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Abstract

This report proposes a new two-stage optimization method for robust Model Predictive Control (RMPC)
with Gaussian disturbance and state estimation error. Since the disturbance is unbounded, it is impossible
to achieve zero probability of violating constraints. Our goal is to optimize the expected value of a objective
function while limiting the probability of violating any constraints over the planning horizon (joint chance
constraint). Prior arts include constraint tightening with ellipsoidal relaxation [8] and Particle Control
[1], but the former yields very conservative result and the latter is computationally intensive. Our new
approach divide the optimization problem into two stages; the upper-stage that optimizes risk allocation,
and the lower-stage that optimizes control sequence with tightened constraints. The lower-stage is a regular
convex optimization, such as Linear Programming or Quadratic Programming. The upper-stage is also
a convex optimization under practical assumption, but the objective function is not always differentiable,
and computation of its gradient or subgradient is expensive for large-scale problem. A necessary condition
for optimality, which does not explicitly use gradient and hence easy to compute, is discussed. A descent
algorithm for the upper-stage called Iterative Risk Allocation (IRA), which does not require the computation
of gradient, is proposed. Although the algorithm is not guaranteed to converge to the optimal, empirical
results show that it converges quickly to a point that is close to the optimal. Suboptimality is much smaller
than ellipsoidal relaxation method while achieving a substantial speedup compared to Particle Control.

1 Introduction and Problem Statement

Model Predictive Control have drawn attention of researchers in a wide range of field from chemical plant control,
financial engineering to unmanned aerial vehicle path planning. When it is applied to the real-world robotic
system, robustness against uncertainty, such as exogenous disturbance, actuation error, and state estimation
error, is an important issue.

A lot of research has been done on robust Model Predictive Control (RMPC) that assumes bounded dis-
turbance [3][4][5][6]. However, in many practical cases, disturbance is often stochastic and unbounded. This
paper focuses on RMPC under Gaussian distribution, since it is often a good approximation of those stochastic
disturbances. When the disturbance is unbounded, it is impossible to achieve zero probability of violating
constraints, or conduct min-max optimization. In such case an effective strategy is to optimize the expected
value of a objective function while limiting the probability of violating any constraints over the planning horizon
(joint chance constraint). The optimization problem to solve is formally defined as follows.
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1.1 Formal Problem Statement

Notations: Following notations are used throughout the paper.

xn : State vector at time n(Randomvariable).

un : Control input at time n.

wn : Disturbance at time n(Random variable).

x̄n : = E[xn] : Nominal state.

X := (xT
0 xT

1 · · ·x
T
N )T

U := (uT
0 xT

1 · · ·x
T
N−1)

T

X̄ := (x̄T
0 x̄T

1 · · · x̄
T
N )T

Problem 1: RMPC with a joint chance constraint

min
U

E[J(X , U)] (1)

s.t. xn+1 = Axn + Bun + wn (2)

umin ≤ un ≤ umax (3)

wn ∼ N (0,Σw) (4)

x0 ∼ N (x̄0,Σx,0) (5)

Pr

[

N
∧

n=0

In
∧

i=1

hiT xn ≤ gi
n

]

≥ 1−∆ (6)

We assume a discrete-time linear time invariant (LTI) system with disturbance over a time horizon N .
Exogenous disturbance and actuation error are represented by w, and state estimation error is represented by
x0. Both random variables have Gaussian distribution with variance Σw and Σx,0, respectively. We refer (6) to
as joint chance constraint, since it limits the probability of violating any of In constraints throughout the time

horizon 0 < n < N , instead of limiting the probability of violating a individual constraint in a single time step

(individual chance constraints, introduced in (7)). The upper bound of the probability of failure over the time
horizon is denoted by ∆, which is a free parameter defined by system operators. When Problem 1 is used as a
open-loop planning problem, ∆ means the probability of failure over a mission (from start to goal).

For example, in a path planning problem of an autonomous underwater vehicle (AUV) that conducts bathy-
metric mapping mission, an AUV operator wants to minimize the average altitude from the sea floor to obtain
as high resolution data as possible with an upper-bound ∆ of the probability of colliding with the sea floor
throughout the mission.

1.2 Related Works and Approach

As far as the authors know, there are two algorithms that can solve RMPC with a joint chance constraint.
One of them uses ellipsoidal relaxation technique [8] to derive the necessary condition of (6) and reduce the
stochastic MPC to deterministic problem by constraint tightening. Although it is computationally efficient,
ellipsoidal relaxation is a very conservative bound, and hence the result has significant suboptimality.

The other one is a sampling-based algorithm called Particle Control [1]. It can directly optimize the control
sequence without using a conservative bound such as ellipsoidal relaxation. Its another advantage over [8] is that
it can handle non-Gaussian distributions. However, it is slow when it is applied to a large-scale problem due
to the large dimension of the decision vector. Another important issue with Particle Control is that, although
there is a converging guarantee to the true optimum when the number of the samples goes to infinity, there is
no guarantee that the original chance constraint is satisfied with finite number of samples.



On the other hand, RMPC with individual chance constraints can be solved efficiently by constraint
tightening[8][9]. Our new approach decomposes a joint chance constraint into individual chance constraints
by a novel idea called risk allocation. The resulting algorithm consists of two stages, with its upper-stage op-
timizing risk allocation while the lower-stage corresponding to RMPC with individual chance constraints. The
suboptimality of the proposed algorithm is much less than ellipsoidal relaxation method while computation is
significantly faster than Particle Control.

The rest of paper is outlined as follows. We first briefly review RMPC with individual chance constraints
and its solution, followed by an introduction of the new two-stage optimization approach . Convexity of the
upper-stage optimization is proved and the necessary condition for optimality is discussed in Section 4. In the
following section a fast descent algorithm for upper-stage optimization called Iterative Risk Allocation (IRA) is
introduced.

2 Review of RMPC with individual chance constraints

RMPC with individual chance constraints is stated as follows.
Problem 2: RMPC with individual chance constraints

min
U

E[J(X , U)]

s.t. xn+1 = Axn + Bun + wn

umin ≤ un ≤ umax

wn ∼ N (0,Σw)

x0 ∼ N (x̄0,Σx,0)

Pr
[

hiT
n xn ≤ gi

n

]

≥ 1− δi
n (7)

(n = 0 · · ·N, i = 0 · · · In)

This stochastic problem is turned into a deterministic problem. First, the distribution of xn (hence, distri-
bution of X) is computed as follows using the distribution of w and x0.

Σx,n =
n−1
∑

k=0

AkΣw(Ak)T + Σx,0. (8)

Since the distribution of X is known, expectation of the objective function can be described as a function of
nominal state, which is a deterministic variable.

E[J(X, U)] = J̄(X̄ , U) (9)

When J is linear, J̄(X̄ , U) = J(X̄ , U); see a reference [9] for the case of quadratic objective function.
The individual chance constraints (7) is turned into deterministic constraints on the nominal state using

constraint tightening[8][9]. Thus Problem 2 is equivalent to the following deterministic MPC problem. When
J̄ is linear, it is Linear Programming.
Problem 3: Deterministic MPC on nominal states (Lower-stage)

min
U

J̄(X̄, U) (10)

s.t. x̄n+1 = Ax̄n + Bun (11)

umin ≤ un ≤ umax (12)

hiT
n x̄n ≤ gi

n −mi
n(δi

n) (13)



where mi
n(·) is the inverse of cumulative distribution function of one-dimensional Gaussian distribution with

variance hiT Σx,nhi. It is convex when δi
n ∈ [0 0.5].

mi
n(δi

n) =

√

2hiT
n Σx,nhi

n erf−1(1− 2δi
n) (14)

(n = 0 · · ·N, i = 0 · · · I).

where erf−1 is the inverse of the Gauss error function. The interpretation is that the algorithm set a safety
margin mi

n to keep the nominal state away from infeasible region, so that the probability of violating ith
constraint at time n is less than the upper bound δi

n.

3 Two-stage Optimization Approach

3.1 Risk Allocation

Observe that, using union bound or Boole’s inequality (Pr[A ∪B] ≤ Pr[A] + Pr[B]), a set of individual chance
constraints (7) together with the following additional constraint implies the original joint chance constraint (6)
[2].

N
∑

n=0

In
∑

i=1

δi
n ≤ ∆ (15)

In other words, once the upper bounds of the probability of violating individual constraints δi
n are fixed according

to (15), then RMPC with joint chance constraint (Problem 1) is turned into RMPC with individual chance
constraints (Problem 2/3). For later convenience, a vector δ is defined as follows;

δ = (δ1
0 δ2

0 · · · δ
I−1

N δI
N )T . (16)

It can be viewed as a resource allocation problem; the total amount of resource ∆ is upper-bounded, and the
problem is to find the optimal resource allocation δ to maximize the utility. Thus we call δ as ”risk allocation”.
The good risk allocation strategy is to save risk when the gain of taking risk is small, while taking risk when a
great gain is expected by doing so. For example, when a racing car driver wants to reach the goal as quick as
possible, he would take greater risk at corner by running inside track (i.e. greater probability of getting out of
course) since it leads to time saving, while he would save risk by running middle of the course at straight line
since running on the edge of the course does not leads to time saving.

3.2 Two-stage Optimization

By optimizing risk allocation δ as well as control sequence U in Problem 3 with a constraint (15), the original
Problem 1 is optimized. (Strictly speaking, it is suboptimal in general since the union bound is a conservative
bound; however, the suboptimality is small when ∆ << 1.) However, since the constraints (13) are nonlinear
in terms of δ, the resulting optimization problem is hard to solve.

Our approach is to separate the optimization of risk allocation δ from Problem 3 to keep the linearity in
constraints, so that efficient Linear Programming or Quadratic Programming solver can be used. The resulting
algorithm is a two-stage optimization; upper-stage optimizes risk allocation δ while lower-stage (Problem 3)
optimizes U . The upper-stage optimization problem is formally stated as follows.
Problem 4: Risk Allocation Optimization (Upper-stage)

min
δ

J̄⋆(δ) (17)

s.t.

N
∑

n=0

I
∑

i=1

δi
n ≤ ∆ (18)

δi
n ≥ 0 (19)

δ ∈ {δ | Problem 3 is feasible} (20)



where J̄⋆(δ) is the optimum objective function of Problem 3 given δ.

J̄⋆(δ) = min
U

J̄(X̄ , U) s.t. (11)− (13) (21)

By solving Problem 4 (upper-stage) together with Problem 3 (lower-stage), the original RMPC with joint
chance constraint (Problem 1) is solved. The next question is, of course, how to solve Problem 4. To answer
the question, the next section discuss its convexity as well as the necessary condition for optimality.

4 Convexity and Necessary Condition for Optimality

4.1 Convexity

Theorem 1: Problem 4 is a convex optimization if the objective function of Problem 3 J̄(X, U) is convex and
∆ ≤ 0.5.

Proof Let δ1 and δ2 be feasible risk allocations that satisfy (18) - (20). Let (X⋆
1, U

⋆
1) and (X⋆

2, U
⋆
2) be

the optimum solution of Problem 3 for δ1 and δ2 respectively. We will first show that, for 0 ≤ k ≤ 1,
(kX⋆

1 + (1− k)X⋆
2, kU⋆

1 + (1− k)U⋆
2) is a feasible solution.

It satisfies (11) and (12) for linearity. It also satisfies (13), since

hiT {kx̄n,1 + (1− k)x̄n,2}

≤ gi
n − kmi

n(δi
n,1)− (1− k)mi

n(δi
n,2)

≤ gi
n − kmi

n(kδi
n,1 + (1 − k)δi

n,2) (22)

The second inequality uses the fact that mi
n(δi

n) is convex when 0 ≤ δi
n ≤ ∆ ≤ 0.5. The convexity of m

can be immediately proved from the fact that df
dx
≤ 0 for x ≤ 0, where f(·) is the probability distribution

function of Gaussian. Therefore, (kX⋆
1 + (1− k)X⋆

2, kU⋆
1 + (1− k)U⋆

2) is a feasible solution of Problem 3 for
kδ1 + (1− k)δ2. Thus, the feasible region of Problem 4 is convex.

Next we will show the convexity of the objective function of Problem 4. Since Problem 3 is feasible for
kδ1 +(1− k)δ2, there is an optimum solution (X⋆

k, U⋆
k) that gives less or equal value of objective function than

(kX⋆
1 + (1− k)X⋆

2, kU⋆
1 + (1− k)U⋆

2). Note that J̄(X⋆
k, U⋆

k) is equivalent to the objective function of Problem
4 J̄⋆(kδ1 + (1− k)δ2). Using convexity of J̄ ,

J̄⋆(kδ1 + (1− k)δ2)

= J̄(X⋆
k, U⋆

k)

≤ J̄ (kX⋆
1 + (1− k)X⋆

2, kU⋆
1 + (1− k)U⋆

2)

≤ kJ̄(X⋆
1, U

⋆
1) + (1 − k)J̄(X⋆

2, U
⋆
2)

= kJ̄⋆(δ1) + (1− k)J̄⋆((δ2) (23)

Thus the objective function of Problem 4 J̄⋆(δ) is convex.

4.2 Gradient

Computation of the gradient is of great interest for optimization. Although it is not a main issue of this paper,
we will briefly describe how to obtain the gradient.

The objective function of Problem 4 J̄⋆(δ) is not always differentiable. When it is differentiable,

∂J̄⋆

∂δi
n

=
∂J̄⋆

∂mi
n

dmi
n

dδi
n

(24)

Since mi
n(δi

n) is the inverse function of the cumulative distribution function of Gaussian,

dmi
n

dδi
n

=
1

f(mi
n(δi

n))
(25)



where f(·) is the probability distribution function of Gaussian.

On the other hand, ∂J̄⋆

∂mi
n

is harder to obtain. It may be obtained as a resulting Lagrange multiplier in some

cases; when Problem 3 is Linear Programming, it can be obtained by matrix operation.
We assume that J̄ is linear and hence Problem 3 is Linear Programming. Problem 3 can be described in a

simple form as follows by eliminating X̄ using (11);

min
U

fT U (26)

s.t. HU ≤ g −m(δ) (27)

Let U⋆ be the optimized decision vector, and J̄⋆ = fT U⋆ be the optimized objective function. J̄⋆(δ)
is differentiable iff there are exactly nU active independent constraints in (27), where nU is the number of
dimensions of U . We divide (27) into active and inactive constraints.

Active : HAU⋆ = gA −mA(δA) (28)

Inactive : HIU
⋆ < gI −mI(δI) (29)

Note that HA is a nU by nU full rank matrix when J̄⋆(δ) is differentiable. In such case J̄⋆(δ) is differentiated
by m as follows;

∂J̄⋆

∂mA

= −fT H−1

A (30)

∂J̄⋆

∂mI

= 0. (31)

Additional note is that, in the case of J̄ being linear, the Hessian is zero when it is differentiable.

4.3 Subgradient

When there is more than nU active independent constraints, J̄⋆(δ) is differentiable. Let nH be the number of
active constraints. Let H ′

A be a nU by nU matrix constructed from HA by removing (nH − nU ) rows from HA.
There are

(

nH

nU

)

ways to construct H ′

A. Let v be a “gradient” vector obtained from (30) using H ′

A. There are
(

nH

nU

)

ways as well to construct v. Let V be the set of all
(

nH

nU

)

“gradient” vectors v. The subgradient ∂J̄⋆ is the
convex hull of V .

In most cases J̄⋆(δ) is indifferentiable at the optimal point. Thus, in general, the necessary and sufficient
condition for optimality is 0 ∈ ∂J̄⋆.

This computation is generally expensive since it requires
(

nH

nU

)

nU by nU matrix inversions.

4.4 Necessary Condition for optimality

When the dimension of decision vector is large, the computation of gradient and subgradient become expensive
due to the matrix inversion. We found a necessary condition for optimality that does not explicitly use gradient.

Theorem 2: Necessary condition for optimality
(δ optimizes Problem 4)⇒ [(Constraints (13) are active for all n = 0 · · ·N and i = 1 · · · In with δ) ∨ (They are
inactive for all n = 0 · · ·N and i = 1 · · · In with δ)]

In other words, Problem 4 cannot be optimum if only some of constraints in (13) are active.

Proof Assume that there are both active and inactive constraints in (13) for a risk assignment δ. Let n =
nI , i = iI be a time and an index of constraint where (13) is inactive. Its risk allocation δiI

nI
can be decreased

(i.e. the constraint at (n, i) is tightened) by a finite value to δ̂iI

nI
without making any change to the objective

function J(X, U) since the constraint is inactive. Then one can find an active constraint (nA, iA) where the

objective function J(X , U) is decreased by increasing its risk allocation δiA

nA
to δ̂iA

nA
so that (δiA

nA
+δiI

nI
− δ̂iI

nI
) (i.e.

the constraint at (n, i) is loosened). The new risk allocation δ̂ satisfies (15). Thus a risk allocation including
δiA

nA
and δiI

nI
is not optimal.



Note that the proof of Theorem 2 also provides a descent direction.

Lemma 1: Descent direction If there are both active and inactive constraints, (δ̂−δ) in the proof of Theorem
2 above is a descent direction.

Another important note is that, although having all constraints active is not a sufficient condition for
optimality, having all constraints inactive is a sufficient condition for optimality.
Lemma 2: Sufficient condition for optimality
(Constraints (13) are inactive for all n = 0 · · ·N and i = 1 · · · I with δ)⇒ (δ optimizes Problem 4)

Proof Assume that all constraints in (13) are inactive. One cannot decrease the objective function J(X , U)
by changing any of δi

n, since all constraints are inactive. Thus it is optimal.

5 Iterative Risk Allocation Algorithm

From Theorem 2, Lemma 1 and Lemma 2, a simple yet very powerful descent algorithm called Iterative Risk
Allocation (IRA) is derived. It is computationally efficient since it does not explicitly use gradient nor sub-
gradient. Although it is not guaranteed to converge to the optimum, the suboptimality is small in practice.
Given a feasible initial risk assignment, it generate the sequence of feasible risk assignment that monotonically
decreases the objective function.

Algorithm 1 describes the IRA algorithm. It has a parameter 0 < α < 1, which corresponds to a step size.
The algorithm can be started from any feasible risk assignment δ that satisfies

∑N
n=0

∑I
i=1

δi
n = ∆, but in most

cases uniform risk assignment works well (Line 1).
In Line (10), cdf(gi

n − hiT
n x̄⋆

n) is the probability of violating a constraint at (n, i), where cdf(·) is the
cumulative distribution function of zero-mean Gaussian distribution with variance hiT

n Σx,nhi
n, and x̄⋆

n is the

optimized nominal state for δ. A constraint is active at (n, i) when δi
n = cdf(gi

n−hiT
n x̄⋆

n) and inactive otherwise.
In practice, we judge that a constraint is active if

|δi
n − cdf(gi

n − hiT
n x̄⋆

n)| < ǫ (32)

where ǫ is a small positive real number.
The algorithm uses Lemma 2 to obtain descent direction. It reduce the risk allocation where the constraint

is inactive (Line 10) and increase it where the constraint is active (Line 14). Line 12 and 14 ensure that
∑N

n=0

∑In

i=1
δi
t = ∆ so that the suboptimality due to the union bound is minimized.

It can be easily seen from the proof of Theorem 2 that the objective function monotonically decreases over
the iteration of Algorithm 1. It is also clear from the proof of Theorem 2 that Algorithm 1 converges only to a
risk allocation that makes all constraint active or inactive. Line 5 stops the algorithm in those cases.

The performance of IRA algorithm is demonstrated by simulation in [7].
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Algorithm 1 Iterative Risk Allocation

1: ∀(n, i) δi
n ← ∆/(Nactive =

∑N

n=0
In)
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n

13: for all (n, i) such that ith constraint at nth time step is inactive do
14: δi

n ← δi
n + δres/Nactive

15: end for
16: end loop

[5] Yoshiaki Kuwata, Arthur Richards, and Jonathan How. Robust receding horizon control using generalized
constraint tightening. Proceedings of American Control Conference, 2007.
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