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Abstract

Experiments were performed to quantitatively characterize the differential
migratory response of human keratinocytes to the polypeptide growth factors
EGF and TGF-a. Videomicroscopic tracking of single cells, on collagen IV
surfaces, was used to examine the migratory response of cells to a range of
growth factor concentrations, as well as to the EGF receptor blocking antibody
225. Results indicate that both EGF and TGF-0a increase the random motility
coefficient of human keratinocytes, relative to control experiments and those
in which EGFR blocking antibody is used. This increase in motility appears to
occur in a dose-dependent manner, with TGF-a performing as a stronger
motogen than EGF. Results also suggest that the addition of exogenous
growth factor or receptor blocking antibody lowers cellular persistence times
relative to the control state. This finding supports a model of autocrine
pathways as cellular environmental sensing systems, a model that has been
termed "cell sonar".
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Chapter 1

Introduction and Background

1.1 The Epidermal Growth Factor Receptor and its Cognate
Family of Ligands

The epidermal growth factor receptor (EGFR) is arguably the most thoroughly

characterized member of the receptor tyrosine kinase family of signaling

molecules. This 175 kDa, single chain, transmembrane glycoprotein is

composed of 1186 amino acids and N-linked carbohydrates (Pimentel, 1994).

As shown in Figure 1, the receptor has a 621 amino acid extracellular ligand

binding domain, a 22 amino acid transmembrane region, and a 542 amino

acid intracellular domain. Furthermore, the intracellular region is comprised

of both a tyrosine kinase and a regulatory domain (Chang et al., 1993). All of

the several intracellular signaling cascades that can be activated by the EGFR,

upon binding of a cognate ligand, depend in part on the successful

dimerization of receptors and autophosphorylation of intracellular tyrosine

residues. Subsequent to autophosphorylation events, SH2 domains on other

intracellular proteins involved in signaling pathways, such as PLC-y, GAP,

SHC, and GRB-2, interact with these phosphotyrosine moieties. It is the

interaction of SH2 domains with any of the five intracellular tyrosine

residues of the EGFR that allows the receptor to participate in many

important signaling pathways (reviewed by van der Geer et al., 1994).



The physiological importance of the EGFR is highlighted by its presence on

numerous cell types (Carpenter and Wahl, 1990; Gospodarowicz, 1981) and

the variety of responses it is capable of eliciting. The actual outcome of

receptor activation is a function of tissue location and state of differentiation

of the host cell (Khazaie et al., 1993), however the EGFR has been shown to

participate in the stimulation of cell proliferation, gene induction,

differentiation, and migration (Barrandon and Green, 1987; Carpenter and

Wahl, 1990; Hudson and Gill, 1991; Wells, 1988). In addition to its role in

normal physiology and development, the EGFR is also involved in the

dysregulation of cell function. EGFR expression and activity are associated

with several pre-malignant and malignant pathologies including benign

hyperplasia of the skin, mammary carcinoma, glioblastoma, and hepatic

carcinoma (Khazaie et al., 1993). Indeed, the EGFR is the receptor most

commonly implicated in the pathology of all human cancers (Aaronson,

1991).

Each member of the epidermal growth factor (EGF) family of ligands, which

also includes amphiregulin, betacellulin, heparin-binding EGF (HB-EGF), and

transforming growth factor-alpha (TGF-a), is capable of independently

binding to and activating the EGFR (Soler and Carpenter, 1994). The two

most thoroughly characterized members of this family are EGF and TGF-a.

Both molecules are initially synthesized as transmembrane precursors (Soler

and Carpenter, 1994), and they share a 42% amino acid sequence homology, a

major consequence of which is similar binding affinities to the EGFR

(Burgess, 1989; Lee et al., 1995; Massague, 1983). The dissociation constant (KD)

for both receptor/ligand interactions has been experimentally determined to

be approximately 2 nM (Ebner and Derynck, 1991). Although information



regarding the processing pathway of the precursor EGF molecule is limited,

the mature form, a 6 kDa, 53 amino acid, single polypeptide chain, is known

to originate from a transmembrane precursor that may be as large as 128 kDa

(Carpenter and Cohen, 1990; Gray et al., 1983; Massague and Pandiella, 1993).

TGF-a is synthesized as a 160 amino acid precursor (Bringman et al., 1987), but

some cells cleave this precursor molecule to form several membrane

associated, as well as soluble species, including the mature form, a 6 kDa, 50

amino acid soluble polypeptide (Massague, 1990). In contrast to the

transmembrane precursor of EGF, for which there is no indication of

biological activity (Burgess, 1989), both the precursor and mature form of

TGF-a are able to bind to and activate the EGFR (Brachmann et al., 1989;

Wong et al., 1989).

EGF and TGF-a are known to stimulate a variety of cell types, including

almost all fibroblasts, epithelia, and muscle cells (Burgess, 1989), and both

ligands have been shown to stimulate cell migration (Bade and Nitzgen, 1985;

Barrandon and Green, 1987; Cha et al., 1996), proliferation (Barrandon and

Green, 1987), wound healing (Schultz et al., 1987), neurite extension (Manske

and Bade, 1994), and angiogenesis (Schreiber et al., 1986). Physiologically, EGF

is known only to be released by cells in the salivary gland (Ebner and Derynck,

1991), whereas TGF-a is known to be produced in macrophages (Madtes et al.,

1988; Rappolee et al., 1988), the brain (Wilcox and Derynck, 1988), the pituitary

(Kobrin et al., 1988), and many types of epithelia (Beauchamp et al., 1989;

Coffey et al., 1987; Valverius et al., 1989). Under normal conditions, epithelial

cells are the major source of TGF-a synthesis (Derynck, 1992). Because these

cells also express the EGFR on their surface (Carpenter and Wahl, 1990),

overproduction of TGF-c is directly related to many neoplasias and



hyperproliferative disorders, particularly in human keratinocytes (Bates et al.,

1988; Derynck et al., 1987; Dominey et al., 1993; Nister et al., 1988).

1.2 Cell Migration

Cell migration is an important process that occurs in many aspects of normal

physiology and development, as well as pathology. Examples include the

formation of nervous system structures, a result of the outward migration of

neurons from the neural crest, the movement of neutrophils scavenging

antigenic material, bone remodeling, and the metastasis of tumor cells. More

familiar evidence of this phenomenon is seen in the wound healing process,

during which a progression of immune cells, fibroblasts, and epithelial cells

interact so as to renew the structure of damaged tissue (reviewed by Clark,

1993). Keratinocytes play a pivotal role during the reepithelialization stage of

the wound healing process, moving on the order of hours after injury to close

the wound surface and restore the skin's barrier function (Winter, 1962).

These cells express the EGFR on their surface, as well as produce both TGF-a

and HB-EGF (Derynck, 1992; Hashimoto et al., 1994; Pittelkow et al., 1993).

This autocrine pathway makes examining the migratory response of

keratinocytes to EGFR ligand a more complex issue.

1.3 The Differential Cellular Response Elicited by Epidermal
Growth Factor and Transforming Growth Factor-Alpha

In spite of their similarities, EGF and TGF-a are capable of evoking

differential cellular responses (Barrandon and Green, 1987; Cha et al., 1996;

Ebner and Derynck, 1991; Reddy et al., 1996b; Schreiber et al., 1986).

Specifically, in assays measuring the stimulatory effect of the two ligands on



keratinocyte migration, as well as the ability to modulate in vitro wound

closure, TGF-a displayed stronger motogenic properties than EGF (Cha et al.,

1996). A possible explanation for this effect, one that does not necessitate

differential signaling, is the difference in isoelectric points of the two

molecules (Ebner and Derynck, 1991). This biochemical difference manifests

itself as a variation in the pH sensitivity of the binding affinities of the two

ligands for the EGFR (Ebner and Derynck, 1991; French et al., 1995). At a lower

pH, such as that found in the intracellular vesicles in which the internalized

growth factor-receptor complex is located, the KD for the TGF-a /EGFR

interaction increases approximately twice as much as that of EGF/EGFR

interaction (French et al., 1995). This variation in binding affinity has

significant implications for the intracellular processing pathways of both

ligand and receptor (Reddy et al., 1996b). As a result of the higher

intracellular KD,, relative to EGF, TGF-ca dissociates from the EGFR to a much

greater extent than EGF. Therefore, in accordance with an understanding of

the mechanisms of endosomal sorting (French and Lauffenburger, 1996), the

uncoupled TGF-c ligand is degraded to a greater extent than EGF.

Additionally, a greater fraction of receptors recycles to the cell surface when

internalized with the TGF-ca molecule than when internalized via an

EGF/EGFR complex (Ebner and Derynck, 1991; Reddy et al., 1996b). A critical

examination of EGF and TGF-ax trafficking dynamics in fibroblasts has

demonstrated that the proliferative response to stimulation by these ligands

is not straight forward. In fact, three regimes of behavior (discussed in

chapter 4) were seen (Reddy et al., 1996b). Whether mechanisms governing

cell migration are controlled in the same manner is unclear.



1.4 Thesis Overview

This work brings a rigorously quantitative approach to the analysis of human

keratinocyte migration, for the purpose of elucidating differential effects that

EGF and TGF-a exert on cell migratory behavior. The stimulatory effects of a

range of concentrations of exogenously applied EGF and TGF-a were

examined, as well as the inhibitory effect of EGFR blocking antibody.

Experimental data indicate that both ligands increase the random motility

coefficient of human keratinocytes, relative to control experiments and those

in which EGFR blocking antibody is used. This increase in motility appears to

occur in a dose-dependent manner, with TGF-a performing as a stronger

motogen than EGF. This result is in agreement with predictions one would

make concerning the performance of these ligands, based upon a

consideration of their trafficking properties. Persistence time data reveal

another interesting feature of the cells. Consistent with a model of autocrine

secretion as a method of cell sonar, results suggest that disruption of native

autocrine loops through the addition of exogenous growth factor or receptor

blocking antibody lowers persistence times relative to the control state in

which no perturbations in autocrine loops are introduced.



Domains

1

622

644

663

Kina

957

Regulatory

1186 ---

Ecto

Transmembrane

Endo

Figure 1 The EGF receptor (from Chang et al., 1993). Asterisks indicate
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Chapter 2

Materials and Methods

2.1 Cell Culture

Normal human epidermal keratinocytes, derived from neonatal foreskins

and cultured under serum-free conditions in standard formulation

keratinocyte serum-free medium (KSFM, Gibco BRL, Grand Island, NY), were

a generous gift from Dr. Laurie Hudson (Northwestern University). Cells

were maintained in 25 cm2 tissue culture flasks. For routine maintenance of

keratinocytes, media was supplemented with EGF and bovine pituitary extract

(supplied by the vendor along with the KSFM), as well as 0.1% w/v bovine

serum albumin (BSA), 100 units/mL penicillin, and 100 gg/mL streptomycin

antibiotics. Media for experiments involving the addition of growth factors

consisted of KSFM, 0.1% w/v BSA, antibiotics, and the appropriate amount of

human recombinant EGF or TGF-(o (Gibco BRL, Grand Island, NY). A starve

media, composed only of KSFM and 0.1% w/v BSA, was prepared for the

maintenance of cells 24 hours prior to the start migration experiments.

In passaging and seeding cells, a mixture of 0.25% trypsin and 1 mM EDTA

(Gibco BRL, Grand Island, NY) was used. Upon detachment, ion-free PBS

(Sigma, St. Louis, MO) was added, and the mixture was centrifuged for

approximately 3 minutes at 800-1000 rpm. After centrifugation, the



supernatant was discarded, and the cells were resuspended in routine media.

Cells were then passaged or counted in a hemocytometer in preparation for

seeding. In the latter case, cell viability was assessed using trypan blue stain.

Only cells of passage 9 and lower were used in experiments.

2.2 Migration Assay Protocols

Experiments were conducted in 35 mm tissue culture dishes coated with

collagen IV (Biocoat Plates, Becton Dickonson/Collaborative Biomedical,

Bedford, MA), a large, network forming protein which is the primary

constituent of basement membranes (Yaoita et al., 1978). For all experiments,

approximately 2500 cells were seeded and allowed to attach overnight in

routine media. This low cell density minimized the possibility of cell/cell

interactions throughout the course of experiments. Following the initial

attachment period, cells were given starve media for 24 hours. At the start of

control experiments, dishes were replenished with 4 mL of starve media. At

the start of experiments involving the addition of growth factors, dishes were

replenished with 4 mL of the appropriate growth factor-containing media.

For experiments involving the use of the monoclonal antibody 225 (mAb

225), a 20 nM concentration of antibody in starve media was added to cells.

225 is a clone that specifically binds to the EGFR, inhibiting the binding of

cognate ligands (Kawamoto et al., 1983; Sato et al., 1983). Its KD for the EGFR

has been reported as 0.6-1.3 nM (Sato et al., 1987). For these experiments, cells

were incubated in a 20 nM concentration of antibody in starve media for 24

hours, followed by replenishment with 4 mL of the antibody-containing

media at the start of the tracking experiment.



2.3 Migration Assay Specifications

Motility assays were based on the method of single cell tracking (DiMilla et al.,

1992). After starving cells for 24 hours and replenishing with the appropriate

media, petri dishes were placed into the insert of a motorized stage on a Zeiss

Axiovert 100 inverted microscope (stage and insert from LUDL electronics,

Hawthorne, NY). Cells were viewed using a 10X objective with phase

contrast optics. Physiological conditions were maintained on the stage in two

ways. To maintain temperature, warm water was circulated around the dish,

through ports on the stage insert. To maintain pH and humidity, a

humidified air/CO2 mixture was perfused over the dish, through an

additional port on the stage insert. To expedite the acquisition of data from a

single experiment, a stage controller (nuLogic Inc., Needham, MA) and

appropriate software (Labview, National Instruments, Bloomfield, CT) were

used to control the timing and positioning of the motorized stage. Up to 25

fields were selected at random for each experiment, and each of these user

designated positions was then visited for approximately 30 seconds, every 15

minutes, for the duration of the experiment. Experiments were run for as

long as 24 hours, but no shorter than 10 hours. Approximately 40 cells were

followed per experiment. Time-lapse images of each experiment were

recorded at 1/480th of real time using a Hitachi KP-M1 CCD camera and

Panasonic AG-6720A time-lapse VCR (RPI, Wayland, MA). Only images

taken at least 30 minutes after the addition of growth factor-containing media

were used for analysis.



2.4 Data Analysis and Acquisition

Cell centroids as a function of time were acquired from video recordings of

cell tracking experiments. Tapes were played back on a Panasonic AG-1980

VCR with built-in time-base corrector (Crimson Tech, Cambridge, MA),

through a Power Macintosh 8500 with a Scion VG-5 frame grabber card (Scion

Corp., Frederick, MD). Using image analysis software (NIH Image), pixel

coordinates of individual cell centroids were acquired from the video images

by manually forwarding the tape and selecting cells of interest with the

mouse. Individual fields were followed over time by forwarding the tape at

appropriate intervals, a process that was hastened by the presence of a

time/date stamp recorded on the images from all experiments. Pixel

coordinates were stored in a data file to be used for further analysis.

To analyze cell paths thus acquired, several data manipulations were

required. Due to an offset in stage positioning, stage drift was seen in many of

the experiments. This phenomenon, which can be seen in cell tracks that

appear as straight, parallel lines, was corrected for in the data analysis. Using

cells that exhibited stage drift as their only motion, a drift rate was calculated

in both the x and y direction. The individual cell drift rates were then

averaged over all cells exhibiting this behavior to determine an average drift

rate in both directions. Using average drift rate information, the stage drift

was subtracted from the (x,y) positions of all cells for a given experiment. The

transformation is represented mathematically in eqns (2.1-2.4),

Sx X xend start) eqn (2.1)n/i1



T, =j end Ystart eqn (2.2)

corrected = Xuncorrected -x dt eqn (2.3)
0

Ycorrected = Yuncorrected -T .fdt eqn (2.4)
0

where Y, and T, represent the average drift rates in the x and y direction,

x•varr, Ystar,, xend, and Yend are the pixel coordinates of a given cell at the

beginning and end of an experiment, d represents the total time course of the

experiment, n is the number of cells in the experiment exhibiting this

behavior, and t is the incremental time course of an experiment.

To quantitate cell motility in the most rigorous sense, the migrating cell is

modeled as an isolated particle exhibiting a persistent, random walk in a

uniform environment. Over short time periods, the cell moves in linear

paths, and over longer time periods, the cell path appears completely random

in nature. The time periods described are relative to the persistence time,

which is described as the time period between significant changes in direction

of cell movement. According to this model, the average squared

displacement, d2(t) of a migrating cell, for a period of time t, depends on two

parameters: the cell speed, S, and persistence time, P. The relationship is

described mathematically in eqn (2.5) (Dunn, 1983; Othmer et al., 1988).

d2 (t) = 2S2P[t- P(1- e-'P)] eqn (2.5)



To obtain values for the parameters S and P which characterize the cell's

movement, it is necessary to calculate the average squared displacement as a

function of time for individual cell paths. These values are calculated using

data that describe the (x,y) position of the cell centroid over the time course of

the experiment.

Before calculating the average squared displacement of the cells however, the

data was examined for induction effects that might be present due to the

administration of growth factor after a 24 hour period of starvation. To assess

whether this effect was present, squared displacements for subsequent 15

minute time intervals, d•,(t), were calculated for every cell for the duration of

each experiment. The values at each time point were then averaged over all

cells for which they were computed. The calculations were performed

according to eqns (2.6) and eqn (2.7),

d;(t) = {[x((i + 1)A) - x(iA)] 2 + [y((i + - y(i)]2(1.25)2 eqn (2.6)

d15(t)= = d5(t)i eqn (2.7)
n i=t

where x and y are the pixel coordinates of the cell centroid, A is the 15 minute

time interval between successive acquisition of images of each field, 1.25

gm/pixel is a conversion factor obtained using a stage micrometer and the

image analysis software, n is the total number of cells tracked for a given

experiment, and d,5(t) is the average 15 minute squared displacement as a

function of time for the entire cell population. Additionally, the number of

cells observed throughout the course of the experiment was examined. In the

final data analysis used to calculate speed and persistence, (x,y) data beyond



the time at which the cell population had decreased by more than four cells

was discarded. This ensured that a constant population of randomly selected

cells was used in the calculation of average squared displacements as a

function of time, thus preventing calculations at later times from being biased

towards a population of slower moving cells.

Using the transformed data, average squared displacements as a function of

time, d2 (t), were calculated for each cell using a method of non-overlapping

intervals (Dickinson and Tranquillo, 1993). Calculations were performed

according to eqns (2.8-2.10).

d2 () -' (X(+1)A_ XjA) +(Y(j+I)A jA)2(1.25)2 eqn (2.8)
t j=0

where

n,= ma (i = 1 - E) (largest integer value) eqn (2.9)
iA

and

E= mA eqn (2.10)

rmax is the total length of the experiment, Q is the total number of 15 minute

time intervals in the experiment, and n, is the number of intervals of given

time length in the experiment. n, and the corresponding d2 (t) were

calculated for each time point by incrementing the index, i, from 1 to Q, in

integer values, and calculating the appropriate d2 (t). Finally, after calculating

the average squared displacement as a function of time for each cell in the



population, an average squared displacement versus time, d2 (t), was

calculated for the entire population, by averaging the values of the individual

cells. This is represented mathematically in eqn (2.11).

d2 (t) = d2(t)i  eqn (2.11)
n i=1

In obtaining parameter values, a weighted, nonlinear curve fitting routine

was employed. The reciprocal of the standard deviation of the population

average squared displacement, d2 (t), was used for weighting at each time

point. The loss function minimized in performing the curve fit is described

by eqn (2.12),

Loss = (OBS - PRED)2Loss =eqn (2.12)

where PRED is the value of the population average squared displacements as

predicted by eqn (2.5), OBS is the experimental value of the population

average squared displacements as calculated from the data, and s is the

standard deviation of the population average squared displacement at each

time point. Weight factors were used to account for non-uniformly

distributed residuals in the curve fit, a result of the method of non-

overlapping intervals used to calculate such values (Dickinson and

Tranquillo, 1993). Error in parameter estimates was determined by fitting the

95% confidence limits on the population average squared displacements to

eqn (2.5). The parameter values obtained from these curve fits, along with

the parameters characterizing the average squared displacement curve, were



used to calculate a standard error of means for both speed and persistence

time.



Chapter 3

Results

3.1 Cell Tracking Data

In preparation for the calculation of average squared displacements as a

function of time, cell centroid position data was transformed in several ways.

Figure 3.1 shows typical cell tracks obtained from the initial analysis of video

images. Stage drift, present in many of the experiments, was removed from

the data by applying the transformation described in eqns (2.1-2.4). Typical

drift-corrected cell paths are shown in Figure 3.2. In this figure, also called a

wind-rose display (Goodman et al., 1989), cell paths are assigned a starting

coordinate of (0,0). If a chemotactic gradient, or some other gradient to which

cells would respond, were present during the experiments, this type of display

would help to identify the preferred direction of motion. As required by the

persistent random walk model, the cell paths observed appear to be randomly

oriented. Results of calculations designed to look for growth factor induction

effects are shown in Figure 3.3. While no initial time course of activation is

seen, later times indicate a decrease in average squared 15 minute

displacements. As shown in Figure 3.4, by the concomitant decrease in cell

number observed over time (for the experiment described in Figure 3.3), the

decrease in average squared 15 minute displacements was most likely due to

the selection of a slower moving population of cells at later times. Faster



moving cells tend to migrate out from the field of view earlier in

experiments than do the slower moving ones, resulting in the undesirable

occurrence of a non random population of cells at longer times.

3.2 Average Squared Displacements As a Function of Time

After correcting centroid position data for stage drift and discarding data

collected beyond a time in which more than four cells migrated out of the

field of view, average squared displacements as a function of time were

calculated according to eqns (2.8-2.11). Results of these calculations are shown

in Figures 3.5-3.10. In these figures the data points shown represent

population average squared displacements, and the lines represent fits of the

model to the data. Experiments in which a 10 nM concentration of either

growth factor was added to cells show the largest average squared

displacements, while those in which mAb 225 was added to cells appear to

exhibit the lowest displacements. In calculating average squared

displacements, no distinction was made between motile and immotile cells;

all cells were used in the analysis.

3.3 Parameter Estimates of Speed, Persistence, and Random
Motility Coefficient

To estimate speed and persistence time parameters, nonlinear, weighted

curve fits were performed on population average squared displacment data.

Speed and persistence time values resulting from this procedure are shown

in Figures 3.11 and 3.12. Error bars represent the standard error of means. It is

difficult to recognize any trends in speed and persistence time results,

although all concentrations of both growth factors increase cell speed relative



to the control case and that in which receptor blocking antibody was used.

Also, persistence times for experiments involving the addition of growth

factors or receptor blocking antibody are lower than those seen in the control

situation.

Another informative measure of cell motility is the random motility

coefficient. The mathematical relationship among the random motility

coefficient, speed, and persistence time is given in eqn (3.1) (Alt, 1980;

Lauffenburger, 1983).

S= S 2 P (eqn 3.1)
2

This parameter is analogous to a molecular diffusion coefficient and is useful

in predicting the time-dependent displacement of a migrating cell. It

represents the interaction of both speed and persistence time. Figures 3.13a-c

show values of random motility coefficients as calculated for each

experimental condition. These figures demonstrate, as expected from

observations of curves representing population average squared displacement

as a function of time (Figures 3.5-3.10), that random motility coefficients are

largest for the case in which 10 nM concentrations of growth factor were

added to cells and lowest when cells were incubated with mAb 225. Figures

13a and 13b indicate that cells respond to both growth factors in a dose-

dependent manner, with mAb 225 serving as an inhibitor of migration.

Figure 13c demonstrates that over the range of growth factor concentrations

studied TGF-a is superior to EGF as a motogenic stimulant. However, data

from experiments in which 1 nM concentrations of TGF-a were used lend a

degree of uncertainty to this assertion.



Figure 3.1 Cell paths as initially acquired from video images. The two
straight, parallel tracks represent the effects of stage drift.
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Figure 3.2 Drift-corrected cell paths.
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Figure 3.5 Comparison of average squared displacement of cells
observed under control conditions to those which have been incubated
with EGFR blocking antibody 225.
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Figure 3.6 Comparison of average squared displacement of cells to
which 0.1 nM TGF-0a or EGF has been added.
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Figure 3.7 Comparison of average squared displacement of cells to
which 1 nM TGF-ou or EGF has been added.
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Figure 3.8 Comparison of average squared displacement of cells to
which 10 nM TGF-oc or EGF has been added.
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Figure 3.9 Comparison of average squared displacement of cells to
which 0.1, 1, and 10 nM TGF-oa have been added.
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TGF

mAb 225 control 0.1 nM I nM 10 nM

Ligand Concentration

Figure 3.13a

mAb 225 control 0.1 nM 1 nM 10 nM

Ligand Concentration

Figure 3.13b

mAb 225 control 0.1 nM I nM

Ligand Concentration
10nM

Figure 3.13c

Figures 3.13a-c Comparison of cell random motility coefficients. Error
bars represent the standard error of means.

100.00

80.00

60.00

40.00

20.00

0.00

100.00

80.00

60.00

40.00

20.00

0.00

100.00

80.00

60.00

40.00

20.00

0.00

Iýww I I



7 104

6 10

5 104

4 10

3 10

2 104

1104

0
0 100 200 300 400

time (min)

Figure 3.10 Comparison of average squared displacement of cells to
which 0.1, 1, and 10 nM EGF have been added.

CN

S



Chapter 4

Discussion

Both EGF and TGF-oc are strong mitogenic and motogenic factors for human

keratinocytes. The clinical promise of both growth factors in wound healing

situations has been demonstrated (Brown et al., 1989; Schultz et al., 1987), but

so far the creation of effective therapies that rely upon the activity of these, or

other polypeptide growth factors, has been disappointing (reviewed by Meyer-

Ingold, 1993). In designing an effective therapy around the complex

interactions of growth factors and their receptors, a quantitative and

predictable model of performance is desirable. The approach used in this

study is designed to meet such needs.

Results indicate that both ligands significantly increase cell speed relative to

control experiments and those in which EGFR blocking antibody was used.

The unusually high levels of basal migration that occurred in the latter two

cases are most likely a result of the stimulatory substrate used and the

autocrine nature of the cells. Collagen IV, a protein which has been shown to

be a particularly good stimulus for keratinocyte migration (Kim et al., 1994),

was used throughout the study to provide a physiological surface upon which

to observe the movement of these cells. It is thought that integrin adhesion

receptors on the surface of keratinocytes, molecules that are intimately



involved in the cellular adhesion process, may also play a significant role in

transducing migratory signals (Kim et al., 1994), yielding a significant level of

signaling even under control conditions. Perhaps a more conclusive spread

of results could be attained by using a lower concentration of the protein for

migration experiments. Furthermore, keratinocytes constituitively

manufacture and secrete TGF-a and HB-EGF. Secretion rates have not been

characterized for these cells, but it is likely that even in the presence of

receptor blocking antibody, a degree of autocrine capture of ligand occurs,

generating additional migratory signals for the cells.

Motility coefficients appear to exhibit a dose-dependent response to both

growth factors, with TGF-c serving as a stronger motogen than EGF.

However, data from experiments in which 1 nM TGF-a was used as a

stimulant lend a degree of uncertainty to this assertion. In measuring the

ability of growth factors to modulate the net displacement of a cell, the

random motility coefficient is most likely the variable of interest. As

discussed previously (section 3.3), this parameter represents the interaction of

both speed and persistence time. When considered individually, neither

speed nor persistence time can be used to accurately predict net displacements,

as a cell that moves with a high speed and low persistence will have the same

net displacement, after a given period of time, as a cell that moves more

slowly but with greater persistence.

The autocrine nature of these cells brings an additional level of interest and

complexity to the analysis of their migration. A complete understanding of

the mechanisms of autocrine regulation is lacking, and a major advantage of

the type of analysis performed is that it allows for rigorous testing of theories



regarding the functional role of autocrine pathways as well as other migratory

mechanisms.

In particular, the persistence time contains information about how a cell

responds to its environment. Previous investigations of cell sensing

mechanisms have focused mainly on the perception of chemotactic gradients

(DeLisi et al., 1982; Tranquillo and Lauffenburger, 1986; Tranquillo and

Lauffenburger, 1987; Tranquillo et al., 1988), however the persistence time is a

useful measure of how a cell responds to any environmental cue.

Mathematically, it is also related to parameters that describe the signaling

characteristics of a cell, such as the signal response and decay time constants

(Tranquillo and Lauffenburger, 1987). Unlike the case of the random motility

coefficient, no trend is apparent in persistence time data. However, while not

quite statistically significant (p>0.05), the data suggest that persistence times

for all experiments in which either exogenous growth factor or receptor

blocking antibody was added to cells are lower than those seen in the control

situation. This observation has significant implications concerning the

functional role of autocrine ligands.

Autocrine ligands are initially secreted by and subsequently bind to receptors

on the same cell. As shown in Figure 4.1, in between secretion and binding

steps, interaction of ligand with the cellular microenvironment allows the

molecule to receive information. This information is transmitted back to the

cell upon binding of the autocrine ligand. It has been proposed that the

manner in which an autocrine cell secretes ligand, which then transmits

environmental information back to the cell, is analogous to the emission of

radio waves by sonar devices. As such, this secretion pathway and its



corresponding function have been described as "cell sonar" (personal

communication, H.S. Wiley & D.A. Lauffenburger).

In the case of a migrating autocrine cell, shown in Figure 4.2, the persistent

movement of the cell is assumed to be due to the symmetrical, polarized

secretion and binding of an autocrine factor. Experiments designed to

confirm this assumption would be particularly informative, as this model

predicts that any agent perturbing the homeostasis of these autocrine loops,

such as exogenous ligand or receptor blocking antibody, would diminish the

persistence of the migrating, autocrine cell. Analogous to the "cell sonar"

description, the cell would be essentially "blinded" by such agents. This

situation is depicted in Figure 4.3. Indeed, this prediction corresponds to

results obtained from this investigation. Control cells, in which autocrine

loops remain unpertubed, show a higher persistence time than cells to which

exogenous growth factor or receptor blocking antibody has been added.

Previous studies have highlighted the greater motogenic responsiveness of

keratinocytes to TGF-a than EGF. In one study, cells were plated in the center

of culture vessels, and the increase in radial size of colonies was observed to

be greater in the presence of TGF-a than in the presence of EGF (Barrandon

and Green, 1987). In another study, growth factor effects were screened using

phagokinetic and wound healing assays, which also showed TGF-a to be a

stonger motogenic agent than EGF (Cha et al., 1996). While these approaches

suggest trends in the responsiveness of keratinocytes to EGF and TGF-a, they

are not fundamentally quantitative in nature. Another investigation of the

differential effects of EGF and TGF-a, on the stimulation of fibroblast

proliferation, indicated that a range of responses could be elicited by these



ligands (Reddy et al., 1996a; Reddy et al., 1996b). Focusing on receptor/ligand

trafficking dynamics, three regimes of action were shown. One in which EGF

performed as a stronger mitogen, one in which TGF-ca performed as a

stronger mitogen, and one in which the two ligands were shown to be

equipotent. The same study showed that the response could be predicted by a

knowledge of whether the system was limited by the amount of available

ligand, receptor downregulation, or neither. In comparing these results to the

experiments performed in the present study, ELISAs have shown that ligand

availability was not a determinant of the response, as no growth factor

depletion was observed. Receptor levels were not quantified.

To examine trafficking dynamics further, a mathematical model describing

the binding/trafficking properties of an autocrine cell was developed. Major

assumptions were made concerning the trafficking properties of both EGF and

TGF-a. Namely, all internalized EGF complexes were assumed to be

completely degraded, and all receptors having entered the cell via a TGF-

a/receptor complex were assumed to be completely recycled. Such polarized

assumptions were made to accentuate the main difference between the two

ligands- their intracelluar KD. Model equations, nomenclature, and

parameter values chosen are shown in Appendices A and B. Equations were

solved at steady state, and ligand concentrations were assumed to be constant.

Example results of this type of analysis are shown in Figure 4.4. As expected,

results of this analysis indicate that over a range of ligand concentrations,

exogenously added TGF-a always forms a larger number of growth

factor/receptor complexes at steady state than exogenously added EGF.

Assuming that the degree of migration signaling is proportional to the

number of growth factor/receptor complexes, this result also predicts TGF-c



to be a stronger motogen, over all ligand concentrations. The random

motility coefficients obtained from this study confirm this behavior.

Other approaches explaining the differential effects of EGF and TGF-a have

focused on the possibility of differential signaling pathways of receptor

tyrosine kinases. In support of this theory, a limited number of differences in

Western blots, prepared to examine the magnitude and kinetics of tyrosine

phosphorylation as induced by EGF and TGF-a, suggested different signaling

activities of the two ligands (Cha et al., 1996). Another study demonstrated a

correlation between growth factor specificity and matrix metalloproteinase

activity, as assayed by gelatin zymography (McCawley et al., 1996). These

results are encouraging, but not quantiatively conclusive. The in vivo

cellular response most likely involves a combination of differential

trafficking and signaling pathways, however additional study will be

necessary to fully appreciate the complexity of such interactions.
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Figure 4.1 An autocrine cell sensing its local microenvironment
(adapted from H.S. Wiley).

Direction of
Motion

Figure 4.2 A persistent autocrine cell (adapted from Tranquillo and
Lauffenburger, 1987). Curved arrows represent stimulation by
autocrine ligand at the leading edge of the migrating cell.
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Figure 4.3 The disrupted migration of an autocrine cell (adapted from
Tranquillo and Lauffenburger, 1987). Curved arrows represent
stimulation by autocrine ligand at the leading edge of the migrating
cell, straight arrows represent stimulation by exogenous ligand, and X's
represent the action of EGFR blocking antibodies.
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Appendix A

T-kGFR (LTGF-k R. (exog +
pAQt

- vf) f dt)
AvV 0

-k EGFLEGF + kTGFc TGF +kEGFCEGF

-keRRs + kecRi (1 - fdeg) - fQ

(eqn A.1)

S+k TGFR (L TGF
f exog

PAQjdf) f dt)

_kTGFCTGF keCTGF +
(eqn A.2)

= +k EGFR LEGFf s L-exog

dR,k
dt +keR- +kC+ TGF

-R1 (kdegfdeg + ke (I -

- EGF EGF - kEGF

(eqn A.4)

fdeg))

dRs
dt

dC TGF

dt

dCEGF

dt (eqn A.3)



Appendix B

Model Nomenclature Parameter Values

A = total area of cell culture dish (cm 2 ) 0.35
CTGF = surface complexes bound to TGF - a (# cell 1 )

CfEGF = surface complexes bound to EGF (# cell ')
f = autocrine capture probability for TGF - a 0.1
kec = internalization rate constant for complexes (min-') 0.3
keR = internalization rate constant for free receptors (min-') 0.03

kdeg = internal receptor degration rate constant (min- ') 2.2e-3

kf GF = forward binding rate constant for TGF - a (M -' min - ') 4.3e7

kEGF = forward binding rate constant for EGF (M-' min- ') 6.3e7

k,GF = reverse binding rate constant for TGF - a (min') 0.27

kEGF = reverse binding rate constant for EGF (min -') 0.16

krec = recycling rate constant (min-') 5.8e-2

LEGF = exogenous EGF concentration (M)
LGF = exogenous TGF -a concentration (M)

NA = Avagadro' s number (# mol -')

p = plated cell density (cells cm-2 ) 7143
Q = TGF - a autocrine secretion rate (# cell -' min - ') 8026
Ri = Total internal free receptors (# cell - ')
t = duration of experiment (min) 1440
V = volume of culture media above cells (L) 0.004
V,= free receptor synthesis rate (# cell -' min -') 100
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