
Ductile Fracture Modeling - Theory, Experimental Investigation

and Numerical Verification

by

Liang Xue

B.S. Mechanical Engineering, Shanghai Jiao Tong University, 1994
B.S. Computer Sciences, Shanghai Jiao Tong University, 1994

M.S. Mechanical Engineering, Shanghai Jiao Tong University, 1997
M.S. Ocean Engineering, Massachusetts Institute of Technology, 2003

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2007

@ Massachusetts Institute of Technology 2007. All rights reserved.

A u th or .........................................
Departhen.u of Mechanical Engineering

June 1, 2007

Certified by...............................................
Tomasz Wierzbicki

Professor, Applied Mechanics
Thesis Supervisor

Accepted by ...............

MASACUSETSINSl E=OF TECHNOLOGY

JUL 1 8 2007

LIBRARIES

..................... ....... ............. ........... ......
Lallit Anand

Chairman, Department Committee on Graduate Students



Ductile Fracture Modeling - Theory, Experimental
Investigation and Numerical Verification

by

Liang Xue

Submitted to the Department of Mechanical Engineering on February 15, 2007, in partial

fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical

Engineering

ABSTRACT
The fracture initiation in ductile materials is governed by the damaging process along

the plastic loading path. A new damage plasticity model for ductile fracture is proposed.
Experimental results show that fracture initiation in uncracked ductile solids is sensitive to
the hydrostatic pressure and is dependent on the Lode angle. The damage plasticity model is
established on a "cylindrical decomposition" system accounting for the pressure dependence,
Lode angle dependence and the non-linear damage rule. Two internal variables are adopted
to quantify the evolution of material properties. One is the plastic strain and the other is
so-called damage variable. The joint effects of pressure and Lode angle define a fracture
envelope in the principal stress space. Plastic deformation induced damage is expressed by
an integral of the damage rate measured at current loading and deformation status with
respect to the fracture envelope. A non-linear damage rule is proposed to characterize the
damage accumulation with respect to the plastic strain. Furthermore, a damage related
weakening factor is adopted to describe the material deterioration. Aluminum alloy 2024-
T351 is selected and a series of experiments have been conducted to determine the necessary
material parameters for the description of the mechanical and damage properties. The nu-
merical integration procedure is presented. The proposed model is numerically implemented
into an explicit code. Simulations were performed and- the results show good agreement
with the experimental data. Several representative load conditions are also modeled. These
simulations illustrate realistic crack patterns. In addition to the damage plasticity model,
the micro void shearing mechanism is also introduced into a Gurson-like material model.
Improved simulation results are shown.
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Chapter 1

Introduction

1.1 Background and motivations

The phenomenon of fracture occurs almost everywhere in our daily lives. Our China dishes break

into pieces when accidentally dropped on the floor. The pre-notched lid of a food can tears on

opening. Some of these instances are spontaneous and some others axe controlled by us.

We, human beings, never stop to investigate the nature. Instinctively, we are curious about

the formation of cracks and its propagation. The problem of the strength of materials has been

one of the most active scientific fields since the Industrial Revolution. However, the exploration of

fracture starts much earlier than the eighteenth century. Our ancestors, since Neolithic times, have

exploited fracture of stones to make sophisticated tools to serve their various needs. It is doubtful,

though, that they understood the mechanics and physics of fracture.

The Industrial Revolution promoted the research of strength of materials. Bulks of new mate-

rials were produced and used in various new applications. Among various materials, metals were

widely used to build bridges, ships, land vehicles, railways, air planes, buildings, artilleries and

various appliances. The strength and ductility of metals are greatly appreciated by the modern

civilization. However, it is also known that the strength of materials is not unlimited. When ex-

ceeding the load carrying capacity, materials fail by fracture. The exact failure modes may differ,

but the sequence of such devastating failures can often be illustratively sketched in Fig. 1.1.
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Figure 1.1: A hypothetical load displacement curve in tension.

Usually, the material displays some elasticity which is fully recoverable when the load is removed.

However, beyond a certain limit, often called the elastic limit, a part of deformation is unrecoverable.

This is called plasticity. Due to strain hardening, the plastic deformation is still stable until the

ultimate tensile strength (UTS) is hit. Beyond this peak loading, the deformation is unstable and

soon leads to fracture.

Fracture prediction in large-scaled structures that are subjected to extreme loading conditions

has been of utmost interest in the scientific and engineering community over the past century.

Theoreticians want to understand how the fracture phenomenon fits into the general theory of

continuum mechanics. Practitioners on the other hand want to solve industrial problems, such as

the sheet metal forming, the automotive crashworthiness, the ship grounding, etc. Both of the

theoreticians and practitioners have been the most active sources in the understanding related to

ductile fracture.

1.2 Research objectives

The term "ductile fracture" in literature is somewhat ambiguous and has roughly two meanings.

"Ductile fracture" is often referred to the void nucleation-growth-coalescence (VNGC) type of

fracture observed as opposite to the cleavage type of fracture. The fracture surface of this type of

failure is usually macroscopically rough; on the contrary, the fracture surface in a cleavage fracture

is relatively smooth and flat. In a more general sense, "ductile fracture" relates the scale of plasticity

2
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with respect to the scale of the structure and is not related to a specific type of fracture. "Ductile

fracture" refers to fractures where materials experience large plastic deformation and exhibit high

ductility in the concerned region where structural failure occurs. In the present research, the

broader sense of "ductile fracture" is used.

Various approaches have been proposed to describe the phenomenon of fracture. Such ap-

proaches include the concepts of the stress intensity factor, energy release rate, J-integral, meso-

scale void-nucleation-growth-coalescence models and continuum damage mechanics models etc. In

the present research, a macroscopic descriptive damage plasticity model is proposed. This model is

based on the cumulative-strain-damage method, which describes local damage accumulation rather

than using far-field stress and strain variables.

Typically, the problem of fracture initiation in large structures involves both material and ge-

ometrical non-linearities. Therefore, little can be done analytically and a numerical approach is

taken in most engineering applications. On the other hand, with the help of increasing compu-

tational power of modern computers, the nonlinear finite element codes are challenged to cope

with more complicated problems, such as fracture and fragmentation. A robust fracture prediction

model that is suitable for numerical implementation is de facto the strongest driving force in the

area of the fracture research. The challenges are three-fold: (1) the physical phenomenon of the

onset of fracture and crack propagation are not yet fully understood; (2) the fracture model must

be suitable for numerical implementation and (3) the model parameters should be convenient for

calibration.

The objective of the present thesis work is to develop a robust predictive method for crack

initiation and propagation in ductile solids. For that purpose, efforts are made to better understand

the fracture initiation on a theoretical basis. A new damage plasticity theory is proposed. This

theory explains well many existing experimental results and is further validated by a series of tests.

The numerical implementation has been performed and a series of numerical studies were conducted

to verify the proposed fracture model. In addition to the damage plasticity model, a parametric

study is carried out using a modified micro-mechanism based model, which will be shown later in

this thesis to posses some qualitatively improved feature compared to the existing damage models

and captures realistic modes of fracture.

A successful model depends on an understanding of the physical world upon which an idealized
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theory can be proposed. On the other end, the computer simulation is a powerful tool to verify

the model and to predict the real world in return. A sketch of this three-pole learning structure

is illustrated in Fig. 1.2. In the present study, an equal emphasis is given to three poles of the

learning triangle.

World,

Figure 1.2: The roles of physical world, abstract theory and computer simulation in understanding

the mechanism of fracture.

1.3 Scope of research

A damage plasticity model using local field variables such as the stress and strain is proposed.

Specifically, this theory is based on a structure of the so-called "cylindrical decomposition". The

functional forms of the constitutive equations are given. This new model is applied to predict the

entire range of elastic-plastic deformation up to fracture point. The damage plasticity algorithm

has been implemented into a commercial code - LS-DYNA, as a user-defined material subroutine.

The stress integration scheme is also presented.

Following the theoretical part, a combined experimental and numerical program is carried out

to verify and validate the proposed model. A material calibration procedure is shown and the

calibrated material constants are used in further calculations. A series of numerical simulations

illustrate the predictive capability of the present model. The predicted fracture patterns and load-

displacement characteristics are compared with experimental observations. Good agreement is

achieved.

In addition to the proposed macroscopic model, a modification to the microscopic Gurson model

is also made to include the damaging mechanism of void shearing. A parametric study is carried
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out to show qualitatively that this modification removes the shortcoming in predicting a simple

shear fracture when using a Gurson-based model. Moreover, the introduction of the void shearing

effect to the modified model shows more realistic fracture behavior of ductile metals due to the

incorporation of the Lode angle.

1.4 Outline of the thesis

The present thesis consists of thirteen chapters, an appendix and a bibliography of cited references.

The thesis is arranged mainly into two parts. The first part provides the theoretical background and

extends from Chapter 2 to Chapter 8. A new damage plasticity model is proposed. The second part

of the thesis from Chapter 9 to 12 details an experimental program and a numerical verification.

In conjunction to the macroscopic development, Chapter 12 describes a modified micro mechanical

model including void shearing. Below is a list of contents in each chapter.

Chapter 1 gives motivation, defines objectives and presents an outline of the thesis.

Chapter 2 provides a short history of strength of materials and an overview of the existing

fracture models.

Starting from Chapter 3, a new generic macroscopic model is presented based on the pressure

sensitivity, the Lode angle dependence, the damage evolution law and material weakening.

The concept of the damage evolution and associated material weakening is futher extended in

Chapter 4.

Chapter 5 describes the pressure sensitivity of ductile fracture using existing experimental

results.

Chapter 6 provides a phenomenological way to characterize the Lode angle dependence of ductile

fracture.

Chapter 7 gives the summary of the proposed damage plasticity model and a special case of

plane stress is analyzed.

Chapter 8 describes the elasto-plastic constitutive equations and the numerical integration pro-

cedure.

Chapter 9 describes the experimental program that is used to determine the material properties

for aluminum alloy 2024-T351.
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Chapter 10 shows the calibration procedure for the material constants for aluminum alloy 2024-

T351.

Chapter 11 presents a series of numerical simulations showing the predictive capability of the

proposed model. Several representative simulations show realistic results.

Chapter 12 describes a modification to the meso scale void nucleation growth and coalescence

model by introducing void shearing mechanism.

Chapter 13 concludes the present thesis, summarizes major results and suggests future research

topics.
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Chapter 2

A Brief Review of Existing Damage

and Fracture Criteria

Large amount of theoretical work in mechanics are based on the principal stress space. To facilitate

discussion on the damage and plasticity modeling technique, we start by a short description of the

principal stress space and the connection between the principal stress components and the stress

invariants.

2.1 Principal stress space

The state of the principal stresses can be geometrically represented by a vector in the three-

dimensional space where the principal stresses are taken as the Cartesian coordinates, as shown in

Fig. 2.1. The Cartesian principal space is reinterpreted identically in a cylindrical coordinate system

aligned with the hydrostatic axis on the same origin. The azimuth angle 0 in cylindrical system

is defined on the octahedral plane starting from a deviatoric axis. The z axis in the cylindrical

system is the triad axis, where the three principal stresses are equal.
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Figure 2.1: A representative sketch of the principal stress vector OA in the three-dimensional Carte-

sian system. The Cartesian description (Ui, O-2, 03) can be transferred to the cylindrical

coordinate system (p,0, o-eq).

The principal stress vector which represents the stress state (1, o-2, cT3 ) is shown in Fig. 2.1 as

OA. It can be readily decomposed into two component vectors, which are perpendicular to the

octahedral plane, i.e. 00', and in the octahedral plane, i.e. O'A. The vector 00' represents the

hydrostatic pressure and the vector O'A represents the deviatoric term. The magnitude of these

two vector components is linearly related to the hydrostatic pressure and the von Mises equivalent

stress, respectively, i.e.

100'1 = -V3p, and IO'Al = e3-Ue, (2.1)

where I - denotes the norm of the vector, p = - 1 (o-1 + o-2 + 93 ) is the hydrostatic pressure, and

-eq = (- 1 - + (- 2 - -3 ) + (- 3 - -1)2 is the von Mises equivalent stress.

The deviatoric stresses can be shown as the projection of the deviaotric principal stress on the

octahedral plane, as shown in Fig. 2.2.
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Figure 2.2: The von Mises stress and the deviatoric stresses on the octahedral plane.

The elevation angle #, i.e. the angle to the ir-plane, is related to the stress triaxiality. The

azimuth angle can be characterized by the Lode angle [5], as shown in Fig. 2.2, which is defined as

OL = tan'{t [2( S2- )- 1}- (2.2)
43 S1 - S3

The Lode angle is not defined on hydrostatic axis where s, = s3. It is widely used in the

granular material community and the influence of the Lode angle is often referred as the "Lode

angle dependence" [6]. In the present paper, the relative ratio of the deviatoric principal stress is

used to represent the azimuth angle 6, which is defined as the angle to the positive direction of the

s, axis, i.e. 01 in Fig. 2.2. The relative ratio of the principal deviatoric stress is defined as

S2 - 3
X = ,3 (2.3)

S-- S3

where s1 , s2 and s3 are the maximum, intermediate and minimum principal stresses respectively.

The azimuth angle 0 can be uniquely expressed in terms of the relative ratio of the principal

deviatoric stress, i.e.

0 = cot- or X = 2 . (2.4)
V3X 2 vr3cot + 1
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Let the second and third invariants for the deviatoric stress to be signified by

J2  = 2 (s+ s±+s ) 1
(2.5)

J 3  = S1S2S3-

which can be co-related with the azimuth angle by

cos39) 5"" J 27 J3cos (30) = (2.6)
2 / 2 eq

For each sextant of the octahedral plane, the azimuth angle 0 and the value 7 J can be

one-to-one mapped. It is also noted that

0 = 0L - (2-7)
6

2.2 A historical note on fracture

To gain perspective, we begin by reviewing the development of the theory of material strength in

some generality. In particular, we are interested in ductile materials, such as polycrystalline metals

and alloys. It is the purpose of this chapter to provide an overview of fracture models and related

issues. The review is brief and makes no attempt to be exhaustive.

People learned about fracture long before it became an active branch in the scientific field of

the strength of materials. It may be argued that the publishing of the Galileo's famous book "Two

New Sciences" marked the starting of the science of strength of materials, though our ancestors

have undoubtedly shown some sort of knowledge in earlier ages in their practice of tool-making and

tool-using [7]. It is worthwhile to list the early understandings in this area before we explore the

more advance later developments.

The first historically recorded study of fracture strength was made by Leonardo da Vinci (1452-

1519) on the tensile strength of short iron wire. One of the most important early works was carried

out by E. Mariotte (1620-1684) who was a court engineer for Louis XIV of France. He noted

that the pressurized vessels burst at a certain value of the circumferential stretch. He related the
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circumferential stretch to the increase of pressure. This observation led to the maximum strain and

maximum stress criterion, which are still in practice [8].

The real world is much more complicated than what a critical strain or stress criterion can

predict. The well-known maximum shear stress criterion, as known as Tresca's criterion was actually

introduced by Coulomb. Coulomb (1736-1806) showed the applicability of the maximum shear

stress as a failure criterion. He (1776) also noted that the strength in compression would be

enhanced due to internal friction along the shear plane. Mohr (1836-1918) provided a graphical

representation of the Coulomb theory [8]. The octahedral shear stress was also used as a failure

condition. This criterion was first introduced by Maxwell and later Huber (1904) [9], von Mises

(1913) and Hencky developed it independently. Beyond yielding point, the permanent plastic

deformation suggests some sort of damage have taken place in the micro structure of the material.

From von Mises or Tresca yield condition, yielding does not occur under pure hydrostatic tension

because the shape of the von Mises or Tresca yield surface does not touch the hydrostatic axis.

At a sufficiently high hydrostatic tension, the material may rupture before yielding occurs. The

Coulomb-Mohr yield criterion acknowledges the pressure dependence by using ot and o, to denote

the yield stress at simple tension and simple compression. The pressure effect on yielding for ductile

metals is often considered to be low and often neglected.

In the classical continuum mechanics, the material is considered homogeneous at a length scale

of structure level. This assumption breaks down at the micro scale where the size of grains and

particles become noneligible. In reality, second phase particles and inclusions are constantly found

in commercially available alloys, such as in carbon steel. The second phase particles are normally

harder than the base metal. Even under hydrostatic tension, higher microscopic stresses exist

around these particles. Therefore, micro plastic flow occurs and inhomogeneities arise.

In one way, the yielding to plasticity is the fracture to damage in the sense that the former is

often thought to be an abrupt event and the later to be progressive process. The yielding is the

beginning of the plastic flow and the fracture is the ultimate event for ductile damage accumulation.

An increasing effort has been devoted since 1960's to a more comprehensive understanding of

damage and fracture initiation. Ductile fracture criteria are proposed from different perspectives.

Among all the developments, the most influential factors introduced to the damage characterization

are the pressure dependence, the non-linear damage evolution and the damage induced weakening.
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In another word, the damage process is considered to be dependent on the first and second stress

invariants. Although pioneer study has shown some significance, an important factor which is often

missing is the dependence on the third stress invariant, i.e. the azimuth angle on an octahedral

plane. It will be demonstrate the ductile fracture is strongly influenced by the third stress invariant.

It is interesting to compare the developments in the yielding/plasticity and the fracture/damage

in the past 400 years. A sketch of historical developments and their time is shown in Fig. 2.3. The

development in different aspects of solid mechanics in understanding material strength is categorized

into nine columns. Constant values were first adopted for yielding and fracture. It followed by the

advances in the pressure dependence of yielding and fracture. Another important aspect is the

dependence of azimuth angle of the principal stresses. The azimuth angle is defined as the angle

of the projection of the principal stress vector on the ir-plane. The evolution laws of plasticity

and damage have been attracted much attention in the past century. Finally, the coupling of the

damage with yield condition completes the damage plasticity constitutive equations. In the present

thesis, we focus in the discussion of the damage evolution under arbitrary loading path and the

coupling of damage and yield condition. In view of the advances shown in Fig. 2.3, it is clear that

the azimuthal dependence of ductile fracture is the least studied topic in the history of mechanics.
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A history of strength of ductile materials
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Figure 2.3: A history of strength of ductile materials.

2.3 Damage plasticity

What happens beyond moderate plasticity?

Considering the solid material as a continuum, up to moderate plastic deformation, the mi-

crostructure of materials can be thought to be unchanged. By moderate plastic deformation, we

refer to a deformation state that the plastic strain is significantly greater than the elastic strain,

but much less than the fracture strain at the current pressure and the azimuth angle. For practical

purpose, classical plasticity theory is sufficient in dealing with many engineering applications. How-

ever, when deformation is beyond moderate plasticity, the changes in microstructure are no longer
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insignificant and should not be ignored. Indeed, such change plays an important role predicting

the ultimate fracture.

From experimental observations, the ductile failure of structures usually consists of three phases:

(a) accumulation of damage; (b) initiation of fracture; and (c) crack propagation. One way to

think of fracture initiation is to consider it as the result of the accumulation of the ductile plastic

damage [10; 11]. Microscopically, such damage associates with the void nucleation, growth and

coalescence, shear band movement and propagation of micro-cracks. Macroscopically, the degra-

dation of the material exhibits a decrease of the material stiffness, strength and a reduction of the

remaining ductility. These physical changes are often used as an indicator to predict the onset

of fracture, either based on the current value or in a cumulative fashion. In continuum damage

mechanics, the material deterioration is described by an internal variable - the so-called "dam-

age". It is argued that the damage is anisotropic and has to be modeled by a tensorial quantity

in general [12]. However, in many industrial applications, the damage is assumed as an isotropic

entity and is treated as a scalar. In many applications, the consideration of the isotropic damage

has often led to good predictions [11; 13]. Therefore, the damage is assumed in this thesis to

be a scalar quantity. Damage should be distinguished from the ductility or the fracture strain in

that damage is an internal quantity, which usually can not be measured directly. To utilize the

cumulative damage as a criterion to predict the onset of fracture, the relationship of damage with

respect to some measurable quantities has to be established. Damage models are proposed to link

the measurable field variables to the evolution of the damage process toward the fracture. Some of

these damage models can be found in [14]. For instance, [15] proposed the concept of effective load

carrying area to quantify the damage.

Two approaches are often used in the study of the nature and mechanical behavior of engineering

materials. One is the macroscopic approach in which the material is represented by its aggregate

response. The other approach is a microscopic approach in which the evolution of microscopic

structure of the material is used to model the global behavior of structures.

For small and moderate plasticity, the damage effect to the matrix strength curve is often neg-

ligible and, therefore, the material strength curve is assumed to be equal to the matrix strength

curve. The classic continuum mechanics assumes that there exists a one-to-one mapping from the

history of plastic strain to the yield strength. This type of plasticity has been practiced in many en-
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gineering applications. However, it is often not sufficient in dealing with large deflection problems in

many cases involving ductile fracture. When the plastic deformation is beyond moderate plasticity,

the damage effect on the material strength is profound. Such deterioration is often exaggerated by

the material weakening induced localization. Therefore, the damage and the plasticity are coupled

in the plastic loading paths and their joint effects have to be described in the constitutive model

in order to predict ductile fracture of metals.

2.4 Damage modeling approaches

Macroscopic models are constructed based on the macroscopic field variables. Such field variables

are components of the stress and strain tensors, their increments and sometimes temperature and

strain rate. It has been shown by various experiments that the damaging process that eventually

leads to fracture of material exhibits strong dependence on the loading history. Therefore, some

sort of damage variable has to be used to take into account the history effect.

Let us begin with some general comments on the methodologies of developing a macroscopic

fracture model. Various fracture models have been proposed to quantify the damage associated

with material deformation and are used to predict the fracture initiation, e.g. [3; 16-27).

Historically, many models consider the damaging process as being independent of the material

plasticity behavior. In other words, plasticity properties of the material do not change, as the

damage accumulates in the material volume. In these models, a separate damage variable is used

to count toward the initiation of fracture. Johnson-Cook model [3; 28] and Wilkins model [22]

are examples of such conventional continuum mechanical models. The advantage of these models

is that the damage evolution and the plasticity evolution are uncoupled in the stress integration

procedure. The disadvantage is that the fracture is modeled as a sudden drop of stress-strain

curve, where the mechanical response of the material is over simplified. As far as fracture mode

is concerned, these models often incorrectly predict the fracture modes due to the lack of damage

induced weakening and the unrealistic strengthening in the later stage of deformation.

On the other hand, the continuum damage mechanics considers the damage process is inherited

to the material strength. In continuum damage mechanics, the macroscopic behavior of solids is

separated from its matrix material. The fracture is modeled as a continuous degradation of the

matrix material. In this way, the material deterioration is modeled explicitly and the complete loss
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of the load carrying capacity occurs at the onset of fracture. More computational efforts are need

in this regard and will be discussed later.

Experimental results show that the fracture initiation of uncracked solids is sensitive to hydro-

static pressure and is dependent on the Lode angle. The hydrostatic tension speeds up both the

void nucleation-growth-coalescence process and the shear band slip movement; while the compres-

sive pressure slows down such actions. The Lode angle characterizes the deviatoric loading on a

hydrostatic plane in the principal stress space.

As the conventional J2 plasticity does not include damage and fracture, some sort of threshold

criteria may be used to describe the onset of fracture. In a more realistic fashion, an additional

damage variable is used to count toward fracture. In particular, this damage is directly linked

to the unrecoverable plastic strain (or in its rate form). This line of modeling approach is often

called the cumulative strain damage method. The material is considered to be homogenous and

the plastic deformation is incompressible. Acknowledging that the damage is associated with the

plastic deformation, damage plasticity models access the damage using an integral of a weighting

function with respect to the equivalent plastic strain and further incorporate the damage into the

yield condition. A weighting function describes how fast the damage accumulates at the current

combination of material damage and the loading condition. When the accumulated damage exceeds

a threshold value, the material is considered to fail.

Experimental work shows that the compressive pressure increases the ductility in many ductile

and brittle materials, such as metals [2; 29-36) and rocks [37-39]. Empirical equations have also

been proposed by many researchers.

Experimental results also show a strong dependence of fracture initiation on this azimuth angle

for some materials [2; 22; 26; 40-44]. Clausing[40] pointed out the distinct difference in the equiv-

alent fracture strain between the round bar (axial symmetry) and the flat grooved plates (plane

strain) from tests of several metals. Wilkins, et al.[22] proposed an empirical model based on the

stress asymmetry parameter.

The cumulative strain damage models assume that the damage toward eventual fracture is due

to the plastic deformation history of the material. For a given material, when the accumulated

damage exceeds a critical value, D, i.e.
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D > Dc,

the material is considered to be failed. The threshold of damage at which fracture occurs depends

for each material on the weighting function. Equation (2.8) can be normalized with respect to the

critical value Dc such that the critical value of the damage is unity. The fracture criterion of the

normalized cumulative strain damage model becomes

D = cf (field variables) dep = 1. (2.9)

where 6, is the critical value of equivalent plastic strain at fracture for the given loading path and

eP is the plastic strain. The integrand, the so-called weighting function of damage, is considered

as a function of the stress state, temperature, the strain rate, etc. In other words, the cumulative

strain damage model can be formally written as

D = j f (a, , T, i) dep. (2.10)

where o- and e are stress and strain tensor and T is the temperature. This line of research has

been pursued by many researchers. In the present paper, the discussion is focused on the effect of

the stress state on fracture. For thermal effects and strain rate effects, the readers are referred to

references cover the related topics, such as Johnson and Cook [3; 45]. Hence, the weighting function

reduces to the form of f (u-, e) from now on.

Let us consider a given triaxial stress state in the principal stress space. There is exactly

one deviatorically proportional loading path at the pressure and the azimuth angle of the given

stress state. The loci of ultimate fracture points from the exhaustive set of such deviatorically

proportional loading paths uniquely define a fracture envelope in the three-dimensional principal

stress space.

The exact configuration of the fracture envelope is defined by the combined effect of the hy-

drostatic pressure and the deviatoric state. It is postulated that their effects can be uncoupled.

A "six point star" is proposed to represent the Lode angle dependence on the strain plane with

its vertices pointing to the positive and negative directions of the three principal strain axes. The

three-dimensional representation of this fracture surface is a "blossom" aligned with the hydrostatic
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axis, where the three principal stresses are equal. The hydrostatic pressure governs the size of this

"six point star". The deviatoric state determines the exact fracture point on the "six point star".

The ratio of the minimum and the maximum radius on the "six point star" reflects the difference in

the fracture strain from generalized shear, generalized tension and generalized compression loading,

which is considered as a material property and is determined through experiments.

At an incremental level, the incremental stresses and the change of the configuration is governed

by the flow rule. The damage along the deviatorically proportional loading path is described by the

damage rule. One of the simplest form of the damage rule is assuming the incremental damage is

proportional to the incremental strain, as is used in [3] and [22] etc. Experimental work shows the

accumulation of damage along the plastic strain path is not necessarily linear with the equivalent

plastic strain.

The nonlinearity of the damage with respect to the plastic strain is described by the damage

rule. A simple power law is proposed. With the fracture envelope and the damage rule, a fully

three-dimensional fracture prediction model is established.

The fracture is a sudden change in the configuration, but the damage is a cumulative process.

Two concepts are used in the present model. One is the "fracture envelope", which is defined on

a class of deviatorically proportional loading path in the principal stress space. The other is the

"damage rule", which provides a tool to quantify the amount of damage resulting from the plastic

deformation. In this sense, the deviatorically proportional loading path serves as a reference loading

condition from which the incremental damage can be calculated for arbitrary loading cases.

2.4.1 Conventional continuum mechanics models

Although very complex when examined on the microscale, at the macroscale, many ductile materials

such as metals may be idealized as continua. Conventional continuum mechanics ductile fracture

models falls in the category of class plasticity theory. In these models, the damage is treated as a

separate variable that is independent of the material strength. Some of these models are described

below.

Johnson-Cook

A widely used representative material constitutive model is the Johnson-Cook model. Accom-

pany with it strength function, Johnson and Cook also present the associated failure function,
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which takes the form of a product of three affecting factors, namely stress triaxiality, strain rate

and the temperature.

The Johnson-Cook strength model is an empirical equation and is also widely used in practical

simulation for its broad consideration of plastic hardening, strain rate sensitivity and temperature

weakening. In the Johnson-Cook model, the equivalent stress, Oeq, is expressed as the following

function of the equivalent plastic strain, ep, the temperature, T, and the plastic strain rate, 9p [31:

oeq = [A+ Be] 1+ Cln ]1-- ( T -T ) ] (2.11)
1 \ 60)/J ] Tmelt - TO

where eo is the plastic strain rate, To and TmeIt are the room temperature and the material melting

temperature, respectively, A, B, n, C, and q are five material constants. The Johnson-Cook model

accounts for isotropic strain hardening, strain rate hardening, and temperature softening in the

uncoupled form. The first term of the right hand side in Eq. (2.11) represents the quasi-static

stress-strain relation at room temperature; the second term signifies the strain-rate hardening; the

third term means the temperature dependence of the stress-strain relation.

The fracture criterion used in the Johnson-Cook model is a weighted integral with respect to

the effective strain [46], see Eq. (2.12).

D =e d , (2.12)
0 E, (-, ep,7 T)

where n - the so-called the stress triaxiality - is used to represent the pressure dependence. The

general form of the weighting function is the reciprocal of the effective failure strain which is

treated as a function of the stress triaxiality status, the strain rate and the temperature, as shown

in Eq. (2.13).

o-. t T -To
ef [Di + D2 exp D3--- 1 + D4 log T 1+ D5 (2.13)

O'eq eo Tmelt - TO

where D 1 , D 2 , D3, D 4 and D 5 are material constants. For aluminum alloy 2024-T351, these con-

stants are listed in Table 2.1 [47].
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Table 2.1: Material constants for 2024-T351 aluminum alloy

A (MPa) B (MPa) n o (s- 1) C

352 440 0.42 3.33 x 10-4 0.0083

Tmelt (K) To (K)

775 293

Di D2 D3 D4 D5

0.13 0.13 -1.5 0.011 0.0

In Eq. (2.13), the effect of pressure, strain rate and temperature is expressed as the product of

the three independent factors. Neglecting the strain rate effect and the thermal effect and knowing

the mean stress om is the negative value of the pressure p, Eq. (2.13) can be expressed in a Taylor

series expansion around zero stress triaxiality and the leading teams are

Ef = Di + D 2 + D 2 D3 Um = (D1 + D 2 ) - D 2 D3  . (2.14)
Ueq Oeq

For many metals, the coefficients D2 is positive and D3 is negative [3]. Thus, an increase

in the compression hydrostatic pressure will result in an increase in the fracture strain of the

material. Furthermore, from Eq. (2.14), the fracture strain is linearly related to pressure for for

non-hardening materials. The slope at zero pressure can be used to compare material parameters

for different material models.

Wilkins, et al.

Wilkins et al [22] proposed the failure strain envelope as a product of two parts: the hydrostatic

tension and stress asymmetry. The Wilkins criterion states

D = j w 1 w 2 dE, > Dc, (2.15)

where

W1 (2.16)
(1 +ap)"

and

W2 (2 - A)OW (2.17)

20



where a, a and Ow are material constants and

A = max{-,2 _} (2.18)
s1 S3

where Si, S2 and S3 are the ordered principal stress deviators. Considering the stress deviators

subject to the constraint that their sum equals zero, "the stress eccentricity" A could also be

expressed as

A = max - _ -- I - 1 (2.19)

The material fails when the damage exceeds a certain threshold D. This criterion can be

normalized as /E, (3 - max{f-" 1 s L3 )O
DS' f1 deP (2.20)

0 Dc (1 + ap)

where fracture occurs when D > 1.

From Eq. (2.20), the failure strain function could be written as

f=DC - (1 + ap) Do (1 + aap)
C(3 - max{-, - })w (3 - max{- , - })3w

While w 2 accounts for the Lode angle dependence, the pressure effect enters through the power

function, which can be expressed in a first order approximation

pp= (1 + ap)' ~ 1 + aap. (2.22)

The linear approximation in Eq. (2.21) is accurate to the first order when the hydrostatic

pressure is small compared to -, which has a unit of pressure.

By considering a uniaxial tension case, we can compare the coefficients in Eq. (2.14) and (2.22).

We establish an approximate relationship for the parameters used in Johnson-Cook and Wilkins

models:

D2D3  (2.23)
(Dr + D2) ey

for non-hardening materials of yield stress a-..
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2.4.2 Micro mechanical models

The microstructure of metals is complex and contains multiphase materials, such as grains, second

phase particles, precipitates and voids. Unlike macroscopic homogeneous assumptions, the micro

mechanical models treat the materials as a cluster of inhomogeneous cells.

The damage accumulation process that leads to ductile fracture is a very complex phenomenon.

The metallurgical observation reveals that the fracture of ductile solids often starts with nucleation,

growth and coalescence of micro voids under nominally uniform tensile stress field or ahead of a

crack tip. Therefore, the material is considered as a porous media.

One particular type of fracture prediction models are based on the microscopic mechanism of

void nucleation, growth and coalescence (VNGC). A great deal of research was focused on the

evolution of voids subjected to various types of remote stressing or straining. In these microscopic

models, the void is modeled by a hole surrounded by undamaged material (the matrix) which obeys

conventional continuum mechanics. The global response of the void containing material (often as

in a representative volume element (RVE))is then used to model the macroscopic behavior of the

macroscopic material. Due to the enormous combination of the possible size, shape, orientation

and spacing of the voids and the remote deformation pattern, simplifications and assumptions have

to be made to make the mathematical problem of void evolution tractable. The pioneering work is

due to McClintock [17 and Rice and Tracey [19] who analyzed an isolated cylindrical or spherical

shaped void that is subjected to uniform remote stressing. In the VNGC models, the material is

often considered as a porous media and the fracture occurs when the void volume fraction reaches

a critical value. Gurson[16] introduced the influence of micro-voids to the plastic flow into the

constitutive framework. Tvergaard[48 and Tvergaard and Needleman [49] extended it to describe

the acceleration of void growth.

McClintock

McClintock analyzed a long cylindrical cavity in a non-hardening material pulled in the axis

direction while subjected to transverse tensile stresses [17]. The growth of the cylindrical hole is

governed by

b v'lin in(
d log - = V3sinh dEr inf + dEr inf (2.24)

o ( Ur inf - Jz inf
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where A indicates an incremental value, z denotes axial direction, r denotes radial direction, sub-

script inf denotes remote values, bo is the original radius of the hole and b is the instant value.

McClintock [17] also extrapolated Berg's viscous solution [50] for elliptical voids to plastic

materials with strain hardening. The damage model can be expressed as

dD=-1 3 . ( - n) (O -__) sn3 (- -) ) 4 (
log [b 2(1 - n) 2 Ueq 4 d9(.5

where log Fi denotes the maximum sustainable deformation of the representative cell, Ca and Ub

are the transverse stresses, Oeq is the equivalent stress, EP is the equivalent plastic strain, n is the

strain hardening exponent and D denotes the damage. The fracture occurs when D reaches unity.

Two of the most important results from McClintock's result are: (1) the very strong inverse

dependence of fracture strain on tensile stress transverse to the holes; (2) the relatively strong

dependence of fracture strain on the transverse (intermediate) principal stress, rather than solely

on the mean normal stress or the maximum principal stress [17].

Rice-Tracey

Rice and Tracey considered the growth of a spherical void in non-hardening material. A spherical

void subjected to remote uniaxial tension strain rate field not only grows in radial direction, but

also the shape changes. Rice and Tracey showed that for large stress triaxiality, the volume change

of the voids far overwhelm the shape changing. They obtained the growth rate of the radius of

voids is

=0.283 exp i (2.26)
Ro (2oy)

where RO is the original void radius, R is the current value, am is the remote mean stress and Uy is

the yield stress. For a hardening material under proportional stressing, the fracture strain can be

expressed by

Ef = a exp -b (rn (2.27)

where a and b are two model parameters. Rice and Tracey treated the void as an isolated sphere and

their derivation does not include interaction between adjacent voids. Chae and Koss [51] compared

they fractographic data with Rice and Tracey's model and found that the coefficient of b = 1.5 in

23



Eq. (2.27) is better replaced by 2.5, taking into account the void interaction.

Gurson-like model

The success of the Gurson like model is largely due to the introduction of the new yield function,

which links the plasticity with the damage accumulation. This aspect will be further explored in

Chapter 12.

Gurson obtained the pressure dependent yield function from an isolated cylindrical or spherical

void in a continuum [16]. The void-containing solid is considered as a dilatant, pressure-sensitive

elasto-plastic continuum. The yield function for spherical void in rigid-perfectly plastic body is

1)= ,+ 2f cosh 3m - (1+ f 2 ) = 0, (2.28)
aM 2am

where f is the void volume fraction, aM is the yield stress of the undamaged material (matrix),

-eq and am are the macroscopic von Mises equivalent stress and the mean stress, respectively. The

matrix yield stress aM is a function of the equivalent plastic strain EP of the matrix material, which

represents the strain hardening. By assuming associative flow rule, the plastic flow function is the

same as the yield function. The macroscopic plastic strain EP is found through the normality rule

A (2.29)

where epland o are the macroscopic strain and stress tensor respectively and ( ) denotes the time

derivative. The matrix plastic strain is linked to the macroscopic strain by the equivalence of the

rate the plastic work, i.e.

=pj : - (1 - f)UM4p (2.30)

From Gurson's yield function, the complete loss of load carrying capacity occurs at f = 1,

which is unrealistically larger than experimental observations. Tvergaard [48 introduced two more

parameters qi and q2 to resolve this situation. Moreover, Tvergaard [52] discussed some sort of

quantification of the coalescence effect. Tvergaard and Needleman [49] introduced a void volume

fraction function f* to model the complete loss of load carrying capacity at a realistic level of the

void volume fraction.

'A boldfaced letter denotes a tensor and a normal letter denotes a scalar quantity.
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At an early stage of deformation, the evolution of the void volume fraction is characterized by

the nucleation of new voids and growth of existing voids, which can be characterized by

(f)growth + (f)nucleation (2.31)

where ()growth and (f)nucieation represent the growth and nucleation of the voids. After the void

volume fraction reaches a critical value fc, the voids begin to coalescence, which accelerates the

increase of void volume fraction. The void coalescence results in an additional term (f)coalescence

in Eq. (2.31), which is quantified by a multiplication factor in the GTN model.

The void nucleation and coalescence are different from the void growth in that they are highly

metallurgically dependent. Most commercial materials contains second phase particles and precip-

itates, for instance, MnS in HY-100 steel and sulphite in HSLA-100 steel [51].

An empirical approach to quantify the void nucleation and coalescence is to use the metallurgical

graph to track the emergence of new voids and the merge of existing large voids.

At low temperature, the nucleation of voids is dominated by the plastic deformation [53]. In

ductile metals, the void nucleation often occurs at non-deformable second-phase particles, such as

oxides and carbides. The nucleation of voids can be considered in a strain based or a stress based

fashion [53-56]. In homogenously voided solids, the void nucleation takes place over a narrow range

of deformation. An analysis by Needleman and Rice [57] suggests the localization will occur at very

early stages of deformation. However, due to the physical complexity of the microstructure and the

inclusion, the void nucleation particles are not homogenous within the solids. Chu and Needleman

consider strain controlled void nucleation in a statistical way [58]. A normal distribution of the

nucleation with respect to the plastic strain of the matrix material is proposed as

(f)nucleation = AN4p (2.32)

where ep is the matrix plastic strain and

FN _ _p - EN 2AN = exp - I >(2.33)
SN\ 2r 2 SN

where SN and EjN are the standard deviation and the mean value of the distribution of the plastic

strain, FN is the total void volume fraction that can be nucleated.
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The matrix material is assumed to be plastically incompressible. The void growth rate is thus

(f)growth (1 - )kk, (2-34)

where Ekk represents the plastic rate of volume change.

Despite of the success of the void-nucleation-growth-coalescence models in the prediction of

fracture in some application, there are inherent drawbacks with this type of model:

(1) No void shearing mechanism is considered. The Gurson model failed to predict a simple

shear test when fN < ff. The Gurson-like material model original was conceived and applied

with high stress triaxiality, where pressure sensitivity dominates in the fracture phenomenon. The

application of Gurson-like of model to low stress should be used with cautious.

(2) In the Gurson-like model, the mechanical damage is limited to void volume fraction. How-

ever, the damage accumulation is a more complicated process than the evolution of void volume

fraction. For instance, a volumeless micro crack inherently creates damage to the body of solids by

introducing loss of load carrying area.

(3) The material parameters are related to microscopic values. The actual distribution of void

nucleation particles varies and is hard to measure. As a microscopic approach, the void size, shape,

orientation and spacing have to be treated in a stochastic way. However, the distributions of such

governing parameters are often unknown.

2.4.3 Continuum damage mechanics

The concept of continuum damage mechanics was firstly proposed by Kachanov [15] in the context of

ductile creep. It was further developed by Rabotnov [59] and Lemaitre [10] etc. This line of research

differs from the micro mechanical models in that the micro-mechanism of the growth of individual

void and their interactions are "smeared" and depicted in a phenomenologically aggregative way.

Macroscopic parameters and equations are used to describe the aggregative responses of the body

of solids. Therefore, the constitutive and damage model of the material is based on the externally

observed behavior of the material.

The continuum damage mechanics considers the material property is the combined results of

the matrix material and the damage to take into account the micro defects. The damage can be

quantified in many different ways. For instance, Kachanov defines the damage variables as a surface
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density of intersections of micro cracks and cavities [60]. Lemaitre and Chaboche determined

experimentally such damage for a light alloy [61]. Their results show an increasing tendency of

damage accumulation.

The law of elasticity coupled with damage is

a = Ce*(1 - D), (2.35)

where CO is the undamaged, i.e. initial fourth order elasticity stiffness tensor.

Lemaitre uses the strain energy release rate [10]

2 (6m\2]

-(D Y 2 j(1 + v) + 3(1 - 2v) m (2.36)2E(1 - D)2 13 \Ueq

The damage evolution law is defined by

b = ep if eP > eC (2.37)
1 - D rlY"

where ri and sj are material constants and e, is a strain threshold for damage accumulation.

The weakening is also introduced to conventional plasticity. For instance, Borvik et al [4]

introduced a weakening factor to the strength equation of Johnson-Cook model.

ceq=(1U-3bD)[A+BE] 1+Cln p)j [ T T, (2.38)PI (60 Tmelt - TO .

where D is the same as the original Johnson-Cook damage model and Ob is a material constant.

2.5 Comparison of damage variables and fracture criteria

The objective of this thesis is to find a generic model for the damage evolution and the fracture

prediction. Therefore, it is desired to survey the existing models on fracture prediction.

Besides the above mentioned damage models, other material fracture models are proposed that

take accounts of the stress state effect. A few these failure criteria are listed in Table 2.2.
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Table 2.2: Various cumulative-strain-damage fracture models.

No. Criterion/model Formula

(1) Constant strain D =L f dEp

(2) McClintock, [17] D =L f 0dP

(3) Rice and Tracy, [19] D =1 e fexp (1.5)dep

(4) Johnson and Cook, [3] 1 D = f D 1D2 exp(DE)

(5) Chaouadi et al., [25] D = f [1 + 3aci jexp (1.5,q)] dep

(6) LeRoy et al., [23] D = - f (al - am) dep

(7) Brozzo et al., [20] D = _ f 2 dep

(8) Cockcroft and Latham, [18] D = - f 'i dep

(9) Norris et al., [21] D = f +Npdp

(10) Wilkins et al., [22] D = f [l p)n)dEp

In Table 2.2, eP is the equivalent plastic strain, -1 is the maximum principal stress, Ff is the

failure strain envelop and 6o is a constant reference value of the fracture strain. The readers are

referred to the original work of various authors for definition of other parameters shown in Table 2.2.

The fracture criteria in Table 2.2 can be classified into five categories: (a) constant strain, which

is a first order approximation; (b) stress triaxiality models, which are models (2)-(6); (c) maximum

stress models, which are models (7)-(8); (d) pressure models, which is model (9); (e) pressure and

Lode dependent model, which is model (10).

In general, the effective failure strain function Ef is not azimuthally symmetric about the hydro-

static axis. In Table 2.2, none of the four stress triaxiality based models considers the azimuth angle

in the octahedral plane. The joint effects of the hydrostatic pressure and the effective stress are

not adequate to quantify the equivalent fracture strain. The deviatoric state has to be considered

as will be shown more clearly in Chapter 6. LeRoy et al's model uses the maximum stress deviator

as a weighting function. Therefore, the fracture loci on an octahedral plane are hexagonal and the

effect of hydrostatic pressure is neglected. Brozzo's model and Cockcroft and Latham's model uses

the ratio of the maximum stress to the maximum deviatoric stress or the effective stress, which

yields a hexagonal cross-section on octahedral planes as well, but the effect of hydrostatic pressure

is coupled in their models. Norris, et al. also neglect the effect of deviatoric state because only

'The complete Johnson-Cook failure envelope includes also the strain rate and thermal effects, i.e. ef =

[Di + D 2 exp (D()] I + ( -)] [1 + DT*]. Only the stress state part is discussed herein.
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the hydrostatic pressure is considered in the weighting function. The Wilkins model is different

from the rest in that a so-called stress asymmetry parameter is used to characterize the Lode angle

dependence.

The models listed in Table 2.2 show different Lode angle dependence. The fracture locus on an

octahedral plane can be divided into three groups. For the stress triaxiality models and Norris's

pressure model, the fracture loci are circles, which are the same shape as the von Mises yield locus.

For the maximum stress models, the fracture loci are hexagon, which are the same shape as the

Tresca locus. Wilkins et al [22] use a separate parameter, i.e. the stress asymmetry A, to quantify

the Lode angle dependence. The fracture loci on an octahedral plane looks like a petal. These

three types of Lode angle dependence are shown in Fig. 2.4.

ayZ a))CZCaX

(a) (b) (c)

Figure 2.4: The Lode angle dependence of the existing cumulative-strain-damage fracture predic-

tion models. (a) stress triaxiality models and Norris's model; (b) maximum stress

models; (c) Wilkins. model.

Experiments shows materials exhibit distinct differences in ductility under tensile and tor-

sion/shear loading [2; 22; 26; 41-44]. These experiments suggest a strong Lode angle dependence

of fracture strain for many materials. Therefore, the Lode angle dependence could be a major issue

in developing a valid model for fracture prediction.

Material strength is another important issue. In many models, the material strength is con-

sidered independent of the damage accumulation. The fracture is simplified by a sudden loss of

strength. This can be formally written as a jump function in the material strength function, i.e.

O-eq = [1 - J(D)] -M, (2.39)
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where J(D) is a jump function

) 0 0 < D < 1;
J(D) =(2.40)

1, 1 < D.

and oM is the matrix strength. In this case, the matrix strength is the same as the material strength

in the classic plasticity theory.

Taking the derivative of Eq. (2.40) with respect to D, the deterioration rate is a Dirac delta

function 6(D - 1). From Eq. (2.40), the material softening process is idealized to be a single

spike at D = 1. This idealization is often too crude and leads to inaccurate fracture modes. The

fractographic observation of the damage evolution shows the material deterioration is a much more

complicated progressive process. A continuous weakening model is therefore desired.
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Chapter 3

A New Damage Plasticity Model

3.1 Methodology and hypothesis

Material fracture is characterized by a complete loss of its load carrying capacity and deformability.

At an intermediate damaged state, the remaining ductility of a deformed body can be described

by the applied load and its loading history up to the present time. This remaining ductility should

remain invariant when one changes his reference frame from one coordinate system to another.

The conventional continuum mechanics assumes the microstructure of the solid to be unchanged

for moderate plasticity. The strength of material is often simplified as a one dimensional problem,

in which the resistance is characterized as a function of the plastic strain. Undoubtedly, this

simplification works well for many practical problems, especially for the design purpose of many

structures carrying static load. However, for the extreme loading applications, the mechanical

response of the material in the full range of its deformability is desired. In such conditions, the

ignorance of the change of microstructure is an over-simplification. Some sort of damage has to be

used to characterize the material deterioration.

Secondly, the damage accumulation along the loading path is a three-dimensional problem in

that the pressure, the Lode angle and the equivalent stress level influence the damage rate in

different ways. These effects will be discussed in this chapter and the next three chapters.

Hypothesis: At a fixed pressure, for each proportional deviatoric loadings, the ductile damage

processes are self-similar with respect to the ratio of the plastic strain and the fracture strain.

From microscopic point of view, the existing defects may accelerate the damage process. For
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many materials, such as poly-crystalline metals, in the moderate range of pressure and tempera-

ture, the damage is a monotonically increasing function if no recrystallization occurs. For ductile

materials that are subjected to large scale plastic deformation, a robust fracture criterion has been

a central point to predict the initiation of failure in crack-free bodies.

3.2 Mathematical aspects

3.2.1 Damage accumulation

Let us start to build a damage model from "ground zero". A local approach is adopted - therefore,

we are considering the stress and strain at a local material point. For generality, the damage can

be describe as a second order tensor.

Assuming the damage to be isotropic, the damage can be quantified by a scalar D. We assume

the damage rate can be described by

b = A: 6,7 (3.1)

where A is a second-order tensor, & denotes the objective rate of the Cauchy stress and ":" denotes

the tensor operation of double contraction.

Furthermore, the damage should be independent of observation frame. Therefore, the stress

state can be described by its principal vector a (O-, 0-2 , O-3) and the second-order tensor A

becomes a vector A as well

b A (3.2)

An identical representation of the vector o- (- 1 , 0-2 , -3 ) in the Cartesian principal stress space

is U* = (p, 0, -eq) in the cylindrical coordinate system of the same 3-D space, where p = tr

0 is the azimuth angle on the octahedral plane and Ueq is the equivalent stress. Without losing

generality, Eq. (3.2) can be re-written as

b = A 7* (3.3)

Let A* = (ai, a2, a3), where a,, a 2 , and a3 are scalars depending on the current stress and strain
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states. Expanding Eq. (3.3), we have

b = alP+a2A+a3&eq. (3.4)

From classic J2 flow theory, we introduce von Mises type of yield surface and associated flow

rule. Therefore, the plastic deformation does not depend on either p or 0. Assuming the ductile

damage rate is induced solely by plastic deformation rate, one obtains a1 = a 2 = 0 and

b = a3aeq. (3.5)

Given a haniening rule, Eq. (3.5) can be transformed into

b = fep, (3.6)

where f = a3h and h is the plastic hardening modulus.

Now, the task of quantifying the "damage" reduces to find a functional form of f in Eq. (3.6).

3.2.2 Normalization

We restrict ourselves to the mechanical damage and no thermal, strain rate, chemical, radiational

etc. effects are considered. Hence, we assume the function f is defined on the 3-D base of (p, , o-e).

Let us consider a special case of fixed p and 9 and therefore aeq and e can be one-to-one

mapped. The evolution of damage becomes

D = f (ep) 4, (3.7)

and fracture occurs at ep = Ef. The equivalent fracture strain ef depends on the arbitrarily fixed p

and 9 but it is independent of eP. Therefore, we can normalize ep with respect to Ef

b = f* f(3.8)

We assume D = 0 for undamaged material and the fracture criterion is given by D > Dcr,

where Dcr is a material constant,
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Dcr = f* (-)d (-P, (3.9)
fo Ef Ef

However, there is still arbitrariness in Eq. (3.9), because the functional f* is scalable, which

means f* and Dr can be multiplied by any positive number and Eq. (3.9) remains satisfied. This

arbitrariness is removed by normalizing f* with respect to Dcr. The evolution law of damage is

then

S= g (P) P, (3.10)
Ef Ef

where g (f D and the fracture criterion becomes D > 1.

Equation (3.10) is referred as the damage evolution law and ef is a function of p and 0.

3.2.3 Separation of p and 0

It should be emphasized that ef is defined on p and 0 and the functional of ejf(p, 0) is yet to be

determined. Since p and 0 are orthogonal to each other, it may be wise to choose a separable form

of these two variables, i.e.

Ef = Efo Ay (p) PO() (3.11)

where Efo is a reference value and the two functions y~, and po characterize the effect of hydrostatic

pressure and the azimuth angle. Equation (3.11) effectively defines the fracture envelope in a three

dimensional space.

The separation of these two variables makes the calibration process tractable, i.e., you fix p or

O and obtain the dependence of the other, independently and respectively.

For constant failure strain criterion, both p, and 1io degenerate to unity.

The fracture surface shows the relevant extent of ductility for the deviatorically proportional

loading path. However, the actual damage is an accrued effect of the loading history, which has to

be described by a history variable. The evolution law of the damage can be summarized as

b =9 g (3.12)
\ E3 ) Ef

34



where ef = Efo i'(p) po(O).

The above separation is referred to as the "cylindrical decomposition" hereafter.

3.3 A geometrical representation of damage accumulation

Let us recall the discussion of the principal stress space. Given an initial load condition, say

represented by OA in the principal stress space, and an arbitrary increment, AR, from the initial

state, the loading path is shown in the 3-D principal stress space. See Fig. 3.1.

N z

r-plane

Figure 3.1: An arbitrary increment A B in the principal stresses from an initial stress state repre-

sented by vector OA.

Experiments also show that the damage is a cumulative process of the deformation. The fracture

of material is loading path dependant. We assume the damage rate depends on the current stress

and strain state of the material. Therefore, at an arbitrary stress state, the incremental damage

can be written as

dD = f (xo, uo, po) dep (3.13)

where xo, ao and po are field variables of the current stress state. Equation (3.13) is referred to as

the "damage rule" hereafter.

In general, the material damage is a function of the loading history. To make this problem
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tractable, let us assume a limited class of the deviatorically proportional loading paths such that

(1) the hydrostatic pressure goes to the level of the final value and followed by (2) the deviatoric

stresses increase proportionally until fracture occurs. In the three dimensional principal stress

space, this loading path can be visually represented by the vectors 00' and O'A in Fig. 2.1. Since

any vector in the principal stress space can be uniquely decomposed into a combination of 00' and

O'A, the loading path is uniquely defined by the given stress state. Thus, a damage field could be

defined in the three-dimensional principal stress space by using an evaluation function.

The fracture surface shows the relevant extent of ductility for the deviatorically proportional

loading path. However, the actual loading path is not necessarily confined to the set of deviatorically

proportional loading paths. The damage is an accrued effect of the loading history, which has to

be described by a history variable.

3.3.1 History effect

There are infinitely many loading paths to a given stress state in the principal stress space. For

example, let us consider three particular paths.

(a) A hydrostatic loading followed by a change in stress deviators. A hydrostatic pressure is

superimposed first while the effective stress remains zero and then the principal stresses changes in

a way that the deviatoric state remains the same. This loading path can be illustrated as vectors

00' plus O'A in Fig. 2.1.

(b) Proportional loading path. This is a straight line that the ratio of principal stresses is

constant while the effective stress increases. This loading path can be illustrated as vector OA.

(c) An increase in stress deviators followed by a hydrostatic loading. The principal stresses

change in the constant pressure plane first and then a hydrostatic pressure is superimposed. This

can be illustrated as vectors OQ plus QA in Fig 2.1.

As can be seen from the subsection 2.1, the damage associated with path (a) is only on OQ,

and the damage on path (c) is on O'A. For path (b), the damage is cumulative all the way to

the final state OA. There is no change in the deviatoric state in all these three paths. Thus, the

effective failure strain is defined by the hydrostatic pressure only. Since the mean stress level in

path OQ is less than in the path O'A, the predicted damage is less with the loading path (a) than

with the loading path (c). The loading path (b) results in an intermediate damage compared with
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the other two paths. It should be noted that in the present model, the damage is assumed to be

due to the plastic deformation alone. Under classical J2 plasticity theory, the plastic deformation

does not result from a hydrostatic increment.

3.4 Yield function and flow rule

It is generally accepted that the yielding is relatively independent of the superimposed hydrostatic

pressure. For Mises type of material, the yielding locus resembles a cylindrical tube in the principal

stress space. The Mises yield condition does not depend on the Lode parameter or the pressure.

With strain hardening, the size of the cylindrical tube expands to the current yield stress. In

the classic plasticity theory, the yielding is simplified to be dependent only on the plastic strain

and is independent of the loading path.

In the continuum damage mechanics, the yielding is a function of the current state of damage in

addition to the plastic strain. In the present model, the concept of continuum damage mechanics

is adopted. The yield function and the associated flow rule are coupled with the damage. The

material deterioration is considered at a material volume level. Following the continuum damage

mechanics, the constitutive equation of the damaged material can be derived from the modified

yield potential function

)q= - w(D) M, (3.14)

where w is a weakening function what characterizes the material deterioration, aM is the resistance

of the matrix material and 0-eq is the applied stress on the damage material.

There are restrictions on the weakening function. Firstly, the initial yielding should not be

changed since there is no damage up to the yield point. Secondly, the yield strength at full damage

state is zero, which means the material can no longer carry any load further. Let D, represent the

fractional stiffness reduction of the material. The weakening function can be written as

w(D) = 1 - Ds. (3.15)

Following the hypothesis of strain equivalence [61], the strain for a damaged material is rep-

resented by constitutive equations of the undamaged material in the potential of which the stress
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is simply replaced by the effective stress. The material hardening is described by the hardening

behavior of the matrix material, which is represented by the aM in Eq. (3.14); while the material

weakening is represented by the multiplication factor of (1 - D,).

In general, the damage associated with the reduction of the effective load carrying area may

not necessary the same as the damage that addresses the reduction of the ductility, i.e. D, $ D.
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Chapter 4

Damage Rule and Material

Weakening

4.1 On damage variables

We start by clarifying the definition of damage. Along the damaging process towards the ultimate

fracture of the solids, the physical properties of the partially damaged material changes with the

accumulation of the damage. Such physical properties include the elastic modulus, the remaining

ductility, the local mass density, etc.

The word "damage" carries a meaning of relativity. We say something is damaged, when we

mean that the current state of that something is inferior compared to its previous state. In this

sense, the relative loss of deformability is obtained by comparing the deformability of the current

state with the initial undamaged state. In the present study, the following definition is used.

Definition: Damage is defined as the relative loss of ductility of the material.

One way to think of the relative loss of ductility is considered the ductility decreases in a

linear way along the plastic deformation path. Bridgman is probably the first to propose an

incremental linear damage rule [2]. Johnson further extended this linear relationship to incremental

plastic strain [46]. This linear damage rule has been used quite often in solving practical problems.

However, the linear relationship of damage with respect to the plastic strain is questionable.

Using void volume fraction as a damage variable, Tvergaard and Needleman propose a bilinear

relationship on the damage with the second phase to be faster than the first phase to incorporate
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the phase of void coalescence [49].

4.1.1 Damage accumulation

The simplest form of damage potential is a linear function, i.e.

D P- (4.1)
Ef

and, correspondingly, for the given Ef the incremental damage is

1
dD = -dep (4.2)

ef

which is used by many researchers, e.g. [3]. However, the damage is not necessarily linear with

respect to the equivalent plastic strain. For instance, Borvik, et al. [4] considered that there exists

a threshold of plastic strain below which no damage is accumulated. There are other nonlinear

forms of the damage potential such as in [62].

In the present theory, we adopted a deviatorically proportional loading path. Because the stress

deviator increases proportionally, the Lode angle or the relative ratio of the principal deviatoric

stress and the hydrostatic pressure remain constants. The fracture initiation problem is then

reduced to determine when the integral of the incremental damage exceeds unity. The proposed

deviatorically proportional loading path is a particular solution which has to be satisfied for the

damage rule. This particular solution imposes to the problem in its integral form as

D = f f (ep,, e) dep = 1, (4.3)
30

where ec is the equivalent strain at fracture.

For virgin materials, it is intuitive to consider the damage at the initial state is "D = 0". The

damage "D = 1" indicates the material is fully damaged and the fracture initiates. The choice

of the damage value at these initial and end conditions are somewhat arbitrary, but does not lose

generality. The damage remains zero before yielding occurs, because the elastic deformation is

considered fully recoverable.

For the deviatorically proportional loading path, the end condition is D = 1 at ep = Ef, which

denotes the fracture surface. There are infinitely many functions that satisfy the initial and end
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condition of the damage potential, i.e. D (0) = 0 at ep = 0 and D (1) = 0 at ep = ef. A family of

solutions can be represented by

D ( )m. (4.4)Efm

where m is the damage exponent. With m = 1, the damage rule degenerates to a linear damage

function.

The macroscopic damage links to the microscopic defects, such as micro voids and micro cracks.

Upon continuous plastic flow, the micro voids expands and the micro cracks propagates. When

adjacent defects come closer enough, they interacts with each other. Such interaction is detrimental

and exaggerates the damage rate. Therefore, the damage accumulation rate increases along the

purely deviatoric proportional loading path. By assuming a linear damage rule, i.e. m = 1, the

damage accumulation rate is constant. Thus, the interaction of micro defects are ignored.

To further explore the nonlinear damage rule, let us use Bridgman's test as an example.

4.2 Bridgman's test

One way to obtain material constant m is by changing the loading path. In the present section,

this method is illustrated by using one of Bridgman's experiments.

Bridgman reported a stepwise experiment on a ductile steel [2, page 79]. He wrote

"The specimen was fractured in tension in the normal way at atmospheric pressure, ... it

fractured with a cup-cone break with the same value for the ratio of the areas, 0.43. ... In the

second experiment a specimen was pulled to a strain of 1.69 under 227,000 psi pressure. It was

then removed from the pressure apparatus, machined in such a way as to reduce the value of a/R to

nearly zero, and then reintroduced in the pressure apparatus and re-pulled to fracture at a pressure

of 267,000 psi. The additional strain to fracture on the second pulling was 2.74, making the total

strain at fracture 4.43."

Bridgman did not state explicitly which material he used for this experiment. However, a

complete search from his list of experiment results shows that there is only one material has a ratio

of the cross-sectional area at fracture of 0.43 at atmospheric pressure. This material is numbered

1-0 in his book. The experimental results for this material are reprinted in Table 4.1.
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Table 4.1: Bridgman's experimental results. From [2].

Specimen Confining pressure (psi) Fracture strain (in4-) Fracture or not

1-0-1 176,000 2.71 not fracture
1-0-2 344,000 0.43 not fracture
1-0-3 40,000 1.35 fracture
1-0-4 298,000 4.33 fracture
1-0-5 Atmos. 0.91 fracture
1-0-6 404,000 2.04 not fracture
1-0-7 207,000 3.93 fracture
1-0-8 398,000 4.53 fracture
1-0-9 227,000 0.82 not fracture
1-0-10 140,000 3.01 fracture

From Table 4.1, the failure strains at higher confining pressures of 227,000 psi and 267,000 psi

are estimated to be Efl = 4.0 and Ef2 = 4.5, respectively. The deviatoric state x is constant 0 at

the center of the round bar throughout the test.

Assuming a power law damage rule, the damage resulted from the first pulling step at a confining

pressure of 227,000 psi is

/1.69 M )m-1
Di= ]m (-) -- = \--) (4.5)

0 En1 efi 4.0

and the damage from the second step at a confining pressure of 267,000 psi is

D= .69 M )4.5 4.5

Knowing D1 + D 2 = 1, the damage exponent m is solved to be 2.21 numerically.

It is found that m is greater than unity, which means the damage curve is concave toward the or-

dinate. Hence, the closer the deformation to the onset of fracture, the larger the weighting function

is, which means more damage for the same amount of the equivalent plastic strain increment.

However, at the time Bridgman did this test, his thought the damage rule was linear as he

suggested in [63] that " for example, that the specimen is on which under normal atmospheric

pressure would fracture at a natual strain of 1, and that we pull it to a strain of 2 under a pressure

sufficiently high to raise the strain required to fracture at that pressure to 4. We now release pressure

and tensile load and continue pulling at atmosperic pressure will now tolerate further strain before
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fracture, which will occur at a strain of perhaps 2.5."

The above calculation is just an example. It is noted that the hydrostatic pressure is not

constant throughout the experiment, therefore, the fracture strain Ef(p, 6) is not constant on either

of the loading steps. A stepwise loading path at constant hydrostatic pressures is illustrated in

Fig. 4.1.

4P

fracture loci of Ep
\, with respect t

the hydrostatic pr ssure

2

pressure P2 0 Pi am

Figure 4.1: An illustrative sketch of a stepwise loading path in the EP - a,-, plane.

Assuming the test is performed at constant X, the material fractures at equivalent plastic strains

of Ei and E2 at constant pressures p, and P2, respectively. A stepwise loading path is based on these

two pressures, which is illustrated by a thick solid line in Fig. 4.1. The material is first loaded to

an intermediate state of the equivalent plastic strain E'l (which is less than El of course) at constant

pressure p, and then changes the pressure to P2 and continue to increase the loading until the

material fractures. The total equivalent plastic strain is 5'. Note, E' is not necessarily the same as

E2. Following the same procedure as shown in the Bridgman's example, the material constant m

can be obtained.. The pressure effect on this loading path is eliminated by presuming two constant

pressure loading paths.

Due to the lack of experimental data, we assume the damage rate is proportional to the plastic

strain, i.e. m = 2.0, or

b = 2 E. (4.7)
Ef Ef
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Further research in this regard should be desired to put the proposed theory in a more sound

basis.

4.3 Material weakening

In continuum damage mechanics, the damage is one of the constitutive variables that takes into

account the degradation and loss of load carrying capacity of materials. The material exhibits a

weakening on the stiffness. For instance, the damage on the stiffness of 99.99% copper is measured,

as shown in Fig. 4.2.
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Figure 4.2: Evolution of the damage on the material stiffness of 99.99% copper. After Ref. [641.

Considering a unitary reference volume element, micro defects increase along with the plastic

deformation within the body, as shown in Fig. 4.3. The effective load carrying area decrease as

damage accumulates.
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Figure 4.3: A schematic drawing of the damage containing solid and the matrix material.

The loss of the effective resisting area is used in continuum damage mechanics to describe the

material deterioration. We define the loss of effective resisting area as

Ds = I - ,f (4.8)
A 0 '

where AO is the nominal sectional area of the reference element and Aeff is the effective resisting

area. The concept of Aeff is useful when considering the microstructural change of the solid in

consideration, but it is difficult to measure from an experiment.

For a virgin material, we assume no defect exists and, therefore, D, = 0. At a fully damage state,

there is no resistance area, i.e. Aeff 0 or D, = 1. From the unrecoverable of plastic damage,

the loss of effective resisting area is a monotonic function with respect to plastic deformation.

Following the strain equivalence hypothesis [61], the material stiffness decrease at the same rate as

the effective loading carrying area reduces.

Considering a plastically deformed unit cell, the macroscopic behavior of the solid is thus cal-

culated from the matrix strength from the force balance of the unitary element, i.e.

e-Aeff M) (4.9)
A0 %

where aM is the matrix property of the strength and req is the yield value of stress. Applying

Eq. (4.8) into Eq. (4.9), the equivalent stress of the macroscopic solid is

Oeq = (1 - Ds)oM. (4.10)
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One might consider the loss of resisting area follows the same law of the relative loss of deforma-

bility, i.e. D, = D. However, the companion numerical simulation shows that a matrix stress is

higher than commonly observed in order to show a realistic load displacement curve. This indicates

the accumulation of stiffness damage lags the accumulation of ductile damage, i.e.

Ds 5 D. (4.11)

To satisfy this requirement, an ad hoc parameter - the weakening exponent #3 is adopted. The

stiffness damage is assumed to be a power law function of the ductile damage

D, = D0, (4.12)

where , is a material constant. From Eq. (4.11), we find 3 > 1. The weakening function is then

w(D) = 1 - DO. (4.13)

It can be verified that Eq. (4.13) satisfies the two restriction conditions (1) w(D) = 1 when

D = 0; and (2) w(D) = 0 when D = 1.

When D E [0,1] and 3 > 1,

Ds E [0, 1] and D, < D. (4.14)

Figure 4.4 illustrates a given damage function with m = 2 and three weakening functions with

/3 = 1, 3 = 2 and 3 = oo, respectively.
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Figure 4.4: An illustrative sketch of a damage rule and three weakening function with different 3
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Chapter 5

Hydrostatic pressure sensitivity

In Chapter 3, it is shown that the fracture envelope can be determined by the hydrostatic pressure

p and the relative ratio of the principal deviatoric stresses x. The fracture envelope is an idealized

concept. A practical way of constructing the fracture envelope is to make use of existing knowledge

on the pressure and the Lode angle effects. From the orthogonality of p and x, it is conjectured

that the effects of p and x are independent of each other. Thus, the effects of p and x are uncoupled

and can be quantified separately.

Hypothesis: The effects of the pressure and the Lode angle on the fracture envelope are inde-

pendent of each other.

5.1 Survey of previous experimental works

The ideal experimental condition is that the pressure and the Lode angle can be adjusted sepa-

rately, such that two series of tests can be conducted at constant p and constant x, respectively.

Unfortunately, such test condition has not been achieved to date, except for several special cases,

and is likely to be a future topic for experimentalists. So far, many of the modern experimental

work on the pressure effect were conducted in a high pressure vessel, e.g. [2; 35; 65], due to the in-

compressibility and transmissibility of pressure of liquids. Other apparatus to achieve high pressure

include die channel and opposing anvils.

The liquid pressure vessel can be used to obtain a constant ambient pressure, however, the

pressure the fracture point (for instance, the center of the neck in a tensile round bar) varies along
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the loading path in most cases. Although a constant pressure test is still in need, there are certain

general points of view and expectations that are obtained from existing experimental work.

5.1.1 Flow and fracture

Materials become more ductile as they experience high compressive pressures. For some metals, the

ductility can be an order of magnitude higher under high compressive pressure than its ductility

at atmospheric pressure. For instance, zinc exhibits a sudden transition from brittle to ductile at

a critical pressure about 70 MPa [66]. It is also observed that the flow strength increases slowly

(2 percent per kilobar) in tension with increase pressure [2]. The same trend of strength increase

with increase pressure is found for shear deformation as well [67]. Compared with the ductility

increase, the increase of strength of metals appears to be insignificant. In the present thesis, the

flow strength of material is consider to be independent of the hydrostatic pressure experienced.

5.1.2 Uniaxial tension under pressure

Perhaps the simplest test condition under high pressure is the uniaxial tension. One of the most

comprehensive studies was carried out during the World War II by Bridgman [2) who tested the

effect of hydrostatic pressure on the material fracture strain for several types of armor steels. Bridg-

man used round bars as specimen and pulled them in a pressure chamber. The round bar specimens

are in a uniaxial tension condition superimposed by a hydrostatic pressure up to a compressure

pressure of 30kbar. Because the two lateral principal stress components remain identical for the

axisymmetric specimen, the ratio of the stress deviators remains zero at the center of the neck

throughout his experiments. The ratio of the cross-sectional area at the neck at fracture to the

initial cross-sectional area was found to decrease with respect to the lateral confining pressure. This

increase in fracture strain was found for a number of armor steels. By using a sheath, Bridgman

was also able to fracture commonly brittle materials, such as cast iron, NaCl, in a ductile way. For

instance, cast iron was fractured at a strain of 1.77 at high confining pressure.

The same trend of monotonic increase in the failure strain with increasing hydrostatic pressure

is confirmed by other researchers for several types of material, including carbon steel, aluminum,

magnesium, zinc, cast iron, copper and rocks [29; 37-39; 68], etc.

Bridgman also pulled tensile specimens to a fixed strain at a variety of hydrostatic pressures and
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determined the effect on the residual ductility form a further tensile test at atmospheric pressure.

He found that the residual ductility increases with increasing hydrostatic pressure at the first place.

This result indicates that higher hydrostatic pressure helps to reduce the damage associated with

same amount of straining.

5.1.3 Unidirectional tension of notched round bar

Besides above mentioned experiments, superimposed hydrostatic tension reduces the ductility of

the material. Similar to adding confining pressure on a round bar, the lateral tension can be added

by create a circumferential notch around the circular bar. This is often seen in notched tensile

specimens or pre-cracked specimens, e.g. [26; 69; 70] among many others.

5.1.4 Compression under pressure

Pugh investigated the effect of compressive pre-strain under pressure on the residual atmospheric

compressive ductility of an 11% silicon aluminum alloy [71]. The material, which had a fracture

compressive strain of 0.62 at atmospheric pressure can undergo a total compressive strain of 2.28

without fracture under 160,000 psi high pressure. Same material pre-strained to 0.62 in compression

under high pressure still possessed a residual strain of 0.35.

One relevant situation of compression under pressure is the extrusion process under a back

pressure [29; 65; 72; 73]. Pugh and his co-worker had shown that the material exhibits an enhanced

ductility with the superimposed hydrostatic pressure. Improved quality products under hydrostatic

extrusion were obtained for materials such as bismuth, magnesium and 60/40 brass that would

otherwise have cracked or fragmented under atmospheric pressure extrusion, by inhibiting micro

crack initiation and propagation. This property is used in many applications to form an enhanced

quality products by carrying out the process in the presence of a high hydrostatic pressure. For

instance, beryllium is brittle ( 1% elongation) in tension under atmospheric pressure at room

temperature. At 704 C - 1120 C, beryllium cylinders, which become fully cracked at 50% of height

reduction, can be upset-forged to a reduction of 85% height under press forging using a steel jacket

without visible cracks [74]. Similar results was obtained by Cogan in upsetting tests [75].
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5.1.5 Shear under pressure

Compared with tension, there are relatively less experiments were carried out in the shear/torsion

loading condition. The main difficulties in a torsion test is the sealing problems. In fact, Bridgman

conducted a double torsion test under combined axial compression rather than put the torsion

specimen in the pressure chamber. Similar to the tension under pressure tests, Bridgman also

found that fracture strain in torsion under axial compression increases with higher compressive

stress [2]. However, because the combination of an axial compression and a torsion does not have

a constant relative ratio of deviatoric stress, Bridgman's result is not conclusive.

5.1.6 Bending under pressure

Bobrowski et al [76] investigated the bending of tungsten and beryllium sheet at various hydrostatic

pressures. They found that at about 3 GPa, these sheets do not display any cracking when the

bending radius is the same as sheet thickness. This founding confirms the advantage in sheet metal

forming under hydrostatic pressure.

5.2 Hydrostatic pressure effect

In this section, the relationship of the effective failure strain at fracture with respect to the hydro-

static pressure is determined from a particular load condition - the uniaxial tension under confined

pressure.

5.2.1 Bridgman's work

Bridgman used 20 groups of steel of different chemical composition in his tensile tests under high

compressive pressures. Each group may consist several different heat-treatment, which is identified

by a second digit. Due to the nature of changing in the strength and ductility after heat-treatment,

these material are considered to have different fracture behavior and their fracture parameters

are calculated separately. Bridgman's results consists of tests of different number of fractured

specimens for each material. The most detailed experiment was reported on material 9-2. Eleven

specimens made of this material were pulled all the way until fracture. Material 9-2 is an SAE steel

1045 quenched into water from 1575'F and drawn to 800 F. Its Rockwell C hardness is 40.3. The
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complete experiments results are listed in Table 5.1.

Table 5.1: Test results of material 9-2, after Bridgman [2].

Material Confining Pressure Final Flow Stress Strain at Fracture Remarks

Pconf (MPa) Uflow (MPa) Ef
9-2 0.100 1820.28 0.88

0.100 1778.91 0.89
772.240 2096.08 1.63

1434.160 2971.74 2.57
2640.785 3840.51 3.73 x1

0.100 2027.13 0.85
896.350 2309.82 1.54

1192.835 3033.8 2.11
413.700 2185.72 1.28

1854.755 4054.26 2.98
1882.335 3495.76 2.76

5.2.2 Pressure dependence

During the uniaxial tension under pressure tests, the hydrostatic pressure at the center of the neck

does not maintain constant. In addition to the confining pressure, a tensile force is applied on the

longitudinal direction. Bridgman defines the flow stress ufow as the difference between the stress

in the longitudinal direction and the confining pressure [2], i.e.

flow = Olong - Pconf, (5.1)

where Ulong is the true stress in the pulling direction and Uconf is the confining pressure.

Bridgman showed that the ratio of the area of tensile fracture to initial area decrease with respect

to the confining pressure, for instance, for a type of armor steel C14 [2] (p.79). By observation of

the test results, the relationship of the fracture strain and the confining pressure can be expressed

as

Af _AfO (1  Pconf (52
-. 1 - ""(5.2)

A0  Ao PiiM '

where q is a material constant that fits the experimental data best, A0 is the original cross-sectional

area, Af is the cross-sectional area after fracture at the neck, AfO is the cross-sectional area after

'The 'x' mark indicates the data is not used in the curve fitting either because the strain is too high to measure the
reduced cross-sectional area at the neck accurately or it is irregular, which suggest some sort of initial imperfections.
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fracture at the neck at atmospheric pressure, and Plim is a limiting pressure beyond which the

material will not fail in the uniaxial tensile condition. Bridgman estimated this limiting pressure

is between 1GPa to 2GPa for most of the steels (p.78 in Bridgman [2]).

Taking logarithm on both sides of Eq. (5.2), one gets

E r = Efo 1 - q log (I - , (5.3)

where Ef is the fracture strain at the confining pressure p, efo = log j- is the uniaxial tensile failure

strain without confining pressure, and q = . Therefore, the pressure dependence function pp(p)

becomes

pp(p) = 1- q log I - . (5.4)
Plim

There are yet two concerns about Eq. (5.4). Firstly, the confining pressure is not well defined

in arbitrary triaxial loading condition. For numerical implementation, it is not feasible to use the

confining pressure for triaxial loading cases. Therefore, the confining pressure is replaced by the

hydrostatic pressure and the form of Eq. (5.4) is retained, except that the material constants are

re-calibrated for the hydrostatic pressure.

The second concern is the hydrostatic pressure is not constant in the course of the Bridgman

tests. Thus, an approximation method of averaging the hydrostatic pressure experienced at the

center of the cross-section of the tensile specimen is used to calibrate the material parameters.

The average hydrostatic pressure experienced in the course of pulling is illustrated in Fig. 5.1.

The equivalent stress path on the 0-eq-P plane is shown as the thick solid line. The mean hydrostatic

pressure along the entire loading path is estimated to be

Pave = Pconf - 6* . (5.5)
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Figure 5.1: An illustrative sketch of the average hydrostatic pressure experienced in the course of

uniaxial pulling under a confining pressure.
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Figure 5.2: Curve fitting process for material 9-2.

From the curve fitting, the pressure dependence of material 9-2 can be obtained, i.e.

Ef = 1.20 1 - 2.20log I - P.] l (5.6)

Because the limiting pressure of steel was not shown before, it is desired to analyze existing data
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to gain ground. The complete list of Bridgman's more than 200 tests is analyzed using Eq. (5.4).

The fitting results of the Bridgman's tests are plotted in Fig. 5.3.

U)

1 5

-500 0 000 15Mo 2000 25M
Average Hydrostatic Pressure (MPa)

Figure 5.3: The complete fitting results of Bridgman's tests for various steels.

Several materials has only one or two specimens that actually failed, which is not adequate to

determine the relationship of the effective failure strain with the hydrostatic pressure that has three

unknowns. Such materials are eliminated from the list. Some materials Bridgman used only has

three specimen that actually failed. Considering the experimental error, an accurate calibration of

the parameters will be very difficult from these tests.

The nonlinearity becomes more significant for higher compressive pressure, meanwhile, the

effective strain at failure is difficult to measure, since the cross-sectional area becomes too small.

The limiting pressure is so high that under such pressure, an existing crack can actually heal.

Ideally, the strain at failure goes to infinity as the hydrostatic pressure approaches Plrm. The

hydrostatic pressure in Bridgman's experiments does not close to that end for steel yet. However,

Pugh [29] showed that the limiting confining pressure is relatively low and approximately 100 MPa

for zinc. On the other hand, except some extreme cases, practical applications seldom reaches such

high a compressive pressure. In the moderate hydrostatic pressure range, the obtained logarithmic

relation is sufficient.

The first order linear approximation of Eq. (5.3) around zero mean stress is

Ef = Ef0 - q ) . (5.7)
plim
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Table 5.2: Material parameters to account for the effect of the hydrostatic pressure from Bridgman's
tests, after Bridgman [2].

Material
1-0
2-0
2-1
2-2
2-3
2-5
2-6
2-7
3-0
4-0
4-1
4-2
4-3
4-5
5-0-longitudinal
7-0-rolling
9-2
9-3
9-4
9-6
10-1
16-0
17-0
18-0
19-1
19-2
19-3
19-4

E6 o

1.187
1.142
1.181
0.947
0.664
1.157
1.120
1.254
0.636
0.417
0.566
0.451
0.210
0.308
1.359
1.407
1.198
1.107
1.163
1.224
0.125
2.036
2.031
2.434
0.854
0.718
0.340
0.240

Plim (MPa)
997.034

1956.888
4623.534
1511.169

748.626
3958.698
667.403

2250.069
2576.346
1400.046
1963.306
2862.819
1782.756
1809.073
4686.106
1763.820
2380.165
1974.230
2935.974

13315.884
3152.511
3935.411
1985.858

47705.864
3326.874
6214.388
3017.921
3970.663

q
1.500
3.413
7.172
2.124
1.338
2.868
0.757
2.240
3.589
3.382
3.936
6.508
4.967
4.062
3.978
1.782
2.202
2.166
3.874

12.013
13.419
2.548
0.159
4.702
3.014
4.926
3.500
6.312

Phm/q (MPa)
664.651
573.301
644.703
711.359
559.314
1380.444
881.603
1004.455
717.750
413.995
498.862
439.887
358.910
445.318
1177.912
989.781
1080.896
911.661
757.924
1108.425
234.923

1544.592
12499.934
10144.983
1103.667
1261.623
862.304
629.029
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Admittedly, both q and plim are sensitive to the experimental error from limited data. However,

from this linearized relationship of the effective failure strain and the hydrostatic pressure, it is

understood that the value of Piji can be estimated with confidence even with three experimentalq

data for the pressure level of many industrial applications. A precise measurement of the fracture

strain at high compressive pressure has to be ensured, if the nonlinearity under high pressure is of

interest.

From Eq. (5.3), a cut-off value of tensile pressure emerges. The failure strain is a monotonic

decaying function with respect to increasing hydrostatic tension. It could be shown from Eq. (5.3)

that the failure strain becomes negative when the hydrostatic pressure falls below

Pcutoff = P m 1 - e(1/q)I . (5.8)

At this cut-off pressure, the fracture strain ef is zero, which means effectively the material could

not take any plastic strain further. This implies the volumetric deformation becomes dominant.

On an octahedral plane of cut-off pressure, the fracture locus shrinks to a single point at the triad

axis.

In reality, it is difficult to design a constant pressure test for calibration purpose. For instance,

the torsion tests in a pressure chamber is a constant pressure test, but there are difficulties to

construct such apparatus [2]. Using averaging method, the loading paths with different hydrostatic

pressures can be estimated from tensile tests in a pressure chamber or from the notched round bar

test etc.

5.2.3 Limiting pressure

Because of the limited range of pressure available in the compression chamber, accurate data relating

to the limiting pressure of materials have not been measured, although there are some information

from extrapolating existing data. It must be understood that, in the majority of cases, the pressure

dependence parameters calibrated from laboratory tests are fairly good to describe phenomena in

a similar pressure situation in a field test.

There are some experimental evidences that no damage occurs when the hydrostatic pressure

is sufficiently high. In fact, when the hydrostatic pressure is above this critical value, new bond

can actually be created at room temperature. For instance, it was discovered very early that soft
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metals, such as gold, could be joined together by hammering at room temperature.

Unlike the fusion welding, the working temperature of the widely used solid phase welding is

below the melting point. In this case, pressure is applied such that the materials can be welded.

One type of solid phase welding is the so-called "cold press welding". Joints can be created

from chemically identical materials or different metals that are otherwise hard to joint [77]. Similar

technique is the "explosion welding", where high pressure is produced by explosives [781. Another

application is the so-called "cold isostatic pressing" (or "hydrostatic pressing") to consolidate metal

powders [79]. For many years, powder metallurgists have been placing metal powders in a flexible

container, and then immerse the container in a fluid and apply high pressure to create sound parts

of various geometries. For instance, with standard grades of beryllium powder, with pressings at

60,000 psi or above, sufficient strength to allow detailed machining before further densification is

obtained [80].
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Chapter 6

Lode Angle Dependence of Ductile

Fracture

6.1 Lode angle dependence

A Lode angle dependence function characterizes the azimuthal variation of the fracture locus on the

strain plane. According to the hypothesis of damage accumulation and the hypothesis of indepen-

dence of pressure and Lode angle on the damage potential function, the effect of the hydrostatic

pressure and the deviatoric state on the fracture strain can be uncoupled and determined from

separate series of experiments. Therefore, the Lode angle dependence function can be expressed as

a function of the Lode angle (or other parameters of the same meaning). For isotropic materials,

the components of principal stress are interchangeable to reflect the independence of damage to

the observation frame. The weighting function for damage evolution should have symmetry in all

three principal planes. This yields that on an octahedral plane, the azimuth angle can be divided

into six part that have the same weighting function. Each sextant covers the complete range of the

relative ratio of the stress deviators from zero to unity, i.e. 0 < x < 1.

In many applications, the mean stress on the loading path is not constant. To eliminate the

pressure effect, it is ideal to conduct a series of experiments that covers one sixth of the octahedral

plane at a constant pressure. For instance, at the absence of hydrostatic pressure, all experiments

are carried out on the 7r-plane with different Lode angle. Then, the Lode angle dependence can be

obtained precisely.
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Unfortunately, purely deviatoric experiments are not so easy to design even for a uniaxial tension

of a round bar. Nevertheless, in the absence of precise knowledge of the relationship between the

fracture strain and the Lode angle, we still can obtain some useful approximation from existing

experimental evidence.

6.2 Experimental results relevant to Lode angle dependence

Because of the difficulty of designing a constant pressure experiment, we do not have a direct means

to measure the Lode angle dependence using existing apparatus and methods. However, we are

able to elucidate the existence and the general trend of fracture strain on the Lode angle from the

experimental work in the literature.

In Chapter 5, we show that the fracture strain monotonically increases with respect to increasing

hydrostatic pressure. The stress triaxiality (T = O-m/-eq) offers a convenient means to describe the

pressure effect for proportional loadings, where the stress triaxiality keeps constant. For instance,

for ideal uniaxial axisymmetric tension, T = 1/3; for plane strain tension, T = i/V/ and for

equi-biaxial tension, T = 2/3.

The Lode angle characterizes the type of the loading condition. Many experimental investigation

are carried out in proportional loading conditions or close to proportional loading. In these cases,

the Lode angle keeps constant, but the pressure changes.

6.2.1 Comparison of simple tension and torsion/shear experiments

First, let us consider the simple tension and simple shear. Experiments shows materials exhibits

different ductility under tensile and torsion/shear loading. McClintock [41] (page 97) collected a

table of such data, which were expanded and listed in Table 6.1.
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Table 6.1: Comparison of the fracture strain in simple tension and torsion.

Equivalent plastic strain
No. Material References

tension torsion/shear

(1) 60-40 brass as-rolled Halford and Morrow (1962) [42] 0.68 0.879

(2) 1100-0 aluminum annealed 660'F Halford and Morrow (1962) [42] 2.62 12.6

(3) 2024-T351 aluminum alloy Bao and Wierzbicki (2004) [26] 0.45 0.21

(4) 6061-T6 aluminum alloy Wilkins et al. (1980) [22] 0.55-0.60 0.60

(5) 7075-T6 aluminum alloy Halford and Morrow (1962) [42] 0.37 0.583

(6) 7075-T6 aluminum alloy Neimark (1968) [43] 0.44 0.48

(7) 1045 steel 1575*F water Q temp. 800*F Bridgman (1952, pp.260-262) [2] 0.88 0.39

(8) 1045 steel 1575*F salt Q temp. 800'F Bridgman (1952, pp.260-262) [2] 0.93 0.38

(9) 1045 steel 1575*F salt Q temp. 1100*F Bridgman (1952, pp.260-262) [2] 0.89 0.43

(10) 4340 steel 1575*F oil Q temp. 400'F Halford and Morrow (1962) [42] 0.52 0.29

(11) Weldox 460 Borvik et al (2001) [45] 1.6 1.8

(12) A359 Al alloy Li et al (2004) [44] 0.106 0.184

(13) A359/SiC composite Li et al (2004) [44] 0.035 0.061

Assuming these materials are isotropic, the difference between simple tension and torsion is that

(1) in simple tension, a tensile hydrostatic pressure is superimposed and X = 0; (2) in torsion, the

hydrostatic pressure disappears and X = 0.5. It follows from Table 6.1 that these two driving forces

are entangled with each other and their joint effects show mixed result of the magnitude between

the fracture strains of the two stress states.

6.2.2 Comparison of simple tension and transverse plane strain tension

Clausing published an experimental investigation of the difference of ductility in axisymmetric

and plane strain tension [40]. He tested seven metals of different hardening properties. The
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main finding is the significant decrease in tensile ductility of plane strain tension (grooved plate

specimen) from the axisymmetric tension (round bar) for seven structural steels. Compared with

pure shear or torsion, the uniaxial plane strain tension has an additional hydrostatic tensile pressure,

which facilitate the void nucleation and growth and slip band movement. The difference of such

hydrostatic pressure in axisymmetric and plain strain tension is far less significant than in the

torsion and axisymmetric tension. Therefore, the difference in ductility between the plain strain

tension and the axisymmetric tension is mainly due to the change in the relative ratio of the stress

deviators, which is from X = 0.5 to x = 0. The plane strain tension test shows unanimous ductility

decrease compared with the axisymmetric tensile tests, see Table 6.2.

Table 6.2: The difference in ductility of axisymmetric uniaxial tension and plain strain uniaxial

tension. Experimental data from [40].

Yield Tensile Fracture Fracture

Steel Strength Strength Strain Ea Strain eps

ay (MPa) auts (MPa) (Axisymmetric) (Plane Strain)

ABS-C 262.7 428.9 1.04 0.75

A302-B 371.0 590.2 0.98 0.72

HY-80 586.1 689.5 1.22 0.73

HY-130(T) 937.7 986.0 1.06 0.39

18Ni(180) 1227.3 1289.4 1.00 0.42

1ONi-Cr-Mo-Co 1254.9 1413.5 1.16 0.36

18Ni(250) 1710.0 1772.0 0.89 0.15

Hancock and Brown [81] repeated Clausing's experiment, but found less significant differences

between the fracture strains in simple tension and a flat grooved plate tension. The length to height

ratio of the groove used by Hancock and Brown was 1.0. In Clausing's experiments, the length to

height ratio was 4.0. Adams conducted a series of tests on doubly grooved plates and suggested

the length to height ratio need to be great than 10.0 to ensure a plane strain condition for grooved

plate [82]. It is clear that Hancock and Brown's groove was too high and lost the plane strain

constraint.
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6.3 Lode angle dependence function

Due to the fact, that the Lode angle dependence of ductile fracture is relatively unexplored, the

exact shape of Lode angle dependence function is difficult to be calibrated. Without attempting to

obtain a quantitatively accurate model, we emphasize the qualitative nature of this study. However,

with appropriate hypotheses, reasonably good quality can be achieved from simple analysis of the

experiment results. First, we make the following symmetric assumption to reduce the work load

by half.

Hypothesis: On an octahedral plane, the backward deformation of a material point creates the

same amount of damage as the forward deformation does.

From the deformation point of view, a backward deformation returns the shape of a solid body

to its original shape at the same hydrostatic pressure it experiences in the forward deformation.

For instance, the backward deformation of a simple tension is a compression state with lateral

tension, as shown in Fig. 6.1. This is because the hydrostatic pressure during a simple tension is

not the same as a simple compression. The backward deformation of a simple shear is a reversed

simple shear. On an incremental basis, a deformed body under arbitrary forward loading path can

be returned to the same shape of its original shape under the backward deformation of the forward

deformation.

cY -cY

CY

(a) (b)

Figure 6.1: The stress state of a simple tension and the stress state of the backward deformation

of simple tension.

The consequence of this hypothesis is that the fracture surface is symmetric with respect to

the plane strain axes, where x = 0.5. In addition to the rotational symmetry with respect to the
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principal stress axes, the Lode angle dependence function are identical for each of the twelve pie

slices on the octahedral plane, which are identified by either 0 < x < 0.5 or 0.5 < x 5 1.

Corollary: The Lode angle dependence function is symmetric with respect to the plane strain

axes (x = 0.5) and the principal stress axes (x = 0 or x = 1).

Wilkins et al [22] proposed a functional for the Lode angle dependence function. Two new

families of the Lode angle dependence function are proposed in the present thesis. One family

is polygon that reduces to right hexagon for a given material constant. The other is a closed

curved lines which reduces to a circle in the triaxial plastic strain plane for one particular set of

parameters(the Lode angle dependence diminishes in this case). Only one additional parameter is

needed for the first family and two parameters are required for the second family.

6.3.1 Wilkins, et al

Wilkins, et al [22] proposed a Lode angle dependent function

A0 = (2 - A), (6.1)

where 3w is a material constant and A is the stress state ("stress asymmetry"), i.e. A = max ,

It can be shown that the stress asymmetry and the ratio of the principal deviatoric stresses are

related by

2 A+2 or A = +X, -2' (6.2)
2 + A s2 > 0. 2_-1 < X :5 1.

The Wilkins model predicts the ratio -y of the fracture strain at the plane strain condition to that

at the generalized tension (or generalized compression) condition at the same constant hydrostatic

pressure to be

= 2~". (6.3)

The Lode angle dependence function Eq. (6.1) is plotted in Figs. 6.3 and 6.2 in a polar and a

Cartesian coordinate system as dash-dot lines, respectively.

For a special case of -y = 1, the Wilkins parameter #3 = 0. In this case, the Lode angle
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dependence of Wilkins model vanishes.

6.3.2 Polygon model - the first kind of Lode dependence function

Probably, the simplest Lode angle dependence model is to acknowledge the difference of the fracture

strain between the generalized tension and plane strain on the triaxial strain plane. A first order

linear relationship in the plane of strain components is proposed, as shown in Fig. 6.2. It is

represented by a simplified shape of a "six point star" on the strain plane. The fracture point

representing the fracture strain at the generalized tension or generalized compression is connected

to that of the plane strain condition by a straight line and, thus, forms a polygon on the strain

plane as shown in Fig. 6.2 (a solid line).

£2
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120 60

- - - 30

180 - - - -- - - -- - - -- - -- - - - - - - - - - - - - - 0

210 *-- * 330

s3-1

240 00 -- -Widkns et al, 1980
270 -- Xue, 2005

Figure 6.2: The Lode angle dependence of the effective fracture strain.

The polar equation for a straight line is

,ao = ro (6.4)
cos(0 - 00)'

where ro represents the minimum distance between the origin and the straight line and 60 is the

polar angle of the line perpendicular to the straight line. For the proposed "six-point star" polygon,
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it can be shown that this straight line passes two points (1,0) and (y, 2) in the polar coordinate
s)

system. Substituting this two points in Eq. (6.4) to solve the two unknowns ro and 00, we obtain

ro = 2 / 2  
fy 1

60 = cos 7.
2 V-2 _ vf/57 + 1

(6.5)

(6.6)

Using the relative ratio of the

function

stress deviators, the "six point star" can be represented by the

9 = (6.7)
+ x 3+ ,2 0 < X < 0.5;

+2 X+

x -+1 0.5< x< 1
1+(%'-2)(l-x)' -

which is symmetric with respect to X = 0.5 as shown in Fig. 6.3.
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Figure 6.3: The normalized effective failure strain versus the ratio of the stress deviators.

It was found for many metals, the material parameter -y which characterizes the difference

in ductility between generalized shear and generalized tension is less than unity. Consequently,

fracture favors the shear mode. This partially answers the question of why shear lip forms at the

edge of an otherwise tensile specimen. This will be further discussed in Chapter 11. Of course,
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other reasons include the lack of stressing in the direction perpendicular to the surface and the

geometrical change after deflection.

When y = N/3/2, the right "six-point star" degenerates to a right hexagon. It should be noted

that the axes of the right hexagon is a measurement of strain. Although the shape of the right

hexagon is the same as the maximum shear stress yield loci, the measurement is different.

6.3.3 Curvilinear model - the second kind of Lode dependence function

In a similar fashion of obtaining the linear Lode angle dependence function, we can also construct

a curvilinear model that degenerates to a perfect circle which means the fracture strain does not

dependent on the the Lode angle. For this second family of Lode dependence curves, the proposed

curvilinear functionals are

1 1-Y 10) k , < 0 < -7r/6; jgIk
A0= 0 I6 k or P1='y+(- -y) ; (6.8)

) r/( ) , 7r/6 < 0 < 7r/3; Ir/I

where 9 is the azimuth angle, OL is the Lode angle, -y = 0 the same material constant as

in the polygon model and k is the Lode angle dependence exponent.

It can be verify that the boundary conditions of (1, 0) and (-y, 1) for ef, 9 are satisfied. This is

a family of Archimedean spiral. When k = 1 in Eq. (6.8), the curvilinear Lode angle dependence

function is an Archimedes' spiral in the polar coordinate system, which is linear with respect to the

azimuth angle on the triaxial plastic strain plane. When y = 1, the curvilinear function degenerates

to a perfect circle.

Other nonlinear form may be obtained by fitting the experimental data. However, at the current

stage, we will use the above proposed forms to calibrated our experimental data.

6.3.4 Combination of pressure and Lode effect

Let us consider the polygonal model for the purpose of consider the fracture surface in the 3D

space.
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Figure 6.4: A three-dimensional fracture surface in the mean stress and plastic strain space.

Combining Eqs. (5.4) and (6.7), the fracture surface can be expressed by

Ef, [I - q log (1 - P +'x -x+1 ,

Ef,,[ - q log (1 -+ PX2X+ ,
Plim 1+( 3 2)(1 x)

0 < X < 0.5;

0.5 < x < 1,

in which the fracture surface is characterized by four material constants efo, y, q and Plinm and two

stress state parameters p and X.

Expressing the fracture envelope in the principal stress space, the combined effects of the hy-

drostatic pressure and the deviatoric state is shown in Fig. 6.5, which appears to be a "blossom".
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Figure 6.5: A three-dimensional sketch of the fracture surface in the principal stress space.

6.4 Hardening effect on the Lode angle dependence

It is interesting to explore what parameters influence the Lode dependence function, especially the

strain ratio -y. One of such influencing factor is the strain hardening parameter. Such knowledge not

only extends our physical understanding, but also is very helpful in designing a safe structure. For

instance, knowing that a material has a possibly having low values of -y may prevent the engineers

to use it in a shear condition, since it is more like to fail in shear.

A literature survey reveals that the experimental research in this area is scarce. More detailed

research is in need in this regard. At this point, no quantitative conclusion is possible. However, it

is still useful to extract some qualitative results from existing theoretical and experimental work.
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6.4.1 Experimental results

(a) Clausing's experiment [40]

Clausing lists the yield stresses and the ultimate tensile strength for the seven materials he

tested [40]. One measurement of the strain hardening is the ratio of the average hardening modulus

to the yield stress. Low ratio means low strain hardening capacity and high ratio means higher

strain hardening capability. The analyzed data are listed in Table 6.3. Without the exact knowledge

of -y, we use the ratio of eps (fracture strain at plane strain tension) and est (fracture strain at simple

tension) as a measurement of the sensitivity of the Lode angle dependence. The smaller the ratio,

the higher sensitivity on Lode angle the material. The last two columns of Table 6.3 are plotted in

Fig. 6.6. It is shown that the higher the strain hardening effect, the lower the Lode sensitivity is.

Table 6.3: The difference in ductility of axisymmetric

tension. Experimental data from [40].

uniaxial tension and plain strain uniaxial

Yield Tensile Fracture Fracture have = Fracture

Steel Strength Strength Strain est Strain eps "" Strain Ratio

oy (MPa) autS (MPa) (Axisymmetric) (Plain Strain) (eps/est)

ABS-C 262.7 428.9 1.04 0.75 166.2 0.61 0.72

A302-B 371.0 590.2 0.98 0.72 219.3 0.60 0.73

HY-80 586.1 689.5 1.22 0.73 103.4 0.14 0.60

HY-130(T) 937.7 986.0 1.06 0.39 48.3 0.05 0.37

18Ni(180) 1227.3 1289.4 1.00 0.42 62.1 0.05 0.42

10Ni-Cr-Mo-Co 1254.9 1413.5 1.16 0.36 158.6 0.11 0.31

18Ni(250) 1710.0 1772.0 0.89 0.15 62.1 0.04 0.17
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Figure 6.6: The ductility ratio of axisymmetric and plain strain tension versus the strain hardening.

It is also found from Table 6.3 and Fig. 6.6 that the decrease in ductility increases qualitatively

with weaker strain hardening (lower have/uy).

(b) Johnson-Cook's tests [3]

Neglecting the thermal and strain rate effects, the simplified Johnson-Cook strength model

reduces to

-eq = A + Be' (6.10)

Larger B/A and n indicate higher strain hardening capability. For the three material Johnson

and Cook [3] and Borvik [4] tested, the following material constants were found.

Table 6.4: The material parameters and fracture strain. After [3] and [4].

Materials A (MPa) B (MPa) n B/A est Etor Etor/Est

OFHC copper [3] 90 292 0.31 3.24 1.5 5.0 3.3

ARMCO steel [3] 175 380 0.32 2.17 1.82 3.0 1.6

4340 steel [3] 792 510 0.26 0.64 1.1 0.2 0.18

Weldox 460 [4] 490 383 0.45 0.78 1.6 1.8 1.1

From Table 6.4, the higher B/A and n results in a higher Etor/Est value, which means low Lode
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angle sensitivity. Therefore, stronger strain hardening capability shows lower y value.

(c) heat treatment

In Table 6.1, we compared simple tension and simple shear. Let us review these data again

from the strain hardening point of view.

It is known that materials exhibit different hardening behavior after heat treatment. Annealing

brings the initial yield stress lower and thus a larger hardening exponent n could be found by fitting

the stress-strain curve using a power law function. On the other hand, quench lifts the material

yield stress and therefore, a low hardening exponent is found comparing with the original material

before quench. It can be found in table 6.1 that the only annealed material exhibits the largest

difference of fracture strain in simple tension and torsion (1100-0 aluminum annealed 660*F). In

this case, pressure effects dominates. It is also found that the quenched steels tested by Bridgman

show monotonic drop in fracture strain in shear, which suggests Lode dependence is predominant.

(d) others

There are also other experimental evidences that are related to the Lode angle dependence with

respect to the hardening properties. Additional information can be obtained from the compact

tension tests. Two competing fracture modes co-exist in a compact tension crack - (a) a flat

crack and (b) a 450 shear crack. The generally observed experimental results are the higher strain

hardening capability shows a flat crack and a low strain hardening capability material exhibits

a shear crack [83]. This also indicates that that the increasing of material hardening capability

reduces the Lode angle sensitivity of fracture strain.

6.4.2 St6ren and Rice's bifurcation condition

When there is a point vertex in the yield surface, the derivative of the yield surface is non-continuous.

Therefore, a bifurcation condition occurs [84]. St6ren and Rice [85] predicted that the bifurcation

condition under biaxial stretching from the tangential modulus and the secant modulus on the

material hardening function.

It is generally considered that the onset of necking and fracture are two different phenomenon.

However, there are some similarities that can be found through comparison.

For a power law strain hardening material, St6ren and Rice [85] predicts the bifurcation occurs

at
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Lb - (2a - 1)2 + 3 (6.11)

3/2 - aci + 1

where u is the ratio of the two principal in-plane stress components and -b is the bifurcation strain.

In their derivation, the hydrostatic pressure effect is not taken into account. Because superimposing

an arbitrary hydrostatic pressure to the stress system does not alter the derivation, the bifurcation

condition can be re-written for a 3D stress system using the relative ratio of the principal deviatoric

stresses, i.e.

(2X - 1) 2 + 3n
Lb = 3- 2 -~ (6.12)

3Vx 2 _ x + 1

In fact, Pugh showed experimentally and theoretically that the presence of the hydrostatic

pressure component does not affect the onset of necking earlier [71].

Let us assume that for different azimuth angles, the ratio of the bifurcation strain to the

ultimate fracture strain is constant. It can be inferred from Eq. (6.12) that the strain hardening

postpones the bifurcation of the material for any possible x. It is also interesting to compare the

most disadvantageous deviatoric condition (x = 0.5) to the most advantageous deviatoric condition

(X = 0 and X = 1). At x = 0.5, 6b reaches the maximum value of Eb = n + 1. At x = 0 or 1, Eb

reaches its minimum value of Eb = 2 n. Let yb denote the ratio of Eb at X = 0.5 and X = 0 or 1.

From Eq. (6.12), it can be shown that

2 =
Ef(X = 0.5) 3

b =(6.13)
Ef(x = O or l) n +}

Letting the St6ren and Rice model and the Wilkins model predict the same behavior at these

two extreme conditions by comparing Eq. (6.13) and Eq. (6.3), the stress asymmetry exponent in

Wilkins model /, is

1, = log 2 2 3). (6.14)

The normalized effective failure strain with respect to the failure strain subjected to the triaxial

tensile loading at a strain plane is plotted in Fig. 6.7.
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Figure 6.7: The normalized effective failure strain versus the ratio of the stress deviators.

The St6ren and Rice model, the Lode angle dependence function of Wilkins model and the

present polygon model are plotted in Fig. 6.8.
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Figure 6.8: The normalized effective failure strain versus the deviatoric state.

The strain hardening exponents for the representative curves are listed in Table 6.5.
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Table 6.5: The strain hardening exponents n versus strain ratio -y or -y.

-yb or -y

0.866

0.700

0.500

0.250

n

1.000

0.513

0.255

0.092
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Chapter 7

Summary on Damage Plasticity

Model and Plane Stress Condition

7.1 Summary on damage plasticity model

The backbone of the present theory lies on the fundamental hypothesis that "At a fixed pressure,

for each proportional deviatoric loadings, the ductile damage processes are self-similar with respect

to the ratio of the plastic strain and the fracture strain."

In particular, we proposed a set of equations to describe the damaging process and the associated

material weakening effect. The ultimate goal is to provide an effective tool in modeling ductile

materials. It should be noted, the chosen of dependence function are not necessarily precise for all

ductile materials due to the complexity of their composition and micro structure. In the present

study, the particular equations and the parameters are chosen based on the generally perceived

wisdom. In summary, this set of equations can be listed as the following
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aM = aM (Ep)

Ueq = (1 - DO) am;
b=M~()M-1) .

Ef = m

ef = Efo/pp (p) A0 () ;(7.1)

p (p) = 1 - qlog 1 -

and

A0 (0) = 1-7 / .

where &M (ep) is the intrinsic matrix stress-strain property, aeq is the yield value of equivalent

stress, (1 - DO) is the weakening function, b is the damage rate, pp and po are the pressure and

Lode angle dependence function respectively. The material parameters are the damage exponent

m, the weakening exponent fl, the shape parameter q and the limiting pressure plim in the pressure

dependence function and the fracture strain ratio -y and the Lode angle dependence exponent k for

instance.

Due to the incomplete of study on the Lode angle dependence function, in the present study,

the Lode angle dependence exponent k in the second kind of Lode angle dependence function is

assume to be unity. Further study on the shape of the Lode angle dependence function is in need

to calibrate k.

In the present damage plasticity theory, two internal variables are used, namely ep and D.

Both of the variables are scalars. We now compare the plasticity with the damage evolution in

Table 7.1. To show the similarity, the stress-strain curve for the matrix material are assumed to

follow a "Swift" type power law rule:

aM = r (I + Ek (7.2)

where a. is the yield stress, Ek is a reference strain and n is the hardening exponent.

80



A generalized damage plasticity model

0,Y0 (1)

f, =1 (2)

A =1 (3)

Mean Stress

Si.

- o f fd (4)

doM =?I I+ (n-1) d6
=r + (5)

a- 6
k s

(D D =0

(11)

(6)-f 0

lip=I-qlog - P(7)

p,=y+(1-Y) (8)
7r 6

Mean Stress

8ex

6, = 6iuflPpa (9)

Figure 7.1: The comparison of yielding and plasticity to fracture and damage evolution.

The complete damage plasticity theory reduces to a total of nine (9) equations and two (2)

parameters (o-y and efo). The similarity and difference between yielding and fracture are shown in

Fig. 7.1. On the left hand side of Fig. 7.1, we choose von Mises type yield condition where the

pressure dependence function and the azimuthal dependence function are both reduce to unity. On
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the right hand side, fracture initiation for ductile materials are both pressure sensitive and Lode

angle dependence in general. Therefore, non-unitary functions are given. We intentionally put "1"

at denominator of left hand side of Eq. (10) in Fig. 7.1 to compare with Uy in Eq. (5) and to

emphasize that the damage value is chosen as "1" for completely damage material.

7.2 Fracture under plane stress condition

In the previous chapters, focuses are given to the constant pressure and constant Lode angle plas-

tic loading paths. However, as already mentioned, this condition hardly represents any working

condition in the real world. Therefore, in this section, we discuss one set of particular loading situ-

ations where one principal stress component is constant and equal to zero and the other two stress

components are proportional. Thus, the pressure changes but the Lode angle remains constant -

which is called the plane stress condition.

The plane stress condition u,, = 0 offers a subset of special problems that have been extensively

studied experimentally, analytically and numerically.

A common application of plane stress condition is the sheet metal forming, where the majority

of tests are conducted under the biaxial stretching because sheet metals are likely to exhibit out-

of-plane wrinkle or buckling under compressive loadings. In thick plates, the out-of-plane mode is

prohibited and the material tends to fail in shear when one principal compressive stress is signifi-

cantly larger than the other.

In many of the applications, the in-plane loadings are proportional or nearly proportional.

Therefore, it is reasonable to restrict ourselves in the scope of proportional loading in this chapter

for simplicity. By proportionality, the Lode angle remains the same along the loading history.

For plane stress loading, the relative ratio of the principal deviatoric stresses can be transformed

to the ratio of the two nonzero in-plane principal stresses a, i.e.

1 - X, U-1 <_ U2 < 0

a = 17 , 1 < 0 < U2 (7.3)

X, 0 < U1 < 02

The range of the stress ratio, the relative ratio of the stress deviators and the stress triaxiality

are illustrated in the top-left half plane. The bottom-right half plane is symmetric with respect to
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the line identified by o = y.

T a
x ae

1 a

X

2
3

Figure 7.2: The stress ratio, the relative

the plane stress condition.

L
IT OX = y

3
X

Ux

ratio of the stress deviators and the stress triaxiality in

For fracture under plane stress proportional loadings, the effective failure strain can be equally

expressed in one of the three parameters. For example, the equivalent failure strain is plotted versus

the stress triaxiality in Fig. 7.3 for 2024-T351 aluminum alloy.

Aluminum alloy 2024-T351

C,,

0
L
4-

a)
0

U

1

1.

1.

0.

0.

0.

0.

Stress Triaxiality - --

Figure 7.3: The fracture strain versus the stress triaxiality for the plane stress

Experimental data from [26].

loading condition.
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In Fig. 7.3, the right three points (denoted by triangles) of experimental data are from the

smooth and notched round bars and the rests (denoted by circles) are from the plane stress condi-

tion. For smooth and notched axisymmetric specimens, the fracture initiates at the center, where

hydrostatic tension is the greatest. The upper bound shown in Fig. 7.3 is fitted from the axisym-

metric data. The point of intersection of this upper bound and the vertical axis 11- = 0 (denoted
Oaeq

by point "B") corresponds to the reference generalized tension condition, where the pressure is

constant zero along the loading path. Point "B" defines the value of the reference fracture strain

efo. The nonlinear parameters Plim and q are also obtained from the fitting of the upper bound.

The ratio of the simple shear fracture strain (denoted by point "A") and efo defines the strain ratio

-y. From Fig. 7.3, we can find that y = 0.30. Batra et al [86] showed the fracture strain of AA

2024-T351 in torsion is about 0.4, which indicates a larger -y = 0.57.

In plane stress condition, the stress triaxiality is bounded by -2 and 1. It can be clearly

seen from Fig. 7.3 that the failure loci consists of three distinct branches, which correspond to

- < T <-, - < T < } and } < T < , respectively. Each branch represents a full cycle of

x from 0 to 1. The hydrostatic pressure of the final fracture state varies on the fracture envelop.

At the - < T < -} branch, the material is under biaxial compression or in the third quadrant3 - - 3

of the principle stress plane. Thus, the hydrostatic pressure is compressive, which increases the

ductility of the material. This results in that this branch is much higher than the other two. On

the other hand, the - < T < j branch represents the biaxial tension or the first quadrant, which

results in a decrease of the equivalent fracture strain. The middle branch or the second and fourth

quadrant, which has -1 < T < ., is mixed by a compressive hydrostatic pressure on the left half

and a tensile hydrostatic pressure on the right half. The upper bound and lower bound of the

fracture strain with respect to the stress triaxiality are also plotted as dash-dot lines in Fig. 7.3.

These bounds shows the maximum (under generalized tension or generalized compressive loading)

and minimum (under generalized shear or plane strain condition) value of the failure strain under

the same hydrostatic pressure for the triaxial loading cases.

Similar results were obtained by Barsoum and Faleskog [1] using a notched tube, as shown

in Fig. 7.4. Their results are plotted in the stress triaxially vs. fracture strain and the Lode

parameter vs. fracture strain planes, as shown in Fig. 7.5, where the Lode parameter is defined as

p = (202 - 91 - U3)/(1 - 03).
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Figure 7.4: Notched tube specimen used by Barsoum and Faleskog. After Barsoum and Faleskog [1].
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Figure 7.5: Fracture strain vs. stress triaxiality and fractures train vs. Lode parameter. After

Barsoum and Faleskog [1].

Figure 7.5(a) is for material Weldox 420 with the open circles indicating fracture strain and
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the solid circles indicating strain at necking. For stress triaxiality alone, we know that the fracture

strain is a monotonically decaying function. However, with the additional Lode angle effect, the

shape of the fracture strain loci can change. From Fig. 7.5(b), the Lode angle effect results a lower

fracture strain at both ends of the tested range of stress triaxiality where p ~ 0. The experimental

fracture strain confirms this trend and shows a cusp in the middle. This is approximately where

the Lode parameter is close to p = -1 (generalized tension).

In this regard, the fracture envelope can be plotted with respect to the stress triaxiality and

the third invariant, alternatively [87]. The fracture envelope is shown in Fig. 7.6.

Axial symnmetry

. - Plane stress

lane strain

meq 2 eq

Figure 7.6: Representation of the fracture surface in the space of stress triaxiality and the deviatoric

state variable. Note that the thick solid lines correspond to axisymmetric state, plane

strain, and plane stress state.

It is assumed the fracture strain ratio at x = 0.5 and at x = 1 is assumed to be constant, with

respect to the stress triaxiality, this ratio is slightly different for x = 0.5 and x = 0. Phenomeno-

logically, let the upper limit and the lower limit be presented by the same exponentially decaying

function, for instance, using Hancock and Mackenzie's function with different sets of parameters,

i.e.

E upper = C + C2 exp (-C3a-m/o-eq) for X = 0;f (7.4)

E lower = C4 + C5 exp (-C60-m/-eq) for X = 0.5.

In Chapter 13, using a modified Gurson like micro mechanical model, we show that these limited
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curves are fitted by Eq. (7.4). This fracture envelope can be represented by

Ef = E upper E upper - Elower) 27 IJ3 1 k(lk)

2J o,3

where k is a shape parameter characterizing the sensitivity of the third invariant of the stress

deviator.
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Chapter 8

Elasto-Plastic Constitutive Equations

and Numerical Aspects

Following the modeling technique of the damage plasticity theory discussed in the previous chapters,

we present the constitutive equations and the numerical integration scheme applied in the present

study.

The present elasto-plastic theory based on small deformation, rate-independent plasticity with

strain hardening and coupled with damage.1

8.1 Damage plasticity theory

The constitutive equations are summarized as the following.

8.1.1 Kinematics

We assume that the total strain rate t admits the decomposition 2

t = e + &P. (8.1)

where () denotes the time derivative and ee and eP denote the elastic and the plastic part of the

strain tensor.

1Advices from Professor Lallit Anand in writing this section are greatly appreciated.2A bold-faced letter denotes a tensor quantity and a normal faced letter denotes a scalar quantity.
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From the assumption that the plastic flow does not induce changes in volume, the plastic strain

rate &P is deviatoric, i.e

8.1.2 Power

tr&P = 0. (8.2)

The stress power per unit volume is

P=c i- .(8.3)

On account of Eq. (8.2), the stress power can be decomposed into elastic and plastic parts:

P = 0-: ie + a -P. (8.4)

Since the plastic strain rate is deviatoric, we note that Eq. (8.4) may be rewritten as:

(8.5)= a : & + s : tp.

where

s = a + p1, (8.6)

is the stress deviator and p is the pressure, i.e.

1
p = -traT.

3

The plastic dissipation power is

(8.7)

') = s : iP ;> 0.

8.1.3 Constitutive equations

Elastic response
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We now introduce the damage variable (D c [0, 1])to the material from the outset of separation

of the matrix material from the continuum media. It is assumed the mechanical property of the

matrix material does not change with respect to the damage. The plastic damage effect on the

stress-strain relationship is by a weakening factor w(D) which is a function of the ductile damage. It

is assumed that the elastic response of the material is isotropic and governed by the rate constitutive

equation

6- = w(D)Co [ &P], (8.9)

where

Co = 2Gol+ Ko - Go 101 (8.10)

is the fourth order ground-state isotropic elasticity tensor, with Go > 0 and KO > 0 the initial

values of the shear and bulk moduli of the material, when D = 0. The elastic moduli at a damaged

state, when D C (0,1) are G = w(D)Go and K = w(D)Ko, respectively. The Poisson's ratio is

assumed to remain constant throughout the damaging process.

Plastic response

Let

d e: s (8.11)

denote the Mises equivalent stress and

aM = -M (eP) (8.12)

denote the resistance to the plastic flow offered by the matrix material. The damage coupled

yield condition is represented by

D (a, am, D) = -eq - w(D)aM > 0; (8.13)

the function <b (o, -m, D) is called the yield function.

91



Flow rule

We adopt the associative flow rule. The co-rotational flow rule is

&P = tPn,

where

3 s
n = ,

2 Ueq

is the normal outward vector to the yield surface3 and

def 2
F3'- - ':t,

denotes the equivalent plastic strain rate.

Under these constitutive assumptions, the dissipation inequality Eq. (8.8) reduces to

D = OLeq8P > 0,

and is trivially satisfied when eP > 0.

Evolution equations for the internal variables

The evolution of am due to strain hardening is taken to be

&m = h (EP) eP,

where h (eP) = O&M/O (eP) is the tangent modulus.

The evolution equation for the damage depends on the current

chapters, the damage rate takes the form

ep(rn-i) 1
D = g (ep, OL) 6P with g (ep,t 9L)=m AOe EP,&L) J (8-19)

(Ef (A, OL ) Ef (A, OL)

where p and OL are the pressure and the Lode angle on the octahedral plane, m is a material

constant, and ef denotes the fracture envelope and takes the form

3 Note the tensor n does not have unit magnitude
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(8.21)

4f (P, OL) = Ef0 1p/6, (8.20)

where 4p and AO are the pressure dependence and the Lode angle dependence functions. The

following forms are used, for example,

P = 1 - qlog (I

and

(8.22)
|6Lk

A0= -( - ) Tr/6 ,

where q, plim, y and k are material constants and OL is the Lode angle.

Complementarity conditions. Consistency condition

The equivalent plastic strain rate 9' is assumed to satisfy the complementarity conditions (Kuhn-

Tucker condition) [88]:

and 041) (a, aM, D) = 0. (8.23)

In addition, when P > 0, the consistency requirement

iA (o, aM, D) = 0. (8.24)

needs to be satisfied. The consistency condition helps determine &P whenever it does not vanish.

When & > 0

4 (a, am, D) = 0. (8.25)

From Eqs. (8.9) and (8.13) and the evolution equations, Eqs. (8.18) and (8.19),
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0= (a, m =M, (D= &w - M b (8-26)O9D

= n: - w(D)heP - am 1D geP (8.27)

= w(D)n: Co[& - &P] - w(D)he - JM- gP (8.28)
aD

= w(D)n: Co [&] - 3w(D)Go + w(D)h + am OWg ep. (8.29)

To carry out our analysis further we need to make an assumption about the evolution equations

for the internal variables -M and D. In particular we assume that

[3wGo+wh+amOW ] >0, (8.30)

for all admissible states (a, aM, D) that satisfy the yield condition. Under this assumption, 1 = 0

gives

_= wn : Co [&] . (8.31)
[3wGo + wh + am g](

Thus, for <D = 0 and ' = 0,

P > 0 > n : (w Co [&]) 0, (8.32)

trialstressrate

which helps to define standard loading and unloading conditions.

Similarly, we can trivially write the damage loading/unloading condition

b > 0, and <P (a, 0M, D) < 0, and b<D (a, aM, D) = 0. (8.33)

8.2 Time integration procedure

The backward Euler algorithm is applied to the flow rule to ensure satisfactory convergence of the

solution. The state variables D., the stress On and the plastic strain ep are known at time tn. An
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increment in the strain AE is applied in the time interval [t,i tn+1]. The task is to solve for the

stress tensor and the internal variables at time tn+1.

Given: {an, e,, Dn} and Ae = 6n+1 - en at time tn.

Calculate: {n+i, En+1, Dn+1} at time tn+1 = tn + At.

8.2.1 Elastic update

The trial stress is calculated by assuming the incremental strain is purely elastic. Since the trial

calculation is elastic, there is no damage increment. Therefore the trial stress is

1 = an + W (Dn)Co[Ae). (8.34)

Substituting trial into the yield function 4, if

orti 0-M, Dn) ; 0 (8.35)

then the deformation is elastic and the stress at tn+1 is the trial stress and no damage occurs, i.e.

On+1 = an+1 (8.36)

EP =P e(8.37)

Dn+1 =D (8.38)

If 4) > 0, the deformation is elastic-plastic. The plastic strain increment is no longer zero. A

plastic correction step is used to enforce the consistency condition.

8.2.2 Elastic-plastic update

evolution of plastic strain

Unlike conventional plastic model, the change of the yield surface is due to the combined effect of

the strain hardening of the matrix material and the weakening due to the plastic damage. The

global equilibrium has to be used to solve for the weakening of the elastic moduli.

The evolution of the deviatoric stress tensor can be graphically represented in Fig. 8.1 for the

one-dimensional case.
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Figure 8.1: A schematic drawing illustrates the evolution of the deviatoric stress tensor.

Knowing the elastic part of strain at time tn is

= )1
nW(Dn)

For simplicity, denoting the trial elastic part of the strain tensor to be

et = e +As.

and the deviatoric part of st can be written as

E = e - (tret) 1.

and the equivalent elastic strain is

& = e:

The deviatoric trial stress is

stal = 2w(Dn)Go. (8.43)

and the equivalent trial stress is

trial = srl :tri = 3w(D)Ceq 2 n+!1 :Sn+1 nGo (8.44)

Following the radial return algorithm, the incremental plastic strain is in the same direction as

96

(8.39)

(8.40)

(8.41)

(8.42)



the deviatoric trial stress

AEP = AePn 1,', (8.45)

where n.,+1 is the direction of the deviatoric trial stress, i.e.

3 strial (8.46)
r+1 = ial'

eq

Note that i and nn+i are in the same direction and can be related by

9n+1 = inn+1- (8.47)

Now, the task reduces to find the magnitude of the incremental plastic strain AEP that satisfies

the consistency condition.

From the generalized Hooke's law, the real deviatoric stress is

sn+1 = 2w(Dn+1 )Go (& - AePnn+1 ) (8.48)

= 2w(Dn+ 1)Go ( - AeP) nn+1- (8.49)

Taking the inner product of Eq. (8.49) with itself gives

-eqn+1 = 3w(Dn+I)Go (J - AE6), (8.50)

From discrization of time, the continuous consistency requirement loosens to a discrete one. By

the discrete consistency condition, we know that the stress at time tn+1 should be on the expanded

or shrunk (due to the combined effect of strain hardening and material deterioration) yield surface.

Therefore

'7eqn+1 = w(Dn+1)OMn + l = w(Dn+i) (LTMn + hAdE). (8.51)

where

h = (e ), (8.52)

is the forward gradient of the plastic strain hardening modulus.
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From Eqs. (8.50) and (8.51), the magnitude of the plastic correction is

_ep = 3GoE - am,, (8.53)
3Go + h

Once AeP = A.eFnn+1 is known, the problem is fully defined.

internal variables update

Two internal variables EP and D need to be updated.

The damage is solved using Euler forward method. Knowing the pressure and the relative ratio

of the stress deviator at time tn, the reference fracture strain ef is computed using Eq. (8.20). The

damage at time tn+1 is

Dn+1 = Dn + m (8.54)
ef ef

The weakening factor is then calculated

w(Dn+1) = 1 - D+ (8.55)

The update on the plastic strain is trivially

En+1 = E + AeP. (8.56)

stress update

The elastic strain at time tn+ 1 is

e_ = E - AeP. (8.57)

and

C-n+1 = w(Dn+1)Col±+. (8.58)

We emphasize, in the present algorithm, the elastic moduli degrades as damage accumulates.

The advantage of the present formula is two-folded:
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(1) It is physically sound to incorporate the weakening of elastic moduli of the material since it

is not negligible for large plastic damage problems.

(2) It is computationally more efficient because only one correction step is needed to solve the

consistency condition within each time step.

8.2.3 Summary of integration procedure

Given: {o, el, D,} and Ae = En+1 - en at time tn.

Step 1:

Calculate

e 1__ lnEn w(Df) C0

E = e+AE;n 
(8.59)

& = et - i(tret) 1;
E = I :

ania = U+ w (Dn) CO [Ae]. (8.60)

a- = 3w(Dn)GO. (8.61)

Step 2:

IF

- ;(1 - D)o-M(e), (8.62)

THEN (elastic update)

Un+1 = trial.

E = Ep;(8.63)

Dn+1 = Dn.

ELSE IF

99



trial (
u-ei > (1 - DO-Mn (4n), (8.64)

THEN (elastic-plastic update)

3 trial
nn+1 = _ 2 i

Aep 3GO-aMn; (8.65)
3Go+h

AeP= AePnn+i

and

= D +( ) (M-1) A

w(Dn+l) = 1 - D3 1; (8.66)

E+1 = -P + AeP.

and

n+1 = t* -5(8.67)

On+1 = w(Dn + 1)Coen+1-

END

All necessary field variables {fOn+I, 61, Dn+1 } are updated at time tn+1 = tn + At.
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Chapter 9

Experimental Program

The damaging process is complicated when multi-axial and/or non-proportional loadings are con-

sidered. Even when an experiment is done, a quantitative analysis of the results to determine the

damage function is often hard to conduct. In the present chapter, an experimental program is

presented. The objective of this experimental program is to determine the material parameters for

further numerical study. The material selected to be experimentally investigated is aluminum alloy

2024-T351.

Aluminum alloy 2024-T351 is one of the widely used aluminum alloy in industry. Its application

includes aircraft structural components, aircraft fittings, hardware, truck wheel and parts for the

transportation industry because of its high strength, excellent fatigue resistance and good strength-

to-weight ratio. The main alloying element of 2024-T351 is copper. The heat treatment for this

material is solution heat treated, stress-relieved stretched and then cold worked. The chemical

composition of aluminum alloy 2024 is listed in Table 9.1.

Table 9.1: The chemical composition of aluminum alloy 2024.

Si Fe Cu Mn Mg Cr Zn Ti

Weight % 0.50 0.50 3.8-4.9 0.30-0.9 1.2-1.8 0.10 0.25 0.15

One reason for choosing aluminum alloy 2024-T351 is that there is a wealth of works on the

mechanical properties of the aluminum alloy 2024-T351 covering the experimental investigation
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and numerical simulation, which makes comparison between results obtained by different research

groups and cross-validation possible. Another reason for the choice is that this material has been

investigated before in the Impact and Crashworthiness Lab [89].

All experiments were conducted using a screw driven 200 kN MTS universal testing machine.

The test conditions cover a wide range of mean stress and Lode angle. The program includes a set of

un-notched and notched round bars under axial tension, a set of cylinders under axial compression,

a set of doubly-grooved plates (transversely plane strain) under uniaxial tension and a set of three

point bending tests. A material parameter calibration process is then followed. The cylinder

compression tests and the un-notched and notched round bar under tension tests will be used to

calibrated the pressure dependence of the material. The Lode angle dependence is calibrated from

the doubly-grooved plate under uniaxial tension tests and the axial tension tests of round bars.

From previous chapters, a set of minimum four parameters defining the fracture envelope needs to

be calibrated.

A parallel numerical study of these tests were conducted and are reported in Chapter 10.

The objectives of the numerical simulations are to assess the obtained material parameter from

experiments and to fine tune the parameters using an iterative "try-and-error" method. The main

aspects to be assessed are the predicted fracture modes and the load-deflection curves.

A block of 4"-by-4" cross-section and 6-foot-long aluminum alloy 2024-T351 were purchased

from McMaster.com. All specimens in the present experimental study were cut from this block. The

cross-section 4"-by-4" was chosen with the initial assumption of less anisotropy in the two lateral

direction of same size. This assumption was later disproved by the experimental results. This

suggests rolling process was involved in the history of processing this material. For the convenience

of further discussion, Fig. 9.1 shows the direction convention for the principal directions of the

aluminum alloy block.
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Figure 9.1: The direction convention for the block of aluminum alloy.

9.1 Pressure dependence calibration

9.1.1 Un-notched and notched round bar tensile tests

A series of tensile specimens were cut in the longitudinal direction. The geometry and the dimen-

sions of the specimens used in this line of study are shown in Fig. 9.2.

Rx 

.5

R11

* R1

RIO

R- R9

R9

45

Figure 9.2: The un-notched and notched round bar specimen. (from left to right: un-notched,

notch radii=18mm, 9mm and 4.5mm, respectively)

The specimens were pulled all the way to complete separation. The post mortem specimens are

shown in Fig. 9.3.
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(a) Un-notched (b) 18 mm notch (c) 9 mm notch (d) 4.5 mm notch

Figure 9.3: The post mortem specimens of un-notched and notched round bars.

For the notched specimens, a cup-cone type of fracture mode is found. It is noteworthy that the

9mm diameter un-notched round bars shows a slant dominant type of crack rather than a cup-cone

type of fracture commonly found in ductile metals. Additional tests on two different diameters were

performed with 6mm diameter and 15mm diameter un-notched round bars. The fracture surfaces

are shown in Fig. 9.4. For the 6mm diameter specimen, there is a flat area in the center of the

crack and the shear lips are on opposite side of the two separated side. For the 15mm diameter

round bar, a mixed slant and cup-cone mode is found. The slant fracture surface does not extend

to the whole area, but covers half of the fracture surface. A similar mode of cup-cone was found

on the other half of the fracture surface.

(a) 6mm diameter (b) 9mm diameter (c) 15mm diameter

Figure 9.4: Different fracture modes were found for un-notched round tensile bars. Left: 6mm,

middle: 9mm and right: 15mm diameters.
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Chapter 10

Determination of the Fracture

Envelope

Experimental investigation brings information needed to better understand the real world events.

In return, such understanding has to be verified by additional measurement. In reality, direct

experimental measurement is often incomplete and difficult in the local fracture point or in the

time frame. Therefore, we need computational tools to expand our vision and to reveal more

details of the physical world.

The proposed damage plasticity model is implemented into a finite element code LS-DYNA

as a user defined material subroutine. In this chapter, we combine the numerical tools with the

experimental program in the previous chapter to determine the fracture envelope of aluminum

alloy 2024-T351. The calibrated material parameters are used in the following chapters to assess

the validity and accuracy of the proposed damage plasticity model.

The objectives of this study are (1) to determine the matrix stress-strain curve; (2) to determine

the pressure sensitivity; and (3) to determine the Lode angle dependence.

From the development of the damage plasticity model, the mechanical response of the solid

material is coupled with the damaging process. Moreover, the rate of damage depends on the

stress/strain state of the material. The current experimental technique does not allow the author

to single out only one factor at a time and to measure the fracture dependence of it. Therefore, there

is no easy way to calibrate these curves since the influential factors are entangled. Assumptions

have to be made to allow a starting point to be estimated. The starting data are then used in an
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iteration using numerical methods. A "try-and-error" method is adopted and parallel simulation

jobs were run in order to have good agreement with the more than one experimental curves.

10.1 Determination of the stress-strain curve

As described in the previous modeling chapters, the matrix material is considered to be isotropic and

volumetrically conservative in plastic deformation. It is further assumed that the matrix material

obeys J2 plasticity theory. Therefore, no pressure dependence or Lode angle dependence of the

matrix strength is assumed in the present study.

Ideally, the upsetting load displacement curve is preferred to be used to calibrate the matrix

stress strain curve. The reason is two-fold. Firstly, the plastic deformation induced material weak-

ening is less significant in upsetting tests. Secondly, the fracture strain in upsetting is significantly

higher than that in tensile test, which allows more accurate curve fitting.

While the necking problem introduces geometric non-uniformity, the upsetting tests also have

barreling problem due to frictions on end surfaces. Rather than tracking the exact change of

geometry of the compressed cylinder along the deformation path, we use the numerical methods to

obtain the matrix stress-strain curve.

The load displacement curves of the present material show larger than expected difference in

tension and in compression. Considering the fact that the material is anisotropic and has micro

structure texture, it is not possible to find a stress strain curve that agrees well both in tension and

in compression. Therefore, we calibrate the matrix strength in tension and compression separately.

For many metallic materials, the stress-strain curve can be assumed to be a power law function.

In order to obtain a precise fit of the experimental curves, a three parameter power law relationship

is necessary, such as the so-called "Swift" relationship [95]. We assume the strain hardening of the

matrix material obeys the following rule:

aM = ay 0 i + L (10.1)
6k)

where ayo is a the original yield stress, ek is a reference strain and n is the strain hardening exponent.

It is generally accepted that the damage accumulation is an acceleration process. The stiffness

reduction is a negligible at the beginning of the plastic distortion [14]. For an intact material, the
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loss of material strength due to damage is ignored; therefore, the matrix strength can be fitted using

Eq. (10.1). We used the true stress strain curve of the upsetting tests of 11.25mm long cylinder to

determine the matrix stress strain curve.

To minimize the friction effect, the first test of 11.25mm long cylinder in the second batch (with

Teflon sheets) is used as the starting curve. The raw experimental load-displacement curve (with

machine compliance) is shown in Fig. 10.1. Plotted also in Fig. 10.1 are the total deformation of

the specimen, where the compliance of the testing machine is subtracted, and the plastic portion

of the specimen deformation.

70

60-

40-

20

10 - Raw experiment
Specimen total
Specimen plastic

0 1 2 3 4 5 6
Displacement (mm)

Figure 10.1: The experimental load-displacement curve of the upsetting test used in curve fitting

(specimen A-11-1).

Assuming the compressive deformation is uniform, the true stress strain curve can be calculated.

The true stress strain curve is then fitted using Eq. (10.1). Figure 10.2 shows fitting results for

different ranges from [0 - 0.05], [0 - 0.10], [0 - 0.20], [0 - 0.30] to [0 - 0.40]. The abscissa in Fig. 10.2

is the absolute value of the logarithmic strain in the compressed cylinder. It is acknowledged that

the three-parameter power law curve fitting generate slightly different results when fit with different

plasticity ranges of the true stress strain curve. However, such difference is not significant. It can

be seen that the difference of these fittings curves are negligible in the strain range of [0 - 0.2].
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Figure 10.2: The direction convention for the block of aluminum alloy.

After a few trial simulations, the fitting results from [0 - 0.3] was used as the starting point for

iterative simulations. The matrix stress strain curves in compression can be represented by

M= 302 1+ E . 0.7. (10.2)
0.00387

The tensile stress strain curve is shorter than compressive curves and does not allow to be

fitted in a wide range. It is often assumed that the material does not exhibits sensible weakening

before necking in tensile round bar occurs. Therefore, in the present study, we assume the material

strength before necking occurs in a un-notched tensile round bar is not subjected to weakening.

For the present material, necking occurs around 12%. We fit the tensile stress strain curve before

the onset of necking in the range of [0 - 0.11. The post necking true stress strain is extrapolated

using the fitted curve. The fitted tensile stress strain curve for matrix can be represented by

am = 300 1 ± -0.185) (10.3)
0.00769

The experimental tensile stress strain curve and the fitted one for matrix material are plotted
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together in Fig. 10.3. For comparison convenience, the compressive stress strain curve are also

plotted.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Logarithmic Plastic Strain
0.8 0.9 1

Figure 10.3: The experimental tensile stress strain curve and the fitted

gitudinal direction.

one for matrix in the lon-

10.2 Determining the weakening function

In the real world, the material weakens due to plastic damage. The experimentally measure load-

displacement relationship along the full plastic loading path up to the fracture point is compared

with the matrix material response to obtain a weakening function.

In the proposed damage plasticity model, the damage accumulation depends on the strain ratio

Ep/Ef, i.e. the ratio of the current plastic strain to the fracture strain based on the current stress

state. The fracture strain in the upsetting test is assumed to be constant and is estimated using

the mean pressure. The Lode angle is approximately 6 L = 7r/6. The damage rate is assumed to be

linearly depends on the plastic strain, which results a quadratic damage along the path. Using a

power law weakening function, the only parameter needs to be calibrated is the weakening exponent
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/3 in the weakening function w(D).

Prior to this experimental study, estimation [96] was made from a set test results of notched

and un-notched tensile round bars by Bao [89 (see Table 10.1). The fracture strain in uniaxial

compression test is estimated to be 1.1. Knowing the power law damage rule with an exponent of

2.0, the intrinsic mechanical response of the material can be determined if the weakening exponent

is known. In order to obtain some confidence in the above fitting results, the intrinsic mechanical

response of the material in a uniaxial compression is plotted in Fig. 10.4 for several weakening

exponents / = 1, / = 2 and / = 3. The matrix stress strain curve corresponds to an infinity /.
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Figure 10.4: The intrinsic relationship of the stress strain curve of the material.

From Fig. 10.4, it can be determined that the weakening factor 3 = 2 fit the current material

best.

Now, a set of starting parameters is found for the material aluminum alloy 2024-T351. These

parameters are listed in Table 10.1.
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Table 10.1: A list of material parameters used as a starting point for further iterative fine tuning.

Efo Plim q 7 m #

0.7 926 MPa 0.97 0.3 2.0 2.0

An exhaustive study of the dependence on all the parameters involved is overwhelming. There-

fore, assumptions and estimations have to be made to simply the procedure. We consider that we

have enough confidence in the determined matrix material strength and the damaging and weaken-

ing parameters. As is revealed in Chapter 8, the tested material exhibits some kind of texture in the

micro structure and there is a difference in load displacement curve between tension and compres-

sion. This difference cannot be modeled by the damage alone. Here, we adopted two different set of

matrix strength parameters, i.e. 0 -yO, Ek and n, for tension and for compression. We assume other

material parameters are identical for all load condition. Moreover, we fix the damaging exponent

m and the weakening exponent 3 in our iteration. The iterative numerical study is focused on the

calibration of the material parameters regarding to the fracture envelope.

10.3 Determination of the fracture envelope

Four parameters are needed in the present set of functions to defined the fracture envelope - one

for reference strain Efo, two for pressure dependence function Plim and q and one for the Lode angle

dependence function y.

From the starting set of parameters, a set of four numerical simulations using one upsetting test,

one tensile un-notched round bar, one tensile notched round bar and one tensile doubly-grooved

plate were run in conjunction with the experiments. This set of cases was selected to include at

least three different pressure tests and at least two different Lode angle tests.

The selected numerical models are shown in Fig. 10.5. To be realistic, we deemphasize the mesh

dependence of finite element simulation of fracture problems here. The mesh size is chosen largely

based on trial calculation and previous experiences. For the calibration simulation performed here,

the mesh size is chosen to be around 0.1-0.15mm for four-node axisymmetrical elements and 0.3mm

for eight-node brick elements. Main factors in the consideration are to complete the calculation
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within a reasonable amount of time and to keep the element size small to reflect the strain gradient.

(a) Upsetting
of cylinder

(c) Notched
round bar

(b) Un-notched
round bar

Figure 10.5:

(d) Doubly-grooved
flat plate

The four models used in the calibration of the fracture envelope: (a) upsetting of

cylinder (brick elements); (b) tensile un-notched round bar (axisymmetric elements);

(c) tensile notched round bar (axisymmetric elements); (d) doubly-grooved flat plate

(plane strain elements).

About 40 simulations were performed while adjusting the four concerned parameters until good

agreement is reached between all four numerical simulation and their corresponding experiment

results. These results are shown below.

After the iterative numerical calibration procedure, the complete set of material parameters for
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the material aluminum alloy 2024-T351 is listed in Table 10.2.

Table 10.2: A list of calibrated material parameters.

Efo Plim q 7 - m 0

0.8 '800 MPa 1.5 0.4 2.0 2.0

The comparison of the simulation results using the above parameters are the following.

(a) Upsetting of cylinder

The simulation is based on the compression 11.25mm long 8mm diameter cylinder with Teflon

sheets as lubricant. The compressive matrix stress strain curve is used.

The deformation sequences are shown in Fig. 10.6. Plotted are the damage contours at the

outer surface. A cut-out damage contour plot for a quarter of the model corresponding to the full

model in Fig. 10.6 is shown in Fig. 10.7. Based on a few trial calculations, it is found that results

from the friction coefficient 0.02 agree well with experiments. A more detailed discussion on the

friction effects is in Chapter 11.
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Figure 10.6: The deformation sequences of the upsetting test. Plotted is the damage contours.
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Chapter 11

Prediction with Damage Plasticity

Model

In this chapter, a series of numerical simulation calculations for selected representative load con-

ditions have been performed. These simulations can be separated into two parts. The first part

represents the additional tests that were performed. The objective of this part is to verify the pro-

posed model and to access the accuracy of the material parameters. The second part of numerical

simulation reported in this chapter was performed prior to the calibration of the material 2024-

T351. The objective of these simulations is to illustrate the predictive capability of the proposed

model in a wider range of loading conditions. The corresponding experiments were documented in

early literatures. Consistent agreement is found between the predicted fracture patterns and the

experimental results.

11.1 Notched round bars

In Chapter 10, we used the notched round bar with a 9mm notch radius in addition to other

experiments to calibrated the material parameters related to damage and fracture. In this section,

we further study the notched round bars with a 18mm and a 4.5mm notch radii. The experimental

results are reported in Chapter 9.
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11.1.1 Notch radius 18mm

The notched round bar with notch radius 18mm was simulated using axisymmtric elements. The

element size at the notched area is about 0.1mm on each side. The deformation sequences of the

notched section are shown in Fig. 11.1. A cup-cone fracture mode is predicted and the same was

observed in the experiments.

lef.".

(a) (b)

I."

(c)

1717.4^'.4

COMM4

(d)

Figure 11.1: The deformation sequences of the notched specimen with a notch radius of 18mm.

It can be shown in Fig. 11.1 that at just beyond yielding poing (Fig. 11.1(a)), the damage is the

maximum at the outer surface. However, soon after yielding occurs, damage increases much faster

at the center of neck due to the build up of the hydrostatic tension. The fracture initiates from the

center of the neck and propagates towards the outer surface. A comparison of the load-deflection

curve of the transverse plane strain tests is shown in Fig. 11.2.
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gle dependence and without material weakening effect; case (c) without Lode angle dependence

and with material weakening effect and case (d) without either Lode angle dependence or mate-

rial weakening effect. The two calculations deactivating Lode dependence of fracture assumes the

same fracture behavior for all deviatoric situations, i.e. I = 1 with the second kind of Lode angle

dependence function.

The predicted the fracture modes are shown in Fig. 11.16.
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Numerical simulation efforts have been made to obtain a realistic fracture mode in the lit-

erature. It was found that the load-displacement curve can be achieved with two-dimensional

finite element model using crack tip opening angle criterion [105] or microscopic void-nucleation-

growth-coalescence model [106]. However, the three-dimensional nature in the near tip zone is

not represented in these two-dimensional analysis. Three-dimensional finite element model using

crack-tip-opening angle is also used to show the tunneling effect [107-109]. In these studies, the

tunneling effect can be correctly modeled, but a flat through thickness fracture mode is predicted

along the crack paths.

Although extensive theoretical and numerical work has been conducted on the stress and strain

fields in the sharp notch crack tip, an insightful investigation of the transition from a flat crack to

a slant mode is still lacking and is in need. In this study, we focus on the flat to slant transition in

the fracture mode.

11.4.1 Slant/flat crack and mode transition

The compact tension (CT) specimens are sometimes observed to develop slant cracks within certain

range of thickness to ligament ratio for some materials and in other cases a flat crack is observed [97;

110]. Simulation of the CT specimen reveals a complex deformation pattern. Close to the center

of the crack tip in the thickness direction, fracture initiates in Mode I flat crack. Near the lateral

surface of the specimen, the through thickness stress component disappears. In the process of the

crack propagation towards the surface, shear lips form in a similar way as in a cup-cone fracture

due to the transition of stress state. The initially opposite small shear lips create asymmetric

forces at the crack tip and eventually turns the crack into a slant mode throughout the thickness

direction[99; 100].

Numerical simulation efforts have been made to obtain a realistic fracture mode. It was found

that the load-displacement curve can be predicted with plane strain finite element model using

void-nucleation--growth-coalescence model [106; 111]. Three-dimensional finite element model using

crack-tip-opening angle is also used to show the tunneling effect [108; 109]. Mathur et al [112] shows

the void volume fraction become localized in two shear bands formed in the 450 direction ahead of

the crack tip. Besson [113] predicted a shear localization by introducing anisotropy in the Gologanu

model [114].
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In the present study, we focus on the predicting of the slant fracture mode. The specimen is

designed according to ASTM E399 with a/W = 0.5. The geometry is shown in Fig. 11.21.

0.5 in DIA
2 holes

6W~

2.0 in

2.5 in
025in

Figure 11.21: The geometry configuration of the compact tension specimen.

To study the effect of the Lode angle and the weakening effect separately, we predict the fracture

mode using the four combinations of with/without the material weakening and/or the Lode angle

dependence. For the runs with material deterioration, the calibrated matrix stress-strain curve

is used; for non-deterioration runs, the true stress-strain curve is the input. The fracture modes

for each case are shown in Fig. 11.22. The compact tension specimen was loaded by two 0.5 inch

diameter frictionless pins moving in opposite direction.
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(a) w/ Lode and w/ weakening (b) w/ Lode and w/o weakening

(c) w/o Lode and w/ weakening (d) w/o Lode and w/o weakening

Figure 11.22: The fracture modes of a compact tension specimen for the four cases. The von Mises

equivalent stress contours are plotted.

The generally experimentally observed results regarding the slant or flat crack in a compact

tension specimen is that a higher strain hardening capability tends to promote a flat crack while

a low strain hardening capability tends to promote a slant crack [115; 116]. For instance, Asserin-

Lebert et al. shows the same Al 6056 alloy exhibits a slant profile in the age hardened heat

treated condition T751 (-yo = 300MPa, n ~ 0.06) but a flat fracture mode in the annealed state

(o-yo = 70MPa, n ~ 0.2) [115].
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In the present study, we use the damage plasticity model and fix other material parameters and

a series simulation is conducted by changing the strain hardening exponent and the fracture strain

ratio 'y to examine their influence on the fracture mode. The simulated fracture modes are shown

in Fig. 11.23, where a symbol "El" indicates a flat fracture mode and a symbol "A" indicates a

slant fracture mode.

0.45

0.4

0.35

0.3

n
0.25

0.2

0.15

0.1

0.05

0 0.1 0.2 0.3 0.4 05 06 07 08 0.9

Y

Figure 11.23: Fracture mode found in the simulation for various n and y combinations.

The material parameters other than n and -y used to generate Fig. 11.23 are listed in Table 11.1.

Table 11.1: Fixed material parameters in study of n and y relationship.

Uy Ek Ef0 Plim q m /3

300 MPa 0.005 0.8 1000 MPa 1.0 2.0 2.0

A transition from slant fracture mode to a flat fracture mode is observed from low n and low

-y to high n and high -y zone except for n less than 0.15. This transition is shown in Fig. 11.23

approximately by dash-dot line. This agrees with the general experimental observation by a number

of researchers.

Compact tension tests of aluminum alloy 2024-T351 were carried out by Mahmoud and Lease [99].
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They tested larger panel with the same thickness as in the present paper and found a slant fracture

mode for the 6.35mm thick specimen. From the simulation results, it is observed that only the

simulation which considers both the material deterioration effect and the Lode angle dependence

of fracture predicts the correct fracture mode. In the remaining three simulations, a flat fracture

pattern is predicted. It is shown that the initial tunneling effect was captured by all four cases.

A sequence of the crack-tip opening for the first case is shown in Fig. 11.24. It is also found that

the crack propagates slower for cases without the Lode angle dependence (c) and (d) than those

with Lode angle dependence (a) and (b). This is due to inadequate characterization of the lower

ductility in the generalized shear condition.
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(b) transition

(c) slant crack propagation

Figure 11.24: The time sequence of the flat tunneling, transition from flat to slant crack and the

slant crack propagation. Plotted is the von Mises equivalent stress.

It is noteworthy that the mesh along the crack path was slightly skewed in the thickness di-

rection, as shown in Fig. 11.25. This treatment is necessary because a trial calculation with a
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symmetric mesh showed a symmetric "X" shaped crack developed due to the symmetry in the ver-

tical direction. In the finite element model, the skewed mesh is designed such that a 9% difference

in the element size at the two surfaces is introduced. The same mesh is used in all four runs.

(a) a full 3D mesh (b) left view

Figure 11.25: The initial mesh and a left view showing the skew of mesh in the thickness direction.

The load-displacement curves for the four cases are plotted in Fig. 11.26. The shape of the curves

from models considering the material weakening agrees well with the experimental curves [99].

A sharp drop in loading at the initiation of fracture for the two cases that ignore the material

weakening effect is not observed in the experiments [99].
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Figure 11.26: Comparison of the normal load versus load-line displacement curve for the four cases.

In summary, the numerical simulation results show that both the Lode angle dependence and

the material weakening play vital roles in predicting a slant fracture in compact tension specimen.

The synergistic effect of the two makes the transition from a flat crack to a slant crack possible.

11.4.2 Mahmoud and Lease's experiment

Compact tension tests of the aluminum alloy 2024-T351 was carried out by Mahmoud and Lease [99].

They tested large panels with the several different thicknesses and found a slant fracture mode for

specimens with 2.3, 6.35 and 12.7mm thickness. The specimen is designed according to ASTM E399

with width W = 203mm and a crack length to specimen width ratio a/W = 0.4. Here, we model

the 6.35mm-thick CT plate. The simulation was carried out using the new damage plasticity ma-

terial model. Element deletion method was used to model the crack. Due to the three-dimensional

nature at the crack tip, the CT specimen is modeled by 8-node brick elements throughout. The

displacement boundary conditions remote from the crack tip are applied through the contact of

frictionless cylindrical pins with the two holes. The initial fatigue crack is not modeled though

the geometry of the CT specimen, but the original chevron starter notch is replaced by a straight-

through notch, since in general the fatigue crack is flat. The angle of the notch is 60*. The region
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ahead of the pre-crack is discretized using 0.45x0.50x0.50mm (WxLxH) elements.

A realistic fracture mode is depicted in the finite element solution, as shown in Fig. 11.27. The

element near the mid plane failed first. The initial crack propagation shows a flat tunneling which

indicates strong pressure dependence due to the build-up of constraints in the thickness direction.

The transition of flat-to-slant starts almost immediately when the central tunnel reaches the outer

surfaces. Two shear lips form in the opposite direction and grow toward each other, which form a

triangular flat tunneling zone. At the end of this triangular zone, the two shear lips merge and the

fracture surface becomes one slant surface.

slant fracture surface

flat tunneling surface

Figure 11.27: The fracture surface of the compact tension specimen shows the initial tunneling that

followed by a slant mode.

The external load is plotted in Fig. 11.28 versus the crack extension at the mid plane and at

surface. It is noticed that the numerical result of the load is steeper at the initial loading phase.

Partially, this is because the fatigue crack ahead of the crack tip in the physical tests is neglected in

the finite element model. It is found that the predicted initiation stage of the crack in the compact

tension specimen is noticeably large than the experimentally observed load. This is due to the

fatigue crack prior to the monotonic loading on the specimen, while in the simulation, the material

ahead of the pre-crack tip is intact. Beyond the crack initiation stage, the predicted the load-crack

extension curve is found to be in fairly good agreement with the experimental data [99].
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Figure 11.28: Comparison of the simulation and the experimental normal load versus load-line

displacement curves.

As the fracture turns progressively to a slant mode, the extent of tunneling effect reduces.

Figure 11.29 shows the crack front in a top view. The extent of tunneling peaks at about 4.1mm at

mid plane crack extension to about 4.5mm. Then, the tunneling stabilized at about 1mm after the

crack changes to a slant mode. Similar behavior of tunneling effect in the 2.3mm thick compact

tension is shown in Fig. 11.29(b) [98].
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(a) Top view of the crack fronts from simulation. Plotted contours
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(b) Experimentally observed crack fronts from Dawicke et al [98].

Figure 11.29: The crack front in the top view of a compact tension specimen clearly shows the

change of the extent of tunneling.

Sutton et al [117] showed that the tunneling in the flat crack propagation is more significant

than in the slant crack propagation, as shown in Fig. 11.30. Because of the asymmetry of the

crack shape, the through thickness hydrostatic tension can build up like in the symmetric flat

crack propagation. The tunneling is largely due to this hydrostatic tension. We use the ratio of

the difference in the crack length on the mid plane and on the outer surface with respect to the

specimen thickness to denote the extent of tunneling.
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Figure 11.30: The tunneling in the flat crack propagation is more significant than in the slant crack

propagation. After Sutton et al [117].

By setting the Lode angle function to unity, the crack propagation becomes flat. The difference

of the tunneling in the flat crack and slant crack propagation in these two simulation situations is

shown in Fig. 11.31. The tunneling in flat crack stabilizes after an initial increase. On the other

hand, the slant crack shows
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Figure 11.31: Simulation results show more significant tunneling in flat crack than in slant crack

propagation.
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11.5 Cup-cone fracture of a round bar

The following three simulation, i.e. (1) cup-cone fracture of a round bar, (2) doubly grooved flat

plate and (3) dog-bone flat tensile specimen, were done prior to the full calibration of the material

constants of aluminum alloy 2024-T351. We show this results for a demonstration of the crack

pattern and damage pattern only. The material parameters used in these three simulations are:

Table 11.2: A set of material parameters used in the simulations.

Efo Plim q 'y m 0

0.7 926 MPa 1.75 0.4 1.73 1.0

The uniaxial tension of a smooth round bar is often used as a standard test to determine the

material strength. For ductile metals, the specimen usually forms a localized neck before final

fracture occurs. Careful examination of the microstructure at the neck reveals that the fracture

starts at the center of the neck and propagates towards the free outer surface. The initial crack is

in tensile mode and is perpendicular to the loading direction. The crack propagates until a large

shear lip occurs [118; 119]. A "cup-cone" shaped fracture surface is thus formed.

The numerical calculation shows a realistic "cup-cone" fracture mode as shown in Fig. 11.32.

Similar results were obtained by Tvergaard and Needleman[49] and Besson et al. [120] using Gurson-

like model [16] and more recently by Scheider and Brocks [121] using cohesive model. In the

present study, the proposed damage plasticity model is applied. The simulation is performed

using axisymmetric brick elements. The un-notched round bar has a diameter of 9mm and is

discretized using 0.1mm by 0.1mm elements at the middle section. The crack propagation is shown

in Fig. 11.32.
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Chapter 12

Microscopic Approach to Fracture - A

Modified Gurson Model

The Gurson-like material model has attracted a great deal of attention and various modifications

to this model have been proposed. The solid is considered as a porous medium and the constitutive

equations are governed by the first and second stress invariants and the void volume fraction internal

variable. One of the most important improvements to this model was made by Tvergaard and

Needleman, who extended the void-nucleation-growth-coalescence in a phenomenological way [48;

49]. Meanwhile, little attention was given to the dependence of the damage evolution on the

third stress invariant. On the other hand, McClintock proposed damage model based on the void

evolution in localized shear band [132]. In the present paper, the GTN model is further extended to

incorporate the void shearing mechanism. A new internal damage variable is introduced to describe

not only the void volume fraction but also the damage associated with void shearing. Numerical

aspects are addressed concerning the integration of the constitutive relations. The present model is

implemented into the existing finite element code and numerical simulations have been performed.

Two examples illustrate the predictive performance of the modified model in this chapter.

12.1 Introduction

The damage evolution and fracture criteria can be either based on the macroscopic state vari-

ables [10; 22; 133] or on the micro-mechanism [16; 17; 19]. The macroscopic description of damage
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is obtained from external observation, such as the reduction of the fracture strain; while the mi-

croscopic description uses internal state variable determined from microstructure or meso-scale cell

structure to quantify the deterioration of material. In the present chapter, we extend the Gurson

model to include the dependence on the Lode angle. This extension is largely based on the void

shearing mechanism [132].

From a microscopic point of view, the continuum constitutive law breaks down at a level of a

porous media, which can be a result of voids nucleation and growth in plastically deformed solids.

The first step to describe the mechanical behavior of a voided solids was made by McClintock [17]

and Rice and Tracey [19]. Thereafter, there have been continuous efforts to modify the solution to

be more accurate and realistic in capturing various aspects of the void controlled fracture. There is a

wealth of publications which discuss the constitutive and numerical aspects of the voided material

model. It is not the attempt of the current thesis to list the exhaustive development. Rather,

we focus on the modeling of the void shearing effect and the Lode angle dependence of fracture

prediction.

Probably, one of the most referenced void-nucleation-growth-coalescence models is the so-called

Gurson-Tvergaard-Needleman (GTN) model. Gurson developed a pressure dependent approximate

solution for yielding of a porous material [16]. Tvergaard and Needleman extended Gurson's solu-

tion in the quantitative aspects of fracture criterion and the void nucleation function [48] and [49].

The numerical implementation of this extended model has been extensively studied [134; 135] and

utilized to capture some distinctive features in axisymmetric tensile failure and transverse plane

strain fracture [49; 52].

From the analysis of the void shear mechanism, it is found that an initially spherical void become

spheroidal and the free surfaces of voids move closer to the boundary of the void containing cell.

An additional "artificial stmin" is constructed to quantify the associated damage of void shearing.

This portion of damage is missing in the original Gurson type of constitutive model because the

material volume is conservative under simple shear due to the lack of hydrostatic pressure change.

In a more complex loading case of combined tension and shear, a heuristic model based on the Lode

angle is proposed to incorporate the void shearing damage. In this way, the third stress invariant

is included in the constitutive model.
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12.2 Yield function

The original yield function for porous media derived by Gurson [16] was modified by Tvergaard [48]

to include the void coalescence effect. The modified yield function is

<D = + 2qf* cosh 1+ (qi = 0, (12.1)
a 2 2LM I*)I

where q1 = q2 = 1 for the spherically symmetrical deformation. Tvergaard [48] found that the

set of parameters qi = 1.5 and q2 = 1 yields to improved results. The void volume function f* is
defined as

f*(f) = L for f f, (12.2)
fc + ,_- 1C (f - fc) for fc f5 f ff

where fc and ff are the critical void fraction and the void volume fraction at fraction. The void

coalescence is considered to take place when the void volume fraction reaches a critical value fc

and the material fractures when the void volume fraction reaches ff. Despite it has been argued

whether the void volume fraction is a constant for various loading cases, e.g. [136], the GTN model

has achieved success in many applications [49].

From Eq. (12.1), the macroscopic strength of material depends on the matrix strength, the

void volume fraction and the applied hydrostatic tension. The void volume fraction represents the

associated damage to the solids. Equation (12.1) also includes a hydrostatic pressure dependence.

However, there are limitations when applying Gurson's model. Firstly, there is no shear consid-

eration in this model. For instance, in pure shear, the growth rate of voids is zero due to constant

zero pressure. If total volume fraction to be nucleated is less than the void volume fraction at

fracture, then the material is predicted not to fail at all. Secondly, the theoretical work by Gurson

shows such dependence in the positive range of mean stresses. However, due to the symmetry of

the yield function with respect to zero mean stress, the Gurson model does not predict increase

strength with respect to hydrostatic pressure.
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12.3 Void coalescence

From metallographic observations, it is found that the nucleation, growth and coalescence of micro

voids play an important role in the formation of cracks, see [53; 118; 119], and more recently [137].

When the voids grow so large that they begin to interact with another; the deformation becomes

highly localized. This process is understood as "void coalescence". In the cause of coalescence, the

shape of individual void no longer regular and thus the Gurson's solution breaks down. In general,

such void linkage can occur at any orientations. In particular, the ligament between voids often

breaks in two directions: (a) perpendicular to the loading directions and (b) in the localized shear

direction [138]. The coalescence starts when the size of the voids and the ligament between voids

becomes nearly equal [19; 23; 139].

In the generalized tension condition, the void growth usually dominates in the maximum princi-

pal loading direction and the ligaments between void experience higher hydrostatic tensions due to

the quick loss of effective load carrying area. The reduction of cross-sectional area further exagger-

ates the void growth and coalescence. In a plane strain load condition, localized shear deformation

dominates. It has been observed experimentally that void coalescence is dominated by a number of

smaller voids in the inter-void ligament. This is called "void sheeting". For some metals, there exist

two size of void nucleation particles [140]. Palmer and Smith [141] showed that the smaller particles

tend to nucleate at a larger strain. Within the neck of localized ligament, the equivalent plastic

strain of the matrix material becomes so large that voids begin to form around the secondary void

nucleation particles.

An example of the co-existence of the large void coalescence or small void sheeting is depicted by

the uniaxial tensile failure of a round bar. McClintock showed there are three competing fracture

mechanism in the tensile fracture of a round bar: (a) normal fracture; (b) shear fracture; (c)

delamination fracture [142]. The normal fracture dominates at the center of the neck and the

shear fracture dominates at the shear lip. The delamination failure is caused by the linkage of void

parallel to the loading direction, which in this case remains incipient throughout the failure process.
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Figure 12.1: The competition of three fracture mechanisms. (left: actual crack and void, after

Bluhm and Morrissey (1965) [142]; right: idealized void spacing and linkage.)

McClintock et al [132] related the damage associated with the coalescence in a localized shear

band to Berg's viscous solution [50]. The void linkage in the shearing direction occurs when

L Vr5eeq v(1-n)u-m 2In sinh + In 13e, (12.3)
2R 2(1 - n) O-eq *

where L is the void spacing in the shear direction, R is the initial void radius (see Fig. 12.2),

n is the material strain hardening exponent. The first term in the right hand side of Eq. (12.3)

represents the damage associated with the void growth and the second term represents the effect

of rotation of the voids. It should be emphasized that the hydrostatic tension remains constant in

simple shear and there is no macroscopic dilation. Therefore, the rotation of voids does not change

the volume fraction, but an additive physical damage is caused by the void rotation. Therefore,

"void sheeting" mechanism is more detrimental to the integrity of the material.

Tvergaard [143] considered the void coalescence to occur as the deformation localizes. A critical

void volume fraction is proposed above which the coalescence starts. The difference between the

micro-mechanism of large void coalescence and void sheeting is not taken into account.

The normal coalescence of large voids has a length scale of 10 4 m from Fig. 12.1 and it rapidly

propagates across the cross-sectional area. This void coalescence is considered as the initiation of

micro cracks, which is captured by the deletion of elements or separation of adjacent elements in
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the finite element analysis. However, the void coalesce in a void sheet is in a progressive fashion

due to the rotation and connection of smaller voids, as shown in Fig. 12.1.

It appears clearer that the void coalescence is not completely controlled by a critical value of

the plastic strain of the matrix material or the void volume fraction. Rather the triaxial stress

state and the loading history play important roles in the void coalescence. In the present paper, we

extended the Gurson model to incorporate the Lode angle dependence of fracture by introducing

the void shearing mechanism.

12.4 Void shearing mechanism

Considering a 2D problem, where a square cell having length L contains a cylindrical void of radius

R at the center, when the cell structure is subjected to simple shear straining, the void elongates in

the preferred direction, as shown in Fig. 12.2. Because the volume conservation of the cell structure,

it is reasonable to assume the relative position of the void does not change with respect to the cell.

The minimum distance between the free surface of the void and the boundary of the representative

volume element decreases as the shear strain increases.

undeformed configuration deformed configuration

a -

-. .. adjacent void-containing cell

Figure 12.2: A schematic drawing illustrates the void shear mechanism.

Another example or void linkage due to shearing is given by Weck et al. [116; 144]. Two void

arrangement is set for pulling and the failure mechanism show two distinct fracture model by

internal necking and void shearing as shown in Fig. 12.3.
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Figure 12.3: Two different failure mechanism: internal void necking and void shearing. From [116]

(after Weck et al. [144]).

The initial minimum distance between the free surface of the void and the cell boundary is

L
a = L - R.

2
(12.4)
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At a simple shear strain 7, we have

tan a = -y. (12.5)

where a is the deformation angle shown in Fig. 12.2. The minimum distance at a deformed config-

uration becomes

a' = acosa = a (12.6)
1 +72 (

It should be noted that this minimum distance is not defined on two material points fixed

with respected to the cell structure. Rather, the location of the corresponding material points are

changing with the plastic flow. Using the logarithm definition of strain, we define an "artificial"

strain associated with the reduction of the minimum distance

erot = log = log vl1+7 2. (12.7)
a/

For small -y, this strain reduces to
12

Erot = 7. (12.8)

Comparing this artificial strain with the maximum possible value at which the free surface of

the void touches the boundary of the cell, the relative damage associated with the shearing of the

void is

Drot = +y 2  (12.9)
log L

Using Taylor's expansion, Eq. (12.9) can be approximated by the leading terms of the denomi-

nator and the numerator, i.e.
1 2

Drot = - (12.10)
7 - 1

Knowing y = v/3eeq for simple shear and for small void volume fractions, Eq. (12.10) can be

approximately written as

Drot = 3 f(1/ 2)E2g. (12.11)
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For the 3D case, similar relation can be obtained, i.e.

Drot 1 f(1/3) 72 (12.12)
2 7r/ eq

Therefore, it is heuristic to represent the incremental void shear damage to be

dDrot q3f 
4 eedeeq, (12.13)

where q3 = 1.69 and q4 = 1/2 for 2D or q3 1.86 and q4 = 1/3 for 3D problems respectively for

the present idealized cell structure. For intermediate to large values of f (f > 0.05), the term "-1"

neglected in the denominator of Eq. (12.10) becomes important and q3 is too conservative. In the

present study, we use the value of q3 = 3.0 and q4 = 1/3. Due to the complexity of the actual

material structures, these constants are considered to be material dependent and can be calibrated

by fitting experimental results.

Zhang et al [145] and Kim et al [146] conducted a numerical simulation using a single rep-

resentative volume element (RVE). They determined the void coalescence from the drop of the

load-displacement curve. However, only one RVE is used and the relative location with the neigh-

boring element is not reflected. Therefore, the void shearing effect is not captured.

12.5 Lode angle dependent GTN model

The void shearing mechanism accelerates the damage accumulation when the material is subjected

to a shear loading. Experimental observation also shows that many metals shows less ductility in

shear than in tension at the same hydrostatic pressure level, e.g. [26; 40].

As the void grows to certain extent, the coalescence process begins. The microscopic straining

within a cell structure becomes inhomogeneous. New voids tends to nucleate in the vicinity of the

shortest ligaments between large voids, where deformation is highly localized. This facilitates the

coalescence in the preferred direction, which is normal to the loading direction in this case. On the

other hand, the void shear mechanism reduces the distance between the free surface of voids, which

facilitates the linkage of voids in the shear direction. These two competing mechanisms co-exists

in the neck of a tensile round bar, as illustrated by McClintock [17] (see Fig. 12.1).
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In the numerical implementation, the initial condition of the cell at each time step is considered a

single void at the center of the cell. During the deformation of the given time step, the void enlarges

and new voids nucleate in the remaining matrix. At the end of the time step, an approximate

"homogenization" process is performed, where the deformed cell is "homogenized" back to an

enlarged single void cell structure [136]. This procedure is illustrated in Fig. 12.4 as the path

(a)-(b)-(d).

(b)L

(C)

deformed state

time tn+

(d)

(e)

(f ~ enlarged vodddue to
inhorrog neous void
arranger ient

Caggregaled void
volume f laclion

after "homogenization"
process

Figure 12.4: The approximate treatment of the nucleation and growth of voids at each time step.

There are at least two ways to incorporate this Lode angle dependence of fracture strain. One

way is to consider the constitutive equations for the porous material remain the same as the GTN

model, and introduce a separate state variable, i.e. a damage counter, to predict the onset of

fracture. This is illustrated by the path (a)-(c)-(e), in which the damage variable D is not related

to the constitutive equation. The other is to revise the constitutive equation to accommodate the

new damage variable. This is illustrated in Fig. 12.4 as path (a)-(c)-(f), in which the damage is

used to replace the void volume fraction function f* in the GTN model.
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Equation (12.13) is obtained for simple shear situation. For arbitrary loading case, the damage

relationship becomes complicated. The deviatoric state has to be considered. In this regards, a

Lode angle function go is assumed to represent the azimuthal dependence. Equation (12.13) is

rephrased as

dDrot = q3f'906eqdeq, (12.14)

where the end conditions of go = 0 for generalized tension and go = 1 for the generalized shear

condition have to be satisfied. One of such function can be

go = 1 - 61OLI, (12.15)
Ir

where OL is the Lode angle [5], which is defined as

OL = tan-1 1 [2 (2 - 3) 1]. (12.16)
T35 S1 - S3

where si, S2 and s3 are the principal stress deviators.

In the GTN model, the damage is represented by the void volume fraction. However, studies

have shown that the void volume fraction is not a constant at fracture [138; 147]. With the

introduction of the "artificial strain" from the void shearing mechanism, a new internal state

variable, the so-called "damage" is used to represent the actual deterioration of materials from

plasticity damage in the Gurson type of constitutive model. The separation of damage from the

void volume fraction allows further development to include other material defects such as the micro

cracks.

Together with the reduction of cell walls, the minor axis of the cell also decreases. The free

surface of the voids can touch the void nucleating particles, which are presumably rigid. In this

case, a "void shear locking" occurs. Fleck et al [148] discussed the softening of particle enclosed

voids. They found the softening could be reduced by a factor of two at zero mean stress. The radial

locking and axial locking of voids is also discussed recently by and Siruguet and Leblond [149]. They

found that the void grows faster at low stress triaxiality with the enclosed inclusions. In the present

paper, this effect is neglected and the void is considered empty.

A comparison of the damage evolution in the GTN model and the present model is shown
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in Fig. 12.5. The damage evolution from an arbitrary loading path is shown in Fig. 12.5(b).

The portion of damage associated with void nucleation and growth and from the void shearing is

graphically illustrated. The fracture occurs when the damage reaches unity.

f*f=1/qi -------------- ----- ----- ...... ..

fo fe ff f

(a) GTN model

Figure 12.5: The void volume fraction

model.

D=1
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Triaxial tension

Damage from
,-void shearing

.. . .. .

I
/_ _ _ . _

Damage from
void nucleation
and growth

fo fG ff

(b) Present model

of the GTN model and the damage evolution in the present

12.6 Fracture criterion

The Gurson model uses a critical void volume fraction at fracture as the fracture criterion. A

fundamental questions is whether the volume fraction of void at fracture is constant for different

loading conditions. This issue has been numerically analyzed by various groups using unit-cell

models [138; 147]. It becomes evident that the volume fraction of voids is not sufficient to describe

the fracture.

Due to the loading history dependence of the fracture initiation, the evolution of the damage is

described in a rate form of

dD* = KD (q1df + dDrot), (12.17)

where KD is the damage rate coefficient. The damage evolution accelerates as the damage reaches

a critical value Dc to characterize the void coalescence process. Comparing with the original form

of GTN model, we found
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1 for D* < D(
KD 1/q -fc for D, < D* < 1.

where ff and f, are the void volume fraction at fracture and the critical void volume fraction at

uniaxial tension and Dc = qifc. Therefore, in the case of uniaxial tension, the present model

degenerates to the original GTN model, where go = 0 and the dDrot disappears in Eq. (12.17).

Methods 1: Damage counter

Retaining the yield function of the GTN model, i.e. Eq. (12.1), we introduce the damage D as

a third internal state variable besides the plastic strain and the void volume fraction. The onset

of fracture is predicted when the damage reaches unity and the material is considered to fracture.

In the finite element analysis, the element is removed and all stress components are set to zero.

Using this method, the original stress integration is not changed. However, the actual fracture

point of the material is determined by the loading path, which is Lode dependent. For generalized

tensile loading, the fracture and the complete loss of load carrying capacity occurs simultaneously.

However, for all other cases, the fracture is a suddenly loss of load carrying capacity, which is

reflected on the load-displacement curve as a sharp drop of the loading. In the case of plane strain

loading, for example the simple shear, the damage evolution rate is the highest, which results in

the lowest ductility at the same hydrostatic tension.

Method 2: Damage constitutive model

In method 1, the GTN yield function retains and the void shearing effect is only considered for

fracture prediction. However, the accelerated void nucleation in the reduced ligament between voids

also introduces material softening. In method 2, we incorporate the replace the volume fraction

function f* with the damage function D. Using the convention that the fracture occurs when the

damage reaches unity and letting qf* = D*, Eq. (12.1) can be re-written as

= - + 2D* cosh 3q29m (1 + D*2 ) = 0. (12.19)}M 2o5M

For pressure independent plastic material, at a reference state of constant zero pressure, the

yield function reduces to
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) = - (I- D*) = 0.
M

or,

= (1 - D*)M,

which is the yield condition with weakening, e.g. [10].

As the damage accumulates towards unity, the yield surface shrinks towards the triaxial axis.

The effect of damage and the hydrostatic tension on the yield stress is plotted on the normalized

equivalent stress and mean stress plane, as shown in Fig. 12.6.
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mM
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Figure 12.6: The Gurson yield surface depends on the mean stress and the damage.

It should be emphasized that at any damage state the yield surface of the modified GTN model

is a spheroidal in the principal stress space, which is similar to that of the GTN model. However,

the size of that spheroid is Lode angle dependent. The plane strain 9 L = 0 provides the least ductile

case and, therefore, the size of the spheroid shrinks most quickly. On the other hand, because of

the axisymmetry, the void shearing effect is absent in generalized tension. Thus, the damage is

minimum and the size of the spheroidal is the largest.
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12.7 Numerical implementation

In the pressure dependent constitutive model, the equivalent stress and the mean stress are two

independent variables. Aravas [134] proposed a general backward Euler procedure for the pressure

dependent plasticity. A detailed derivation can also be found in Simonsen and Li [135]. Forward

Euler procedure is proposed by Worswick and Pelletier [150]. In the present chapter, we use the

backward Euler stress integration throughout the calculations.

The first method uses the damage as a fracture predictor only. Therefore, the stress integration

procedure does not change. For the second method, a new state variable D is encountered and the

evolution function is a function of the Lode angle 6 L-

The consistency requires

<i> = 0. (12.22)

Knowing the yield function at time t" is zero, Eq. (12.22) yields

4 "n (Uof+1 ofn+1, Dn+I 0.±1) -0, (12.23)

where the superscript n denotes the values at time step n.

From the flow rule (Eq. (2.29)), the dilatational strain and the equivalent plastic strain are

m = 4 ) , (12.24)

(80-
eeq =-i . (12.25)

( 0-eq

Eliminating A from Eqs. (12.24) and (12.25), one obtains the constraint equation

F = em Teq - 0. (12.26)

At each time step, the prediction-correction algorithm is used. The trial stress is obtained

from elastic update, in which the material is assumed to be purely elastic. In Gurson's model, no

damage associated elastic modulus decrease is considered. If the yield function evaluated from the

trial stress is greater than zero, a relaxation (correction) step follows. The incremental dilational

strain and the equivalent plastic strain are determined in the relaxation step where Eqs. (12.23)
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and (12.26) are solved using Newton's method.

In the current methods, there are three internal state variables, namely ep, f and D which

represent the matrix plastic strain, the void volume fraction and the damage. Of the three state

variables, the matrix plastic strain e, and the damage D appear in the yield function. The void

volume fraction is involved in the update of internal state.

At each iteration, the iterative variables are obtained by solving

[K 1 K12 deq -Fk

K21 K22 d eq_-Q ] (12.27)

where the superscript k denotes the kth iternation and

OF 04 a2q 3 0 24 OH,~
K11  - . - + em (-AtK) + .Eaem O0eq [ G0eqaem + Z 0eqOHi Otm

,92,, 3 02Q (D H-
-e (-AtK) 4 ± 61 + E

**OU O .80maHi atm

OF a(P a2 4 3 (921D aHi
K 12  +eOm (-3AtG) + +E

-e - OUm Oueq j= &eeqOHi Oteq

02<D 3 a2<D alH-
- L (-3AtG) + E H"" Bo~mO0eq =_1 BOm8Hi Oe

19<D 094> 3 &D alli
K 21 = - -AtK- +

&im a-m + i O&m

8Q 8± 8Q&Hi
K 22 = =-3AtG + . .

Oeeq (-eq iaHi e8 q

(12.28)

(12.29)

(12.30)

(12.31)

The partial derivatives of the internal state variables eP and D with respect to tm and 4eq in

Eqs. (12.28) is obtained from their evolutional equation. With the addition of dependence on the

Lode angle, the general functional form for the evolution of internal state variable becomes

ki = hi (em, 7eq, Um, eq , L, H3. (12.32)

where H denotes the internal state variable (here, H, = eP and H2 = D), 3 is the total number of
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internal state variables and i = 1, 2, ...f.

OHj O~hi Ohi ao,,r O hj (0L + ______ 1233

(9Hi ahi (9hi 190'e ohi OOL 0 Ohi 9H j
h- + + + H (12.33)Osm 06m Ocim 06m 8 9 L 06m . O Hy Otm

H _ he O uOhe OOeeq Oh OeL Oh OH (23
--q = --- + LO~q+ (12H3 34)

The partial derivatives of internal variables with respect to the incremental dilatational strain

and the equivalent strain are solved from Eqs. (12.33) and (12.34). The Lode angle dependence in

the above equations are represented by the partial derivatives (9 L/0em and 0L/Oeq. However,

the flow rule, Eqs. (12.24) and (12.25), is independent on OL, which means

O9L O9L= 0, and = 0. (12.35)
Oem Oeq

Applying Eq. (12.35) to Eqs. (12.33) and (12.34), the introduction of the Lode angle dependence

to the Gurson type model does not generate additional computational complexity in the stress

integration except for the explicit expression in the update of internal variables.

The partial derivatives used above are listed in the Appendix.

12.8 Numerical simulation

The GTN model has been successful in predicting the classic "cup-cone" fracture mode and the

transverse plane strain fracture [49; 120]. The success is due to several factors, which include:

the void induced material softening and the strain controlled void nucleation function. However,

there are also several drawbacks. For instance, the material parameters are highly coupled, which

makes the calibration process difficult. Moreover, to determine the micro structure related values,

a simple arithmetic average over the volume may not be adequate.

Another important issue is that the GTN can not predict shear fracture accurately, especially

at low stress triaxiality. At high stress triaxiality, the void growth is more substantial; while

at low stress triaxiality, the void growth is not significant and the void shearing effect has more

contribution toward failure. In the present modified model, with the introduction of the void shear

effect, the simple shear failure can be simulated. This can be demonstrated by using a simple
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unit cell model. In addition to the unit cell model, simulations using the the uniaxial tension of a

smooth round bar and the transverse plane strain also shows the similarities and the differences of

the modified model with the original GTN model.

12.8.1 Unit cell

The mechanical behavior of the modified constitutive model and the proposed modification can be

illustrated using a unit cell model. Two loading cases (a) uniaxial tension and (b) simple shear

are used to demonstrate the difference between the current model and original GTN model. To

allow the necking to occur in uniaxial tension, the cell is discretized by three equal size 8-node

brick elements aligned in the x-direction, as shown in Fig. 12.7. The two facets in the YZ plane

are loaded at a constant velocity in the X- and Y-direction, which represents uniaxial tension and

simple shear condition. The thick arrows show the loading directions.

y

x

(a) uniaxial tension (b) simple shear

Figure 12.7: A three-element unit cell used to illustrate the modified GTN model.

The hardening properties of the matrix material are assumed to be governed by a piecewise

power law relationship

01for a-< or
f = / (12.36)

y (E)n for o > ,

where e is the total strain, E is the Young's modulus, a-, is the yield stress and n is the strain

hardening exponent.

The matrix material hardening parameters are E = 70GPa, a- = 231MPa, n = 0.1 and

v = 0.3. The material parameters related to the void nucleation and damage evolution are listed

in Table 12.1.
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Table 12.1: Material parameters for the modified GTN model.

variables: q1 q2 3 q4 fo fc fF fN EN SN

value 1.5 1.0 3.0 0.33 0.0 0.05 0.25 0.04 0.2 0.1

(a) Simple tension

In simple tension, the Lode angle is constant -30' and g(9) = 0. Therefore, the original GTN

model, the damage counter and the damage yielding model are essentially the same. The numerical

calculation predicts the same results as expected. See Fig. 12.8.
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Figure 12.8: Comparison of the load-displacement curves and the internal state variables for the

GTN, damage counter and damage yielding models in uniaxial tension.

(b) Simple shear

The simple shear is another limiting case, where the Lode angle is constant 0* and g(9) = 1.

The differences of the original GTN model, the damage counter model and the damage yielding

model can be fully observed in this example. The Y-direction load and the displacement curve for

simple shear is shown in Fig. 12.9.
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Figure 12.9: Comparison of the load-displacement curves for the

yielding models.

GTN, damage counter and damage

The GTN model does not predict a fracture and unrealistic shear deformation was observed.

The damage counter and the damage yielding model both predict fracture at a realistic extent of

deformation. The evolution of the internal variables for the three models are plotted in Figs. 12.10

to 12.12

.eo.e

0.e

-D0.4

0.2

0 0.5 1 1.5 2 2.5
Y displacement (mm)

3 3.5

Figure 12.10: Internal variables for GTN model.
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Figure 12.11: Internal variables for the damage counter GTN model.
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Figure 12.12: Internal variables for the damage yielding GTN model.

The comparison of the D* in the GTN, damage counter and damage yielding models, as shown in

Fig. 12.13. In the GTN model, the void shearing effect is completely ignored, thus, the accumulation

rate is the lowest. In the damage counter model, the damage is integrated explicitly after the

plasticity iteration, which results in an intermediate accumulation rate. In the damage yielding

model, the feedback from accumulated damage exaggerates the softening process and, therefore,

the damage accumulation rate is the largest.
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Figure 12.13: Comparison of the damage evolution in the GTN, damage counter and damage yield-

ing model.

12.8.2 Uniaxial tension of a round bar

Uniaxial tension of a round bar is often used to study the void growth in metals [151]. For ductile

metals, the material instability starts with forming a neck. It followed by the initiation of fracture

at the center of the neck with linkage of adjacent voids due to high hydrostatic tension. The

coalescence of voids usually form a zig-zag configuration this is globally perpendicular to the loading

direction [119]. As the crack propagates towards the free surface, the last zig is large and forms a

shear lip.

Besson et al [122] studied the plane strain tensile rupture using Gurson model and concluded

that the use of f* function favors flat fracture. With the introduction of the void shear mechanism,

the region under shear slip undergoes more damaging than those in generalized tension under the

same hydrostatic tension. Therefore, the void shear mechanism helps to form a shear lip in the

cup-cone type of fracture.

The original mesh and the tensile cracks predicted by the original GTN model, the damage

counter model and the damage yielding model are shown in Fig. 12.14.
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4 -

Figure 12.14: Tensile crack of a round bar predicted by three material models. left to right: (1)

before test; (2) GTN; (3) Method 1; (4) Method 2.

A cup-and-cone failure mode is predicted using the modified yielding method. The original GTN

model and the damage counter method predict a flat crack. The line contours of the deviatoric

state variable x - '2-'3 is plotted in Fig. 12.15, which shows two shear bands occur ahead of the

crack tip.

,I/}

/ (~L~

>~)

( 7~~

(I'

Figure 12.15: The line contours of the deviatoric state variable at the mode transition of the crack

from tensile to shear.
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12.8.3 Transverse plane strain tension

The transverse plane strain cracks predicted by the original GTN and the damage yielding models

are both slant type of fracture, as shown in Fig. 12.16. The line contours of damage before crack

occurs show two preferred directions of crack propagation, as illustrated in Fig. 12.17.

* < -1-Y
44 V P~ 4 T-7 IVI\~K>

K ~> 7777A
Ii

Figure 12.16: Transverse plane strain cracks predicted by three material models. left to right: (1)

before test; (2) GTN; (3) Damage yielding method.

Figure 12.17: The line contours of the damage in gaged section of the doubly groove plate.

A careful examination of Fig. 12.16 reveals that the GTN model shows a deeper neck that the

damage yielding model predicts. This can be more clearly shown by the load-displacement curves.
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Figure 12.18: The line contours of the damage in gaged section of the doubly groove plate.

Due to the additional void shear damage, the damage yielding model predicts a lower ductility

at the transverse plane strain condition than the original Lode angle independent GTN model.

12.9 Conclusions

Successful numerical prediction of fracture of specimen subjected to transverse plane strain and

axisymmetric tension loading using Gurson model in the past three decades. The void volume

fraction has been used as the damage indicator [49; 152]. It has been pointed out that the void

volume fraction is not sufficient in characterizing the ductile fracture in complex loading conditions.

The Lode angle dependence was modeled for damage accumulation and fracture initiation in the

framework of continuum mechanics of solids. In the present chapter, the Gurson type of pressure

dependent constitutive model is modified to include the Lode angle dependent damage in a heuristic

way. The void shearing effect, which is missing previously, is incorporated in the Gurson model to

describe the Lode angle dependence.

Two methods have been adopted (a) the damage counter and (b) the damage associative yielding

model. The former describes the yielding based on the void volume fraction and predicts the onset

of fracture using a separate damage indicator. Therefore, the fracture is a sudden drop in the

load-displacement curve. The later considers the yielding directly from the damage indicator and

the load carrying capacity drops smoothly. Both model are capable of predict the fracture in simple

shear. The difference between these two models is a fundamental question, i.e. whether the yielding
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and the plasticity damage are governed by the same set of internal state variables or two different

sets. This question remains open and no attempt has been made in the present paper to answer

this question.

Simulations of the axial tension of a round bar and the transverse plane strain condition are

performed. The proposed model helps to predict a "cup-cone" type of fracture. In doubly grooved

flat plate, the predicted fracture strain is less than predicted by GTN model.

Appendix

The yield function is

<1> = **4 + 2D* cosh 3q2 am - (1+ D*2))2( 2aM
(12.37)

The three internal variables are

Hi

H2

H 3

(12.38)

(12.39)

(12.40)

==fD

=D.

The evolution of internal state variables are

= i= amm + -eqeeq

(1 - f)M

=h 2 = (1 -f)m + ANep

= h= h 2 + q3 f'g(9)eeqeeq.
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The partial derivatives are
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where aM is the tangent modulus of the matrix material, i.e. a' = Om/&P.

The partial derivatives of the internal variables are calculated using Eqs. (12.58) and (12.59).
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203

M = 1Gm

m2 =&

m 3  =0

m4 = H2

m'5 = I

6  = O2
mai = - 3q2D*u4

M6 2Hm ( 32am

(12.44)

(12.45)

(12.46)

(12.47)

(12.48)

(12.49)

(12.50)

(12.51)

(12.52)

(12.53)

(12.54)

(12.55)

(12.56)

(12.57)



1 At ah1  _At -hi -At Oh- OH1  Ohl 3GAt Ohl
OH 1  H 2  OH 3  jOeeq jOeq Ocreq

_ Hj 1 _At-h2 _At h2 = At h- 3GAt h2  (12.59)
-At Oh 3  -At Oh3  1-- Oh I O3  t Oh2eI HI OH2  OH 3  Oeeq Oeq 3 Aeq

_At,9h3 _At Oh3 I - 'At A H3O -- 3GAt ah3
alll aH2 (9H3 aeeq aEeq 190geg

204



z1 = M= - H,

Z2 = = An Ohl

Oh2
Z3 = H = OH 1 + q3f '9(0)

z17 =e

9hm

z19  O'eqzig =A 
&

en (1 -f)aM

Z20 = =h2 An Ohl
099eq (90-eq

z2 1 = = 0

(Ep E ) hi]

Z4 =H12

8 9H

Z5 = 2

z11 = -~ -A em
Z0 m (1 - pOm

zil f An-Biea DOm

hi + H1 hl]

= -em + An
OH2

= + q3 4f 4~lg(O)H 1 h1

OH 2

= 0

= 0

Z12 =9h 3

Z1 " Ai - teq
O~q (1 - f)TM

Z14  An*Oh=Afl 00req
z15 = 0

Z16= ah =
aim (1 - f)oM

(12.60)

(12.61)

(12.62)

(12.63)

(12.64)

(12.65)

(12.66)

(12.67)

(12.68)

(12.69)

(12.70)

(12.71)

(12.72)

(12.73)

(12.74)

(12.75)

(12.76)

(12.77)

(12.78)

(12.79)

(12.80)

= (1f) + An O

=0

In the matrix form and using the above definition of mi and zi,
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Chapter 13

Conclusions and Future Research

13.1 Conclusions on the damage plasticity theory

In the present thesis, a new damage plasticity model is developed based on a "cylindrical decompo-

sition". The theoretical background of the cylindrical decomposition is put forward to incorporate

the pressure sensitivity and the Lode angle dependence of ductile fracture. A nonlinear damage ac-

cumulation rule taking accounts of the acceleration of damaging process along plastic deformation

path is adopted such that the damaging rate can be obtained from the current stress and strain

state. In addition to the damage accumulation, a weakening function associated with the damaging

process characterizes the material deterioration.

This damage plasticity model is based on extensive experimental observations documented in

the past century. An combined experimental and numerical program is further carried out to access

and verify the assumptions of the model. Aluminum alloy 2024-T351 is used to study the material

parameters. Experiments include un-notched and notched tensile round bars, doubly-grooved flat

plates under tension, compression of cylinders and three point bending of rectangular bars were

performed.

The complete elasto-plastic constitutive model and the numerical integration scheme of the

damage plasticity model is also presented. An Euler backward procedure on the plasticity evolution

and an Euler forward procedure on the damage evolution are proposed. The procedure is integrated

in to an explicit code as a user subroutine.

A series of simulations based on a set of four selected tests were done to calibrate the material
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constants. The initial material constants were obtained directly from experimental data and a

"trial-and-error" procedure is then followed to fine tune the material parameters. The matrix

stress strain curve is determined from curve fitting of in the range of low plastic damage. The

obtained fracture characterizing material constants are then used to calculate the fracture pattern

of the upsetting tests, three point bending tests and compact tension tests. Good agreement is

achieved in both fracture patterns and the load displacement curves.

An important finding is that the transition of the crack from a flat nature to a slant one is

governed by the joint effect of the Lode angle dependence and the material weakening. These

two factors entangled together in the formation of shear bands. The Lode angle dependence factor

shows a faster damage accumulation speed in the shear bands and the deformation is future localizes

within the shear bands due to material weakening effect.

13.2 Future research

Although success has been achieved using the proposed damage plasticity model to reconstruct and

predict realistic fracture models and the load-displacement curves, improvments can be made in

the following directions.

13.2.1 Lode angle dependence function

As pointed out in Chapter 2, the least studied area in the modeling of ductile fracture is the Lode

angle dependence. It is often tacitly assumed that ductile fracture is independent of the Lode angle

(or the third invariant of the deviatoric stresses). However, in the present thesis, we have shown

that the ductile fracture is indeed depends on the Lode angle of the loading condition.

In the present model, we defined a new material parameter y to characterize the difference in

the ductility between x = 0 and x = 0.5. It is important progress in the ductile fracture modeling

because we have shown that it is one of the most important driving force in the competition between

and flat and a slant fracture mode in examples such as the crack propagation in compact tension

specimens.

However, the experimental work in this direction is still scarce. Functional forms have been

proposed in the present thesis. More detailed work is to be done to obtain the necessary parameters.

An improvement in the experimental technique is essential in determining the Lode dependence
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function.

13.2.2 Damage accumulation

We have separated different damage quantities for the purpose of characterize the evolution of

damage. Fractional ductility is used as the "damage" and fractional stiffness is used as the weak-

ening factor. There, of course, other micro mechanical phenomena associated with the damage

accumulation, such as the widely used void volume fraction. However, the measurement of micro

structure related parameters is difficult and is often described in a stochastic way. The proposed

damage plasticity model uses a ductility and stiffness measurement, such that the damage evolution

is considered on the macro scale.

In this regard, experiments have been performed and measurements are made typically using

simple tension specimens. The damaging process is mingled with the pressure effects. It seems that

an experimental technique that allow the material to deform under a constant pressure is of great

interest to the mechanical community to further justify the proposed damage plasticity model and

is also of great value to the ease of material constant calibration.

13.2.3 Damage coupling in the material strength

The last thing, which should be pointed out is the damage coupling to the material strength. It

has been shown the importance of the introduction of a weakening effect to the material strength

due to the accumulation of damage. Whether the pressure dependence of the weakening for ductile

materials is essential in the modeling of ductile fracture is still debatable. In the present theory,

we have shown that without this pressure dependence in the yield function, good results can be

obtained. By neglecting this effect, the numerical integration scheme becomes much simpler. An

iterative process has been reduced to a simple radial mapping method for materials obey associative

flow rule.

In a phenomenological way, a power law weakening function is proposed and a three parameter

power law function is adopted to obtain reasonably good results of the matrix stress strain curves.

Because of the relatively short global displacement in the final range of deformation before fracture

and the scattering of experimental data, difficulties in calibrate the material weakening related

curves is hard to overcome. The phenomenological nature of the weakening function may still be
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used until new experimental technology appears.
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Appendix A

Appendix

A: Bridgman Test Results

The complete list of data used from Bridgman's test results axe shown in Table A.1.

Table A.1: Collected results of the Bridgman's Tests (after [2), p.50-59.)

Material Confining Pressure (MPa) Final Flow Stress (MPa) Strain at Fracture Remarks
1-0 275.800 1130.78 1.35

0.100 1006.67 0.91
965.300 1958.18 3.01

2-0 0.100 1310.05 0.77
806.715 1627.22 2.45
372.330 1406.58 1.34

1296.260 2344.3 3.55
2-1 0.100 1144.57 0.86

365.435 1406.58 1.35
1158.360 1523.8 3.02

599.865 1703.07 1.84
2-2 0.100 1034.25 0.73

1385.895 2165.03 3.23
399.910 1172.15 1.24

2-3 0.100 910.14 0.5
324.065 1054.93 0.86
868.770 1613.43 2.1

2-5 0.100 2247.77 0.84
282.695 2364.99 1.11
682.605 2875.22 1.58 x a

475.755 2413.25 1.19
1772.015 3461.29 2.35

2-6 0.100 2530.47 0.68
289.590 2516.68 1.01

Continued on next page

is not used in the curve fitting.
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Table A.1 - continued from previous page

Material Confining Pressure (MPa) Final Flow Stress (MPa) Strain at Fracture Remarks
730.870 2647.68 1.58

1020.460 3468.18 2.05
1882.335 3516.45 2.75 x

2-7 0.100 1544.48 0.95
293.038 1730.65 1.26
875.665 2330.51 1.94

1523.795 2647.68 2.56 x
3-0 0.100 1241.1 0.46

661.920 1703.07 1.39 x
2695.945 3840.51 4.29

179.270 1254.89 0.61
4-0 0.100 1130.78 0.23

1379.000 2247.77 2.2
772.240 1661.69 1.03

2723.525 2585.63 3.76 x
193.060 1330.73 0.4

4-1 0.100 1316.94 0.33
744.660 1792.7 1.14

1682.380 2247.77 3.01
4-2 0.100 985.985 0.33

1275.575 1792.7 1.75
682.605 1268.68 0.88
179.270 1096.31 0.44

1861.650 1744.43 2.77
4-3 0.100 965.3 0.12

992.880 1399.68 0.79
372.330 1041.15 0.25 x

2151.240 2895.9 3.08
4-5 0.100 2171.93 0.13

275.800 2192.61 0.23
399.910 2289.14 0.27

2192.610 372.33 2.27 x
1778.910 3171.7 1.77
1372.105 2861.43 1.19

5-0-Longitudinal 0.100 1268.68 1.12
572.285 1468.64 1.75

2054.710 985.985 3.65 x
1565.165 2102.97 2.98

7-0-rolling 0.100 1379 1.1
792.925 1827.18 2.22

1068.725 2123.66 2.71
9-2 0.100 1820.28 0.88

0.100 1778.91 0.89
772.240 2096.08 1.63

1434.160 2971.74 2.57
2640.785 3840.51 3.73 x

0.100 2027.13 0.85
896.350 2309.82 1.54

1192.835 3033.8 2.11
413.700 2185.72 1.28

1854.755 4054.26 2.98
1882.335 3495.76 2.76

Continued on next page
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Table A.1 - continued from previous page

Material Confining Pressure (MPa) Final Flow Stress (MPa) Strain at Fracture Remarks
9-3 0.100 1268.68 0.92

1282.470 1744.43 2.78
999.775 2468.41 2.37 x
234.430 1447.95 1.1

0.100 1241.1 0.81
9-4 0.100 1123.89 0.89

124.110 861.875 1.13
799.820 1654.8 2.14

0.100 1123.89 0.9
510.230 1241.1 1.56

1254.890 2034.03 2.83
9-6 0.100 1337.63 0.98

434.385 1709.96 1.39
1096.305 1958.18 2.1

10-1 565.390 2344.3 0.22
1861.650 3599.19 0.98
2302.930 3571.61 1.43

16-0 1282.470 1820.28 3.52
1806.490 2254.67 4.38
655.025 1620.33 2.57

17-0 751.555 2502.89 2.09
1551.375 2723.53 2.29
2413.250 3806.04 2.76

18-0 717.080 2413.25 2.51
1558.270 3026.91 2.69
2385.670 510.23 3

19-1 0.100 2158.14 0.59
1006.670 2868.32 1.3
2585.625 6826.05 2.6 x
2330.510 3764.67 2.37 x
1627.220 3206.18 1.88

19-2 0.100 2482.2 0.49
792.925 2785.58 0.91

1654.800 3737.09 1.36
2475.305 3413.03 1.64 x

19-3 0.100 2626.99 0.25
2344.300 3640.56 1.45

0.100 2654.57 0.14
2502.885 4068.05 1.37

786.030 2889.01 0.41
1551.375 3730.2 0.79

Continued on next page
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Table A.1 - concluded from previous page

Material Confining Pressure (MPa) Final Flow Stress (MPa) Strain at Fracture Remarks

19-4 0.100 2826.95 0.07
2758.000 4116.31 0.98 x
772.240 3399.24 0.32

1647.905 3868.09 0.68
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