis. An additional advantage is obtained by providing the



results of the analysis to the user as Microsoft Excel spreadsheets. He or she

is able to manipulate the data using Microsoft Excel, which many of the

laboratory scientists have become accustomed to.

A snapshot of the primer purchase order and SNP analysis data as Microsoft

Excel spreadsheets is provided in Appendix D.



Chapter 5
An Evaluation of the
JAMALAH System

The robustness and functionality of the JAMALAH system have been

evaluated on one set of sequence data. The experimental results from the

evaluation are described in this chapter. Some relevant background

information not given in previous chapters will also be provided.

5.1 The Sequence Data

The set of sequence data used in the evaluation is derived from the January

1996 NCBI release of the UniGene set. It differs from the official NCBI

release in that the SINEs and the LINEs have been masked out, courtesy of

Greg Schuler of NCBI [Hudson 1996]t. This particular data set contains

45,252 clusters, 120,774 sequences, and 38,548,154 nucleotides. The clusters

average 2.7 sequences per cluster; the largest cluster contains 1,127

sequences. Among them, 7,661 clusters contain at least 4 sequences, and only

4 clusters have more than 200 sequences. The average length of the

sequences is 319 bases. (See Table B in Appendix E for a table summary.)

tSINEs and LINEs stand for short interspersed elements and long interspersed elements,
respectively; in brief, they are repetitive elements that are found throughout the human
genome [Watson 1992].



5.2 The Analysis

The following sections summarize the various analyses performed by the

JAMALAH system for the evaluation. The rationale behind the choice of the

default value for some important parameters is also offered.

5.2.1 Assembly of Sequences

Default Phrap parameters were used for sequence assembly. (See [Green

1995] for additional information.)

The 7,657 clusters that have between 4 and 200 sequences were subjected to

sequence assembly analysis. Of the 7,657 clusters on which assembly was

performed, only 77 clusters (approximately 1%) could not be assembled to form

one single contig; 7,580 clusters were successfully assembled into single

contigs. The 7,580 contigs have a total of 3,304,222 nucleotides, giving each of

them an average length of 436 bases.

5.2.2 Identification of Potential Polymorphisms

Default SNP Detector parameters listed in Appendix A were used for the

identification of potential single nucleotide polymorphisms in the assembled

sequences. The reasoning behind the choices of some parameter values is now

given.

Minimum Minor Allele Frequency

The default value for minimum minor allele frequency of is currently 0.2, or
20%; this is a loose but reasonable bound for detecting single nucleotide
polymorphisms, for several reasons. For one individual who is polymorphic
for a particular nucleotide, he or she always exhibits the two allele equally,
since an individual always inherits one allele from the father and the other



from the mother. But this not the case when a group of random individuals
are screened. The reason is simply that some individuals in the pool are not
polymorphic for the particular locus, even though a significant population of
people exhibit polymorphism for that locus.

The attempt to identify potential nucleotide polymorphisms by analyzing the
large collection of DNA sequences from NCBI is almost analogous to
comparative DNA sequencing of random DNAs from multiple unrelated
individuals. Simply, the NCBI UniGene collection is dominated by a large
number of EST sequences. In Release 94 of the UniGene collection, the most
recent release, 237,476 of the 245,320 sequences subjected to clustering
analysis are ESTs; in other words, an overwhelming 96.8% of the sequences
in the UniGene collection are ESTs. As was mentioned, most ESTs are
sequenced from multiple individuals [Adam 1995]. In addition, there is little
to suggest that other genes in the NCBI collection are from related
individuals.

Based on the latest result from comparative DNA sequencing of 10 unrelated
individuals performed by David Wang and colleagues under the direction of
Eric Lander at the Whitehead Institute/MIT Center for Genome Research,
single nucleotide polymorphisms occurs at a rate of approximately 1 per 900
bases, when the minor allele frequency cutoff is 0.3 [Wang 1996a; Hudson
1996]. The choice of 0.2 as the cutoff for the JAMALAH system is, therefore,
a reasonable choice--albeit a safe one.

Minimum Number of Reads Per Allele

By default, a polymorphic nucleotide that satisfies the requirement for the
minor allele frequency must also have 2 high-quality reads per allele. In
other words, a locus tentatively identified to be polymorphic for G (guanine)
and (A) must be confirmed by two sequence that exhibit a "G" and two
sequences that exhibit an "A" for that locus. A choice of at least 2 for this
parameter is probably necessary, if one considers the high error of the EST
sequences. In fact, the choice of 2 is extremely safe. The probability that the
same nucleotide can exhibit the same allele due to sequencing error, which
occurs at a rate of 1 per 100 bases, is 0.0002, or 1 per 5000 bases.

Minimum Consensus Overlap

To generate a consensus sequence from the sequence assembly, multiple
sequence reads, currently 2 reads, are required to confirm each nucleotide in
the consensus sequence. The parameter for the number of reads required is
called minimum consensus overlap. As described in Chapter 3, the
nucleotide sequence of the consensus sequence is generated starting from the
site of the identified potential SNP. The identity of each nucleotide in the
consensus sequence is determined by considering the identities of the
nucleotides in the aligned sequences at the corresponding nucleotide position.
Whenever the overlapping level of the aligned sequenced drops below
minimum consensus overlap, the generation of consensus sequence is
terminated.

As previously mentioned, the default value for minimum consensus overlap is
2. Considering that the chance of two high quality reads showing the same
nucleotide when they should be different in actuality is quite low, less than
0.001, the choice is extremely safe, especially if one consider the fact that the
algorithm currently generates an 'N' for nucleotide positions that exhibit



ambiguity and only uses the "majority wins" rule when the occurrence of the
major allele is at least 3 times greater than the occurrence of the second
most frequently occurring allele. This conservative approach should almost
completely avoid any chance that a consensus sequence nucleotide is called
incorrectly, resulting in subsequent incorrect selection of PCR primers.

Minimum Primer Length

The default value for this parameter is currently 20 bases, the typical length
for a PCR primer.

Minimum Margin Downstream and Minimum Margin Upstream

The default values are 10. These 10-base windows are necessary to produce
readable sequencing gels.

Minimum Consensus Sequence Length

The default value for this parameter is currently 80. Considering the fact
that the default size of a primer is 20, and that the minimum margin from
the target region to the end of the primer is 10 by default, a choice of at least
70 would be necessary for this parameter.

A total number of 7,580 clusters were subjected to SNP identification analysis.

5,046 potentially polymorphic loci were identified to be present among 786

clusters. Assuming the contig sequences for these 786 clusters also have an

average length of 436 bases, then a potential SNP is found at the rate of

approximately 1 SNP per 69 base among the 786 contig sequences. Since

7,580 clusters were subjected to SNP detection analysis, the rate of screening

for SNPs is 1 per 655 bases. (See Table C in Appendix E for a summary of the

numbers reported here.) The frequency of SNPs reported here is within the

range of 1 SNP per approximately 200 bases to 1 SNP per 1000 bases

previously reported by others [Kimura 1983; Wang 1996a]. However,

clustering of identified SNPs is observed in many of the consensus sequences,

suggesting that many of the identified polymorphisms might be false.



5.2.3 Generation of Consensus Sequence and Primer Picking

Consensus sequences usable for primer picking could only be generated for 338

clusters using the default setting. Primers were successfully selected for 272

consensus sequences, using Primer's default setting.

5.3 The Confirmation Process and the Result

To evaluate the accuracy of the system and to confirm identified single

nucleotide markers, comparative DNA sequencing was performed. Sixteen

consensus sequences generated by JAMALAH were randomly chosen from the

"not-terrible" ones and uniformly chosen from various parts of the output

generated by JAMALAH; this was done to avoid any potential bias in the

evaluation process. These "not-terrible" consensus sequences consist of the

ones that do not exhibit clustering of potential SNPs. The sixteen consensus

sequences chosen range in size from 89 bases to 582 bases, and average 187

bases in length.

All sixteen sequences were subjected to primer picking. Primer pairs were only

picked for 9 out of the 16 sequences. In general, the sequences that failed

primer picking are shorter than the other nine sequences, which, except for

two, are all longer than 187 bases. Among the seven that failed, none is longer

than 160 bases.

The selected primers were used to amplify the genomic DNA of three unrelated

human individuals (an Amish, a Venezuelan, and an American from Utah), and



a pool of genomic DNA from ten unrelated individuals; four PCR reactions were

carried out for each primer pair selected. Seven out of the 9 primer pairs (78%)

were successful in amplification. This success rate is comparable to the

success rate one gets if the primers are picked from previously sequenced DNA

sequences (approximately 80%) [Wang 1996b], and strongly suggests that the

algorithm for generating consensus sequence is functional.

Of the seven sequences that were successfully amplified, only 6 had readable

sequences. Among these six that had readable sequences, 3 sequences

confirmed the single nucleotide polymorphisms identified by JAMALAH. One

of the three sequences showed one SNP not identified by the JAMALAH

system. (Figure 9 on next page shows actual sequence traces for one of the

confirmed single nucleotide polymorphisms originally identified by JAMALAH.)

In summary, the rate of SNP confirmation for the JAMALAH system is 3 out

of 6, or 50%. (See Table D in Appendix E for a summary of these numbers.)
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Figure 9: Actual sequence traces from comparative DNA sequencing confirmation of one of the
single nucleotide polymorphisms identified by the JAMALAH system. Genomic DNA from
unrelated individuals were amplified by polymerase chain reaction and sequenced using dye
primer cycle sequencing technique. The top three traces belong to the three unrelated
individuals--an Amish, an American from Utah, and a Venezuelan. The bottom one belongs to a
pool of ten unrelated people. The arrows point to the polymorphic nucleotide. This particular
nucleotide is polymorphic for A (adenine) and C (cytosine).
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5.3 Interpretation of the Result

Based on the limited preliminary data, the rate of isolating single nucleotide

polymorphisms using the JAMALAH system represents a two-fold

improvement over isolation using STS (sequenced tag set) map [Wang, 199b].

However, this number is misleading, because only a small subset of the

potential SNPs identified by JAMALAH were chosen to be sequenced. In

addition, the way the confirmation experiment was performed could also have

affected the rate of SNP confirmation. Perhaps, the individuals sequenced

represent a portion of the population that does not exhibit polymorphism for

the three loci that were not confirmed. Perhaps, there is a statistically

significant number of people who do exhibit polymorphism for these loci. The

inclusion of the genomic DNA pool, however, should have reduced the chance of

such a scenario. More testing needs to be performed to determine the system's

true performance.

5.3 Major Problem Identified

From careful analysis of the sequence assemblies generated by the JAMALAH

system, one major problem with the current prototype has been identified.

Specifically, the problem is the JAMALAH system's inability to recognize

variations in nucleotides that arise due to alternative splicing of certain regions

of certain sequences (see Figure 11 in Chapter 6, Strengths and Limitations of

the JAMALAH System, for an illustration of alternatively spliced regions). In

not being able to recognize these regions, JAMALAH falsely identifies a great

number of nucleotides in these regions as being potentially polymorphic. One



would suspect that if these highly variable regions exist, then the sequences

should never have been clustered together in the first place or would be able to

be assembled into one single contig by the sequence assembler. However, this

is not true. If two sequences are highly similar over a long stretch of

nucleotides, great differences in the nucleotide sequence of a much shorter

region would have no effect on the alignment. This is the natural behavior of

dynamic programming algorithms for aligning sequences. However, the false

identification of polymorphisms due to alternative splicing is one problem that

can be remedied. Potential solutions are offered in the next chapter.



Chapter 6
Strengths and Limitations
of the JAMALAH System

This chapter describes the strengths and limitations of the current JAMALAH

system, and possible ways to remedy some of the problems discussed.

Comparison of the JAMALAH system to a similar system being developed by

a team at the Cooperative Human Linkage Center (CHLC) will also be given.

6.1 Strengths of the System

The development process and the evaluation of the system described in

Chapter 5 have revealed the following strengths of the JAMALAH system:

* System is relatively easy to use.

* Easy to test and debug.

* When a high quality consensus sequence is generated by the SNP

Detector, confirmation rate of actual polymorphism is relatively high.



6.1.1 System Easy to Use

Once the system is started on one of the UNIX workstations, no human

intervention is necessary until the completion of the analysis. A typical

session with the JAMALAH system usually involves typing a simple line of

command to set up the various components in the pipeline. The analysis of

over 45,000 UniGene sequence clusters is usually completed with 14-16 hours

on a Sun SPARCstation 20 with 80 megabytes of RAM running SunOS

version 4.1.3.

6.1.2 System Easy to Test and Debug

The modular structure of the system and its use of text-based format for data

communication among the components in the pipeline makes the system easy

to test. Since each component in the JAMALAH system is essentially an

input-output filter, it is easy to test each individual component or a group of

components by first detaching them from the rest of the pipeline. The well-

defined format accepted and generated by each filter makes it extremely easy

to write short simple Perl programs that parse the data generated by the

filters to their human-readable forms. The use of the Boulder IO data format is

particularly helpful, because a complete library of functions for manipulating

the format is available. In addition, because both the Phrap-to-SNPD

Translator and the SNP Detector are capable of generating detailed analysis

and log files, it is easy to analyze the sequence assemblies for debugging

purpose.



6.1.3 High Confirmation Rate for High Quality Consensus Sequences

When the sequences can be perfectly aligned and their alignment results in

nearly perfect matches in the nucleotides of the sequences (as demonstrated in

Figure 10 by a real example from the SNPD analysis file), the confirmation

rate of identified single nucleotide polymorphisms is relatively high. By

preliminary results presented in Chapter 5, An Evaluation of the System, the

rate of confirmation is 50%. From careful studies of the analysis files

generated by SNPD, such high quality alignments result in the generation of

high quality consensus sequences that contain usually one or two ambiguous

bases per approximately 170 bases. This suggest that one might be able to

identify many real single nucleotide polymorphisms efficiently by performing

confirmation experiments on these high quality consensus sequences.

Figure 10: A high quality sequence alignment

6.2 Limitations of the System

The following weaknesses of the JAMALAH systems were revealed during the

evaluation.

* Many probable non-polymorphisms are falsely identified.

* Inconsistent inter-component data format

GAAGGAACAAACCACTGAATCACACAACATGGAC [C] AatctcaAATCATTATGCTGATGGAAAGAA
GAAGGAACAAACcactgantcacacAACATGGAC [A] AATCTCAAATCATTATGCTGATGGAAAGAA
GAAGGAACAAACCACTGAATCACACAACATGGAC [C ] AatctcaAATCATTATGCTGATGGAAAGAA
GAAGGAACAAACCACTGAATCACACAACATGGAC [A] AATCTCAAATCATTATGCTGATGGAAAGAA
GAAGGAACAAACCACTGAATCACACAACATGGAC [A] AATCTCAAATCATTATGCTGATGGAAAGAA
GAAGGAACAAACCACTGAATCACACAACATGGAC [C] AatctcaaagcattatGCTGATGGAAAGAA
GAAGGAACAAACCACTgaatcacacaa------- [-] -------- ----------------------
GAAGGAACAAACCACTGAATCACACAACATGGAC [A] AATCTCAAATCATTATGCTGATGGAAAGAA
GAAGGAACAAACCACTGAATCACACAACATGGAC [A] AATCTCAAATCATTATGCTGATGGAAAGAA
GAAGGAACAAACCACTGAATCACACAACATGGAC [A] AATCTCAAATCATTATgctgat--------



6.2.1 False Identification of Non-Polymorphisms

A major cause of false identifications of potential single nucleotide

polymorphisms by JAMALAH is its inability to accurately detect probable

alternatively spliced regions or vector arms on the sequences. The presence of

alternatively spliced regions in the sequences causes a series of adjacent

nucleotide mismatches, which manifest themselves in the consensus

sequences as a series of no-calls (see Figure 11). In many cases, these

mismatches are identified as potential single nucleotide polymorphisms by the

system.

Figure 11: Alignment of alternatively spliced sequences. Presence of alternatively spliced
regions results in many cases of false identification of potential SNPs. These false polymorphisms
can be easily recognized by examining the consensus sequence, as they often appear as clusters of
no-calls in the consensus sequence.

A preliminary analysis of the data from the evaluation described in Chapter 5

reveals that 3,701 of the 5,046 potential polymorphic loci identified by

JAMALAH are identified from the sequences of only 86 clusters, suggesting

GAAGACAATGTCACCCAATGTCATGGTAT [T] GGTGATTATGTCGCCGTTGAGTTCGGTCA
GAAGACAATGTCACCCAATGTCATGGTAT [T] GGTGATTATGTCGCCGTTGAGTTCGGTCA
GAAGACAATGTCACCCAATgtcatggnat [t ] ggtgATTATGTCGCCGTTGAGTTCGGTCA
GAAGACAATGTCACCCAATgtcatggnat [t ] ggngattatGTCGCCGTTGAGTTCGGTCA
GAAGACAATGTCACCCAATGTCATGGTAT [T] GGTGATTATGTCGCCGTTGAGTTCGGTCA

GAAGACAATGTCACCCAATGTCATGGTCT. A_ CR AW'_ •
GAAGACAATGTCACCCAATGTCATGGTAT [T] GGTGATTATGTCGCCGTTGAGTTCGGTCA
GAAGACAATGTCACCCAATGTCATGGTAT [ T ] GGTGATTATGTCGCCGTTGAgt tc ggtna
gaagACAATGTCACCCAATGTCATGGTAT [t ] ggtgantatgtcgCCGTTGAGTTCGGTCA

GAAGACAATGTCACCCAATgtcatggnat [t ] ggtgATTATGTCGCCGTTGAGTTCGGTCA
GAAGACAATGTCACCCAATgtcatggnat [t] ggggattatGTCGCCGTTGAGTTCGGTCA
GAAGACAATGTCACCCAATGTCATGGTCT 1 • • •'_A i•i

Consecutive No-CallsI
Consecutive No-Calls

_ _



that an overwhelming majority of the identified potential polymorphisms are

probably not real. Careful examination of the sequence alignment for these 86

clusters strongly suggests that many of the false polymorphisms are detected

due to alternative splicing. There is clearly a need to account for mismatches

in the nucleotides due to alternative splicing, if one wishes to reduce the

amount of human intervention in the SNP screening process.

Several approaches can be taken to handle alternatively spliced subsequences.

The first approach involves inserting an additional filter before the SNP

Detector. The job of this component is to perform a preliminary alignment of

the sequences, and to recognize probable variations due to alternative splicing,

and remove the region from all sequences that overlap it. This filter would,

however, have to duplicate many of the tasks the SNP Detector already

performs, including the aforementioned alignment of sequences using Phrap-

generated information and the analysis of nucleotide composition at each base

position of the aligned sequences.

Then, the second approach is clearly to implement the recognition of the

alternatively spliced subsequences within the SNP Detector itself. This would

avoid the duplication of functionality in the SNP detection pipeline. However,

this approach goes against one of the original design objectives for the system,

specifically, to make the system as modular as possible. This approach makes

an already relatively large piece of code even more difficult to modify and

maintain.

The final approach is to attempt to recognize these alternatively spliced

subregions by analysis of the consensus sequence alone. As has been observed



from the analysis generated by the SNP Detector, false nucleotide

polymorphisms that arise due to alternative splicing manifest themselves in

high numbers in very localized subregions of the sequences. These subregions

appear in the consensus sequences as subsequences that exhibit a very high

number of no-calls (N's), since a 'N' is generated for every identified, potentially

polymorphic nucleotide. Based on the fact that single nucleotide

polymorphisms appear approximately 1 every 1000 bases and the assumption

that their occurrence is relatively uniform, it is possible to write a dynamic

programming function to determine where these alternatively spliced regions

begin and end, and thereby, remove them from the consensus sequence.

Similarly, the multiple sequence alignment can be examined to identify these

regions, as the sequence of all consensus sequences is determined directly from

those of the aligned sequences. Steps to handle alternatively spliced

subregions using this approach have been taken, but much work remains to be

done.

6.2.2 Inconsistent Inter-Component Data Format

In the future, the Boulder IO format should also be adapted for the

communication between the Phrap-to-SNPD Translator and the SNP

Detector. The Boulder IO format was not used for communication of data

between these two components, because when the SNP Detector was being

implemented, the Boulder IO format was unknown to this author.

6.3 Demigloss / The CHLC System

Demigloss is an application currently being developed by Kenneth Buetow and

colleagues at the Cooperative Human Linkage Center (CHLC) [Buetow 1996].



It is part of a larger system designed to identify potential single nucleotide

polymorphisms from sequence assemblies. The system takes sets of clustered

sequences from the National Center for Biotechnology Information (NCBI)

UniGene collection, base-calls them if ABI sequencer trace data are available,

determines if primers exist for the set, determines if the set has sufficient

redundancy, assembles them, identifies potential polymorphisms, and

determines if the candidate is flanked by existing primers.

The analytical core of the system is currently composed of three components:

Phred for base-calling of sequence traces, Phrap for assembly of sequences,

and Demigloss for identification of potential polymorphisms from sequence

assemblies. Demigloss uses user-specified and derived nucleotide quality

measures to discriminate regions likely to contain variants from those where

differences are likely due to low sequence quality.

This CHLC system is of particular interest, because it shares several

similarities with the JAMALAH system. They are similar in that both

systems utilize publicly available, proven software (specifically Phrap) to

perform the assembly of sequences, use a dedicated program for identifying

polymorphisms from sequence assemblies, and allow the user to specify the

parameters that are used to discern potential polymorphic nucleotides from

false candidates. They, however, differ in the following ways. Unlike the CHLC

system, JAMALAH currently does not generate quality data from ABI traces

for any of the sequences, nor does JAMALAH identify only polymorphic sites

flanked by published STS (sequenced tag set) primers. In addition, by default,

JAMALAH currently analyzes all NCBI UniGene clusters having four or more

sequences, while the CHLC system only checks ones containing ten or more



individual sequences. Therefore, JAMALAH's approach should allow it to

identify more potential single nucleotide polymorphisms, since JAMALAH

analyzes more clusters. Once JAMALAH's ability to detect alternatively

spliced regions is improved, it will also be able to do so with high accuracy.

Information on the Demigloss system has not been published; therefore, very

little is known about the other aspects of the Demigloss system, particularly

with respect to the algorithm it uses to identify potential nucleotide

polymorphisms from sequence assemblies. But what is known is that the

Demigloss system use sequencing trace data to generate sequence quality

scores, which are then used by Phrap to achieve high quality assembly of the

sequences. While this may improve the quality of the alignment, it has the

penalty of hindering throughput.



Chapter 7
Conclusions and
Future Directions

7.1 Future Directions

This section outlines several directions in which the JAMALAH system can be

expanded.

7.1.1 Evaluate Potential Benefits of Base-Calling

As discussed in Chapter 6, Strengths and Limitations of the JAMALAH System,

performing base-calling on available sequencing trace data will definitely add

dramatically to the time required for JAMALAH to completely analyze a large

dataset such as the NCBI UniGene set. This bottleneck exists due to the

current need to retrieve trace data from remote sites. If, however, the

sequence assembler can generate many more high quality sequence

assemblies, which might result in more accurate identification of potential

SNPs, generation of longer consensus sequences that can be used for primer

picking, etc., then it might be worthwhile to implement automated base-calling

capability for the JAMALAH system. To study whether or not the need for

this capability is warranted, quality files can be generated for a small subset of



the UniGene set, either manually or automatically by writing simple programs.

This small subset of the UniGene can then be analyzed to determine the

feasibility of automated base-calling.

7.1.2 Improve Recognition of Alternatively Spliced Regions

Currently, JAMALAH's ability to screen out alternatively spliced sequence

regions is not robust, as discussed in Chapter 6. It needs to be improved.

7.1.3 Graphic Sequence and Trace Viewing Capability

To facilitate the confirmation of identified, potentially polymorphic nucleotides,

it is desirable to have a program that presents in graphics the aligned

sequences and their corresponding traces (if the traces are available). The

adaptation of existing, publicly available software to achieve this goal is a

sensible approach. Some publicly available software includes Ace.mbly, a

graphic interactive program which allows the assembly and editing of DNA

sequences generated by fluorescence sequencing machines [Thierry-Mieg

1995], and TED (Trace EDitor), a program that allows user to view and edit

traces [Gleeson 1991].

7.2 Conclusions

This thesis has presented the design, implementation, and evaluation of the

JAMALAH system, a prototype software system for detecting single

nucleotide polymorphisms by sequence analysis. The system has been used to

analyze a set of sequence data from the NCBI UniGene collection.



Comparative DNA sequencing has been conducted to confirm some of the

potential polymorphisms identified by the system, and the accuracy of the

polymorphism detection by the system has been evaluated. The results have

shown the JAMALAH system to be capable of accurate identification of

potential single nucleotide polymorphisms by sequence analysis.

The JAMALAH system, of course, is not a perfect system yet. Much work

remains to be done to make it as powerful and useful as possible. The system

still needs to be able to recognize alternatively spliced regions on sequences

with more precision. Ideally, it also needs to provide a method for the user to

review the analysis in a graphical, interactive and information-rich way. Some

of these needs will probably be addressed soon.
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Appendix A: Default SNP Detector
Parameters

Table A: SNP Detector Parameters for Identification of SNP Polymorphisms
Parameter Name Description Default

Value
usehigh_qualonly If TRUE, SNPD considers only high-quality TRUE

nucleotides in analysis. Otherwise, all nucleotides
are considered. If FALSE, all nucleotides are
considered.

min_minor_allelefreq An allele whose allele frequency is at least this 20 (%)
value (and satisfies the min_reads_per_allele
requirement below) is considered a valid allele for
that locus. Otherwise, it is not.

min_readsperallele An allele that is confirmed by at least this many 2
sequence reads (and satisfies the
min _minor_allele freq requirement above) is
considered a valid allele for that locus. Otherwise,
it is not.

qualwindow_size Width of window to perform quality check (see 5
qual_window_threshold). Actual width of the
window is 2 * qual_window_size + 1 centered on
nucleotide under consideration

qualwindow_threshold If the quality check window (see qual_window_size 10
above and Figure 7) contains a greater percentage
of "N" and "*" than this, do not consider nucleotide
under consideration a potential SNP.

printsequence_window Print the aligned sequences surrounding the TRUE
identified potential SNP. Window center on SNP.

sequence_window_size Size of sequence window to print. Actual width of 20
window is 2 * qualwindow size + 1.

nofileconflict If FALSE, print info of all loci that show multiple TRUE
alleles. If TRUE, do not print.

no_filepolymorphism If FALSE, print info of all loci that have identified to TRUE
be potential polymorphic. If TRUE, do not print.

no file_analysis If FALSE, print info of all loci. If TRUE, do not print. TRUE
nofileall If TRUE, do not print the conflict file, the TRUE

polymorphism file, or the analysis file.



Table B: SNP Detector Parameters for Generation of Consensus Sequence
Parameter Name Description Default

Value
min_consensus_overlap Each nucleotide in the consensus sequence must 2

be confirmed by this many reads.
min_consensus_length An usable consensus sequence must be at least 80

this long.
maxpcr_product_length Maximum length of PCR product allowed for 400

sequencing purposes.
minprimer_length Minimum length of an ideal primer. An usable 20

consensus sequence must have an unambiguous
region of this length both upstream and
downstream of the identified potential SNP.

min_marginupstream This many bases upstream of the identified 10
potential SNP cannot be analyzed when checking
min_primer_length. In other words, the forward
primer cannot be picked within this region.

min_margin_downstream his many bases downstream of the identified 10
potential SNP cannot be analyzed when checking
minprimer_length. In other words, the reverse
primer cannot be picked within this region.



Appendix B: Data and File Formats

,quences
ASTA
rmat)

Figure A: Sample sequence data from the NCBI UniGene set. The sequences are segregated into
individuals clusters. The end of a cluster and the beginning of the next cluster is indicated with
a '#' character placed at the beginning of the line. Also on that line are the name of the next
cluster and the number of sequences the cluster contains.



Figure B: Phrap input file format. The UniGene cluster header is removed to obtain the FASTA
format which is accepted by Phrap.

DNA JAM59006809458
gccagGCCCATTCATTCTTTATTCAGGTGGCATAAAATCACTACAAAAA
CC*TTACAAAAGAGCCTTAAGGAGCTCATGGGATCCTTCCCTGCCTCGGT

Contig TCCTGAGCTCCCGGGCAGAGGAGGGAGACAGGAGAGGAAGGAAGGGAAAT
Sequence GACTCTCGGCAGGTTAGGCCACAGCCAGGCTGTGCCAGACACGAGTTCCACGCGGGGCTGAGGACAACGCTTCGCCTCCCGAGCCACCACCAGGGGCCCG

TCTCTCCCCACCCTAGCCTAGGTGTCCCGGGACAAGTCCAAAGGCAGCCC
GGTCCAGGCAGGGACTCTGGATGCCACAGCCACGGCCCctca

Alignment

Sequences -

Sequence DNA JAM59006809458 I I Inform
Assembled_from* M20786.comp 6 340
Assembledfrom* T5200 - 2 207 Sequence
DNA M20786.com Name
cccagaacggtgacatcaaaccagcc GCCCATTCATTCTTTATTCAGG
TGGCATAAAAATCACTACAAAA TTACAAAAGAGCCTTAAGGAGCTC
ATGGGATCCTTCCCTGCCTC CCTGAGCTCCCGGGCAGAGGAGGGAG
TCTCAGACTGCCCCCGGC GCCCCAGT*GCCACAAAGCCGGTTGGAA
AGAGTCACATGAGTGG GGCTGGTCCAGGCAGGGACTCTGGATGCCAC
AGCCACGGCCCct

DNA T52007
tttttttttnttttttttgccCATTCATTCTTTATtcaggnggcatAAAA
ATCACTACAAAAACC*TTACAAAAGAGCCTTAAGGAGCTCATGGGTCCT
TCCCTGCCTCGGTTCCTGAGCTCCCGGGCAGAGGAGGGAGACAGGAGAGG
AAGGAAGGGAAATGCTGGcagtnttgggatCTCGAGGAG CCGTGGGAAGT
agGACAACGTTTCGCCTCCCGAGCCACCACcaggggcccntntttcccca

Figure C: Phrap "ace" file format. This file is read by the Phrap-to-SNPD Translator, which
extracts the alignment information, the contig sequence, and the sequences to be aligned to the
contig from the file. The left number in the alignment information indicates the contig position
to which the left end of the specified sequence should be aligned. The number on the right
indicates the contig position to which the right end should be aligned.

>R79401 /contact=Wilson,RK /len=264
ACAATATTTTATTTACTCATCTACCAATAAAACTTTTCTAGGAATTCAACAATAAACCAA
CATTAAAAGCTTTCTAGCATAAATCACCAATTTCCAAGATAACCACAGGCCATCTTTAAA
ATACATTTTTTATTATTATTATTATTATTATTTGAAAAGGTTTGTGGTTATGTTTCTTTA
AAAAGCTGTTTAATTATATATGATGACATTTTTATAGGGTGAAATGATTTGATGTCTAGG
GNTTTTCTTCAAAATAAGGGTAAG
>D90041 /cds=(146,1018) /1en=303
TAGAATAAGGAGTGAAACAATCTTGTCTATTTGTCATCCAGCTCACCAGTTATCAACTGA
CGACCTATCATGTATCTTCTGTACCCTTACCTTATTTTGAAGAAATCCTAGACATCAAAT
CATTTCACCTATAAAAATGTCATCATATAATTAAACAGCTTTTTAAAGAAACATAACC
ACAAACCTTTTCAAATAATAATAATAATAATAATAAATGTCTTTTAAAGAGGCCTGT
GGTTATCTTGGAAATTGGTGATTTATGCTAGAAAGCTTTTAATGTTGGTTTATTGTTGAA
TTC
>R91803 /contact=Wilson,RK /len=125
ACAATATTTTATTTACTCATCTACCCATAAAACTTTNCTAGGAATTCAACAATAAACCAA
CATTAAAAGCTTTCTAGCATAAATCACCAATTTCCAAGATAACCACAGGCCATCTTTAAA
AGACA
>T67128 /contact=Wilson,RK /len=57
CTAGGAATTCAACAATAAACCAACATTAAAAGCTTTCTAGCATAAATCACCAATTTC

ation



Cluster Header (supplied by Phrap-to-SNP Translator)

:Hsa.2 5;
{tagaatAAGGAACAAAATAAACCCTTGTGTATGTATCACCCAACTCACTAATTATCAA
CTTATGTGCTATCAGATATCTCTCTACCCTCACGTTATTTTGAAGAAAATCCTAAACAT Contig
CAAATACTTTCATCCATAAAAATGTCAGCATTTATTAAAAAACAATAACTTTTTAAAGA -
AACATAAGGACACATTTTCAAATTAATAAAAATA GCATTTTAAGGATGGCCTGTGA Sequence
TTATCTTGGGAAGCAGAGTGATTCATGCTAGAAAACATTTAATATTGATTTATTGTtga
attcatagtaaatttttactggtaaatgaataaagaatattgtggaaaa)
/D90042\
(1)
<299>
[tagaatAAGGAACAAAATAAACCCTTGTGTATGTATCACCCAACTCACTAATTATCAA
CTTATGTGCTATCAGATATCTCTCTACCCTCACGTTATTTTGAAGAAAATCCTAAACAT

Sequence CAAATACTTTCATCCATAAAAATGTCAGCATTTATTAAAAAACAATAACTTTTTAAAGA
Name AACATAAGGACACATTTTCAATTAATAAAAATAAAGGCATTTTAAGGATGGCCTGTGA

TTATCTTGGGAAGCAGAGTGATTCATGCTAGAAAACATTTAATATTGATTTATTGTtga
attc]
/D10871\ Alignment Position
(1) for Left End
<344>
(tagaatAAGGAACAAAATAAACCCTTGTGTATGTATCACCCAACTCACTAATTATCAA
CTTATGTGCTATCAGATATCTCTCTACCCTCACGTTATTTTGAAGAAAATCCTAAACAT
CAAATACTTTCATCCATAAT ATT ATAACTTTTTAAAGA equence
AACATAAGGACACATTTTCAAATTAATAAAAATAAAGGCATTTTAAGGATGGCCTGTGA
TTATCTTGGGAAGCAGAGTGATTCATGCTAGAAAACATTTAATATTGATTTATTGTtga
attcatagtaaatttttactggtaaatgaataaagaatattgtggaaaa]

:Hsa.3 4;
{acaatattttatttactcatctaccaa act taggaattcaACAATAAACC
AACATTAAAAGCTTTCTAGCTAAATCACCAATTTCCAAGATAACcacaggccatcttta
aaatacattttttattattattattattattatttgaaaaggtttgtggttatgtttct
ttaaaaagctgtttaattatatatgatgacatttttatagggtgaaatgatttgatgtc
tagggnttttcttcaaaataagggtaag)
/D90041.comp\ Alignment Position
(42)
<348> for Right End
[gaattcaACAATAAACCAACATTAAAAGCTTTCTAGCATAAATCACCAATTTCCAAGA
TAACcacaggcc*tctttaaagacatttattattattattattattattatttgaaaag

Figure D: The data format currently used by SNP Detector to receive alignment information and
sequences from Phrap-to-SNPD Translator.

__



Appendix C: Sample SNPD and
PRIMER Output,
and Boulder IO

Figure E: Boulder IO data format used by the SNP Detector and PRIMER. The information
generated by PRIMER is added to the information generated by the SNP Detector, before the
collective information is passed onto the next component, the Primer Order and SNP Data
Processor (not shown).

TAG VALUE

SNP Detector
MARKER NAME=Hsa.273 11
SEQUENCE=CTGGTGGGGAGGAAACAAATTGTGGTATATTCATACAATGGAAAACTCTTCAGAAATAAGAAGGAACAAACACT
GAATCACCAACATGGACN CTCAAATCATTATGCTGATGGAAAGAAACCATTCA AATACACAGTACAT
POLYMORPHISM93Potential SNP Consensus sequence
TARG T=83,21,TARGET REGION PotentialSNP
PRI _RDEFAULT PRODUCT="350-400 300-350 250-300 200-250 150-200 100-150 64-100"

TARGET region containing
potential SNP site

PRIMER
MARKER NAME=Hsa.273_11
SEQUENCE=CTGGTGGGGAGGAAACAAATTGTGGTATATTCATACAATGGAAAACTCTTCAGAAATAAGAAGGAACAAACACT
GAATCACACAACATGGACNAATCTCAAATCATTATGCTGATGGAAAGAAACCATTCATAAGAATACACAGTACAT
POLYMORPHISM 93=AC
TARGET=83,21, TARGETREGION
PRIMERDEFAULT PRODUCT="350-400 300-350 250-300 200-250 150-200 100-150 64-100"
PRIMER_PAIR QUALITY=2.1641
PRIMER_LEFT_SEQUENCE=TGGGGAGGAAACAAATTGTG
PRIM RIGHTS UENCE=AATGGTTTCTTTCCATCAGCA
FORWARD IMER-
REVERSE PR R=128,21 Reverse
PRIMER FORWA TM=60.724
PRIMER REVERSE_ -59.560 primer Information generated
PRIMER FORWARD SEL =7.00
PRIMERREVERSESELF_ =4.00
PRIMER FORWARD-SELF END= 00
PRIMER REVERSE SELF END=0. Forward
PRIMER_PAIR_COMPL_ANY=7.00 primer
PRIMERPAIRCOMPLEND=4.00
PRODUCT SIZE=125

:ý Boulder 10 record delimiter



Appendix D: Snapshot of SNP Data
Sheet and Primer
Purchase Form
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Figure F: SNP Data and Primer Purchase Order. They are generated as tab-delimiter files, and
converted by BinHex and the user's Macintosh electronic mail client into MS Excel spreadsheets.
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Appendix E: Summary of Data
from Evaluation of
the JAMALAH System

Table B: Summary of UniGene Sequence Data
Number of clusters 45,252
Number of sequences 120,774
Number of nucleotides 38, 548, 154

bases
Number of sequences in largest cluster 1, 127
Number of clusters with 4 or more sequences 7, 661
Number of clusters with 200 or more sequences 4
Average number of sequences per cluster 2.7
Average length of sequence 319 bases

Table C: Summary of Analysis by the JAMALAH System
Number of clusters analyzed 45,252
Number of clusters subjected to sequence assembly 7, 657
(clusters with 4-200 sequences)
Number of clusters that could be assembled into single 7, 580
contigs
Total number of nucleotides in contig sequences 3,304,222

bases
Average length of contig sequence 436 bases
Number of SNPs identified 5,046
Number of clusters with SNPs 786
Number of clusters with SNPs and usable consensus 338
sequences
Number of clusters with SNPs, usable consensus 272
sequences, and primer pairs picked using PRIMER
default setting
Rate of SNP screening 1 / 655 bases



Table D: Summary of Results from Primer Picking, Sequencing, and
Confirmation

Number of consensus sequences subjected to primer 16
picking
Number of consensus sequences successful in primer 9
picking
Rate of successful primer picking 56%
Number of successful amplifications 7
Rate of successful PCR amplification 78%
Number of readable sequences 6
Rate of readable sequences 86%
Number of identified potential SNPs confirmed 3
Number of SNPs confirmed 4
Rate of SNP confirmation 50%



Appendix F: Complete Program
Listing

The Input Sequence
SNPD Translator /

File Parser and the Phrap-to-
JamlIt.pl

#!/usr/local/bin/perl
# -*-Mode: perl;-*-
push(@INC,'/usr/local/lib/perl');

# Print things out as they come.
$1=1;

# Some configuration variables.

# Smallest clusters to check.
$MINIMUM_SAMPLE_SIZE = 4;

# Largest clusters to check.
$MAXIMUM_NUMBERINPUT_SEQ = 200;

# Command to invoke the
$PHRAPCOMMAND_PREFIX =
$PHRAP_COMMAND_SUFFIX =

sequence assembler to use.
"/tnp_mnt/usr/local/usersl/chchench/phrap";
"-ace >/dev/null 2>&1";

# Name of log file to use for system "front end"
$LOG_FILENAME = "./JAMALAH.log";

# Prefix for the name of temporary files generated
$FILENAME_PREFIX = "JAM";

by sequence parser.

# Initialize some variables. If DEBUG_MODE is true, generated debugging
# information during execution.
$DEBUG_MODE = 0;
$DEBUG OUT = STDOUT;

# If SHOW_PROGRESS is true, generate progress update to standard error.
$SHOW_PROGRESS = 1;

# Initialize some more variables.
$FILECOUNTER = 0;
$NOTUSEFILE = 1;

~F~B~a~a~a~a~



# Initialize some more variables.
$CLUSTER_SIZE = 0;
%CLUSTER = ();
%ASSEMBLY_INFOl = ();
%ASSEMBLY_INFO2 = ();
$CONTIG_SEQ = "";
$CLUSTER_NAME = "";

# check cormmandline for options. Currently supported features are:
# -debug: if specified, print debugging info to DEBUG_OUT.
# -file: if specified, directly use specified "ace" file.
# -log: if specified, use specified log file.
for ($i=O; $i<@ARGV; $i++) {

if ($ARGV[i] eq "-debug") {
$DEBUG MODE = true;

} elsif ($ARGV[$i] eq "-file") {
$NOT_USE FILE = 0;
$FILE TO USE = $ARGV[++$i];
$FILE TO USE =- s/.ace//;
$CLUSTER_NAME = $FILE TO USE;

) elsif ($ARGV[$i] eq "-log") {
$LOG FILENAME = $ARGV[++$i];

# Main program; driver loop

# Open log file. Write start time of analysis to log file.
open(LOG, ">>$LOG_FILENAME");
print LOG "\nTIME OF PROCESSING:
$CURRENTTIME = 'date';
print LOG $CURRENTTIME;
if ($SHOW_PROGRESS) { print STDERR "\nTIME OF PROCESSING: "; }
if ($SHOW_PROGRESS) { print STDERR $CURRENTTIME; }

# Just use the specified "ace" file. Parse and send alignment info to
# the sequence analyzer through standard output and quit.
if ($NOTUSE_FILE == 0) {

open(LOG, ">>$LOG_FILENAME");
&execalignment($FILE TOUSE);
print LOG "PROCESS COMPLETED\n\n";
if ($SHOW_PROGRESS) { print STDERR "PROCESS COMPLETED\n\n"; }
system("rm -f .*$FILENAME_PREFIX*");
close(LOG);
exit(0);

# Main loop for parsing cluster file. Not very Perl-like code.
# Read UniGene cluster file through standard input.
while (<STDIN>) {

# Look for lines with the cluster delimiter "#"
if (/^#(.*)\s/) {

# Extract rest of header from the line.
$HEADERINFO = substr($_, 2);
chop($HEADERINFO);

if (close(FILEHANDLE)) {
&print_cluster;

if (!$DEBUGMODE) {
# Check to see if the cluster just read has two few or too
# many s equences. If not, call procedure to execute



# sequence assembly.
$NUMBEROFINPUT_SEQUENCES = &getsequencenumber($FILENAME);
if ($NUMBEROF_INPUT_SEQUENCES > $MAXIMUM_NUMBER_INPUT_SEQ) {

print LOG "FILE <$FILENAME> contains too many sequences\n";
if ($SHOW_PROGRESS) {

print STDERR "FILE <$FILENAME> contains too many sequences\n";
}

}
if (($NUMBER OFINPUTSEQUENCES >= $MINIMUM_SAMPLESIZE) &&

($NUMBEROF_INPUTSEQUENCES<= $MAXIMUM_NUMBER_INPUT_SEQ)) {
&exec_alignment($FILENAME);

}
# Delete any temporary files not deleted elsewhere.
system("rm -f .*$FILENAME_PREFIX*");

}
print LOG "PROCESS COMPLETED\n\n";
if ($SHOW_PROGRESS) { print STDERR "PROCESS COMPLETED\n\n"; }

# Keep track of the number of clusters parsed.
$FILE_COUNTER++;

# Extract cluster name from cluster header.
$CLUSTER_NAME = $HEADER_INFO;
&extract_cluster_info ($HEADERINFO);

# Generate some random number for naming the new temporary file.
srand;
# Attach the random number to the temporary file prefix.
$FILENAME = ".$FILE_COUNTER" . $FILENAME_PREFIX . rand;
# Open the temporary file for writing.
open(FILEHANDLE,">$FILENAME");

}
else {

# We don't find a cluster delimiter on this line, so we must be
# looking at one of the lines for sequences. Print the line to
# the temporary file.
print FILEHANDLE "$_";

if (/^>(.*)\s/) {
if ($DEBUG_MODE) {

print $DEBUG_OUT "We found the first line of a sequence.\n";

# Close the temporary file for the very last cluster and perform analysis
# on it.
close(FILEHANDLE);
&printcluster;
if (!$DEBUGMODE) {

if (&get_sequencenumber($FILENAME) > 1) {
&exec_alignment($FILENAME);

}

# Print completion information to the log file. Finish things up.
print LOG "PROCESS COMPLETED\n\n";
if ($SHOW_PROGRESS) { print STDERR "PROCESS COMPLETED\n\n"; }
system("rm -f .*$FILENAME_PREFIX*");

print LOG "\n -------------------------------------------------- \n



if ($SHOW_PROGRESS) { print STDERR "\n------------------------------------------------
--\n"; }
close(LOG);

# Subroutines start here.

# Subroutine for extracting cluster info. Not really useful right now.
sub extract_cluster_info {

print LOG "\nPROCESSING <$_[O]>...\n";
if ($SHOWPROGRESS) {

print STDERR "\nPROCESSING <$_[0]>...\n";
}

}

# Subroutine for debugging purposes.
sub print_cluster {

if ($DEBUG_MODE)
print $DEBUG_OUT "=========- $FILENAME ==========\n";
foreach $key (keys %CLUSTER) {

print $DEBUG_OUT "***** $key *****\n";
print $DEBUG OUT "$CLUSTER{$key}\n";

}
}

# Subroutine that invokes the sequence assembler and checks to ensure
# that the result of the assembly is one single contig. It then sends
# the contig sequences, the cluster sequences, and their alignment info
# out through standard out.
sub exec_alignment {

local($NUMBEROF CONTIGS);

if ($NOT_USE_FILE == 1) {
# We are use "ace" file so we have to call sequence assembler Phrap.
&call_phrap($_[O0);

# Determine number of contigs generated by assembly analysis.
$NUMBEROFCONTIGS = &getsequence_number("$_[0] . contigs");

# If no contig could be generated, print error message.
if ($NUMBEROFCONTIGS <= 0) {

print LOG "NO CONTIG of <$_[0]> could be assembled\n";
if ($SHOW_PROGRESS) {

print STDERR "NO CONTIG of <$_[O]> could be assembled\n";
}
return;

}
else {

# If more than 1 contig could be generated, also print error msg.
if ($NUMBER OF CONTIGS > 1) {

print LOG "MORE THAN 1 CONTIG of <$_[O]> could be assembled\n";
print LOG "\tIGNORE THIS CLUSTER\n";
if ($SHOW_PROGRESS) {

print STDERR "MORE THAN 1 CONTIG of <$_[O]> could be assembled\n";
print STDERR "\tIGNORE THIS CLUSTER\n";

}
return;

# Delete unnecessary Phrap output files now.
system("rm -f $_[0].contigs");

}



# Initialize variables before parsing Phrap "ace" file.
$CONTIG_SEQ = "";
$CLUSTER_SIZE = 0;
%CLUSTER = ();
%ASSEMBLY_INFO1 = ();
%ASSEMBLY_INFO2 = ();

# Open Phrap "ace" file.
open(ACE_FILE, "$_[01.ace") 11 die "cannot open file <$_[0].ace>\n";
local ($READING MODE);
local ($FRAGMENTNAME);

# Read contig sequence into CONTIG_SEQ.
# Read each sequence and add it to the associative array CLUSTER. Use
# GenBank accession name for the sequence as index to the array.
while (<ACE FILE>) {

if (/^DNA Contig(.*)\s/) {
# We've found the header for the contig sequence.
$READING_MODE = 1;
print LOG "READING CONTIG SEQUENCE from file <$_[01.ace>\n";

} elsif (($READING_MODE == 1) && (/^\s/)) {
# We are done reading the contig sequence, so now it's turn
# to read the cluster sequences or their complements used in
# assembly.
$READING_MODE = 0;
print LOG "READING PADDED EST sequences from file <$_[0] .ace>: ";
if ($SHOW_PROGRESS) {

print STDERR "READING PADDED EST sequences from file <$_[01.ace>: ";
}

} elsif (/^DNA (.*)\s/) {
# We've found the header for a sequence. Increment the counter.
s/DNA //;
chop;
$FRAGMENT_NAME = $_;
$READING_MODE = 2;
$CLUSTER_SIZE++;
print LOG " $CLUSTER_SIZE";
if ($SHOW_PROGRESS) { print STDERR " $CLUSTER_SIZE"; }

} elsif (($READING_MODE == 2) && (/^\s/)) {
$READING_MODE = 0;

} elsif (/^Sequence Contig(.*)\s/) {
$READING_MODE = 3;

} elsif (($READING_MODE == 3) && (/^\s/)) {
$READING_MODE = 0;

} elsif (/^Base_segment.*/) {
break;

} else {
if ($READING_MODE == 1) {

# Reading in contig sequence.
chop;
$CONTIG_SEQ .= $_;

} elsif ($READING_MODE == 2) {
# Reading in cluster sequence or its complement.
chop;
$CLUSTER{$FRAGMENTNAME} .= $_;

} elsif ($READING_MODE == 3) {
# Reading in other information.



if (/^Assembled_from\*(.*)\s/i) {
# Read in alignment information.
chop;
local(@TEMP_INFO);
@TEMP_INFO = split(/ /);

# Reading in left and right contig position indices.
$ASSEMBLY_INFO { $TEMP_INFO [1] = $TEMPINFO[3];
$ASSEMBLY_INFO2 { $TEMP INFO [1] = $TEMP_INFO [5];

print LOG "\n";
if ($SHOW_PROGRESS) { print STDERR "\n"; }
# We're done reading the file.
close(ACEFILE);

if ($NOTUSEFILE) {
print LOG "DELETING ACE FILE <$_[0].ace>\n";
if ($SHOW_PROGRESS) {

print STDERR "DELETING ACE FILE <$_[0].ace>\n";
}
system("rm -f .*$FILENAME_PREFIX*");

}

# Now call another subroutine to send the parsed info to the
# next component in the pipeline in a specified format.
&callalign_tocontig;

# Subroutine that actually invokes the Phrap.
sub callphrap {

print LOG "INVOKING $PHRAP_COMMAND_PREFIX to assemble contig(s) of file
<$_[03>... \n";

if ($SHOW_PROGRESS) {
print STDERR "INVOKING $PHRAP_COMMAND_PREFIX to assemble contig(s) of file

<$_[0]>...\n";

# Execute Phrap through shell.
unless (fork) {

exec("$PHRAP_COMMAND_PREFIX $_[0] $PHRAPCOMMAND SUFFIX");

wait;
$CURRENTTIME = 'date';
print LOG "DONE ASSEMBLING <$_[0]> at $CURRENT_TIME";
if ($SHOW PROGRESS) {

print STDERR "DONE ASSEMBLING <$_[O]> at $CURRENTTIME";

# Delete unnecessary files, not including the "ace" file.
system("rm -f $_[0].contigs.qual");
system("rm -f $_[0] .log");
system("rm -f $_[O].singlets");

# Subroutine that takes the information parsed from the "ace" file and
# sends them out through the standard output.
sub call_aligntocontig {

local($SEQLENGTH);



local ($CLUSTER_COUNTER);
$CLUSTER_COUNTER = 0;

# Determine length of the contig sequence.
$SEQ_LENGTH = length($CONTIG_SEQ);
print LOG "LENGTH OF CONTIG is $SEQ LENGTH\n";
if ($SHOW PROGRESS) {

print STDERR "LENGTH OF CONTIG is $SEQ_LENGTH\n";
}

# Send out cluster name.
print STDOUT ":$CLUSTER_NAME;\n";
# Send out contig sequence.
print STDOUT "{$CONTIG_SEQ)\n";

# Now send out each sequence and its alignment information.
foreach $SEQ (keys %CLUSTER) {

$CLUSTERCOUNTER++;

# Determine length of each sequence.
$SEQLENGTH = length($CLUSTER{$SEQ});
print LOG "[$CLUSTER_COUNTER] ALIGNING <$SEQ> (LENGTH $SEQ_LENGTH) TO POSITIONS

$ASSEMBLYINFO1 {$SEQ <=> $ASSEMBLY_INF02{$SEQ} \n";
if ($SHOW_PROGRESS) {

print STDERR "[$CLUSTERCOUNTER] ALIGNING <$SEQ> (LENGTH $SEQ_LENGTH) TO
POSITIONS $ASSEMBLY_INFO1{$SEQ) <=> $ASSEMBLY_INFO2{$SEQ} \n";

}

# Send out sequence name.
print STDOUT "/$SEQ\\\n";
# Send out the sequence's alignment index for the left end.
print STDOUT "($ASSEMBLY_INFOl{$SEQ})\n";
# Send out the sequence's alignment index for the right end.
print STDOUT "<$ASSEMBLY_INFO2{$SEQ}>\n";
# Send out the sequence's sequence?
print STDOUT "[$CLUSTER{$SEQ}]\n";

}
# Send out end-of-cluster character.
print STDOUT "\0\n";

$CURRENTTIME = 'date';
print LOG "DONE ALIGNING ESTs to contig at $CURRENTTIME";
if ($SHOW_PROGRESS) {

print STDERR "DONE ALIGNING ESTs to contig at $CURRENT_TIME";
}

# Subroutine for determining number of sequences in a file.
# It assumes the FASTA format is used.
sub get sequencenumber {

local($COUNTER);
$COUNTER = 0;
open(SEQUENCE, $_[0]);
while (<SEQUENCE>) {

if (/A>(.*)\s/) {

$COUNTER++;

close(SEQUENCE);
$COUNTER;

}



The Single Nucleotide Polymorphism Detector
(SNPD) / Analysis.H

#ifndef ANALYSISH

#include "project.H"
#include "parameter.H"
#include "sequence.H"
#include "utility.H"
#include <iostream.h>
#define ANALYSIS H

// Declaration of some constants
#define _G 0
#define _A 1
#define _T 2
#define _C 3
#define _N 4
#define _BOTTOM _G
#define _TOP _N

// Declaration of different nucleotide types
enum PositionType {
UNDEFINED,
SAME,
CONFLICTING,
POLYMORPHIC
};class PositionInfo

class PositionInfo {

The PositionInfo class is closer to being a C-style struct than
anything else. It is essential several arrays for keeping track of
a number of different attributes at each nucleotide position. They
are:

occurrence
occurrence
occurrence
occurrence
occurrence
occurrence
occurrence
occurrence
occurrence
occurrence
occurrence

nucleotide
nucleotide
nucleotide
nucleotide
nucleotide
nucleotide
nucleotide
nucleotide
nucleotide
nucleotide

guanine / high quality
adenine / high quality
thymine / high quality
cytosine / high quality
no-call / high quality
guanine / low quality
adenine / low quality
thymine / low quality
cytosine / low quality
no-call / low quality

padding character
total of occurrences: sum of all above
allele frequency G: occurrence G/g / (
allele frequency A: occurrence A/a / (
allele frequency T: occurrence T/t / (
allele frequency C: occurrence C/c / (
allele frequency N: occurrence N/n / (

occurrence G
occurrence G
occurrence G
occurrence G
occurrence G

highest occurrence)
highest occurrence)
highest occurrence)
highest occurrence)
highest occurrence)



// nucleotide type: POLYMORPHIC, CONFLICTING, SAME, or UNDEFINED

public:
PositionInfo(void) {

TOTAL = HQ_total = LQtotal = 0;

HQbases[_G] = HQbases[_A] = HQbases[_T] = HQbases[_C] =
HQbases[_N] = 0;

LQbases[lG] = LQbases[_A] = LQ_bases[_T] = LQ bases[_Cj =
LQbases[ N] = 0;

// Allele frequencies
RATIOS[_G] = RATIOS[_A] = RATIOS[_T] = RATIOS[_C] = RATIOS[_N] = 0.0;

// Occurrence of padding character
P_bases = 0;

// Nucleotide type
POSITION_type = UNDEFINED;

// Pointer to char array for storing polymorphism string
POLYMORPHISM = 0;

-PositionInfo(void) { if (POLYMORPHISM) delete [] POLYMORPHISM; };
// Effects: Destructor for the class.

// Variables in the class/struct
int TOTAL;

int HQ_total;

int LQ_total;

int P bases;

int HQbases[5];

int LQ_bases[5];

float RATIOS[5];

PositionType POSITION_type;

char* POLYMORPHISM;

protected:

private:

};

class FragmentInfo {

// The FragmentInfo class is a class/struct based on the Sequence class.
// Each object contains the following variables:
// START_POS: The nucleotide position on the contig sequence to which
// the FIRST nucleotide on the fragment should be aligned.
// END_POS: The nucleotide position on the contig sequence to which
// the LAST nucleotide on the fragment should be aligned.
// FRAGMENTSEQ: The sequence of the fragment



// FRAGMENT_NAME: The name of the fragment, if available

public:

FragmentInfo(void) {
// Effects: Constructor for the class. Initializes the variables.
START_POS = 0;
END_POS = 0;
FRAGMENT_SEQ = 0;
FRAGMENT_NAME = 0;

};

-FragmentInfo(void) {
// Effects: Destructor for the class. Deletes the fragment name, if
// one exists.
delete FRAGMENTSEQ;
if (FRAGMENTNAME) delete [] FRAGMENT_NAME;

};

int STARTPOS;

int END_POS;

Sequence* FRAGMENTSEQ;

char* FRAGMENT NAME;

protected:

private:

class ConsensusSequence {

// The ConsensusSequence class is another class based on the Sequence class.
// Each class object has the following attributes:
// CONSENSUS_SEQ: Holds the sequence for the consensus sequence
// FRONT_INDEXIN_CONTIG: The nucleotide position in the contig sequence
// to which the FIRST nucleotide in the consensus
// sequence is aligned.
// BACK_INDEXIN CONTIG: The nucleotide position in the contig sequence
// to which the LAST nucleotide in the consensus
// sequence is aligned.
// POLYMORPHIC_SITES: An array of polymorphism sites (integers)

public:
ConsensusSequence(Sequence* consensusSeq, int frontIndexInContig,

int backIndexInContig) {
// Effects: Constructor for the class.
FRONT_INDEXINCONTIG = frontIndexInContig;
BACK_INDEX_INCONTIG = backIndexInContig;
CONSENSUS_SEQ = consensusSeq;
POLYMORPHIC_SITES = new Array;

};

-ConsensusSequence(void) {
// Effects: Destructor for the class.
delete CONSENSUS SEQ;
delete POLYMORPHIC_SITES;



int FRONT_INDEX_IN_CONTIG;
int BACK_INDEXINCONTIG;
Sequence* CONSENSUS_SEQ;
Array* POLYMORPHIC_SITES;

protected:

private:

class AlignedCluster {

// The AlignedCluster class allows one to specify a contig sequence, and
// other sequences that are aligned to the contig sequence. It has a
// variety of functions specifically for analyzing the aligned sequences
// to identify potential single nucleotide polymorphisms in the sequence
// assembly.

public:
AlignedCluster(Parameter* params, Sequence* contigSeq, char* clusterName);
// Effects: Constructor for the class. The pointer for a Parameter object
// which has the values for the criteria/parameters that are
// used in identifying potential SNPs must be provided. A
// contig sequence must also be specified.

-AlignedCluster(void);
// Effects: Destructor for the class. All sequences stored in the
// AlignedCluster object are destroyed.

void addFragment(Sequence* fragSeq, char* fragName,
int startPos, int endPos);

// Effects: Add the sequence fragment to the contig sequence, so that
// the first nucleotide of the fragment is lined up with the
// nucleotide position <startPos> in the contig sequence, and
// the last nucleotide is lined up with the nucleotide position
// <endPos> in the contig sequence.

int clusterSize(void) { return pCLUSTER_SIZE; };
// Effects: Return the number of fragments aligned to the contig sequence.

void analyzePosition(int i, bool useHighQualOnly = TRUE);
// Effects: Analyze a nucleotide position overlapped by the contig
// sequence. After it is analyzed, it is classified as UNDEFINED,
// POLYMORPHIC, CONFLICTING, or SAME.

void analyzeAllPositions(bool useHighQualOnly = TRUE);
// Effects: Analyze all the nucleotide positions which are overlapped by
// the contig sequence. After a nucleotide position has been
// analyzed, it is classified as UNDEFINED, POLYMORPHIC,
// CONFLICTING, or SAME.

void printPositionInfo(int i, ostream& output = cout);
// Effects: Prints information about the nucleotide at contig position



// <i> to <output>. By default, <output> is standard output.
// Information such as the number of each type of nucleotide, etc.
// is printed.

void printAllPositions(ostream& output = cout);
// Effects: Calls printPositionInfo to print info on all nucleotide
// positions to <output>. By default, <output> is standard
// output.

void printConflictPositions(bool useHighQualOnly = TRUE,
ostream& output = cout);

// Effects: Prints all nucleotides that show multiple alleles after
// the nucleotides have been analyzed. If <useHighQualOnly>
// is TRUE, only high quality bases at each contig position
// are considered for analysis. Print result to <output>
// which is standard output by default.

void printPolymorphicPositions(bool useHighQualOnly = TRUE,
ostream& output = cout);

// Effects: Prints each nucleotide that is potentially polymorphic after
// the nucleotide has been analyzed. If <useHighQualOnly>
// is TRUE, only high quality bases at each contig position
// are considered for analysis. Print result to <output>
// which is standard output by default.

void printPolymorphismWindow(int contigPos, int windowSize = -1,
ostream& output = cout);

// Effects: Print nucleotide sequences of all the sequences that are
// within a distance of <windowSize> bases to the left or
// to the right of the nucleotides lined up at the contig
// position <contigPos>. Print to <output>. By default
// <output> is the standard output.

void outputPrimerBoulderInput(ostream& output = cout);
// Effects: Print the data needed by PRIMER to pick PCR primers
// that flank the potentially polymorphic nucleotides
// identified. The format used is Boulder IO, which is
// accepted by PRIMER.

protected:

private:

// Pointer the contig sequence. If NIL, the sequence is nonexistent.
Sequence* pCONTIG_SEQ;

// An array of pointers to objects which are for used for keeping track
// of various attributes of a nucleotide position.
PositionInfo* pCONTIG_INFO;

// Length of the contig sequence
int pCONTIG LEN;

// Number of sequences aligned to the contig sequence
int pCLUSTER_SIZE;

// An array of pointers to sequence fragments
FragmentInfo** pFRAG_INFO;



// Variable to keep track of the size of the array for storing pointers
// to sequence fragments
int pFRAG_ALLOC_SIZE;

// Pointer to the Parameter object containing various parameter values
Parameter* pPARAMS;

// Pointer to name of the cluster/sequence assembly
char* pCLUSTER_NAME;

// Pointer to an array of ConsensusSequence objects
Array* pCONSENSUS_SEQARRAY;

void analyzeFragment(FragmentInfo* fragInfo);
// Effects: Analyzes a fragment nucleotide by nucleotide. The
// information for each contig position is updated accordingly.

void getOverlappingSeqIndexes(int includedSite, int overlapLevel,
int& frontEnd, int& backEnd,
bool useHighQualOnly = TRUE);

// Effects: Sets <frontEnd> to the leftmost point in the aligned
// sequence assembly that is overlapped by <overlapLevel>
// sequences starting from <includedSite>. Do the same for
// <backEnd> in the opposite direction. Consider only high
// quality nucleotides if <useHighQualOnly> is TRUE.

bool isConflictingBase(int contigPos, bool useHighQualOnly = TRUE);
// Effects: Return TRUE if the sequences exhibit more than one allele
// at the contig position <contigPos>. Return FALSE otherwise.
// Consider only high quality nucleotides if <useHighQualOnly>
// is TRUE.

bool isPolymorphicBase(int contigPos, bool useHighQualOnly = TRUE);
// Effects: Return TRUE if the nucleotide at contig position <contigPos>
// is potentially polymorphic. Return FALSE otherwise.

bool isPolymorphicAndCanBeSequenced(int i, int consensusOverlapLevel,
int& frontEnd, int& backEnd,
bool useHighQualOnly = TRUE);

// Effects: Return TRUE if the potentially polymorphic nucleotide at
// contig position <i> has a related consensus sequence that
// has an unambiguous region both upstream and downstream of
// the nucleotide in question. The consensus sequence must
// be confirmed by <consensusOverlapLevel> sequences.

int longestUnambiguousSeqLength(int frontEnd, int backEnd,
bool useHighQualOnly = TRUE);

// Effects: Return the length of the longest umambiguous region in
// the aligned sequences between the contig positions <frontEnd>
// and <backEnd>.

char determineConsensusBase(int contigPos, bool useHighQualOnly = TRUE);
// Effects: Determine the identity of the nucleotide for the contig
// position <contigPos>. Consider only high quality nucleotides
// if <useHighQualOnly> is TRUE.



char resolveConflictBase(int contigPos, bool useHighQualOnly = TRUE);
// Effects: Determine the probable nucleotide at contig position
// <contigPos>. Consider only high quality nucleotides if
// <useHighQualOnly> is TRUE.

int getMostFrequentBase(int contigPos, bool useHighQualOnly = TRUE);
// Effects: Get the nucleotide (G/A/T/C) with the highest occurrence
// at the contig position <contigPos>. Consider only high
// quality nucleotides if <useHighQualOnly> is TRUE.

char getBaseCharacter(int i);
// Effects: Translate nucleotide array index <i> into its character
// equivalent. The mapping is as follows:
// 0 ==> G
// 1 ==> A
// 2 ==> T
// 3 ==> C
// 4 ==> N

PositionType getPositionType(int contigPos, bool useHighQualOnly = TRUE);
// Effects: Return the position type at <contigPos>: POLYMORPHIC,
// CONFLICTING, SAME, or UNDEFINED. Consider only high quality
// nucleotides if <useHighQualOnly> is TRUE.

bool addSequenceToConsensusArray(Sequence* newSequence, int contigPos,
int frontIndexInContig,
int backIndexInContig);

// Effects: Add sequence <newSequence> containing the polymorphic
// nucleotide at contig position <contigPos> to consensus
// sequence array.

#endif



The Single Nucleotide Polymorphism Detector
(SNPD) / Analysis. C

#include "analysis.H"
#include <string.h>

#define ALLOCBLOCK_SIZE 10

extern int gNumSNPs;
extern int gNumClusterWithSNP;
extern int gNumClusterWithSNPConsensus;

char AlignedCluster::getBaseCharacter(int i)

// Effects: Translate nucleotide array index <i> into its character
// equivalent. The mapping is as follows:
// 0 ==> G
/1 ==> A

// 2 ==> T
// 3 ==> C
// 4 ==> N

switch (i)
case _G:

return 'G';
case _A:

return 'A';
case _T:

return 'T';
case _C:

return 'C';
case _N:

return 'N';

AlignedCluster::AlignedCluster(Parameter* params, Sequence* contigSeq,
char* clusterName)

// Effects: Constructor for the class. The pointer for a Parameter object
// which has the values for the criteria/parameters that are
// used in identifying potential SNPs must be provided. A
// contig sequence must also be specified.

pCONTIG_SEQ = contigSeq;
pCONTIG_LEN = contigSeq->length();
pCONTIG_INFO = new PositionInfo[pCONTIG_LEN];
pCLUSTER_SIZE = 0;
pFRAG_INFO = new (FragmentInfo*)[(pFRAG_ALLOC_SIZE = ALLOC_BLOCK_SIZE)];
pPARAMS = params;
pCONSENSUS_SEQ_ARRAY = new Array;
if (clusterName) {



pCLUSTER_NAME = new char[strlen(clusterName) + 1];
strcpy(pCLUSTER_NAME, clusterName);
for (int c=O; pCLUSTER_NAME[c]; c++)

if (pCLUSTERNAME[c] == ' ')
pCLUSTER_NAME[c] = '_';

else
pCLUSTER_NAME = 0;

AlignedCluster::-AlignedCluster(void)
//
// Effects:
//
//

Destructor for the class. All sequences stored in the
AlignedCluster object are destroyed.

delete pCONTIGSEQ;
delete [] pCONTIG_INFO;
for (int i=0; i<pCLUSTER_SIZE; i++)
delete [] pFRAG_INFO;

delete pFRAG_INFO[i];

for (i=0; i<pCONSENSUSSEQ_ARRAY->size(); i++) {
delete (ConsensusSequence*)pCONSENSUS_SEQ_ARRAY->element(i);

}
delete pCONSENSUS_SEQ_ARRAY;

if (pCLUSTER_NAME)
delete [] pCLUSTER_NAME;

void AlignedCluster::addFragment(Sequence* fragSeq, char* fragName,
int startPos, int endPos)

Add the sequence fragment to the contig sequence, so that
the first nucleotide of the fragment is lined up with the
nucleotide position <startPos> in the contig sequence, and
the last nucleotide is lined up with the nucleotide position
<endPos> in the contig sequence.

FragmentInfo* newFrag = new FragmentInfo;
newFrag->START_POS = startPos;
newFrag->END_POS = endPos;
newFrag->FRAGMENTSEQ = fragSeq;
if (fragName) {
newFrag->FRAGMENT_NAME = new char[strlen(fragName)+1];
strcpy(newFrag->FRAGMENT_NAME, fragName);

pFRAG_INFO[pCLUSTER_SIZE++] = newFrag;
if ((pCLUSTER_SIZE % ALLOC_BLOCK_SIZE) == 0) {

FragmentInfo** tempArray = new (FragmentInfo*)
[pFRAG_ALLOC_SIZE + ALLOC_BLOCK_SIZE];

for (int i=0; i<pCLUSTERSIZE; i++)
te•rpArray[i] = pFRAG_INFO[i];

delete [] pFRAG_INFO;
pFRAG_INFO = tempArray;
pFRAG_ALLOC_SIZE += ALLOC_BLOCK_SIZE;

}
analyzeFragment(newFrag);

100

//
// Effects:
//
//
//
//

{



void AlignedCluster::analyzeFragment(FragmentInfo* fragInfo)
//
// Effects: Analyze all the nucleotide positions which are overlapped by
// the contig sequence. After a nucleotide position has been
// analyzed, it is classified as UNDEFINED, POLYMORPHIC,
// CONFLICTING, or SAME.
//

int startIndex = fragInfo->STARTPOS;
if (fragInfo->START_POS < 0)
startIndex = 0;

for (int i=startIndex; i<pCONTIGLEN; i++) {
if ((i >= fragInfo->START_POS) && (i <= fragInfo->ENDPOS)) {
char c = fragInfo->FRAGMENTSEQ->getChar(i - fragInfo->STARTPOS);
switch (c)
case 'G':

pCONTIGINFO[i]
break;

case 'A':
pCONTIGINFO[i]
break;

case 'T':
pCONTIG_INFO[i]
break;

case 'C':
pCONTIG_INFO[i]
break;

case 'N':
pCONTIG_INFO[i]
break;

case 'g':
pCONTIG_INFO[i]
break;

case 'a':
pCONTIGINFO[i]
break;

case 't':
pCONTIGINFO[i]
break;

case 'c':
pCONTIG_INFO[i]
break;

.HQ_bases[_G]++;

.HQ_bases[_A]++;

.HQ_bases[_T]++;

.HQ_bases[_C]++;

.HQ_bases[_N]++;

.LQ_bases[_G]++;

.LQ_bases[_A]++;

.LQ_bases[_T]++;

.LQ_bases[_C]++;

case 'n':
pCONTIG_INFO[i].LQ_bases[_N]++;
break;

case '*':
pCONTIG_INFO[i].P bases++;
break;

void AlignedCluster::printConflictPositions(bool useHighQualOnly,
ostream& output)

// Effects:
//
//
//
//
//

Prints all nucleotides that show multiple alleles after
the nucleotides have been analyzed. If <useHighQualOnly>
is TRUE, only high quality bases at each contig position
are considered for analysis. Print result to <output>
which is standard output by default.
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for (int i=O; i<pCONTIGLEN; i++) (
PositionType positionType = getPositionType(i, useHighQualOnly);
if ((positionType== CONFLICTING) II (positionType == POLYMORPHIC))

printPositionInfo(i, output);
}

void AlignedCluster::printPolymorphismWindow(int contigPos, int windowSize,
ostream& output)

Print nucleotide sequences of all the sequences that are
within a distance of <windowSize> bases to the left or
to the right of the nucleotides lined up at the contig
position <contigPos>. Print to <output>. By default
<output> is the standard output.

if (windowSize < 0 )
windowSize = pPARAMS->qual_windowsize;

int leftEdgePos = contigPos - windowSize;
int rightEdgePos = contigPos + windowSize;

for (short i=0; i<pCLUSTERSIZE; i++) {
FragmentInfo* currentFrag = pFRAG_INFO[i];
for (short j=leftEdgePos; j<=rightEdgePos; j++) {

if (j == contigPos) output << "[";
if ((j >= currentFrag->START_POS) && (j <= currentFrag->END_POS)) {
output << currentFrag->FRAGMENT_SEQ->getChar

(j - currentFrag->START_POS);
}
else {
output << "-";

if (j == contigPos) output << "]";

if (currentFrag->FRAGMENTNAME)
output << " " << currentFrag->FRAGMENT_NAME << "\n";

void AlignedCluster::printPolymorphicPositions(bool useHighQualOnly,
ostream& output)

Prints each nucleotide that is potentially polymorphic after
the nucleotide has been analyzed. If <useHighQualOnly>
is TRUE, only high quality bases at each contig position
are considered for analysis. Print result to <output>
which is standard output by default.

int numberOfPolymorphisms = 0;

int numberOfPolyTEMP = 0;
IIIIIIIII!/111111111111//

for (int i=0; i<pCONTIG_LEN; i++) {
if (isPolymorphicBase(i, useHighQualOnly)) {

gNumSNPs++;
numberOfPolyTEMP++;
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if (numberOfPolyTEMP <= 1)
gNumClusterWithSNP++;

int frontEnd;
int backEnd;

if (!isPolymorphicAndCanBeSequenced(i, pPARAMS->min_consensus_overlap,
frontEnd, backEnd, useHighQualOnly))

continue;

int numberOfN = 0;
Sequence* newConsensusSequence = new Sequence;
for (int j=frontEnd; j<=backEnd; j++) {
char c = determineConsensusBase(j, useHighQualOnly);
newConsensusSequence->putChar(c);
if (c == 'N') numberOfN++;

}
addSequenceToConsensusArray(newConsensusSequence, i, frontEnd, backEnd);

numberOfPolymorphisms++;

if (output) {
if (numberOfPolymorphisms > 1)

output << " ......... .. . ............ ............... \.. n" ;
else {

output << "::::::::::::::\n";
output << pCLUSTER_NAME << "\n";
output << "::::::::::::::\n\n";

output << "CONTIGSEQUENCE=";
pCONTIG_SEQ->printSequence(TRUE, output);
output << "CONTIG_SEQUENCELENGTH=";
output << pCONTIG_LEN << "\n";
output << "\n";

printPositionInfo(i, output);

if (pPARAMS->print_qual_window) {
printPolymorphismWindow(i, pPARAMS->print_qual_window_size, output);
output << "\n";

output << "POLYMORPHISM_NAME=";
if (pCLUSTER_NAME)

output << pCLUSTERNAME;
else

output << "UNKNOWN";
output << "-" << (i+l) << "\n";

output << "POLYMORPHISM=" << pCONTIG_INFO[i] . POLYMORPHISM << "\n";
output << "POLYMORPHISM_POSITION_IN_CONTIG=" << (i+l) << "\n";
output << "\n";

output << "SEQUENCE=";
newConsensusSequence->printSequence(FALSE, output);

output << "\n";
output << "SEQUENCE_N_CONTENT="

<< (100.0 * numberOfN / (backEnd - frontEnd + 1)) << "\n";

output << "SEQUENCE_LENGTH=" << (backEnd - frontEnd + 1) << "\n";
output << "POLYMORPHISM_POSITION_IN_CONSENSUS=" << (i - frontEnd + 1)
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<< "\n";
output << "\n";

}
}
if (numberOfPolymorphisms > 0)
output << "\n\n";

}

bool AlignedCluster::isPolymorphicAndCanBeSequenced(int i,
int consensusOverlapLevel,
int& frontEnd,
int& backEnd,
bool useHighQualOnly)

//
// Effects: Return TRUE if the potentially polymorphic nucleotide at
// contig position <i> has a related consensus sequence that
// has an unambiguous region both upstream and downstream of
// the nucleotide in question. The consensus sequence must
// be confirmed by <consensusOverlapLevel> sequences.
//
{
if (!isPolymorphicBase(i, useHighQualOnly))

return FALSE;

getOverlappingSeqIndexes(i, consensusOverlapLevel, frontEnd, backEnd,
useHighQualOnly);

if ((backEnd - frontEnd + 1) < pPARAMS->min_consensus_length) {
return FALSE;

}

if (((i - frontEnd) < (pPARAMS->minprimerlength
+ pPARAMS->min_length_upstream_ofSNP))

((backEnd - i) < (pPARAMS->minprimer_length
+ pPARAMS->min_length_downstream_ofSNP))) {

return FALSE;
}

if (longestUnambiguousSeqLength(frontEnd,
i - pPARAMS->min_length_upstream_of_SNP,
useHighQualOnly)

< pPARAMS->min_primerlength) {
return FALSE;

}

if (longestUnambiguousSeqLength(i + pPARAMS->min_length_downstream_of_SNP,
backEnd, useHighQualonly)

< pPARAMS->min primer_length) {
return FALSE;

return TRUE;
}

int AlignedCluster::longestUnambiguousSeqLength(int frontEnd, int backEnd,
bool useHighQualOnly)

//
// Effects: Return the length of the longest umambiguous region in
// the aligned sequences between the contig positions <frontEnd>
// and <backEnd>.
//
{
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int longestUnambiguousSeqLen = 0;

int tenpLen = 0;
for (int i=frontEnd; i<=backEnd; i++)

if (determineConsensusBase(i, useHighQualOnly) == 'N') {
if (tempLen > longestUnambiguousSeqLen)
longestUnambiguousSeqLen = tempLen;

tempLen = 0;

else
tempLen++;

}
if (tempLen > longestUnambiguousSeqLen)

longestUnambiguousSeqLen = tempLen;

return longestUnambiguousSeqLen;

bool AlignedCluster::isConflictingBase(int contigPos, bool useHighQualOnly)

// Effects: Return TRUE if the sequences exhibit more than one allele
// at the contig position <contigPos>. Return FALSE otherwise.
// Consider only high quality nucleotides if <useHighQualOnly>
// is TRUE.

int counter = 0;

for (int i=:BOTTOM; i<_TOP; i++) {
if (pCONTIG_INFO[contigPos].HQ_bases[i] > 0)

counter++;
continue;

}
if (!useHighQualOnly) {

if (pCONTIG_INFO[contigPos].LQ_bases[i) > 0)
counter++;

}

if (counter > 1)
return TRUE;

return FALSE;

void AlignedCluster::analyzeAllPositions(bool useHighQualOnly)

// Effects: Analyze all the nucleotide positions which are overlapped by
// the contig sequence. After a nucleotide position has been
// analyzed, it is classified as UNDEFINED, POLYMORPHIC,
// CONFLICTING, or SAME.

{
for (int i=0; i<pCONTIGLEN; i++)

analyzePosition(i, useHighQualOnly);

void AlignedCluster::analyzePosition(int i, bool useHighQualOnly)

// Effects: Analyze a nucleotide position overlapped by the contig
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// sequence. After it is analyzed, it is classified as UNDEFINED,
// POLYMORPHIC, CONFLICTING, or SAME.
//

PositionInfo* pos = &pCONTIG_INFO[i];

float mostAbundant = -1;
for (int j=_BOTTOM; j<=_TOP; j++)
pos->HQ_total += pos->HQbases[j];
pos->LQtotal += pos->LQ bases[j];

int subtotal = pos->HQ_bases[j];
if (!useHighQualOnly)

subtotal += pos->LQbases[j];
if (subtotal > mostAbundant)
mostAbundant = subtotal;

pos->TOTAL = pos->HQtotal + pos->LQ_total + pos->P_bases;

if (mostAbundant > 0) {
for (j=_BOTTOM; j<=_TOP; j++) {

int topValue = pos->HQbases[j];
if (!useHighQualOnly)
topValue += pos->LQ_bases[j];

pos->RATIOS[j] = topValue * 100 /
(topValue + mostAbundant);

}
}

void AlignedCluster: :printAllPositions (ostream& output)
//
// Effects: Calls printPositionInfo to print info on all nucleotide
// positions to <output>. By default, <output> is standard
i// output.

for (int i=0; i<pCONTIGLEN; i++)
printPositionInfo(i, output);

void AlignedCluster::printPositionInfo(int i, ostream& output)
//
// Effects: Prints information about the nucleotide at contig position
// <i> to <output>. By default, <output> is standard output.
// Information such as the number of each type of nucleotide, etc.
/1/ is printed.
//

output << "CONTIG POSITION (" << (i+l) << ") ["
<< pCONTIG_SEQ->getChar(i) << "]\n";

output << "TOTAL OVERLAP=" << pCONTIG_INFO[i].TOTAL << "\n";
output << "HIGH QUALITY OVERLAP=" << pCONTIGINFO[i].HQtotal << "\n";
output << "LOW QUALITY OVERLAP=" << pCONTIG_INFO[i] .LQtotal << "\n";
output << "\n";

output.precision(3);

output << "TOTAL G="
<< (pCONTIG_INFO[i] .HQ_bases[_G] + pCONTIGINFO[i].LQbases LG] )

<< "\t\tR=" << pCONTIG_INFO[i].RATIOS[_G]
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<< "\t\tG=" << pCONTIG_INFO[i].HQ_bases[_G]
<< "\tg=" << pCONTIG_INFO[i].LQbasesL[ G]

<< "\n";
output << "TOTAL A="

<< (pCONTIG_INFO[i].HQ_basesA] + pCONTIGINFO[i].LQbases[L_A])
<< "\t\tR=" << pCONTIG_INFO[i].RATIOS[_A]

<< "\t\tA=" << pCONTIG_INFO[i].HQbases[_A]
<< "\ta=" << pCONTIG_INFO[i].LQbases[_A]

<< "i\n";
output << "TOTAL T="

<< (pCONTIG_INFO[i] .HQ_bases[_T] + pCONTIG_INFO[i].LQ bases[_T])
<< "\t\tR=" << pCONTIG_INFOi] .RATIOS[_T]

<< "\t\tT=" << pCONTIGINFO[i].HQbases[_T]
<< "\tt=" << pCONTIG_INFO[i].LQ_bases[_T]

<< "\n";
output << "TOTAL C="

<< (pCONTIGINFO[i] .HQ_bases[_C] + pCONTIG_INFO[i].LQbases[_C])
<< "\t\tR=" << pCONTIGINFO[i].RATIOS[_C]

<< "\t\tC=" << pCONTIG_INFO[i].HQ_bases([_C]
<< "\tc=" << pCONTIG_INFO[i].LQ_ bases[_C]

<< "\n";
output << "TOTAL N="

<< (pCONTIG_INFO[i].HQ_bases[_N] + pCONTIG_INFO[i].LQbases [_N])
<< "\t\t\t\tN=" << pCONTIG_INFO[i].HQbases[_N]

<< "\tn=" << pCONTIG_INFO(i].LQ bases[_N]
<< "\n";

output << "TOTAL *=" << pCONTIG_INFO[i].Pbases << "\n";
output << "\n";

char AlignedCluster::determineConsensusBase(int contigPos,
bool useHighQualOnly)

//
// Effects: Determine the identity of the nucleotide for the contig
// position <contigPos>. Consider only high quality nucleotides
// if <useHighQualOnly> is TRUE.

PositionType positionType = getPositionType(contigPos, useHighQualOnly);

switch (positionType) {
case SAME:
return getBaseCharacter(getMostFrequentBase(contigPos, useHighQualOnly));
break;

case POLYMORPHIC:
return 'N';
break;

case CONFLICTING:
return resolveConflictBase(contigPos, useHighQualOnly);
break;

default:
return 'N';
break;

return 'N';

char AlignedCluster::resolveConflictBase(int contigPos, bool useHighQualOnly)
//
// Effects: Determine the probable nucleotide at contig position
// <contigPos>. Consider only high quality nucleotides if
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// <useHighQualOnly> is TRUE.
//
{
int mostFreqBase = getMostFrequentBase(contigPos, useHighQualOnly);
int mostFreqBaseNumber = pCONTIG_INFO[contigPos).HQ_bases[mostFreqBase];
if (!useHighQualOnly) {
mostFreqBaseNumber += pCONTIG_INFO [contigPos].LQ_bases[mostFreqBase];

if (mostFreqBaseNumber <= 2)
return 'N';

for (int i=_BOTTOM; i<_TOP; i++) {
if (i == mostFreqBase)

continue;
int totalBases = pCONTIGINFO[contigPos].HQ_bases[i];
if (!useHighQualonly)

totalBases = pCONTIGINFO[contigPos].LQbases[i];

if (((mostFreqBaseNumber - totalBases) * 100.0
/ (mostFreqBaseNumber + totalBases)) < 50.0)

return 'N';

return (getBaseCharacter(mostFreqBase));

PositionType AlignedCluster::getPositionType(int contigPos,
bool useHighQualOnly)

//
// Effects: Return the position type at <contigPos>: POLYMORPHIC,
// CONFLICTING, SAME, or UNDEFINED. Consider only high quality
// nucleotides if <useHighQualOnly> is TRUE.
//

if (pCONTIG_INFO[contigPos].POSITION_type != UNDEFINED)
return pCONTIG_INFO[contigPos].POSITION_type;

if (isPolymorphicBase(contigPos, useHighQualOnly))
return POLYMORPHIC;

else
return pCONTIG_INFO[contigPos].POSITION_type;

void AlignedCluster::getOverlappingSeqIndexes(int includedSite,
int overlapLevel,
int& frontEnd, int& backEnd,
bool useHighQualOnly)

//
// Effects: Sets <frontEnd> to the leftmost point in the aligned
// sequence assembly that is overlapped by <overlapLevel>
// sequences starting from <includedSite>. Do the same for
// <backEnd> in the opposite direction. Consider only high
// quality nucleotides if <useHighQualOnly> is TRUE.
1/

frontEnd = 1;
backEnd = -1;

for (int i=includedSite; i>=0; i--) {
int level = pCONTIG_INFO[i].HQtotal;
if (!useHighQualOnly)
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level += pCONTIG_INFO[i].LQtotal;
if (level < overlapLevel)
break;

frontEnd = i;

for (i=includedSite; i<pCONTIG LEN; i++)
int level = pCONTIG_INFO[i].HQ_total;
if (!useHighQualOnly)

level += pCONTIGINFO[i] .LQ_total;
if (level < overlapLevel)

return;
backEnd = i;

bool AlignedCluster::isPolymorphicBase(int contigPos, bool useHighQualOnly)
//
// Effects: Return TRUE if the nucleotide at contig position <contigPos>
// is potentially polymorphic. Return FALSE otherwise.
//

if (pCONTIG_INFO[contigPos].POSITIONtype != UNDEFINED) {
if (pCONTIG_INFO[contigPos].POSITIONtype == POLYMORPHIC)

return TRUE;
else

return FALSE;

char polymorphism[6];
char* polymorphicBases = polymorphism;
*polymorphicBases = 0;

int overlapLevel = pCONTIGINFO[contigPos].HQ_total;
if (!useHighQualOnly)

overlapLevel += pCONTIG_INFO[contigPos].LQ_total;

if (overlapLevel < (pPARAMS->min_qualreads*2)) {
if (!isConflictingBase(contigPos, useHighQualOnly))
pCONTIG_INFO[contigPos].POSITION_type = SAME;

else
pCONTIG_INFO[contigPos].POSITIONtype = CONFLICTING;

return FALSE;

else {
if (!isConflictingBase(contigPos, useHighQualOnly)) {
pCONTIG_INFO[contigPos].POSITION_type = SAME;
return FALSE;

else {
pCONTIG_INFO[contigPos].POSITION_type = CONFLICTING;

int couldBePolymorphic = 0;
for (int i=_BOTTOM; i<_TOP; i++)

if (pCONTIG_INFO [contigPos] .RATIOS[i]>=pPARAMS->minpolymorphic_ratio) {
int numberReads = pCONTIG_INFO[contigPos].HQ bases[i];
if (!useHighQualOnly)
numberReads += pCONTIG_INFO [contigPos] .LQ_bases i];

if (numberReads >= pPARAMS->min_qual_reads) {
couldBePolymorphic++;
*(polymorphicBases++) = getBaseCharacter(i);
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*polymorphicBases = 0;
if (couldBePolymorphic < 2) {

return FALSE;

int windowStart = contigPos - pPARAMS->qual_window_size;
if (windowStart < 0)
windowStart = 0;

int windowEnd = contigPos + pPARAMS->qualwindow_size;
if (windowEnd >= pCONTIG_LEN)
windowEnd = pCONTIGLEN - 1;

float totalExamined = 0;
float totalAmbiguous = 0;
for (i=windowStart; i<=windowEnd; i++) {

totalExamined += pCONTIGINFO[i .TOTAL;
totalAmbiguous += pCONTIG_INFO[i].HQ_bases[_N] +

pCONTIG_INFO[i].LQbases[ N] + pCONTIG_INFO[i].Pbases;
}

if ((totalAmbiguous * 100 / totalExamined)
> pPARAMS->qual_window_threshold) {

pCONTIGINFO[contigPos].POSITION_type = POLYMORPHIC;
pCONTIG_INFO[contigPos].POLYMORPHISM = new char[strlen(polymorphicBases) +];
strcpy(pCONTIGINFO[contigPos].POLYMORPHISM, polymorphism);

return TRUE;
}

int AlignedCluster::getMostFrequentBase(int contigPos, bool useHighQualOnly)
//
// Effects: Get the nucleotide (G/A/T/C) with the highest occurrence
// at the contig position <contigPos>. Consider only high
// quality nucleotides if <useHighQualOnly> is TRUE.
//

{t mostFrequentBase = 0;
int mostFrequentBaseNum = 0;

for (int i=_BOTTOM; i<_TOP; i++) {
int totalBases = pCONTIG_INFO[contigPos].HQ_bases[i);
if (!useHighQualOnly)

totalBases += pCONTIGINFO[contigPos] .LQ bases[i];
if (totalBases > mostFrequentBaseNum) {
mostFrequentBaseNum = totalBases;
mostFrequentBase = i;

return mostFrequentBase;

bool AlignedCluster::addSequenceToConsensusArray(Sequence* newSequence,
int contigPos,
int frontIndexInContig,
int backIndexInContig)

1/
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// Effects: Add sequence <newSequence> containing the polymorphic
// nucleotide at contig position <contigPos> to consensus
// sequence array.
//

for (int i=O; i<pCONSENSUSSEQARRAY->size(); i++)
ConsensusSequence* cs=(ConsensusSequence*)pCONSENSUS_SEQARRAY->element(i);
if ((*newSequence == *(cs->CONSENSUS_SEQ)) &&

(frontIndexInContig == cs->FRONT_INDEX INCONTIG) &&
(backIndexInContig == cs->BACK_INDEX_IN_CONTIG)) {

cs->POLYMORPHIC_SITES->addElementHigh((void*)contigPos);
return FALSE;

ConsensusSequence* newConSeq = new ConsensusSequence(newSequence,
frontIndexInContig,
backIndexInContig);

newConSeq->POLYMORPHIC_SITES->addElementHigh((void*)contigPos);
pCONSENSUS_SEQ_ARRAY->addElementHigh(newConSeq);
return TRUE;

void AlignedCluster::outputPrimerBoulderInput(ostream& output)
//
// Effects: Print the data needed by PRIMER to pick PCR primers
// that flank the potentially polymorphic nucleotides
// identified. The format used is Boulder IO, which is
// accepted by PRIMER.
//

if (!pCONSENSUS_SEQ ARRAY)
return;

int seqArraySize = pCONSENSUSSEQ_ARRAY->size();
if (!seqArraySize)

return;

gNumClusterWithSNPConsensus++;

int minUpPrimerWinSize = pPARAMS->min_length_upstreamofSNP
+ pPARAMS->min primer_length;

int minDownPrimerWinSize = pPARAMS->min_length_downstream_of_SNP
+ pPARAMS->min_primer_length;

for (int i=O; i<seqArraySize; i++) {
ConsensusSequence* conSeqInfo = (ConsensusSequence*)pCONSENSUS_SEQARRAY-

>element(i);
Sequence* conSeq = conSeqInfo->CONSENSUS_SEQ;
Array* polySites = conSeqInfo->POLYMORPHICSITES;
int conSeqLength = conSeq->length();

// if (conSeqLength <= pPARAMS->max_pcr_product_length) {
if (TRUE) {

output << "MARKERNAME=" << pCLUSTER_NAME;
output << "\n";
output << "SEQUENCE=";
conSeq->printSequence(FALSE, output);
output << "\n";
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for (int j=0; j<polySites->size(); j++)
output << "POLYMORPHISM" << i )

<< ((int)polySites->element(j) - conSeqInfo->FRONT_INDEX_IN_CONTIG)
<< "=" << pCONTIG_INFO[ (int)polySites->element(j) .POLYMORPHISM

<< "\n";

output << "TARGET=" // TEMPORARY
<< ((int)polySites->element(0) - conSeqInfo->FRONT_INDEXINCONTIG-10)

<< "," << ((int)polySites->element(polySites->size()-) -
(int)polySites->element(0) + 1 + 20) << ","

<< "TARGET_REGION\n";

output << "PRIMER_DEFAULT_PRODUCT=\"350-400 300-350 250-300 200-250 150-200 100-
150 64-100\"\n";

output << "=\n";

)
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The Single Nucleotide Polymorphism Detector
(SNPD) / Parameter.H

#ifndef PARAMETER_H

#include "project.H"
#include <iostream.h>
#define PARAMETERH

class Parameter {

// This is simply structure containing various parameter variables. Putting
// all these variable in one structure allows the parameters to be passed
// around more easily.

public:

Parameter(void) {
// By default, do not print separate output files.
no_file_conflict = FALSE;
nofile_polymorphism = FALSE;
no_file_analysis = FALSE;
no_file_all = FALSE;

// By default, print the window of bases surrounding the polymorphic
// sites, if polymorphism file is printed. The window is centered
// on the polymorphic site, and the width of the window to print is
// <printqualwindow_size> * 2 + 1.
print_qualwindow = TRUE;
print_qualwindow_size = 20;

// By default, consider only high-quality bases in polymorphism
// analysis. If <use_high_qual_only> is set to FALSE, all bases
// will be considered when scanning for potential polymorphic sites
// and generating consensus sequences.
use_high_qual_only = TRUE;

// By default, must have 2 high-quality reads per polymorphic nucleotide
// per polymorphic site. Minimum allelic frequence of 20% for the minor
// allele of polymorphic nucleotide.
min_qualreads = 2;
minminorallelefreq = 20.0;

// Check the bases surrounding the potential polymorphic site for
// ambiguous bases. The window to check is centered on the polymorphic
// site and has a width of <qual_window_size> * 2 + 1. If the percentage
// of ambiguous bases exceeds <qualwindow_threshold>, reject this site.
qual_window_size = 5;
qual_window_threshold = 10.0;

// Each base in the consensus sequence which contains the polymorphic
// site must be covered by <min_consensus_overlap> reads. The length
// of the consensus sequence must be <minconsensus_length> bases. This
// is necessary for primer picking.
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min_consensus_overlap = 3;
min_consensuslength = 80;

// These parameters are here for primer picking purposes. The forward
// primer must not be picked in the <min_length_upstreamof_SNP>-base
// region upstream of a polymorphic site, and the reverse primer must
// not be picked in the <min_lengthdownstreamofSNP>-base region
// downstream of a polymorphic site. In addition, there must be an
// unambiguous region of <minprimer_length> bases upstream and down-
// stream of the polymorphic site where primers can potentially be
// picked.
minprimerlength = 20;
minmarginupstream = 10;
minmargin_downstream = 10;

// This parameter is currently not being used in Release 1.0.
max_pcr product_length = 400;

};

-Parameter(void) { };

void parseParameters(int argc, char *argv[]);
// Effects: Parse the command line arguments that trail the executed
// command, and set various parameters to their user-specified
// values.

void printParameters(ostream& output = cerr);
// Effects: Prints the values of all parameters to <output> in a
// human-readable fashion.

// Declaration of all parameters
bool nofile conflict;
bool no_file_polymorphism;
bool no_file analysis;
bool no_file all;

bool printqual window;
int printqual_windowsize;

bool use_high_qual_only;

int min_qual reads;
float min_minorallele freq;
int qual window size;
float qual_window_threshold;

int min_consensus_overlap;
int min_consensus_length;

int max_pcr_product_length;
int min_primerjlength;
int min_marginupstream;
int min_margin_downstream;

;endi

#endif
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The Single Nucleotide Polymorphism Detector
(SNPD) / Parameter.C

#include "parameter.H"
#include <iostream.h>
#include <stdio.h>

void Parameter::parseParameters(int argc, char *argv[])
//
// Effects: Parse the command line arguments that trail the executed
// command, and set various parameters to their user-specified
// values.
//
{
// Examine each argument one by one. If an argument requires the user
// to specify a value, assume the argument that follows immediately is
// the value.
for (int i=l; i < argc; i++) {

if (!strcmp(argv[i], "-no_fileconflict"))
no file conflict = TRUE;

else if (!strcmp(argv[i], "-no_filepolymorphism"))
no_filepolymorphism = TRUE;

else if (!strcmp(argv[i], "-nofileanalysis"))
no_file analysis = TRUE;

else if (!strcmp(argv[i], "-no_file_all"))
no_file_all = TRUE;

else if (!strcmp(argv[i], "-no files")) {
no file_conflict = TRUE;
no_filepolymorphism = TRUE;
nofileanalysis = TRUE;
no_file_all = TRUE;

}

else if (!strcmp(argv[i], "-not_printqual_window"))
print_qual_window = FALSE;

else if (!strcmp(argv[i], "-print_qual_window_size"))
sscanf(argv[++i], "%d", &printqual window_size);

else if (!strcmp(argv[i], "-ignore_qual"))
use_high_qualonly = FALSE;

else if (!strcmp(argv[i], "-min qual_reads"))
sscanf(argv[++i], "%d", &min_qualreads);

else if (!strcmp(argv[i], "-min_minor_allele_freq"))
sscanf(argv[++i], "%f", &min_minor_allele_freq);

else if (!strcmp(argv[i], "-qualwindowsize"))
sscanf(argv[++i], "%d", &qual_windowsize);

else if (!strcmp(argv[i], "-qualwindow_threshold"))
sscanf(argv[++i], "%f", &qual_window_threshold);

else if (!strcmp(argv[i], "-minconsensus_overlap"))
sscanf(argv[++i], "%d", &min_consensusoverlap);

else if (!strcmp(argv[i], "-min_consensus_length"))
sscanf(argv[++i], "%d", &min_consensus_length);
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else if (!strcmp(argv[i],
sscanf(argv[++i], "%d",

else if (!strcmp(argv[i],
sscanf(argv[++i], "%d",

else if (!strcmp(argv[i],
sscanf(argv[++i], "%d",

else if (!strcmp(argv[i],
sscanf(argv[++i], "%d",

"-max pcr_product_length"))
&maxpcr_produc t_length);
"-min primerlength"))
&minprimer length);
"-minmargin_upstream"))
&min_margin_upstream);
"-minmargin_downstream"))
&minmargindownstream);

else if (argv[i [0] == '-') {
cerr << "ERROR: option " << argv[i] << " not recognized\n";
exit(l);

}
else {

// Cannot recognize the argument. Print error message and
// terminate program.
cerr << "ERROR: commandline argument " << argv[i]
<< " not recognized\n";

exit ();

void Parameter::printParameters(ostream& output)
//
// Effects: Prints the values of all parameters to <output> in a
// human-readable fashion.
//

output.precision(4);

output << "Print conflict file:
if (no_fileconflict) output << "NO\n"; else output << "YES\n";

output << "Print polymorphism file: ";
if (no_file polymorphism) output << "NO\n"; else output << "YES\n";

output << "Print analysis file: ";
if (no_file analysis) output << "NO\n"; else output << "YES\n";

output << "Print complete sequence file:
if (no_file_all) output << "NO\n"; else output << "YES\n";

output << "Consider high quality bases only: ";
if (!use_highqual_only) output << "NO\n"; else output << "YES\n";

output << "Minimum number of quality reads per allele:
<< min qual_reads << "\n";

output << "Minimum minor allele frequency:
<< minminor_allele freq << "\n";

output << "Size of window for quality control:
<< qualwindow_size << "\n";

output << "Quality control window threshold:
<< qual_window_threshold << "\n";

output << "Minimum consensus overlap:
<< minconsensus_overlap << "\n";

output << "Minimum consensus length:
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<< min_consensus_length << "\n";

output << "Maximum length of PCR product:
<< max pcr_productlength << "\n";

output << "Minimum primer length:
<< min_primer_length << "\n";

output << "Minimum number of bases upstream of the SNP:
<< min_margin_upstream << "\n";

output << "Minimum number of bases downstream of the SNP:
<< min_margindownstream << "\n";

output << "Size of quality window to print:
<< printqualwindow_size << "\n";

output << "\n";
I
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The Single Nucleotide Polymorphism Detector
(SNPD) / Project.H

#ifndef PROJECTH

#include <bool.h>
#define PROJECTH

// Debug mode toggle
#define DEBUG_MODE TRUE

// Define some constants
#define WRITEMODE 2

// Define various delimiters to be read from standard input.

// Delimiters for contig sequence
#define CONTIG_LEFT_DELIMITER '('
#define CONTIG_RIGHT_DELIMITER '}'

// Delimiters for fragment sequence to be aligned to contig sequence
#define FRAGMENT_LEFT_DELIMITER '['
#define FRAGMENT_RIGHT_DELIMITER ']'

// Delimiters for the front fragment index
#define FRONT_INDEX_LEFT_DELIMITER '('
#define FRONTINDEXRIGHT_DELIMITER ')'

// Delimiters for the back fragment index
#define BACK_INDEXLEFT_DELIMITER '<'
#define BACKINDEX_RIGHTDELIMITER '>'

// Delimiters for the cluster/contig name
#define CLUSTERNAMELEFTDELIMITER ':'
#define CLUSTERNAMERIGHT_DELIMITER ';'

// Delimiters for the fragment name
#define FRAGMENT_NAME_LEFT_DELIMITER 47
#define FRAGMENTNAME_RIGHTDELIMITER 92

// Delimiter to signal that all the fragments have been received
#define CLUSTEREND 0

// Some constants for signal purpose used by the "deterministic finite
// automatom" which parses the data received from standard input and
// the main loop.
#define DEFAULT 0
#define CONTIGRECEIVED 1
#define FRAGMENT_RECEIVED 2
#define CLUSTER_END_RECEIVED 3
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// Define some suffixes to be attached to output files
#define SUFFIX CONFLICTFILE ".conf"
#define SUFFIX_POLYMORPHISM_FILE ".poly"
#define SUFFIX_ANALYSIS_FILE ".analy"
#define SUFFIX_ALL_FILE ".all"

#endif
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The Single Nucleotide Polymorphism Detector
(SNPD) / Project.C

#include "project.H"
#include "analysis.H"
#include "parameter.H"
#include "sequence.H"
#include "utility.H"
#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <string.h>

// Prototyping for several procedures

int ReadInput(istream& input, Sequence** contigSeq, Sequence** fragSeq);
void PrintOutfiles(AlignedCluster* alignedCluster, char* filename);
bool IsBasePair(char c);
void Test(void);

// Declaration and Initialization of global variables

Parameter* gParameters;
Sequence* gContig = 0;
Sequence* gFragment = 0;
AlignedCluster* gAlignedCluster = 0;

char gClusterName[64];
char gFragName[64];
int gFrontIndex = 0;
int gBackIndex = 0;

int gNumClusterProcessed = 0;
int gNumSNPs = 0;
int gNumClusterWithSNP = 0;
int gNumClusterWithSNPConsensus = 0;

// Main program

main(int argc, char *argv[])
//
// Effects: Continues to receive sequences and alignment data via
// standard input. Analyze each cluster as it is received.
// Output potential single nucleotide polymorphism data and
// other information necessary for primer picking by PRIMER
// in Boulder IO format.
//

// Create a new Parameter object.
gParameters = new Parameter;

// Parse commandline arguments.
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gParameters->parseParameters(argc, argv);

// Print settings to standard error.
gParameters->printParameters(cerr);
cerr << "\n\n";

// Loop for reading data from standard input. Read until there is
// no more data to be read.

while (!cin.eof() && !cin.fail()) {
// Parse the input using the ReadInput procedure which implements
// a deterministic finite automaton
int command = ReadInput(cin, &gContig, &gFragment);

// Execute command according to command return by ReadInput.
switch (command) {

case DEFAULT:
break;

case CONTIG_RECEIVED:
// Received a contig sequence. Create a new empty sequence assembly.
// Delete old assembly if it exists.
if (gAlignedCluster)
delete gAlignedCluster;

gAlignedCluster = new AlignedCluster(gParameters, gContig, gClusterName);
break;

case FRAGMENTRECEIVED:
// Received a sequence. Add the sequence to the sequence alignment
// assembly.
if ((gContig->length() > 0) && (gFragment->length() > 0)) {
gAlignedCluster->addFragment(gFragment, gFragName,

gFrontIndex-l, gBackIndex-l);
}
break;

case CLUSTEREND_RECEIVED:
// Have received all the sequences. Start analysis.
cerr << "JAMALAH processing cluster <" << gClusterName << ">...\n";
cerr << "LENGTH OF CONTIG is " << gContig->length() << " bases\n";
cerr << "CLUSTER contains "
<< gAlignedCluster->clusterSize() << " sequences\n";

// Check to make sure that the number of sequences received is
// greater than 0, and that the length of the contig sequence is
// also greater than 0. Otherwise, it's meaningless to perform
// the analysis.
if ((gContig->length() > 0) && (gAlignedCluster->clusterSize() > 0)) {
gAlignedCluster->analyzeAllPositions(gParameters->usehigh_qual_only);

// Analyze all positions.
gAlignedCluster->printPolymorphicPositions(gParameters->use_high_qualonly, 0);

// Output result of analysis in BoulderIO format to standard output.
gAlignedCluster->outputPrimerBoulderInput(cout);

// Print analysis files.
PrintOutfiles(gAlignedCluster, gClusterName);
}
cerr << "Done.\n\n";

// Keep track of number of clusters processed.
gNumClusterProcessed++;
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break;

default:
break;

}

// Print summary of analysis in this session.
ofstream outfile("SUMMARY", WRITEMODE);
outfile << "Number of clusters:

<< gNumClusterProcessed << "\n";
outfile << "Number of SNPs:

<< gNumSNPs << "\n";
outfile << "Number of clusters with SNPs:

<< gNumClusterWithSNP << "\n";
outfile << "Number of clusters with SNPs and ideal consensus sequences:

<< gNumClusterWithSNPConsensus << "\n";
outfile.close();

void PrintOutfiles(AlignedCluster* alignedCluster, char* filename)
//
// Effects: Print analysis files of the results from the single
// nucleotide polymorphism analysis. Use <filename> as the
// filename and attach proper suffixes to it.
//
{

// Determine the length of <filename> + length of "."
char* newFilename;
int filenameLen = strlen(filename) + 1;

if (!gParameters->no_file_conflict) {
// Create a new char array for <filename> + the suffix.
newFilename = new char[filenameLen + strlen(SUFFIX_CONFLICTFILE)];

// Copy to the array <filename> appended by the proper suffix.
strcpy(newFilename, filename);
strcat(newFilename, SUFFIX_CONFLICT_FILE);

// Create a new file for writing.
ofstream outfile(newFilename, WRITE_MODE);

// Print settings.
gParameters->printParameters(outfile);
outfile << "\n\n";

// Print information on all conflicting nucleotides.
alignedCluster->printConflictPositions(gParameters->usehighqual only,

outfile);
outfile.close();

if (!gParameters->no_filepolymorphism) {
// Create a new char array for <filename> + the suffix.
newFilename = new char[filenameLen + strlen(SUFFIX_POLYMORPHISM_FILE)];

// Copy to the array <filename> appended by the proper suffix.
strcpy(newFilename, filename);
strcat(newFilename, SUFFIX_POLYMORPHISM FILE);

// Create a new file for writing.
ofstream outfile(newFilename, WRITE_MODE);
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// Print settings.
gParameters->printParameters(outfile);
outfile << "\n\n";

// Print information on all polymorphic nucleotides.
alignedCluster->printPolymorphicPositions(gParameters->use high qual_only,

outfile);
outfile.close();

if (!gParameters->nofileall) {
// Create a new char array for <filename> + the suffix.
newFilename = new char[filenameLen + strlen(SUFFIX_ALL_FILE)];

// Copy to the array <filename> appended by the proper suffix.
strcpy(newFilename, filename);
strcat(newFilename, SUFFIX_ALL FILE);

// Create a new file for writing.
ofstream outfile(newFilename, WRITE_MODE);

// Print settings.
gParameters->printParameters(outfile);
outfile << "\n\n";

// Print information on all nucleotides.
alignedCluster->printAllPositions(outfile);
outfile.close();

int ReadInput(istream& input, Sequence** contigSeq, Sequence** fragSeq)
//
// Effects: Parse the standard input by looking for specific delimiter
// pairs <left_delimiter> and <right_delimiter>. Each kind of
// data--contig sequence, fragment seq, etc.--is enclosed inside
// a pair of uniquely defined delimiters. If
//
{
static char prevDelimiter = 0;
static Sequence* selectedSeq = 0;

static char string[64];
static char* stringPtr = string;

char c = input.get();
switch (c) {
case CLUSTERNAMELEFTDELIMITER:

if ((prevDelimiter == CONTIG_LEFT_DELIMITER) I
(prevDelimiter == FRAGMENT_LEFT_DELIMITER) II
(prevDelimiter == FRONT_INDEX_LEFT_DELIMITER)
(prevDelimiter == BACK_INDEX_LEFT_DELIMITER)
(prevDelimiter == FRAGMENT_NAME_LEFT_DELIMITER)) {

exit(l);

prevDelimiter = CLUSTER_NAME_LEFT_DELIMITER;
return DEFAULT;
break;

case CLUSTER_NAMERIGHTDELIMITER:
if ((prevDelimiter != CLUSTER_NAME_LEFT_DELIMITER) && prevDelimiter) {
exit(l);

*stringPtr = 0;
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strcpy(gClusterName, string);
stringPtr = string;
prevDelimiter = CLUSTER_NAME_RIGHT_DELIMITER;
return DEFAULT;
break;

case CONTIG_LEFT_DELIMITER:
if ((prevDelimiter == CONTIG_LEFT_DELIMITER)

(prevDelimiter == FRAGMENT_LEFT_DELIMITER)
(prevDelimiter == FRONT_INDEX_LEFT_DELIMITER)
(prevDelimiter == BACK_INDEX_LEFT_DELIMITER)
(prevDelimiter == FRAGMENT_NAMELEFT_DELIMITER)) {

exit(l);
}
*contigSeq = selectedSeq = new Sequence;
prevDelimiter = CONTIG_LEFT_DELIMITER;
return DEFAULT;
break;

case CONTIG_RIGHT_DELIMITER:
if ((prevDelimiter != CONTIG_LEFT_DELIMITER) && prevDelimiter) (

exit(l);
}
prevDelimiter = CONTIG_RIGHT_DELIMITER;
return CONTIG_RECEIVED;
break;

case FRAGMENTLEFTDELIMITER:
if ((prevDelimiter == CONTIG_LEFT_DELIMITER)

(prevDelimiter == FRAGMENT_LEFT_DELIMITER)
(prevDelimiter == FRONT_INDEX_LEFT_DELIMITER) I
(prevDelimiter == BACK_INDEX_LEFT_DELIMITER)
(prevDelimiter == FRAGMENT_NAME_LEFT_DELIMITER)) {

exit(l);
}
*fragSeq = selectedSeq = new Sequence;
prevDelimiter = FRAGMENTLEFT_DELIMITER;
return DEFAULT;
break;

case FRAGMENT_RIGHT_DELIMITER:
if ((prevDelimiter != FRAGMENT_LEFT_DELIMITER) && prevDelimiter) {

exit ();
}
prevDelimiter = FRAGMENT_RIGHT_DELIMITER;
return FRAGMENT_RECEIVED;
break;

case FRONT_INDEXLEFT_DELIMITER:
if ((prevDelimiter == CONTIG_LEFT_DELIMITER)

(prevDelimiter == FRAGMENT_LEFT_DELIMITER)
(prevDelimiter == FRONT_INDEX_LEFT_DELIMITER)
(prevDelimiter == BACK_INDEX_LEFT_DELIMITER)
(prevDelimiter == FRAGMENT_NAME_LEFT_DELIMITER)) {

exit(l);

prevDelimiter = FRONT_INDEX_LEFT_DELIMITER;
return DEFAULT;
break;

case FRONT_INDEX_RIGHT_DELIMITER:
if ((prevDelimiter != FRONT_INDEX_LEFT_DELIMITER) && prevDelimiter) (

exit(l);
}
*stringPtr = 0;
gFrontIndex = atoi(string);
stringPtr = string;
prevDelimiter = FRONT_INDEX_RIGHT_DELIMITER;
return DEFAULT;
break;
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case BACK_INDEX_LEFT_DELIMITER:
if ((prevDelimiter == CONTIG_LEFT_DELIMITER) I

(prevDelimiter == FRAGMENT_LEFT_DELIMITER) I
(prevDelimiter == FRONT_INDEX_LEFT_DELIMITER)
(prevDelimiter == BACK_INDEX_LEFT_DELIMITER)
(prevDelimiter == FRAGMENT_NAMELEFT_DELIMITER)) {

exit ();

prevDelimiter = BACK_INDEX_LEFT_DELIMITER;
return DEFAULT;
break;

case BACK_INDEX_RIGHT_DELIMITER:
if ((prevDelimiter != BACK_INDEX_LEFT_DELIMITER) && prevDelimiter) {

exit(l);

*stringPtr = 0;
gBackIndex = atoi(string);
stringPtr = string;
prevDelimiter = BACK_INDEX_RIGHT_DELIMITER;
return DEFAULT;
break;

case FRAGMENT_NAME_LEFT_DELIMITER:
if ((prevDelimiter == CONTIG_LEFT_DELIMITER)

(prevDelimiter == FRAGMENT_LEFT_DELIMITER)
(prevDelimiter == FRONT_INDEX_LEFT_DELIMITER)
(prevDelimiter == BACK_INDEX_LEFT_DELIMITER)
(prevDelimiter == FRAGMENT_NAME_LEFT_DELIMITER)) {

exit(l);

prevDelimiter = FRAGMENT_NAME_LEFT_DELIMITER;
return DEFAULT;
break;

case FRAGMENTNAME_RIGHT DELIMITER:
if ((prevDelimiter != FRAGMENT_NAME_LEFT_DELIMITER) && prevDelimiter) {
exit() ;

}
*stringPtr = 0;
strcpy(gFragName, string);
stringPtr = string;
prevDelimiter = FRAGMENT_NAMERIGHT_DELIMITER;
return DEFAULT;
break;

case CLUSTER_END:
return CLUSTER_ENDRECEIVED;

break;
default:

if (((prevDelimiter == CONTIG_LEFT_DELIMITER) I
(prevDelimiter == FRAGMENT_LEFT_DELIMITER)) && IsBasePair(c)) {

selectedSeq->putChar(c);
}
else if ((prevDelimiter == FRONT_INDEX_LEFT_DELIMITER)

(prevDelimiter == BACK_INDEX_LEFT_DELIMITER)
(prevDelimiter == FRAGMENT_NAME_LEFT_DELIMITER)
(prevDelimiter == CLUSTER_NAME_LEFT_DELIMITER)) {

*(stringPtr++) = c;

return DEFAULT;
break;

bool IsBasePair(char c)
//
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Return TRUE if character <c> is one of the following:
G/g - nucleotide guanine
A/a - nucleotide adenine
T/t - nucleotide thymine
C/c - nucleotide cytosine
N/n - no call
* - padding character

Otherwise, return FALSE.

if ((c == 'G')
(c == 'g')
(c == '*'))

return TRUE;

return FALSE;

(c == 'A) II (c == 'T')
(c == 'a') II (c == 't')

(c == 'C') (c == 'N') II
(c == 'c')II (c == 'n') I
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The Single Nucleotide Polymorphism Detector
(SNPD) / Sequence.H

#ifndef SEQUENCE_H

#include "project.H"
#include <iostream.h>
#define SEQUENCE_H

class Sequence {

The Sequence class is similar to a typical string class. Each object is
capable of storing an array of characters. The class provides a variety
of methods by which characters can be added to the growing sequence and
by which the exisiting sequence can be accessed.

public:

Sequence(void);
// Effects: Constructor for the class. Creates a new empty sequence.

Sequence(char* seq);
// Effects: Constructor for the class. Creates a new sequence containing
// the characters in string <seq>. The string <seq> must be
// nil-terminated.

Sequence(char* seq, const long len);
// Effects: Constructor for the class. Creates a new sequence containing
// the characters in string <seq>. Up to <len> characters will
// be copied from <seq> to the new sequence.

Sequence(Sequence& srcSeq);
// Effects: Copy constructor for the class. An exact copy
// will be created.

of the <srcSeq>

-Sequence(void);
// Effects: Destructor for the class.

long length(void) { return pSEQUENCELEN; };
// Effects: Return the length of the sequence.

long setReadCursor(const long index);
// Effects: Set the read cursor to position <index> in the sequence.
// Characters in the sequence are indexed starting at 0. N
// call with Sequence::getChar will return the character at

rext

position <index>. If <index> is lower than 0, then set the
read cursor to 0. If <index> is greater than length of
sequence-1, set the read cursor to point to the last
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// character in the sequence. Return the position the read
// cursor is set to.

char getChar(void) { return pSEQUENCE[pREAD_CURSOR++]; };
// Effects: Return the character currently being pointed by the read
// cursor. Advance the read cursor by 1.

char getChar(long index) {
if ((index >= pSEQUENCELEN) II (index < 0)) return 0;
return pSEQUENCE[index];

};
// Effects: Return the character at position <index>.

char* getSequence(void);
// Effects: Return the complete sequence in a newly allocated string.

long putChar(const char c);
// Effects: Add the character <c> to the position currently being pointed
// by the write cursor. Return the length of updated sequence.

long putString(const char* str, long len = 0);
// Effects: Append the string of characters in <str> to the existing
// sequence. Return the length of updated sequence.

long putSequence(const Sequence* seq, long startIndex = 0, long len = 0);
// Effects: Append the string of <len> characters in <seq> starting at
// position <startIndex> to the existing sequence. Return the
// length of updated sequence.

void printSequence(char CR = TRUE, ostream& output = cout);
// Effects: Print the complete sequence to <output>. Terminate the
// printing with a newline character if <CR> is TRUE.

char operator==(const Sequence& seq2);
// Effects: Return TRUE if <seql> and <seq2> contain exactly the same
// sequences. Return FALSE otherwise.

char operator!=(const Sequence& seq2) { return !(*this == seq2); );
// Effects: Return TRUE if <seql> and <seq2> contain different sequences.
// Return FALSE otherwise.

protected:

private:

// Pointer to the array of characters. If NIL, the sequence is empty.
char* pSEQUENCE;

// Variable to keep track of the length of character array allocated.
long pALLOC_LEN;

// Variable to keep track of the length of sequence.
long pSEQUENCELEN;

// Variable to keep track of the current read position.
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long pREADCURSOR;

// Variable to keep track of the current write position.
long pWRITE_CURSOR;

1;

ostream& operator<<(ostream& output, Sequence& seq);
// Effects: Print the complete sequence to <output>. Printing not terminated
// with a newline character.

#endif
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The Single Nucleotide Polymorphism Detector
(SNPD) / Sequence.C

#include "sequence.H"
#include <string.h>

#define ALLOCBLOCKSIZE 64

Sequence: :Sequence(void)
//
// Effects: Constructor for the class. Creates a new empty sequence.
//
{

pSEQUENCE = new char[ALLOCBLOCK SIZE];
pALLOCLEN = ALLOCBLOCK_SIZE;
pSEQUENCELEN = pREAD_CURSOR = pWRITE_CURSOR = 0;

}

Sequence::Sequence(char* seq) : pREADCURSOR(0)
//
// Effects: Constructor for the class. Creates a new sequence containing
// the characters in string <seq>. The string <seq> must be
// nil-terminated.
//
{

pSEQUENCELEN = 0;
if (seq) {

// Adjust write cursor according to the length of <str>.
pWRITECURSOR = pSEQUENCELEN = strlen(seq);

// Calculate size of char array to allocate.
pALLOCLEN = pSEQUENCE_LEN -

(pSEQUENCE_LEN % ALLOC_BLOCK_SIZE) + ALLOC_BLOCK_SIZE;
pSEQUENCE = new char[pALLOC_LEN];

// Copy <seq> to newly allocated character array.
for (long i=0; i<pSEQUENCELEN && *seq; i++, seq++)
pSEQUENCE[i] = *seq;

Sequence::Sequence(char* seq, const long len) : pREAD_CURSOR(0)

// Effects: Constructor for the class. Creates a new sequence containing
// the characters in string <seq>. Up to <len> characters will
// be copied from <seq> to the new sequence.
//

if (seq && len)
// Calculate the size char array to allocate.
pALLOCLEN = len - (len % ALLOCBLOCK_SIZE) + ALLOC_BLOCK_SIZE;
pSEQUENCE = new char[pALLOC_LEN);
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// Copy <len> characters of <seq> to newly allocated character array,
// if possible. Otherwise, copy as much as possible.
for (pSEQUENCE_LEN=O; pSEQUENCE_LEN<1en && *seq; pSEQUENCE_LEN++, seq++)

pSEQUENCE[pSEQUENCELEN] = *seq;

// Adjust write cursor according to the amount copied.
pWRITE_CURSOR = pSEQUENCELEN;

Sequence::Sequence(Sequence& srcSeq)
//
// Effects:
//
//

Copy constructor for the class. An exact copy of the <srcSeq>
will be created.

// If this sequence already contains some sequence. Delete the sequence.
if (pSEQUENCE) delete [] pSEQUENCE;

// Allocate a new char array for the new sequence to be copied.
pSEQUENCE = new char[pALLOC_LEN = srcSeq.pALLOC_LEN];

// Copy the sequence.
memcpy(pSEQUENCE, srcSeq.pSEQUENCE,

(pSEQUENCE_LEN = pSEQUENCE_LEN)

// Update the sequence cursors.
pREAD_CURSOR = srcSeq.pREAD_CURSOR;
pWRITE_CURSOR = srcSeq.pWRITE_CURSOR;

* sizeof(char));

Sequence::~-Sequence(void)
//
// Effects: Destructor for the class.
//
{
// Delete the char array.
delete [] pSEQUENCE;

void Sequence::printSequence(char CR, ostream& output)
//
// Effects:
//

Print the complete sequence to <output>. Terminate the
printing with a newline character if <CR> is TRUE.

for (long i=0; i<pSEQUENCELEN; i++)
output << pSEQUENCE[i];

if (CR)
output << "\n";

long Sequence::setReadCursor(const long index)
//
// Effects:
//
//
//
//

Set the read cursor to position <index> in the sequence.
Characters in the sequence are indexed starting at 0. Next
call with Sequence::getChar will return the character at
position <index>. If <index> is lower than 0, then set the
read cursor to 0. If <index> is greater than length of
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// sequence-1, set the read cursor to point to the last
// character in the sequence. Return the position the read
// cursor is set to.
//
{

pREAD_CURSOR = index;

// Check index against the sequence's upper and lower bounds.
if (index < 0)
pREAD_CURSOR = 0;

else if (index > pSEQUENCE_LEN)
pREAD_CURSOR = pSEQUENCE_LEN - 1;

return pREAD_CURSOR;

char* Sequence::getSequence(void)
//
// Effects: Return the complete sequence in a newly allocated string.
//
{
// Allocate a char array.
char* new_alloc = new char[pSEQUENCELEN + 1];

// Copy sequence to the array.
for (long i=0; i<pSEQUENCELEN; i++)
new alloc[i] = pSEQUENCE[i];

new_alloc[pSEQUENCE_LEN] = 0;

// Return the location of the char array.
return new_alloc;

long Sequence::putChar(const char c)
//
// Effects: Add the character <c> to the position currently being pointed
// by the write cursor. Return the length of updated sequence.
//

// Check to see if another character can be added to the allocated
// char array. If not, allocate a bigger array, and copy the old
// stuf to the new array. Delete the old char array.
if (pWRITE_CURSOR >= pALLOCLEN) {

char* new_alloc = new char[pALLOC_LEN + ALLOC_BLOCK_SIZE];
pALLOC_LEN += ALLOCBLOCK_SIZE;
memcpy(new_alloc, pSEQUENCE, pALLOC_LEN);
delete [3 pSEQUENCE;
pSEQUENCE = new_alloc;

}

// Insert the character <c>.
pSEQUENCE[pWRITE_CURSOR++] = c;
pSEQUENCE_LEN++;

return pSEQUENCE_LEN;

long Sequence::putString(const char* str, long len)
//
// Effects: Append the string of characters in <str> to the existing
// sequence. Return the length of updated sequence.
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// Check length of <str>
if (!len)
return pSEQUENCE_LEN;

// Check see if <len> characters in <str> can be added to the allocated
// char array. If not allocate one big enough, and copy the old stuff
// to the new arra. Delete the old array. Update variables, if
// necessary.
if ((pWRITE_CURSOR + len) > pALLOCLEN) {

long alloc_size = pALLOC_LEN + len -
(len % ALLOC_BLOCK_SIZE) + ALLOC_BLOCKSIZE;

char* new_alloc = new char[alloc size];
pALLOC_LEN = alloc_size;
memcpy(new_alloc, pSEQUENCE, pSEQUENCELEN);
delete [I pSEQUENCE;
pSEQUENCE = new_alloc;

// Copy <len> characters of <str> to the sequence character array.
// Update variables.
memcpy(&pSEQUENCE[pWRITE_CURSOR], str, len);
pWRITE_CURSOR += len;
pSEQUENCE_LEN += len;

// Return length of new sequence.
return pSEQUENCELEN;

long Sequence::putSequence(const Sequence* seq, long startIndex, long len)
//
// Effects: Append the string of <len> characters in <seq> starting at
// position <startIndex> to the existing sequence. Return the
// length of updated sequence.

// Check to make sure <startIndex> is within bound.
if (startIndex >= seq->pSEQUENCELEN)

return 0;
else if (startIndex < 0)

startIndex = 0;

// Get length of <src_seq> and check length.
char* src_seq = &seq->pSEQUENCE[startIndex];
if (!len)

len = seq->pSEQUENCE_LEN - startIndex;
else if (len > (seq->pSEQUENCE_LEN - startIndex))

len = seq->pSEQUENCE_LEN - startIndex;

// Call putString to actually do the copying.
return putString(src_seq, len);

char Sequence::operator==(const Sequence& seq2)
//
// Effects:
//

Return TRUE if <seql> and <seq2> contain
sequences. Return FALSE otherwise.

Compare the length of the two sequences. If not
FALSE.
(this->pSEQUENCELEN != seq2.pSEQUENCELEN)

exactly the same

equal, return
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return FALSE;

// Compare the sequences. If they are different, return FALSE.
for (long i=O; i<this->pSEQUENCE_LEN; i++)

if (this->pSEQUENCE[i] != seq2.pSEQUENCE[i])
return false;

return TRUE;

ostream& operator<<(ostream& output, Sequence& seq)
//
// Effects: Print the complete sequence to <output>. Printing not terminated
// with a newline character.
//

seq.printSequence(FALSE, output);
return output;
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The Single Nucleotide Polymorphism Detector
(SNPD) / Utility.H

#ifndef UTILITY_H

#include <iostream.h>
#define UTILITY_H

class ArrayBlock (

// This is the structure of the list elements in class Array.

public:

// The void pointer that can be
void* OBJECT;

// Pointer to previous element
ArrayBlock* prevOBJECT;

// Pointer to next element
ArrayBlock* nextOBJECT;

protected:

private:

;class Array

class Array {

type-casted.

// This is an implementation of a linked list structure, in which every
// element in the list contains a void pointer that can be easily type-
// casted for different purposes. This particular implementation allows
// a new element to be added to or deleted from the beginning of the list.
// Similarly, a new element can be added to or deleted from the end of the
// list. The elements are indexed (0 .. LIST SIZE-1).

public:

Array(void) { firstArrayBlock = lastArrayBlock = 0; 3;
// Effects: Constructor for the class.

-Array(void);
// Effects: Destructor for the class. Destroy all elements in the
// list/array. Objects to which the pointers were referring
// are not destroyed, however.

void* element(int index);
// Effects: Return the value of the void pointer of element <index>.
// Elements are indexed starting at 0. If access is out-of-bound,
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print error message.

int size(void);
// Effects: Return the size of the list/array.

void addElementHigh(void* element);
// Effects: Add a new element to the end of the list. Assign the value
// <element> to the void pointer of the new element.

void addElementLow(void* element);
// Effects: Add a new element to the beginning of the list. Assign the
// value <element> to the void pointer of the new element.

void deleteElementHigh(void);
// Effects: Delete the element at the end of the list from the list.
// Object to which the void pointer of the element was referring
// is not destroyed.

void deleteElementLow(void);
// Effects: Delete the element at the beginning
// Object to which the void pointer of
// is not destroyed.

of the list from the list.
the element was referring

protected:

private:

// Pointer to the first element in the list/array. Is NIL if the list/
// array is empty.
ArrayBlock* firstArrayBlock;

// Pointer to the last element in the list/array. Is NIL if the list/
// array is empty.
ArrayBlock* lastArrayBlock;

;#endif

#endif
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The Single Nucleotide Polymorphism Detector
(SNPD) / Utility.C

#include "utility.H"

Array::~-Array(void)
//
// Effects: Destructor for the class. Destroy all elements in the
// list/array. Objects to which the pointers were referring
// are not destroyed, however.
//
{
ArrayBlock* currentBlock = firstArrayBlock;

// Iterate through the linked list and delete all ArrayBlock objects.
while (currentBlock) {
ArrayBlock* blockToBeDeleted = currentBlock;
currentBlock = currentBlock->nextOBJECT;
delete blockToBeDeleted;

}

void* Array::element(int index)

// Effects: Return the value of the void pointer of element <index>.
// Elements are indexed starting at 0. If access is out-of-bound,
// print error message.
//

// Check to make sure index is greater or equal to 0.
if (index < 0)
cerr << "Array::element(int index): access out of bound\n";

int counter = 0;
ArrayBlock* currentBlock = firstArrayBlock;

// Iterate through the linked list until the end of the list is
// reached, or the list ends.
while (currentBlock && (counter < index)) {

counter++;
currentBlock = currentBlock->nextOBJECT;

}

// If the list ends on an element, return the value of the void pointer.
// Otherwise, it might have been an out-of-bound access. Print error
// message.
if (currentBlock)
return currentBlock->OBJECT;

else
cerr << "Array::element(int index): access out of bound\n";

return 0;
}
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int Array::size(void)
/-
// Effects: Return the size of the list/array.
//
{

// Iterate through the linked element until the end of the list, a NIL
// element, is reached. Increment the counter by 1 for each element
// traversed.
int counter = 0;
ArrayBlock* currentBlock = firstArrayBlock;

while (currentBlock) {
counter++;
currentBlock = currentBlock->nextOBJECT;

return counter;

void Array::addElementHigh(void* element)
//
// Effects: Add a new element to the end of the list. Assign the value
// <element> to the void pointer of the new element.
//

ArrayBlock* newArrayBlock = new ArrayBlock;
newArrayBlock->OBJECT = element;

// Check to see if the list is empty. If it is empty, create a new
// element and update <firstArrayBlock> and <lastArrayBlock> appropriately.
if (!firstArrayBlock && !lastArrayBlock) {

newArrayBlock->prevOBJECT = 0;
newArrayBlock->nextOBJECT = 0;
firstArrayBlock = newArrayBlock;
lastArrayBlock = newArrayBlock;

// If the list is not empty, create a new element and update <lastArrayBlock>
// pointers of previously last element appropriately.
else {

lastArrayBlock->nextOBJECT = newArrayBlock;
newArrayBlock->prevOBJECT = lastArrayBlock;
newArrayBlock->nextOBJECT = 0;
lastArrayBlock = newArrayBlock;

}

void Array::addElementLow(void* element)
//
// Effects: Add a new element to the beginning of the list. Assign the
// value <element> to the void pointer of the new element.
//

ArrayBlock* newArrayBlock = new ArrayBlock;
newArrayBlock->OBJECT = element;

// Check to see if the list is empty. If it is empty, create a new
// element and update <firstArrayBlock> and <lastArrayBlock> appropriately.
if (!firstArrayBlock && !lastArrayBlock) {

newArrayBlock->prevOBJECT = 0;
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newArrayBlock->nextOBJECT = 0;
firstArrayBlock = newArrayBlock;
lastArrayBlock = newArrayBlock;

// If the list is not empty, create a new element and update
// <firstArrayBlock> pointers of previously first element appropriately.
else {

firstArrayBlock->prevOBJECT = newArrayBlock;
newArrayBlock->prevOBJECT = 0;
newArrayBlock->nextOBJECT = firstArrayBlock;
firstArrayBlock = newArrayBlock;

void Array::deleteElementHigh(void)
//
// Effects: Delete the element at the end of the list from the list.
// Object to which the void pointer of the element was referring
// is not destroyed.
//

// Delete the last element in the linked list and update pointers
// appropriately.
lastArrayBlock = lastArrayBlock->prevOBJECT;
delete lastArrayBlock->nextOBJECT;
lastArrayBlock->nextOBJECT = 0;

void Array::deleteElementLow(void)
//
// Effects: Delete the element at the beginning
// Object to which the void pointer of
// is not destroyed.
//

// Delete the first element in the linked list
// appropriately.
firstArrayBlock = firstArrayBlock->nextOBJECT;
delete firstArrayBlock->prevOBJECT;
firstArrayBlock->prevOBJECT = 0;

of the list from the list.
the element was referring

and update pointers
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The Single Nucleotide Polymorphism Detector
(SNPD) / Makefile for MAKE

#!/bin/make
# -*-Mode:text;-*-

# The machine architecture (currently supports SUN4, MIPS, and ALPHA)
ARCH=$(HOSTTYPE)

# The top-level directory of this package.
prefix=

BINFILE = ../jamalah.$(ARCH)
SHELL = /bin/sh
MAKE = make
CC = g++
CCOPTS = -g -0 -fno-for-scope -D$(ARCH)
CFLAGS = $(CC_OPTS)

INSTALL = install -c
INSTALL_PROGRAM = $(INSTALL) -m 755
INSTALL_DATA = $(INSTALL) -m 644

# Where to install binaries.
bindir=$(prefix)/bin

SOURCES = analysis.C project.C sequence.C parameter.C utility.C
OBJECTS = $(SOURCES:.C=.o)
.SUFFIXES: .C $(SUFFIXES)

LDFLAGS =
OUTPUTOPTION = -o $*.o

COMPILE.C = $(CC) $(CFLAGS) -c
LINK.C = $(CC) $(CFLAGS) $(LDFLAGS)

.C.o:
$(COMPILE.C) $(INCLUDES) $(OUTPUT_OPTION) $<

.C:
$(LINK.C) $@ $< $(LDLIBS)

all: $(BINFILE)

install: all
$(INSTALL_PROGRAM) $(BINFILE) $(bindir)

clean:
-rm -f *.o $(BINFILE)
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TAGS: $ (SOURCES)
etags --typedefs $(SOURCES)

$ (BINFILE): $ (OBJECTS)
$(LINK.C) -o $(BINFILE) $(OBJECTS) $(LDLIBS)

project.o: project.H project.C sequence.H analysis.H parameter.H utility.H
sequence.o: project.H sequence.C sequence.H
analysis.o: project.H analysis.C analysis.H sequence.H utility.H
parameter.o: parameter.C parameter.H
utility.o: utility.C utility.H
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The Primer Order and SNP Data Processor/
OrderDataProcessor.pl

#!/usr/local/bin/perl
# -*-Mode: perl;-*-

# Print things out as they come.
$1=1;

# Include some important functions.
require "boulderio.pl" I1 die "$0: $!\n";
require "ctime.pl" II die "$0: $!\n";

# We don't want to send boulderio data out, so we turn that feature off.
$boulder'passthru = 0;

# Some configuration variables.
$complement{"G")="C";
$complement{"C"}="G";
$complement{"T"}="A";
$complement{"A"}="T";
$complement{"N" ="N";

# Extra primer tail attached to forward primer for dye primer sequencing.
$forwardprimer_tail = "TGTAAAACGACGGCCAGT";

# Initialize more variables.
$numberprimer_pair = 0;
$number_baseforward = 0;
$number_base_reverse = 0;
$max-prod_len = 0;

# Whitehead/MIT CGR internal index
$DWUindex_start = 2582;

# Write SNP data to file.
open(DATAFILE, ">Data_File");

# Read stdin into a boulder record, one at a time.
while (%r = &read_record) {

# Check to see if primer pairs have have been picked..
if ($r(FORWARD_PRIMER}) {

$numberprimer_pair++;

# Find forward primer region
$r{FORWARD_PRIMER}=-/([0-9]+),\s*([0-9]+)/;
$1left_start = $1;
$1leftlength = $2;

# Find reverse primer region
$r{REVERSE_PRIMER}=~/([0-9]+),\s*([0-9]+)/;
$right-start = $1;
$rightlength = $2;

# Figure out forward primer sequence and attach tail to it.
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$forward_primer = substr($r{SEQUENCE},$1leftstart,$1left_length);
$forward primer = $forward_primer_tail . $forward_primer;

# Figure out reverse primer sequence.
$reverseprimer = "'";
for ($i = $rightstart; $i>=($rightstart - $rightlength + 1); $i--) {

$reverse_primer .= $complement{substr ($r{SEQUENCE} ,$i,1));
}

# Generate modified cluster names.
$new_name = $numberprimerpair . $r{MARKERNAME);

# Generate Whitehead/MIT CGR internal names.
$DWU_index = $DWU_index_start + $number_primer_pair - 1;
print "DWU-";
print $DWU_index;
print "F\t";
print "$forwardprimer\t";
print "DWEU-";
print $DWU_index;
print "R\t";
print "$reverse_primer\n";

# Print info to data file as tab-delimited columns.
print DATAFILE "DWU-";
print DATAFILE $DWU_index;
print DATAFILE "\t$r{MARKERNAME}\t$r(PRODUCTSIZE} \t";

for ($i = 0; $i < length($r{SEQUENCE}); $i++) {
$index_string = "POLYMORPHISM_" . $i;
if ($r{$index_string}) {

$polymorphism_string = $r{$index_string);
print DATAFILE "[";
for ($j = 0; $j < (length($polymorphism_string) - 1); $j++) {

print DATAFILE substr($polymorphism_string, $j, 1);
print DATAFILE "/";

}
print DATAFILE substr($polymorphism_string,

length($polymorphism_string) - 1, 1);
print DATAFILE "]";

}
else {

print DATAFILE substr($r{SEQUENCEI, $i, 1);
}

}
print DATAFILE "\t";

print DATAFILE "$forward_primer\t$r{PRIMER_FORWARDTM} \t";
print DATAFILE "$reverse_primer\t$r{PRIMERREVERSE_TM)\n";

# Total numbers of bases for forward primers and for reverse primers.
$numberbase_forward += length($forward_primer);
$number basereverse += length($reverseprimer);

%r = ();

print "$numberprimerpair\t$numberbaseforward\t\t$number_base_reverse\n";
print DATAFILE "$number_primer_pair\n";

# close data file.
close(DATAFILE);
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