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Abstract

This thesis presents three studies which apply geophysical tools to the task of better under-
standing mantle melting phenomena at the upper and lower boundaries of the mantle. The
first study uses seafloor bathymetry and small variations in the gravitational acceleration
over the Hawaii-Emperor seamount chain to constrain the changes in the igneous production
of the hot spot melting in the mantle which has created these structures over the past 80 My.
The second study uses multichannel seismic reflection data to constrain the location and
depth of axial magma chambers at the Endeavour Segment of the Juan de Fuca spreading
ridge, and then correlates these magma chamber locations with features of the hydrother-
mal heat extraction system in the upper crust such as microseismicity caused by thermal
cracking and high temperature hydrothermal vent systems observed on the seafloor. The
third study uses two-dimensional global pseudospectral seismic wave propagation modeling
to characterize the sensitivity of the SPdKS seismic phase to two-dimensional, finite-width
ultra-low velocity zones (ULVZs) at the core-mantle boundary. Together these three stud-
ies highlight the dynamic complexities of melting in the mantle while offering new tools to
understand that complexity.
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Chapter 1

Introduction

The interior of the Earth can be characterized as a massive heat engine, driven by radioactive

heating of the mantle and cooling and crystallization of the core [Stacey , 1992]. This results

in global mantle convection with rising mantle material carrying heat to the surface and

cooled mantle material sinking back down into the depths to be reheated and continue the

convection cycle. The surface expression of this cycle is plate tectonics with its associated

mountain building, subduction, and volcanic activity. The effects of this cycle on the base

of the mantle, the core-mantle boundary (CMB) region, are less well understood due to

its inaccessibility; however, the CMB has been shown seismically to be very heterogeneous

[Jeanloz and Williams, 1998] and is hypothesized to be a “(subducted) slab graveyard”

[van der Hilst et al., 1997] and the source of rising mantle plumes [Morgan, 1971].

Most of the mantle is solid and deforming plastically over very long time scales (millions

of years) at adiabatic thermal conditions [Turcotte and Schubert , 2002]. However, at the top

and bottom of the mantle, where it comes into contact with the relatively cold surface of the

Earth and with the relatively hot outer core, conductive thermal boundary layers form. At

the top of the mantle the adiabatic thermal gradient crosses the solidus, which causes rising

mantle material to cool by melting as excess heat is converted into energy of fusion [Kinzler

and Grove, 1992a, b, 1993; Asimow et al., 2001]. The resulting melt then rises buoyantly

to the surface, chemically interacting with mantle and crust as it percolates upward (e.g.,

Kelemen et al. [1995, 1999]). At the bottom of the mantle, the solidus, liquidus, and

geotherm are all less well constrained [Jeanloz and Williams, 1998], however the presence

of partial melt is hypothesized to account for certain ultra-low velocity anomalies [Williams
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and Garnero, 1996].

This thesis presents three studies which use geophysical methods to constrain aspects

of melting in the mantle’s thermal boundary layers. First, gravity anomalies are used to

constrain crustal thickness variations related to hot spot volcanism in the central Pacific

ocean. Second, multichannel seismic reflection data are used to image magma chambers

at the mid-ocean spreading ridge between the Juan de Fuca plate and the Pacific plate.

Third, a two-dimensional (2-D) global seismic wave propagation code is adapted to study

thin patches of abnormal velocity and density on the CMB. Finally, that code is applied to

understanding which aspects of 2-D ultra-low velocity zones (ULVZs) can be constrained

using the SPdKS seismic phase, and those results are applied to a data set which samples

the CMB under the southwest Pacific ocean. While these studies each employ very different

techniques, together they build a picture of complex and interesting structure in boundary

layers at the top and bottom of the mantle under the Pacific ocean.

In chapter 2, small variations in gravitational attraction over the northwest Pacific

are used to calculate the maximum crustal thickness of that region. This map of crustal

thickness is then used to calculate the excess crust produced by the Hawaii-Emperor hot

spot volcanism. Finally, an igneous flux of the Hawaii-Emperor hotspot is calculated by

integrating the excess crust in strips perpendicular to the hot spot track and correcting

from along-track distance to time using relative velocities between the Hawaiian-Emperor

hot spot and Pacific plate. While other studies have presented similar calculations based

on bathymetry and isostasy or flexure models, this study is unique in its incorporation of

gravity data to constrain the crustal underplating due to the hot spot volcanism. Our time

series of Hawaii-Emperor igneous flux provides a useful basis of comparison for geochemical

studies of the evolution of the Hawaii-Emperor lavas over the history of the seamount chain

(e.g., Keller et al. [2004] and Frey et al. [2005]). The periods over which the igneous flux

varies also provide constraints on geodynamic models of the mantle dynamics and plume-

lithosphere interactions which may control the location and flux of the Hawaii-Emperor hot

spot.

Chapter 3 presents a multichannel seismic survey of the Endeavour Segment of the

Juan de Fuca Ridge. The magma chambers we image under the axial high of the ridge chal-

lenge previous models of heat extraction from mid-ocean ridges with intermediate spreading

rates. Previous lines of evidence at the Endeavour Segment – fractured and rifted seafloor

18



morphology, high temperature hydrothermal vents located along faults and fissures, deep

(1.5–3.5 km below the seafloor) axial microseismicity, and ambiguous seismic evidence –

had led to the expectation that there would not be any axial magma chambers; instead the

heat driving the Endeavour hydrothermal systems would be provided by a hydrothermal

cracking front propagating down into the hot, but solid, rock of the Endeavour crust. We

reconcile the presence of axial magma bodies with these other lines of evidence and pro-

pose a new model for intermediate spreading center heat extraction which combines the

magmatic heat source of fast spreading center heat extraction models with the fracture-

controlled hydrothermal circulation paths of slow spreading center heat extraction models.

In addition, the Endeavour Segment is of special interest due to its designation as a Ridge

2000 program integrated study site, and our magma chamber locations provide target areas

of the seafloor in which geologists, geochemists, and biologists might fruitfully search for

undiscovered active hydrothermal vent systems.

The focus shifts from volcanism at the surface of the Earth to possible partial melting at

the CMB in the last two chapters. Chapter 4 introduces a 2-D “global” (cylindrical) pseu-

dospectral wave propagation algorithm which was largely constructed by Vernon Cormier,

building on a variety of seismic wave modeling approaches originally developed for small-

scale seismic exploration and industrial applications. For the purposes of this thesis, three

adjustments to the code were made: (1) the code was modified slightly to run well on a

local parallel computer cluster at MIT, (2) variable grid spacing was implemented in order

to allow much smaller vertical spacing for grid nodes around the CMB while conserving

the number of grid nodes overall and retaining numerical accuracy, and (3) a consistent

system for reading in velocity perturbations at the CMB was implemented. This is the first

time a variable grid has been accurately implemented in a global pseudospectral modeling

algorithm. The output of this code for the preliminary reference Earth model (PREM)

[Dziewonski and Anderson, 1981] is benchmarked against the semi-analytical full wave the-

ory method; in general there is very good agreement between the synthetic seismograms

generated by the two methods.

Chapter 5 applies this pseudospectral seismic wave propagation modeling code to a

variety of one-dimensional (1-D) and 2-D ULVZ models. We introduce a parameterization of

ULVZ “strength” as the height of the ULVZ layer multiplied by the P-velocity perturbation

of that layer. We find that no matter how strong the ULVZ, if it is narrower than 100 km
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it will not be detectable using changes or delays in the SPdKS waveform. Our results give

four tools useful for identifying and characterizing 2-D ULVZ structures, all most useful

if array data in something resembling a linear geometry is available. First, dual SPdKS

pulses on a seismogram indicate exposure to at least two different CMB velocity structures.

Second, a strong SKS precursor probably indicates a very strong ULVZ; the absence of such

SKS precursors is most previous ULVZ studies indicates that very strong, sharp ULVZs

are not very common. Third, while ULVZ models based on SPdKS travel times are highly

non-unique, we present a graph of mean SPdKS delays relative to PREM which provides

constraints on minimum ULVZ strength and width combinations required to produce a given

travel time delay. Finally, tracing SPdKS arrivals back to the inception epicentral distance

on seismic sections may offer an independent tool for identifying P-velocity perturbations

at the base of the mantle.

This thesis presents a diverse body of work, covering three very different geophysical

approaches applied to three distinct portions of the Earth. However, together they build up

a set of constraints on the three potentially most important modes of melting in the Pacific

mantle. Chapter 2 provides constraints on time variation in the mantle processes, potentially

including plumes that originate at the CMB, which produce the “hot spot” volcanism of the

Hawaii-Emperor seamounts. Chapter 3 fills in the intermediate spreading rate range of the

models which explain magma bodies at mid-ocean ridges as a result of the interplay between

hydrothermal cooling from above and adiabatic decompression melting of rising mantle

from below. And the last two chapters place minimum constraints on the dimensions and

seismic velocity perturbations at the bottom of the mantle which are required to produce

ULVZ seismic signatures, thereby placing constraints on the geodynamic and geochemical

processes, including melting, which may be the cause of these seismic velocity anomalies.
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Chapter 2

Time Variation in Igneous Volume

Flux of the Hawaii-Emperor

Hotspot Seamount Chain

Abstract Satellite gravity, ship track bathymetry, sediment thickness, and crustal magnetic

age data were combined to calculate the residual bathymetry and residual mantle Bouguer

gravity anomaly (RMBA) for the northwest Pacific Ocean. The Hawaii-Emperor hotspot

track appears on the RMBA map as a chain of negative anomalies, implying thickened crust

or less dense mantle. The hotspot swell is clearly visible in a broad band of half width ∼500

km for about 2,000 km downstream from the current hotspot location, corresponding to

hotspot ages of 0–25 Ma. A much narrower expression of the hotspot is visible for the rest

of the chain at hotspot ages of 25–80 Ma. Comparison of the observed RMBA with vari-

ous compensation models reveals that the relatively narrow features of the Hawaii-Emperor

seamounts are best explained as being supported by plate flexure while the Shatsky Rise,

Hess Rise, and Mid-Pacific Mountains oceanic plateaus are best fit by Airy isostasy with

a thickened crustal root. Amplitude comparisons between the RMBA predictions of vari-

ous compensation models and the observed RMBA for the Hawaiian swell are ambiguous.

However, based on the shape of the predicted anomalies we favor a model of flexure in re-

sponse to a buried load at 120 km depth. We further calculate igneous (i.e., crustal) volume

Previously published as Van Ark, E., and J. Lin, (2004), Time variation in igneous volume flux of
the Hawaii-Emperor hot spot seamont chain, J. Geophys. Res., 109, B11401, doi:10.1029/2003JB002949.
Reprinted here with permission.
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flux along the axis of the Hawaii-Emperor hotspot by integrating cross sectional areas of

gravity-derived excess crustal thickness and seafloor elevation, respectively, with respect to

the normal oceanic crust. The highest values of the calculated igneous volume flux along

the Hawaiian and Emperor ridges (∼8 m3/s) occur at present and about 20 Ma. The flux

was reduced to only 50% of this maximum (∼4 m3/s) at 10 Ma. The calculated igneous

volume flux is systematically smaller (maximum values of ∼4 m3/s) along the Emperor

ridge. Overall the Hawaiian and Emperor ridges appear to have experienced quasi-periodic

variations in fluxes on time scales of 6–30 Ma. Furthermore during the low flux periods

at 25–48, 57, and 75 Ma, the height and size of individual hotspot seamounts appear to

be noticeably less than those of the high flux periods. We hypothesize that the variations

in the fluxes of the Hawaiian ridge might be controlled by the thickness of the overlying

lithosphere at the time of hotspot emplacement, while the variations along the Emperor

ridge may be influenced by the dynamics of the slow absolute motion of the hotspot at the

time.

2.1 Introduction

Hotspot plumes have often been imagined and modeled as stationary conduits of hot, en-

riched material from the deep mantle to the surface of the Earth [Wilson, 1963; Mor-

gan, 1971; Sleep, 1990; Schilling , 1991; Ribe and Christensen, 1994; Ito and Lin, 1995b;

Phipps Morgan et al., 1995; Hoffman, 1997; Ribe and Christensen, 1999]. This view is al-

most certainly too simplistic, but attempts at more complex models were limited by the

scarcity of constraints on time variation in plume dynamics. Recent observations provide

some of the constraints necessary for the development of time-varying models of hotspot

behavior. One line of evidence uses new paleolatitudes found for several Emperor seamounts

to calculate a southward drift rate of 30 – 50 mm/y from 45 – 80 Ma for the Hawaii-Emperor

hotspot [Tarduno and Cottrell , 1997; Party , 2002a; Cottrell and Tarduno, 2003; Tarduno

et al., 2003]. New models of mantle convection incorporating stratified mantle viscosities

and rigid plates show the natural evolution of dynamic plume systems alternating between

periods of motion and periods of relative stability [King et al., 2002; Lowman et al., 2003].

This study attempts to quantify variations in the Hawaiian plume igneous (crustal) pro-

duction over time.
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A number of approaches have been proposed to estimate fluxes of hotspot material.

These have generally fallen into three categories: estimates of the buoyancy or mass flux

of the hotspots underlying mantle plume, estimates of the volume flux of the underlying

mantle plume, and estimates of the igneous volume flux produced by hotspot melting.

Buoyancy flux estimates generally assume isostatic compensation of the hotspot swell, the

broad topographic anomaly associated with a hotspot. The rate at which the swell is

generated can then be used to estimate the buoyancy or mass flux of the underlying mantle

plume [Davies, 1988, 1992; Sleep, 1990]. Volume fluxes of hotspot mantle plumes have

been estimated using fluid dynamics models [Sleep, 1990; Ribe and Christensen, 1994] and

geochemical signatures of plume interactions with mid-ocean ridges [Schilling , 1991].

Volcanic or igneous fluxes of the Hawaii-Emperor hotspot have been estimated by sev-

eral authors using bathymetry data alone. Bargar and Jackson [1974] were the first to

calculate the volume of individual volcanic shields along the Hawaii-Emperor chain, result-

ing in values ranging from 42.5 x 103 km3 for Mauna Loa to 0.3 x 103 km3 for a shield

on one of the northernmost Emperor seamounts. White [1993] assumed Airy isostasy sup-

porting observed bathymetry to estimate the total melt production of the Hawaii-Emperor

chain over time, arriving at values of 0.03–0.16 km3/y (or 0.95–5.08 m3/s). Most recently,

Vidal and Bonneville [2004] used bathymetry with Airy isostasy and flexure assumptions

to calculate magma production rates for Hawaii in a continuous manner. Our method is

similar to that of Vidal and Bonneville [2004] in that it produces a continuous along-axis

volcanic flux measurement. However, in addition to using bathymetry data, we also use

gravity anomalies to constrain crustal thickness.

This paper uses satellite gravity anomalies and shipboard data to show that the igneous

crustal production of the Hawaii-Emperor hotspot has changed over the history of the

hotspot on time scales of 6-30 My, with the igneous volume flux varying between 0-10

m3/s. We have chosen to study the Hawaii-Emperor hotspot because it has the longest

and clearest hotspot track on Earth, and therefore offers the longest time record of possible

hotspot flux variations. Unlike many other hotspots, the Hawaii-Emperor track is not

complicated by complex interactions with mid-ocean ridges. We also compare the observed

residual gravity anomaly with different models of isostatic compensation to investigate

the specific geodynamic mechanisms supporting the topography of the relatively narrow

Hawaiian-Emperor seamounts, the broad Hawaiian swell, and the Mid-Pacific Mountains,
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Hess Rise, and Shatsky Rise oceanic plateaus.

2.2 Data

Our study utilizes four global data sets: satellite free air gravity [Sandwell and Smith,

1995, 1997], oceanic sediment thickness [Divins, 2001], shiptrack bathymetry [Smith and

Sandwell , 1994, 1997], and oceanic crustal age [Muller et al., 1997]. From each of these

data sets we select a study region of 150◦E to 215◦E and 10◦N to 55◦N in the northern

Pacific Ocean (Figure 2-1).

The satellite marine free air gravity map of Sandwell and Smith [1995, 1997] (Figure 2-

2a) is available as a 1 minute by 1 minute data base that was derived from satellite altimetry

taken on the Geosat and ERS1 missions. The Hawaii-Emperor seamount chain is a promi-

nent feature on this map due to the point-like, uncompensated loading of the seamounts on

the plate. In contrast, longer wavelength areas of crustal thickening are isostatically com-

pensated by deformation of the elastic plate and/or crustal underplating and are therefore

not prominent on the free air gravity map. Because this is a marine gravity data set, we lack

coverage for the Hawaiian islands. We have therefore masked out the Hawaiian islands on

all our calculation results presented as maps. This lack of Hawaiian island coverage results

in an underestimation of the igneous volume flux at the current hotspot position, but does

not limit our ability to quantify the long-period variation of the Hawaiian hotspot flux over

time.

Global shiptrack bathymetry has been compiled by the National Geophysical Data Cen-

ter (NGDC) and is available on CD. The same information has been incorporated into the

Smith and Sandwell [1994, 1997] predicted topography map along with data from various

other archives. The shiptrack coverage of the Hawaii-Emperor seamount chain and its sur-

rounding region is adequate for our purposes (Figure 2-2b). Prominent tectonic features in

our study region include the Hawaii-Emperor seamount chain, the Mid-Pacific Mountains

(MPM), Shatsky Rise, and Hess Rise (Figure 2-1). Ocean Drilling Program results dated

the sediments on the MPM to be at least 123 132 Ma old [Arnaud-Vanneau and Sliter ,

1995; Jenkyns, 1995; Jenkyns et al., 1995; Pringle and Duncan, 1995] and paleomagnetic

studies of basalts from the MPM [Tarduno and Sager , 1995] support the interpretation of

its formation over the region of thinned, weak lithosphere and low viscosity asthenosphere

24



150� 160� 170� 180� 190� 200� 210�

10�

20�

30�

40�

50�

0 1 2 3 4 5 6 7

150� 160� 170� 180� 190� 200� 210�

10�

20�

30�

40�

50�

150°� 160°� 170°� 180°� 190°� 200°� 210°�

10°�

20°�

30°�

40°�

50°�

Emperor SmtsEmperor Smts

Shatsky Rise Shatsky Rise 

(141 My)(141 My)

Hess Rise Hess Rise 

(105 My)(105 My)

Hawaii RidgeHawaii Ridge

MidPacific Mts (132 My)MidPacific Mts (132 My)

Mendocino FZ

Mendocino FZ

Murray FZ

Murray FZ

Molokai FZ

Molokai FZ

60 Ma60 Ma

80 Ma80 Ma

80 Ma80 Ma

100 Ma100 Ma

100 Ma100 Ma

120 Ma120 Ma

140 Ma140 Ma

160 Ma160 Ma

depth (km)

Figure 2-1: Interpolated shiptrack bathymetry shows the Hawaii-Emperor seamount chain,
Hess and Shatsky Rises, and the Mid-Pacific Mountains. Also marked are the crustal age
contours based on digital magnetic data of Muller et al. [1997] and the location of the
Mendocino, Murray, and Molokai Fracture Zones.
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Figure 2-2: Data used to calculate the northwest Pacific gravity anomalies. a) Free air
gravity anomaly from satellite altimetry [Sandwell and Smith, 1997]. The Hawaii-Emperor
seamount chain is clearly visible with positive anomalies of up to 200 mGal, due to the lack
of compensation of these short-wavelength features. The broad Hawaiian swell is marginally
visible. Other major bathymetric features of the region such as the Hess and Shatsky Rises
and the Mid-Pacific Mountains do not appear as prominent features on the free air anomaly
map, indicating probable shallow isostatic compensation. b) Shiptrack bathymetry coverage
from National Geophysical Data Center and Smith and Sandwell [1994, 1997]. c) Marine
sediment thickness map for the northwest Pacific [Divins, 2001]. d) Oceanic crustal age
based on the digital magnetic data of Muller et al. [1997].
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bathymetrically expressed as the Pacific Superswell [McNutt and Judge, 1990]. The for-

mation of Hess Rise, to the northeast of the bend in the Hawaii-Emperor chain, has been

dated at 98-110 Ma [Pringle and Dalrymple, 1993] and is thought to have formed on or very

near the Pacific-Farallon spreading center [Vallier et al., 1981; Kroenke and Nemoto, 1982;

Mammerickx and Sharman, 1988]. Shatsky Rise, to the west of the bend in the hotspot

track, has been dated at 138-145 Ma [Sager and Han, 1993; Party , 2002b] and magnetic lin-

eations around the rise indicate that it formed along the trace of the Pacific-Farallon-Izanagi

triple junction [Larson and Chase, 1972; Hilde et al., 1976; Sager et al., 1988; Nakanishi

et al., 1989]. The bend in the hotspot track has been dated between 40 and 53 Ma [Sharp

and Clague, 2002] and its origin is interpreted to be related to the cessation of southward

motion of the Hawaii-Emperor hotspot that has been measured for the Emperor segment of

the seamount chain [Tarduno and Cottrell , 1997; Party , 2002a; Cottrell and Tarduno, 2003;

Tarduno et al., 2003].

The oceanic sediment thicknesses map of Divins [2001] was compiled from three pri-

mary sources: previously published isopach maps [Divins and Rabinowitz , 1991; Hayes

and LaBrecque, 1991; Divins and Eakins, in preparation], DSDP and ODP ocean drilling

results, and seismic reflection and refraction data archived by the National Geophysical

Data Center (NGDC) and the Intergovernmental Oceanographic Commission (IOC) Geo-

logical/Geophysical Atlas of the Pacific (GAPA) project. The possible influence of strongly

reflective chert and volcanic layers above the acoustic basement lead to seismic estimates

of sediment thickness that represent a minimum value. The average background thickness

over most of the northwest Pacific is 100 m, although much greater values are reached near

the continental margins (Figure 2-2c).

The Muller et al. [1997] digital age grid of the ocean floor (Figure 2-2d) has a grid

spacing of 6 min. It was created from a compiled global magnetic data base and models of

global plate reconstruction. Ten million-year age contours overlain on the northwest Pacific

bathymetry map (Figure 2-1) reveals that the Hawaii seamounts were emplaced on crust

that was, on average, 70-80 My old at the time of active volcanism. We also note that the

Hawaii-Emperor chain crosses, from northwest to southeast, the Mendocino, Murray, and

Molokai Fracture Zones (Figure 2-1).
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2.3 Analysis and Results

2.3.1 Residual Bathymetry

We calculate residual bathymetry by correcting observed shiptrack bathymetry for the effect

of plate cooling. This calculation is done in three steps. First the three-dimensional thermal

structure of the Pacific lithosphere is calculated at each grid point from 0 to 100 km depth

using the digital age grid and a simple plate cooling model [Turcotte and Schubert , 2002]

with thermal diffusivity κ = 10−6m2/s. We used temperature boundary values of T0 = 0◦C

at the surface of the plate and T1 = 1350◦C at a plate thickness of zL0 = 100 km, which are

parameters chosen as intermediate values between the plate models of Parsons and Sclater

[1977] and Stein and Stein [1992].

The thermal structure is next translated into a density anomaly structure using a sim-

ple thermal expansion equation, ∆ρ = (T0 − T )αρ0, where To and ρo represent reference

temperature and density, respectively, and α is the coefficient of thermal expansion. We

used ρ0 = 3,300 kg m−3 and α = 3.4*10−5 K−1 with the reference temperature T0 set equal

to the value in the middle of our study region. We are therefore calculating an anomaly

relative to center of our map, so that areas with temperatures higher than the center of our

map will have a negative density anomaly while areas with temperatures lower than the

center of our map will have a positive density anomaly.

Finally, the density anomalies of the thermal model are translated into expected topog-

raphy, h, based on a simple isostatic model:

h(x, y) =
1

(ρm − ρw)

∫ zL0

0
∆ρdz, (2.1)

where ρm and ρw are the average densities of the mantle and the ocean water, respec-

tively. Since the thermal density anomaly ∆ρ may be positive or negative relative to the

value at the center of our map, the resulting expected topography may be positive or neg-

ative relative to that reference value. The calculated thermal topography (Figure 2-3b) is

subtracted from the actual bathymetry (Figure 2-3a) to produce the residual bathymetry

(Figure 2-3c). This correction deepens the youngest lithosphere (∼30 Ma) relative to the

mean bathymetry, reducing the range between the shallowest and deepest bathymetry by

∼1 km in the resultant residual bathymetry (Figure 2-3).
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2.3.2 Gravity Anomalies

Gravity anomalies are used to investigate sub-seafloor density variations. The Bouguer

anomaly (BA) is found by subtracting the attraction of sediment cover and seafloor topog-

raphy from the free air anomaly, while the mantle Bouguer anomaly (MBA) subtracts the

additional attraction of the crust-mantle interface assuming an average 6-km-thick uniform

crust. The residual mantle Bouguer anomaly (RMBA), similar to the residual bathymetry

discussed above, further subtracts out the gravitational influence of plate cooling using the

same three-dimensional thermal model as in the residual bathymetry calculations. The

resultant RMBA should reflect variations in crustal density and thickness, or variations

in mantle density, or both. We calculate MBA and RMBA using an upward continuation

algorithm developed by Parker [1972] and implemented by Kuo and Forsyth [1988].

The effect of the Hawaii-Emperor hotspot on the northwest Pacific lithosphere is clearly

visible as a broad region of negative RMBA anomalies coinciding with the seamounts and

swell of the hotspot chain (Figure 2-4). The magnitude of Hawaii-Emperor hotspot RMBA

anomalies reaches -200 mGal, larger than any other hotspot except Iceland (up to -300

mGal) [Ito et al., 1996]. The swell anomaly is ∼1,000 km wide and extends upstream for

∼2,000 km. The Hess and Shatsky Rises as well as the Mid-Pacific Mountains are also

prominent features on the RMBA map (Figure 2-4), in comparison to their smaller signal

on the free air gravity anomaly map.

2.3.3 Admittance

Admittance functions predict the gravity anomaly associated with a given surface topogra-

phy for specified assumptions about how the topographic load is supported [Watts, 2001].

Admittance functions were earlier applied to understanding the relationship between free

air gravity anomalies and elevations of the Hawaii-Emperor seamounts by Watts [1978].

Following the approach of Ito and Lin [1995a], we investigate admittance functions for the

northwest Pacific to better understand the sources of our calculated mantle Bouguer gravity

anomalies. A generic gravitational admittance function Z(k) is defined as:

∆g(k) = Z(k)H(k) (2.2)
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where k is the two-dimensional wavenumber, k = |k| = 2π/λ, ∆g(k) is the Fourier transform

of the gravity anomaly and H(k) is the Fourier transform of the topography of an interface

such as the seafloor or Moho. We test admittance functions for Airy isostasy, surface load

plate flexure with a range of elastic plate thicknesses, and buried load plate flexure with a

range of load depths. Each of these functions is applied to the northwest Pacific residual

bathymetry to calculate a corresponding map of predicted RMBA. These predicted RMBA

maps are then compared with the observed RMBA to assess which mechanisms of isostatic

compensation can best explain each of the major bathymetric features in the northwest

Pacific. This comparison is quantified by calculating the root mean square (r.m.s.) of the

misfit between the admittance-predicted RMBA and the observed RMBA over the areas of

interest outlined in Figure 2-5. The results of the comparison are presented in Figure 2-6

and parameters used in admittance functions are given in Table 2.1.

Airy Isostasy

Airy isostasy is a model in which the lateral variations in surface topography are assumed

to be supported by subsurface variations in the thickness of the crust. The free air gravity

anomaly for Airy isostasy would therefore have contributions from the seafloor and crust-

mantle interfaces. When calculating the mantle Bouguer anomaly and RMBA, we have

subtracted the gravitational effects of the seafloor interface and an assumed reference crust

that follows the bathymetry. The RMBA admittance function for Airy compensation of

residual bathymetry is therefore given by:

Z(k)Airy = −2πG [(ρm − ρc) exp (−kzRM ) + (ρc − ρw) exp (−kzCR)] (2.3)

where ρw, ρc, and ρm are the densities of the seawater, crust, and mantle respectively, zRM

is the reference Moho depth below sealevel, and zCR is the assumed mean depth of the

crustal root below sealevel [Ito and Lin, 1995a]. The first term of this expression subtracts

the attraction of the reference crust and the second term reflects the attraction of the crustal

root assumed to support the overlying topography.

We use 11 km for zRM since the mean ocean depth in the Pacific is ∼5 km and our

reference Moho is 6 km below the seafloor. We use 17 km for zCR as this seems consistent

with the seismic result available for the Hawaiian islands [Ten Brink and Brocher , 1987].
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Figure 2-5: Admittance model comparisons. (a) The ”observed RMBA” calculated from
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gravity anomalies in the dashed boxes containing the Hawaii and Emperor seamounts. (f)
RMBA predicted from a buried load plate flexure admittance function with an elastic plate
thickness of 40 km and a load depth of 120 km. (g) Misfit between the buried load model
of RMBA and the observed RMBA. The buried load models best predicts the shape of the
gravitational anomaly due to the Hawaiian swell contained within the dashed boxes.
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Figure 2-6: Comparison of misfit between admittance models with varying model parame-
ters and the observed RMBA for selected bathymetric features of the northwest Pacific: (a)
the Hawaiian ridge seamounts; (b) the Emperor seamounts; (c) the Hawaiian swell; and (d)
the large igneous plateaus of the region (Hess and Shatsky Rises and the Mid-Pacific Moun-
tains). The r.m.s. values of the model minus the observed RMBA misfit for each region has
been normalized by the r.m.s. of the observed RMBA in that region. The regions chosen
for evaluation of the r.m.s. misfit are shown as dashed boxes in Figure 5. The bars for the
elastic plate flexure model represent different values of elastic plate thickness (from left to
right: 20, 30, 40, 50, 60, 70, and 80 km). The bars for the buried load model represent
different values of load depth (from left to right: 100, 110, 120, 130, 150, 175, and 200 km).
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The results from applying Z(k)Airy to the residual bathymetry (Figure 2-5b,c) show a good

match to the observed RMBA for the Hess and Shatsky Rises and the Mid-Pacific Moun-

tains. However, Airy isostasy does less well predicting the RMBA signature of the Hawaiian

swell and greatly overpredicts the negative RMBA associated with short wavelength signals

such as the Hawaii-Emperor seamount chain (Figure 2-6).

Plate Flexure with Surface Loading

Elastic plate flexure models predict bending of a plate under applied loads. In this section

we examine flexure models associated with topography loads applied on the surface of the

elastic plate. This results in crustal deflection similar to the Airy model, but the deflection

is dependent on the wavelength of the load and is distributed over a broader region. The

RMBA admittance function for flexure with surface loading is therefore given by:

Z(k)SurfaceLoad = −2πG
[
(ρm − ρc) exp (−kzRM ) + (ρc − ρw) exp (−kzCR) φ′

e(k)
]

(2.4)

which is very similar in form to Z(k)Airy except that the crustal root term now has an

additional multiplication factor φ′
e(k) which is defined as:

φ′
e(k) =

[
Dk4

(ρm − ρc) g
+ 1

]−1

(2.5)

where g is the acceleration of gravity, D = Eh3
e/12(1 − ν2) is the flexural rigidity of the

plate, E is Young’s modulus, he is the elastic thickness of the plate, and ν is Poisson’s

ratio [Watts, 2001]. Previous studies of flexure of the lithosphere under the Emperor and

Hawaiian seamounts have suggested values for he between 10.5 and 40 km, depending on

the location of the study along the seamount chain and the method used [Walcott , 1970;

Watts and Cochran, 1974; Watts, 1978; Kunze, 1980; Watts et al., 1985; Calmant , 1987].

We apply Z(k)SurfaceLoad to the residual bathymetry using the parameters of Table 2.1,

including a range of elastic plate thicknesses: 20, 30, 40, 50, 60, 70 and 80 km.

Comparison of the observed RMBA with the RMBA predicted from Z(k)SurfaceLoad

(Figures 2-5d,e) reveals that the flexure equation with surface loading does better in pre-

dicting the gravity anomalies from the relatively narrow Hawaiian and Emperor seamounts

than other forms of compensation, although plate flexure with buried loading at a depth of
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150 km (presented in the next section) also has a relatively low r.m.s. misfit for the Hawaiian

seamounts (Figure 2-6). For the surface loading flexure models, the Hawaiian seamounts are

better fit with thicker elastic thicknesses, 60 km, while the Emperor seamounts are better

fit with thinner elastic thicknesses, 30 km (Figure 2-6). In contrast, the flexure model with

surface loading does not do as well as the Airy model in predicting the gravity signature

of the Hess, Shatsky, and Mid-Pacific igneous plateaus. The surface loading flexure model

produces a relatively small r.m.s. misfit for the Hawaiian swell (Figure 2-6).

Plate Flexure with Buried Loading

The final option we consider for supporting seafloor topography is a buried load exerting

forces on an interface below the crust. This is essentially plate flexure with the load exerted

by a buried density anomaly at the bottom of the elastic plate. In such a case, the surface

topography H(k) is a function of the interface between the underlying load and the normal

mantle, W (k):

H(k) = −W (k)
(ρm − ρL)
(ρm − ρw)

φ′′
e(k) (2.6)

where ρL is the density of the load, φ′′
e(k) is defined as:

φ′′
e(k) =

[
Dk4

(ρm − ρw) g
+ 1

]−1

(2.7)

and D has the same definition as in the flexure model [Watts, 2001]. After we rearrange

Equation 5 so that W (k) is in terms of H(k), we find that the admittance equation for a

buried load is:

Z(k)BuriedLoad = −2πG (ρm − ρw)
exp (−kzL)

φ′′
e(k)

(2.8)

where zL is the depth of the buried load supporting the topography. There is only one

term in equation 2.8 because the lack of crustal thickening in this model enables the mantle

Bouguer corrections to eliminate all the crustal interfaces. The presence of the flexural

rigidity, D, in equation 2.7 results in the inclusion of the elastic plate thickness, he, in this

set of admittance models as well as the flexure models above. Rather than run every buried

load model with a range of he values, we use a value of 40 km which is intermediate between

the two values which best fit the Hawaiian and Emperor seamounts in our calculations and

is consistent with previous estimates of he for the Hawaii-Emperor system (catalogued in

37



Watts and Zhong [2000]).

Previous studies of subsurface support of the Hawaiian swell have found loading or com-

pensation depths of 100-200 km [Watts, 1976], 70-120 km [Crough, 1978], 40 km [Sandwell ,

1982], and 70 km [McNutt and Shure, 1986]. We apply Z(k)BuriedLoad to the residual

bathymetry for zL = 100, 110, 120, 130, 150, 175, and 200 km. Comparing the observed

RMBA with the RMBA predicted from Z(k)BuriedLoad (Figure 2-5f,g) reveals that while

the buried load flexure model does a poor job of predicting the gravity anomaly for the

seamounts and the igneous plateaus, it does noticeably better at predicting the gravita-

tional signal for the Hawaiian swell with the best fit model obtained for a load depth of zL

= 120 km (Figure 2-6). As noted above, the surface load flexure admittance model also

produces relatively small r.m.s. values for the Hawaiian swell region. However, the buried

load more closely models the spatial shape of the anomaly for the swell (Figure 2-5 and 2-7).

Admittance Comparison

By focusing in on key portions of our study area (Figures 2-5 and 2-6) we can compare in

detail the results of the above three models of topography support. While it is simplistic

to assume that any one mechanism completely accounts for the support of complicated

tectonic features such as the Hawaiian ridge and swell system, attempting to separate

out the fractional contribution of each mechanism to every major feature is a problem of

complexity beyond the scope of this paper. However, by geographically separating out

individual regions, we can attempt to constrain the dominant mechanism for those regions

of interest. Separating out the Hawaiian and Emperor seamount chains from the Hawaiian

swell and igneous plateaus has the additional benefit of providing a sort of ad hoc wavelength

separation.

The smallest r.m.s. misfit between the observed RMBA and the RMBA predicted by

our admittance models for the Hawaiian swell is given by flexure due to surface loading

with an elastic plate thickness of 20 km. However, comparison of the results for the swell in

Figures 2-5 and 2-6 reveals that the shape of the swell is better eliminated from the misfit

by the buried load flexure model with a load depth of 120 km. Thus, while the results of

the modeling are inconclusive, we prefer the interpretation that the swell is supported by a

buried load at 120 km depth, which is consistent with the common attribution of the swell

to low-density (either hot or chemically depleted) hotspot material trapped beneath the
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Figure 2-7: (a) Profiles of the observed RMBA calculated from the free air gravity anomaly
and the modeled RMBA calculated from topography using admittance functions for Airy
isostasy, flexure of a thin elastic plate of thickness 20 km, and flexure of an elastic plate
of thickness 40 km in response to a buried load at 120 km depth. (b) Misfit between the
modeled RMBA amplitudes and the observed amplitudes for each of the admittance models
along the same profile. The profile used is shown in Figure 2-5a, and the shadowed regions
on the profiles show the region used to calculate the Hawaiian swell misfit. It can be seen
that while the amplitudes of the misfits for Airy and flexure admittance are comparable to
that of the buried load, the buried load has a much flatter misfit function. This indicates
that the buried load at 120 km better models the shape of the Hawaiian swell and in turn
makes this our preferred model for the support of the Hawaiian swell.
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lithosphere at a depth found in previous studies to be between 40 and 200 km [Watts, 1976;

Crough, 1978; Sandwell , 1982; McNutt and Shure, 1986; Phipps Morgan et al., 1995]. Our

interpretation is also compatible with the recent discovery of 100-110 km thick lithosphere

under the island of Hawaii with lithospheric thinning to 50-60 km upstream under the island

of Kauai by Li et al. [2004] using S-wave receiver functions. Likewise, the low-velocity P-

wave seismic anomaly observed in the shallow mantle under the Hawaiian swell region by

Montelli et al. [2004] is consistent with a buoyancy anomaly supporting the swell. Finally,

multichannel seismic data collected by Ten Brink and Brocher [1988] shows normal crustal

thickness values of 6-7 km in areas of the Hawaiian swell north and south of Oahu, further

supporting the interpretation of deep mantle support for the swell topographic anomaly

rather than the shallow crustal support which would be implied by plate flexure with surface

loading.

In contrast, the RMBA of the Hawaiian and Emperor seamounts are best modeled in

our results by surface load flexure with 60 and 30 km elastic plate thicknesses, respectively.

Although the r.m.s. misfit for the 150 km deep buried load flexure model is almost as small

as the best surface load flexure models for the Hawaiian seamounts, a close examination of

Figure 2-5e and Figure 2-5g reveals that the surface loading flexure model does a better

job of modeling the shape of the flexural moat associated with the seamounts. The success

of the surface loaded flexural admittance model is perhaps to be expected as such short-

wavelength features are commonly understood to be supported by plate strength. Previous

studies have found greater elastic thicknesses for the Hawaiian islands and the Hawaiian

ridge than for the Emperor Seamounts [Walcott , 1970; Watts and Cochran, 1974; Watts,

1978; Kunze, 1980; Watts et al., 1985; Calmant , 1987; Watts and Zhong , 2000]. Watts

and Zhong [2000] suggest that the apparent elastic thickness of a plate increases with the

thermal age of the plate at the time of loading and decreases with time after loading due

to the viscoelastic behavior of the plate. Both of these factors could explain the smaller

elastic plate thickness estimates for the Emperor seamounts, which were emplaced much

earlier and on younger lithosphere [Mammerickx and Sharman, 1988; Keller et al., 2000].

While our estimate agrees with that trend, the magnitude of our values is greater than

most of those studies. This may be in some measure due to the fact that we are using a

two-dimensional admittance function and averaging over the entire Hawaiian and Emperor

seamount chains, while previous studies have looked at discrete cross-axis profiles along the
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chains. Additionally, it is important to note that the swell does not cease to exist under the

seamounts and therefore the gravitational anomaly we measure probably has contributions

from both surface loading of the seamounts and the buried load that supports the swell.

Lastly, the Mid-Pacific Mountains, Hess Rise, and Shatsky Rise are best modeled by

Airy isostasy. Figure 2-5c shows that Hess and Shatsky are extremely well modeled at

all wavelengths, while the larger-wavelengths of the Mid-Pacific Mountains are well mod-

eled but the small wavelength features remain uncompensated. This is consistent with an

interpretation of the Mid-Pacific Mountains, Hess Rise, and Shatsky Rise as old igneous

plateaus that were emplaced on young, weak lithosphere at spreading centers (Hess and

Shatsky Rises) or over low viscosity mantle (Mid-Pacific Mountains) that has relaxed to

the point where the load floats in isostatic equilibrium. The Mid-Pacific Mountains, Hess

Rise, and Shatsky Rise are dated as old as 123–132 Ma [Arnaud-Vanneau and Sliter , 1995;

Jenkyns, 1995; Jenkyns et al., 1995; Pringle and Duncan, 1995], 98–100 Ma [Pringle and

Dalrymple, 1993], and 138–145 Ma [Sager and Han, 1993; Party , 2002b], respectively. Re-

cent two-layer viscoelastic models of the lithosphere show that for cases where the viscosity

ratio between the upper and lower layers is on the order of 1024/1021, 10–100 Ma after a

load is applied to the lithosphere the system relaxes to a state resembling Airy isostasy

[Watts and Zhong , 2000]. While there was likely a buried buoyant load related to the vast

quantities of volcanism produced in the formation of these features, thermally buoyant sup-

port is likely to have cooled to ambient density in the 100 Ma or more since the formation

of these features. Additionally, plate motion is likely to have carried these loads away from

the asthenospheric material that was under them at the time of formation. Admittance

and coherence studies of another Pacific large igneous province, the Ontong Java Plateau

similarly show that for long wavelength features either Airy isostasy or a very thin elastic

plate is required to support the topography, while for shorter wavelengths more complicated

loading histories with both surface and subsurface loads are required to match observations

[Ito and Taira, 2000].

2.3.4 Crustal Thickness

The admittance calculations in the previous section have shown that shallow crustal com-

pensation, either through Airy isostasy or plate flexure due to surface loading, accounts for

most of the RMBA signal we observe in the northwest Pacific region. The only apparent
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exception is the Hawaiian swell, which could be alternatively explained as resulting from

deep buried loads in the mantle. We therefore estimate crustal thickness variations by con-

verting the RMBA map into a Moho topography map through downward continuation of

the gravity anomaly signal to an appropriate depth. It should be emphasized that while we

have used various compensation models to evaluate the probable source of observed RMBA

gravity anomalies, no specific compensation model goes into the crustal thickness calcu-

lation. We simply estimate the amount of excess crust necessary to account for the total

observed gravity anomalies. This therefore represents an end-member maximum crustal

thickness variation: contributions to the observed RMBA from mantle density variations

or buried loads would reduce the fraction of the gravity signal which comes from crustal

thickening and make our calculated Moho topography too deep.

The equation for the downward continued Moho topography M(k) in terms of the ob-

served gravity anomaly B(k) is

M(k) = − exp (kzCR)
2πG (ρm − ρc)

B(k)C(k) (2.9)

where zCR is the mean crustal root depth below sealevel, as in equation 2.3, and C(k) is a

low-pass cosine filter applied to prevent the amplification of short-wavelength noise in the

RMBA. All wavelengths larger than λlong are completely preserved in the calculation, all

wavelengths smaller than λshort are completely filtered out, and wavelengths between the

two are tapered smoothly. In order to choose the best value for the two parameters, we

tested many λshort values with a constant offset between λshort and λlong of 20 km. We

then tested a variety of offsets for two likely λshort values, 35 km and 75 km (Figure 2-8).

The best values were taken to be the combination of parameters that minimized both the

r.m.s. relief on the Moho and the r.m.s. misfit between the observed gravity anomaly and

that predicted by upward continuation, i.e., working backwards, from the Moho topography

[Blackman and Forsyth, 1991]. We choose λlong to be 135 km and λshort to be 35 km, which is

consistent with the coherence of satellite gravity signals when compared to shipboard gravity

[Neumann et al., 1993]. The resulting Moho topography is converted to a crustal thickness

map by subtracting the seafloor bathymetry from the calculated Moho depth (Figure 2-

9). For consistency, we filter the seafloor bathymetry with the same cosine filter that was

applied to the Moho topography calculation. The resultant crustal thickness map shows an
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Figure 2-8: Finding the best filtering wavelengths for the calculation of Moho topography
by downward continuation of the RMBA gravity signal. The filter should minimize am-
plification of short wavelength noise while introducing minimal misfit between the original
observed RMBA and that predicted from upward continuation of the resulting Moho to-
pography. These two goals are measured by the r.m.s. Moho relief axis and the r.m.s.
gravity misfit axis, respectively. Each point represents a downward continuation run with a
different combination of (λlong,λshort) cutoff wavelengths, and select points are labeled with
the values used for that run. The dash-dot line shows runs with a constant offset of 25 km
between the small and large wavelengths, the dash line shows runs with a short wavelength
cutoff of 75 km and various long wavelength cutoffs, and the solid line shows runs with a
short wavelength cutoff of 35 km and various long wavelength cutoffs. We choose a best-
fitting combination of (135 km, 35 km), which is consistent with the spatial precision found
for marine and satellite gravity anomalies in other studies [Blackman and Forsyth, 1991;
Neumann et al., 1993].
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Figure 2-9: Calculation of crustal thickness. (a) Shiptrack bathymetry filtered with a cosine
taper between λlong = 135 km and λshort = 35 km. (b) The Moho depth below sealevel,
calculated from downward continuation of the observed RMBA after applying a cosine taper
similar to that applied to the bathymetry in panel a. The values shown in (b) are based on
the assumption that all the observed RMBA signal is due to excess crustal thickness. (c)
The calculated crustal thickness, which is obtained by subtracting the seafloor bathymetry
in panel (a) from the calculated Moho depth in panel (b). The crustal thickness map shows
an average thickness of 6 km with 2-4 km of excess crustal thickness along the Hawaiian
swell and up to 12 km of excess crustal thickness along the Hawaii-Emperor Seamount chain
and under Hess Rise. These results are consistent with the limited seismic reflection and
refraction data available around Hawaii Ten Brink and Brocher [1987].
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average thickness of 6 km with 2–4 km of excess crustal thickness along the Hawaiian swell

and up to 12 km of excess crustal thickness along the Hawaii-Emperor seamount chain and

under Hess Rise. Comparing an interpreted seismic profile across the Hawaiian island of

Oahu [Ten Brink and Brocher , 1987] with our crustal thickness estimation (Figure 2-10)

shows that within 200 km of the island our gravity-derived crust-mantle boundary depth

is roughly consistent with the seismically determined Moho. Beyond 200 km distance from

Oahu, the Hawaiian swell RMBA leads us to overpredict the crustal thickness compared to

the interpreted seismic profile. Note that if part of the observed RMBA over the Hawaiian

swell is due to deep buried loads in the mantle as discussed previously, the discrepancy

between the remaining RMBA signals and the seismic data would be less. However it is

also worth noting that all of the seismic data used to produce the Ten Brink and Brocher

[1987] Oahu crustal structure profile is confined to a distance of 200 km or less from the Oahu

island, so they lack constraints on crustal structure under the full width of the Hawaiian

swell.

It would be useful to compare our calculated crustal thickness maps for the Mid-Pacific

Mountains and Hess and Shatsky Rises with seismic crustal thicknesses. Unfortunately, few

seismic surveys or measurements appear to have been made for the Mid-Pacific Mountains.

The seismic data that exists for Hess Rise [Kogan et al., 1982; Kroenke and Nemoto, 1982;

Vallier et al., 1983] is restricted to multichannel reflection profiles of sediment and basement

structures that fails to image a Moho reflector, although Kogan et al. [1982] do note that the

crustal thickness must be at least twice as thick as normal ocean crust. Although modern

seismic work on Shatsky Rise appears to be limited to reflection survey for ODP Leg 198

[Klaus and Sager , 2002], two older seismic refraction studies exist. Den et al. [1969] found

that the depth to the mantle was at least 22 km under the crest of the Shatsky Rise and

Gettrust et al. [1980] concluded that if a Moho discontinuity exists in their data, its depth

is greater than 26 km. The greatest crustal thickness we calculated for Shatsky Rise is 19

km, a result which is comparable to although slightly smaller than those two observations.

2.3.5 Igneous Volume Flux

Using our crustal thickness map for the northwest Pacific, we can calculate the along-axis

profiles of excess crust and the corresponding hotspot igneous volume flux generated by the

interaction of the Hawaiian hotspot with the Pacific lithosphere. First we subtract the 6
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Figure 2-10: Crustal cross section across the island of Oahu. (a) Shiptrack bathymetry
contoured every 1000 m with the A-A’ profile used by ten Brink and Brocher [1987]. (b)
Digitized interfaces from the crustal structure of the island of Oahu inferred from reflection
and refraction marine seismic profiles collected around the island [Ten Brink and Brocher ,
1987] (dash-dot lines) are compared with the shiptrack bathymetry and our gravity-derived
crust-mantle interface (solid lines). Our calculated Moho (lower solid line) compares well
with the seismic crustal thickness (lowest dash-dot line) near the seamount. At distances
greater than 200 km from Oahu, the gravitational signal of the Hawaiian swell leads us to
overpredict crustal thickness relative to the seismic interpretation. However, it is worth
noting that the seismic interpretation is based on data that is confined between A and A’
and is therefore not well constrained under the swell.
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km reference crust from the crustal thickness map (Figure 2-9c) to find the excess crustal

thickness E(x,y) (Figure 2-11a). Next we rotate the coordinates from latitude and longitude

to x’ and y’, where y’ follows the axis of the Hawaii-Emperor seamount chain (Figure 2-11b).

Finally we integrate:

Flux(y′) = v
∫ +hw

−hw
E(x′, y′)dx′ (2.10)

where v is the relative speed between the hotspot and the plate and converts a volume per

unit distance along-axis to a volume per unit time. Flux is therefore an along-axis crustal

volume flux (Figure 2-11c), which we use as a proxy for igneous production flux over time.

In order to capture all of the Hawaii-Emperor seamounts we use a half width, hw, of 200

km. This choice deliberately fails to capture the whole width of the Hawaiian swell because

the broad swell could be supported by deep buried loads rather than thickened crust. Using

a half width of 200 km limits the swell contamination to ∼10% of the crustal thickness

used to calculate the flux (Figure 2-10). If we take a wider half width of 600 km, the whole

swell would be captured, resulting in slightly higher flux values in the younger parts of

the Hawaiian chain, while retaining a similar shape to the flux curve. However, choosing

such a greater half width would lead to some contamination in the Emperor-Hawaii flux

calculations due to the unintended inclusion of the Hess Rise and Shatsky Rise signals near

the bend between the Emperor and Hawaiian ridges.

For the Hawaiian ridge we use a constant plate velocity, v, of 8.3 cm/y [Gordon and

Jurdy , 1986], while for the Emperor seamounts we use a rate of hotspot motion relative to

the plate suggested by recent paleomagnetic results. Tarduno et al. [2003] produced two

estimates of hotspot motion southward during the formation of the Emperor seamounts:

43.1±22.6 mm/y and 57.7±19.2 mm/y. We use the larger value as it seems to result in

a good correlation between the peaks in the Emperor seamounts section of Figure 2-11c

and the ages of the Koko (49 Ma), Nintoku (56 Ma), and Detroit (75-81 Ma) seamounts

summarized in Tarduno et al. [2003].

Results of the igneous volume flux calculations show that the hotspot has had a volcanic

production rate of near 8 m3/s (0.25 km3/y) in recent times (Figure 2-11c), although this

is probably an underestimation due to the lack of proper gravity data coverage for the

Hawaiian islands. The volcanic flux was only 4 m3/s from 8-18 Ma, however it was slightly

greater than 8 m3/s at 20 Ma. For the Emperor ridge, the calculated flux reached two very
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Figure 2-11: Igneous volume flux calculation. (a) Calculated map of crustal thickness. The
cut-out stripes of the Emperor ridge and Hawaiian ridge are shown by white boxes. (b)
Crustal thickness stripes cut from panel a and rotated. Data within these stripes are then
integrated to find the igneous (crustal) volumetric flux shown in panel c. The half width
of the stripe chosen for the crustal volume flux integration calculations is 200 km, and the
along-axis distance is converted to an along-axis age of the Hawaiian chain by assuming
a constant plate velocity of 8.3 cm/y [Gordon and Jurdy , 1986] and along-axis age of the
Emperor chain using the hotspot-plate relative speed of 5.77 cm/y proposed by Tarduno
et al. [2003]. The thick blue line shows the location of the bend in the hotspot chain and
the dashed lines show the approximate location of the major Pacific fracture zones (FZ) as
inferred from Figure 2-1, where MkFZ = Molokai FZ, MrFZ = Murray FZ, and MdFZ =
Mendocino FZ.
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low flux periods near 55 Ma and 65 Ma (Figure 2-11c). Furthermore, we note that during

the low flux periods at 25-48, 57, and 75 Ma, the height and size of individual hotspot

seamounts also appear to be noticeably less than those of the high flux periods.

The two previous studies which calculated igneous or volcanic fluxes over the time span

of the Hawaii-Emperor chain share certain gross features with our results. White [1993]

and Vidal and Bonneville [2004] both have high magmatic production rates during the

Hawaiian chain from 0 to ∼25 Ma with a low point within that time span at ∼10 Ma,

a large decrease in flux around the bend in the chain, and much lower magmatic fluxes

during the Emperor chain. The 0 Ma magnitude of the flux is much greater for Vidal

and Bonneville [2004] than in our study. One of the effects that may contribute to such

a discrepancy is underestimation due to the lack of gravity data coverage on the Hawaiian

islands in our calculations. The magnitude of the next peak in the igneous volume flux

down the chain from the present is similar between our result and Vidal and Bonneville

[2004] and double that found by White [1993]. However that peak is offset in time between

our result (∼19 Ma) and Vidal and Bonneville [2004] (∼15 Ma). It is unclear how Vidal

and Bonneville [2004] converted distance to time along the Hawaiian ridge, which makes it

difficult to account for this difference. The largest difference between our igneous volume

flux and that of the prior studies is found in the Emperor chain, where both prior studies

found similar low flux values (1–2 m3/s) which remained fairly constant over the length

of the chain. In contrast, we have distinct variations in flux between 4 and 0 m3/s in the

Emperor chain on a time scale of 10–20 Ma. This is perhaps due to the finer 10 km along-

axis distance steps used in our calculation, as opposed to the 1◦ along-axis windowing used

by Vidal and Bonneville [2004].

2.3.6 Igneous Volume Flux Periods

In order to better quantify the flux variations we observed, the power spectral density of

the crustal volume flux, or igneous volume flux (Figure 2-11c) was calculated using a fast

Fourier transform convolved with a Hanning filter. The spectra were then smoothed using

a moving window that averaged every ten adjacent frequency bins, reducing the variance

of the spectra at the expense of reduced resolution.

The spectral energy in both the unsmoothed and smoothed power density spectrums of

the igneous volume flux (Figure 2-12) is largest in a range of periods between 6.2 and 30.8
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Figure 2-12: Power spectral density of the igneous volume flux time series shown in Figure 2-
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(thick solid line) are shown.
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My. This reflects the somewhat irregular spacing of the peaks and troughs of the igneous

volume flux in Figure 2-11c, which varies between 8.3 and 17.4 Ma with an average of 12.8

My and a standard deviation of 3.1 My. The 15.4 My period on the unsmoothed spectrum

thus seems to be an average value corresponding to the 8–17 My spacing of peaks and

troughs in the flux results. The 30.8 My peak seems to be an average value of the distance

between the 20 Ma, 50 Ma, and 80 Ma peaks in Figure 2-11c. Short wavelength signals

have largely been filtered out by the λshort = 135 km value used in the crustal thickness

calculation, equivalent to ∼1.6 My.

2.4 Discussion

2.4.1 Admittance and Flux Implications

The results from the admittance functions for Airy isostasy, plate flexure with surface

loading, and plate flexure with buried loading indicate that the relatively narrow Hawaiian

hotspot seamounts are probably supported by plate flexure in response to surface loading.

While admittance modeling results for the broader Hawaiian hotspot swell are ambiguous,

the greater success of the buried load flexure in modeling the shape of the Hawaiian swell

leads to our preference of the hypothesis that the swell is likely supported by a buried

buoyant load at approximately 120 km depth. The support of the seamounts by plate

flexure is not surprising since the theory of elastic plates predicts that short wavelength

features should be supported by the plate strength.

Our preferred hypothesis of a buried load supporting the Hawaiian hotspot swell con-

trasts with the other Pacific long-wavelength bathymetric features, the Hess, Shatsky, and

Mid-Pacific igneous plateaus, which seem to be supported by Airy isostasy with a low den-

sity crustal root. There are a few probable explanations for a buried load supporting the

swell: a depleted, low-density region caused by the melt extraction from the mantle to sup-

ply the Hawaiian hotspot volcanism [Jordan, 1979; Robinson, 1988; Phipps Morgan et al.,

1995] or a warm, low-density region of thermally buoyant material supplied by a plume

from deep in the mantle and trapped under the oceanic lithosphere [Crough, 1978, 1983;

Detrick and Crough, 1978; Davies, 1988; Sleep, 1990], or a combination of both. While we

cannot definitively select one of these models, we can speculate that if a buoyant depleted

mantle is supporting the swell, the volume of that depleted melting source could be corre-
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lated with the amount of excess crustal material which has been erupted as seamounts and

underplated the crust. Thus the igneous volume flux might provide some measure of the

volume of a depleted, buoyant mantle melting source located under the hotspot track.

2.4.2 Potential Causes of Flux Variations

We have shown that the igneous volume flux of the Hawaii-Emperor hotspot has varied

widely on time scales of 6–30 My with amplitude variations between 0 and 8 m3/s (Figure 2-

11c). With the igneous volume flux we have measured the end-member crustal production

of the hotspot. Are the variations we observe in such hotspot crustal production controlled

by variations in the mantle plume supplying the hotspot, the nature of the lithosphere with

which the hotspot is interacting, or both?

Phipps Morgan et al. [1995] have hypothesized that the variations in Hawaiian volcanic

production are due to changes in the overlying lithosphere as the various Pacific fracture

zones crossed the stationary mantle source. This hypothesis argues that under the younger,

warmer, and thus thinner lithosphere between the Molokai and Murray FZs, hotspot mate-

rial would ascend higher and melt more than under the older, cooler, and thicker lithosphere

between the Murray and Mendocino FZs (Figure 2-1). While this is a plausible explana-

tion for the Hawaiian ridge portion of the hotspot track, it fails to account for the flux

variations we have observed in the Emperor seamount chain, which lacks dramatic fracture

zone crossings. This model is also unable to explain the observed reduction in the fluxes at

∼10 Ma on the Hawaiian chain, which lies within the warmer lithosphere bounded by the

Molokai and Murray FZs (Figure 2-11). However, we note that this low flux region is geo-

graphically close to where the Mid-Pacific Mountains feature (123–132 Ma old) connected

to the Hawaiian ridge, although the detailed style of potential interaction between the two

volcanic features is not clear at present.

To explain the variations in the Emperor seamount crustal volume fluxes, we turn our

attention to recent paleomagnetic studies [Tarduno and Cottrell , 1997; Party , 2002a; Cottrell

and Tarduno, 2003], which have suggested that the Hawaii-Emperor hotspot was moving

south at rates of 30–50 mm/y during the formation of the Emperor seamounts. It seems

possible that the dynamics of the moving hotspot plume conduit during this time period

could affect the hotspot flux being supplied under the lithosphere. The detailed kinematics

of interactions between a moving plume conduit and the surrounding mantle convection
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have been investigated by Steinberger and O’Connell [1998] and Steinberger [2000]. The

further expansion of such studies to include flux variations in the plume conduits should be

an interesting area for further research.

V-shaped ridges propagating along the Mid-Atlantic Ridge south of the Iceland hotspot

were successfully modeled by Ito [2001] as the result of hotspot flux variation due to a

periodic oscillation in the radius of the hotspot mantle plume conduit. Ito [2001] hypoth-

esized that such an oscillation could be caused by the surfacing of solitary waves in the

Iceland mantle plume. Solitary waves are stable traveling perturbations in the width of

a buoyant, viscous fluid conduit due to perturbations in the flux of the fluid entering the

conduit [Scott et al., 1986; Olson and Christensen, 1986; Whitehead , 1987]. Sleep [1992]

suggested a possible source of those perturbations in the flux of the fluid entering the con-

duit due to the dynamics of the evolving boundary layer at the bottom of the mantle. The

presence of similar V-shaped anomalies south of the Azores hotspot [Escartin et al., 2001]

suggests that such a mechanism may be applicable for other hotspots as well. Because of

their close proximity to the mid-ocean spreading center, the variations in the Azores and

Iceland hotspot flux is expressed as changes in crustal thickness along the Mid-Atlantic

Ridge [Escartin et al., 2001]. Similarly, it is possible that solitary wave-like variations in

the Hawaiian-Emperor hotspot flux might result in crustal thickness variations as reflected

in our results (Figures 2-11 and 2-12).

One possible way to distinguish between the proposed lithospheric versus plume conduit

sources of flux variation would be to examine the geochemistry of the volcanic rocks along

the Hawaii-Emperor seamount chain for signals of melting depth variation. Regelous et al.

[2003] compare MgO/FeO ratios, La/Yb and Lu/Hf ratios, and trace element compositions

between Detroit and Meiji tholeiites and other Hawaiian-Emperor tholeiites and conclude

that those values vary with the age of the underlying oceanic lithosphere at the time of

seamount formation. Likewise, Keller et al. [2000] see a correlation between 87Sr/86Sr

ratios and seamount-crust age difference. However, Keller et al. [2004] did not find simple

correlations between 3He/4He isotope ratios and the igneous volume flux calculated in our

study. And Frey et al. [2005] inject a discussion of a geochemically depleted component in

the Hawaiian-hotspot source material that may complicate the above interpretations.
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2.5 Conclusions

(1) We have calculated the residual bathymetry and residual mantle Bouguer anomalies

(RMBA) of the northwest Pacific region. The interaction of the Hawaii-Emperor hotspot

with the Pacific lithosphere has left a large negative RMBA anomaly, suggesting thickened

crust, low density mantle, or both. The width and magnitude of the RMBA anomaly

along the hotspot track vary widely, with the 1,000 km-wide hotspot swell visible for a few

thousand kilometers downstream from the hotspot’s present location.

(2) Applying admittance functions for Airy isostasy, elastic plate flexure with surface

loading, and elastic plate flexure with buried buoyant loading to the residual bathymetry

allows us to discriminate between sources of the observed RMBA. Incorporating our results

with previous seismic and flexure studies of the Hawaiian chain, we conclude that the Hawaii

and Emperor seamounts are best explained as being supported by surface loading of elastic

plates with thicknesses of 60 and 30 km, respectively, and the Hess Rise, Shatsky Rise,

and the Mid-Pacific Mountains igneous plateaus are best modeled by Airy isostasy. Our

r.m.s. misfit results are more ambiguous for the Hawaiian swell. However, the shape of the

Hawaiian swell is best modeled by the flexure due to a buried load at approximately 120

km depth.

(3) Since all bathymetric features except possibly the Hawaiian swell seem to be sup-

ported by thickened crust, either through Airy isostasy or through plate bending, we down-

ward continue our calculated residual Bouguer anomaly to find the crustal thickness model

that best predicts the observed gravity anomaly while filtering out short-wavelength signals.

Integrating the crustal anomaly within a narrow stripe of 200 km half width centered on

the hotspot track yields an estimated present-day Hawaiian igneous volume flux of 8 m3/s,

while the flux was only 4 m3/s during 8–18 Ma and greater than 8 m3/s at 20 Ma. From 25

to 48 Ma, the igneous volume flux was in a low period with amplitudes as small as 1 m3/s.

The overall calculated igneous volume flux of the Emperor ridge is substantially smaller

than that of the Hawaiian ridge with minimums occurring near 57 and 75 Ma. Further-

more, we note that during the low flux periods at 25–48, 57, and 75 Ma, the height and size

of individual hotspot seamounts also appear to be noticeably less than those of high flux

periods.

(4) We hypothesize that the quasi-periodic variations in the hotspot flux along the
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Hawaiian ridge may be due to changes in the lithospheric age, temperature, and thickness

as the hotspot crossed Pacific fracture zones, as well as potential pulsation of the plume

source. We also hypothesize that the quasi-periodic variations in the hotspot flux along the

Emperor seamount chain may be due to fluctuations in the plume conduit due to its motion

through the mantle. Further combined geochemical and geophysical analyses are required

to distinguish between these mechanisms. Since the presence and size of the hotspot swell

correlates with hotspot crustal flux variations, we suggest that the likely source of the buried

buoyant load supporting the Hawaiian swell is melt-depleted, low density residual mantle.
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Chapter 3

Seismic Structure of the Endeavour

Segment, Juan de Fuca Ridge:

Correlations with Seismicity and

Hydrothermal Activity

Abstract Multichannel seismic reflection data collected in July 2002 at the Endeavour

Segment, Juan de Fuca Ridge show a mid-crustal reflector underlying all of the known high-

temperature hydrothermal vent fields in this area. Based on the character and geometry

of this reflection, its similarity to events at other spreading centers, and its polarity, we

identify this as a reflection from one or more crustal magma bodies rather than from a

hydrothermal cracking front interface. The Endeavour magma chamber reflector is found

under the central, topographically shallow section of the segment at two-way travel time

(twtt) values of 0.9–1.4 s (∼2.1–3.3 km) below the seafloor. It extends approximately 24

km along axis and is shallowest beneath the center of the segment and deepens toward

the segment ends. On cross-axis lines the axial magma chamber (AMC) reflector is only

0.4–1.2 km wide and appears to dip 8–36◦ to the east. While a magma chamber underlies

all known Endeavour high temperature hydrothermal vent fields, AMC depth is not a

Previously published as Van Ark, E. M., R. S. Detrick, J. P. Canales, S. M. Carbotte, A. J. Harding, G.
M. Kent, M. R. Nedimovic, W. S. D. Wilcock, J. B. Diebold, and J. M. Babcock (2007), Seismic structure
of the Endeavour Segment, Juan de Fuca Ridge: Correlations with seismicity and hydrothermal activity, J.
Geophys. Res., 112, B02401, doi:10.1029/2005JB004210. Reprinted here with permission.
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dominant factor in determining vent fluid properties. The stacked and migrated seismic

lines also show a strong layer 2a event at twtt values of 0.30±0.09 s (380±120 m) below

the seafloor on the along-axis line and 0.38±0.09 s (500±110 m) on the cross-axis lines. A

weak Moho reflection is observed in a few locations at twtt values of 1.9–2.4 s below the

seafloor. By projecting hypocenters of well-located microseismicity in this region onto the

seismic sections, we find that most axial earthquakes are concentrated just above the magma

chamber and distributed diffusely within this zone, indicating thermal-related cracking. The

presence of a partially molten crustal magma chamber argues against prior hypotheses that

hydrothermal heat extraction at this intermediate spreading ridge is primarily driven by

propagation of a cracking front down into a frozen magma chamber, and indicates that

magmatic heat plays a significant role in the hydrothermal system. Morphological and

hydrothermal differences between the intermediate spreading Endeavour and fast-spreading

ridges are attributable to the greater depth of the Endeavour AMC and the corresponding

possibility of axial faulting.

3.1 Introduction

Morphological and hydrothermal differences between fast-spreading and slow-spreading

mid-ocean ridge systems have led to the hypothesis that these systems have fundamen-

tally different mechanisms of heat extraction and hydrothermal circulation [Wilcock and

Delaney , 1996; Lister , 1974, 1980a, b, 1982; Fornari and Embley , 1995]. The permeabil-

ity structure of the crust and subsequent hydrothermal venting at fast spreading ridges is

thought to be controlled by diking events from a steady-state axial magma chamber (Fig-

ure 3-1a). This results in small, relatively short-lived hydrothermal vents whose heat flux

increases following magmatic eruptions, as observed at the fast-spreading East Pacific Rise

(EPR) [Haymon et al., 1991, 1993; Baker et al., 2002]. In contrast, control of the perme-

ability structure of crust at slow spreading ridges has been attributed to extension-driven

faulting and downward propagation of a cracking front into the lower crust where either no

magma chamber is present or small, deep, pockets of melt occur (Figure 3-1b). This can

lead to long-lived hydrothermal systems and massive sulfide deposits whose activity does

not seem to be consistently correlated with recent volcanism, exemplified by the TAG hy-

drothermal system on the slow-spreading Mid-Atlantic Ridge (MAR) [Wilcock and Delaney ,
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1996; White et al., 1998].

The Juan de Fuca Ridge (5.6–5.7 cm/yr full spreading rate [Wilson, 1993; DeMets et al.,

1994]) is often taken as the type example of intermediate spreading rate mid-ocean ridges

(4-9 cm/yr full spreading rate). Previous studies of the morphology and hydrothermal vent

structures of the Juan de Fuca Ridge (Figure 3-2) led to the hypothesis that the Endeavour

Segment was an example of the slow-spreading ridge style of heat extraction, controlled

by the downward propagation of a cracking front into a frozen magma chamber [Wilcock

and Delaney , 1996; Kelley et al., 2002]. The Endeavour Segment has a ∼150 m deep

axial valley with numerous faults and fissures and there is no evidence of recent eruptions

(although preliminary U-series dating of recently-collected lavas indicates ages of several

thousand years [James Gill, personal communication]). This suggested that Endeavour

is currently in an extension-dominated tectonic regime rather than a magmatic regime

[Delaney et al., 1992; Kappel and Ryan, 1986; Tivey and Delaney , 1986]. The large size,

regular spacing, and location of known Endeavour high-temperature vent fields along visible

faults and fissures in the axial valley floor suggested a long-term pattern of stable sub-surface

hydrothermal circulation consistent with a cracking-front model of heat extraction [Tivey

and Delaney , 1986; Delaney et al., 1992; Robigou et al., 1993; Butterfield et al., 1994; Lilley

et al., 1995; Wilcock and Delaney , 1996; Delaney et al., 1997; Yoerger et al., 2000; Kelley

et al., 2001, 2002, 2003]. In addition, the large heat fluxes recorded at the Endeavour

hydrothermal vent fields were thought to be high enough to freeze a magma chamber with

a thin conductive lid [Lister , 1974, 1980a, b, 1982; Wilcock and Delaney , 1996].

Evidence from petrology and seismology was also interpreted as supporting the cracking

front model at Endeavour. Lavas collected from the Endeavour axial valley have enriched E-

MORB and T-MORB signatures and a high degree of heterogeneity over short length scales

which suggests a low degree of melting in a clinopyroxene-rich source [Karsten et al., 1990;

Sours-Page et al., 1999]. Levels of seismicity on the Endeavour Segment [Wilcock et al.,

2002] were much higher than observed at the EPR [Sohn et al., 1998, 1999] in similar ocean

bottom seismometer experiments conducted in 1995. At the EPR axial seismicity is confined

to the uppermost 1 km of crust [Sohn et al., 1998, 1999] while at Endeavour seismicity in the

axial region occurs in a depth range of 1.5–3.5 km [Wilcock et al., 2002]. The predominant

focal mechanism for both EPR and Endeavour micro-earthquakes implies a thermal cracking

source, however the EPR hypocenters are located at least 300 m above the axial magma
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Figure 3-1: Cartoons illustrating proposed hydrothermal circulation regimes for fast, slow,
and intermediate spreading centers. Thick dotted lines show proposed paths of hydrother-
mal circulation through the crust. a) Fast spreading ridges may have hydrothermal circu-
lation controlled by the heat and porosity provided by an axial magma chamber (AMC)
with frequent diking and eruptive events. Hydrothermal vents are relatively short-lived and
major faults are absent in the axial region [Wilcock and Delaney , 1996]. b) Slow spreading
ridges, in contrast, may have circulation controlled by faulting and heat mining through
propagation of a cracking front into a frozen magma chamber. Hydrothermal systems can
be long-lived and are often localized along major faults [Wilcock and Delaney , 1996]. c)
Intermediate spreading ridges appear to include elements of both faster spreading ridges
(a mid-crustal magma body) and slower spreading ridges (long-lived, fault-controlled hy-
drothermal systems). Faulting along the margins of the neovolcanic zone may be controlled
by episodic dike intrusion as opposed to lithospheric extension as at slow spreading ridges
[Carbotte et al., 2006].
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chamber (AMC) reflection imaged by Kent et al. [1993a] while the Endeavour hypocenters

were thought to extend to depths greater than the apparent depth of the one possible AMC

reflection imaged prior to this work [Rohr et al., 1988]. Finally, the SEISRIDG-85 seismic

refraction survey [Cudrak et al., 1987; Cudrak , 1988; White and Clowes, 1990; Cudrak and

Clowes, 1993] failed to find major low velocity anomalies under the Endeavour axial high,

as would be expected for an active magmatic system.

Here we present data from a July 2002 multichannel seismic reflection survey of the

Juan de Fuca Ridge on the R/V Maurice Ewing [Carbotte et al., 2006] which shows that

all of the major Endeavour Segment hydrothermal vent fields are underlain by a crustal

magma chamber at a depth of ∼2.1–3.3 km below the seafloor. Earthquake hypocenters in

the axial region occur just above this magma body. We therefore conclude that the heat

extraction mechanism at intermediate-spreading systems such as the Endeavour Segment

requires a model distinct from that of both fast and slow-spreading ridges. One proposed

intermediate heat extraction model (Figure 3-1c) features a magmatic heat source with

hydrothermal circulation pathways determined by dike-controlled faulting along the margins

of the neovolcanic zone [Carbotte et al., 2006]. The magmatic-hydrothermal system at

intermediate spreading ridges thus appears to include elements of both faster spreading

ridges (a mid-crustal magma body) and slower spreading ridges (long-lived, fault-controlled

hydrothermal systems).

3.2 Overview of the Endeavour Segment

3.2.1 Morphology and Geology

The Juan de Fuca Ridge (Figure 3-2) is the spreading boundary between the Pacific and

Juan de Fuca plates. The ∼90-km long Endeavour Segment is located between the En-

deavour and Cobb overlapping spreading centers on the northern Juan de Fuca Ridge. The

central portion of the Endeavour Segment out to crustal ages of ∼500,000 years (Figure 3-

3) is dominated by a series of ridge-parallel (orientation N20E) abyssal hills spaced ∼6 km

(∼200,000 years) apart with intervening extensional basins. This ridge-basin pattern is su-

perimposed on a broader (30–40 km-wide) cross-axis swell of young oceanic crust [Kappel

and Ryan, 1986; Holmes and Johnson, 1993]. The abyssal hills are asymmetric with outer

constructional volcanic surfaces and inner steep faulted faces [Kappel and Ryan, 1986; Tivey
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and Johnson, 1987; Holmes and Johnson, 1993; Delaney et al., 1997], a shape repeated in

the current axial high (Figure 3-4). Sediment thicknesses on terrain younger than 0.8 Ma

vary between a few meters and several tens of meters [Holmes and Johnson, 1993].

The 25 km-long, 4 km-wide, and 300 m-high central axial volcanic ridge is rifted with a

0.8–1.4 km-wide axial graben (Figures 3-4 and 3-5). This axial graben deepens from north

to south with 55–85 m relief at the latitude of the Salty Dawg vent field and 140–160 m relief

at the latitude of the Mothra vent field (Figure 3-4) and is bounded by steep, inward-facing

normal fault surfaces [Karsten et al., 1986; Tivey and Delaney , 1986]. SeaMARC I sonar

imagery of the shoulders of the ridge crest suggested overlapping asymmetrical bulbous lava

flows dripping down the outer sides of the ridge and identified intense faulting and fissuring

confined to the axial graben [Kappel and Ryan, 1986]. Alvin submersible and DSL120 deep-

towed side scan sonar observations confirmed that the youngest volcanic units in the axial

valley are truncated by recent faulting [Tivey and Delaney , 1986; Delaney et al., 1992; Bhat

et al., 1997].

These morphological details, combined with observations from other segments of the

Juan de Fuca Ridge, were interpreted by Kappel and Ryan [1986] as supporting a model

of episodic, volcanic construction with stages of ridge growth, summit trough collapse, and

amagmatic axial extension and faulting, followed by renewed axial ridge growth. However,

Karsten et al. [1986] noted that the shallowest portion of the Endeavour Ridge coincides

with a broad plateau which marks the intersection of the Heckle Seamount chain with the

ridge axis (Figure 3-2), suggesting long-term enhanced magma supply to that portion of

the spreading axis. They also suggested that the north and south valleys located at either

end of the Endeavour Ridge could be caused by diminished magma supply as magma flows

along-axis from a central magma chamber under the shallowest portion of the ridge, in

combination with the cooling effects due to thermal contrasts at the overlapping spreading

centers at either end of the Endeavour Segment. More recently, Carbotte et al. [2006]

have suggested that the periodic changes in seafloor relief moving away from the axis of the

various Juan de Fuca Ridge segments could be attributed to variations in faulting controlled

by magmatic, dike injection processes rather than the alternating tectonic-magmatic phases

proposed by Kappel and Ryan [1986].
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3.2.2 Hydrothermal Activity

Hydrothermal vent fields on the Endeavour Ridge have been identified through seafloor

mapping, water column thermal and chemical anomalies, dredging, and submersible obser-

vations and sampling [Tivey and Delaney , 1986; Kadko et al., 1990; Delaney et al., 1992;

Thomson et al., 1992; Robigou et al., 1993; Lilley et al., 1995; Bhat et al., 1997; Kelley et al.,

2001]. Currently five large, high temperature (300-400◦C) vent fields have been identified

[Kelley et al., 2002], from north to south: Sasquatch [Kelley et al., 2003], Salty Dawg [Lilley

et al., 1995], High Rise [Robigou et al., 1993], Main Endeavour [Tivey and Delaney , 1986;

Delaney et al., 1992] and Mothra [Kelley et al., 2001] (Figure 3-5). These high temperature

vent fields are on the order of 400–500 m long and are spaced approximately every 2–3 km

along axis. All appear to be localized along major faults. Each vent field contains many

tall (>20 m-high) sulfide structures on top of which many smaller black smoker chimneys

are found [Tivey and Delaney , 1986; Delaney et al., 1992; Robigou et al., 1993; Kelley et al.,

2001, 2002]. Diverse biological communities containing tube worms, sulfide worms, palm

worms, galatheid crabs, and a variety of snails and limpets are sustained by lower tempera-

ture fluids venting through porous chimney walls and sulfide-structure flanges found on the

vents [Sarrazin et al., 1997; Kelley et al., 2002].

Areas of diffuse, lower-temperature flow are present along-axis between these high-

temperature vent fields (Figure 3-5), suggesting nested subsurface circulation cells [Alt ,

1995; Delaney et al., 1997; Kelley et al., 2002]. Magnetic anomalies give further evidence

for the isolation of deep, high temperature circulation from shallower low-temperature circu-

lation. High resolution magnetic field data collected over the Endeavour axial valley reveal

circular magnetization-anomaly lows associated with known active and extinct hydrother-

mal vent complexes [Tivey and Johnson, 2002]. These circular anomalies were interpreted

by Tivey and Johnson [2002] as the result of pipe-like zones of upward hydrothermal fluid

flow under each vent system, each isolated through at least the magnetic layer (the top ∼500

m of the crust) due to ”armoring” by silica deposition [Cann and Strens, 1989; Hannington

et al., 1995; Tivey et al., 1999].

Off-axis heat flow measurements 3–24 km perpendicular to the Endeavour Ridge [John-

son et al., 1993] imply that crust younger than 1 Ma continues to cool primarily by circu-

lation of hydrothermal fluid in topographically controlled pathways associated with deep
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crustal faults.

3.2.3 Microseismicity

Ocean bottom seismometer (OBS) deployments on the Endeavour Ridge have detected

abundant small-magnitude “microearthquakes” which seem to be associated with activity

underneath the hydrothermal vent fields [McClain et al., 1993; Wilcock et al., 2002, 2004].

Earthquakes beneath the ridge axis are concentrated in a band of intense seismicity at

1.5–3.5 km depth with fault mechanisms showing subhorizontal tension axes oriented in

all directions except parallel to the ridge, indicating a stress field influenced by both ridge

spreading and hydrothermal cracking [Wilcock et al., 2002]. Figure 3-5 shows the micro-

seismicity observed in 55-day OBS deployment in 1995 [Wilcock et al., 2002]. More recent

observations show a sharp drop in microseismic activity to the north of the High Rise vent

field, which seems to correlate with a reduced vigor of hydrothermal venting [Wilcock et al.,

2004].

Endeavour axial microearthquakes often occur in swarms, probably signaling either tec-

tonic crustal-cracking events or magmatic diking events [McClain et al., 1993; Wilcock et al.,

2002]. Correlations between microseismicity and black smoker visual activity, black smoker

fluid temperature variations, and diffuse flow flux variations were first recorded by Delaney

et al. [1990]. More recently Johnson et al. [2000] reported on a June 8, 1999 earthquake

swarm which was interpreted to be of tectonic origin and observed to correlate with vent

temperature and inferred fluid flux increases. However, Lilley et al. [2003] presented evi-

dence that chemical signatures in the vent fluids instead suggested a volcanic origin of the

same microseismic swarm and Bohnenstiehl et al. [2004] interpreted hydroacoustic records

of seismic swarms at Endeavour from March 1999 through January 2000 in terms of dike

propagation.

3.2.4 Seismic Structure

The only previous multichannel seismic reflection study of the Endeavour Ridge consisted

of a single-cross axis line near the Main Endeavour vent field [Rohr et al., 1988]. This profile

revealed a narrow (∼1 km wide) mid-crustal axial reflector at a two-way travel time (twtt)

of ∼1.0 s, which was estimated to be 2.5 km below the seafloor. Since the low signal-to-

noise of these data prevented determination of the polarity of the reflection and available
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refraction data [Cudrak et al., 1987] did not indicate major velocity anomalies under the

axis, Rohr et al. [1988] interpreted this reflector as an increase in seismic velocity related to

a vertical thermal gradient caused by a hydrothermal circulation boundary.

Seismic refraction data collected on the SEISRIDG-85 survey of the Endeavour segment

[Cudrak et al., 1987; Cudrak , 1988; White and Clowes, 1990; Cudrak and Clowes, 1993]

also failed to find evidence for an axial magma chamber. Two-dimensional travel time

tomography [White and Clowes, 1990] on a cross-axis line coincident with the reflection

line of Rohr et al. [1988] was interpreted with a three layer upper crustal model with an

abrupt velocity increase from 2.5 to 4.8 km/s 250-600 m below the sea floor attributed to

a metamorphic front in pillow basalts. A shallow low velocity anomaly with magnitude

<∼0.45 km/s beneath the ridge was attributed to a zone of hydrothermal circulation. No

evidence was found for a crustal magma chamber at 1.5–3.5 km depth below seafloor,

however the sensitivity of the experiment required a zone of partial melt of at least 1 km

width and 1 km thickness to produce a detectable delay in travel time arrivals for rays

passing through or around the body. Two-dimensional velocity models of the crust [Cudrak

and Clowes, 1993] revealed significant lateral variations in thickness and velocity of crustal

layers 2a, 2b, and 2c which appeared to be random rather than distributed symmetrically

about the ridge. These variations were attributed to variations in fracturing, hydrothermal

circulation, and magmatic and/or deformational processes. Again no evidence for a large

crustal magma body was found, but a small (0.1–0.2 km/s) velocity decrease along axis in

seismic layer 3 was interpreted as a possible indicator of elevated temperature.

3.3 Data Acquisition and Processing

In a 30 day multichannel seismic (MCS) reflection survey of the Juan de Fuca Ridge on the

R/V Maurice Ewing in July 2002 [Carbotte et al., 2002; Detrick et al., 2002a], nine days

were spent surveying the Endeavour segment (Figure 3-3). A total of 23 MCS lines were

collected parallel and perpendicular to the ridge axis; each line was between 16.4 and 73.3

km long. The track lines were chosen so that 30–40 km-long cross-axis lines would be spaced

3–10 km apart and ridge-parallel lines would follow isochrons at 0.25 Ma (Lines 15 and 13)

and 0.5 Ma (Lines 16 and 12) on both ridge flanks. Isochron lines were located along abyssal

hills where possible to minimize side-scattering from nearby shallow topography. Line 14
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runs along the axis of the Endeavour Segment while Lines 3, 7, 8, and 9 were positioned to

cross the four vent fields known at the time of the cruise: Salty Dawg, High Rise, Mothra,

and Main Endeavour, respectively.

The MCS data for this study were collected using the R/V Maurice Ewing ’s 6-km-long,

480 channel Syntron digital streamer with hydrophone group spacing of 12.5 m, maintained

at a depth of ∼7.5 m. The seismic source was a 3005 cu. in. airgun array, also towed at

a nominal depth of 7.5 m, which fired every 37.5 m. For each shot, data were recorded for

10.24 seconds. A 4 ms sampling interval was used for lines focused on studying the ridge

axis and a 2 ms sampling interval was used on the long, sediment-covered ridge-flank lines

which are presented elsewhere [Nedimovic et al., 2005].

Table 3.1 summarizes the processing sequence applied to the MCS data. Dip-moveout

migration and dip filtering were performed on all cross-axis lines to eliminate side-scattered

energy from seafloor topography [Kent et al., 1996]. The axis-parallel lines were associated

with smoother topography and less scattering, which made pre-stack dip filtering unnec-

essary for these lines. Although dip filtering was not applied to the along-axis lines, our

interpretation is limited to events that are consistent between the cross and along-axis

lines, so we are confident that those events are not out-of-plane noise. A post-stack finite

difference time migration was applied to all cross-axis lines using the 1-D crustal velocity

function compiled by Wilcock et al. [2002] from earlier Endeavour reflection and refraction

seismic experiments [Rohr et al., 1988; Cudrak and Clowes, 1993] hung from the seafloor.

We processed all of the Endeavour segment lines, but present only the most relevant subset

in this paper.

3.4 Results

3.4.1 Along-Axis Seismic Structure

Layer 2a

The stacked along-axis Line 14 (Figure 3-6) shows a strong continuous event throughout

the line at a two-way travel times (twtt) of 140–500 ms below the seafloor. We interpret

this event as marking the base of seismic layer 2a, which probably corresponds to the

transition from volcanic extrusives above to predominantly dikes below (layer 2b) [Harding

et al., 1993]. The on-axis layer 2a is thin (140–270 ms twtt) beneath the northern part of
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Table 3.1: Data processing sequence and parameters.

Processing Step Parameters

Geometry:
CMP gather 80-fold, 6.25 m CMP interval

Trace editing:
Hand-edit bad channels
Automatic spike detection 0.5 s windows,

1.25-2.75 s twtt on each trace

DMO-based suppression of scattered energy:
NMO 1500 m/s (water velocity)
Bottom mute below first multiple
DMO f-k dip filter apparent dips > 2 ms/trace
Remove NMO 1500 m/s

Stacking:
Band-pass filter 5–30 Hz, 12 db/oct.
Velocity analysis every 100 CMP
NMO Mute stretch and surgical
Stack

Time migration:
Band-pass filter 5-30 Hz, 12 db/oct.
Top mute above seafloor
Finite-difference algorithma maximum dip 5 ms/trace,

layer thickness 50 ms

Display:
Band-pass filter 5-30 Hz, 12 db/oct.
Top mute above seafloor
Bottom mute below first multiple
AGC for Stack plots 200 ms window
Exponential gain for Migrated plots 24 db amplitude increase

from 0–0.5 s below the seafloor
a Algorithm of Lowenthal et al. [1976].
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the Endeavour Ridge and then thickens systematically up to almost 500 ms twtt south of

the mid-segment axial high (Figure 3-7a). The 2a event can be traced all the way to the

northern end of Line 14, but disappears to the south of the mid-segment axial high. The

southern disappearance of the layer 2a event may be related to the overlap between the

Endeavour Segment and the Northern Symmetric Segment at the Cobb Offset (Figure 3-2).

AMC

The Line 14 section (Figure 3-6) also shows a clear mid-crustal reflection under the shallow-

est section of the spreading segment at two-way travel times of 0.9–1.4 s below the seafloor.

This reflector is interpreted as the top of an axial magma chamber reflection based on its

polarity (presented below) and its similarity in geometry and reflection character to AMC

reflections imaged and studied extensively along both the northern [Kent et al., 1993a, b;

Collier and Singh, 1997, 1998; Carbotte et al., 2000] and southern [Kent et al., 1994; Hooft

et al., 1997] East Pacific Rise, along the Galapagos Spreading Center [Detrick et al., 2002b;

Blacic et al., 2004], at the Valu Fa Ridge, Lau Spreading Center [Collier and Sinha, 1992;

Jacobs et al., 2003], and along the Southeast Indian Ridge [Baran et al., 2005].

The AMC reflector appears segmented into four or five sections, from south to north

between CMPs 5500–6100 at two-way travel times (twtts) of 4.7–4.4 s, between CMPs

6600–6950 at twtts of 4.2–4.1 s, between CMPs 6900–7100 at twtts of 4.2–4.1 s, between

CMPs 7100–8300 at a travel time of 3.9–4.0 s, and a weak but possible AMC event between

CMPs 8900–9500 at traveltimes of 4.1–4.3 s. The apparent overlap of the second and

third events is likely an artifact of diffraction effects around the CMP 6900-7100 event.

CMP gathers of data in the CMP 8900–9500 range show some sub-seafloor reflections, but

they are often overwhelmed by scattered energy from the seafloor and our identification of

the northernmost event as an AMC reflection is therefore tentative. This gives the axial

magma chamber a total possible along-axis extent of 16–24 km, depending on whether

the weak, northernmost event is included. The reflections seem more characteristic of a

segmented series of magma lenses than a continuous magma body, however this could be an

artifact of streamer feathering [Nedimovic et al., 2003], seafloor topography, or the inherent

problems of imaging a narrow 3-D body with a single profile. The apparent length scale of

the segmentation is consistent with that observed at other well-studied ridges [Collier and
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Sinha, 1992; Kent et al., 1993a; Hooft et al., 1997; Carbotte et al., 2000; Blacic et al., 2004;

Baran et al., 2005].

The thickest axial layer 2a occurs above the deepest part of the AMC (Figures 3-6 and

3-7). This is consistent with the predicted positive correlation between AMC depth and 2a

thickness due to the ability of a magma lens under higher pressure to push more magma

to the surface [Buck et al., 1997]. Such a correlation has also been observed at other ridges

(e.g. Blacic et al. [2004]).

3.4.2 Cross-Axis Seismic Structure

Figure 3-8 shows the full length of a single cross-axis stacked section (Line 3), displaying

the off-axis layer 2a variability and an example of weakly-imaged Moho. Figure 3-9 shows

the central portion of all the stacked sections which sample the Endeavour axial magma

chamber (Lines 3, 7, 21, 9, 22, and 8, from north to south) and Figure 3-10 shows the

migrated versions of those same stacked sections. We present both the stacked and migrated

sections because the AMC reflector is better imaged on the stacks while the layer 2a event

is better imaged on the migrated sections. The migration process collapses diffractions

from the edges of the magma chamber reflection but also introduces artifacts which make

it more difficult to pick the sub-horizontal AMC reflections. Seismic layer 2a events and

AMC reflections are picked from the along and cross-axis lines and displayed along with

bathymetry in Figure 3-7.

Layer 2a

A strong, continuous seismic layer 2a event can be seen on the stacked (Figures 3-8 and 3-

9) and migrated (Figure 3-10) seismic sections. Figure 3-7 shows that the mean layer 2a

thickness perpendicular to the Endeavour Ridge is relatively constant with mean values

for each line between 350 and 420 ms two-way travel time below the seafloor (tbsf) and

standard deviations for each line ranging between 70 and 100 ms. These results are con-

sistent with results of the seismic refraction study on the Endeavour Segment reported by

Cudrak and Clowes [1993]. Visual inspection of Figure 3-7 shows some level of correla-

tion between bathymetry and 2a thickness with thicker 2a sometimes occurring under the

shallower bathymetry associated with the axis-parallel volcanic ridges. This is most clearly

evident on Lines 3, 7, and 9 where thicker 2a seems to occur under the volcanic ridge ∼7–9
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Figure 3-8: Stack of cross-axis Line 3. Triangle shows the location of the Salty Dawg
hydrothermal vent field. Stars shows where axis–parallel Lines 13 and 15 cross Line 3; the
Line 15 and Line 13 supergathers are located to the northeast of these intersections (see
Figure 3-3). Blue arrows indicate the seismic layer 2a event, red arrows at ∼4.0 s twtt
indicate the AMC reflection, and magenta arrows at ∼5.7 s twtt indicate a probable Moho
reflection.
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Figure 3-9: Stacks of cross–axis Lines 3, 7, 21, 9, 22, and 8 (in order from north to south).
Triangles shows location of the hydrothermal vent fields. Blue arrows indicate the seismic
layer 2a event and red arrows indicate the AMC reflection.
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Figure 3-10: Migrations of cross–axis Lines 3, 7, 21, 9, 22, and 8 (in order from north
to south). Triangles shows location of the hydrothermal vent fields. Blue arrows indicate
the seismic layer 2a event and red arrows indicate the AMC reflection. Red circles show
relatively relocated microseismicity hypocenters within 0.5 km of each line [Wilcock et al.,
2002].
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km to the west of the axis.

AMC

The stacked and migrated cross-axis lines in Figures 3-8, 3-9, and 3-10 show mid-crustal

AMC reflections at two-way travel times consistent with those of the AMC on the along-axis

Line 14 (Figure 3-6). The cross-axis AMC reflections are narrow (0.5 – 1.2 km wide) and

they tend to dip from shallower depths under the ridge axis to greater depths under the

eastern flank of the ridge axis. Moving from north to south, the AMC events for Lines 3,

7, 21, and 9 all appear at a range of two-way travel times between 0.9 and 1.1 s below the

seafloor, while the AMC events are progressively deeper for Line 22 (1.0–1.2 s tbsf) and

Line 8 (1.1–1.4 tbsf). This implies that magma chamber depths below the Salty Dawg,

High Rise, and Main Endeavour vent fields are similar while the magma chamber beneath

the Mothra vent field is significantly deeper, which is consistent with the AMC imaged on

along-axis Line 14 (Figure 3-6).

The AMC event has the highest amplitudes on Line 3, which crosses the Salty Dawg

vent field, and Line 22, which crosses the axis between the Main Endeavour and Mothra

vent fields. The event is weaker on the other lines. It is probable that large lateral velocity

changes due to rough seafloor topography for the cross-axis lines result in complex ray paths

that cannot be modeled using the simple two-way travel time reflection equation that was

developed for at most gently dipping stratigraphy and smooth continuous interfaces. This

would lead to poor and variable signal alignment (from CMP to CMP) before stack and

variable signal strength (from CMP to CMP and from one line to another) of the AMC

reflection on stacked sections. Furthermore, we show that the AMC is dipping east on all

cross axis lines, which may have a significant impact on the strength of the AMC reflection.

Pre-stack migrations or three-dimensional seismic studies may be required to better image

the amplitude variability between the different cross-axis lines.

Moho

A Moho reflection is weakly visible in a few locations on the cross-axis Lines 3, 7, 8, and

9. One specific example is highlighted in Figure 3-8. In general, the Moho event appears

at 2.0–2.3 s twtt beneath the seafloor on the Endeavour cross-axis lines. This is consistent

with the weak, very discontinuous, low-frequency Moho reflection event observed at 2.1–2.3
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s twtt at the Cleft Segment of the Juan de Fuca Ridge by Canales et al. [2005] and the

Moho events observed by Nedimovic et al. [2005] for long cross-axis lines which sample the

Juan de Fuca Ridge flanks.

3.4.3 Velocity Analysis

To determine the Endeavour Segment upper crustal velocity structure we modeled the

travel times of the main seismic arrivals observed in the data. One dimensional upper

crustal velocities were forward-modeled [Zelt and Smith, 1992] at three on-axis locations

along Line 14 and two off-axis locations (Figure 3-3). Two of the three on-axis locations

were chosen to coincide with the Salty Dawg and Main Endeavour vent sites. The third was

chosen at a location over the southern segment of the AMC in order to investigate possible

differences between the main axial-high magma body and the deeper reflector to the south.

The two off-axis locations were modeled using data from the axis-parallel Lines 13 and 15

in order to minimize data complexity due to topographic effects. Both off-axis velocity

analysis locations are positions close to the Line 3 profile (Figure 3-8), one of the highest

quality cross-axis profiles.

To improve signal-to-noise ratios and allow easier identification of the main seismic

arrivals, 5-fold constant-offset stacks (supergathers) were created at each location. For each

supergather, the two-way travel time of key arrivals were handpicked on all traces where

they were visible (an example is shown in Figure 3-11). These events included the seafloor

reflection, the retrograde refraction from the velocity transition at the base of layer 2a, and

the refracted wave in seismic layer 2b on all supergathers. In addition, on the along-axis

supergathers an intermediate event within layer 2a (labeled “P1P”) and the reflection from

the top of the mid-crustal axial magma chamber reflector were identified and picked. The

resulting velocity functions are shown in Figure 3-12.

Layer 2a thicknesses in our velocity models are systematically greater (∼200 m) than the

thickness observed in the seismic reflection sections at the location of the velocity models,

probably due to difficulty in picking the first arrival on the supergather sections. The layer

2a velocities of our off-axis velocity models (2.50–2.83 km/s) are comparable to those of

the Cudrak and Clowes model (2.56–2.76 km/s). Uppermost layer 2a velocities of our on-

axis models are significantly slower (1.80 km/s on Main Endeavour and the Deep AMC

supergathers, 2.06 km/s under Salty Dawg) than the off-axis 2a velocities. However, the
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Figure 3-11: Salty Dawg supergather modeling and AMC polarity. A) Trace created by
stacking 0–1.5 km offset traces from the supergather shown in (B) with normal moveout
correction and without any filtering. Yellow boxes highlight the negative polarity of seafloor
reflection and the opposite, positive polarity of the AMC reflection. The onset of the AMC
event is indicated by the increase in amplitude and change in the frequency content of the
signal. B) Supergather of along-axis Line 14 data with 30 CMPs located above the Salty
Dawg vent field. C) Same supergather overlain with the picks used to forward model the
velocity structure of the upper crust at this location (same color code for events as in part
D). D) Supergather picks from (C) with ±10 ms errors and travel times predicted from the
one-dimensional Salty Dawg supergather velocity profile (black lines).
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on-axis velocities at the bottom of layer 2a are somewhat faster (2.47–3.45 km/s) than those

off-axis.

The Salty Dawg, Main Endeavour, and Southern AMC supergather velocity functions

have total seismic layer 2a thicknesses of 530, 550, and 680 meters, respectively. The Line 13

and Line 15 supergathers have total layer 2a thicknesses of 650 and 520 meters, respectively.

The depth to the axial magma chamber is 2.1, 2.1, and 3.2 km below the seafloor on the

Salty Dawg, Main Endeavour, and Deep AMC supergathers respectively. The thickness

of the axial magma bodies and the velocity structure below the AMC in Figure 3-12a are

unconstrained by the travel time modeling, since we have no reflectors beneath the AMC

to give us further information about the velocity structure at depth.

3.4.4 Variation of Layer 2a Thickness

Two-way travel times for layer 2a observed on the reflection profiles were converted into

depth using our velocity functions (Figure 3-12). Figure 3-13 shows that the thickness of

crustal layer 2a varies between 180 and 630 m on the along-axis Line 14. The mean ±

standard deviation 2a thickness on all the cross-axis lines is 500±110 m, and results for

each line are presented in Table 3.2. Our results indicate that layer 2a thickness is highly

variable without a clear pattern of off-axis thickening (Figure 3-14). This is unlike the Cleft

and Vance segments of the southern Juan de Fuca Ridge [Canales et al., 2005], the inflated

portions of the Galapagos ridge [Blacic et al., 2004], and the East Pacific Rise [Harding

et al., 1993] where the 2a thickness is seen to increase significantly off-axis.

The range of layer 2a thicknesses measured on the Endeavour Segment lines presented

here is 90–880 meters. We report layer 2a thicknesses throughout this paper as mean

± standard deviations because the extremes of this range are more likely representative of

either the effects of faulting or imaging issues associated with steep bathymetry and the wide

angle nature of the 2a event than actual volcanic production of the ridge. This can be seen by

examining Figure 3-13, especially the profile of Line 9, where the extremes of 2a thickness are

seen to occur underneath the faults bounding the off-axis volcanic ridges. While the means

and standard deviations are more useful for trying to understand systematic variations

between seismic lines, it is important to note that faulting is probably one of the factors

which contributes to the large variability observed in Endeavour layer 2a thickness.

In addition to the faulting contribution to layer 2a variability, the axis-parallel bathymet-
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ric highs often appear to be associated with a thicker layer 2a (Figures 3-13 and 3-14). This

correlation between bathymetric highs and thicker layer 2a is consistent with the banded

Endeavour upper crustal velocities observed by Barclay and Wilcock [2004] which show a

correlation between slower velocities and bathymetric highs. The regions of thicker layer

2a and bathymetric highs could correspond to the intermittent periods of magma supply

predicted by the model of Kappel and Ryan [1986]. Alternatively, these regions could cor-

respond to the axial volcanic rift (AVR) building phase of the Carbotte et al. [2006] model,

which assumes more steady-state magma supply and predicts periodic topography through

the interaction between dike-induced stress pertubations and tectonic extensional stresses.

3.4.5 AMC Depth

The depth profile of the magma chamber reflection was found by picking the AMC event on

Line 14 stacked and the cross axis stacked and migrated lines and converting the two-way

travel times into depth using the average layer 2b interval velocity from the three on-axis

supergather velocity models (5.55 km/s), in combination with the depth of the layer 2a

picks above each AMC pick. The map-view locations of these AMC picks are plotted on

Figure 3-3. The depth of the AMC varies between 2.2 and 3.3 km below the seafloor on the

along-axis line while the AMC depths on the cross axis lines vary between 2.1 and 3.1 km

below the seafloor (details in Table 3.2).

A 200–600 meter range of AMC depths is observed on each cross-axis line due to the

dipping nature of the AMC reflector. Using the depth range and the width of each cross-axis

AMC event, dips between 8 and 36◦ are calculated. The dips increase from the northern

lines to the southern ones, which reflects the narrower AMC event on (southern) Lines 22

and 8 and the greater depth range of the AMC picks from Line 8 (Table 3.2). The 36◦ dip

calculated for Line 8 is surprisingly high, however it reflects picks from one of the weaker

migrated AMC events (Figure 3-10) and therefore may be exaggerated due to the difficulty

in picking that event. The 22◦ dip calculated for Line 22 represents a much more robust

event (Figure 3-10), however its relative narrowness results in a much higher dip for AMC

depth ranges similar to those observed on the northern lines.
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Figure 3-14: Bathymetry (black line) and 2a depths below the seafloor (black stars) from
four stacked and migrated cross-axis lines, zoomed in on the central axial high. Black trian-
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3.4.6 Polarity of AMC Event

The polarity of a near-vertical reflection is a diagnostic difference between a cracking front

and a magma chamber interface. For a cracking front associated with the downward propa-

gation of a hydrothermally active, thermally fractured regime into a hot but solidified region,

an increase in seismic velocities is expected and a reflection from such an interface would be

expected to have the same polarity as the first arrival reflection from the seafloor. For an

interface of solid rock over a pure melt or partially molten magma chamber, the resultant

decrease in seismic velocities results in a polarity reversal for near-vertical reflections.

In order to test the polarity of the Endeavour AMC event, we took traces from the

Salty Dawg supergather (Figure 3-11b) with source-receiver offsets of 0–1.5 km, applied

an appropriate normal moveout correction, and summed the traces without applying any

filtering at any stage. The result is shown in Figure 3-11a, where the seafloor reflection and

the AMC reflection are highlighted and have opposite polarity, indicating that the AMC

reflection is from a negative impedance contrast. The inversion of polarity between these

two reflections reinforces our conclusion that the reflector we have identified as an axial

magma chamber is not, as previously proposed, a cracking front boundary.

We attempted an amplitude-offset analysis in the intercept time - slowness (τ -p) domain

to quantify the crystal versus melt content of the Endeavour AMC at the location of our

three along-axis supergathers (e.g. Collier and Singh [1997]). Unfortunately, the AMC

reflection at offsets greater than 2 km is highly disrupted by side echos from the axial

graben walls (Figure 3-11b), making it difficult to differentiate between the amplitude-offset

behavior expected for pure molten and partially crystalline magma chamber models.

3.5 Discussion

3.5.1 Reconciling the Endeavour AMC with Previous Seismic Studies

Previous seismic studies of the Endeavour Segment failed to definitively locate an axial

magma chamber, however the multichannel reflection profile collected by Rohr et al. [1988]

does show the same mid-crustal axial reflection at the same two-way travel time that we

image. It was not interpreted as an AMC reflection due to the uncertainty in the polarity

of the AMC and the lack of a velocity anomaly in the available seismic refraction data.

Previous seismic refraction data [Cudrak et al., 1987; Cudrak , 1988; White and Clowes,
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1990; Cudrak and Clowes, 1993] were only sensitive to zones of partial melt (1.5 - 2.0 km/s

velocity reduction relative to surrounding 6.0-6.5 km/s P-wave velocity) with cross-axis

dimensions greater than 1 km wide and 1 km thick. This resolution would not be sensitive

to a thin melt lens such as the AMC reported here (assuming the thickness of the Endeavour

AMC is similar to that of the EPR melt lens [Collier and Singh, 1998; Kent et al., 1993a]).

However, the transition from layer 2c to layer 3 (commonly identified as the transition from

sheeted dikes to gabbros formed by crystallization of the magma chamber) occurs at 2.01

km below the seafloor in the Cudrak and Clowes [1993] average one-dimensional model,

which is roughly coincident with the AMC depths we find in this study.

This leaves the question of why previous refraction studies did not detect a low-velocity

region, indicative of high temperatures and partial melt, in the lower crust as described for

other magmatic spreading centers (e.g. Canales et al. [2000] and Dunn et al. [2001]). The

resolution tests for the Endeavour tomography of White and Clowes [1990] show significant

smearing and poor resolution for features more than 1 km below the seafloor (see White

and Clowes [1990] Figure 14). The forward modeling of Cudrak and Clowes [1993] did show

a decrease by 0.1-0.2 km/s in seismic layer 3 velocities for seismic waves passing under the

axial ridge and attributed this to elevated temperatures but not the presence of partial

melt. A new tomographic study of the Endeavour ridge would be useful in distinguishing

whether the apparent absence of an EPR-like low-velocity zone under the Endeavour AMC

in these prior studies is real or an artifact of data limitations.

3.5.2 Seismicity and the Axial Magma Chamber

Hypocenters of well-located microseismicity from a 55–day deployment of 15 ocean bottom

seismometers (OBSs) on the central Endeavour Ridge [Wilcock et al., 2002] are projected

onto our stacked and migrated sections if they are within 0.5 km of our lines (Figures 3-6

and 3-10). The positions of the OBSs used to locate the seismicity are shown in Figure 3-

3. We use the events which have been relatively relocated, meaning that closely spaced

earthquakes with similar waveforms were cross-correlated to generate self-consistent travel

time picks whose relative errors are much smaller than the absolute errors of individual

picks. This results in small relative location errors between events within a swarm (on the

order of 100 m) while absolute hypocenter location errors remain on the order of 0.5 km.

Most axial earthquakes are concentrated in a depth range of 1.5–2.7 km. These depths
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are translated to a two-way travel time range of 0.7–1.1 s below the seafloor with the velocity

function that was used in locating the hypocenters. The seismicity is mostly clustered

above the AMC reflector. The appearance of seismicity occurring within the (presumably

non-brittle) regime of the magma chamber is an artifact of location uncertainties and the

projection of 3D event locations onto 2D lines, which ignores the topography of the dipping

magma chamber observed in all cross-axis lines (Figure 3-10). A 3D graphic of the seismic

lines and the seismicity is available at the Ridge 2000 Data Portal:

http://www.marine-geo.org/link/entry.php?id=JdF:Endeavour VanArk.

In general the seismicity is distributed diffusely within the observed depth range, however

the cross-axis line which underlies the Salty Dawg vent field also shows seismicity localized

along a steeply dipping fault-like plane. The diffuse axial seismicity localized above the

AMC reflector may indicate cracking activity in a conductive lid above the melt lens. This

would be consistent with the observation that focal mechanisms for axial earthquakes had

sub-horizontal tension axes oriented in all directions except parallel to the ridge, interpreted

as indicating a stress field influenced equally by ridge spreading and hydrothermal cooling

[Wilcock et al., 2002].

The axial seismicity seems to be confined to the region above the shallowest portion of

the magma chamber (Figures 3-6 and 3-10), with much activity beneath the Salty Dawg and

High Rise vent fields, a little below the Main Endeavour vent field, and no events beneath the

northernmost (Sasquatch) and southernmost (Mothra) vent fields. This may, however, be a

sampling bias induced by the seismometer array geometry, variable instrument coupling to

the seafloor within the array, and short two month time-span of the OBS study. Preliminary

results of the new Keck Observatory on the Endeavour Ridge [Wilcock et al., 2004] show

a similar cluster of hypocenters, but the cluster seems to have moved south slightly with

more activity under the Main Endeavour and Mothra vent fields and less under the Salty

Dawg vent field.

For two similar experiments in 1995, Endeavour segment microearthquakes were both

more numerous and deeper than those observed at the East Pacific Rise, yet the earth-

quake activity at the two ridges seemed to have similar source mechanisms. In a three

month OBS deployment at 9◦50’N on the EPR, Sohn et al. [1998, 1999] detected 283 lo-

cal microearthquakes which were found to have seismic moments of 107–109 N-m (moment

magnitude M ≈ -1– 0). At the Endeavour segment, 1750 microearthquakes with moments
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of 109–4x1013 N-m (moment magnitude M ≈ 0–3) were located by Wilcock et al. [2002] with

data from a shorter, 55-day OBS deployment. The EPR hypocenters were located above

the 1.5 km deep AMC reflection imaged at that location, clustered between 0.7 and 1.1 km

depth. The focal mechanisms and the correlation of earthquake swarms with changes in

the chemistry of vents above them suggest that the EPR microseismic events arise from

thermal stresses at the base of the hydrothermal system in the shallow crust [Sohn et al.,

1998, 1999]. The Endeavour Segment microseismicity is also clustered above the observed

magma chamber and also has focal mechanisms suggestive of a thermal cracking mecha-

nism. However, due to the greater depth of the Endeavour AMC, the axial earthquakes are

correspondingly deeper [Wilcock et al., 2002]. Preliminary results from more recent OBS

experiments at the EPR [Weekly et al., 2005] and Endeavour [Wilcock et al., 2004] indicate

that seismicity rates vary greatly over time and are likely related to temporal changes in

stress and thermal conditions above the magma lens.

3.5.3 Hydrothermal Activity and the Axial Magma Chamber

Our results show that all five large, high-temperature Endeavour hydrothermal vent fields

are underlain by an axial magma chamber (Figures 3-6 and 3-10). We therefore looked for

correlations between the geometry and properties of the AMC and the location and activ-

ity of the vents. The focusing of Endeavour seismicity and hydrothermal vents above the

shallowest part of the AMC (Figure 3-6), combined with the cracking focal mechanisms of

the microseismic events might reflect a “chimney effect” with upflow of hydrothermal fluid

channeled predominantly above the shallowest areas of the magma chamber heat source.

However, a hydrographic survey of the Endeavour ridge [Veirs et al., 1999] found possible

hydrothermal sources south of Mothra as far as 47◦54’N. More exploratory studies look-

ing for high-temperature hydrothermal outflow and their vent sources above the deeper,

southern portion of the AMC (CMPs 6600–6950 on Figure 3-6, latitudes 47◦52.2’ – 47◦53.8’

N) would help to determine whether the apparent focusing of hydrothermal flow above the

shallowest portion of the AMC is real or merely a sampling artifact.

There is no simple relationship between Endeavour magma chamber depth and vent

temperatures and chlorinities (Tables 3.3) [Butterfield et al., 1994; Delaney et al., 1997;

Kelley et al., 2002]. The AMC is approximately the same depth range (∼2.1–2.4 km on

each cross-axis line) beneath all the Endeavour hydrothermal vent fields except Mothra
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Table 3.3: Endeavour vent field temperature (◦C) and chemistry (chlorinity, carbon dioxide
concentration, and methane concentration in mmol/kg) organized from south to north and
compared to average seawater values [Delaney et al., 1997; Kelley et al., 2002] and the depth
of the axial magma chamber (AMC) under each vent field in kilometers.

Seawater Mothra Main Endeav. High Rise Salty Dawg

T 2 304 330–400 315–343 297–329
Cl 540 680 40–505 420–587 710

CO2 2.3 6 11–26 15–19 18
CH4 0 1.5 1.5–3.4 2.8–3.4 3.3–3.6
AMC 2.5–3.1 2.1–2.5 2.1–2.3 2.2–2.4

(2.5–3.1 km), and the range of published temperatures and chlorinity values within each

well-sampled vent field is as large as the differences between the fields. There might be a

correlation between lower CO2 values at Mothra and the deeper AMC below that location

(Table 3.3). More observations would be useful to constrain this possible relationship. There

is no clear correlation between published methane concentrations at the various vent fields

and AMC depth. While many more chemical components of vent fluids have been studied

within specific vent fields, especially the Main Endeavour vent field [Lilley et al., 2003],

cross-field observations on the large spatial scale necessary for comparison with Endeavour

AMC depths have not been published.

In general, our preliminary comparison suggests that AMC depth is not a dominant

factor in determining vent fluid properties. In particular, temperature and chlorinity are

probably controlled instead by phase separation, subsurface mixing of hydrothermal fluids

and seawater, and other complexities of the circulation path through the crust [Butterfield

et al., 1994; Delaney et al., 1997; Bach and Humphris, 1999; Kelley et al., 2002]. A re-

cent study has tied the 1999 earthquake swarms to magmatic volatile signatures in Main

Endeavour vent fluids [Lilley et al., 2003], which indicates that magmatic diking and erup-

tion activity may influence vent fluid properties even if the depth of the magma chamber

does not (see also Butterfield and Mossoth [1994], Butterfield et al. [1997], and Von Damm

[2000]).

3.5.4 Ridge System Comparisons

Table 3.4 presents a comparison of on and off-axis layer 2a thickness and axial magma cham-

ber depth and width for the fast-spreading East Pacific Rise (EPR) [Kent et al., 1993b, 1994;
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Hooft et al., 1997; Carbotte et al., 2000] and four intermediate spreading systems: the Juan

de Fuca Ridge (our Endeavour segment results and Canales et al. [2005]), the Southeast

Indian Ridge (SEIR) [Baran et al., 2005], the Galapagos Spreading Center (GSC) [Detrick

et al., 2002b; Blacic et al., 2004], and the Lau Back-Arc Spreading Centers [Jacobs et al.,

2003].

The Endeavour axial layer 2a thickness is greater in magnitude and variability than that

of the EPR and the Vance and Cleft segments of the Juan de Fuca Ridge, however, it is

similar to that of the GSC, the portions of the SEIR with a rifted axial high, and the Central

Lau Spreading Center (CLSC). The Endeavour axial layer 2a is thinner than that found on

the portions off the SEIR with a shallow axial valley and the Eastern Lau Spreading Center

and Valu Fa Ridge (ELSC/VFR). While off-axis 2a thickening is observed for most of the

ridge systems presented in Table 3.4, the Endeavour layer 2a cross-axis variability shows no

such clear pattern, the western portion of the GSC has limited off-axis 2a thickening, and

the rifted axial high and shallow axial valley portions of the SEIR [Baran et al., 2005] are

not observed to have significant off-axis layer 2a thickness increases.

Why does layer 2a thicken off-axis on some ridge systems and not on others? Several

authors have suggested that the difference is due to the interplay between magma supply

and ridge topography [Mutter et al., 1995; Carbotte et al., 1998; Blacic et al., 2004; Canales

et al., 2005]. The ridge topography is controlled by a combination of tectonic extension,

flexure, and volcanic construction. In turn, the slope of the axial high and the depth of the

axial summit graben promote or hinder the flow of volcanic eruptions off-axis which leads

to layer 2a thickening. Large variability in off-axis 2a thickness is found on the parts of the

GSC which have a narrow (<0.8 km) AMC [Blacic et al., 2004], perhaps reflecting lower

magma supply. This is similar to the variability observed on all the cross-axis Endeavour

lines, independent of AMC width.

The range of AMC widths observed at many different places on the mid-ocean ridge

system (Table 3.4) seems to be a relatively constant ∼0.5–1.5 km, with values as low as

0.25 and as high as 4.15 on the EPR [Kent et al., 1993b, 1994; Hooft et al., 1997; Carbotte

et al., 2000]. Our Endeavour AMC width observations of 0.5–1.2 km fall within this range.

The lack of correlation between spreading rate and AMC width stands in contrast to AMC

depth observations, which do seem to inversely correlate with spreading rate [Purdy et al.,

1992]. The southern portion of the EPR (full spreading rate >15 cm/yr) has the shallowest
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Table 3.4: Comparison of on and off-axis 2a thickness, AMC depth, and AMC width for
various spreading ridges including the Endeavour (this study), Cleft, and Vance segments
of the Juan de Fuca Ridge [Canales et al., 2005], the Galapagos Spreading Center (GSC)
[Blacic et al., 2004], the Southeast Indian Ridge (SEIR) [Baran et al., 2005], the Lau Back-
Arc spreading system [Jacobs et al., 2003], and the East Pacific Rise (EPR) [Kent et al.,
1993b, 1994; Hooft et al., 1997; Carbotte et al., 2000]. The full spreading rate for each ridge
system is also given [Wilson, 1993; DeMets et al., 1994; Blacic et al., 2004; Baran et al.,
2005]. Dashes indicate that the appropriate measurement was not available for that system.

Layer 2a Thickness Axial Magma Chamber
on-axis (km) off-axis (km) depth (km) width (km)

Galapagos Spreading Center: 4.5–5.6 cm/yr
E. GSCa 0.24–0.42 0.40–0.70 on-axis ∼1.0–2.5 0.5–1.5
W. GSCb 0.36–0.60 0.35–0.65 2.5–4.5 0.7–2.4

Juan de Fuca Ridge: 5.6–5.7 cm/yr
Endeavour 0.38±0.12 0.50±0.11 2.1–3.3 0.4–1.2
Vance 0.30–0.35 0.5–0.6 2.4–2.7 0.6–1.7
Cleft 0.25–0.30 0.5–0.6 2.0–2.3 0.6–1.7

Southeast Indian Ridgec: 7.2–7.6 cm/yr
Axial high ∼0.31 thicker ∼1.5 —
Rifted axial high ∼0.46 same ∼2.1 —
Shallow axial valley ∼0.45, 0.80 same No AMC —

Lau Back-Arc Basin: 4.0–9.0 cm/yr
CLSC (faster) d 0.38 — 1.49 —
N. ELSC d 0.51 — No AMC —
C. ELSC d 0.62–0.74 — 2.18–2.34 —
VFR (slower) d 0.66–1.00 — 2.35–2.82 —

East Pacific Rise:
15◦30’–17◦N e 0.16–0.31 0.34–0.53 1.4–1.7 0.25–1.7
9◦17’–9◦53N 0.18–0.38 0.44–0.56 1.42–1.56 0.25–4.15
14◦–14◦30’S e 0.19–0.28 0.51–0.57 0.94–1.25 0.375–1.05
17◦4’–20◦10’S 0.20–0.33 0.35–0.62 0.76–1.55 0.375–1.54

a Hot spot influenced portion of the GSC – east of 92.5◦ W
b Non-hot spot influenced portion of the GSC – west of 92.5◦ W
c Results for SEIR are categorized by surface morphology of the ridge [Baran et al.,

2005].
d CLSC = Central Lau Spreading Center; axial high morphology. N. ELSC = Northern

Eastern Lau Spreading Center; rifted axis. C. ELSC = Central Eastern Lau Spreading
Center; rounded axial high. VFR = Value Fa Ridge; blade-like morphology due to high
viscosity lavas resulting from a subduction component in the magma.

e The 15◦30’–17◦N section of the EPR has spreading rate of 8.5 cm/yr and the 14◦–
14◦30’S of the EPR has a spreading rate >15 cm/yr.
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AMC depths [Hooft et al., 1997] while the non-hotspot influenced western portion of the

GSC (full spreading rate 4.5–5.6 cm/yr) has the deepest AMC observed to date [Blacic

et al., 2004]. The Endeavour AMC is significantly deeper than the fast spreading AMC

depths, but comparable to depths found along other intermediate spreading ridges with

similar ridge morphologies.

A combination of spreading rate and ridge morphology seems to be a better predictor of

subsurface similarities between ridges than spreading rate values alone. The Juan de Fuca

Ridge has similar spreading rates to the Galapagos Spreading Center and the Southeast

Indian Ridge, however, those ridge systems are both heavily influenced by nearby man-

tle temperature anomalies. The eastern portion of the GSC is strongly influenced by the

Galapagos hot spot [Detrick et al., 2002b; Blacic et al., 2004], while the SEIR has strong

changes in ridge morphology and subsurface crustal structure correlated with distance from

the Australian Antarctic Discordance area of cold mantle [Baran et al., 2005]. The Endeav-

our segment crustal structure is similar to portions of those ridges, but only where the ridge

morphology indicates a similar thermal state in the crust and upper mantle.

3.5.5 Intermediate Spreading Ridge Heat Extraction

The existence of a magma chamber beneath the Endeavour Ridge indicates that heat is

supplied at this intermediate spreading ridge by the same magmatic source as at fast-

spreading ridges such as the East Pacific Rise. There is no need to invoke a cracking front

propagating down into and mining heat from an area of hot but unmolten rock in the

lower crust [Wilcock and Delaney , 1996]. The observed differences between small, short-

lived, magmatically controlled hydrothermal systems on the EPR and larger, longer-lived,

fault-controlled hydrothermal systems on the Endeavour Segment still require explanation,

however. We propose a hybrid model of heat extraction for intermediate spreading ridges

which combines the magmatic heat source of the fast spreading ridge and the fault-controlled

hydrothermal circulation of the slow spreading ridge model (Figure 3-1). However, the

source of the faulting remains a subject of debate.

In general, the observed Endeavour magma chamber depths are consistent with model

predictions from numerical studies relating half-spreading rate to depth to the top of a

steady-state magma lens through the thermal balance between heat supply from magmatic

crustal injection and cooling due to hydrothermal circulation [Phipps Morgan and Chen,
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1993; Chen and Lin, 2004]. These models depend on the supposition that magma rises

within the oceanic crust due to buoyancy forces or viscous pressures until it reaches a freezing

horizon where it ponds into a quasi steady state magma lens. The axial morphology and

faulting above the magma lens are a function of the thermal structure, which determines the

thickness of the axial lithosphere and therefore the yield strength of the axial lithosphere

as it is pulled apart. According to this model, the Endeavour axial summit graben and the

faults which bound it and provide permeability pathways for the hydrothermal circulation

are the result of tectonic extensional stresses interacting with a cooler upper crust due to a

deeper magma chamber.

Another model for the evolving axial topography on the Juan de Fuca Ridge emphasizes

the contribution of dike intrusion to subsidence and fault slip at the seafloor due to feedback

between the rheology of the crust above a magma sill and dike intrusion [Carbotte et al.,

2006]. Within the framework of this model, the faulting related permeability pathways

which sustain Endeavour’s massive, high temperature hydrothermal vent fields are a result

of the interaction between the regional tectonic extension and stress perturbations due to

dike intrusions from the axial magma chamber. The tensional regime of this model could

lead to the higher microseismicity levels on Endeavour discussed in section 3.5.2. That

small scale fracturing is needed to keep the upgoing hydrothermal pathways open in the

face of ongoing quartz precipitation in the upwelling portion of the hydrothermal system

[Wilcock and Delaney , 1996].

A final paradox is presented by the Wilcock and Delaney [1996] estimate that the heat

flux from the Main Endeavour vent field is between 5 and 50 times the steady-state heat

flux necessary to solidify and cool a 6 km thick crust. They calculate that mining this

amount of heat from a 2 km wide AMC would require a conductive boundary only ∼ 1

m thick, which they interpret to be implausibly thin. One possible resolution is that the

heat flux has been overestimated, or that the portion of the ridge which is cooled by the

subsurface circulation cell supplying each vent field has been underestimated. Another

possible solution is that the cracking front model proposed by Wilcock and Delaney [1996]

is locally correct on the margins of the imaged magma chambers, perhaps resulting in the

apparent segmentation of the Endeavour AMC (although that could also be an artifact of

streamer feathering, topographic effects on the data, or attempting to image a narrow three-

dimensional body with a one-dimensional line). Possible issues with the flux estimate may be
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resolved by further heat flux measurements and modeling, while the possible segmentation of

the Endeavour AMC would be fully revealed with a three-dimensional multichannel seismic

reflection survey.

3.6 Conclusions

Multichannel seismic reflection data gathered on the Endeavor segment of the Juan de Fuca

Ridge during July 2002 reveal the presence of a crustal magma body underlying all five

known hydrothermal vent fields of the Endeavour segment. The magma body is relatively

deep (2.1–3.3 km) and narrow (0.4–1.2 km wide), and appears to be segmented into multiple

crustal magma lenses adding up to a total along-axis distance of 16–24 km.

The polarity of the reflection from the top of the AMC combined with similarities to

well-studied AMC events at other ridges confirms that the reflection is due to a decrease

in seismic velocities at the top of a magma chamber rather than a hydrothermal cracking

front. Microseismicity within 0.5 km of the axis is mostly confined to a region above the

shallowest portions of the AMC. We interpret the thermal cracking focal mechanisms of the

microseismic events as hydrothermal circulation penetrating into a conductive lid above a

magma lens which is continually replenished with new magma from below. Cross axis lines

show the magma chamber to be dipping from the west to the east, with the vent fields

located over shallower portions of the AMC.

The AMC is approximately the same depth (dipping from ∼2.1 to 2.4 km) beneath

all the Endeavour hydrothermal vent fields except Mothra (2.5–3.1 km), and the range of

temperatures and chemistry values within each well-sampled vent field tends to be larger

than the differences between the fields. Our results suggest that AMC depth is not a

dominant factor in determining vent fluid properties, which are probably controlled instead

by phase separation, subsurface mixing of hydrothermal fluids and seawater, and other

complexities of the circulation path through the crust.

Hydrothermal systems at the intermediate spreading Endeavour Segment, like those at

fast spreading ridges, appear to be driven by heat extraction from a crustal magma body.

Morphological, hydrothermal, and seismic differences between the intermediate-spreading

Endeavour and the fast-spreading EPR are attributable either to the greater depth of the

Endeavour AMC and the correspondingly cooler, more brittle shallow crust overlying the
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magma chamber or to faulting controlled by dike intrusions from the axial magma chamber.
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Chapter 4

Two-Dimensional Pseudospectral

Modeling of Global Seismic Wave

Propagation

Abstract Seismic wave propagation in two-dimensional global (cylindrical) Earth models

is simulated using a pseudospectral algorithm. The pseudospectral method is distinguished

by its use of Fourier transforms to estimate the spatial derivatives in the elastic equations

and the equations of motion. First order velocity-stress equations are solved on a staggered

grid in order to increase stability and to accommodate the half-grid step Fourier shift

required to maintain real first-order spectral derivatives. Attenuation is optionally included

through the use of stress and strain dependent memory function. Boundary conditions

are implemented using cancellation of periodic and anti-periodic wrap-around wavefields.

Variable radial grid spacing is implemented to allow fine sampling of a chosen area of

the model space (in this case, the core-mantle boundary) while maintaining reasonable

computational times. Synthetic seismograms produced by this method for a 1-D PREM

Earth model are benchmarked against synthetics produced by the semi-analytic full wave

theory method, which in turn have been benchmarked against the reflectivity method.
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4.1 Introduction

The object of seismic forward modeling is to predict the signal which would be recorded by

receivers at a given location due to a seismic wave propagating through a given assumed

structure of the subsurface. The ability to make these predictions is key to interpreting the

seismic data we collect and absolutely necessary for any attempt to invert such data for

earth structure.

All seismic forward modeling is based on solutions of an appropriate form of the gov-

erning wave equation, which can be anything from a simple one dimensional acoustic wave

equation to a full three dimensional elastic wave equation incorporating anisotropy and at-

tenuation. The current approaches to solving this problem can be divided into three main

groups: analytical methods, geometrical optics, and direct methods [Kosloff and Kessler ,

1990; Cormier , in press].

Analytical methods use closed form solutions of the governing wave equation and are

therefore limited to simple earth structures. They are very accurate and are therefore often

used to test other approaches. For multilayer structures, analytical solutions often include

integrals with singularities (i.e. the reflectivity method [Fuchs, 1968; Fuchs and Müller ,

1971; Müller , 1985]) — these call for numerical caution and are only “semi-analytical”.

Geometrical optics, also known as ray tracing, uses a high frequency approximation to

treat the seismic wave as a simple ray. It is generally fast and effective for calculating travel-

time information, but does not always give correct amplitudes or explain non-geometrical

optical phenomena (e.g. tunneling). It can become complicated in situations with complex

structures involving many multiples and converted phases.

Direct methods include finite difference, finite element, the Fourier or pseudospectral

method, and the spectral element method. They use direct solution of the equations of

motion after approximating the region of propagation by a numerical grid. Usually there

are no restrictions on material variability or structural complexity. These methods are very

accurate in principle if a fine enough grid is used. However, they can be computationally

expensive and/or have a high frequency limit on resolution. They easily produce snapshots

of the wavefield propagating through the medium, which can be useful for interpretation.

Within the direct modeling methods, the approaches can be differentiated based on

whether they use a simple grid of nodes to solve the “strong” (differential) form of the wave
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equation (finite difference and pseudospectral) or they use more complex and flexible multi-

node elements to solve the “weak” (integral) form of the wave equation (finite element and

spectral element). They can also be differentiated based on their approach to calculating

the spatial derivative. The finite difference and finite element methods approximate the

spatial derivative using local functions of the displacement at neighboring nodes. The

pseudospectral [Fornberg , 1988, 1996] and spectral element methods [Komatitsch et al.,

2002; Komatitsch and Tromp, 2002a, b] approximate the spatial derivative globally by

approximating the displacement as a series of weighted orthogonal basis functions (such as,

but not limited to, a Fourier series). They then use the derivative of the basis functions to

calculate the derivative of the spatial function. All direct methods use a finite difference

approach to approximating the time derivative of the displacement in the wave equation.

This paper will present details of a pseudospectral method for simulating seismic wave

propagation through a 2-D cylindrical Earth first developed by Cormier [2000]. The pseu-

dospectral method is advantageous because it has greatly reduced numerical dispersion in

comparison to finite difference or finite element methods, and it is computationally less

expensive than the spectral element method. The Fourier transform incorporated into the

pseudospectral calculations restricts the method to relatively simple grid geometries, which

may make it less useful for solving global three-dimensional wave propagation in the future

than the spectral element method. However, the pseudospectral method can be very accu-

rate and useful for solving two-dimensional global problems. Here we focus on the portion

of our synthetic seismograms which include the SKS phase and its associated SPdKS phase

(Figure 4-1) which we use elsewhere to examine core-mantle boundary structure.

4.2 Seismic Wave Propagation Equations

To study global seismic problems with 2-D velocity model variability, we use a 2-D polar

coordinate system with coordinates (r, θ) where all fields are implicitly invariant in the

direction perpendicular to the polar plane. All variables used in this section are defined in

Table 4.1. The equations of momentum conservation (ρüi = σij,j + fi) in polar coordinates

become [Furumura et al., 1998; Aki and Richards, 2002]:

ρ
∂2ur

∂t2
=

1
r

∂

∂r
(rσrr) +

1
r

∂σrθ

∂θ
− σθθ

r
+ fr (4.1)
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Figure 4-1: Illustration of the SPdKS / SKPdS ray-paths with sub-segments labeled. SPdKS
is an SKS that intersects the source-side CMB at the ScP critical angle and propagates along
the mantle-side of the CMB as a diffracted P-wave (Pdiff). SKPdS is the same phenomena
on the receiver-side CMB. Star shows earthquake source and triangle shows receiver location.
IC = inner core, OC = outer core, and CMB = core-mantle boundary.
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Table 4.1: Pseudospectral method notation

Coordinates:
r radial coordinate of polar geometry
θ angular component of polar geometry
dt time step increment

Material Properties:
ρ density
λ, µ elastic Lamé parameters
π viscoelastic parameter ≈ λ + 2µ
µ′ viscoelastic parameter ≈ µ
τP
ε , τS

ε P, SV strain relaxation times
τθ P and SV stress relaxation time

Fields:
ur,uθ radial and angular components of displacement
vr, vθ radial and angular components of velocity
fr,fθ body forces
σrr,σrθ,σθθ components of stress tensor
rrr,rrθ,rθθ memory functions

Numerical Indices:
ix grid index in θ direction
iy grid index in r direction
it time step index

ρ
∂2uθ

∂t2
=

1
r2

∂

∂r

(
r2σrθ

)
+

1
r

∂σθθ

∂θ
+ fθ (4.2)

where the variables are defined in Table 4.1. Likewise the constitutive equations in polar

coordinates for an isotropic medium (σij = λδijεkk +2µεij , where σ is stress and ε is strain)

become:

σrr = (λ + 2µ)
∂ur

∂r
+

λ

r

∂uθ

∂θ
+

λ

r
ur (4.3)

σθθ = λ
∂ur

∂r
+
(

λ + 2µ

r

)
∂uθ

∂θ
+
(

λ + 2µ

r

)
ur (4.4)

σrθ =
µ

r

∂ur

∂θ
+ µ

∂uθ

∂r
− µ

r
uθ. (4.5)

The system of equations (4.1–4.5) are transformed into the first order velocity-stress

system by changing the time derivative of the displacement to velocity (∂u/∂t = v) in equa-
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tions (4.1–4.2) and by taking the time derivative of equations (4.3–4.5) [Virieux , 1984, 1986]:

∂vr

∂t
=

1
ρ

[
1
r

∂

∂r
(rσrr) +

1
r

∂σrθ

∂θ
− σθθ

r
+ fr

]
(4.6)

∂vθ

∂t
=

1
ρ

[
1
r2

∂

∂r

(
r2σrθ

)
+

1
r

∂σθθ

∂θ
+ fθ

]
(4.7)

∂σrr

∂t
= (λ + 2µ)

∂vr

∂r
+

λ

r

∂vθ

∂θ
+

λ

r
vr (4.8)

∂σθθ

∂t
= λ

∂vr

∂r
+
(

λ + 2µ

r

)
∂vθ

∂θ
+
(

λ + 2µ

r

)
vr (4.9)

∂σrθ

∂t
=

µ

r

∂vr

∂θ
+ µ

∂vθ

∂r
− µ

r
vθ. (4.10)

An approximation of viscoelastic attenuation is included using memory functions, as

developed by Robertsson et al. [1994]. Memory functions, rij , are coupled to the stress

and strain at a particular location and evolve over time, dissipating seismic wave energy.

This coupling is accomplished through the use of strain relaxation times for the P and

SV waves (τP
ε and τS

ε , respectively) and one stress relaxation time τθ for both P and SV

waves, all of which are related to the P and S-wave quality factors input for each layer of

the velocity model. In addition, viscoelastic relaxation moduli µ′ and π replace the elastic

Lamé constants µ and λ + 2µ, respectively.

When the memory functions and their related viscoelastic parameters are incorporated

into equations 4.6–4.10 the total system of seismic wave propagation equations becomes:

∂vr

∂t
=

1
ρ

[
1
r

∂

∂r
(rσrr) +

1
r

∂σrθ

∂θ
− σθθ

r
+ fr

]
(4.11)

∂vθ

∂t
=

1
ρ

[
1
r2

∂

∂r

(
r2σrθ

)
+

1
r

∂σθθ

∂θ
+ fθ

]
(4.12)

∂rrr

∂t
=

1
τσ

[
rrr + π

(
τP
ε

τσ
− 1

)(
∂vr

∂r
+

1
r

∂vθ

∂θ
+

vr

r

)

−2µ′
(

τS
ε

τσ
− 1

)(
1
r

∂vθ

∂θ
+

vr

r

)]
(4.13)

∂rθθ

∂t
=

1
τσ

[
rθθ + π

(
τP
ε

τσ
− 1

)(
∂vr

∂r
+

1
r

∂vθ

∂θ
+

vr

r

)

−2µ′
(

τS
ε

τσ
− 1

)(
∂vr

∂r

)]
(4.14)

∂rrθ

∂t
=

1
τσ

[
rrθ + µ′

(
τS
ε

τσ
− 1

)(
∂vθ

∂r
+

1
r

∂vr

∂θ
− vθ

r

)]
(4.15)

∂σrr

∂t
= π

τP
ε

τσ

(
∂vr

∂r
+

1
r

∂vθ

∂θ
+

vr

r

)
− 2µ′ τ

S
ε

τσ

(
1
r

∂vθ

∂θ
+

vr

r

)
+ rrr (4.16)
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∂σθθ

∂t
= π

τP
ε

τσ

(
∂vr

∂r
+

1
r

∂vθ

∂θ
+

vr

r

)
− 2µ′ τ

S
ε

τσ

∂vr

∂r
+ rθθ (4.17)

∂σrθ

∂t
= µ′ τ

S
ε

τσ

(
1
r

∂vr

∂θ
+

∂vθ

∂r
− vθ

r

)
+ rrθ. (4.18)

This system of equations can now be numerically stepped forward in time through

calculation of the spatial derivatives of the stress and velocity fields. However, in order to

preserve the highest frequencies possible in the waveforms presented here, the attenuation

is usually turned off in our simulations.

4.3 Pseudospectral Implementation

The spatial derivatives of the velocity and stress fields are numerically calculated using

Fourier transforms. (This is what distinguishes a “pseudospectral” method from finite

difference methods, although it has been shown that the pseudospectral approach is the

high-accuracy limit of the finite difference method [Fornberg , 1996].) For any field f(x)

sampled at intervals ∆x with Fourier transform F(k), the spatial derivative can be evaluated

as
∂f(x)

∂x
=

KN∑
k=0

ikF (k)eikx (4.19)

where KN = π/∆x is the Nyquist wavenumber. However, for a real function f(x), the value

of the Fourier transform at the Nyquist wavenumber, F(KN ), is also real, which means that

iKNF (KN ) is imaginary, and the numerical evaluation of equation (4.19) will result in a

complex derivative of a real function. In order to calculate a purely real spatial derivative,

we apply the Fourier shift theorem and evaluate the derivative halfway between the sampled

points, such that the derivative operator ik is replaced by the staggered spectral differential

operator ik eik∆x/2 [Witte, 1989; Witte and Richards, 1990]. The value of the staggered

derivative operator at the Nyquist wavenumber is then purely real: iKN eiKN∆x/2 = −π/2.

The spatial derivative becomes:

∂f(x + ∆x
2 )

∂x
=

KN∑
k=0

ikeik∆x/2F (k)eikx. (4.20)

The numerical solution of equations (4.11–4.18) using Fourier spatial derivatives (equa-

tion 4.20) is thus naturally driven towards a staggered grid approach: the velocity com-
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ponents are evaluated at locations half a step away from the sampling locations of the

stress components (Figure 4-2), as each depends on the derivatives of the others [Virieux ,

1984, 1986; Witte, 1989; Witte and Richards, 1990]. Thus the Fourier staggered derivative

of the stress components are calculated from the stress field at time it− 1
2 :

∂σθθ

∂θ

(
ix, iy, it− 1

2

)
=

∂σθθ

(
ix + 1

2 , iy, it− 1
2

)
∂θ

(4.21)

∂σrr

∂r

(
ix +

1
2
, iy +

1
2
, it− 1

2

)
=

∂σrr

(
ix + 1

2 , iy, it− 1
2

)
∂r

(4.22)

∂σθr

∂r

(
ix, iy, it− 1

2

)
=

∂σθr

(
ix, iy + 1

2 , it− 1
2

)
∂r

(4.23)

∂σθr

∂θ

(
ix +

1
2
, iy +

1
2
, it− 1

2

)
=

∂σθr

(
ix, iy + 1

2 , it− 1
2

)
∂θ

(4.24)

These spatial derivatives of the stress field are used to step the velocity components

forward in time. Here we show only the functional dependence, but the full equations are

equivalent to equations 4.11 and 4.12:

vr
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1
2
, iy +

1
2
, it

)
= f

[
vr
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2
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(
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1
2
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2

)]
(4.25)

vθ (ix, iy, it) = f

[
vθ (ix, iy, it− 1) ,

∂σθθ

∂θ

(
ix, iy, it− 1

2

)
,

∂σθr

∂r

(
ix, iy, it− 1

2

)
, σθr

(
ix, iy +

1
2
, it− 1

2

)]
. (4.26)

The spatial derivatives of the velocity components at time it are then calculated:

∂vr

∂r

(
ix +

1
2
, iy, it

)
=

∂vr

(
ix + 1

2 , iy + 1
2 , it

)
∂r

(4.27)

∂vr

∂θ

(
ix, iy +

1
2
, it

)
=

∂vr

(
ix + 1

2 , iy + 1
2 , it

)
∂θ

(4.28)

∂vθ

∂θ

(
ix +

1
2
, iy, it

)
=

∂vθ (ix, iy, it)
∂θ

(4.29)
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∂vθ

∂r

(
ix, iy +

1
2
, it

)
=

∂vθ (ix, iy, it)
∂r

(4.30)

and used to step the stress tensor components forward in time. Again we show the

functional dependence while the full equations are equivalent to equations 4.16–4.18:
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The numerical solution scheme presented here uses a simple first order finite difference

algorithm in time. By careful examination of the spatial indices in equations 4.21–4.33

(represented graphically in Figure 4-2) the spatial derivatives of velocities and stresses are

seen to align perfectly with the velocity and stress components with which they are coupled

in the seismic wave propagation equations. However, the cylindrical geometry introduces a

dependence on a non-differentiated velocity or stress quantity in each equation, and these

non-differentiated quantities do not align perfectly. This is a potential source of inaccuracy

in the calculations, although it does not appear to introduce significant errors.

The computational implementation of this scheme takes advantage of some number,

N, of parallel processors. The grid is split into N horizontal slices. (For this particular

code, N must be a power of 2 to ensure equal loading of all the processors.) At each time

step the spatial derivatives in the horizontal (θ) direction can be calculated using only grid

nodes which are on the local processor. However, calculation of the vertical (r) spatial

derivatives requires a matrix transform so that vertical slices of the nodes are temporarily

collected onto one local processor. Then another matrix transform is required to restore

the grid back to the original configuration. This requires extensive communication between

all the processors, and is implemented using the message passing interface (MPI) parallel

instruction set [Gropp et al., 1998, 1999].
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σθr; ∂vθ /∂r,  ∂vr/∂θ

vr; ∂σrr /∂r,  ∂σθr/∂θ

vθ; ∂σθr/∂r,  ∂σθθ/∂θ

σθθ, σrr; ∂vr /∂r,  ∂vθ/∂θ
θ

r

Figure 4-2: Staggered grid configuration in pseudospectral code. Each model node consists
of four sub-nodes at which velocity and stress components and their derivatives are evaluated
as labeled.
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4.4 Boundary Conditions

The half-cylinder grid configuration for our calculations assumes that θ goes from 0 to 180◦

and the model radius goes from ∼950 km to ∼7000 km. The inner radial boundary in set

so that the model extends down into the inner core, but does not reach the center of the

Earth. This allows us to model all mantle and outer core seismic phases of interest. The

outer radial boundary is set to extend several hundred kilometers beyond the surface of

the Earth so that the free surface boundary condition is implicitly applied by setting the

Lamé parameters to 0 in the “atmosphere” layer while maintaining a non-zero density for

computational stability.

The calculation of velocity and stress spatial derivatives by Fourier transforms imposes

implicit periodic boundary conditions on the grid. Any wave energy that exits one edge

of the half-cylinder model space therefore wraps around and emerges immediately on the

opposite edge of the model space. While such transmission in the radial direction is pre-

vented due to the “atmosphere” layer at the top of the model, another strategy is needed to

eliminate the wrap-around transmission between the two lateral edges of the half-cylinder

model.

We run each wave propagation simulation twice [Furumura and Takenaka, 1995], using

Fourier differentiation algorithms which are identical except for a single line of code. The

first, “periodic”, differentiation performs the Fourier transform on each row or column of

length N, repeated once as follows:

f̃periodic (n∆x) =

 f(n∆x), (1 ≤ n ≤ N);

f [(n−N)∆x], (N + 1 ≤ n ≤ 2N).
(4.34)

The second, “anti-periodic”, differentiation performs the Fourier transform on each row or

column of length N, repeated with the opposite sign once as follows:

f̃aperiodic (n∆x) =

 f(n∆x), (1 ≤ n ≤ N);

−f [(n−N)∆x], (N + 1 ≤ n ≤ 2N).
(4.35)

The first half of the values (n = 1...N) from the extended signals are returned from the

Fourier differentiation. The wrap-around wavefield from the anti-periodic extensions (equa-

tion 4.35) has opposite polarity to that of the wrap-around wavefield from the periodic
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extension (equation 4.34). When the two signals are averaged, the wrap-around portion

therefore cancels out exactly (Figure 4-3). This method is elegant in its simplicity, al-

though computationally expensive in that every seismic wave propagation calculation is

done twice.

4.5 Variable Radial Grid Spacing

A basic grid configuration for the Earth model described above using 1024 evenly-spaced

nodes in the radial direction and 2048 evenly-spaced nodes in the θ direction results in a

radial node separation of 6 km and a lateral node spacing which varies linearly from 10.8

km at the top of the model to 9.5 km at the surface of the Earth to 5.2 km at the CMB

to 1.4 km at the bottom of the model. While this grid spacing would be sufficient for

many modeling problems (e.g., D” heterogeneity explored by Cormier [2000]), our goal is

to explore relatively thin features at the base of the mantle with thicknesses between 40

km and 5 km. A radial grid spacing smaller than 6 km is therefore desirable near the

CMB, however decreasing the radial grid spacing everywhere (for example, by doubling the

number of radial grid nodes) is both unnecessary and computationally expensive.

Instead we adapt the approach developed by Fornberg [1988] for introducing variable

grid spacing into the pseudospectral method (further developed by Tessmer et al. [1992]

and Nielsen et al. [1994] for Cartesian coordinates and applied in a less accurate way to

global seismic propagation in cylindrical coordinates by Furumura et al. [1998]). Since the

pseudospectral derivative calculation depends on evenly sampled signals for the Fourier

transform, the derivative of a variable f with respect to a smoothly varying grid coordinate

r can be calculated using the chain rule after first calculating the derivative of f with respect

to a constantly spaced grid coordinate y:

∂f

∂r
=

∂y

∂r

∂f

∂y
. (4.36)

Furumura et al. [1998] approximated ∂y/∂r as ∆y/∆r, using the simple ratio of the grid

spacings at a given point. We tested this approximation against a direct analytical derivative

of a gaussian function and found it to be insufficiently accurate. However, when ∂y/∂r is

approximated with a cubic spline interpolation, the results are highly accurate. As a result,

we adopt the grid spacing shown in Figure 4-4, where the ∆θ spacing remains constant in
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Figure 4-3: Averaging the periodic and anti-periodic wavefields results in cancellation of
wrap-around energy and preservation of the desired signal.
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Figure 4-4: Radial (∆r) and lateral (∆θ) grid node spacing as a function of model radius.
Minimum radial grid spacing of 2.5 km is maintained for 100 km above and below the CMB,
and then gradually increased with a cosine shape to 8 km for the rest of the grid. Lateral
grid spacing is constant in angular measurement and therefore varies linearly in kilometers
as a function of radius. ∆θ at the CMB is 5.2 km. ICB = inner core boundary.

angular measurement and linearly varying in kilometers and the ∆r spacing decreases to

2.5 km around the CMB and smoothly increases to 8 km in the other regions of the grid.

The spline approximation of ∂y/∂r is read into the code with the velocity model and does

not introduce significant direct numerical costs.

While this method preserves the number of grid nodes used, it is still computationally

more expensive than the evenly-spaced grid due to the finer spatial sampling of the area of

the model with the fastest seismic velocities. In order to maintain computational stability,

the time step used throughout the model run was halved, increasing by a factor of two the

model run time required to produce a given timespan of modeled wave propagation and the
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corresponding length of synthetic seismograms.

4.6 Source Implementation

This pseudospectral code has input parameters that define a source location in distance from

the surface of the Earth and distance from the side of the model. It also has parameters

that define the width of a spatial gaussian around that source location, which in the models

presented here is set to zero so that a point pulse is input on a single node. Finally, the input

parameters chose one of several source-time functions and define appropriate parameters

for that function; we use a gaussian in time with a standard deviation of 0.6 seconds whose

peak is reached eight standard deviations in time (4.8 seconds) after the start of the model

run. This offset in time is corrected for in post-processing, with 2 standard deviations from

the peak set as the t=0 onset time.

If a node is located within the source area during the time in which the source is

activated, the appropriate source-time value is added to either the vθ or vr component of

that grid node. The choice of component has a strong effect on which seismic phases are

more strongly excited. For the purposes of studying the SPdKS phase which samples the

ULVZs on the core-mantle boundary, a vθ pulse is more appropriate, channeling energy into

the downgoing mantle shear SKS wave and directing energy away from the upper mantle

multiples which tend to arrive at similar times to the SPdKS phase.

Post-processing of the synthetic seismograms produced by this code applies a line-source

to point-source correction to partially account for the differences between the 2-D geometry

of the model space and the 3-D nature of the real Earth.

4.7 Benchmarking

Synthetic seismograms produced by our pseudospectral wave propagation code are con-

verted from velocity to displacement and are compared with those produced by the full

wave theory [Aki and Richards, 2002; Cormier and Richards, 1988] for the same Earth and

source models. Full wave theory core phases have in turn been successfully compared to the

reflectivity method [Fuchs, 1968; Fuchs and Müller , 1971] by Choy et al. [1980]. In addition,

pseudospectral S, ScS, and SKS waveforms generated by our code base were comparable to

those generated by a modified 2-D WKBJ semi-analytical method in Ni et al. [2003].
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Figure 4-5 shows our pseudospectral synthetic seismograms in gray and full wave the-

ory synthetics in black, with ray theory predicted SKS travel times shown in blue and

pseudospectral SPdKS picks in red. There are two distinct differences between the pseu-

dospectral and the full wave theory results. First, the full wave theory SKS amplitude

decays faster with distance, as is expected for 3D spherical wavefront spreading compared

to the 2-D cylindrical wavefronts of the pseudospectral model. Second, the pseudospectral

method shows significant contamination from upper mantle multiples such as sPPP, pPPP,

and PPP which naturally emerge from our wave propagation calculations and decay slowly

with distance due to 2-D geometry. These phases are not strongly observed in real data

due to the large degree of heterogeneity and attenuation in the uppermost mantle of the

real Earth, and are likewise often unobserved in 1-D modeling methods due to exclusion

of upgoing rays and free-surface reflections. Their presence makes our analysis of SPdKS

slightly more “noisy”, but does not preclude useful results.

The SPdKS arrivals are very similar between the two methods. The measurements we

extract from our pseudospectral synthetic seismograms are the SKS and SPdKS travel times

and observations of SKS and SPdKS waveform changes. These measurements are consistent

between the pseudospectral and full wave theory synthetics, which creates confidence in our

results.

4.8 Conclusions

The global 2-D pseudospectral method presented here has both advantages and disadvan-

tages. The amplitude decay of all phases due to geometric spreading will never be correctly

predicted for a 3-D, quasi-spherical Earth by this 2-D, cylindrical algorithm. Making an

accurate spreading correction for all phases over all epicentral distances would be very

complicated, so this code will probably never produce reliable absolute amplitudes in its

synthetic seismograms. However, over short ranges of epicentral distances for a specific

phase of interest, the difference in geometric spreading is small enough that it should not

impede relative comparisons between two related phases, such as SKS and SPdKS.

This 2-D global pseudospectral code produces much stronger upper mantle multiple

seismic phases (e.g. pPPP, sPPP, and PPPP) than are observed in the real Earth or

the synthetics produced by many other modeling algorithms. This is partially because
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Figure 4-5: Pseudospectral synthetic seismograms (gray lines) and full wave theory synthetic
seismograms (black lines) for PREM [Dziewonski and Anderson, 1981] and identical source
functions. Blue line shows SKS travel time predictions from the TauP Toolkit Crotwell
et al. [1999], red line shows SPdKS picks from pseudospectral traces, and cyan, yellow, and
magenta dashed lines show sPPP, PPPP, and pPPPP TauP travel time predictions.
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the Earth models we use with this code tend to be simple, 1-D PREM [Dziewonski and

Anderson, 1981] everywhere except the region of interest (in our case, the core-mantle

boundary). The lack of real-world heterogeneity and attenuation in the upper mantle,

lithosphere, and crust of these models prevents the natural dissipation of these upper-mantle

reverberations. This is probably exacerbated by the slower amplitude decay associated

with our 2-D, cylindrical geometric spreading of the wavefronts. Finally, this algorithm

allows unrestricted interaction of the full wave field with the free-surface, while many other

algorithms exclude upgoing waves from the source and free-surface reflections.

Computationally the pseudospectral method excels at simulating seismic wave propa-

gation with very low numerical dispersion for relatively coarse grid spacing. However, the

computational cost of running the code is fairly high due to the multiple fourier transforms

of the wavefield at every time step, and using periodic and anti-periodic cancellation of the

wrap-around wavefield doubles it. The current variable grid implementation of this code

with periodic boundary conditions runs at our local Linux cluster on 16 two-processor nodes

for around twelve hours in order to calculate 1638 seconds of P-SV wave propagation (the

SH code runs on 8 two-processor nodes for a slightly shorter time to calculate the same

time span of wave propagation). This must then be doubled in order to run the version

of the code with the anti-periodic boundary conditions, so that the wrap-around wavefield

may be averaged out.

Despite these costs and compromises, the global pseudospectral algorithm presented

here provides a useful and reliable way to forward model seismic wave propagation through

complex 2-D Earth structures. Those complex 2-D structures are inaccessible to popular

1-D modeling approaches, and the results are produced with lower computational costs

and higher frequencies than are currently available from the 3-D spectral element method.

While this algorithm is not the final word in forward modeling global seismic wave propa-

gation through complex Earth structure, it is a useful intermediate step between the easily

calculated 1-D methods of the past and the very computationally intensive 3-D methods of

the future.
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Chapter 5

SKS and SPdKS Sensitivity to

Two-dimensional Ultra-low

Velocity Zones

Abstract Seismic wave propagation through two-dimensional core-mantle boundary (CMB)

ultralow velocity zones (ULVZs) is modeled using a global pseudospectral algorithm. Syn-

thetic seismograms are constructed for several types of ULVZ models, focusing on SKS and

the related SPdKS / SKPdS phase which results from the intersection of the SKS wave with

the CMB at the ScP critical incidence angle. One-dimensional (1-D) models with sharp and

gradational upper boundaries and one-sided two-dimensional (2-D) models with different

quasi-1-D CMB structures on the source and receiver sides of the CMB are run to provide

a baseline for comparison of other 2-D models. Finite width 2-D ULVZ models are used

to test the sensitivity of the SPdKS travel time and waveform to different portions of the

P-diffracted portion of the wavepath and to explore the minimum width necessary for a

ULVZ to produce observable changes in SPdKS. We find that ULVZs narrower than 100

km will not produce observable changes or delays in the SPdKS waveform. Our results give

four tools useful for identifying and characterizing 2-D ULVZ structures, all most useful if

array data in something resembling a 2-D geometry is available. First, dual SPdKS pulses

on a seismogram indicate exposure to at least two different CMB velocity structures. If the

two SPdKS pulses are similar in amplitude, they may indicate different quasi-1-D velocity

structures on the source and receiver-side CMB. If the first pulse is PREM-like and signif-
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icantly smaller than the second ULVZ-like SPdKS, it may indicate Pdiff inception outside

of and propagation into a ULVZ. Second, a strong SKS precursor probably indicates a very

“strong” (thick and/or large velocity-perturbations) ULVZ. If the precursor is similar in

amplitude to the SKS pulse, it indicates similarly strong ULVZ structure on both source

and receiver-side CMB regions, and if the precursor is smaller than the SKS pulse, it may

indicate a ULVZ on only the source or receiver side of the CMB. The absence of SKS pre-

cursors in most previous ULVZ studies indicates that very strong, sharp ULVZs are not very

common. Third, while ULVZ models based on SPdKS travel times are highly non-unique,

we present a graph of mean SPdKS delays relative to PREM which provides constraints on

minimum ULVZ strength and width combinations required to produce a given travel time

delay. Finally, tracing SPdKS arrivals back to the inception epicentral distance on seismic

sections may offer an independent tool for identifying P-velocity perturbations at the base

of the mantle. Combining all of this with other CMB-sensitive phases (especially ScS, PcP,

and ScP precursors and postcursors) may provide the best constraints on fine-scale CMB

structure.

5.1 Introduction

The boundary between Earth’s liquid, mostly-iron outer core and its solid silicate mantle

spans contrasts in density, chemical composition, and viscosity as great as those found

at the surface of the Earth between the solid crust and the fluid ocean and atmosphere

[Jeanloz and Williams, 1998]. At the Earth’s surface, we observe that the contrast in

physical, chemical, and thermal states leads to many interesting dynamic processes, from

plate tectonics and its associated mountain building and subduction to weathering and

erosion. These processes in turn lead to interesting structure and heterogeneity at spatial

scales ranging from the continent-ocean dichotomy to basin and range features to erosion-

created fractal drainage basin structures. This complexity of the Earth’s surface leads to

speculation on what analogous complexity may exist at the Earth’s core-mantle boundary

(CMB).

Large-scale (hundreds to thousands of kilometers) structures probably related to mantle

downwelling (subduction) and upwelling (the Pacific and African “super-plumes”) have been

observed at the bottom of the mantle using seismic tomography [van der Hilst et al., 1998;
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Grand , 2002; Trampert and van der Hilst , 2005] and have been inferred from geodynamic

models of mantle convection [Tackley , 1998; Tackley et al., 2005; van Thienen et al., 2005].

Very small-scale (micrometers to millimeters) compositional variation near the CMB may

be probed by mineral physics using high-pressure, laser-heated diamond cells [Knittle, 1998;

Murakami et al., 2004; Shim, 2005] or theoretical calculations [Wentzcovitch et al., 1995;

Bukowinski and Akber-Knutson, 2005]. The intermediate spatial scales are studied using a

variety of seismic tools. Together, these approaches hint at complex structures at the CMB

[Garnero, 2004].

Here we focus on ultra-low velocity zones (ULVZs): thin regions of mantle just above

some portions of the CMB which are characterized by large P and S-wave velocity reduc-

tions. There are several proposed explanations for low velocities in ULVZs. Probably the

most often-quoted hypothesis is the presence of partial melt [Williams and Garnero, 1996;

Revenaugh and Meyer , 1997; Helmberger et al., 1998; Vidale and Hedlin, 1998; Williams

et al., 1998; Zerr et al., 1998; Berryman, 2000; Wen, 2000; Ross et al., 2004]. However, vari-

ations in chemical composition on the mantle side of the CMB [Manga and Jeanloz , 1996;

Stutzmann et al., 2000], “sediments” of finite rigidity collecting on the top of the outer

core [Buffett et al., 2000; Rost and Revenaugh, 2001], and a gradient in the mantle-core

transition (rather than the traditional sharp CMB) [Garnero and Jeanloz , 2000a, b] have

also been proposed, singly and in combination. Most recently, Mao et al. [2006] proposed

that iron enrichment in the newly discovered post-perovskite phase [Murakami et al., 2004]

might account for ULVZs.

There are several seismic phases which are very sensitive to CMB structure and have

been used to test many areas of the CMB for the presence of ULVZs (well summarized by

Thorne and Garnero [2004]). They include precursors and postcursors in stacks of short

period and broad band ScP [Vidale and Benz , 1992; Garnero and Vidale, 1999; Castle and

van der Hilst , 2000; Reasoner and Revenaugh, 2000; Persh et al., 2001; Rost and Revenaugh,

2001, 2003], ScS [Avants et al., 2006], and PcP [Mori and Helmberger , 1995; Kohler et al.,

1997; Revenaugh and Meyer , 1997; Havens and Revenaugh, 2001; Persh et al., 2001; Ross

et al., 2004]; scattered precursors to PKP [Vidale and Hedlin, 1998; Wen and Helmberger ,

1998a; Thomas et al., 1999; Wen, 2000; Ni and Helmberger , 2001; Niu and Wen, 2001],

and SKS [Stutzmann et al., 2000]; and travel time and waveform anomalies in PKPdf and

PKPbc [Helmberger et al., 2000], PKPab-PKPdf [Ni and Helmberger , 2001], and various
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combinations of ScS-S, SKS-S, PcP-P, SHdiff, Pdiff, and SKS [Wen, 2001; Simmons and

Grand , 2002; Ni and Helmberger , 2003].

This project focuses on SPdKS / SKPdS (Figure 4-1), a phase which is derived from an

SKS wave that intersects the CMB at the ray parameter for which there is a complex pole

in the mantle S to core K transmission coefficient; this results in a diffracted P-wave (Pdiff,

or Pd) traveling along the mantle side of the CMB on either the source (SPdKS) or receiver

(SKPdS) side of the path [Choy , 1977]. (Henceforth we refer to both the source-side SPdKS

and the receiver-side SKPdS as “SPdKS”.) Because the mantle paths of SKS and SPdKS are

nearly identical, comparison of these two phases allows isolation of travel time and waveform

effects of CMB structure. Short and long-period SPdKS have been used to search for and

characterize ULVZs on the CMB under the Pacific Ocean, North America, Iceland, Africa,

the Atlantic Ocean, and the Indian Ocean [Garnero et al., 1993; Garnero and Helmberger ,

1995, 1996; Helmberger et al., 1996; Garnero and Helmberger , 1998; Helmberger et al., 1998;

Wen and Helmberger , 1998b; Helmberger et al., 2000; Rondenay and Fischer , 2003; Thorne

and Garnero, 2004].

Most previous studies applied 1-D modeling approaches to characterizing the ULVZ

layer. However, there are limitations to the constraints SPdKS alone can provide on ULVZ

structure. The non-uniqueness of 1-D ULVZ models and the trade-offs between the layer

thickness, velocity perturbations, and density perturbations in controlling SPdKS delay time

and amplitude have been well documented [Garnero and Helmberger , 1998; Garnero et al.,

1998; Garnero and Jeanloz , 2000a]. Additionally, the best-fitting 1-D ULVZ structures for

earthquake-station pairs with very similar SPdKS CMB paths are often quite different; later

we present an example where two SPdKS paths are separated by less than 50 km and yet

one is best modeled by PREM and the other by fairly strong velocity perturbations from

PREM [Thorne and Garnero, 2004]. The complexity of these results indicates that the

assumptions underlying the use of 1-D modeling are not always valid.

Two previous studies modeled the seismic effects of 2-D ULVZ structures. Helmberger

et al. [1996] modeled SPdKS waveforms due to 2-D CMB structure with the Cagniard-de

Hoop method by combining different 1-D source and receiver-side CMB structures, in the

form of different source and receiver-side transmission and reflection coefficients. Wen and

Helmberger [1998b] combined generalized ray theory solutions, finite-difference calculations,

WKB, and Kirchhoff theory to model wave propagation through a variety of dome and
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box-shaped 2-D ULVZ structures on the CMB. We introduce a new approach to modeling

seismic wave propagation through 2-D ULVZ models, the pseudospectral method [Fornberg ,

1988, 1996], which combines the flexibility of arbitrarily complex velocity structures with

the simplicity of a single numerical approach.

While the 2-D global pseudospectral method offers the opportunity to investigate many

interesting questions, in this paper we focus on three main points of inquiry. First, does

the presence of different quasi-1-D structures on the source and receiver side of the SPdKS

path produce useful “fingerprints” in the observed waveforms? Second, which part of the

Pdiff section of the SPdKS propagation path has the most influence on the SPdKS travel

time and waveform – the inception point, the point at which it exits into the core, or the

middle of the path? Finally, how wide must a 2-D finite-width ULVZ be in order to produce

measurable SPdKS delays relative to PREM?

5.2 Pseudospectral Wave Propagation Modeling

Global seismic wave propagation through 1-D and 2-D ULVZs is modeled using a cylindrical

pseudospectral algorithm (see Chapter 4). The pseudospectral method is distinguished by

its use of Fourier transforms to estimate the spatial derivatives in the elastic equations and

the equations of motion as the wavefield is stepped forward through time. It can be thought

of as the high accuracy limit of the finite difference method, and is advantageous because

this approach results in very low numerical dispersion [Fornberg , 1988; Kosloff and Kessler ,

1990; Fornberg , 1996; Furumura et al., 1998; Cormier , 2000].

A gaussian source-time function with a standard deviation of 0.6 seconds is added to the

horizontal component of the velocity at the source node, 500 km below the surface of the

Earth. Synthetic seismograms are produced by reading out the velocity wavefields at given

surface nodes every 0.2 s. A line-source to point-source correction is applied to the output

seismograms for better comparison between the 2-D geometry of the pseudospectral model

space and the 3-D geometry of the Earth. The output seismograms are also converted from

velocity to displacement.

We use the SPdKS-SKS delay time as the main parameter for characterizing ULVZ

structure. While differences in SKS and SPdKS waveform shape and amplitude are also of

interest, they are more difficult to quantify and are complicated in our synthetic seismo-
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grams by the presence of upper mantle multiple phases (sPPP, pPPP, PPPP, etc.) which

interfere with the SKS and SPdKS arrivals in the epicentral distance range of interest. The

epicentral distance at which SPdKS first appears in the synthetic seismograms and the ab-

solute moveout of the SPdKS phase are also useful for characterizing ULVZ velocities, but

these parameters are less readily observable on seismograms from single stations or arrays

which are not aligned along the event-station great-circle path. In addition, referencing the

SPdKS travel times to the SKS travel times removes most influence of the mantle and core

portions of the wave propagation path and allows us to focus on the influence of the CMB

portion of the SPdKS path.

In order to more quantitatively compare the SPdKS arrivals resulting from different ve-

locity models, we used the following processing steps. First, the SKS arrivals were automat-

ically picked, starting with the SKS predicted travel time from the TauP toolkit [Crotwell

et al., 1999] and finding the appropriate zero crossing near that prediction. Second, SKS

was eliminated from the section using principal component analysis (PCA) [Rondenay and

Fischer , 2003], and on some sections PCA was also used to eliminate some of the upper

mantle multiple phases which cross SKS and SPdKS in the epicentral range of interest.

However, sometimes the PCA introduced more waveform anomalies than it usefully elim-

inated and we therefore restricted its use. Finally, SPdKS arrival times were hand picked

on all sections.

5.3 Pdiff Inception Point Location

In order to create 2-D ULVZ velocity models to explore the properties of SPdKS, we need

to understand where the Pdiff inception is expected to occur on the CMB. As Choy [1977]

described and Garnero et al. [1993] and Helmberger et al. [1996] elaborated upon, there

is a particular ray parameter, pincep, for which a complex pole exists in the mantle S to

core K transmission coefficients and S-wave energy incident on the CMB is converted to a

diffracted P-wave traveling along the mantle-side of the core-mantle boundary. We use the

TauP Toolkit [Crotwell et al., 1999] to calculate where that critical point of Pdiff inception

occurs along the SPd(iff)KS and SKPd(iff)S paths for a suite of one-dimensional ULVZ and

PREM velocity models.

The inception slowness for a given velocity model is calculated with the simple formula
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pincep = RCMB/VP where VP is the P-wave velocity on the mantle side of the CMB. This

parameter has values ranging from 253.7 s/rad (4.43 s/◦) for PREM to 281.9 s/rad (4.92

s/◦) for a 10% P-wave velocity reduction at the base of the mantle. The slowness associated

with SKS arriving at a range of epicentral distances (90◦ to 131◦, at 1◦ increments) was

calculated using the taup time module. The output of these calculations was interpolated

to find the inception epicentral distance, ∆incep, for which the SKS arrival had slowness

pincep. The inception epicentral distance was then used with taup pierce to find the point

at which an SKS ray of inception slowness pierces the CMB on the source and receiver sides

of the SKS path. We call these piercing points the Pdiff inception points.

Table 5.1 shows the results of these calculations for multiple ULVZ models and the

PREM standard earth model. ULVZ models are designated as follows:

ULVZ {a}km {1D/grad} {b}P {c}S where {a} gives the thickness of the 1-D ULVZ layer,

{1D/grad} denotes whether the layer has constant or gradational P and S velocity per-

turbations within that layer, and {b} and {c} give the percent P and S-wave low velocity

perturbations, respectively. Velocity models with “1D” in the name have the same P and

S-velocity perturbations relative to PREM from the top of the ULVZ layer to the CMB.

Gradient models are as described in section 5.4.1.

Two factors control the inception epicentral distance and the position of the inception

point along the SKS ray path in this calculation. The mantle-side P-wave velocity at the

CMB controls the inception slowness directly. Then the integrated effect of the height of

the velocity anomaly and magnitude of the S-velocity perturbations controls the amount of

deflection the mantle S-wave experiences in the ULVZ and therefore the location at which

the ray path for a given inception slowness pierces the CMB, and the epicentral distance at

which that ray reaches a receiver on the surface. When the inception distance (∆incep) is

plotted against the P-velocity perturbation for all models in Table 5.1, it becomes clear that

the control of the P-velocity on the inception slowness is the dominant factor influencing

the epicentral distance at which SPdKS should be first observed (Figure 5-1).

These results imply that if it were possible to trace back the SPdKS branch and deter-

mine the inception epicentral distance using array data covering a useful range of epicentral

distances (95 - 130 degrees), this would give an independent constraint on the P-velocity

perturbation at the base of the mantle, since ∆incep and the Pdiff inception point are both

much more sensitive to changes in the inception slowness than to changes in the thickness
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Figure 5-1: SPdKS Pdiff inception epicentral distance, ∆incep, plotted against P-velocity
perturbation for all the models presented in Table 5.1.
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and S-velocity structure of the ULVZ. However, this scenario may be less applicable to

real, finite-frequency waves for which the single inception point of ray theory becomes a

frequency dependent shift in the value of the S to K transmission coefficient over a more

dispersed set of wavenumbers [Choy , 1977], even for relatively simple 1-D ULVZ models.

5.4 Ultra-low Velocity Zone Models

5.4.1 Velocity Models

All velocity, density, and attenuation Earth models (henceforth referred to as simply “veloc-

ity models”) presented in this paper are based on the one-dimensional isotropic Preliminary

Earth Reference Model (PREM) [Dziewonski and Anderson, 1981]. However, the crust and

ocean layers of PREM are replaced by mantle parameters for the following combination

of reasons. The low velocity crust and ocean layers occur in the portion of the grid space

with the greatest lateral grid spacing and therefore would limit the frequency content of

the whole model. In addition the 1-D approximations of PREM are probably least valid for

the crust and ocean layers, which are highly variable in the real Earth. And finally, for the

SKS and SPdKS seismic phases modeled here, the paths through the crust and mantle are

nearly identical and any differences in Earth structure along those paths cancel out when

we consider the difference between those two phases. The substitution of mantle for crust

and ocean therefore increases the frequency content of our results with no negative effects

on our ability to study the sensitivity of these seismic waves to CMB structure.

“Ultralow Velocity Zones” (ULVZs) are created by multiplying the 1-D PREM P and

S-wave velocities by a 2-D matrix of perturbation factors in the region of interest just above

the CMB. We ran the pseudospectral seismic wave propagation code on four sets of ULVZ

models, with a total of sixty-three different models. All used P:S velocity perturbation

ratios of 1:3 as suggested by Williams and Garnero [1996] for core-mantle boundary velocity

reductions related to the presence of partial melt. Williams and Garnero [1996] arrived at

this ratio by modeling elastic properties of two-phase aggregates of mantle silicate and melt

at CMB conditions and finding the range of silicate melt volume fractions which could cause

a 10% P-velocity decrease (<5 to 30% melt fraction, depending on aspect ratio of the fluid

geometry in the solid-liquid aggregate). They then found that this range of melt fractions

would cause a ∼30% S-velocity decrease, roughly independent of melt geometry.
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One-dimensional models

Nine one-dimensional models were run. The first is PREM, which is used as a baseline

for comparing the synthetic seismograms produced by all other models. The other eight

(Figure 5-2a) contain ULVZs of varying heights (40 km, 20 km, 10 km, and 5 km), varying

velocity perturbations (10% P-velocity and 30% S-velocity decreases or 5% P-velocity and

15% S-velocity decreases), and in two cases, varying vertical gradients in velocity perturba-

tion at the top of the model. These 1-D models gave us a basis for comparison with other

1-D modeling results and with our 2-D ULVZ models.

If ULVZs are the result of partial melting or some other interaction between the geotherm

and the chemical composition of the lower mantle rocks, a gradational “fuziness” of the

ULVZ upper boundary might be expected. In contrast, if ULVZs are related to a phase

change over a fairly small pressure (and therefore, depth) range, similar to the upper man-

tle discontinuities, a much sharper ULVZ upper boundary might be expected. We test

whether SKS and SPdKS waveforms would be sensitive to the difference between “sharp”

and “fuzzy” ULVZ upper boundaries using two models with vertical gradients in ULVZ

velocity perturbations. The “full gradient” model has a linear increase in the velocity per-

turbations from 0 at 40 km above the CMB to 10% P and 30% S perturbations at the CMB.

The “half gradient” model has a similar linear increase in velocity perturbations from 0 at

40 km above the CMB to the full 10% P and 30% S velocity perturbations 20 km above

the CMB, and then constant 10% P and 30% S velocity perturbations down to the CMB.

One-sided ULVZ models

The second class of velocity models (Figure 5-2b and c) feature a simple ULVZ with constant

velocity perturbations on either the source or the receiver side of the core mantle boundary

region. The CMB region on the other side of the SKS ray path has PREM velocities.

Each ULVZ has 10% P and 30% S-velocity perturbations and is 40 km, 20 km, 10 km, or

5 km thick. A smooth cosine horizontal gradient transitions between the ULVZ velocity

perturbations and the PREM velocity model halfway between the source and the receivers

(at an epicentral distance of 54◦) with a half-width of 10◦ (600 km). These represent the

simplest possible 2-D ULVZ models and also form a useful comparison set for narrower

“finite-width” 2-D models.
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Figure 5-2: Illustrations of various ultra-low velocity zone model configurations. Dark gray
line shows SPdKS ray path on the source side of the CMB. Light shaded patch shows
approximate ULVZ geometry, with exaggerated vertical dimensions. (a) 1-D ULVZ models.
(b) Source-sided ULVZ models. (c) Receiver-side ULVZ models. Finite-width ULVZ models
centered on (d) the Pdiff inception point, (e) the middle portion of the P diffracted path,
or (f) the Pdiff exit point into the core; and (g) Finite width ULVZ models centered on the
Pdiff inception point with varying widths.
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Pdiff path sensitivity models

The third class of ULVZs is designed to test the sensitivity of the SPdKS phase to the

different portions of the P-diffracted section of the ray path along the CMB. There are

three subsets of these models, each of which is constructed with thicknesses of either 20 km

or 40 km and P-velocity perturbations of either 5% or 10%, with corresponding S-velocity

perturbations of 15% or 30%. All models have a 0.5◦ (∼ 30 km) wide smooth cosine lateral

transition between ULVZ velocities and PREM velocities and sharp upper boundaries.

The “inception point” ULVZ models (Figure 5-2d) have a finite width which begins 2.5◦

(∼150 km) before the predicted source-side Pdiff inception point for the relevant ULVZ

velocity model (thereby also including the PREM inception point) and extend to 1.5◦ (∼90

km) beyond the ULVZ inception point (Table 5.1). “Core exit” ULVZ models (Figure 5-2f)

are placed to begin 1.5◦ before the core entry point for SPdKS arriving at an epicentral

distance of 110◦ and to end 1.5◦ after the core entry point for SPdKS arriving at an epicentral

distance of 120◦, giving them a total width of 13◦ (∼780 km). “Middle” ULVZ models

(Figure 5-2e) are placed to begin 2◦ beyond the Pdiff inception point for a 1-D version of

the ULVZ in question and to end 2◦ before the Pdiff core entry point for an SPdKS arriving

at an 110◦ epicentral distance, which results in a width of 6◦ (∼360 km).

Inception point sensitivity models

The fourth class of velocity models is designed to explore how wide a simple, finite width

ULVZ centered on the Pdiff inception point must be to produce detectable effects on the

SPdKS arrival times and waveforms (Figure 5-2g). The parameter space explored includes

ULVZ heights of 5 km, 10 km, 20 km, or 40 km above the CMB, all with 10% P and 30%

S-velocity reductions. The lateral extent of the ULVZ has a value of 10 km, 20 km, 30 km,

60 km, 120 km, 240 km, 480 km, 960 km, or 1920 km (0.16◦, 0.33◦, 0.5◦, 1◦, 2◦, 4◦, 8◦, 16◦,

or 32◦ at the CMB) centered on the Pdiff inception point. Each model has sharp upper

boundaries and sharp lateral edges.

129



5.5 Results

5.5.1 1-D Modeling Results

Synthetic seismograms produced by running the pseudospectral seismic wave propagation

code through the PREM and 1-D ultra-low velocity zone models described in section 5.4.1

are presented in Figure 5-3 plots a, c, g, and i. The SKS and SPdKS arrival times from

pseudospectral PREM synthetics (Figure 5-3k) are plotted on these seismic sections for

comparison.

A primary observation from Figure 5-3a is that very thick, strong ULVZs (in this case,

40 km-thick with 10% P and 30% S-velocity reductions) have strong effects on the SKS

waveform as well as the SPdKS arrival time. In this case, the SKS peak is split into two

peaks of quasi-equal amplitude, one of which arrives at the PREM SKS travel time and

one of which arrives 5–6 s later. This travel time separation is well modeled by an S to

P conversion at the top of the ULVZ using the full wave theory [Cormier and Richards,

1988]. The second of the “SKS” peaks is therefore the true SKS and the first peak is a

phase we will call SULV ZpKS (following the convention of Ward [1978]), where ULVZ may

be replaced with the depth of the top of the ULVZ.

As the strength of the ULVZ decreases with either thinner ULVZs or smaller velocity

reductions (Figure 5-3c,g, and i) the travel time separation between SULV ZpKS and SKS

narrows and the SKS pulse returns to a very PREM-like shape and arrival time. Stutzmann

et al. [2000] predicted SULV ZpKS–SKS travel time separations of 3.6 s, 2.3 s, and 1.3 s for

10% P and 30% S-velocity perturbations in layers of 30 km, 20 km, and 10 km thickness,

which agrees well with the modeling here. They used the lack of observed SKS precursors

in a data set with SPdKS paths sampling the southwest Pacific CMB to place upper limits

on the possible ULVZ strength in that region.

Figure 5-4a shows the SPdKS travel times for each 1-D model relative to the SKS

travel time for that model. Figure 5-4b shows the difference between SPdKS travel times

for each ULVZ model and SPdKS travel times for PREM, as well as the mean SPdKS

travel time delay relative to PREM. It is clear from a comparison of the mean SPdKS de-

lays in Figure 5-4b that very similar results are produced for the ULVZ 40km 1D 5P 15S,

ULVZ 20km 1D 10P 30S, and ULVZ fullgrad 10P 30S (linear gradient from zero pertur-

bation at the top of the 40 km layer to full perturbation at the bottom of the layer).
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Figure 5-3: Synthetic seismograms produced by running the pseudospectral seismic wave
propagation code on the 1-D, 10% P and 30% S-velocity reduction ULVZ velocity models
(section 5.4.1 and Figure 5-2a), the source-side ULVZ velocity models (sections 5.4.1 and
Figure 5-2b), and PREM [Dziewonski and Anderson, 1981]. The solid blue line shows the
PREM SKS arrival and the solid red line shows the PREM SPdKS arrival. On 1-D ULVZ
plots, the solid green line shows the SPdKS picks for that model. On the one-sided ULVZ
plots, dashed red lines show the SPdKS picks for the one-sided model and the solid green
line repeats the SPdKS for the equivalent 1-D model. Cyan, yellow, and magenta dashed
lines show the predicted travel times of sPPP, PPPP, and pPPP, respectively.
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Figure 5-3 (continued)
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Likewise, the mean SPdKS delay is almost the same for the ULVZ 20km 1D 5P 15S and

ULVZ 10km 1D 10P 30S models.

These similarities in mean SPdKS delays between different models point to two aspects

of the non-uniqueness of ULVZ modeling. First, there is a clear tradeoff between ULVZ

layer thickness and velocity and density perturbations, which has been documented before

[Helmberger et al., 1996; Garnero and Helmberger , 1998; Garnero et al., 1998; Garnero and

Jeanloz , 2000a]; it is reassuring to see that our modeling produces similar results. Second,

there is also non-uniqueness with respect to vertical variations in ULVZ properties.

The SPdKS traveltime delay due to a linear gradient in velocity perturbations over

thickness h (Figure 5-3e) seems to be equivalent to that of a simple homogenous layer with

a sharp upper boundary and the full velocity perturbation over thickness h/2 (Figure 5-

3c). At the wavelengths under consideration for SKS and SPdKS here, the travel times

are sensitive to the average vertical properties of the ULVZ and are largely insensitive to

details of the vertical velocity structure. There are slight differences between the SKS

and SPdKS waveforms produced with sharp versus gradational upper boundaries; however,

they are not detectable using the SPdKS-SKS travel time delay metric which we use here.

For this reason, the rest of the models presented here have simple vertical velocity profiles

corresponding to constant velocity perturbations on PREM.

We parameterize the ULVZ “strength” as the product of the ULVZ effective thickness,

h (km), and the P-velocity perturbation at the base of the ULVZ, dVp (%). Figure 5-5

shows the linear least-squares fit of the SPdKS delays relative to PREM, dt, and their

corresponding ULVZ “strength”. This reduction of 9 seismic sections of 35 traces each

to 8 mean SPdKS relative delay times and then to 2 polynomial parameters suggests the

ability to constrain some combination of ULVZ properties from the SPdKS travel time

delays. If our h*dVp parameterization of ULVZ “strength” captured all the relevant ULVZ

properties, we would expect the intercept of the dt = f(h*dVp) equation to be zero. As

our fit is instead dt = 0.019 h*dVp + 0.81, it suggests that almost a whole second of

SPdKS delay is unaccounted for in our current parameterization. This may suggest the

need to include the S-velocity and density perturbations in a more complete measure of

ULVZ “strength”.
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Figure 5-4: SPdKS travel time picks from 1-D models. a) SPdKS travel time picks relative
to the SKS travel times for each model. b) SPdKS travel time picks relative to the SPdKS
travel time for PREM. Dotted lines show the mean SPdKS travel time delay relative to
PREM for each model; this value is plotted in Figure 5-5.
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Figure 5-5: Relationship between ULVZ “strength” and the mean SPdKS delay relative
to the SPdKS travel time in PREM, dt. The ULVZ “strength” is parameterized as the
thickness of the ULVZ, h, times the P-velocity perturbation at the base of the ULVZ, dVp.
For the 40 km-thick “fullgrad” model the effective thickness is taken to be 20 km. For the
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mean SPdKS delays from Figure 5-4b and line shows the linear fit to those points given by
the equation for dt.
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5.5.2 One-Sided ULVZ Results

We model seismic wave propagation through ULVZ models which perturbed only the source

or the receiver side of the CMB (Figure 5-2b and c), and SPdKS picks from both sets of

models are presented in Figure 5-6, however we plot only the source-side synthetic seismo-

grams in Figure 5-3 as they are identical to the receiver-side synthetic seismograms. This

ambiguity between SPdKS signals due to source and receiver side CMB velocity structure is

well discussed by Garnero and Helmberger [1995], who point out that the “SPdKS” phase is

actually the combination of an infinite set of raypaths which sample both sides of the CMB

in various proportions; the SPdKS and SKPdS rays pictured in Figure 4-1 which sample

only the source or the receiver side of the CMB are actually just end members of a spectrum

of raypaths that contribute to the observed SPdKS signal on a seismic trace.

Comparing the synthetic seismograms in Figure 5-3g to Figure 5-3h and Figure 5-3i to

Figure 5-3j, we see that the 1-D and one-sided SPdKS travel times for thin ULVZs are the

same within picking errors (∼0.5 s), while still being measurably slower than the PREM

SPdKS travel times (∼1–3 s). This is confirmed by directly comparing the SPdKS picks

in Figure 5-6b. Examining the SPdKS waveforms in those same figures, it seems that the

SPdKS pulse in the one-sided ULVZ synthetics is narrower than that in the 1-D 5 km and

10 km models. This is counter-intuitive, as it might be expected that the two-dimensional

model with different velocity structures on the source and receiver side would have more

complex SPdKS waveforms.

For the strongest ULVZ we model (40 km thick with 10% P and 30% S-velocity per-

turbations), we observe two important differences between the 1-D and one-sided ULVZ

models (Figure 5-3a and b). First, the one-sided ULVZ model has two distinct arrivals with

SPdKS moveout (dashed red lines in Figure 5-3b). The first of these has the same delay

relative to the one-sided SULV ZpKS arrival time as the singular SPdKS arrival in the 1-D

synthetics (Figure 5-6a). The second SPdKS-moveout arrives ∼5.6 s later than the first. It

is perhaps not a coincidence that this is the same travel time separation predicted for SKS

- SULV ZpKS by the full wave theory. Two SPdKS pulses are expected for a model with two

different CMB velocity structures on the SPdKS / SKPdS path with different expected ray

parameters for Pdiff inception [Helmberger et al., 1996]. However, since one of those two

CMB velocity structures is PREM, it is also expected that one of SPdKS arrivals in the
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Figure 5-6: SPdKS travel time picks from one-sided ULVZ models. a) SPdKS travel time
picks relative to the SKS travel time for each model. Black symbols and lines show PREM
and the 40 km-thick 1-D ULVZ for comparison. b) SPdKS travel time picks relative to the
SPdKS travel time for PREM. Colored dotted lines show the mean SPdKS delay relative to
PREM for the source-side models and colored dash-dot lines show the mean value for the
receiver-side models. Black lines show mean SPdKS delay relative to PREM for the 1-D
5km, 10km, 20km, and 40 km 10%P 30§-velocity perturbation models from Figure 5-4.
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one-sided synthetics would correspond to that modeled for PREM. Instead, we find that

one SPdKS pulse corresponds to that observed for an equivalent 1-D ULVZ model and the

other comes in ∼12 s after the PREM SPdKS arrival.

The second observation from comparison of the 1-D and one-sided 40 km-thick ULVZ

synthetic seismograms has to do with the SKS waveform. While the one-sided model shows

a similar splitting of the SKS waveform through the appearance of the SULV ZpKS precursor

as observed in the 1-D synthetics, there are two important differences. First, for the one-

sided synthetics, the SULV ZpKS / SKS amplitude ratio is ∼0.6–0.9, similar to that predicted

by Stutzmann et al. [2000], while for the 1-D synthetics the ratio is ∼1.2. Second, the series

of SULV ZpKS, SKS, and SPdKS pulses arrives ∼2 s earlier in the one-sided models, which

is clear given their position relative to the PREM SKS arrival times in Figures 5-3a and

b. This slightly earlier arrival means that the first one-sided SPdKS arrival comes in a few

seconds earlier than the 1-D SPdKS arrival relative to the PREM SPdKS (Figure 5-6b)

even though they have the same delay relative to the SULV ZpKS of their own models.

The 20 km-thick one-sided ULVZ models (Figure 5-3d) result in synthetic seismograms

with intermediate properties. Their SPdKS arrival times are similar to those observed

for the equivalent 20 km-thick 1-D model. They have more complicated SKS waveforms

than the 5 and 10 km-thick models, but not as distinctly split as the 40 km-thick model.

Whatever processes cause the SKS split in the very strong ULVZ are probably occurring in

this half-as-strong ULVZ, but are more compressed in travel time and therefore less distinct.

5.5.3 Pdiff Path Sensitivity

The synthetic seismograms modeled in this section test whether the SPdKS waveforms

recorded at the surface are more sensitive to the velocity structure of the CMB at the Pdiff

inception point, the Pdiff core entry point, or the middle of the Pdiff path between those

two points.

Synthetic seismograms generated by propagating seismic waves through the finite width

“inception point” ULVZ models described in section 5.4.1 are shown in Figure 5-7, and

SPdKS picks from those seismograms are presented in Figure 5-8. The 20 km-thick models

and the 40 km-thick 5% P 15% S-velocity perturbation models all show negligible deviations

from PREM SKS and SPdKS travel times. The “strongest” ULVZ model, the 40 km-thick,

10% P and 30% S-velocity perturbation model, shows SPdKS arrivals at the same travel
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time as the equivalent “one-sided” ULVZ model for epicentral distances between 107◦ and

110◦ and then transitions back to the travel times similar to PREM SPdKS between 110◦

and 115◦. These results for ∼240 km wide ULVZs led us to pose the question: How wide

does a ULVZ need to be in order to produce significant deviations in SPdKS travel time

from PREM? We attempt to answer this question in the next section.

Synthetic seismograms for the “core exit” finite width ULVZ models described in sec-

tion 5.4.1 are shown in Figure 5-9 and SPdKS picks from these seismograms are presented

in Figure 5-10. The SPdKS travel times in these models are identical to PREM, and the

waveforms look very similar from model to model. The presence of a ULVZ around the area

in which the P diffracted energy enters the core has no measurable effects on the SPdKS

arrival in our models.

Synthetic seismograms for the “middle” finite width ULVZ models described in sec-

tion 5.4.1 (Figure 5-2e) are shown in Figure 5-11 and SPdKS picks from these seismograms

are presented in Figure 5-12. The 20 km-thick and 40 km-thick ULVZ models with 5%

P-velocity perturbations (Figure 5-11a and c) show SPdKS arrival times fairly similar to

PREM, but with somewhat wider pulses. The 20 km-thick and 40 km-thick ULVZ models

with 10% P-velocity perturbations (Figure 5-11b and d) show something more interesting

– dual SPdKS arrivals. A first, smaller pulse arrives at a travel time only slightly delayed

relative to PREM (∼1.5–2 s) and a second, larger pulse is delayed ∼6.5 seconds relative

to PREM SPdKS between 105◦ and 120◦. This second apparently converges with the first

pulse between 120◦ and 125◦, although this convergence may be a picking artifact. This

∼6.5 s delay of the second pulse at epicentral distances smaller than 120◦ is approximately

the same travel time delay as the first SPdKS pulse observed on the equivalent one-sided

ULVZ models.

These “middle” models show the SPdKS phase propagating through them to be more

sensitive to the P-velocity perturbation than the thickness of the layer (Figure 5-12). This

may reflect that the ray parameter of the Pdiff wave is being reset as it propagates horizon-

tally along the CMB from its inception point in the PREM area outside the ULVZ through

the region with reduced velocities. This is similar to the observation by Wysession et al.

[1999] that apparent slownesses for the Sdiff and Pdiff phases are a function of the mean

velocity at the base of the mantle.
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Figure 5-7: Synthetic seismograms for first set of finite width inception models. Blue line
shows SKS picks from PREM pseudospectral synthetic seismograms. Solid red line shows
PREM SPdKS picks. Dashed red line shows SPdKS picks for this model. Solid magenta
lines show SPdKS picks for equivalent (same height and velocity perturbations) one-sided
ULVZ model. Dashed cyan, yellow, and magenta lines show travel time predictions for
sPPP, PPPP, and pPPP, respectively.
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Figure 5-8: SPdKS travel time picks from the first set of finite width inception models
(Figure 5-7). a) SPdKS travel time picks relative to the SKS travel time for each model.
Black symbols and lines show PREM for comparison. b) SPdKS travel time picks relative
to the SPdKS travel time for PREM (solid lines and circles). Colored dotted lines show the
mean SPdKS delay relative to PREM for the inception models. Black dashed lines show
mean SPdKS delay relative to PREM for the one-sided 10 km, 20 km, and 40 km 10%P
and 30§-velocity perturbation models from Figure 5-6.
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Figure 5-9: Synthetic seismograms for finite width “core exit” models. Blue line shows
SKS picks from PREM pseudospectral synthetic seismograms. Solid red line shows PREM
SPdKS picks. Dashed red line shows SPdKS picks for this model. Solid magenta lines show
SPdKS picks for equivalent one-sided ULVZ model. Dashed cyan, yellow, and magenta lines
show travel time predictions for sPPP, PPPP, and pPPP, respectively.
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Figure 5-10: SPdKS travel time picks from the finite width “core exit” ULVZ models
(Figure 5-9). a) SPdKS travel time picks relative to the SKS travel time for each model.
Black symbols and lines show PREM for comparison. b) SPdKS travel time picks relative
to the SPdKS travel time for PREM (solid lines and circles). Colored dotted lines show the
mean SPdKS delay relative to PREM for the “core exit” ULVZ models. Black lines show
mean SPdKS delay relative to PREM for the one-sided 10 km, 20 km, and 40 km 10%P
and 30§-velocity perturbation models from Figure 5-6.
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Figure 5-11: Synthetic seismograms for finite width “middle” models (Figure 5-2e). Blue
line shows SKS picks from PREM pseudospectral synthetic seismograms. Solid red line
shows PREM SPdKS picks. Dashed red line shows SPdKS picks for this model. Solid ma-
genta lines show SPdKS picks for equivalent one-sided ULVZ model. Dashed cyan, yellow,
and magenta lines show travel time predictions for sPPP, PPPP, and pPPP, respectively.
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Figure 5-12: SPdKS travel time picks from the finite width “middle” ULVZ models (Fig-
ure 5-11). a) SPdKS travel time picks relative to the SKS travel time for each model. Black
symbols and lines show PREM for comparison. b) SPdKS travel time picks relative to the
SPdKS travel time for PREM (solid lines and circles). Colored dotted lines show the mean
SPdKS delay relative to PREM for the “middle” ULVZ models. Black dashed lines show
mean SPdKS delay relative to PREM for the one-sided 10 km, 20 km, and 40 km 10%P
and 30§-velocity perturbation models from Figure 5-6.

145



5.5.4 Inception Point Sensitivity

The results for the 240 km-wide “inception point” models presented in section 5.5.3 lead us

to explore how the sensitivity of SPdKS to ULVZs might depend on the width of a ULVZ

centered on the Pdiff inception point. Synthetic seismograms from the inception ULVZ

models described in section 5.4.1 are shown in Figures 5-13 through 5-16. The seismograms

for the 10 km, 20 km, and 30 km-wide ULVZs are omitted as they are visually identical to

PREM for all ULVZ thicknesses.

We calculate the mean SPdKS delay relative to PREM for all inception point sensitivity

models. The results from these thirty-six models are summarized in Figure 5-17. They show

that SPdKS travel times have no measurable sensitivity to ULVZs narrower than ∼100 km.

The SPdKS traveltimes are slightly delayed for ULVZ widths between 100 and 500 km,

with greater delays for stronger (thicker / larger velocity perturbation) ULVZs. And for

ULVZ widths on the order of 1000 km or greater, the SPdKS arrivals are the same as the

equivalent one-sided models. Figure 5-17 provides constraints on the combination of ULVZ

thickness, P-velocity perturbation, and width that could cause a given SPdKS delay relative

to PREM.

The set of mean SPdKS delays versus ULVZ strength can be fit with a line for each

ULVZ width, and the slope of that line can be used as a proxy for the sensitivity of SPdKS

to ULVZs of a given width (Figure 5-18). These slopes capture the limited sensitivity of

SPdKS to 100–500 km-wide ULVZs and the full sensitivity to ULVZs with width of 1000 km

or greater. It would be useful to compare these values with other estimates of the volume

sensitivity or Fresnel zone of SPdKS at the CMB. However, directly calculating the Fresnel

zone at the CMB for SPdKS is difficult due to the non-ray theoretical nature of this seismic

phase. Published estimates for Fresnel zone dimensions at the CMB for related seismic

phases are similar to our requirements for full ULVZ sensitivity: Tkalcic and Romanowicz

[2002] estimate a 480 km Fresnel zone width for PcP at 1 Hz and an epicentral distance of

70◦; Thomas et al. [2004] estimate a 220 km by 400 km Fresnel zone for SdS (the reflection

from the top of the D” discontinuity) for a dominant period of 6 s; and Braña and Helffrich

[2004] quote a ∼400 x 400 km Fresnel zone for PcP at the core mantle boundary. All of

these are slightly smaller than the 500–1000 km width we require to achieve “full ULVZ

sensitivity” in our results, but this difference is probably because these phases are higher
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Figure 5-13: Synthetic seismograms for 5 km-thick, varying width ULVZ inception models.
Blue line shows SKS picks from PREM pseudospectral synthetic seismograms. Solid red line
shows PREM SPdKS picks. Dashed red line shows SPdKS picks for this model. Solid ma-
genta lines show SPdKS picks for equivalent one-sided ULVZ model. Dashed cyan, yellow,
and magenta lines show travel time predictions for sPPP, PPPP, and pPPP, respectively.
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Figure 5-14: Synthetic seismograms for 10 km-thick, varying width ULVZ inception models.
Blue line shows SKS picks from PREM pseudospectral synthetic seismograms. Solid red line
shows PREM SPdKS picks. Dashed red line shows SPdKS picks for this model. Solid ma-
genta lines show SPdKS picks for equivalent one-sided ULVZ model. Dashed cyan, yellow,
and magenta lines show travel time predictions for sPPP, PPPP, and pPPP, respectively.
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Figure 5-15: Synthetic seismograms for 20 km-thick, varying width ULVZ inception models.
Blue line shows SKS picks from PREM pseudospectral synthetic seismograms. Solid red line
shows PREM SPdKS picks. Dashed red line shows SPdKS picks for this model. Solid ma-
genta lines show SPdKS picks for equivalent one-sided ULVZ model. Dashed cyan, yellow,
and magenta lines show travel time predictions for sPPP, PPPP, and pPPP, respectively.
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Figure 5-16: Synthetic seismograms for 40 km-thick, varying width ULVZ inception models.
Blue line shows SKS picks from PREM pseudospectral synthetic seismograms. Solid red line
shows PREM SPdKS picks. Dashed red line shows SPdKS picks for this model. Solid ma-
genta lines show SPdKS picks for equivalent one-sided ULVZ model. Dashed cyan, yellow,
and magenta lines show travel time predictions for sPPP, PPPP, and pPPP, respectively.
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Figure 5-17: SPdKS delay versus ULVZ strength for various ULVZ widths. Solid black line
and black stars are for 1-D models as in Figure 5-5. Dashed black line and black circles are
for the one-sided models, and colored line are as labeled.
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Figure 5-18: Slopes of 1-D fits to inception model results from Figure 5-17 versus ULVZ
width. This slope, while having no physical meaning, is a reasonable proxy for SPdKS
sensitivity to ULVZs of a given finite width centered on the Pdiff inception point.

frequency and / or have shorter ray path lengths than the SPdKS waves we model here.

The 20 and 40 km-thick synthetic seismograms also show two interesting secondary

features. The 1920 km-wide models (Figures 5-15f and 5-16f) show a third SPdKS-moveout

event arriving 21 - 22 s after the PREM SPdKS. Figure 5-15d-f and Figure 5-16a-d have an

SKS post-cursor developing at epicentral distances greater than ∼120◦. These phases are

currently unexplained, although the SKS postcursor may be related to the development of

the “split SKS” arrival due to the S to P conversion at the top of the strong ULVZs.
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5.6 Discussion

5.6.1 2-D ULVZ Signatures

Given the above modeling results, the following signatures of 2-D ULVZ structures might

be found in real seismograms. The presence of more than one SPdKS-moveout event is

diagnostic of SKS exposure to more than one CMB P-velocity structure. The relative

amplitude of the different SPdKS arrivals may offer clues to the relative exposure of the

Pdiff phase to each velocity structure. One-sided ULVZ models with PREM on the other

side of the SPdKS path can produce two SPdKS paths with relatively equal amplitudes.

ULVZ models placed so that Pdiff inception occurs just outside them with the Pdiff then

propagating through the ULVZ result in a low amplitude PREM-travel time SPdKS arrival

and a higher amplitude ULVZ-travel time SPdKS arrival. In addition, if the multiple

SPdKS arrivals can be traced back to their inception epicentral distance, that distance may

characterize the P-velocities at the base of the mantle.

If the ULVZ is strong enough to produce an SULV ZpKS converted phase with a mea-

surable separation from the SKS arrival, then the relative amplitudes of those two phases

may be diagnostic for 1-D versus one-sided ULVZ structure. However, such SKS precursors

have not been commonly observed in previous ULVZ studies. The lack of SULV ZpKS ob-

servations in data might be attributed to a gradational, non-sharp ULVZ upper boundary.

However, our 1-D ULVZ results indicate that vertical gradients in ULVZ velocity pertur-

bations produce SKS waveforms and precursors very similar to those produced by ULVZs

with sharp upper boundaries and equivalent combinations of height and average velocity

perturbations. If a strong SKS precursor were observed in data, it might be the result of S

splitting due to general anisotropy rather than an S to P conversion at the top of a ULVZ;

it should be possible to distinguish these two models based on whether the SKS precursor

travel time and amplitude and the SPdKS travel time and amplitude perturbations point

towards similar ULVZ properties. The usual absence of such strong SKS precursors in data

indicates that very strong (≥300 km%) ULVZs are not common on the CMB.

We do not find any way of distinguishing strong but narrow (less than 1000 km wide)

ULVZs from weaker but wider ULVZs using only the SPdKS travel time delay. The ULVZ

width thus becomes another of the parameters in the non-unique ULVZ modeling space

which may be traded off against layer thickness, velocity perturbations, and density pertur-
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bations. However, the SPdKS travel time delay does impose constraints on the minimum

combinations of ULVZ strength and width which are required, and these constraints are

more restrictive for larger SPdKS travel time delays. Most minimally, any observable SPdKS

delay indicates a ULVZ width of at least 100 km.

5.6.2 Data and the Real Earth

Thorne and Garnero [2004] have made their extensive collection of SPdKS seismograms

available online (http://ulvz.asu.edu/). They compiled this data set from publicly available

data at the Incorporated Research Institutions for Seismology Data Management Center

(IRIS DMC), the Observatories and Research Facilities for European Seismology (ORFEUS)

Data Center (ODC), and the Canadian National Seismic Network (CNSN). They chose

events with depths greater than 100 km and moment magnitudes greater than 6.0, and

then selected seismograms with clearly distinguishable SKS arrivals. The seismograms for

each event-station pair were instrument deconvolved to displacement, bandpass filtered with

a window of 0.01 to 1.0 Hz, rotated to great circle path radial and transverse components,

and resampled at 10 Hz. A 400 s window of the radial component, roughly centered on

the SKS arrival, is available for each of the 443 records Thorne and Garnero [2004] used in

their study.

Because we model the effect of 2-D structural features on synthetic seismograms in

linear arrays implicitly aligned with the event–station great circle paths, the series of ten

seismograms presented in Figure 5-19 is a good subset of the Thorne and Garnero [2004]

data for comparison with our results. The earthquake source is an August 14, 1995 event

with a moment magnitude of 6.3 and a depth of 126 km, located near Papua New Guinea.

The event was recorded at ten stations in the MoMa (Missouri to Massachusetts) linear

array [Wysession et al., 1996] with epicentral distances between 115.6◦ and 125.8◦.

Figure 5-20 shows the expected source-side and receiver-side Pdiff portions of the SPdKS

paths for the traces in Figure 5-19, overlaid on a lower mantle slice from a 3-D S-velocity

model [Grand , 2002]. While the MoMa array was not aligned exactly with the great circle

path of these event-station pairs, it is close enough that the source-side SPdKS paths are

only separated laterally by a ∼3◦ (∼180 km). The receiver-side SPdKS paths are more

dispersed (∼10◦ lateral spacing).

Previous studies [Thorne and Garnero, 2004; Rondenay and Fischer , 2003; Garnero
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Figure 5-19: Data section for August 14, 1995 earthquake with a moment magnitude of
6.3 and a depth of 126 km, located near Papua New Guinea and recorded at ten stations
in the MoMa array [Thorne and Garnero, 2004]. Left section shows data aligned on SKS
picks. Right section shows same data but with SKS picks (blue), SPdKS picks (green and
magenta), and PREM predicted SPdKS relative to observed SKS arrivals (red line).
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Figure 5-20: Location of the event (yellow star) and receivers (black triangle) for the seis-
mograms shown in Figure 5-19, as well as the expected SPdKS source-side (cyan lines) and
receiver-side (magenta lines) sampling regions on the CMB plotted on the 2800-km deep
slice of the 3-D mantle shear wave model of Grand [2002].
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Table 5.2: Best fitting 1-D models [Thorne and Garnero, 2004] for each of the individual
traces in Figure 5-19. ULVZ = ultra-low velocity zone, CRZ = core-rigidity zone (small finite
rigidity at top of outer core), CMTZ = core-mantle transition zone (linear gradient between
lower mantle properties and upper outer core properties). PREM-like results indicates that
the best fitting models are PREM and thin (≤ 10 km) “ULVZs” with density perturbations
but no velocity perturbations.

Station ∆ (◦) Best-fitting CMB Models

MM17 115.6 PREM-like
MM12 118.8 PREM
MM11 119.6 CRZ or strong ULVZ
MM10 120.1 CRZ, CMTZ, or strong ULVZ
MM09 120.8 PREM-like
MM08 121.5 thin ULVZ with 1:1 VP :VS perturbations
MM06 122.7 PREM-like
MM05 123.4 PREM
MM02 125.2 PREM
MM01 125.8 thin ULVZ with 1:1 VP :VS perturbations

et al., 1998] have consistently detected ULVZs in the Pacific region sampled by the source-

side paths of these events; results for the CMB under the portion of North America sampled

by these receiver-side paths are more ambiguous. Three-dimensional shear velocity mod-

els of the lower mantle from global travel time tomography [Grand et al., 1997; Masters

et al., 2000; Mégnin and Romanowicz , 2000; Gu et al., 2001; Masters et al., 2000; Rit-

sema and van Heijst , 2000; Grand , 2002] show higher velocities in the region sampled by

the receiver-side paths and low velocities in the region sampled by the source-side paths

(http://mahi.ucsd.edu/Gabi/rem.html). These two lines of evidence hint that a one-sided

ULVZ model might be appropriate for the data presented here.

Thorne and Garnero [2004] individually compared each of the traces in Figure 5-19 to

1-D reflectivity synthetics [Fuchs and Müller , 1971; Müller , 1985] for a variety of CMB

boundary layer models. Table 5.2 shows the best fitting 1D models for each of these traces.

Six of the ten traces are fit best by PREM and PREM-like models (thin “ULVZs” with

density perturbations but no velocity perturbations). Two are fit best by thin (h ≤ 10 km)

ULVZs with 1:1 VP :VS perturbation ratios. And two are fit best by models incorporating

fairly strong ULVZs, core-rigidity zones (CRZs), or core-mantle transition zones (CMTZs).

This is a lot of variety for ten paths which nearly overlap for much of their sampling of the

CMB, especially along the source-side Pdiff path where ULVZs are most likely to exist.

If instead we look at the ten traces together and compare them to the various 2-D
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modeling results presented in section 5.5, we notice that the SPdKS arrival in Figure 5-19

actually seems to have two pulses. The first is very close to that predicted for PREM,

while the second is ∼3.5 s delayed relative to PREM SPdKS. The SPdKS energy which

arrives at the time predicted for PREM may indicate Pdiff inception outside the ULVZ and

then propagation into the ULVZ as in the “middle” models presented in section 5.5.3. If

instead the PREM-arrival time SPdKS is due to receiver-side structure, as suggested by

Figure 5-20, then looking up this 3.5 s relative delay of the second SPdKS on Figure 5-17

imposes some minimum constraints on the source-side ULVZ: it can have a minimum ULVZ

strength (height multiplied by P-velocity perturbation) of ∼130 km% if the ULVZ is very

wide (1000 km or greater). Based on SPdKS delay alone, it can also have greater ULVZ

strength for narrower ULVZ models, however it requires very strong ULVZs (greater than

400 km%) in order for ULVZs with widths smaller than ∼500 km to produce a large enough

SPdKS travel time delay. Following Stutzmann et al. [2000], we note that the lack of a

strong SULV ZpKS in Figure 5-19 indicates that the ULVZ is probably not as strong as 400

km% and therefore is probably wider than 500 km.

An attempt to extrapolate the second set of SPdKS picks in Figure 5-19 back to the

SKS picks gives an estimated inception epicentral distance of 105.9◦, which is very close to

the 106.1◦ we model for PREM (Table 5.1). This may be because the second SPdKS peak

seems stronger for larger epicentral distances in this section, which might indicate support

for the hypothesis that the Pdiff portion of the SPdKS path has its inception outside the

ULVZ and then travels into it.

To further examine our hypotheses about the origin of the dual SPdKS signal, in Fig-

ure 5-21 we plot the source-side SPdKS paths on several different S-velocity tomography

models of the lower mantle (2800 km depth, compiled at

http://mahi.ucsd.edu/Gabi/rem.html) [Grand et al., 1997; Masters et al., 2000; Mégnin

and Romanowicz , 2000; Gu et al., 2001; Masters et al., 2000; Ritsema and van Heijst , 2000;

Grand , 2002]. While these tomography models are generally consistent for large-scale fea-

tures (all have slow S-velocities in the southwest Pacific), the details of the models can

differ significantly. In general, the Pdiff paths seem to have inception points in higher am-

plitude portions of the slow S-wave features and to propagate outward into lower-amplitude

regions, which may lend more support to constraining the ULVZ parameters by comparing

the second SPdKS travel time delay to the models of finite width ULVZs centered on the
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Pdiff inception point.

5.6.3 Implications for Data Collection and Analysis

We have seen that multiple SPdKS arrivals may be a powerful tool for identifying 2-D (and,

by extension, 3-D) ULVZ velocity structures. However the identification of a wiggle on a

seismogram as a second or third SPdKS arrival is virtually impossible using travel times

from a single trace; it is the moveout of an event over a range of epicentral distances that

is diagnostic of the SPdKS. If 2-D and 3-D modeling of seismic wave propagation through

more complex ULVZ structures is to be of use in understanding CMB structure in the real

world, the collection and creative exploitation of 2-D and 3-D array data sets with relatively

dense station spacing (on the order of 1◦) in a useful epicentral distance range (100–130◦)

from many large, deep events will be required.

The synthetic seismograms in this paper also show that for strong ULVZs the typical

first step of SPdKS data analysis, aligning data traces on “the SKS arrival”, may be easier

said than done. The S to P conversion at the top of strong ULVZs and other complexities

of the SKS interaction with the anomalous layer can be seen in various SKS precursors and

postcursors in our synthetic sections. For the strongest ULVZ models we study here, the

precursors and postcursors can be picked separately from the true SKS arrival, and for the

weakest models the separation between these phases is so small that the simple SKS pulse

is unaffected. However, for models of intermediate strength there is too little separation to

easily isolate the SKS pulse and too much separation for the pick of the first arrival to be

accurately used as a measure of SKS travel time.

For this reason, all “SPdKS mean delay” results presented here are inherently calcu-

lated with respect to the SKS travel time in PREM rather than the measured SKS travel

time for each model. While it might seem more correct to use (SPdKSULV Z - SKSULV Z)

- (SPdKSPREM - SKSPREM ) as the measure of relative SPdKS delay, the difficulty of cor-

rectly determining the travel time of SKSULV Z for some of our models made (SPdKSULV Z

- SKSPREM ) - (SPdKSPREM - SKSPREM ) = (SPdKSULV Z - SPdKSPREM ) a more robust

measure of SPdKS delay.

5.6.4 Comparison with Other 2D Modeling of ULVZs

Helmberger et al. [1996] used generalized ray synthetics to study the effect of one-sided
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Figure 5-21: Location of the event (yellow star) and the expected SPdKS source-side paths
(black lines) for the seismograms shown in Figure 5-19 overlaid on the 2800-km deep slice of
the 3-D mantle shear wave models of a) Mégnin and Romanowicz [2000], b) Masters et al.
[2000], c) Ritsema and van Heijst [2000], d) Gu et al. [2001], e) Grand [2002], all compiled
at the Reference Earth Model website (http://mahi.ucsd.edu/Gabi/rem.html). Grid line
are drawn every 10◦ (∼ 600 km).
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ULVZ models on SPdKS. They established the presence of two SPdKS diffraction events

in their synthetic seismograms, each corresponding to the Pdiff inception slowness of one

side of the model, with greater separation between the two arrivals for larger P-velocity

perturbations at the base of the mantle. They also modeled the P to S conversion at the

top of a ULVZ layer and the response of a PP bounce within the layer. Their results seem

consistent with the one-sided results presented in section 5.5.2, as expected from other

comparisons of generalized ray and pseudospectral synthetics [Ni et al., 2003]. However,

the generalized ray synthetics are limited to quasi-1-D models on each side of the CMB and

therefore cannot explore the finite width effects we present here.

Wen and Helmberger [1998b] used a hybrid method to model 2-D ULVZ structures: they

coupled downgoing generalized ray theory solutions from a seismic source to finite difference

modeling of the CMB region of interest, and used the Kirchhoff method to couple the

outgoing wavefield from the finite difference region to receivers on the Earth’s surface using

WKB Green’s functions. They studied ULVZ structures with dome and boxcar shapes,

and found that their effect on SKS and SPdKS waveforms was very dependent on the

ULVZ position on the CMB, which agrees with our results in section 5.5.3. They also

observed trade-offs between the ULVZ dimensions and velocity perturbations and found

that a minimum lateral dimension of 100 km was required to produce detectable changes

in the SKS - SPdKS waveforms, which is similar to the results in section 5.5.4. Finally,

they found noticeable differences in the broadband SKS and SPdKS waveforms produced

by the dome and box-car shaped ULVZs, although those differences were muted in long

period data. We do not have equivalent results, as we dealt with only boxcar type models.

Between them, Helmberger et al. [1996] and Wen and Helmberger [1998b] capture many

of the same fundamental observations about the effect of 2-D ULVZ structures on SKS -

SPdKS waveforms that we find in this work. This is reassuring, because the generalized ray,

hybrid, and pseudospectral methods used by these three projects to produce the synthetic

seismograms were all very different. Our results are distinguished by three unique results.

First, the observations of dual SPdKS for the finite-width ULVZ models which begin just

beyond the Pdiff inception point offer a glimpse at more complex aspects of the 2-D behavior

of SPdKS. Second, the production of Figure 5-17 offers a useful tool for examining the trade-

offs between different aspects of the ULVZ parameterization in a quantitative way. Third,

our approach provides a new, independent, and robust estimate of the spatial sensitivity of
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SPdKS at the CMB, something which can not be found in the literature to date.

5.6.5 Implications for ULVZ Hypotheses

In the introduction, several hypotheses for the origin of ULVZs on the CMB were men-

tioned: partial melt, chemical heterogeneity (due to subducted slabs or iron enrichment

from the core), phase transitions between perovskite and post-perovskite, and outer-core

“sediments” collecting on the CMB. Here we consider whether the results from this study

help to discriminate between these different theories of the origin of ULVZs.

The use of SPdKS alone can provide two constraints which may be useful in distinguish-

ing the possible causes of ULVZs. First, 2-D modeling provides limits on the horizontal spa-

tial scale over which the ULVZ originating process must be occurring. All processes which

create velocity anomalies detectable by SPdKS must occur on a lateral scale greater than

100 km, and if they create strong (greater than ∼3.5 s) SPdKS delays they are probably

more than 500 km across. (They may also occur on smaller length scales, but if they only

occur in zones narrower than 100 km, they will not produce detectable SPdKS anomalies.)

This may be a constraint useful in distinguishing between geodynamic models of ULVZ

formation. Second, we may be able to provide constraints on P-velocities at the base of the

mantle using the inception point for SPdKS events in a data section. For 2-D structures, the

difference between the inception epicentral distances for two SPdKS events may help pin

down the range of P-velocities to which the SPdKS wave is exposed. This may be useful in

distinguishing between different models of composition (iron or calcium or aluminum con-

tent in the magnesium silicate) and phase (perovskite versus post-perovskite versus partial

melt) at the base of the mantle.

Using SPdKS alone, we can provide direct constraints only on combinations of ULVZ

material properties (seismic velocities and density) and dimensions (thickness and lateral

dimensions). However, it may be possible to constrain individual material and dimensional

properties of ULVZs by incorporating more phases. For example, stacks of short period ScP,

ScS, and PcP precursors and postcursors can tease apart ULVZ thickness versus P-velocity,

S-velocity, and density perturbations [Rost and Revenaugh, 2003; Avants et al., 2006]. It

would be an interesting challenge in experiment design to create arrays of seismic receivers

which, given the Earth’s natural distribution of earthquake sources, would allow the same

patch of CMB to be sampled by multiple core-sensitive phases, for example, both SPdKS
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and ScP.

This leads to the question: what constraints on ULVZ origin would be offered by a

perfectly seismically constrained ULVZ with well determined thickness, lateral dimension,

shape, seismic velocities, attenuation, and densities? Can partial melting be distinguished

from iron-enriched post-perovskite or other chemical heterogeneities with perfect seismic

knowledge? A full investigation of this question is beyond the scope of this paper, but

Lay and Garnero [submitted] suggest that it is hard to seismically distinguish between

iron-enriched post-perovskite and partial melting as origins for ULVZs. For any given hy-

pothesis, it seems likely that the uncertainties in chemical composition, equations of state,

and thermal state of the CMB will combine to allow a range of viable ULVZ models which

would satisfy the seismic parameters. However, it is still useful to attempt to combine seis-

mic constraints with those from mineral physics, geochemistry, and geodynamics modeling

to narrow the range of possibilities.

5.6.6 Questions for Future Work

It would be useful to further study a few aspects of the model space explored here. First,

as the width of ULVZ models increases between 500 km and 1000 km, does the SPdKS

sensitivity increase smoothly or abruptly, and if abruptly, at what width? Second, how far

away can a ULVZ be from the inception point while still having an effect on the SPdKS?

In section 5.5.3 we see that the “middle” ULVZ models which begin 2.5◦ (∼150 km) away

from the Pdiff inception point produce SPdKS energy which is largely at the ULVZ SPdKS

arrival time while the “exit” models which begin 9◦ (∼540 km) after the Pdiff inception point

produce SPdKS energy exclusively at the PREM arrival time. Is the transition between

these two results smooth or abrupt, and if abrupt, at what distance does it occur? Third,

if the ULVZs centered on the inception points had smooth lateral decreases in the velocity

perturbations rather than sharp edges as described in section 5.4.1, would the associated

SPdKS phases change in amplitude due to decreased scattering?

The following unexplained features were observed in the synthetic seismograms for our

various models: the third SPdKS-moveout arrival in Figures 5-15f and 5-16f at travel times

21–22 s after PREM SPdKS; SKS post-cursors developing for epicentral distances greater

than ∼120◦ in Figure 5-15d-f and Figure 5-16a-d; the arrival of the second SPdKS arrival

in Figure 5-3b 5.6 s after the first SPdKS arrival rather than at PREM SPdKS travel

163



times. Future modeling should attempt to understand the appearance of all these phases

and whether they might be used in the analysis of data from the real Earth to further

understand ULVZs.

The global pseudospectral wave propagation method also offers the opportunity to model

the constraints on ULVZ structure that might be provided by the combination of multiple

seismic phases. It would be useful to examine the effect of the 2-D ULVZ models presented

here on ScP, ScS, ScP, and other CMB-sensitive phases. Are they sensitive to narrower

ULVZs than SPdKS? Are they sensitive to finite-width ULVZs offset from the core-reflection

point? If so, how far can the ULVZ be offset from the core-reflection point while still

resulting in measurable changes in the waveforms of these phases? How tightly can these

phases, in combination with SPdKS, constrain the thickness, velocity perturbations, and

lateral dimensions of ULVZs? And what configuration of seismometers would enable the

collection of data against which the results of these various models might be tested?

Finally, it would be possible to modify the pseudospectral code so that the grid nodes

follow curved ULVZ upper boundaries. This would enable the modeling of ULVZ topography

and shapes such as the domes modeled by Wen and Helmberger [1998b], which might allow

for better constraints on ULVZ shape than the simple ULVZ box models presented here.

5.7 Conclusions

Seismic wave propagation through two-dimensional core-mantle boundary (CMB) ultralow

velocity zones (ULVZs) is modeled using a global pseudospectral algorithm. Synthetic

seismograms are constructed for several types of ULVZ models, focusing on SKS and the

related SPdKS / SKPdS phase which results from the intersection of the SKS wave with the

CMB at the inception slowness. One-dimensional (1-D) models with sharp and gradational

upper boundaries and one-sided two-dimensional (2-D) models with different quasi-1-D

CMB structures on the source and receiver sides of the CMB are run to provide a baseline

for comparison of other 2-D models. Upper boundaries with linear gradients in velocity

perturbations result in waveforms and traveltimes very similar to models with sharp upper

boundaries, the full velocity perturbation throughout the layer, and half the height of the

linear gradient. P to S conversions at the top of the ULVZ result in the appearance of a

high amplitude SKS precursor in the synthetic seismograms, although only if the ULVZ
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is strong enough to produce an observable time separation between the two phases. The

absence of such SKS precursors in data indicates that ULVZs in the Earth are likely weaker

than 300 km%, where ULVZ strength is parameterized as the ULVZ thickness multiplied by

the average P-velocity perturbation. Different velocity structures on the source and receiver

sides of the CMB result in two SPdKS arrivals on the seismograms, one at the appropriate

travel time for each side of the model, however these are only observable if the velocity

structures are different enough to produce measurable travel time differences in the SPdKS

arrival.

Finite width 2-D ULVZ models are used to test the sensitivity of the SPdKS travel time

and waveform to different portions of the P-diffracted portion of the wavepath and to explore

the minimum width necessary for a ULVZ to produce observable changes in SPdKS. The

SPdKS traveltimes and waveforms are completely insensitive to ULVZ structures placed at

the exit points of Pdiff to the core for epicentral distances greater than 110◦. However, the

SPdKS traveltime and waveforms are strongly affected by 6◦-wide (∼360 km-wide) ULVZs

placed along the Pdiff path but 2◦ (∼120 km) beyond the Pdiff inception point. Finally,

sensitivity to a ULVZ centered on the Pdiff inception point is strongly dependent on the

width of the ULVZ. There is no sensitivity to ULVZs narrower than 100 km, a linear increase

in small SPdKS travel time delays for widths between 100 and 500 km, and the full SPdKS

observed for equivalent one-sided quasi-1-D models is observed for models with widths of

1000 km or greater. The non-uniqueness of small SPdKS travel time delays (≤1 s) for 1-D

models incorporating ULVZ thickness, velocity, and density perturbations must therefore

be extended to include ULVZ width.

Our results give four tools useful for identifying and characterizing 2-D ULVZ structures,

all most useful if array data in something resembling a 2-D geometry is available. First, dual

SPdKS pulses on a seismogram indicate exposure to at least two different CMB velocity

structures. If the two SPdKS pulses are similar in amplitude, they probably indicate dif-

ferent quasi-1-D velocity structures on the source and receiver-side CMB. If the first pulse

is PREM-like and significantly smaller than the second ULVZ-like SPdKS, it may indicate

Pdiff inception outside of and propagation into a ULVZ. Second, a strong SKS precursor

probably indicates a very strong ULVZ. If the precursor is similar in amplitude to the SKS

pulse, it indicates similarly strong ULVZ structure on both source and receiver-side CMB

regions, and if the precursor is smaller than the SKS pulse, it may indicate a ULVZ on
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only the source or receiver side of the CMB. Third, we present a graph of mean SPdKS

delays relative to PREM which provides constraints on minimum ULVZ strength and width

combinations required to produce a given travel time delay, which is more restrictive the

greater the delay. Finally, tracing SPdKS arrivals back to the inception epicentral distance

on seismic sections may offer an independent tool for identifying P-velocity perturbations

at the base of the mantle. Combining all of this with other CMB-sensitive phases (espe-

cially ScS, PcP, and ScP precursors and postcursors) may provide the best constraints on

fine-scale CMB structure.
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