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Abstract

In this dissertation, we explore problems in two areas of Supply Chain Management. The
first relates to strategic supplier management. The second focuses on tactical decisions on
inventory and pricing during inter-generational product transition.

In many industries, manufacturing firms use multiple competing suppliers in their
component or product sourcing strategy. Chapter 2 studies optimal history-dependent
contracts with multiple suppliers in a dynamic, uncertain, imperfect-information
environment. The results provide an optimal contract structure for the manufacture and
optimal performance and effort paths for the suppliers. We compare incentives in the
form of product margin and that of business volume. Our results suggest that a volume
contract may increase the total profit for the supply chain, partly due to its ability to
allocate higher volume to the supplier that is more likely to input high effort, and partly
through relative performance evaluation. However, for two suppliers with large
asymmetry, it is better to contract independently with each supplier using margin
incentive, rather than forcing them into a volume race.

Chapter 3 studies the inventory planning decisions in the context of a technology product
transition, i.e., when a new generation product replaces an old one. High uncertainties in
a new product introduction coupled with long lead-time often lead to extreme cases of
demand and supply mismatches. When a company runs out of the old product, a customer
may be offered the new product as a substitute. We show that the optimal substitution
decision is a time-varying threshold policy and establish the optimal planning policy.
Further, we determine the optimal delay in new product introduction, given the initial
inventory of the old product.

In Chapter 4, we study the optimal pricing decisions during a product transition. We
restrict the new product price to be constant and formulate the dynamic pricing problem
for the old product. We derive a closed-form solution for the optimal price under non-
homogeneous Poisson demands. In addition, we compare three heuristic pricing policies:
fixed-price, two-price, and myopic rolling-horizon policies. The results suggest that
changing price once during the transition (the two-price policy) improves the profit
dramatically and is near optimal.
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Chapter 1

Introduction
In this dissertation, we explore problems in two areas of Supply Chain Management. The
first relates to incentive designs in long-term supply contracts (Chapter 2). The second
focuses on tactical decisions in production, inventory and pricing during inter-
generational product transition (Chapter 3 and 4).

Throughout the last few decades, the U.S. buyer-supplier dynamic has evolved from an
arms-length transaction-based relationship to a more collaborative trust-based one, partly
driven by the success of its Japanese manufacturing competitors such as Toyota. Many
U.S. companies have reduced the number of suppliers and focused on improving the
quality of the supplier relationships as a way to improve efficiency. What is common
today is that manufacturers are establishing long-term ties with a handful of suppliers.
Several questions arise in this context: How should a manufacturer manage such a small
group of suppliers over the long run? What incentive structures shall be put in place to
ensure that the manufacturer maximizes the benefits from these long-term relationships,
especially when dealing with multiple suppliers? What types of reward or punishment
work well in such supply relationships? These questions motivate Chapter 2 of this
dissertation.

Some firms use volume-based incentives implicitly. In one telecommunications
equipment manufacturing firm we interviewed, a procurement manager asserted that
increasing the volume of business to a supplier was the best incentive lever he had to
encourage good supplier performance. Furthermore, discussions with the sales
representatives of the suppliers suggested that they, too, believed that volume incentives
were the most effective way to incentivize good supplier performance. However, in the
telecommunications firm, the formal, written contracts (many of which ran to 100 pages
or more) we examined made no mention of volume incentive structures, but did outline
margin agreements, as well as the monetary rewards and punishments on quality,
delivery, and response time. So, these volume rewards and punishments may be executed
outside of the formal legal agreements.

Other firms use volume incentive more explicitly. In an automotive setting, Chrysler
Corporation, during its very successful expansion in the 1990's, had a procurement
strategy that often relied on volume incentives. According to Tom Stallkamp, former
President of Chrysler and former head of Chrysler Procurement and Supply, this strategy
worked very well for them in sourcing tires. Chrysler had two main tire suppliers,
Goodyear and Michelin, who competed head to head for Chrysler's business through a
volume-based incentive. Each quarter, the share of business each would receive depended
on its own performance and that of the other supplier in the previous quarters - on cost,
quality, delivery, and other metrics.



These phenomena have prompted us to examine both volume and monetary rewards and
punishments as long-term incentives for driving supplier performance. In particular, we
compare the impact of volume and margin incentives in the long run. In Chapter 2, we
model the performance-based incentive contract as an infinite-horizon repeated-game
problem to compare the optimal reward scheme using volume incentives with those using
margin incentives and to explore the strengths and weaknesses of each contract type.

In Chapters 3 and 4 we focus on another important area in Supply Chain Management -
tactical planning decisions for inter-generational product transition. In high-tech
industries, a newer generation product replaces an old product periodically. In many
cases, such a transition does not occur instantaneously but involves a transitional period
during which the company sells both products simultaneously. Such a time period
involves high uncertainty and high risk.

This research is motivated by collaborative work with a telecommunications equipment
manufacturer in the U.S. In this industry, the lead-time for critical components is about
13 weeks, sometimes even longer. The production lead-time is usually 5 weeks. As a
result, planning decisions need to be made as early as 4-6 months before the actual
transition. In addition, a long lead-time makes replenishment during the transition
impossible or very expensive. Introduction of a new product to the market tends to create
high uncertainties in both the demand side and the supply side. If many new features are
added to the new generation product, it is difficult to predict how well it will be accepted
by the customers, as well as how well the suppliers will be able to handle the
technological or production changes that the transition would entail. The launch of a new
product involves many sequential steps and depends on many factors: technology,
production, supplies, etc. As a result, the new product release date often fluctuates
dramatically. Long lead-time exacerbates the problem of demand forecasting because the
managers need to predict demand 18 weeks ahead. Consequently, the company often
runs out of the product that customers want while having excess of the other during a
product transition. Because replenishment during the transition is not possible, the
managers are left with very limited options.

Substitution is one way of coping with the volatile demand situation during a product
transition. When a shortage of the old product occurs, the new product can be used as a
substitute. Substitution provides risk pooling, but it adds further complexity to the
inventory planning problem. The model in Chapter 3 analyzes the optimal planning
decisions with such a dynamic substitution policy. We consider both uncertainties in
demand and uncertainties in the new product release date.

Pricing is another option for dealing with demand and supply mismatch during transition:
The managers can manipulate the prices of the two products to mitigate the demand risk.
For example, if sales of the old product are sluggish during the transition, they could put
in a promotion and discount it. On the other hand, if the new product does not sell well,
managers may consider increasing the price of the old product to make the new one
appear more attractive. In Chapter 4, we study the dynamic pricing problem for the
transitional period when there is no reorder option. Specifically, we look at a situation



when the price of the new product is market-driven and stays constant during the
transitional period and we solve for the optimal dynamic price of the old product. We
also explore simple pricing heuristics that are easier to implement in practice.





Chapter 2

Performance-based Contracting in Supply Chain

2.1 Introduction

In this chapter, we analyze multi-period supply chain relationships, between a
manufacturer and one or more suppliers, to assess the relative advantages of using
different contract types. In particular, we compare the outcomes from a contractual form
that rewards (and/or punishes) supplier performance by giving a greater (lesser) volume
of business in subsequent periods with a contractual form that pays the supplier(s) more
(less) margin for good (poor) performance.

Throughout the last few decades, the U.S. buyer-supplier dynamic has evolved from an
arms-length transaction-based relationship to a more collaborative trust-based one, partly
driven by the success of its Japanese manufacturing competitors such as Toyota. Many
U.S. companies have reduced the number of suppliers and focused on improving the
quality of the supplier relationship as a way to improve efficiency. For instance, Chrysler
has since 1989 shrunk its production supplier base from 2,500 companies to roughly
1,000 and has fundamentally changed the way it works with those that remain (Dyer
2000): On one hand Chrysler emphasized long-term commitment to a small number of
suppliers; on the other it still tried hard to foster competition among the suppliers. For
example, in sourcing tires, Chrysler established long-term ties to two suppliers: Michelin
and Goodyear. It promised to buy tires only from these two suppliers. However, the
suppliers are kept on their toes because the good performer over time would potentially
get a better margin, or earn a larger share of business from Chrysler. Tom Stallkamp,
former President of Chrysler and former head of Chrysler Procurement and Supply, cited
volume as the most effective incentive lever for driving supplier performance.

The goal of this research is to model and explore the use of business share allocations as
incentives for driving supplier performance. We compare the optimal reward scheme
using volume incentives with those using margin incentives to explore the strengths and
weaknesses of each contract type. Because we are interested in supplier relationships
with repeated interaction, the optimal performance-based reward scheme sheds light on
how current and past performance should be considered in supplier incentives. We also
examine longitudinal supplier behavior under the optimal reward scheme. We use
simulation to explore the trajectories of supplier performance and compensation.

An Example

In a repeated contracting relationship, rewards can come from payment in the current
business period and/or from promised expected future gains. In practice, rating systems
or grading classifications are sometimes used to represent the parties' expectations about



the future performance and payouts to suppliers. To provide more intuitive
understanding, consider a hpothetical pay and grading system for employees in a
consulting firm (Table 2.1) .

An employee entering the firm as an Analyst receives $50K in annual salary and no
bonus. The only way for the Analyst to move up from that level is to get a graduate
degree (MBA or Ph.D.), after which she can get "regraded" at the Associate level, which
pays $100K and on average $25K in bonus (awarded contingently each year based on
that year's performance). If an employee performs well as an Associate, she can be
promoted to the next level, Manager, which increases the salary to $150K and the
expected bonus to $50K. Therefore, the incentive for someone in the Associate level to
work hard includes the annual bonus (current incentive) plus the opportunity to be
promoted to a higher level position (future payoff).

Position Level or Annual Salary Annual Bonus Promotion
Employment Rank (base) (performance- (performance-

based) based)
Analyst $50K None No
Associate $100K $25K Yes
Manager $150K $50K Yes
Associate Principal $250K $100K Yes
Principal (Partner) $500K- $1M in total pay. Yes
Director (Partner) Partners split the firm's total profit No

Table 2.1: Hypothetical Salary and Bonus Structure in a Consulting Firm

In a buyer-supplier relationship, the current incentive for a supplier may include cash
payments and/or immediate reward of more business. The future incentive, similar to the
various rank levels of the consulting firm, could simply be a rating or ranking system that
categorizes the suppliers to different levels, with each level representing a certain
expected future payoff. For instance, in the "SCORE" ("Supplier Cost Reduction Effort")
model that Chrysler implemented in an effort to reduce the total cost of a vehicle,
suppliers were encouraged to propose cost saving ideas which Chrysler would selectively
implement (Stallkamp 2005). When the cost saving materialized, a supplier could claim
its share of the savings (the immediate reward) or could opt to yield the savings to
Chrysler, which would boost its overall performance rating at Chrysler and potentially
lead to more business (future incentive).

Structure and Overview

In this chapter, we examine optimal contracts for both risk-neutral and risk-averse
suppliers. For the margin contract, we consider both single-supplier and two-supplier
contractual relationships. For the volume contracting setup, we consider two-supplier
contracts only in order to capture the zero-sum nature of the volume allocations

1 Source: Tor Schoenmeyr, MIT Sloan School, formerly an employee at a major consulting firm.



suggested in the Michelin-Goodyear competition mentioned in Chapter 1. Building on
techniques developed in the repeated game literature, we derive the equilibrium outcomes
for our models.

Our results suggest that volume contracts can either outperform or under-perform the
margin contracts, depending on the scenario. The margin contract in general works better
when suppliers' ranks are low and the volume contract is superior when the suppliers
have high and comparable ranks. In addition, we find that the optimal contract is not
always "fair": The manufacturer may promote/demote a supplier regardless of current
period performance in order to prevent that supplier from reaching a trapping low-effort
state.

The rest of the chapter is organized as follows: Section 2.2 reviews some of the relevant
contracting literature from both economics and operations management. Section 2.3
presents the problem formulations for margin and volume-incentive contracts,
respectively. We also provide analytical results for risk-neutral suppliers in Section 2.3.
For the case of risk-averse suppliers, we rely on computation to obtain the optimal
contract and derive comparative statics, which are presented in Section 2.4. The last
section discusses the results and potential applications in addition to future research.

2.2 Literature Review

This research builds on two streams of literature, one in economics, and one in operations
management. A key paper in the modem incentives literature in economics by
Holmstrom (1979) framed a basic contracting relationship between a principal and an
agent. This paper triggered a raft of work in labor relationships, with significant
theoretical and empirical advances, for example on wage growth, performance bonuses
and promotions (e.g. Baker, Gibbs and Holmstrom 1994a and 1994b, Gibbons and
Waldman 1999a, and Fairburn and Malcomson 1997). Gibbons and Waldman (1999b)
provide a comprehensive review on work in this area. Many incentive models developed
in economics have been extended to describe governance mechanisms among various
companies in the supply chain.

Papers on incentive schemes in a dual/multiple-sourcing environment mostly focus on
single-period models or multi-period models without history dependencies. For example,
Anton and Yao (1989) compare the split-award auction with a winner-take-all auction in
a single-stage Nash equilibrium setting. In their model volume allocation is based on
price. In a split-award auction, each supplier submits a menu of price and volume splits
and the buyer selects a split that minimizes its procurement costs. They show that winner-
take-all dominates split-award since the split-award auction allows implicit collusion and
hence the buyer pays more in equilibrium. However, when upstream investment actions
are considered, split-award auctions can become superior to winner-take-all for the buyer
as potential profit from a split-award auction provides an incentive for the supplier to
invest in innovations. Seshadri (1995) studies a dual-sourcing model with a cost-plus
contest (using third-price bidding competition) that awards each supplier its actual
audited cost and a constant fraction f(0 _f 1) of a fixed incentive pool c to the lower-



cost provider. The optimal design is a tradeoff betweenf and c: asf increases, the
incentive for effort increases, but to offset the increased risk, the buyer needs to raise c.
The paper solves for the optimal risk-incentive tradeoff and compares it with a single-
source incentive contract to derive conditions under which cost-plus contest yields lower
total cost for the buyer. Klotz and Chatterjee (1995) consider a two-period dual-sourcing
model where the buyer reserves a fixed volume share for both suppliers and puts out the
rest in a competitive bidding in which the lower-cost provider takes all. In their model,
the only connection between the first and second period is that the cost estimate of a
supplier in the second period depends on its first period production quantity. Benjaafar,
Elahi and Donohue (2005) consider the role of competition in eliciting service quality
from supplier in a Supplier-Allocation model (each supplier gets a performance-based
market share) and a Supplier-Selection model (each supplier is probabilistically chosen as
the sole-source provider with the winning probability dependent upon performances).

N

They focus on a proportional allocation mechanism a(s ,si) = s[ / sY where a is
i=1

supplier i's demand share in the Supplier-Allocation approach (or probability of winning
in the Supplier-Selection approach), si is the performance of supplier I, and y signifies the
intensity of the competition of the allocation function. They solve the symmetric Nash
equilibrium and thus the equilibrium service levels for both models. Their model is a
single-period model in which the buyer's only involvement is through a. In comparison,
we develop a repeated game model where the buyer explicitly takes on the role of a
principal and solves a profit maximization problem. Cachon and Zhang (2005) compare
several performance-based allocation policies that assign incoming jobs to suppliers in a
repeated capacity game of multiple-server queuing system. Their method is akin to that of
Benjaafar, Elahi and Donohue (2005) in that both papers assume a policy first and then
establish the equilibrium outcome. Although they study the problem in a repeated game
setting, past actions and payoffs are disregarded. In comparison, we identify the history-
dependent optimal policy and allow more general performance measures.

A dynamic contract can use both current compensation and future promises as incentives
to induce the desired behavior. Thus dynamic contracts are potentially more powerful
than static contracts. However, an optimal dynamic contract generally needs to keep track
of the entire performance history, making for intractable problems due to the curse of
dimensionality. In this chapter we adopt a method developed by economists to reduce the
complexity of history-dependent contracts. Abreu, Pearce and Stacchetti (1986, 1990,
hereafter APS) study an optimal cartel model and the central technique employed in their
analysis is the reduction of the repeated game to a family of static games. The APS model
is extended by Spear and Srivastava (1987) to the Principal/Agent framework. They
study a dynamic contract in an infinite horizon with risk-neutral principal and risk-averse
agents. They show that there is a stationary representation of the optimal contract using
the agent's expected discounted utility as the state variable. Essentially, the incentive for
the agent is decomposed into current compensation and continuation payoff. Value
iteration methods are used to compute the optimal policies. Using a similar formulation
but allowing public randomization of strategies (assuming a continuum of agents), Phelan
and Townsend (1991) develop a computation technique that solves the equilibrium as a
linear programming problem. Yeltekin (1999) applies the Phelan and Townsend method



in a multiple-agent setting and finds that the optimal dynamic contract displays a
tournament feature when the agents' performances are affected by a common noise. Such
a result corroborates a finding by Holmstrom (1982) that relative evaluation among
agents is only valuable in filtering out common uncertainties in outputs. Our results
indicate that relative performance evaluation (RPE) can be optimal whenever the
suppliers are forced to compete for a limited-size reward, with or without common noise.
Wang (1997) uses the Spear and Srivastava model to explain the low correlation between
CEO compensation and performances. Our analysis also exploits the methods of Spear
and Srivastava.

2.3 Model Formulations

In this section, we develop the motivation and structure of the model formulations for
both margin and volume contracts. The two subsequent sections provide the analysis.

2.3.1 Single-Supplier Margin Contract

In the static problem, the buyer, or original equipment manufacturer (OEM), delegates
the production of one product or component to a supplier. The supplier chooses its effort
input a from a finite choice set A and incurs cost VI(a). The effort contributes to
performance metrics such as on-time delivery, defect rate, yield, and so on. We aggregate
these into one single term x that is measured in money units and captures the value of the
supplier's performance to the OEM. Such aggregation may seem arbitrary, but firms have
developed ways to do this. At Sun Microsystems, if a supplier receives a total score of 86
from the scorecard calculation, the commodity manager may inform the supplier that
every dollar Sun spends with the supplier actually costs Sun $1.14 (Farlow, Schmidt and
Tsay 1996).

We assume that a supplier's actual effort input is not observable by the OEM. The OEM,
however, can make inferences about the supplier's choice by observing the performance
score, which is an imperfect signal of the effort level. In other words, the effort input
affects the performance x through its probability distribution function. The OEM
observes this value and pays the supplier w(x) after the supplier delivers. Letf(xla) be the
density of the distribution of x under a given effort level a and 0) be the utility function
of the supplier.

The OEM maximizes its total value by solving the following single-period (SP) problem:

max E[x - w(x)] I a]
s.t. E[g(w(x) I a)]-y(a) 2 u (IR)

E[6(w(x) I a)] - (a)
2 E[q(w(x) I )] - /y(5) V, e A (IC)

0 5 w(x) < x (NN & BC)

The first constraint is the supplier's individual rationality (IR) constraint, which dictates
that the supplier will participate only if its expected payoff is higher than its outside



option u. The second constraint is the supplier's incentive compatibility (IC) constraint,
requiring the supplier to respond optimally to the OEM's payment scheme. The last two
constraints are the non-negativity constraint (NN) and the budget constraint (BC),
requiring the payment be bounded. Such requirement ensures that the contract is self-
sustaining.

The SP problem is a well-studied formulation (Mirrlees 1976, Milgrom 1981, Rogerson
1985, Innes 1990). It is a simple constrained nonlinear optimization problem. The OEM
first finds the optimal incentive scheme that implements action aeA, and then chooses
the action that gives it the highest expected payoff. Milgrom (1981) shows that in the
optimal static contract, the compensation w(x) is non-decreasing in performance x under
the following assumptions: 2

Assumption 2.1 f(xla) satisfies the monotone likelihood ratio property (MLRP)3 wheref
is the probability density function of x for a given effort a.
Assumption 2.2 F(xla) is convex in effort where F is the cumulative distribution
function of x for a given effort a.

Without further assumption on the utility and cost function, not much more can be said
about the optimal static contract other than the monotonicity property. Innes (1990)
shows that the optimal contract is a threshold policy if the agent (supplier) is risk-neutral:
The supplier receives the entire output when the performance is above a threshold and
nothing when it is below the threshold.

Since our goal is to study supplier governance over the long term, we shall look beyond
the static problem and search for optimal contract in repeated plays. In this chapter we
study the dynamic contract in a repeated game over an infinite horizon. From the
modeling point of view, the infinite horizon assumption provides tractability and allows
computation of optimal contracts. In the auto industry, long-lived supply chain
relationships are not uncommon. In the Chrysler example, Tom Stallkamp once stated: "I
don't care if we don't buy a tire from anyone other than Goodyear or Michelin. In fact,
I've told those companies we won't as long as they're doing what we want"4 . Moreover,
the life expectancy of the relationship is endogenous rather than exogenous to the
problem we consider since often breakups are a result of failures to comply with
contractual agreements.

2 Assumption 2.2 is often referred to as the Convex Distribution Function Condition (CDFC). Rogerson
1985 shows that MLRP and CDFC guarantee that the agent's optimization problem is concave (second-
order derivative w.r.t. a is negative) and first-order conditions fully identify global optima for the agent. It
is also called the Mirrlees-Rogerson condition. See also "Contract Theory" by Bolton and Dewatripont
2005.

d fa (xlI a)
3 In the continuous-action case, MLRP implies - %( ) 2 0. This corresponds to the intuitive

dx f (x I a)
requirement that a high-performance realization indicates a high effort choice by the supplier. Many
ordinary distributions satisfy such property, e.g. the normal distribution.
4 Articles in July 1997 issue of Ward's Auto World, "Sharing warranty costs: the new frontier - includes
interviews with Ford's Carlos Mazzorin, Chrysler's Thomas T. Stallkamp and General Motors' Harold
Kutner - Managing the Supply Chain" by Greg Gardner



With an infinite horizon, the OEM designs the contract to maximize its total discounted
expected profit. In each contract period, the supplier chooses its effort level at from a
finite choice set A and incurs cost yi(ad. The value that the supplier generates for the
OEM, which is denoted by xt, depends stochastically, throughf(xla), on the supplier's
effort choice. At any time period t, the OEM bases compensation decisions on the entire
history. Let ht ={xl,x2, ... ,Xt} denote the history up to time t. A dynamic contract can be
represented by a = (at(h') ,wt(ht ) }t= to ,,, which is a very complex problem, cursed by
its dimensionality.

By using the perfect public equilibrium (PPE) formulation of APS (1986), the complexity
of history dependencies can be significantly reduced. In a PPE, the supplier's strategy
depends only on the public history ht (past performance outcomes), not on its own past
actions (past choices of a). A PPE is sequentially optimal: Following every public history
the remaining subgame forms a Nash Equilibrium. In theory, the supplier could adopt
strategies that are dependent on its past private action choice, but this will not benefit it
since the performance outcome only depends on current period action and the contract
payment is based only on the performances. 5

A PPE is recursive, i.e., every public history induces a strategically identical game.
Therefore, the equilibrium payoff can be decomposed into the current-period payoff u
and the continuation values U, which are themselves payoffs of a PPE. That is,

u =E[(p(w)-y1(a) +6U] (2-1)
where uec, UeU, and IU denotes the set of equilibrium payoffs in a PPE.

Stage 2

Stage1 O1 E V

u EV U2 EV *

U3 E ...

Figure 2-1: Game Tree of a PPE

APS 1986 defines this property as self-generation. In fact, if we view the continuation
value promised to the supplier as the state variable, equation (2-1) is essentially the
Bellman equation for an infinite horizon discounted problem (Bertsekas 2000). The set of
PPE payoffs then forms a set of Markov states. Therefore, if the optimal strategy profile
at stage 1 is a(u) where ueV, then at stage 2, as long as the state at stage 2 belongs to the
same set U (Figure 2-1), the same optimal strategy profile applies. Spear and Srivastava
(1987) use this concept to reduce the optimal history-dependent contract problem to a

5 Given a pure-strategy equilibrium where players' strategies may depend on private information, we can
find an equivalent equilibrium where the strategies are public since each player perfectly forecasts how
each opponent will play in each period in a pure strategy equilibrium. See also "Game Theory" by
Fudenberg and Tirole (1991).



dynamic programming problem with a single-dimension state variable - u. Intuitively,
the expected payoff u promised to the supplier in each period becomes a proxy of the past
history h" ={xl,x2, ... ,Xtq}. It "stores" the minimum necessary amount of information of
the past (just enough for the OEM to know how to compensate the supplier in the
immediate period and how much to promise for the future payoff).

Referring back to the compensation scheme at the consulting firm, the state variable u
corresponds to the position level, e.g., Associate, Manager6. Each value of u represents
the current "state" of a consultant and captures the relevant information about past
performance.' In addition, u provides information about future payoffs: A consultant at
the Principal level will have higher expected lifetime earnings than a person at the
Manager level. Furthermore, the value of u provides information about how a consultant
would be paid and promoted in the current contract period. Extending the analogy to a
supply chain context, a supplier's current state u could be interpreted as its current
standing (e.g. a number-coded rating) at the OEM. To generalize it further, u could also
represent the various classes the suppliers are categorized into. At GM, suppliers are
categorized into color-coded classes: green, yellow and red (Sherefkin 2006). At other
companies, it may be gold, silver and bronze, or one-star to five-star ratings.

In the dynamic program formulation proposed by Spear and Srivastava, the control
variables include the action choice a(u), the current compensation w(u, x), and the
continuation payoff U(u,x). In contrast to conventional dynamic programming
formulation, the state transition is itself a decision variable. Let V(u) denote the expected
payoff to the OEM when the payoff promised to the supplier is u. We also assume that
the OEM and the supplier have the same discount factor 5. The OEM's optimization
problem is to find the optimal a, w and U that solve the following:

V(u) = max E[x - w(u, x) + 6V(U(u, x)) I a(u)]
a,w,U

s.t. E[5(w(u, x)) + SU(u, x) I a(u)] - y(a(u)) = u Vu e ') (PK)

E[6(w(u, x)) + 3U(u, x) I a(u)] - V(a(u))

> E[ (w(u, x)) + JU(u, x) I a] - y/(&) Va e A (IC)

0 • w(u,x) 5 x (BC)

Note that the first constraint is the promise-keeping (PK) constraint for the supplier's
equilibrium payoff8. It specifies that the supplier's equilibrium payoff u is realized
through the current period compensation w(u,x) and continuation value U(u,x).
Potentially, suppliers with different u's are paid differently, i.e., a Gold-ranked supplier is

6 In the consultant example, u takes on only a few discrete values such as Analyst, Associates, etc. More
generally, u can be continuous, as in our model.

Strictly speaking, for the consultant analogy to work, we need to make additional assumptions: For the
Markov property to hold, we assume that a consultant's promotion does not depend on how many years she
has been at the current rank. In addition, for the game to be recursive, we assume that a consultant can be
demoted, as well as promoted.
8 It is called the "self-generation" constraint in APS and Spear and Srivastava.



treated and paid differently than a Silver-level supplier. As u and U(u,x) both take on
values in the same set V, it is a self-generation set.

To provide further intuition of the concept of self-generation, we illustrate with the
following equation that the continuation value U(u,x) is itself a PPE payoff.

U(u, x) = E[O(w(u, £)) + SU(U, ^)) I a(U(u, x))] - V/(a(U(u, x)))

where i has distribution f(i I a(U(u, x))) (PK)
Alternatively U0 can be viewed as a fixed point of the set U.

Consider a contracting problem where the transfer price between the supplier and the
buyer (the OEM) is determined through a cost-plus model. That is, the buyer promises to
pay the supplier the cost of the product c plus a certain margin p for each unit for an
agreed production volume q0. In an incentive contract, the margin is dependent on a
supplier's current standing (i.e., the u value, which we also refer to as the "rank") and
current period performance x. Figure 2-2 shows the sequence of events under such a cost-
plus contract. Suppose at period t, the supplier's rank starts at u. The supplier then
chooses an effort level based on its current rank u. Given the effort input, an output x is
generated and observed. The buyer then decides the supplier's next period margin P(u,x)
and next period rank U(u,x) based on both its current rank u and the performance in this
period x. We assume that the parties settle the payment P(u,x)qo within period t so that we
would not need to keep track of the margins as part of the state variable. In the next
period, the supplier's rank becomes U(u,x) and the game repeats.

Beginning of period t+1
Beginning of period t Output x is Buyer pays Supplier's rank
Supplier's rank is u observed by all P(u,x)qo becomes U(u,x)

Supplier Buyer decides Supplier realizes
chooses a(u) next period margin P(u,x) utility 0 (P(u,x)qo)

and next period rank U(u,x)

Figure 2-2: Sequence of Events for a Single-Supplier Margin Contract

Reformulating it in the context of a cost-plus contract, we get the following dynamic
single-supplier problem (DSP):

V(u) = max E[qox - q0P(u, x) + SV(U(u, x)) I a(u)]
a,w,U

s.t. E[O(qoP(u,x)) + S(u,x) I a(u)] - (a(u)) = u Vu e V (PK)

E[&(qoP(u, x)) + 3U(u, x) I a(u)] - Vy(a(u))

>2E[b(qoP(u,x))+ bU(u,x) ]- (t&) V& e A (IC)

p < P(u, x) 5 T (BC)



Since the buyer pays for the cost of product cqo anyway, it can be viewed as a sunk cost.

For the supplier, the amount of cqo is used to cover the material cost and is sometimes

paid directly by the buyer to the suppliers further upstream. Therefore, we can leave it out
of the optimization problem without affecting the implications of our results.

As mentioned earlier, in the buyer's objective function, we count payments to the
supplier in the next period P(u,x)qo as a cost in the current period to reduce the state
space.

The margins are bounded from both above and below. The lower bound may reflect the
supplier's reservation utility and the upper bound might reflect the buyer's maximal
acceptable margin level.

Definition 2.1
Define the optimal solution of the DSP problem to be pS (u, x) and Us (u, x).

Without loss of generality, we also make the following assumption to indicate that
performance increases in the supplier's effort input. Let F(x a) be the cumulative
distribution function of the performance output for a given effort level a and Fa(xla) be
the first order derivative of F(xla) with respect to a.

Assumption 2.3 Fa(xla) < 0 (with strict inequality for some x)

Under Assumptions 2.1-2.3, the (IC) constraint can be replaced by the first order
condition. Therefore the incentive-compatibility constraint can be rewritten as:

f ((qoP(u,x)) + 6U(u,x))fa(x a)dx = yl'(a(u)) (IC)

We can then easily obtain the Kuhn-Tucker condition of the DSP problem through point-
wise maximization.

Proposition 2.1
pS (u, x) and U s (u, x) solve the DSP problem if and only if there exists A(u) and Pu(u)

such that the following conditions are satisfied:

V'(U) + A(u) + pt(u) f( = 0
f(x I a)

-1+ 0'(qoP)[A(u) + p(u) ]=f (x I a) 0
f(xla) ]

(PK), (IC).

Proof. See Appendix.c

Lemma 2.1
With a risk-neutral supplier, V'(u) = -1.



Proof. See Appendix.n

Lemma 2.1 states that the Pareto frontier of the value function is linear. One additional
unit of utility promised to the supplier implies one less unit of profit for the OEM. In
Proposition 2.2, we show that the linearity of the value function leads to a bang-bang
optimal policy.

Proposition 2.2
With a risk-neutral supplier, a bang-bang policy can be optimal. That is, a buyer promises

d 0 [p - (p - p)F(I I a')] - ry(a*)
a constant continuation payoff U =

1-S

and P = as the next period margin. The optimal action input a* and the
pif x <x

critical performance threshold Y can be determined jointly by - (a) = - p and
F,( I a) -

fa (~ a)=0.

Proof. See Appendix.o

2.3.2 Contracting Problems with Two Suppliers

With more than one supplier, the buyer has two alternative means for inducing
performance: reward the supplier with higher (lower) margin - margin contract, or
reward it with higher (lower) business volume - volume contract.

We describe a situation when the buyer is dedicated to two suppliers in a long-run
relationship and would like to design incentives that elicit as much supplier effort as
possible. Volume seems to be a cheap way of doing this - reward or punish the suppliers
without yielding on margins, which is often the focus of contract negotiation (as it is
easier to specify margin than business volume).

Contract design becomes much more complex when dealing with dual or multiple
suppliers because there is an opportunity for relative performance evaluation (RPE). In
other words, the OEM may base a supplier's compensation on its own absolute level of
performance as well as on its performance relative to that of other suppliers. Some of the
seminal papers on RPE, for example Holmstrom (1982) and Green and Stokey (1983),
conclude that RPE is only useful when common industry noise is present. Yeltekin
(2003) draws the same conclusion in a dynamic contracting context.

In the model that follows, we assume the suppliers are identical, with regard to their
effort choices, utility functions, and cost functions. We also assume that the production
functions of the suppliers are independent and have independent noise terms.



2.3.21 Margin Contract

We first examine margin incentive. To do so, we hold the volume allocation constant: we
assume that the total volume is fixed and that each supplier receives a constant award of
production quantity in each period - qj and q2 respectively. Without loss of generality, we
assume that q, = q2= q0, which further simplifies the model. Additional notations are
listed below.
u = (ul, u2) represents the vector of continuation values for both suppliers.
x = (xi, x2) denotes the vector of performance output.
Pi(u,x) is the next period margin to the ith supplier given u and x
Ui(u,x) is the next period rank to the ith supplier given u and x; it implies the promised
continuation payoff from next period on.

For clarity, we refer to the vector u as the state of the system and each ui as the supplier's
rank level.

At the beginning of a contract period, each supplier starts with a rank and margin that
was determined from last period. Each supplier chooses an effort level that maximizes its
expected utility.

The buyer solves the following dynamic two-supplier margin contract program (DTM) to
determine the margin and rank for each supplier in the next period.

VM (u) =_maxE[qo(x + x 2)- (qP(u, x)+ qP 2(u, x))+ M (U(u,x),U2 (u,x)) I a,(u), a2(u)
a,P,U

s.t. E[z(qoP,(u,x))+ U,(u,x)jla(u),aj(u)] - (ai(u))=ui Vui ~ V, (PKi)i= 1,2

E[q(qo0P (u, x)) + 6U,, (u, x)l a, (u), aj (u)] - vy(a, (u))

2 E[[(qoPl (u,x))+ oUi (u, x) I a, (u)] - (&,) Va, E A (ICi)
p < Pi (u, x) _ ýj (BC,)

Comparing the two-supplier formulation with the single-supplier one, it is clear that the
two-supplier problem is a more general problem because it allows relative performance
evaluation. However, we show that the single-supplier solution is optimal in the DTM
problem.

Proposition 2.3

1P(u,x ) = PS (Ul,XI), P2(u,x) = S (u 2 X2) and

U,(u, X) = US (u1,x1 ), U2(u,x) = U s (u2, 2)solves the DTM problem.

Proof. See Appendix.o

Proposition 2.3 implies that the margin-based contract can be decoupled into two
independent single-supplier problems. That is, relative performance evaluation does not
add value. Such result corroborates the findings by Holmstrom 1982.



Intuitively, if a buyer can induce a supplier to input a preferred effort using independent
margin incentive (margin reward is entirely based on the supplier's own performance and
rank), it will not be cheaper to do so through a competitive margin reward scheme where
a supplier's margin may also depend on the other supplier's rank and/or performance.

2.3.22 Competing Suppliers: Volume Contract

One potential advantage of volume as an incentive mechanism compared to margin is
that the OEM may assign higher volume to the supplier that is more likely to work hard
and thus leads to higher output. In addition, as the suppliers are splitting a fixed amount
of business, volume-incentive contracts can potentially induce higher effort and more
competition among the suppliers.

In a volume-incentive contract, both the current and future incentives are provided in the
form of business shares. Each period the OEM divides the total business volume 2qo
between the suppliers' allocations, respectively, ql and q2, where q, + q2 = 2qo. As in the

money-reward contracting model, each supplier's past is aggregated into a single variable
ui, which represents a promised expected payoff. In each period, the OEM reviews
supplier performances and updates the suppliers' rank level. Each supplier is then
allocated a certain share of the total size for the immediate period. Again we assume that
the suppliers' tastes and production functions are identical and that the production
outcomes are independent and identically distributed. We also assume constant returns to
scale in the supplier production functions; otherwise one supplier who got a high, early
stochastic performance outcome could quickly race ahead of the other, leaving little
opportunity for the laggard to recover. We discuss the implications of increasing or
decreasing returns in the last section of this chapter.

Without loss of generality, we can assume p, = p 2 = p0 , thus the OEM solves the

dynamic two-supplier volume contract problem (DTV):

Vv (q, u) - max E[q, xi + q2x 2 - 2p0 q0 + SV (Q(u, x), U(u, x)) I a, (u), a2 (u)]a,Q,U

s.t. E[O(poQ,(u,x)) + U/,(u,x) ai(u),aj(u)] -Vy(ai(u)) = u Vu i E li (PKi) i = 1,2

E[z(poQi (u, x)) + Ui (u, x) I ai (u), aj (u)] - V(a i (u))

2 E[q(poQi(u,x))+ 6U.(u,x) I ai,aj(u)] - (aii) Va1 E A (ICi)

Q, (u,x) + Q2 (u, X) = 2qo (BC)

Q (u,x) > 0 (NNi)

Note several differences compared to the margin-incentive contract:

i). The objective function of the buyer depends not only on the ranks of the two
suppliers, but also on the current volume allocations q. This is intuitively quite
straightforward: The value to the buyer from each supplier's performance output



depends on how the volume is split between the two. Thus to maintain the
Markov property, the state variable has to include q.

ii). The total volume to be split is bounded by a constant -2qo, which can be
interpreted as a certain fixed business volume that the buyer uses as performance
incentive.

iii). Since the impact of a supplier's volume on its performance value can not be
overlooked, we consider a case when the value from a supplier's performance is
proportional to the volume it receives.

Proposition 2.4
With risk-neutral suppliers, the optimal volume-incentive contract can be implemented
using a series of static contracts. In each period, the optimal split is "all-or-nothing":

-2qo if a (U(u,x)) > a2(U(u,x))
Q(ux) =0 otherwise

Proof. See Appendix.o

Such a volume split scheme is an extreme form of relative performance evaluation (RPE)
(Lazear and Rosen 1981). This may strike one as a severe outcome, but it is a
consequence of the risk neutrality assumption, which we will relax in Section 2.4.

Definition 2.2
VV (U1,U2) - max Vv(q,,q 2,Ul,U 2)ql,q2

In general (at least for the case when the fixed margin po0  p), the volume contract has a
2

smaller feasible set than the margin contract. However, this does not imply
VM (ul,u 2) 2 VV(Ul,u 2). In a volume contract, the allocation of volume affects the
expected output because a supplier's output is proportional to its business share.
Therefore, by allowing the volume to be dynamically adjusted along with the ranks, the
buyer can potentially improve the expected output even if the suppliers input the same
effort level in equilibrium as in the margin contract.

2.4 Numerical Studies (Risk-Averse Supplier(s))

A risk-averse supplier prefers to avoid the kind of all-or-nothing schemes of the previous
section and desires more predictable and stable rewards. In the case of volume-incentive
contracts, risk aversion translates to preference for production smoothing, i.e., companies
would prefer stable and smooth demands for their services over lumpy and sparse
demand.



Since our model does not yield closed-form solutions for the case of risk-averse
suppliers, we use computation of numerical examples to explore optimal dynamic
contracts and we use simulations to obtain the suppliers' dynamic performance paths
under the optimal contract.

In Section 2.3, we derive some of the theoretical properties with assumptions of
continuity and differentiability. However, in order to explore our model computationally,
we use discrete action inputs and outputs. Such discretizations serve well to illustrate the
key findings of this research.

2.4.1 Margin Contract

Because the two-supplier margin contract can be decoupled into two independent single-
supplier contracts, it suffices to analyze the solutions for the single-supplier contract.

Spear and Srivastava 1987 show that with strictly risk-averse agent, V is strictly concave
in u and the optimal policy cannot be a simple bang-bang policy. They establish that the
optimal contract uses both current and future compensation to incentivize the agent. More
specifically, the optimal contract shall equate the marginal rate of substitution of the
future and present compensation for the OEM ( V'(U)) with that for the supplier

1
(- ). Since the dynamic contract allows the OEM to reward the supplier using' (w(u, x))

both immediate payment and future promises, the optimal contract requires both be
increasing in performance. Wang 1997 points out that the reason that the highest-
powered incentive (bang-bang policy) is not optimal is due to the agent's need for
consumption smoothing. Thus a very high reward or a very severe punishment is delayed
to allow for consumption smoothing. Wang 1997 applies the self-generation concept
from APS 1990 to the principal/agent model to compute the set of the equilibrium
payoffs and then use value iteration methods to solve the Bellman equation and obtain the
optimal contract. The self-generation computation involves two stages. In the first stage,
the set of equilibrium payoffs for the supplier is calculated. In the second stage, value
iteration is used to compute the OEM's optimal value and the optimal compensation
scheme. We use a similar computation procedure to obtain the optimal solution.

As in a single-supplier margin contract, the set of equilibrium payoffs for each supplier in
a two-supplier margin contract is a closed interval on the real line. The general algorithm
for computing the equilibrium set of payoffs for the supplier is as follows:

1. Start with some generous [U,U]and discretize it to a finite set {Uk}

2. Add an additional constraint U 5 U(u,x) < U to the buyer's optimization problem
3. Find the sequence {ui} c (Uk) s.t. constraints (IC), (PK), (BC), (NN) and the

constraint constructed in 2 have feasible solutions. Let n = cardinality of ({uj
4. Let U = ul and U = u, and repeat 2 until {u1} converges

The set of feasible equilibrium payoffs is then characterized by the interval [ul, u,].

We apply the above algorithm to the following example:



Two possible action inputs: aH, aL (high effort, low effort)
Two possible outputs: xH=$25, xL =$5

qo = 1 million
The output depends on the action input probabilistically:
P(x=xHja=a) =0.67
P(x=xHla=a) =0.33
Cost of effort y'(aL) = 0, V(aH) = 1 million (supplier disutility of effort)
Discount factor 6=0.85
p = Oand f = $25

The supplier's utility function is O(w)= =w

In this example, high output implies a value of $25 million to the buyer whereas a low
output a mere $5 million.

Step 1 is to choose the initial starting interval. We let U be the total expected payoff of
the supplier when it inputs high effort (aH) but receives minimal margin in each period.
Let U be the payoff when the supplier inputs low effort (aL) but is rewarded with a
margin that is equal to .6 7xH +.33 xL in every period 9. These payoff values serve
respectively as the initial lower and upper bounds of the feasible set. To facilitate the
computation, we discretize the interval into 30 points; the initial lower and upper bounds
become states 1 and 30 respectively. Recalling the consulting firm compensation system
example from Section 2.1, we can think of these discrete states as the relative ranking of
the supplier by the manufacturer.

Applying self-generation and the algorithm described above, we can solve for the fixed
point solution of the equilibrium set. For this example, the set of equilibrium payoffs that
satisfies the self-generating property is the interval from state 6 to state 29, which
corresponding to an expected utility payoff of 0.23 million and 31.95 million
respectively. Thus the feasible region for the two-supplier margin contract is a square
region.

Across this region, the optimal action for the supplier is to expend a high level of effort
with the exception of state 6 and 21-29. Therefore this numerical example describes a
supplier that is "pessimistic" at low utility promise and "lazy" at high utility promises, or
equivalently, a buyer that finds it too expensive to induce buyers in such states to input
high effort.

Figure 2-3 describes the efficient frontier of a money contract. In general, as more is
promised to the supplier, the less value the OEM retains. Note that the horizontal axis
represents a relative scale obtained by discretizing [U, U] into 30 points. Thus 5 and 30
correspond to an expected payoff of -1.15 million and 33.3 million respectively. For

9. 6 7xH +.33 xL is the expected unit output for a supplier that inputs high effort. Hence U stands for the
case when the supplier exerts low effort but is paid an amount that is equal to the expected output under
high effort.



consistency, throughout the rest of this chapter, we use the same scale for a supplier's
expected payoff (or rank).

IU 1i Lu Lo

Supplier's Current Rank

Figure 2-3: Pareto Frontier of a Margin Contract

Figures 2-4a and 2-4b show that the optimal contract utilizes both current and future
incentives. The solid curve is the margin (or future rank) assignment when high
performance is achieved and the dashed curve is that when low performance is achieved.
In the low effort region (rank 6, 21-29), there is no differentiation for current period
performance, i.e., the buyer allocates next period margin and rank regardless of the
performance outcome. Rank 6 is a "threat" for suppliers. For a supplier starts in a higher
rank than 6, if its performance deteriorates over time, there is a chance of falling into
such a low-rank trap and never gets out. Ranks 21-29 are "temporary": The supplier
receives high margin award but is demoted continuously to a rank where they would have
to exert high effort. If a supplier starts below rank 20, it will never get above 20. In other
words, these high ranks are not sustainable even if a supplier can negotiate itself into one.
The supplier must either agree to move to the low ranks after taking advantage of high
margins for some limited number of periods, or break out of the contract.
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Figure 2-4: Optimal Contract Structure of a Single-Supplier Dynamic Contract
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Under the optimal policy, a contract could start from any initial u (expected utility
promised to the supplier) that is within the set UI. Each state corresponds to a unique
compensation scheme as shown in Figure 2-4. In each period, the OEM measures the
supplier's performance, which is probabilistically influenced by the choice of effort level.
Based on this period's performance and the current state u, an immediate margin
assignment is made (Figure 2-4a) and a new continuation value is promised to the
supplier, which moves the supplier to a new rank (Figure 2-4b). Over time, a supplier
moves from rank to rank - and one may infer from the supplier's state path how well it
has been performing. The supplier's "performance path" is analogous to the career path
of an individual over her lifetime. The equilibrium performance path of a supplier is
determined only by future payoff promises, i.e., U(u,x). Figure 2-5(a) shows a sample
path of a supplier entering the contract at state 6. Figures 2-5(b) and 2-5(c) are the sample
paths for a supplier starting from state 14 and 29 respectively. Note again that state 6 is a
trapping state: If a supplier starts from this state, it stays there forever, resulting in
equilibrium with low effort input in all subsequent periods. When starting from states 14
or 29, the supplier quickly settles into an oscillating mode around rank 20, although there
is always a small probability that it may fall into the trapping state 6. We also note that
states 20 and above represent feasible, but not sustainable ranks. A buyer could credibly
promise a supplier such a rank when the parties enter into a contract, but the only way to
sustain the contract is for the buyer to offer high margins initially and then scale it down
to a lower rank level.

(a) u = 6 at time 0 (b) u = 14 at time 0 (c) u = 29 at time 0
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Figure 2-5: Sample Paths of State Transitions in a Single-supplier Margin Contract

Figure 2-6 shows the state distribution after 100 time periods for a supplier starting from
rank 14. We observe two peaks - one around rank 20, the other at rank 6. For a supplier at
state 14, therefore, the long-term threat for not performing is falling to rank 6 and never
able to move up in ranks. The positive incentive is to over time move to the area around
state 20 by merit of good performance. Therefore, these peaks serve as the carrot and
stick in long-term supply relationships.
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Figure 2-6: State Distribution after 100 Periods

There are some interesting lessons we could learn from the optimal margin contract.
First, generosity pays off. Using a different set of parameters for the numerical example
above, we observe that it may be optimal for the OEM to promise a supplier higher
expected future payoff (i.e. a promotion) regardless of performance, especially when the
supplier is at a low initial rank. This helps avoid a no-incentive*+no-performance
equilibrium. Second, less differentiation at the higher end of the spectrum also makes
sense. That is, in equilibrium, the OEM explicitly reduces a supplier's rank (i.e., a
demotion) regardless of current performance in order to prevent them from slacking off
in subsequent periods. These non-differentiation policies at the bottom and at the top
seem to be the key in promoting healthy supply relationships. They give the low
performer a chance to come back and prevent the high performer from slacking off.

2.4.2 Volume Contract

In a two-supplier volume contract, when the suppliers are risk averse, the winner-take-all
policy is not optimal anymore because it results in very uncertain production volumes.
With symmetric suppliers, production smoothing favors an allocation policy such that
each gets an equal share of the business, but the moral hazard problem due to hidden
effort requires incentive. Consequently our expectation of the optimal policy is that it
should fall somewhere in between, i.e., a compromise of a winner-take-all policy and an
equal-sharing policy.

Figure 2-7 illustrates the set of feasible equilibrium payoffs of the suppliers under the
dynamic volume-incentive contract for various fixed unit margins. In comparison to the
margin-reward contract, the feasible set takes on a different shape because of the equality
constraint on volume. The feasible set changes with the fixed unit margin associated with
each volume contract. When the unit margin is low, the feasible set is close to the origin;
when the unit margin is high, the feasible set is further away from the origin. These
feasible sets are each a subset of the feasible regions in the corresponding margin contract
(which is the square region bounded by u1 ,u2 e [6,29].
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Figure 2-7: Set of Equilibrium Payoffs vs. Margin

In the volume contract, the effort choice of a supplier depends on many factors: the
supplier's own rank level, the competitor's rank level, and the current volume allocation
(Figure 2-8). In Figure 2-8(a), we assume a fixed unit margin po = $10; in (b), we assume

a fixed unit margin po = $5.
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Note that in the margin contract, states 21-29 are in the low effort region, where it is too
expensive for the buyer to induce high effort input. In comparison, the buyer is able to
induce at least one supplier to input high effort in many of these states under a volume
contract with fixed unit margin of $10.

In comparison, states 12-20 are in the high effort region under a margin contract.
However, in a volume contract with fixed unit margin of $5, the suppliers do not
necessarily input high effort in equilibrium - in some cases only one supplier inputs high
effort, in others both are expected to slack off.

Compared to the margin contract, the supplier's equilibrium effort level exhibits a
common pattern within the feasible set: in states close to the origin, higher efforts are
more likely and in states further away from the origin, lower efforts are more prevalent.
This indeed is a direct result of the forced supplier competition in a volume contract.
Each supplier's effort choice depends much more on the relative ranks and current
volume splits, rather than on the absolute size of the incentive or rank.

The current volume allocation also affects the supplier's optimal effort choice. For
example, Figure 2-8 shows that supplier 2 has an incentive to (and is expected to) input
high effort much more frequently under the 20:80 split than the 50:50 split.

2.4.3 Comparison

To compare the margin contract with the volume contract, we need to establish some
criteria for comparison. One option is to see which contract offers a larger total profit for
the supply chain. To do that, we compare the optimal values achieved by the buyer when
each supplier expects a given expected payoff. For a given pair of ranks promised to the
two suppliers, the difference in the buyer's optimal value under a volume contract and
under a margin contract is shown in Table 2.2.

a) VV(ul,u 2) - VM(u 1,u2) (in $M) for a volume contract with fixed margin $5

12
13
14
15
16
17
18
19

12 13 14 15 16 17 18 19
-8.9

-2.1 2.6 1.2 -8.7
5.6 4.4 1.1 -6.0

5.6 4.5 1.9 -4.4 -9.2
-2.1 4.4 1.9 -1.6 -8.1
2.6 1.1 -4.4 -8.1
1.2 -6.0 -9.2

-8.9 -8.7



b) V'(uzu ) - V"(uu ) (in $M) FO£ Volume contract with fixed marg 0

14
15
16
17
18
19
20
21
22
23
24
25

14 15 16 17 18 19 20 21 22 23 24 25

-5.0
-2.1 5.3 5.9 6.2 -3.1

1.7 7.7 8.8 8.3 6.4 -0.3
2.0 8.6 9.9 9.8 8.3 7.8 -1.0

2.0 8.6 10.5 10.8 9.6 8.8 1.0
1.7 8.6 10.5 11.0 10.2 9.3 2.4
7.7 9.9 10.8 10.2 7.9 3.0 -0.3

-2.1 8.8 9.8 9.6 9.3 3.0 -0.1
5.3 8.3 8.3 8.8 2.4 -0.3
5.9 6.4 7.8 1.0
6.2 -0.3 -1.0

-5.0 -3.1

Table 2.2: Value Difference to the Buyer under Volume and Margin Contracts

Apparently a volume contract may increase or decrease the total value for the contractual
parties as opposed to a margin contract. For example, when the suppliers are at state
(18,20), a volume contract with fixed margin of $10 yields $61M for the buyer, much
higher than the $50M realized under the margin contract (a difference of $1 1M).
However, when the suppliers are at state (14,25), the volume contract yields $5M less
than the margin contract. We also observe that the volume contract works best when the
two suppliers have somewhat close ranks.

The lesson seems to be that if a buyer is able to negotiate the suppliers into lower ranks,
then a margin contract is better. Otherwise, the buyer would be better off using a volume
contract. In a margin contract, the suppliers will input high effort in the region of 7-20
and low effort in ranks above 20. A volume contract overcomes the incentive problem for
suppliers with higher ranks and is often able to induce at least one of them to input high
effort at these high ranks, thus leading to higher values to the buyer. In the low-rank
region, the buyer is able to induce high effort in the margin contract, whereas the volume
contract, due to lack of enough punishment power, can not always induce both suppliers
to invest high effort. Therefore, the margin contract tends to outperform the volume
contract in the low-rank region. In addition, if there is a big gap between the two
suppliers, it is better to use a margin contract and incentivize the suppliers independently,
rather than forcing them into a volume race.

Another reason that a volume contract can often achieve higher value is due to its ability
to allocate higher volume to the supplier that is more likely to input high effort. Because
the performance value is proportional to a supplier's business volume, it ought to benefit
the buyer to be able to increase the impact of the high performer by giving it more
business.

Further, when the comparison is based on the margin, i.e., when we compare a volume
contract and margin contract with the same minimum margin requirement, the volume
contract is clearly superior. For example, with a volume contract that promises a fixed



margin of $10, the buyer's least expected value is $22M, whereas the buyer's highest
possible long-run value is only $4M under a margin contract with a minimum margin
requirement of $10. This is because the buyer's ability to punish a supplier is
significantly impeded when it has to offer a minimum margin of $10 under a margin
contract. In contrast, a volume contract with a promised margin of $10 does a much
better job in aligning the incentives by adjusting the volume allocated to the suppliers.

Compared to the money-reward contract, the volume incentive carries much stronger
characteristics of relative performance evaluation (RPE). In Figure 2-9, in nearly all the
states, supplier 1 receives significantly more (the vertical axis is the difference between
the total expected pay under the two outcomes) when supplier 2 performs poorly than
when it performs well.
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Figure 2-9: Difference in Supplier l's Total Payoff under Performance Output
(H,L) and (H,H)

(with fixed unit margin $10 and volume split 50:50)

Under the optimal dynamic volume-incentive contract, the rank distribution forms a
bimodal pattern over time, clustering around the two corners of the feasible set. There is a
similar dichotomy pattern in the volume split. Figure 2-10 shows the volume and rank
distribution after 50 contract periods. The volume split peaks around a bit over 0.2 and
also around 0.8 (Figure 2-10a). The ranks peak around (16,24) and (24,16) (Figure 2-
10b). Therefore, for supplier 1, the reward (carrot) for performing well relative to
supplier 2 is the prospect of over time moving to a state with ranks around (24,16) and
volume split around 80:20. Likewise, the threat (stick) for poor performance is to end up
in a state with ranks around (16,24) and volume split close to 20:80. Also unique of the
volume contract is that one supplier's carrot is exactly the other's stick, reflecting the
relative performance evaluation (RPE) characteristic.

c

Q

g

-$1M-



(a) Volume (b) Ranks

rn ' U0 0

6 4
4

S2
oU1

u
U

o -- "
-- I --

0
0
I0

4)
U
4)

1.
U
U

0

Supplier l's Volume Share after 50 Periods " u2

Figure 2-10: State Distribution

2.5 Discussion

In summary, we examine two options of dynamic performance-based contracting
structures between a manufacturer and its suppliers. In particular, we develop a model
and a computational approach to analyze optimal history-dependent dynamic contracts
under a dual-sourcing strategy. We compare a volume-incentive contract with a margin-
incentive contract. In addition to the optimal contract structure, we also obtain the
equilibrium performance and payment trajectories of the suppliers under the optimal
contract. As a result, our model captures the evolutionary dynamics of the supplier
relationships under each type of contract.

Volume contracts may increase the total profit for the supply chain, partly due to its
ability to allocate higher volume to the supplier that is more likely to input high effort. In
addition, the margin contract fails to provide incentive when the suppliers have high
ranks (promised high expected payoffs). A volume contract overcomes this through
relative performance evaluation. However, the volume contract lacks the ability to punish
both suppliers at the same time. Therefore, a margin contract tends to outperform the
volume contract when the suppliers have low ranks (promised low expected payoffs). In
addition, if there is a big gap between the two suppliers, it is better to use a margin
contract and incentivize the suppliers independently, rather than forcing them into a
volume race. Compared to the money-reward contract, the optimal volume-incentive
contract carries stronger characteristics of relative performance evaluation (RPE).

Our results also indicate that the optimal contract is not always "fair". The structure of
the optimal contract suggests that leniency toward the low performer is sometimes
desirable. It may be optimal for the manufacturer to promise a supplier higher expected
future payoff regardless of their performance to avoid being trapped to a no
incentive+-+no performance equilibrium. Likewise, it may be more profitable in some
cases to reduce or cap a supplier's future payoff promises despite strong performance, in
order to prevent that supplier from reaching a trapping "lazy" state.

1 •l ..
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The optimal contracts derived in this chapter require the manufacturer to be able to fine-
tune the payments and promises to the suppliers at each possible state u. In practice this
may be very difficult, and clearly impossible if a continuous state space is assumed.
Therefore future research might productively consider incentive contract schemes that are
easier to implement. Consider the incentive system in the consulting firm example from
Section 2.1, which explicitly uses discrete levels and step-function bonuses. In a supply
contracting context, the manufacturer might explicitly restrict the possible states to a few
levels, say, bronze, silver, gold and platinum, each corresponding to some expected total
utility payoff. In each contract period, a supplier may receive a fixed amount of bonus
(margin/volume) or no bonus depending on her and her competitor's rank levels and
performances. In addition, the manufacturer can decide to move the supplier from one
rank level to another. Unlike the pay system for the consultant where only promotion is
allowed, we allow both promotion and demotion. Given such a contract, we can explore
1) whether or not a PPE exists; 2) what the optimal restricted contract prescribes; 3) how
the number of levels affects the efficiency of the contract.

For simplicity, we assume away the effect of scale economies when considering the
volume-incentive contract. However, in many industries, production volume has a direct
effect on cost. The supplier who is rewarded a higher volume often has a better chance of
achieving lower unit cost in the next period. If the performance measure is cost, then the
production function will depend on previous allocations and will not be memoryless.
The model formulated in this chapter does not address such a dependency although we
should be able to extend it to accommodate a one-period dependency easily. 10

Also implicit in our model is that performance is solely an indication of effort but not of
capability. The simplification allows us to focus on incentive issues in a dual or multiple-
sourcing strategy. In future research, we may explore how inferences of supplier
capabilities affect the optimal incentive scheme.

In this chapter we study margin and volume contracts as two distinct types of contract. It
will be of interest to examine the effectiveness of a mixed contract, where both margin
and volume incentives are employed. A mixed contract may offer potential for the most
effective incentive contract design. However, the complexity of computing the optimal
contract will increase dramatically. Resorting to a finite number of discrete levels may
help simplify the task.

0o Same applies to the case of decreasing returns to scale.





Chapter 3

Optimal Planning Quantities for Product Transition

3.1 Introduction

This research is motivated by collaborative work with a telecommunications equipment
manufacturer in the U.S. New products account for about one third of the company's
revenue stream. A typical product lifecycle ranges from 15 to 24 months. Since the
company carries very broad product lines, operations and purchasing managers
constantly find themselves making planning decisions for product transitions. In this
industry, lead-time for critical components is about 13 weeks, sometimes even longer.
The production lead-time is usually 5 weeks. As a result, planning decisions need to be
made as early as 4-6 months before the actual transition. A product transition starts when
the new product is released and ready to be shipped to customers. The end of a transition
is reached when the demand rate of the new product stabilizes and that of the old drops to
a negligible level. This can take a few weeks or a few months. Long lead-time makes
replenishment during the transition impossible or very expensive. Suppliers may double
the price for expediting since they need to take resources away from other customers and
have to pay their suppliers for expediting. The challenge for the purchasing organization
is to plan the right amount for both the new and old products. Such decision is further
complicated by the use of product substitution during the transition: The product manager
needs to decide when to offer substitution to customers, as well as to understand how
substitution affects the initial planning quantities. In cases when the company is already
carrying large inventories of the old product, the managers have to determine whether
and by how much to delay the new product release in order to avoid huge excess costs.
This research sets out to address the above key planning issues.

As mentioned in Chapter 1, introduction of a new product to the market often creates
high uncertainties in both the demand side and the supply side. The launch of a new
product involves many sequential steps and depends on many factors including
technology, production, supplies, etc. As a result, a new product release schedule often
slips. When this happens, the inventory of the old product may run out, creating a supply
gap. For example, one of our collaborating company's wireless access points (WAPs)
products named Blofeld, was being replaced by its next generation successor Blofeld2.
The transition was driven in part by an end-of-life (EOL) notice from a component
supplier for Blofeld. The old product, Blofeld, did not meet the RoHS standards (an
environmental legislation requirement that restricts the use of hazardous substance in
electronics, which would become effective after specific dates, varied by country and
region) and could not be sold after a certain date. Therefore, the company did not buy
many old products on the EOL notice, hoping that Blofeld2 could quickly take over the
demand. Unfortunately, the release of Blofeld2 was delayed, a supply gap became
inevitable. Since it was impossible to replenish Blofeld, the company was scrambling to



complete Blofeld2 and trying to get it out to the customers sooner in order to narrow the
supply gap.

To counteract such supply risks, operations managers tend to add large buffer inventories
for the old product. The downside of a generous supply cushion is that the company may
end up with excess inventories of the old product that eventually have to be written off.
In another example of a product transition (Sultan-+Sultan2) at the company we work
with, the old product Sultan was selling very well before the transition. Unwilling to risk
any supply gap and miss revenues, the managers decided to make large additional
purchases of the old product as buffer inventory. This time, it turned out that they bought
too much as the new Sultan2 project completed on schedule. Therefore, the real challenge
in making planning decisions for a product transition is to balance the risk of shortage
against the risk of excess. In this chapter we develop a dynamic programming model to
find the optimal planning quantities of the old and the new product, taking into
consideration uncertainties in demand and in the transition start date.

Risk of demand and supply mismatch is high during product transition. However, the fact
that the old and new products share a common customer pool offers opportunities to
mitigate the risk. Substitution is one way of coping with the volatile demand situation
during a product transition. When shortage of the old product occurs, the new product can
be used as a substitute. Substitution in the opposite direction is also possible: a customer
of the new product might take the old when the new is not available. But substitution
using the old for the new usually implies a temporary solution before the customer can be
soon served with the new product. For this reason, we only consider substitution using
the new for the old in this chapter. In comparison to the existing literature on
substitution, we view each substitution decision as a dynamic problem: it depends on the
current inventory levels of the old and new products and how much time is left for the
transition. Substitution provides risk pooling, but it adds complexity to the inventory
planning problem. Our model analyzes the optimal planning decisions, taking into
consideration such a dynamic substitution policy.

Lastly, we address a closely related problem that product and operations managers
constantly face. Sometimes companies can delay the release of the new product to
postpone the transition for some period of time. In the second transition example
mentioned above, the company delayed the release of Sultan2 in selected sales regions in
order to consume some of the excess inventory of the old product. The decision to delay a
new product release is primarily driven by the need to deplete excess inventory of the old
product to avoid large excess and obsolescence cost. However, the new product typically
has better margins and can in expectation bring in higher profit, thus such a delay can
also hurt the bottom line. Therefore, the decision of when to launch the new product is a
tradeoff of the two conflicting objectives.

The rest of this chapter is organized as follows: Section 3.2 is a review of the literature.
In Section 3.3, we describe the problems and assumptions. In Section 3.4, we present the
model with a deterministic transition start date (TSD). We extend the model to a case
with a stochastic transition start date in Section 3.5. In Section 3.6 we solve a problem of



determining the optimal transition delay, given the inventory level of the old product. In
the last section, we discuss the business implications and future research.

3.2 Literature Review

There has been much work done on last time buys that deals with the disposal of the old
generation product. Goyal and Giri (2001) provide a review of the literature on managing
deteriorating inventory. Rosenfield (1989, 1992) presents a marginal analysis model that
solves for the optimal number of units to keep for products that are slow-moving or
obsolescent when facing a one-time disposal opportunity. He assumes a Poisson demand
with constant rate and obtains results under various perishability assumptions. He later
shows that the optimal policy holds even if future disposal opportunities exist. Jain and
Silver (1994) develop a dynamic programming model that determines the optimal
ordering policy for a product with a random lifetime and stochastic but stationary
demand. Several other papers study continuous inventory replenishment models for
product with random lifetime including Krishnamoorthy and Varghese (1995), Kalpakam
and Sapna (1994), and Ravichandram (1995). Song and Zipkin (1996) study the
inventory control problem under deteriorating demand situation although in their model
the demand is modeled as discrete Markov states. Their analysis is constrained to
probabilistic transitions among low and high demand states. In comparison, we allow the
expected demand rate to change continuously.

Wilson and Norton (1989) study the optimal entry timing for a product line extension.
They show that the timing of the new product introduction affects the sales pattern of
both products. The tradeoff that they focus on is the market growth stimulated by the
introduction of the new product and the sales cannibalization of the old product due to the
product line extension. We choose to ignore the impact of timing of the new product
introduction on subsequent transitional demands as we are primarily interested in the
operational tradeoffs (excess inventory vs. improved margin from the new product) when
determining the optimal transition start date for a product transition.

The paper that examines a problem that is closest to ours is by Wilhelm and Xu (2002).
They consider a multi-period production planning and pricing problem in the context of
product upgrade when there are replenishment opportunities in each period. The decision
variables in their dynamic programming formulation include whether or not to start an
upgrade in that period, the production quantity for the product that is selling and the price
of that product. Their analysis is made under the assumption that only one product is
being sold at any point of time. In comparison, we look at a particular upgrade; allow
both the old and new generation products to be sold throughout the duration of the
transition period; and solve the optimal planning problem when there is no additional
replenishment opportunity due to the long lead-time.

There are two streams of literature on inventory models with substitutions. One focuses
on static substitutions in a single-period or repeated newsvendor problem. Parlar and
Goyal (1984), Pasternack and Drezner (1991), Bassok et al. (1999) consider a single-
period multiple-product inventory model with substitutions. Rao et al. (2002) study a



similar problem while incorporating the setup costs. Ignall and Veinott (1969) study
ordering decisions for the repeated newsvendor problem and show that myopic order-up-
to policy can be optimal. Bitran and Dasu (1992) model a multi-period production
planning problem with demand substitutions considering uncertainties in both supply and
demand. In the above mentioned substitution models, demand in each period is realized
all at once and substitutions are essentially through ex post allocation of the inventories.
Another stream of substitution literature couples the customers' choice model with the
newsvendor problem to derive optimal order quantities. Smith and Agrawal (2000)
consider a single-period multi-item stocking problem using demands modified by
customers' substitution effects. Mahajan and van Ryzin (2001) analyze the same problem
with dynamic substitution behaviors of the consumer, i.e., the customers' substitution
choice is dependent upon the current inventory levels. Although this is in spirit similar to
the substitution models developed in this research, we look at substitution decisions that
are initiated by the firm, instead of the customers. It is assumed that customers are always
willing to take a newer generation product as a substitute for an old product. However,
they may be entitled to a compensation for not receiving their first choice, which is
reflected in our model through the substitution cost.

3.3 Problem Description

In this chapter we develop models that solve the following three problems:
1. Given a deterministic transition start date, what are the optimal planning quantities

for the old and new product?
The decision variables are the optimal initial inventory positions for the old and new
products and whether or not to offer substitution to customers. As substitution is a
dynamic decision, we find conditions for substitution at any give time t during the
transition.

2. Given a stochastic transition start date, what are the optimal planning quantities for
the old and new product?
We assume the distribution of the transition start date (TSD) to be discrete and
bounded, i.e., the transition date can only take on discrete values and there is an upper
and lower bound. We compare the optimal solutions with the case of deterministic
transition date to explore the impact of uncertainties in transition date on optimal
planning quantities and the total expected profit.

3. Given an initial scheduled transition date and the initial inventory liability of the old
product, is it preferred to delay the transition? If so, by how much?
As in problem 2, an upper bound on the transition date is assumed. We develop two
alternative methods to obtain the optimal delay when facing excess inventories of the
old product.

We look at a finite time horizon, from the time when the planning decisions need to be
made to the end of the product transition (Figure 3-1). We define r to be the date when
transition starts and T to be the duration of the transition, i.e., the transition ends at r+T.
Lead-time is longer than T, thus we make the assumption that there is only one order
opportunity and it takes place at time 0. We refer to time 0 as the planning time.



We assume that demands of the new and old product are independent of each other. The
demand of each product is assumed to be Poisson, with rate varying over time. The
transition period is characterized by demand overlap of the new and old products. The
company is selling both products during this time as customers gradually switch over
from an older generation product to a new one. The expected demand rate of the old and
new products at any given time is assumed to be known. For the new product, the
expected demand rate before the transition starts is zero; it is non-decreasing during the
transition period and then stabilizes at a constant level. For the old product, the expected
demand rate before the transition starts is constant; it is non-increasing during the
transition period and then falls to a negligible level after the transition. Figure 3-1
illustrates a typical pattern of the expected demand rate.

Demand Rate Generation 2Demand RateI

0 r r+T Time
Planning Time

- Lead-time

Figure 3-1: Demand Pattern during Product Transition

During the transition, if the old product runs out, the new product can be used as a
substitute. However, the company incurs a cost on each substitution. The cost may be a
result of discount given to the customer that is offered a substitute, or simply a loss of
goodwill for giving a customer his/her second choice". Unmet demand is lost. Excess
inventory can only be salvaged after the transition.

The assumption of no salvaging before the end of the transition is appropriate in the high-
tech industry. Products are frequently salvaged through the brokerage market. Once a
company stops shipping a product due to product upgrade, it dumps the old products to a
broker who stocks the product and sells them to the secondary market. The manufacturer
can recoup about 10% of the original sale value of the product through this route.
Therefore, one obvious reason that companies rarely salvage an old product before the
transition starts is the fear of sales cannibalization (of both the old and new products).

" We contend that one can discount the new product to a price below the old product when using it as a
substitute. The implicit assumption in our model is that to a customer who desires the old product, the value
of the new is no greater than that of the old. This may not be true in all contexts.



Consequently, in this model, we make the assumption that inventory can only decrease
when a sale occurs and the option to salvage before the transition ends is excluded.

3.4 Model I (Deterministic Transition Start Date)

We start with a simple case when the new product release date (equivalently, the
transition start date) is deterministic. Sometimes a product transition is driven by outside
forces: A supplier is announcing end-of-life of a product or component; the government
is issuing new regulations which the old product does not comply. In these cases, the
company does not have much latitude in deciding when to start the transition, thus the
transition start date is considered deterministic and given.

A transition starts when the new generation product is released (time r) and ends when
the demand of the new product is stabilized (time r+T). We study a case when there is no
replenishment opportunity during the transition period. If the sum of the procurement
lead-time and the production lead-time is L periods, then any inventory and production
decisions regarding both the new and old products have to be made L periods ahead of
the transition start date r. As L is greater than T, replenishment orders placed after rwill
not be available until after the transition. Our objective is to find the optimal starting
inventory levels of the old and new products.

We use dynamic programming to formulate the problem as a discrete time model. Given
that demand is Poisson, we define the time unit such that the probability of more than one
demand arrival (old or new) during one time unit is negligible. The time unit might in
practice corresponds to a week, a day or an hour. We are aware that the problem can be
formulated in continuous time. However, we set it up using discrete time for the purpose
of getting insights through computation. Given the time unit, let )A(t) and l2 (t) be the
demand rates for the old and new products respectively. The probability that a demand of
the old product arrives during each time unit is )A(t); the probability that a demand of the
new product arrives is 22(t) and the probability that no demand arrives is 1-A(t) where
A(t)=2(t) + 22(t). Note that we assume A(t)<1. Without loss of generality, we assume a
sale (if any) always occurs at the beginning of each time unit. We also introduce the
following notations:

rl - selling price of the old product
r2 - selling price of the new product
p, - additional penalty for a shortage of the old product (in addition to the lost

revenue)
p2 - additional penalty for a shortage of the new product (in addition to the lost

revenue)
vl =rl+pl can be viewed as the total cost of a lost sale for the old product
v2 = r2+P2 can be viewed as the total cost of a lost sale for the new product
g - substitution cost
hi - holding cost for the old product per unit time
h2 - holding cost for the new product per unit time
sl - salvage value of the old product at the end of the transition
s2 - salvage value of the new product at the end of the transition



cl - unit cost of the old product
C2- unit cost of the new product
T- length of the transition period
6 - discount factor
xl - inventory level of the old product
x2 - inventory level of the new product
V(xj,x 2,t) - profit to go at time t given that the inventory levels are x, and x2

Note that the salvage value for the new product is used to incorporate value depreciation
of the new product. It does not necessarily imply that the company will salvage any left
over units of the new product. In other words, one can interpret this value as the unit cost
of producing (or procuring) the new product at the end of the transition.

3.4.1 Substitution Decision

We first note that if there were no demand interactions between the two products,
inventory planning could be simplified to two independent problems, with each being a
variation of the Newsvendor problem: The transition period [ r, +7TJ can be considered a
single selling-season. If the holding cost is taken to be a fixed value for all units sold and
there are no incremental revenue discounting, we simply find the quantities that satisfy
the newsboy ratio for the old and new products respectively.

However, as mentioned in Section 3.1, demand of the old and new generations of product
share a common customer pool. A benefit of such overlap is risk pooling through
substitution. We need to solve the dynamic substitution decision problem before we can
obtain the optimal starting quantities. In our problem, substitution is only relevant when
the old product inventory runs out. The substitution decision is made each time a demand
for the old product cannot be satisfied. It is a dynamic decision because it depends on the
current inventory level of the new product and how far we are into the transition period.
If we substitute, we avoid the lost sale of an old product and some holding cost of a new
product, but we may risk losing a sale of the new product if the new product inventory
runs out before the transition ends. Therefore, we need to weigh the immediate benefit of
substituting against the expected future loss from possible missed sales of the new.

At any time t during the transition, the profit-to-go is determined by the following
recursive equations:

V(x,,x 2 ,t) = (1- 2(t))[-h ,x1 - h2x 2 + •Y(x, I x2 , t + 1)]

+22(t)[-hx, - h2 (x 2 -)+r 2 + Y(xx 2 - 1,t +1)] if x> 2 1,X2 _ 1
+ 2 (t)[-h, (x, - 1)- h2x 2 + r + 6V(x -1 x2,t + 1)]

V(xl,O, t) = (1- A(t))[-h x, + 5Y(x 1 ,O, t + 1)]

+22(t)[-hx, - p 2 
+ Y(x1,, 't + 1)] if x, 2 1

+ A,(t)[-h, (x, - 1)+r, + V•(xl - 1,0,t + 1)]



V(O, x2 , t) = (1 - (t))[-h2x2 + V(O, x2,t + 1)]

+A2(t)[-h 2 (x 2 - 1)+ r2 + bV(0, X2 - 1,t + 1)]
if x2 >+ A2 (t) max[-h 2x2 - p 1 + SV(O, x2 , t + ),

- h2 (x 2 - 1)+ r - g + V(O, x - ,t+ 1)]
V(O,O,t) = (1- A(t))53V(0,0,t + 1)

+A22(t)[-p 2 + 6V(0,0,t + 1)] t=r,r+l, r+2,..., r+T-1 (3-1)

+ A1 (t)[-p, + SV(0,0, t + 1)]

We define the terminal value V(x,, x2,z + T) = SI•I + s2x 2, which implies that at the end
of the transition period, we recoup the salvage values of units left over. We use the DP
formulation to prove our theoretical results, as well as to compute the optimal solutions.

Moreover, we make the following assumptions so that the value function is well-behaved.
(i) vl>sl (3-2)
(ii) v2>S2 (3-3)
(iii) vl-g>s2 (3-4)
(iv) hjl-Ss> h2-g-1S2 (3-5)
(v) v2> vl-g (3-6)

(i) and (ii) simply mean that the value of selling the old (new) product is greater than its
salvage value. (iii) implies that the value of selling a new product as a substitute for the
old product is no less than the new product's salvage value. To interpret (iv), we consider
its equivalent form vi+hl-Ss, > vj-g+h2-8s2 . This excludes the uninteresting case that it
is optimal to use the new product to satisfy all demand, old or new. (v) rules out the
possibility that it is more profitable to sell the new product as substitute to customers of
the old product than to sell it to customers of the new product.

Since substitution decision is only relevant when the inventory of the old runs out, we can
easily derive from equation (3-1) that the optimal policy is to substitute if and only if

v, - g + h2 > [V(0,x 2 ,t + 1)- V(O,x 2 - 1,t + 1)] (3-7)

Condition (3-7) has a simple interpretation: We substitute when the value of the
substitution (the LHS term) is larger than the discounted future loss from having one less
unit of the new product (the RHS term).

Lemma 3.1
a(x 2, t) - V(O, x 2 , t + 1) - V(O, x 2 -1,t + 1) is non-increasing in x2.

Proof. See Appendix. o

By definition a(x 2, t) is the difference function with respect to x2 (slope of the discretized
value function). Lemma 3.1 implies that the value function V(O,x 2,t) is concave in x2 for



all t. That is, there is decreasing marginal return of having more inventory of the new
product. Lemma 3.1 and condition (3-7) lead to the optimality of a threshold policy.

Proposition 3.1 (Threshold Substitution Policy)
The optimal substitution policy is a time-varying threshold policy. There exists a
threshold level Y2 (t) such that at time t, when the old product runs out, it is optimal to
substitute for the old product using a new product if the inventory level of the new
product is above 2 (t) and no substitution should be allowed when it is below that level.

Mathematically, Y2 (t) is defined as the largest inventory level x2 such that

Sa(x2,t) _ v1 - g + h2. In the special case when 6a(l,t) < v1 - g + h2 , we define x2 (t) = 0.

It is easy to see that 4a(x2,t) < v - g + h2 for x 2 > x 2(t) and 6a(x2,t) > v1 - g + h2 for

x2 < xY2(t), which we use later in the proofs.

As a(x 2, t) is a function of t, 2 (t) should also vary with t. Intuitively, if it is optimal to
substitute at period t for a given inventory level x2, then we should substitute at period
t+1 for the same inventory level x2 since the chance of running out and missing a sale of
the new product should become smaller as time goes on. Such intuition seems to suggest
that Y2 (t) ought to decrease in t. Indeed, this can be true, but only for certain special
cases.

Proposition 3.2
With homogeneous Poisson demand, i.e., 2/ (t) = 2, and 22(t) =22 Vt e (r, r + T), the
substitution threshold Y2 (t) is non-increasing in t.

Proof. See Appendix. o

Homogeneous Poisson demand of the old and new products would imply that the
expected demand for the old product drops instantaneously to some lower level after the
new product is introduced and stays at that level throughout the transitional period.
Correspondingly, the expected demand for the new product changes from 0 to a constant
level after its release.

Figure 3-2 shows how the threshold changes over time under homogeneous Poisson
demand. Note that the time axis here is the time elapsed since the start of the transition.
The results indicate that if the demand is stationary, the threshold shall start high and may
stay at a constant level for a while before it starts dropping in a precipitating manner. As
we discussed earlier, further into the transition period, less time is left to sell a product,
hence the motivation for substitution becomes stronger. Although the stationary demand
scenario does not in general reflect the transitional demand, it offers insight on one
particular aspect of the optimal policy. Moreover, it describes the optimal substitution
policy for two substitutable products with stationary demands in general (not as a pair of
overlapping generations of products).



Parameter Values
T 500
6 0.998
vl 68
v2 50
g 3
hi 0.005
h2 0.005
s1 5
s2 18
A (t) = 0.08 Vte (0,T)

u0 100 200 300 400 500 22 (t) = 0.08 Vt e (0,T)
Time since Transition Starts

Figure 3-2: Substitution Threshold under Homogeneous Poisson Demand

Proposition 3.3
If the demand is non-homogeneous Poisson, and the holding cost and revenue
discounting are negligible, i.e., h=O and 6=1, then x2 (t) is non-increasing in t.

Proof. See Appendix. o

The substitution decision is a tradeoff of the immediate revenue against possible future
sales loss of the new product. The expected future loss depends on the probability of
running out of the new product and the time when it happens. The latter dependency
matters because it affects the holding cost associated with the sale and how much revenue
discounting shall be applied to the sale. When we ignore holding cost and revenue
discounting, such dependency vanishes. Therefore, the risk of substitution is only
affected by the probability of missing a future sale, which is non-increasing in t. As a
result, x2 (t) is non-increasing in t.

When the holding cost or revenue discounting is significant, Yx (t) is not monotonic any
more. Figure 3-3 (using parameter values and demand specified in Table 3.1) shows that
for the expected demand pattern given in (a), the threshold increases during the early
stage of the transition and decreases later during the transition. That is, substitution is
favored at the beginning and the end of the transition. Early on during the transition, sales
of the new product have not taken off, it is optimal to focus on meeting the old product
demand and use substitution when the inventory of the old product runs out. If we instead
hold the unit of new product and do not substitute, in expectation, it will take a long time
for it to be sold toward a demand of the new, thus high holding cost will be incurred. As
time goes on, the demand of the new product ramps up and the expected time to a sale of
the new product decreases. Therefore, the substitution threshold increases. Later during
the transition, the other dynamic starts dominating: Less and less time is left to sell
anything, so we prefer to substitute than to hold as time elapses.
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(b) Threshold

U 1oU zUU 300 400
Time since Transition Starts Time since Transition Starts

Figure 3-3: Substitution Threshold under Non-homogeneous Poisson Demand

500
3

68
50

0.005
s2 18 h2 0.005
3 0.998

j(t) = 0.16 /(1+ e0.025(t-25 0)) Vt (O, T) ;2 (t) = 0.16/(1+ e-0.02 25( -250)) Vt e (O, T)

Table 3.1: Parameter Values of the Example in Figure 3-3

We establish this formally in Proposition 3.4.

Proposition 3.4
If the total demand stays constant, Xi(t) is non-increasing in t and X2(t) is non-decreasing
in t, then X2 (t) is a unimodal function of t: It is increasing in t before a certain time ^ and
decreasing in t after t.

Proof. See Appendix. o

3.4.2 Optimal Initial Inventories

So far we have not accounted for the procurement and production costs since these can be
considered sunk costs in making the substitution decision. However, such costs need to
be taken into consideration when we solve for the optimal planning quantities. The
optimal starting inventory levels should maximize the total discounted expected net
profit, which is denoted by NV. Under the assumption of linear cost, the net profit is
defined as
NV(x,, x 2) = V(x,, x2,0)- cx, -cx (3-8)

(a) Demand



Using equation (3-1) we show that V(xl, x2, t) is jointly concave in xl and x2 if conditions
in equations (3-2)-(3-6) hold. It follows that NV will also be jointly concave in xl and x2.

Proposition 3.5
V(xy,x 2,t) is jointly concave in xl and x2. There exists a unique pair of (xl,x2) such that
V(x1,x 2, t) is maximized.

Proof. See Appendix. o

The implication of the joint concavity of V with respect to the inventory levels of both
products is twofold. First, there is decreasing marginal return to more inventories. That is,
the value of an additional unit of old product is higher (lower) when the old product
inventory is low (high); the value of an additional unit of the new product is higher
(lower) when the new product inventory is low (high). Second, there is decreasing
marginal value from substitution: The value of an additional unit of new product is higher
(lower) when the old product inventory is low (high); the value of an additional unit of
old product is higher (lower) when the new product inventory is low (high). Joint
concavity guarantees unique optimal value of (xi,x2), allowing us to use simple search
methods to find the optimal solution.

Results from several numerical examples we ran indicate that although the company's
total expected profit increases with substitution, the total optimal quantities (old and new)
can increase or decrease in comparison to the case of no substitutability. Therefore,
substitution does not necessarily reduce inventory, contrary to the intuition of many
operations managers. A similar result has been obtained in Pasternack and Drezner
(1991)'s single-period model. Intuitively, substitution allows the demand of both the old
and new product to be met by a unit of the new product inventory. Thus it may be
cheaper to stock more inventory of the new product, leading to an increased total optimal
inventory. Although the inventory cost might increase with substitution, the company is
more than compensated for through increased sales.

3.5 Model II (Stochastic Transition Start Date)

Launch of a new product involves many sequential steps including engineering
development and testing (hardware and software), material lineup, manufacturing, and
delivery. With inherent uncertainties in each step, the actual date that the new product is
released fluctuates, often dramatically. If the new product project slips and the inventory
of the old product is depleted, supply gaps can be created. As a result, much larger supply
cushion of the old product is needed compared to the case of deterministic transition start
date (TSD).

3.5.1 Optimal Planning Quantities under Stochastic TSD

Let r be the transition start time. r is stochastic, with p(r=k) representing the probability
that z-=k. We assume that r has an upper and a lower bound T and r respectively. Such an



assumption on one hand facilitates the computation of the optimal policy and on the other
reflects the reality in which the managers make decisions. At our collaborating company,
many complain that the new product release is notoriously unpredictable. Nonetheless,
nearly all point out that there are usually some kind of upper and lower bounds that they
could work with. Figure 3-4 sketches the time horizon we look at. Time 0 is when the
planning decisions are made and orders are placed. Note that T is probabilistically
distributed over a bounded range and the duration of the transition is still of fixed length
T. We assume that for all realizations of r, it is not possible to replenish before the
transition ends.

O ranges of r z+T

Figure 3-4: Planning Horizon

If we know what the transition date ris, it is straightforward to compute the total profit.
Let W(r, x,,x2, t) denote the profit-to-go from time t till the end of the transition (r+ T) for
a given r where x, and x2 are the inventory levels of the old and new product at time t.
Since the transition has not started before , 12(t)=0 for t E (0, r) . Therefore, for any
t E (0, r), we can calculate W(r, x1, x 2 , t) using:

W(r,x 1,x 2 ,t) = (1-,3)[-hx, + •W(r, X1,x 2 ,t + 1)]
+21 [-h,(x, -l)+r, + 6W(r,x -l,x, 2,t+l)]-h 2x 2  ifx1  1

W(r,O, x2,t) = (1 - A)o/W(r,0,x 2,t + 1)

+ 2 [-P, + 6W(r,0, x 2,t + 1)] - h2x2  (39)

We define the terminal value W(r, x,, x , , ) - V(x1 , x2,0), which can be calculated as in

Section 3.4. Thus W(r, x,, x2,O) is the expected profit from time 0 to r+T for a given
transition start dater. To obtain the expected profit for a stochastic transition start date,
we weigh each W(r, x,, x2,0) by the probability p(r). That is,

EW(x, ,x 2 ) = L p(r)W(r, x , x2 ,0). Finally, we subtract the procurement costs from W to

obtain the net profit NW (x,,x 2 ) = EW (x,, -cAx, - c 2x 2  (3-10)
Since V(x1 , x2 ) is jointly concave in x, and x2 , it is easy to derive that NW(x,,x 2 ) is also

jointly concave inx, and x2.

Proposition 3.6
NW(xl,x 2) is jointly concave in xl and x2. There exists a unique pair of (x*, x2) such that
NW(xL,x 2) is maximized.

Given the concavity of NW, the optimal pair of (x,, x2 ) can be easily obtained.



3.5.2 Optimal Planning Quantities with Existing Inventories

In previous analysis, we assume that there are no restrictions on the planning quantities.
However, in most cases, at the time of decision making (time 0 in Figure 3-4), companies
have existing inventories of the old product. The committed inventory could be in the
form of finished goods or unique components. These include inventories that the
company physically holds, inventories in transit, and inventories at the suppliers, the
distributors and other channel partners. Basically anything for which the supplier is liable
must be included. Although in practice different types of liabilities often imply different
sunk costs, we do not make such distinctions and treat all of the above as finished good
inventories.

Let NWc (xl, , x') be the net value when the inventory liability of the old product at

time 0 is x0. Because we assume that the option to salvage before the transition ends is
excluded (see Section 3.3), the objective function in (3-10) can be modified to:

SEW(xl,x 2) -c1 (x1 -x)-c 2x 2  if x 1 > X
NWc (xl 2, EW(x ,x2) otherwise (3-11)

Proposition 3.7 (Order-up-to Policy)
If the current inventory position at the time of planning is x0, then the optimal order

quantities are (x* - x0, x;) if x0 < x and (0, x2 (X))if > x where (x*, x)

maximizes NW(xi,x 2) as defined in equation (3-10). x2 (x) is the optimal quantity of the

new product given that the planning quantity for the old product is set to x'. In addition,
ifx0 > x*, then x2 10 ( X

Proof. See Appendix. o

The implications of Proposition 3.7 are simple: If the company is carrying much more
inventories of the old product than needed, the optimal policy is to place no additional
orders of the old product and plan the same or less for the new product. When there are
excess old product inventories, the need of substitution using the new products decreases,
thus requiring less new products.

3.5.3 Comparison to the Optimal Planning Decisions under Deterministic
TSD

Figures 3-5 and 3-6 illustrate how the total profit and optimal planning quantities change
with the variance of the transition start date. In the numerical example for these two
figures, we let 5=1 to exclude the complication from revenue discounting. Other
parameter values are shown in Table 3.2. We model the transition start date (TSD) as a
uniformly distributed variable and vary the lower and upper bounds to change the
variance while keeping the mean value fixed at 500.
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Figure 3-5: The Total Expected Profit vs. Uncertainties in TSD

T 500 vI 58
s1 5 v2 50
s2 18 g 4
c1 15 hi 0.005
C2 18 h2 0.005

S 0.08 Vt [0,r] 0 Vt e [0,r]

0.08 /(1+ e0.0(t - 250- r)) Vt e (r, r + T] 2( W 0.08/(1+ e -0.0'( -250- r) Vt e (-, z + T]

Table 3.2: Parameter Values of the Example in Figures 3-5, 3-6 and 3-7

Apparently the expected profit deteriorates as the uncertainty in TSD increases. The
option of dynamic substitution helps reduce such impact and substitution is most valued
when the transition date is lest predictable (the gap between the two curves in Figure 3-5
grows with the variance).

Compared to the optimal planning decision under deterministic TSD (shown in Figure 3-
6 as the data points with zero variance), the optimal quantity of the new product under
stochastic TSD is higher and increases in the uncertainty of the TSD. The optimal policy
prescribes higher ordering quantity of the new product because a new product can also be
used to satisfy demand of the old, thus creating the need for additional inventories to
cover the uncertainty in TSD.
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Figure 3-6: Optimal Quantities vs. Variance in TSD

The impact of transition date uncertainty on the optimal quantity of the old product is
ambiguous: In Figure 3-6, the optimal quantities of the old product is non-decreasing in
variance with the exception of the small dip at variance 9x104/12. The explanation for the
small dip is that we require the planning quantities to be integers and that there is
interdependency between the quantity choices for the old and new products. Had we
allowed non-integral numbers for planning quantities, we would have obtained a smooth
non-decreasing curve for the optimal quantities of the old product. However, we ran a
series of numerical examples and the results indicate that uncertainty in the TSD may
drive up as well as drive down the optimal quantity of the old product. We offer the
following interpretation: Uncertainties in the TSD create the need for a supply cushion. In
general, such a cushion is realized through increased quantities of both the new and old
products. However, when the cost of excess of the new product and the cost of
substitution are low enough, the need of a supply cushion due to uncertainty in the TSD
is accomplished solely through increased inventories of the new product. Since such a
cushion also helps to alleviate the demand risk (through substitution), it can cause a
reduction in the optimal quantity of the old product.

To see the profit impact from the optimal policy derived in this chapter, we compare it
with other simple alternatives. Figure 3-7 shows the profit realized using the Newsboy
quantities and naive substitution policies with parameter values shown in Table 3.2.
Clearly both alternative policies fare worse than the optimal policy and the gap between
the alternative policies and the optimal policy increases as the variation in the transition
start date increases.



800 -

750 -

700

2 650

o 600

550

500 -

450 -

400 -

---- Newsboy quantities and
always substitute policy \

- - Newsboy quantities and ""
no substitution

-Optimal

I I 1 I I I I I I

0 1 4 9 16 25 36 49 64 81

Variance of TSD (Units are 104/12)

Figure 3-7: Comparison with Newsboy Quantities and Naive Substitution Policies

3.6 Determine the Optimal TSD

In some cases, companies can delay the release of the new product to put off the
transition for some period of time. In the second transition example mentioned in the
introduction, the solution for the excess inventory of the old product was to delay the new
product release in selected regions. It worked well in this case and saved the company
tremendously on cost. The decision to delay a product transition when the new product is
ready is primarily driven by the intent to deplete excess inventory of the old product and
to avoid large excess and obsolescence cost. However, the new product typically has
better margins and can in expectation bring in higher profit, thus such delay can also hurt
the profits. Therefore, the optimal timing of a product upgrade is a tradeoff of the two
conflicting objectives.

Figure 3-8 illustrates the impact of different transition start dates. Delaying the transition
from r to z' increases the period of time that the old product is being sold and reduces the
selling time (or delays the sales) of the new product.
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Figure 3-8: Impact of Delaying the TSD from rto r'

Another consideration in this problem is the market share competition. Early market
entrants tend to grab larger market shares of the new product. As a result, an early TSD
can benefit the company through increased market share. We acknowledge that this is an
important factor to consider, especially in industries with intense competition. However,
we leave it out of the model to limit the scope of our analysis.

As in the previous section, we only consider existing inventory commitment of the old
product. At the time of planning, we look at the current inventory liability of the old
product and determine the optimal time to release the new product. We demonstrate two
alternative methods to model the tradeoff of margin difference and excess inventory,
depending on the assumptions on the remaining time horizon. Both allow us to compare
options of different transition start dates and choose an optimal one.

3.6.1 Fixed Value Method

We assume that the transition start date does not affect the remaining life time of the new
product; hence the product will bring in the same revenue stream after the transition for
all possible transition start dater. Therefore, we can treat the expected profit from future
sales of this product after the transition (mostly the new product) as a fixed value U,
discounted to the end of the transition. Referring to Figure 3-7, the expected value of this
product for the firm from time r+T on (or r'+T if the transition starts at r') is a
deterministic value U. Such an assumption can be problematic if there is a market share
game being played: When an early release of the new product represents higher gains in
market share, the revenue stream becomes very much dependent on the choice oft. If this
is the case, the method can be revised to accommodate such dependencies.

In the Fixed Value model, a larger value of r allows the firm to sell more of the old
product and avoid excess, at the price of delayed revenue realization from the new
product. The impact of such delay is captured by the discounting of expected future
values. Such a simplification allows us to decouple the planning for product transition
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from the planning for stable demand. r represents the scheduled release date and T

represents the latest dates for the new product release. Thus T - r is the maximum delay

allowed. Let NVF, (z-, x, x2, x) be the total expected profit for a given transition start date

z- when the existing inventory level of the old product at the planning time (time 0) is x0,
then we have:

I "I X if XO >•r+
NVFV (z, X1 , x2 xX ) (-x)-c 2 x 2 if1 1 (3-12)

2x' ) -W(r,x I,x 2, 0) + "i+TU - c2 2  otherwise

where W(r,x , x 2 ,0) is defined in equation (3-9).

Comparing this to equation (3-11), it is easy to see that for a givenr, the optimal solution
again is an order-up-to policy.

The optimal transition start date r is of a threshold pattern: for a given U, if inventory
liability x' is below a threshold x,, no delay is necessary. Otherwise, the optimal policy
prescribes a delay of the new product release that is increasing in the initial inventory of
the old product. Figure 3-9 illustrates the dependency of the optimal delay on x0 using
parameter values in Table 3.3. When the initial inventory of the old product is between 0
and 52, we order 31 units for the new product, order up to 52 for the old product, and
release the new product on the scheduled release date 450. For initial inventory between
52 and 56, no delay is necessary, and we do not place any order for the old product. In
addition, less new products should be ordered. For inventory above 56, a delay is
necessary and the optimal delay increases with the amount of initial inventory level.
Again no order is necessary for the old product and the number of units of new products
to purchase decreases with the old product inventory. Note that the threshold quantity for
delay (56) is slightly higher than 52, the ideal quantity for the old product when there is
no delay and no prior inventory commitment. This is because to obtain the latter, we need
to consider the variable cost for each unit of product. However, to obtain the optimal
delay, we treat the costs of committed inventory as sunk.

(a) Optimal Delay (b) Optimal Quantities
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Figure 3-9: Optimal Delay vs. Initial Inventory Liability of the Old Product
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T 500 vi 68
6 0.9997 v2 50
Cl 15 hi 0.005
c2 16 h2 0.005
_ 450 sj 5
z 950 s2 18
U 2500 g 3

S0.08 Vt e [0, r] 0 Vt e [0, r]
0.08 + e 02 250 ) t(, T] .08/((1 + e0.025(-250-r)) Vt e (r,, + T]

Table 3.3: Parameter Values for Figure 3-9.

3.6.2 Fixed Horizon Method

In this method, we pick a time H that satisfies H > T + T where - is the upper bound on
the transition start date r .H can signify certain fiscal target date such as end of a quarter
or end of a year, thus [0,H] represents a reasonable planning horizon (Figure 3-10).
Assuming that the choice of r does not affect what happens after time H, we only need to
solve the optimization problem for the time period [0, H]. That is, we calculate the
expected profit from the time of planning to time H and find the optimal quantities of xl
and x2, and the optimal choice of r. Compared to the Fixed Value method, here delaying
r reduces the remaining selling time of the new product. Therefore this model reflects
directly the tradeoffs of excess and margin difference, whereas in the Fixed Value
method, the impact of margin difference is captured by the dependencies of U on the new
product margins and the magnitude of the discount factorS.

O r+ T H

Figure 3-10: Fixed Time Horizon

Again we assume that the transition takes T time periods to finish. Therefore, from time 0
to time r, only the old product is sold; from r+T to H, only the new product is sold. We
assume no reorder possibilities in the period (r+T, H). At the end of H, units achieve
their respective salvage values.

We already showed in Section 3.5 how to obtain the total expected profit from the time of
planning to the end of the transition (time 0 to r+T). Now we need to add the profit
accrued during period [tr+T, H]. Let U(x 2, t) be the expected profit from time t to H
where t E [r + T, H], we use the following recursive equations to compute U.



U(x 2,H)= s2X2

U(x2 t) = (1 - 2 )[-h2x2 + 2U(x, t + 1)]
+ A2[-h 2 (x2  - 1) +r2 + U(x 2 - 1,t + 1)] if x 2  1

U(O, t) = (1- A2 )bU(O,t + 1)]
(3-13)

+ 2 [-P2 + TJ(0, t + 1)]

Next following equation (3-1) and using V(x,, x 2 ,r + T) = sAx1 + U(x 2,r + T) as the

terminal value for V (instead of six + s 2x2 ), we can calculate the expected profit for the

period [r,H] as a function of X,x2 and z. Finally applying the recursion in equation (3-9),
we obtain the total expected value W'(r, x,,x 2 ,0 ) for the entire planning horizon [0,H].
Since different terminal value of V is used in the computation, we denote the expected
value using W'(r, x,, x2,0) to differentiate from the original definition of W(r, x,, x2 ,O).

Note that for a givenr, the objective function

(W'(r,x1 ,x 2,O)- c, (x I -x)- X2 if 1 (3-14) x
-NVF(r, xI,,x2)= (3-14)

1W' (r, x°, x2,0) - c2x2  otherwise

is similar to that in equation (3-11). It is clear from Proposition 3.7 that the order-up-to
policy is optimal. We can then search for the optimal values of xl, x2 and v.

Figure 3-11 shows results from a numerical example (parameter values shown in Table
3.4). We observe that the Fixed Horizon method yields a similar policy for the optimal
delay: If inventory liability x0 < l, no delay is necessary. Otherwise, the optimal policy
prescribes a delay of the new product release which is increasing in the amount of initial
inventory of the old product.

(a) Optimal Delay (b) Optimal Quantities
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Figure 3-11: Optimal Delay and Quantities vs. Initial Inventory Liability of the Old
Product

- - old product
new product



T 200 vi 68
6 0.998 v2 50
ci 15 hi 0.0125
c2 16 h2 0.0125
V 100 s1 5

z 390 s2 10
H 600 g 3

0.2 Vt e [0,] 0 Vt e [0, ]
A, (t) = 0.2 /(1 + e0.O25 (t-100-)) Vt (, + T] 2 (t) = 0.2/(1 + e-0.0 25( t - 100- r)) Vt + T]

0 Vt (r + T,H] 0.20 Vt (r +T,H]

Table 3.4: Parameter Values for Figure 3-11.

The Fixed Horizon model can be computationally intensive. We use a heuristic procedure
to simplify the computation. Suppose the planned release date is _ and the latest possible

release date is T. Given the current inventory position of the old product (x ), we need to
determine whether and by how much to delay the transition. Using the methods
developed in Section 3.5, we can easily obtain the optimal Xl and x2 for a given r and x0 .
Let x (, xlo) denote the optimal x;. If x (_, xl) > xO, no delay is necessary as the optimal
quantity of the old product is higher than the initial inventory commitment. In this case
the new product shall be released at the earliest possible time, which is r. We denote the

threshold above which delay is preferred as 3, which satisfies the fixed point

condition x (_E, ) = , . To compute the value of the threshold, we simply drop the term

c, (x, - x4) (as x, (1r, 3I) = x,) in equation (3-14) and let r take the value of its lower

bound i . In other words, the threshold 5, is the xl that maximizes W'(r, x, x 2 ,0) - c2x 2.
If xo > 5,, delay is necessary. To obtain the optimal length of delay, we first find an
upper bound on the delay. This could be T or a tighter bound. We then perform binary
search to find the smallestr such that x, (r, x) = x° , which is the optimal delay.

3.7 Summary

In this chapter we solve a planning problem for product upgrades when there is no
replenishment opportunity during the transition period and we allow product
substitutions. We show that the optimal substitution decision is a time-varying threshold
policy. We prove that the substitution threshold 72 (t) is non-increasing in time under two
special cases: a) Demand is homogeneous Poisson; b) Demand is non-homogeneous
Poisson, but the holding cost and revenue discounting are negligible. Under more general
conditions, x2 (t) is shown to be unimodal in t. That is, x2 (t) is increasing in t before a

certain time ? and is decreasing in t after t'.



We show that under both deterministic and stochastic transition start date, the total
discounted net profit is a jointly concave function of the planning quantities of the old
and new product. This implies that there are decreasing marginal returns to each
additional unit of product and decreasing marginal rate of returns from substitution. We
can then use simple search methods to find the optimal planning quantities under
stochastic transition date and non-stationary demand. For a given initial inventory
liability of the old product, the optimal policy is an order-up-to policy. Our result shows
that variability in transition date adversely affects the company's profit and increases the
optimal planning quantity of the new product. Substitution helps reduce such impact and
the value of substitution increases in the variability of the transition start date.

Further, we determine the optimal transition delay given the inventory of old product.
Both the Fixed Value method and the Fixed Horizon method yield similar policy for the
optimal delay: If inventory liability is below a threshold, no delay is optimal. Otherwise,
the optimal policy prescribes a delay of the new product release which is increasing in the
amount of initial inventory liability.

Although the model developed in this chapter is motivated by examples in a particular
industry, it can easily find applications in many other industries such as PCs and
consumer electronics. The digital camera industry, for example, is typified by continuous
introductions of new models driven by technology and competition. Canon, offers a new
SLR model every 18 months. At Sony, a typical camera or camcorder model has a life
cycle of 12 months or less. Its accessory life cycle is even shorter. At one camera
company (Waltson and Olivia 2005), lack of appropriate planning costs the company
$19.5 million during one camera model upgrade! Clearly there is potential for
improvement using techniques developed in this chapter.

Limitations of our model lie in its assumptions. One of the key assumptions in our model
is that there is no replenishment opportunity during the transition. As mentioned earlier,
certain product upgrades may take a much longer time period. As a result, replenishment
during the transition is allowed. We would like to explore in future research the optimal
continuous-replenishment policy in these cases.

Also implicit in our model is that the price of the products stays constant throughout the
transition. This is not always the case in practice. In fact, pricing is an important tool for
demand management. During product transitions, product managers often can manipulate
the price gap of the two products in order to push a particular product. For example, they
sometimes lower the price of an old product to bleed off old product inventories or lower
the price of the new product to speed up the transition process. In the next chapter, we
present a dynamic pricing model that addresses such decisions during a product
transition.





Chapter 4

Pricing Decisions during Inter-generational Product
Transition

4.1 Introduction

In high-tech industries, a newer generation product replaces an old product periodically.
In many cases, such a transition does not occur instantaneously but rather involves a
transitional period during which the company sells both products simultaneously. Such a
time period involves high uncertainty and high risk.

This research is motivated by cases of product transition in the same telecommunications
equipment company mentioned in Chapter 3. This industry is characterized by frequent
technology upgrades and long lead-times. Introduction of a new product to the market
tends to create high uncertainties in demand. Long lead-time exacerbates the problem of
demand forecasting because the managers needs to predict demand 18 weeks ahead.
Consequently, the company often runs out of the product that customers want while
having excess of the other. Because replenishment during the transition is not possible
(again due to the long lead-time), the managers are left with very limited options. We
study in Chapter 3 the option of product substitution: When one product is depleted, a
company may offer the other one as a substitute. Pricing is another option: The managers
can manipulate the prices of the two products to mitigate the risk of demand and supply
mismatch. For example, if sales of the old product are sluggish during the transition, the
management could put in a promotion and discount it. On the other hand, if the new
product does not sell well, managers may consider increasing the price of the old product
to make the new appear more attractive.

In practice, companies often adjust price during a product transition for two reasons -
excess or shortage in inventory, and a change in their belief about demand. This chapter
addresses the first case only. However, it is important to be aware that demand learning
also has an important role in pricing decisions. When a company introduces a new
product, often it is not clear what the demands of the new and old products will be. The
company might underestimate or overestimate the market's acceptance of the new
product. Being able to change price dynamically then serves as leverage against the lack
of market knowledge. When the managers learn more about the demand as the transition
progresses, they can change the price to reflect such updated demand belief.

In this chapter, we study the optimal pricing problem in the following context. We
consider a finite time horizon - from the time a new product is introduced to a
deterministic time after the transition finishes. That is, we consider a fixed interval of
time starting from the launch of the new product. The choice of the interval length is
made such that by the end of this time horizon, the demand for the old product has



dropped to a negligible level. At the beginning of the planning horizon, we are given the
initial inventories of the old and new products. There is no option to reorder. During such
a finite time horizon, the demand of the products changes over time - the new phases in
while the old phases out. We decide the optimal price as a function of time and current
inventories. Due to the close relationship of the two products, any pricing decision
regarding one particular product will affect the demand of both products. For simplicity,
we restrict the price of the new product to be constant and study the optimal pricing
problem of the old product.

4.2 Literature Review

We do not intend to provide a comprehensive review of the vast amount of existing
pricing literature. Rather, we consider papers that are directly related to our work. That
is, we focus on dynamic pricing models with limited supply and no replenishment
opportunities during the planning horizon.

The majority of these models focuses on a single product with stationary demand
functions, i.e., demand is a function of price only. Gallego and van Ryzin (1994) consider
a single-product dynamic pricing problem when there is no option for reordering. They
study a base case of stationary demand function and then extend it to a case when
demand's dependence on price and time is multiplicatively separable. Bitran and
Mondschein (1997, 1993) study the pricing problem of perishable products in retail. They
consider both continuous time model and periodic pricing model. They show that the
percentage of price reduction in a retail store should increase over time. Further, if the
number of reviews is appropriate, the periodic pricing policy loses little compared to the
optimal continuous pricing solution. Monahan, Petruzzi and Zhao (2004) combine the
dynamic pricing problem with the optimal stocking problem. They derive the optimal
pricing and stocking solutions for a time-invariant exponential demand function.

Zhao and Zheng (2000) address non-homogeneous demand and derive certain structural
properties for the optimal pricing solution that hold in general. For example, they show
that the optimal price decreases with inventory and identify a condition under which the
optimal price decreases over time for a given inventory level.

Because it is difficult to obtain closed-form pricing solutions in most cases, fixed-price
(or equivalently, constant-price) heuristic is frequently used to approximate the optimal
solution. It is shown to be asymptotically optimal with stationary demand function when
there is infinite supply of inventory. Gallego and van Ryzin (1994), and later Bitran and
Caldentey (2003) derive the performance bound of the fixed-price heuristic using similar
methods. An extension of the fixed-price heuristic is the rolling-horizon approximation.
That is, in each period, the optimal fixed-price for the remaining periods is applied. It is a
myopic policy in that the decision maker determines the price assuming no future
changes. Another heuristic widely studied is the deterministic approximation - apply the
optimal prices solved for a deterministic problem to a problem with stochastic demand.
Bitran and Caldentey (2003) derive the performance bound for the deterministic solution.



The difficulty for such deterministic approximation is that, for non-stationary demand,
the deterministic approximation itself can be difficult to compute.

Since it is not always feasible for firms to change price continuously, a two-price policy
is often studied. Feng and Gallego (1995) consider a case when a firm is restricted to two
discrete prices and needs to decide the optimal time to switch from one price to the other.
They show that a threshold policy is optimal - switch the price as soon as the time-to-go
falls below or above a time threshold. Gallego and van Ryzin (1994) show that when
restricted to a set of discrete prices, a similar stopping-time heuristic can be applied and
such a heuristic is asymptotically optimal. Another type of two-price policy is when the
time to switch is fixed and the decision is what price to switch to (Lazear 1986). In this
chapter, we study a two-price policy where both the price and the time to switch are
decision variables.

With multiple products, an appropriate demand model is necessary. Existing literature
offers three ways to model demands. The Multinomial Logit (MNL) model is first
proposed by Luce (1959). Under the MNL model, the customer's purchasing probability

p, depends on his/her utility from each product ui through pi = k Another class of
leu
k

choice model incorporates the customer's decision more explicitly. The customer assigns
a utility to each product and then solves a utility maximization problem under a given
budget (Hauser and Urban 1986, Bitran, Caldentey and Vial 2004). In the reservation
price model (Awad, Bitran and Mondschein 2000), a customer assigns a maximum
amount of money he/she is willing to pay for each product (reservation price). He/She
then decides among those that have a price lower than its corresponding reservation price
which one to buy based on either the rank of preference or the rank of surplus.

Another stream of demand models for multiple products is the diffusion models. Fisher
and Pry (1971) propose a technological substitution models in which the ratio of the
fractional market share of the new and old technology follows an exponential growth
pattern. Norton and Bass (1987) provide a diffusion-theory-based demand model for
successive generations of products, extending from the seminal Bass diffusion model
(1969). Compared to the choice models, these models have been widely tested with
empirical data. Krishnan, Bass and Jain (1999) has applied the basic Bass diffusion
model to a single-product pricing problem. Very few existing works address the dynamic
pricing problem using the inter-generational diffusion models. One exception is Bayus
(1992). He studies a pricing problem in the context of inter-generational product
transition - the problem we are interested in. He uses the original Bass diffusion model
for the new generation product demand and generates the old product demand by holding
the total demand fixed. The difficulty for using the diffusion models is the analytical
tractability. It is hard to obtain closed-form or structurally meaningful results, especially
with two generations of products.

Most dynamic pricing models for multiple products use one of the three choice models,
or a variation of them. Awad, Bitran and Mondschein (2000) study pricing policies for a



family of perishable products using the reservation price choice model. They propose
several pricing heuristics to approximate the optimal solution. Bitran, Caldentey and Vial
(2004) study a very similar problem. They combine the MNL model with a utility
maximization model to describe the demand for substitutable products. They too resort to
heuristic algorithms to approximate the optimal solution.

Gallego and van Ryzin (1997) study the dynamic pricing problem for multiple products
in the context of a network flow problem. Their model formulation is generic enough to
include a large range of applications. However, they do not model the demand
relationships among the products but instead assumed a generic set of demand functions.
They find the solution for a deterministic and time invariant problem and use heuristic
policies to approximate the optimal policy for the stochastic problem. Bitran and
Caldentey (2003) also give a generic formulation of the multiple-product problem and
provide a general optimality condition. In general, these generic formulations can say
very little about the optimal policy.

Kornish (2001) studies the pricing problem for a monopolist with frequent product
upgrades. She assumes that the monopolist sells only the latest generation of product in
any period. In contrast, we consider the pricing problem within the transitional period
where a company sells two generations of products simultaneously.

More recently, Xu and Hopp (2004) consider a pricing problem for a single product with
one or multiple retailers. Assuming that the demand process follows a geometric
Brownian motion, they are able to obtain a closed-form solution for the monopoly case.
When there are multiple retailers, they derive the equilibrium pricing policies for a
retailer. In contrast, we study the centralized pricing decision, i.e., a company that sells
multiple products and thus has to maximize the total expected profit from the two
products.

4.3 Demand Model

We adopt the Multinomial Logit (MNL) consumer choice model to describe the demand
functions of the two products. Assume that a customer's utility of purchasing product i
(i=1 refers to the old product and i=2 refers to the new product) is uQ(ri,t) = a,(t) - r
where ri is the selling price of product i and a,.(t) is the time-varying attribute(s) that
affects the customer's utility. The MNL model predicts the probability that a customer

ai (t)-r,

purchases product i to be p,(r,t) = e(+)-r,e a +e(t)-r ea (t)-rj

Assumption 4.1
For the ease of exposition, we assume that the total demand of the two products is a
homogeneous Poisson process with rate A,.

Hence the demands of the old and new products are each a Poisson process with time-
varying rates



i (r, t) = Api (r, t) = a, +eaJ(or ir =1,2 (4-1)
e +e

In general, the MNL model allows for the probability of no purchase. Since we restrict
the total demand rate to be a constant, the no-purchase event also has a constant rate. The
analysis in this chapter depends on this implicit assumption. In future research, we will
consider the case when the total demand of the new and old products is non-stationary,
but price-dependent. A MNL model with explicit non-purchase utility uo(r, t) can be

incorporated in that case.

Assumption 4.2
Without loss of generality, we can assume that a1 (t) is non-increasing in t and a2 (t) is
non-decreasing in t.

Such a demand model is simple, intuitive and symmetric with respect to the two products.
Because the time factor and the price factor are separable within each exponent term, the
analysis is tractable. In addition, it generates a logistic demand pattern that is often
observed in practice. For example, when a, (t) = 4.5 - 0.1t, a2 (t) = 0.1t , r, = 35, r2 = 40

and A0 = 0.1, the above demand model generates a demand pattern shown in Figure 4-1.

0.1

0.08

0.06

E 0.04

0.02

0

-------------

----- old product
-- - new product

0 20 40 60 80

0 20 40 60 80 100
Time Since Transition Starts

Figure 4-1: Demand Pattern under Equation (4-1)

To simplify the problem, we assume that the price of the new product is constant. During
an interview, one product manager pointed out that the price of the new product is pretty
much set by the market. Often what they have control over is the price of the old product.
Therefore, we assume in the current model that the price of the new product is
exogenously given and constant.

Assumption 4.3
The price of the new product r2 is pre-determined and stays constant during the
transitional period.



From equation (4-1), we obtain the following derivatives, which we will use later in
finding the optimal solutions of the pricing problem.

Br, Br,' = - 2 op0 p 2 and '(=,t) 2op 1p2  (4-2)
a2O1(r 1,t) a (rlt)

2  oPIP2 - P) and -= 2 , - P2) (4-3)
22 2 oP1P2(PP2

4.4 Optimal Dynamic Prices

Given that the demands are Poisson, we define the time unit such that the probability of
more than one arrival in each time unit is zero. Within each time unit t,

Prob( a demand of old occurs ) = AZ (,r, t)

Prob( a demand of new occurs )= 2 (rl,t)

Prob ( no demand occurs) = 1-A

Let (V (x1 , x2) be the value-to-go at the beginning of period t if the company has xI units of
old products and x2 units of new products.

Additional notations include:

p, - penalty for a lost sale (in addition to revenue loss)

si - unit salvage value of a product at the end of the planning horizon T

V, (x, ,x 2) can be defined recursively:

V, (x,,x2) = max h, (r1,x,, x 2)

where
h, (rl, , ,X2) x (rx , (rI V+ , (X, - 1, x2))

+ 22 (r, t)(r2 + V+, (xx, x2 - 1)) (4-4)
* (1 - Ao)VIl (Xl, x2

h, (r, ,0, x2 =• (r ,t)(-PI + V,,, (O, x2))
+ 22 (r, t)(r 2 + V+t1 (01, x2 - 1)) (4-5)

+ (1- 2o)V,+, (0, x 2)



h, (r,,x 1 ,0) - A (r, t)(r + V, • (x, - 1,0))

+ A2 (rY, t)(-p 2 + V+, (x, ,0)) (4-6)
+ (1- 2o)Vt+, (x ,0)

h, (r1 ,0,0) - A, (r,, t)(-p, + V,+, (0,0)) (4-7)

+ 2 (r1 , t)(-p 2 + V+, (0,0)) + (1 - A0)V,, (0,0)

The terminal value is the salvage value of products left over after T:

VT+1 (XI, 2) =: Six 1 + S2X 2

Implicitly, we assume that even if a company runs out of a product, there is some base
demand for that product that depends on the list price. For example, when x, = 0, the

demand rate A, (r,, t) is not necessarily zero (unless the price is so high that demand

approaches zero), indicating that there is still customer need for the products, which
allows us to incorporate the impact of lost sales on expected profit.

The problem is to find the optimal r, for each (t, x1 , x 2 ) combination. That is, we would

like to know the optimal price at any time t for any given inventory level(x,,x 2 ). We
adopt a marginal analysis approach that is similar to Bitran and Mondschein (1997,1993).
Consider the impact of a price increase dr, for the old product during a single period t.

The benefit includes revenue increase from price increase of the old product A1 (r,, t) -dr1

and sales increase of the new product r2  • ( t) -dry. The loss is from sales decrease of
ar,

the old product r, - dr, .
Br,

Equating the marginal gains to the marginal loss yields

ar, Br,

With multiple periods, we need to consider the opportunity to sell a unit in the future,
which leads to the revised marginal condition

d;2 (r, t)
A, (r,t) + a 1[r 2 - (Vt+, (X,X2 VI(XIX2 -V (, 1))

ar,

BA, (rl, t)
+ [r, - (Vt+,(x,,x 2)- V +1 (x1 -1, X2))] = 0

One can interpret the term (V,+l(x 1,x 2) - VI (X1 ,X2 - 1)) as following: The sales increase

of the new product resulting from price increase of the old product is offset by the
prospect to sell it in the future. If the company does not sell a unit of new product this



period, it will end up with V,,, (x , ,x 2 ) instead of r2 + VA, (x,, x2 - 1). The last term looks
at the sales change in the old product.

From Assumption 4.1, we know that 0A2 (ri, t) = -•A2 (r1 , t) . Thus we can simplify the
above equation to

(rt) + a (r, [rl - r2 - VI+ (XI, x 2 -1) + V,, (x, -1,x 2 )] = 0 (4-8)

Equation (4-8) is basically the first order condition of optimality for the value-to-go
objective function h,(r, x, x2) when x,,x 2 > 1. h, (r,x, x2) as defined in equations (4-4)-
(4-7) is not necessarily concave in price. However, we establish quasi-concavity of the
value function for the demand given in equation (4-1).

Proposition 4.1
h,(r',x,,x2) is quasi-concave in r, Vx, 2 O,x2 > 0,t E [O,T].

Proof. See Appendix. o

Under the differentiability assumption, the Karush, Kuhn and Tucker (KKT) optimality
condition for concave function can be extended to a quasi-concave objective function
(Avriel et al. 1988).

Similar analysis can be done for the cases when one of the products runs out. Again
referring back to equations (4-5)-(4-7), A,(r,,t) is the non-censored demand rate.
Therefore, it is not necessarily zero when the inventory runs out. For consistency, we also
assume that such a base demand is affected by the list price of the products even though
the company may currently be out of a particular product.

If x2 = 0, the first order condition becomes

A (r, t) + rt) [r + P2 - V1 +l(X,O)I+ V1+,(X, --1,0)] = 0 (4-9)

Again we establish quasi-concavity by showing that the second order derivative at the
zero-slope point is negative.

If x, = 0, the first order derivative is 1r _ (t) [-r2 - P1 + VJ, (0, x2)- Vt+, (, x 2 - 1)] > 0

Therefore, the optimal price in this case is always the maximum possible price.
Essentially when the old product is depleted, the company ought to maximize revenues
from the new product. Since in this model the price of the new product is constant,
maximizing revenue is equivalent to maximizing demand. Therefore, it is optimal to price
the old product as high as possible so as to make the new appear to be a good deal. This
is arguably an artificial result due to the restrictions in this model. Nevertheless, it



suggests that when the inventory of the old product is running low, a company should
consider a higher price for it, or remove any discount on the old product. The danger of
setting a low price for the old product in this case is two-fold. On one hand, we are losing
the old product margin without benefiting much from increased demand for the old (as
the inventory is low); on the other, we are making the new product appear more
expensive.

Definition 4.1
Define the optimal price of the old product at time t for a given inventory level (x,, x 2 ) to
be r,*(x,, x2 ) - arg max h, (r, x,, x 2 )

ri

Substituting equations (4-2) and (4-3) into equation (4-8) yields
1-p 2(,)[~1 2 - (Vt 1 (x,,x 2 -1)-V (x, -( ,x 2))] = 0 (4-8a)

Solving equation (4-8a) for r,, we obtain the optimal price

r,* (x,,x) = 2 + V,+, (x,,x 2 - 1)- V+1(x - 1, X2)

+ 1 + LambertW(eal (t)-a2 (t)-(v,' ' (X1,X2
' -1)-V,+1 (XI-1~x2))-1)

where the LambertW function solves the equation we" = x for w as a function of x.

Clearly the optimal price of the old product depends on the price of the new product. The
last term in the equation is non-negative. As t increases, this term can become very small
and negligible. Intuitively, the optimal price is set such that the company is close to being
indifferent between selling an old and selling a new. The term r2 + Vt+, (xI, x 2 -1) is the

expected value from selling a new product at time t. Vt+y(x, -1, x2 ) is the future value

after selling an old product at time t. The term '+1' comes from the fact that a unit change
in the price of the old product results in a unit change in the revenue of an old product.

Substituting equation (4-8a) into h, (r ,x, x2), which is defined in equations (4-4)-(4-7),

we obtain the optimal solution for the dynamic pricing problem.

Proposition 4.2
V, ( 1 , x2) = jV1 (x1 , x2)

+ o, [rt*(x,, x 2)- - (V,+ (x,,x 2 )- V,+1(xI - 1,x2))] (4-10)

Vx, 1, x,2 Ž 0,t E [0, T]

where the optimal price is given by
r,*(x,,x2) = r + 1 + (V+1 (x,x 2 -1)-V+1 (x - 1,x2)) (4-11)

(4-11)
+ LambertW(eal (t)-a2 (t)-(V,+ (xx2 -')-V,+1 (X -'••))-)

and



r,* (x,,0) = -P 2 ++ (V+ (x , ,0) - V,+ (x1 - 1,0)) (4-12)
+ LambertW(eal (t)-a2 (t)-(V,+, (x, 0)-V,+, (XI -1,0))-1)

If x, = 0, the optimal price of the old product is the highest feasible price r,*(0, x2) =
and

V,(0, x 2) = Vt+,1(0, x2)- 2
0 P + 2p 2 (F , t)[r2 + - (V,, (0, x 2) - V, (0, x 2 -1)) Vx 2  0

In addition, V,+l(x,,x2 ) = sx, + s 2x2.

Proof. See Appendix. o

General Structural Properties of the Optimal Price

Proposition 4.3

r, (x,,x 2)decreases in x, and increases in x2.

Proof.
Rewrite equation (4-8a) as:

1
V+1(x1,, x2 - - +1(x-1,x2) = r -r 2  (4-8b)

P2 (r, ,t)
For a given t, the RHS is increasing in r,. We show in Lemma 4.1 (see Appendix) that the
LHS is decreasing in x, and increasing in x2. As a result, optimal price of the old product
decreases in x, and increases inx 2 .0

As the inventory of the old product increases, a company should decrease the price of the
old product. This fits naturally to our intuition. What happens when the inventory of the
new product increases? The relative attractiveness of the new product depends on the

ea2(t)r2 1
price difference of the two products as p 2(r,t) = e,(t)r• •2 + eaor 1 + eal(t-ra(t)(r

- ) I

r2 is a constant, thus in order to sell more new products, it is necessary to make the old
less attractive by jacking up the price. Although the result is obtained under these specific
assumptions made in this model, it offers insight for the general case in practice. When
facing potential excess of the new product, either due to bad planning or overly optimistic
estimate of the new product demand, it makes sense for a company to remove any current
promotion on the old product.

The next interesting question is how the optimal price changes with time. To isolate the
impact of inventory, we consider the optimal price for a given inventory levels over time.

We first consider the following asymptotic cases.

Proposition 4.4

(i) If x ,,x, -> oo, r,* (x,x 2) decreases in t.



(ii) If x1 c00, r, (x,,0) decreases in t.

Proof.
From equation (4-11) and (4-12),
r,* (co,oo) = r2 + s - S2 + 1 + LambertW(ea, (')-2 (t)-s +S2 •)) and

r* (C0,0) = -P 2 + S1 -1 + LambertW(eal (I)- a2 (t )- s-1))

From Assumption 4.2, a, (t) - a2(t) decreases in t. Because the LambertW function is an

increasing function, both r, (oo, oo) and r,* (oo,0) decreases in t. o

With finite inventories, the optimal price in general does not decrease monotonically in
time, even for a fixed inventory level. In fact, we show that under certain conditions, the
optimal price for a given inventory level (x,, x 2) tends to increase with time later during
the transition.

Proposition 4.5
If 3T e [0,T] such that ea,(7)-a2(7

)+r2+p2-el-1 < E, where e is a very small positive number,
then r,*_(x,,x 2) r,(xxx 2 ) Vx 1,x 2  0 and t e [7,T].

Proof. See Appendix. o

Proposition 4.5 indicates that the optimal price may increase in time towards the end of
the transition. Moreover, our computation results indicate that the optimal price exhibits a
"down-and-up" pattern under general conditions. The figure below shows how the
optimal price changes with time when ai,(t) takes on a linear function form of

a,(t) = ao - kt and a2 (t) = kt where k > 0.

Time

Parameter Values
T 100
ao 5
k 0.4
0o 0.2

35

r2 40
pi, P2 20
sl 5

S2 28

Figure 4-2: Optimal Price vs. Time for Given Inventory Level

Note that in this example, the total expected demand is ,0T = 20 (including new and old

products) for the planning horizon. Therefore inventory level of (25,25) represents for all

0)
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practical purposes an infinite amount of inventory and that of (10,10) represents a more
general case (with positive probability of running out of either product).

For a single product, it is a well-known result that the optimal dynamic price decreases
with time for a given inventory level (see Gallego and van Ryzin 1994, Zhao and Zheng
2000). The intuitive explanation is that companies need to discount their product when
there is less time left to sell. However, for multiple products, it is not obvious what that
trend should be.

In this particular context, i.e., a product transition with two generations of products, the
optimal price for the old product is affected by the demand and inventory of both
products. If we just had the old product, then it makes sense to discount the price as we
move closer to the end of the planning horizon for a given inventory level. On the other
hand, from the perspective of the new product, we should try to make the old less
attractive as we have less time to sell the new, i.e., we need to increase the price of the
old over time. These two competing forces are driving the price of the old product in
different directions over time. Because of the demand interactions of the two products, a
price decrease of the old product can lead to both higher sales of the old and lower
shortages of the new. Similarly a price increase of the old product can lead to both lower
shortages of the old and higher sales of the new.

With infinite supply, the shortage costs become irrelevant, therefore we only need to
consider the impact on sales. In Figure 4-1, we note that demand of the old product
dominates initially and demand of the new dominates later. Therefore, as we move closer
to the end of the transition, the loss in sales potential drops much faster for the old
product than for the new product. In other words, a company should have more incentive
to act on price if it is not able to sell the old product than if it is not able to sell the new
within a certain time period. This holds because time is against the old product (a 2 (t)
increases in time whereas a2 (t) decreases in time). Hence, if neither product sells (as in
Figure 4-2), the need for price decrease dominates the need for price increase. Therefore,
the optimal price should be non-increasing over time. In Figure 4-2, the optimal price
converges to a constant value later in the planning horizon. This is because the demand
for the old product drops to a negligible level after certain time and the demand of the
new product becomes stationary. Therefore, we are looking at the optimal price for the
case of infinite supply and stationary demand. This is a well-studied problem and the
optimal solution to such a problem is a constant price. From equation (4-11), when t is
large, the last term is zero. With infinite supply, V,,,+1 (x I ,, x 2 -1) - V,,, (X, - 1, x2) - >

s, - s2 , thus this constant price is r2 +1+ s, - s 2 . Given the parameters used in Figure 4-
2, this price is 18.

With limited supply, there may be shortage risk for one or both products. For example, if
the new product is facing shortage, we may decrease the price of the old to compensate,
which may result in deeper discounts over time than the case of infinite supply. After the
demand rate of the old product drops to a very low level, the optimal price becomes
driven mostly by the new product sales, thus the optimal price increases over time until it



eventually converges to the same constant value 18. The convergence for this limited
supply case is again due to the constant inventory level. However limited the inventory
level may seem at the beginning of the transition, towards the end, it becomes a case of
ample supply. Had this been a true price path where inventory decreases over time as
products are sold, the convergence might not occur for the case of limited supply.
Instead, the price may fluctuate below 18.

4.5 Fixed-Price Policy

Although continuously adjusting price over time can achieve the best value, it is not
always feasible. Therefore, in this section we consider the case when a company has only
one pricing opportunity at the beginning of the transition. Once they determine the price,
it stays constant over the transitional period.

Because the price stays constant, we can view the period [0, TJ as a single period. The
aggregate demands of the old and new products are Poisson with mean

A1 (r) = JI ((r, t)dt and A 2(r) = J r 2 (r 1,t)dt respectively.

The total profit as a function of the price of the old product and the inventories is
VFP (r, x,, 2) = E[rY min(D1,x1) -(D 1 - xl) p, + (x, - D1 ) s1]

+ E[r2 min(D2,x 2 )- (D2 -x 2) 2P2 +(x 2 - D2) + 
2]

D2

where D, and D2 are Poisson random variables with mean A, (r) and A2(r1) respectively.

Because ýA and A2 are correlated with each other and because of the Poisson distribution
of demands, there is no simple closed-form solution even for this aggregated problem.

Taking derivative with respect to r, yields the first order condition for the fixed-price
problem.

Lemma 4.2
The first order condition for the optimal fixed-price is

dA1 (r1)A,(r)-GA, (X+ [( +V(r,x -l,x 2 ))-(r2 +V(r,xx2-1)] = 0 (4-13)

where GA, (.) is the Poisson loss function for the random variable D,.

Proof. See Appendix.o

Similarly, we obtain the first order condition when the new product runs out to be

dA1 (rI)
Al(r)-G (x) + [r, + p2 + V(rlx, -,)- V)(r, x,l,0)] = 0 (4-14)



When the old product runs out, i.e., xj = 0, the optimal price of the old product is the

highest feasible price r,,2 = i~. The intuition is similar to that for the optimal dynamic

price when x, = 0.

To compare the fixed-price solution with the optimal prices derived previously, we
consider the optimal rolling-horizon fixed prices, i.e., the optimal price at a particular
time t during the transition assuming no future price changes, or equivalently, the optimal
fixed price for [t, T].

Let A , (r,) = , ZQ(r , t)dt and A2,,(r) = 2 (r, t)dt, then the total expected profit for

period [t, TJ as a function of the price of the old product and the inventories is
V,F (r,x,,x 2 ) = E[r, min(D1,,x,) -(D,, - x, )p, + (x, - D1,)+s,]

+ E[r2 min(D2t ,x 2)-(D 21 -x2 )P 2 + ( 2 - D2 ) S202

where D,, and D2, are Poisson random variables with mean A1, (r1) and

A 2, (r) respectively.

Definition 4.2
Define the optimal price of the old product for the fixed-price problem starting from time
t to be rF(x,,x2) = argmax FP(r,,x,,x2 )

Proposition 4.6

(i) If x1,x 2 - oo, r, F(x 1,x 2) decreases in t.

(ii) If x,,x2 ->o, r,FP(x x2 ) rt* (x, x2)

Proof. See Appendix.o

In Figure 4-3, each curve represents the price for a given inventory level. Again inventory
level of (25,25) is for all practical purposes an infinite amount of inventory and (10,10)
stands for the more general case. The red (solid and dashed) curves are the optimal prices
of the DP problem (Proposition 4.2); the black (dotted and dash-dotted) curves are the
optimal fixed prices with rolling horizon. Parameter values used to obtain Figure 4-3 are
the same as those in Figure 4-2. With infinite supply of both products, the rolling-horizon
fixed price decreases monotonically over time for a given inventory level and it is always
lower than the optimal dynamic price. With limited supply, the fixed price starts out
lower than the optimal price, but later becomes higher than the optimal dynamic price.
Such a pattern is intuitive: From Section 4.4, the optimal dynamic price decreases over
time initially and later increases. With a fixed price, we are making a pricing decision
assuming no future opportunity to adjust price. Therefore, knowing that the optimal
dynamic price should decrease in the subsequent periods, it makes sense to be
"proactive" and set a price lower than the optimal dynamic price. Later during the
transition, the optimal dynamic price would increase with time, thus it also makes sense



to use a fixed price that is higher
increase it afterwards.

Afl

0

0i©

than the optimal dynamic price knowing that we cannot

- optimal: (x,,x)=(25,25)

zon): (x,,x)=(25,25)
zon): (x,,x2=(10,JO)

20 40 60 80 100
Time

Figure 4-3: Fixed Price vs. Time for Given Inventory Level

Further, we observe that the fixed price also converges to the same value as the optimal
price. As we mentioned earlier, later during the transition, both inventory (25, 25) and
(10,10) become effectively cases of infinite supply and the optimal dynamic price is a
constant price, i.e. the optimal dynamic price is the optimal fixed price

Fixed-Price with Deterministic Approximation

Equation (4-13) does not yield a closed-form solution forrFP (x1 ,X 2). It has to be obtained
through computation. Pricing literature often considers a deterministic approximation to
the fixed-price problem. That is, one can find the optimal price when demand is
deterministic and is equal to the expected demand and then use this price for the whole
transitional period. Again we are lumping demand into one single period to find the
optimal price, although the Poisson demand used to compute rFP (x 1,X2 ) is now a

deterministic value.

To maintain consistency in comparing prices, we follow the rolling-horizon calculation
by finding the optimal deterministic price for the period [t, T] at any t [0, T].

The total profit for the period [t, 7T under the deterministic problem becomes
VD(r,•x, x2) = r, min(D,x,)-(Do -x,) + p +(x1 -D , )+s,]

+ r2 min(D2,x,)-(D2 - x2 ) p2 +(x 2 - D2) s 2]

where D = Jf A(r , r)dr and D2 = 2 (r, r)drthet

40V"r
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Definition 4.3
Define the optimal fixed price of the old product for the deterministic problem starting
from time t to be r,D(x1 ,x2 ) - arg max /D(r ,x1 ,x2)r1
Throughout the rest of this chapter, we refer to rD (x, x2) as the deterministic price. Note

that in the dynamic pricing literature, researchers sometimes approximate the optimal
solution by assuming that the demand within each small time period is deterministic
(Bitran and Caldentey 2003). Such an approximation does not require the price to be
fixed throughout the transitional period and is very different from the deterministic price

rtD (X IX 2 )

In order to solve the deterministic price, we need to define certain critical prices.

Definition 4.4

Define the run-out price for the old product r,d to be the r, such that 2 T (r , r)dr = x,,

i.e., the price of the old product at which the total demand in period [t, T] will be exactly
X1•

Similarly the run-out price for the new product r,"e is defined as the r, that

solves fT 2 (r , r)dr = x 2 . If the price of the old product is set at r, ew, the demand of the

new product during [t, i] equals x 2 .

To avoid confusion, note that both run-out prices refer to the price of the old product.
rnew is the r, at which the new product runs out and r,old is the r1 at which the new product

runs out.

To find the optimal price for the deterministic problem, we specify a function form of
a, (t).

Assumption 4.4
a1(t) = ao - kt and a2 (t) = kt where k > 0.

Under Assumption 4.4, it is easy to derive that D = , 0 Tpl(r,,r)dr = In p2 T)
2k p 2 (rl,t)

and D2 = A0 t 2 (l r)dr = A (T - t) In . Thus we obtain the run-out
2k p2(rl,t)

0 P2 0, ,2 (,T)prices by solving In = x1 and A (T - t) In = x 2 respectively:
2k p2 ar, t) 2k P2 t r)



2k(T-t)-2-x

r,old = r2 + ao - 2kT + In e 2k

1-e eO
2k(T-t)--•x 2

e ' -1

r"" =r + a0 - 2kt - In 2k

1-e X2

It is easy to see that the run-out price of the old product r,old decreases in x, and the run-

out price of the new product r,"" increases inx 2 . This is intuitive: the higher the old
product inventory, the lower the price needs to be to sell it off. On the contrary, to sell off
a high new product inventory, the company needs to increase the price of the old (refer to
Proposition 4.3).

In addition to the run-out prices, we also need to define the following optimal prices
formax D (ri,x ,x2).

Definition 4.5
Define " as the solution to max D(r, x ,x 2 )when D, < x,, D2 x2,

and F as the solution to max D (r,x1 ,x2 ) when D, xl,D 2  x2.

Note that D1 and D2 are both dependent on r,.

Lemma 4.3

(i) , solves In P2(rT) [(-s)-(r 2 -s 2)](p ,t)-p(r, T)) = 0.
P2 (rl ,t)

(ii) solves In-(r -1  +p)(p(r1 ,t)- (r1,T)) = 0
P2 (r , t)

(iii) ! _ -i.

Proof. See Appendix.c

Note that both ^i and 7 are independent of the inventory levels.

Proposition 4.7 determines the optimal solution to the deterministic problem. For
simplicity, we assume that the penalty cost for a lost sale is the same for both products.

Assumption 4.5

Pi = P2.



Proposition 4.7
If ro~d (t) > rDf (t), r 1 (xI,x 2) = max(ro°ld,i)

If rl"d (t)I < new(t), then

rD (x,x 2) = max(r"new,) if ) t > rnew and r,"(x,,x2) = max(rold, t) otherwise.

Proof. See Appendix. o

Apparently, the optimal price in the deterministic problem can be one of the following:
the run-out price of the old, the run-out price of the new, the interior optimum of the case
for excess and the interior optimum of the case of excess for the old product only. Such a
solution is very easy to obtain because all four values can be obtained with a one-step
calculation. For example, for the parameter values used in Figure 4-2, we can compute
the optimal deterministic price for the entire planning horizon [0, T] as follows: For a
given inventory level of (25,25), the run-out price of the old product
r old = -0o, indicating that we would never be able to sell all 25 units of the old. The run-

out price of the new product r new = 0o, indicating that we would never be able to sell all

25 units of the new either. The interior solutions ? = 30.6 and i = 14.6. Therefore, from

Proposition 4. 7, it is clear that the optimal deterministic price is 30.6, which is the
interior solution r^. However, when the inventory level is (10,10), we obtain rold = 4.2

and r" n = 5. The values of r and F are the same as those for inventory level (25, 25)

because these prices are functions of time only. From Proposition 4.7, we should choose
7 = 14.6 as the optimal deterministic price in this case.

Proposition 4.8
(i) If x,,x 2 -> c0o, rtD (x,x,2)decreases in t.

(ii) If x,, x2 FP (xx), t (XD(X*2 2 (x,2)

Proof. See Appendix. n

Figure 4-4 compares the optimal dynamic price (red solid curves) with the optimal fixed
price (black dashed curves) and the fixed price for the deterministic problem (blue dotted
curves). When the amount of inventory is large (the case of inventory (25, 25)), the
optimal price for the deterministic problem is equal to the optimal fixed price. This is
reflected in Figure 4-4(a) by the overlapping of the blue dotted curve and the black
dashed curve. Both the fixed price and the deterministic price are less than the optimal
dynamic price. Parameter values used to obtain Figure 4-4 are the same as those in Figure
4-2.
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Figure 4-4: Prices. vs. Time for Given Inventory Level

In the case of limited inventory, all follow a "down-and-up" pattern although the fixed
price and the deterministic price decreases slowly with time initially, but later converge
much more quickly to a common price. From Proposition 4.8, the optimal fixed price is
equal to the deterministic price when there is infinite supply. As a result, all converge to
the same price 18.

Performance Bound Using rD ( X2 )

The solution for the deterministic problem is very easy to obtain and can be used as a
heuristic price. But how much worse off is a company when it adopts such a heuristic?
Following the method used in Gallego and van Ryzin (1994), we can determine the
performance bounds of the deterministic approximation.

Definition 4.6

J* (XX2) Vt ( X,,I , = X2) j12 J2FP (XrF1 2 pl (tl 1 X2 1 2

jD(Xl,X2 )  tr=l \ t=JDt 1x 2  t=1 (XIIX2 )IX1 I)X2) and

JLB(xl,x 2) -XISI +(r OD -s)A(A -xA +(A ) 2 -(x 1 -A 1)]/2

+ x 2s 2 +(r 2 -s 2)A 2 -[ A2 +(A 2 -x 2)2 -( 2 -A 2)]/2

where A1 = O p,(rD,r)dr and A2 = OT- p,(r, r)dr.

J (x,, x2) is the optimal value using the optimal dynamic pricing solution in Proposition
4.2. JFP (x, x 2 ) iS the value using the optimal fixed price for the entire transitional period.

JD (x1 ,x 2 ) is the value achieved using the deterministic price heuristic. JLB (X,X2) , as we
show next in Proposition 4.9, is a lower bound on the value achieved using the fixed
deterministic price heuristic.

""
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Proposition 4.9

1 JF (x, )  jD (X, X2) J LB (X, X2)

J*(x 1, x,) - J*(xlx2) - J*(x 1,x 2)

Proof. See Appendix. o

Table 4.1 compares the expected value of the fixed-price, deterministic-price with that of
the optimal dynamic price. It also shows the performance lower bound when using the
deterministic price. The parameter values used to obtain these results are the same as
those used in Figure 4-2.

J
143
438
693
878
1024
293
562
763
918
1059
377
610
792
943
1084
421
638
817
968
1109
449
664
842
993
1134

JFP
92
389
654
854
1007
167
459
704
888
1037
197
487
730
913
1062
222
512
755
938
1087
247
537
780
963
1112

jD

92
389
649
853
1004
166
454
703
887
1037
197
486
728
912
1062
222
511
753
937
1087
247
536
778
962
1112

JL B

66
356
618
822
977
139
423
674
860
1016
174
458
703
887
1043
202
486
730
913
1069
228
512
755
939
1095

JFP/J*

0.644
0.889
0.943
0.972
0.983
0.569
0.817
0.923
0.968
0.979
0.523
0.798
0.921
0.968
0.980
0.527
0.803
0.924
0.969
0.980
0.550
0.810
0.926
0.970
0.981

JD/J*

0.644
0.888
0.936
0.972
0.980
0.565
0.809
0.921
0.966
0.979
0.523
0.795
0.920
0.967
0.980
0.527
0.800
0.922
0.967
0.980
0.550
0.807
0.924
0.968
0.981

JLB/j*

0.460
0.814
0.891
0.936
0.954
0.475
0.753
0.883
0.937
0.959
0.463
0.751
0.888
0.941
0.962
0.480
0.761
0.893
0.944
0.964
0.509
0.772
0.897
0.945
0.965

Table 4.1: Performance for Different Starting Inventory Levels

Clearly the deterministic price-heuristic works the best when there are plenty of inventory
for both products. With abundant supply (inventory level of (25,25)), the performance
loss is less than 2% compared to the optimal dynamic price. It performs poorly when the
inventory is unbalanced (one is in shortage and the other in excess). For example,
consider the case (25,5), the ratio fP/J* = 0.55, which indicates that the expected profit
is 45% less than that of optimal dynamic price. In addition, the fixed-price heuristic does
only slightly better than the fixed deterministic-price approach.

------



4.6 Two-Price Policy

In practice, companies do have opportunities to re-price their products during the
transition. However, being able to change price continuously over time is limited to
mainly the consumer goods that are sold online (computers, digital cameras and etc.) In
most other cases, the number of times a company can re-price is limited to a couple. So
we consider the pricing problem with one re-price opportunity during the transition.
The interesting question in the two-price policy is when during the transition the
company should re-price. Should a company re-price when it observes that there might be
inventory shortage or excess? Or should it re-price at a fixed time during the transition?

Dynamic Programming (DP) Formulation

In the two-price problem, there are two decisions to be made - the initial price, denoted
by r,, and the second price. Let's focus on the latter price first.

Let H,(x, x2) be the optimal profit-to-go from time t on for a fixed-price problem.

H,(XI,X2) V FP(rtFP (x, 2),XIX2 )

Let J, (ro,x,x 2)be the optimal profit-to-go for the re-price problem, i.e., given a re-price
opportunity during [t, T], and for a given initial price r0.

Thus the choices are to re-price, incurring value H, (x1 , x2), which will re-price to the best
fixed-price for the remaining time [t, TJ, or not re-price, in which case we maintain the
price of the old product at r0 and keep the option of re-pricing in [t, T].

Then we have

J, (ro, X,x 2) = max {H, (xI,x,2), (r t)(ro + J,+ (rI,x1 - 1 ,x 2))

+ A2(ro, t)(r 2 + J,+l(r,X1 ,X2 - 1))

+ (1- j0)Jt (ro,X,,X2)))
Therefore, it is optimal to re-price if and only if
H, (x, x2  > >0(ro t)(ro + J,+10roXl - 1 X2))

+ A2 (ro, t)(r2 + J,+l(ro,X1, X2 - 1))
+ (1- Ao) N, (roX X2) )

However, the computation for such a DP problem is prohibitive. We resort to heuristic
solutions.

Since J,, (r,,x 1 ,x2) 2 H,,1 (x,,x 2), a necessary condition to re-price at time t is

Ht (X, X2) > r N) o + Ht+l (X - 1 x2))
+ A2 (ro, It)(Ir 2 + H+, 1(xX 2 - 1))
+ (1- 4)H,,t(XlX2) )

Or equivalently,



H, (x , x2) - H,+, (xl,x2) > (rt)(r o + H,+1 (x, - 1, X2 - H,1+ (Xl ,X2))
(4-15)

+ 2(ro, t)(r2 + H,.,(X, x2 - 1) - H,, (x, x2))

Because it is relatively easy to obtain H,(x,, x2) computationally, we can find the
necessary conditions for re-price.

Asymptotically, when x,, x 2 - oo, such necessary condition translates to a simple
criterion.

Proposition 4.10
If x1, x2 -> oo, a necessary condition for re-price in the two-price policy is

ro > r,'(x,, x2)or rO < r' (x,, x2).

Proof. See Appendix. o

Proposition 4.10 implies that a re-price is only necessary if the optimal dynamic price
falls below the initial price or if the optimal fixed price for the problem starting at t
becomes greater than the initial price.

Corollary 4.1
If x,, x2 -> oo, the optimal starting price ro satisfies r,'(xP Ix2) • 0 • t=1(X 1,X2)

Proposition 4.10 along with Corollary 4.1 suggests a simple heuristic to the two-price
problem: set the initial price to ro and re-price to rFP (x,, x2 ) whenever rt,(xI, x2) falls

belowro or r,P(x,,x2) goes above ro . The optimal ro can be determined through a simple

search from min(r(x,x 2),t=1 (x, , x2)) to max(rFP(x,,x2), rt=(x1 ,x 2)). Further,
Proposition 4.8 indicates that r,D (x,x 2)is asymptotically optimal for the fixed-price

problem, we can use r,D (xx 2) instead of r,F (x,, x 2 ) to further simply the policy.

The fact that Proposition 4.10 is not a sufficient condition implies that if we follow the
heuristic described as above, we might re-price too early. That is, we have not given it
enough time for the uncertainty to play out before we readjust price to the inventory.
Therefore, in an alternative heuristic, we consider re-pricing at the demand inflection
point, i.e., when the demand rates of the two products cross over. Under the alternative
heuristic, we wait til midway through the transition to adjust price. The intent is to pick a
time where some uncertainty has realized and yet there is still enough time (demand) left
in the transition to realize the benefits from price adjustment. A good candidate is the
time when the two products have equal demand shares.

Table 4.2 compares the above two-price heuristics with the optimal dynamic pricing
solution using simulations. Parameter values are as in Figure 4-2. We ran 300 simulations
for each policy and compute the mean values. J*(x,,x 2) is the optimal value using the



optimal dynamic pricing solution. J 2 PP (x 1,x 2 ) i the value using the two-price heuristic

that re-prices when r,* (x1 , x2) falls below the initial price or r,FP (x, x 2 ) goes above the

initial price. J 2 PD (XIX 2 ) is the value achieved using the two-price heuristic that re-prices
when the demand rates of the two product crosses over.

J*
169
461
697
860
998
288
552
741
890
1029
336
584
764
919
1053
363
605
794
949
1082
386
635
825
965
1113

jD
115
409
655
839
980
180
465
697
867
1019
215
491
727
892
1031
239
519
739
916
1060
264
547
775
943
1080

JYrolling-
horizon)

137
426
667
843
980
175
440
716
873
1016
212
462
736
901
1043
230
490
765
923
1063
262
514
788
941
1085

J
2 PP

142
436
673
845
986
238
498
718
879
1022
268
526
744
906
1047
298
551
764
932
1072
322
578
794
957
1100

J2PD

155
442
676
851
990
239
503
718
884
1023
275
536
744
907
1050
302
557
766
932
1077
326
584
799
960
1101
Average

.J/J*

0.684
0.886
0.940
0.975
0.982
0.625
0.841
0.940
0.975
0.990
0.639
0.841
0.952
0.972
0.979
0.658
0.857
0.931
0.965
0.980
0.685
0.862
0.940
0.977
0.970
0.882

J'(rh)/J*
0.815
0.922
0.957
0.980
0.982
0.607
0.796
0.965
0.981
0.987
0.629
0.791
0.963
0.981
0.991
0.635
0.809
0.964
0.973
0.982
0.680
0.810
0.956
0.975
0.975
0.884

J2PP/J*
0.844
0.946
0.965
0.982
0.988
0.825
0.901
0.968
0.988
0.993
0.796
0.900
0.974
0.986
0.994
0.822
0.910
0.963
0.983
0.991
0.835
0.911
0.963
0.991
0.988
0.936

J2PD/J*
0.921
0.957
0.970
0.989
0.992
0.831
0.911
0.969
0.994
0.994
0.816
0.918
0.974
0.987
0.997
0.833
0.919
0.965
0.982
0.996
0.847
0.920
0.969
0.994
0.989
0.945

Table 4.2: Performance of the Heuristic Policies

We observe that the additional pricing opportunity fills about 50% of the gap between a
fixed-price policy and the optimal continuous pricing policy. Therefore, the additional
pricing opportunity adds significant value. In fact, the two-price policies works better
than the more expensive (i.e., more frequent price adjustment) myopic rolling-horizon
approach. Such a myopic policy is often observed in practice: firms determine a price of
the old product when they introduce the new product, without considering future price
adjustment. When they observe inventory excess or shortage, they adjust price, again
assuming no future changes. Our studies indicate that such a passive pricing strategy
might not to be a wise one. Not only do they suffer from the cost of frequent price
changes, but also the lack of foresight drives profit away.



Further, we observe that the value of the two-price policies is realized through initial
higher prices and inventory-based adjustment at a later time. For example, when the
starting inventory is (10,10), in the two-price policy derived from Proposition 4.10, the
optimal initial price of the old product is 26, the average re-price time is around period 20
(with a total planning horizon of 100 periods). The average second price (the price we
should change to) is 8. In the two-price policy that re-prices at the demand inflection
point, the optimal initial price is 31, the average re-price time is around period 18, and the
average second price is 8.6. These observations offer hints for a sensible pricing strategy
during product transition: Offer a lower discount initially, and then wait for the
uncertainty to play out before readjusting (usually further discounts, but may also be a
price increase).

4.7 Discussions and Future Research

The main contribution of this research is that we address the pricing problem in a special
albeit ubiquitous industry context - inter-generational product transition. The unique
demand characteristics of the two products during the transitional period lead to an
intriguing and managerially important problem. Under the assumption that total demand
is stationary and the price of the new product is constant, we are able to find a closed-
form solution for the dynamic pricing problem. We compare several simple heuristic
policies that firms can easily employ in practice against the optimal continuous pricing
policy. In particular, our findings indicate that the two-price heuristic works quite well. In
contrast to existing two-price policies studied in the literature, we allow both the price
and the time to re-price to be decision variables. Surprisingly, the rolling-horizon
approach is only marginally better than a fixed deterministic price, and much worse than
the simple two-price policy.

The current model does not address demand learning, which is often one of the most
important reasons for price adjustment. A company learns more accurate demand
information as the new product starts selling. Being able to adjust prices based on the
updated demand information is certainly beneficial. However, if a company is limited by
its ability to change price frequently, it may have to decide how to best take advantage of
its limited pricing opportunities, that is, when to adjust price and what the new price
should be. In the two-price policy discussed in this chapter, the main tradeoff in deciding
when to re-price is the need to adjust to the current inventory situation and the need to
wait for the uncertainty to play out. With demand learning, an important aspect we have
to consider is the need to learn enough information on demand. Apparently, the longer we
wait to adjust price, the more we will know about the actual demand. But if we wait for
too long, we may miss the most advantage of a price adjustment. Existing learning
models rarely consider non-stationary demand learning. It will be a challenge to find a
simple and appropriate learning model for the demand patterns occurring during a
product transition.

To simplify the model and produce meaningful results, we have assumed the price of the
new product to be market driven and constant and that the total demand of the two
products are fixed during the transitional period. There is certainly room for extension in



this regard. The demand model employed in this chapter allows such extension easily.
We can incorporate the non-purchase option through the MNL choice model by assuming
a non-purchase utility u0 (t), thus the probability of non-purchase is

eUo (t)

Po(r, t)= al (t)-r + ea2 (t)-r 2 + eo(t) and the probability of purchasing product i is

ai (t)-rje
(rt) = e t)-r + ea2(t)-r2 + eo (t) i 1,2

In addition, the base rate A, should be interpreted as the Poisson rate of customer arrival.

Such a model allows r2 to be a decision variable as well. However, the dynamic
programming computation will be much more intensive. Additional heuristic policies
might be necessary.

The result in this chapter indicates that the optimal price of the old product might
increase at the end of its life cycle. Indeed, there is some anecdotal evidence for such
phenomenon. The following figure is the price history of two Canon digital cameras from
March 2006 to May 2007. In September 2006, the new SD800 IS was introduced as an
upgrade of the SD700 IS. Thus SD700 IS can be considered the old product and SD800
IS the new product in this series. We do observe a bit "tail up" of the old product price at
the end some time after the new is introduced. In contrast to the assumptions made in our
model, the price of the SD800 has been fluctuating quite dramatically over time.

Price History May 107 (c) NexTag Price History May107 (c) NexTag
500 400-

375-
400 350-
300 · 325

300 -
200- I ..... ...... 275 1 j I ...... t. i

Mar Jun Sep Dec Mar Jun 5epOctoN -ecJanFelbMarApitM ayJun

PowerShot SD700 IS PowerShot SD800 IS
source: NextTag Comparison Shopping (http://www.nextag.com/)

Figure 4-5: Price History of Canon Digital Cameras

Of course, such observation is no evidence that manufacturers or retailers are pricing
their products based on the methods used in this model. But it creates interests for us to
collect empirical price data, interpret the pricing dynamics, and come back to our
analytical model to see if it has some practical ground.





Chapter 5

Conclusions

In this dissertation, we present two problem areas in Supply Chain Management.

In Chapter 2, we develop a model and a computational approach to analyze optimal
history-dependent dynamic contracts under a dual-sourcing strategy. We compare a
volume-incentive contract with a margin-reward contract. In addition to the optimal
contract structure, we obtain the equilibrium performance and payment trajectories of the
suppliers. As a result, our model captures the evolutionary dynamics of the supplier
relationships under each type of contract.

The theoretically optimal contract structure requires continuous rank space and is
difficult, if not impossible, to implement in practice. Therefore, restricting the supplier
ranks to a few discrete levels may simplify the incentive scheme. Such practical
consideration also inspires us to think about possible ways to obtain empirical validation
for our model: What information can help us quantify incentive structures in practice? Is
ranking supplier a common practice? What comes with a certain rank? How is business
share split among suppliers? How does margin/volume change with performance? Who
get rewarded more by performance, the low-ranked suppliers or the high-ranked ones?
These and other related questions may help us define a more concrete long-term incentive
structure.

In Chapter 3 we solve the inventory planning problem for inter-generational product
transitions under uncertainties of demand and new product launch date. We consider a
dynamic substitution decision and its impact on profit and optimal planning quantities.
Further, we determine the optimal delay of new product launch when a company is facing
large excess of the old product. In Chapter 4, we solve the dynamic pricing decisions
during the transitional period and propose several heuristics policies. In particular, we
find that a two-price policy with three decision variables (the initial price, the time to re-
price, and the new price) works quite well.

In future research, we intend to consider two extensions.

One of the key assumptions in our model is that there is no replenishment opportunity
during the transition. As mentioned earlier, certain product upgrades may take a much
longer time period. As a result, replenishment during the transition is possible. We would
like to explore in future research the optimal continuous-replenishment policy in these
cases.



The current pricing model does not consider demand learning. However, demand
learning plays an intrinsic role in manager's decision on price changes. One problem
managers often struggle with is: When do they take action on price, knowing that they
can only do it a couple of times? In addition to the tradeoff between the need to adjust to
the current inventory situation and the need to wait for the uncertainty to play out, we
have to consider the need to learn enough about demand. Existing learning models rarely
consider non-stationary demand learning. To solve for the optimal pricing problem with
demand learning, the important next step is to find a simple learning model that is
appropriate for the demand patterns occurring during a product transition.



Appendix

Proposition 2.1
Ps (u, x) and Us (u, x) solve the DSP problem if and only if there exists A(u) and p(u)
such that the following conditions are satisfied:

f,(x I a)
V'(U) + A(u) + p(u) O(x 0

f(x a)

-1+ 0'(qoP)[A(u) + p/(uf) (x ]= 0
f (x a)

(PK), (IC).

Proof.

L = f {qx - q°P(u,x) + bV(U) + A(u)[9O(qoP(u,x)) + JU]

+ jp(u)[(b(qoP(u, x)) + 6U) f(x a) '(a(u))] f (x I a)dx
f(x a)

= {qox - qoP(u, x) + V(U) + [A(u) + p(u) f(XI a[) ][(qoP(u, x))+ SU]
f(xl a)

- p(u)VI'(a(u)) }f (x I a)dx

Point-wise optimization with respect to U and P yields

fa(x|a)V'(U) + A(u) + lp(u) f(x = 0
f (x I a)

-1 + 0'(qoP)[A(u) + p(u) f (x a)]= 0" o

Lemma 2.1
With a risk-neutral supplier, V'(u) = -1.

Proof

The supplier is risk-neutral, thus 0'(.) = 1
From Proposition 2.1, we have

fa(x a)
V'(U) + A(u) + p(u) (x I a) 0

f(x a)

f (x I a)- 1 + ) +(u + (u) f(x I a) = 0
f(x a)



which then gives V'(U(u, x)) = -1, i.e., V() is linear over the range of U(u,x). Since the
self-generation property implies that U(u,x) and u take on values that belong to the same
equilibrium set, we have V'(u) = -1.0

Proposition 2.2
With a risk-neutral supplier, a bang-bang policy can be optimal. That is, a buyer promises

6.0[p- (p- p)F( I a')]- t(a')
a constant continuation payoff U =

1-9

and P = if as the next period margin. The optimal action input a* and thepif x<x

critical performance threshold i can be determined jointly by '(a) q(P - p) and
F ( I a)

f, ( I a)=O.

Proof.

Since V'(u) = -1, we have V(u)+u=S where S is a constant. As a result, the objective
function in (DSP) becomes E[qox - qoP(u, x) - 6U(u, x) + 6 I a(u)] instead.

We obtain the Lagrangian:

L = {qo x - qoP(u,x) - bU + M + [A(u) + p(u) f ](xa)][qoP(u, x)+ U]
f (x l a)

- p(u)iy'(a(u))}f(x I a)dx

= [-1+ +(u) U(u)· f (x I a) [P(u, x) + SU]f(x I a)dx + qoE(x I a) + &S - p(u)y'(a)

Therefore, the optimization problem is linear in qoP(u, x) + bTJ(u, x).

We define C(u, x) = qoP(u, x) + SbT(u,x) , the optimal policy prescribes

f(x|a)1C if A(u) + p(u) fa(xl a) 1 > 0

C * (u,x) = f (x I a)£(xI a)
C if A(u) + (u) f(x -1 a) < 0

where Cand C are the extreme values of C(u,x)

From the envelope theorem, we have V'(u) = -A(u) Vu e ), thus A(u) = 1 Vu e U.

From Assumption 2.3, we have p(u)>O . Hence for the subproblem starting from the
second period on, the optimal policy is



C*(u,x) =
C if x < X

where C and C are the extreme values of C(u,x) and Y satisfies fa (x a(u)) = 0.

Since in a PPE the set of possible continuation payoffs is the same at any time t, this
applies to the original problem as well.

If we restrict the continuation payoff u to be a constant, then the optimal contract is
{ if x >_

reduced to a history independent form: P = if x <
pifx <

When u is constant, the optimal action a* stays the same in each period.

From the (PK) constraints, we have u = E[qoP + bU] - r(a) = E[qoP] + 5u - y(a)

1 1
Therefore u = [qoE(P)- y/(a)] = {q0[p - F(I I a)(p - p)] - Vy(a)}. The optimal

1-9 1-8
action a* should maximize qo[P - F( I| a)(j - p)] - yi(a). We can derive the first-order

condition to be ( = qo- P) a)
Fa(X I a)

Proposition 2.3

I (u, x)= PS (ul, x 1), 2(u, x) = PS (u2, x2) and

U (u,x) = Us (Ul,XI), U2 (U, X) = Us (u2 ,x 2) solves the DTM problem.

Proof.

It is easy to verify that P (u, x) = PS (u, x,), P(u, x) = pS (u2 x 2 ) and

U1 (u, X) = U s (u1 ,x0), U2 (u, X) = Us (U2,X 2) is feasible for the DTM problem.

Let A,(u) and p~(u) be the multipliers for the constraints (PK)i and (IC)i, we obtain the

Lagrangian:

L= {[qox, + qox 2 -q 0F(u, x)-q P(u,xx) + V(U,(u,x),U (u,2x))

+ A, (u) [&(qolP (u, x)) + SU, (u, x) - VI(a, (u)) - u, ]

+ )2 (u)[(qoP2 (u,x))+ b(2 (ux) -/(a2 (u)) -u2

,(u)[(qoP(ux))+ &(ux)) f, (x,)-'(a, (u))]

+ 2 (u) [(b(qop2(u, x)) + 6U2 (x I X) 2/,(a (u))] f(xl Ial)f(X2 Iaz)dxldx2f (x2 1 a2)

Point-wise optimization of L with respect to P,, P2, U and U2 yields



auV f, (x1 la)

aU2 f (X2 I q2)

- + O (u) + 2 (u) = 0au fU(x2 la 2)

f, (x I a,)
-1+ #'(qolf)[A (u) + /,(u) ]= 0

f(xl lax)

-1+ '(qoP2)[2 u(u)+ p2(u) ( ]= 0
f(x2 Ia2)

OV 1 8V 1
which then gives 1 and --

-U, q'(qo0 ) U 2  'q(qoP2)

Therefore, given Jp and P2, V is separable in U, and U2.

As a result, the DTM problem can be decoupled into two independent problems.

V (u) max E[qox1 - qoP1 (u, x) + 6V2(U1 (u, x)) I a,(u), a2(u)]a,PU 2 (P1)
s.t. (PK1), (IC,), pP IP(u, x)<_ p

and

V2(u) -max E[qox2 - qP 2 (u, x) + V2 (U2 (u,x)) a1 (u),a2 (u)]aPU (P2)
s.t. (PK2),(IC 2), p <P2(u,x)<j

We then show that pS (u , x) and Us (u1, x,) solve problem (P1) and that

PS (u2,x 2) and pS (u2 x2) solve problem (P2).

Suppose P (u,x) and U,(u, x) is the optimal solution to problem (P 1). Then

P1(u, x) and U, (u, x) satisfies the following Kuhn-Tucker conditions:

S + /ý (u) + Ul (u) a 0
dU1  f(xi I a)

f, (x, Ijal)
-1+ O'(qoPl )[A(u) + A,(u) f ]= 0

f(x I al)
f[l(qo0P,(u,x)) + 6U,(u,x)]f (x l a)f (x2 I a2)d dxx 2 - (a(u))=u (PK1)

f,, (x, j az)
[(q 0P(u,x))+ 6U,(u, x)] a) f(x, a,)f(x2 I a2)dx1dx2 -yi'(ai(u)) = 0 (ICI)

f (x I a1 )
p _5 P(u, x) p

Given P, (u, x) and Ul (u, x), we can find P(u, x1) and U(u, x1) such that



(qoP(u, x,)) + (u,x,) = J (qPO (u,x))+ U (u, x)]f (x 2 a2)dx,. That is, we can find

P(U, X,) and U(u, x,) such that

dV f, (X, I a )+ 1 (u) + , (u) = 0
dU f (xf I a,)

S-1+ '(qo0 )[, (u) + P, (u) 
f a (x I a,)]= 0
f(x, I a,)

f[b(qoP(u, x)) + jU(u, x,)]f (x 1 I a,)dx, - y(a,(u)) = u, (PK1 )

[) fa (x, |a1)[(qoP(u,x1)) + U(u, f(x, a))] f(x, I a1)dx, - y'(ai(u)) = 0
f(x. I al)

(IC,)

Compare the above with the Kuhn-Tucker conditions for the DSP problem and also
observing that u2 does not affect the optimal solution (since it does not affect the

objective function or the constraints as we solve for P(u, x,) and U(u, x,)), it is then clear

that P(u, x,) = Ps (u,, x,) and U(u,x, ) = US(u 1 ,x,) .0

Proposition 2.4
With risk-neutral suppliers, the optimal volume-incentive contract can be implemented
using a series of static contracts. In each period, the optimal split is "all-or-nothing":

= 2qo if a (U(u,x)) > a 2 (U(u,x))
Q(ux) = t0 otherwise

Proof.

V(q, u) - max E[qx + q2 2 - 2po0q0 + SV(Q(u, x), U(u, x)) a, (u), a (u)]
a,Q,U

s.t. E[O(poQi (u, x))+ SU, (u, x) ai (u), a (u)] - y(ai (u)) =u i

E[O(poQi (u, x)) + SU, (u, x) ai (u), aj(u)] - y(ai (u))

2 E[5(poQ, (u, x)) + -JUi (u, x) I aii,aj (u)] - V(a&i) Va i E A

Q1 (u, x) + Q2 (u, x) = 2qo
Qi (u, x) > 0

(IC i ), i = 1,2

(BC)

(NNi)i = 1,2

Since (BC) is an equality constraint, we can reduce the number of variables by
substituting Q2 with 2qo - Q1.

Thus the Lagrangian becomes

Vu i E "'i (PKi) i = 1,2



L = fV(Q,U)+(poQ, +U J1)(A +1 , fa (x, I a))
f(x, a,)

+ (2pgq0 - p0Qf + U2)( 2 + 2 2  (X2 I a2 )]f( I a,)f(x 2 I a2)dx, dx2
f(x 2 a2)

+ q,E(x, I a,)+ q2E(x2 I a2) + 1 ((a,)- u,)- 1) , /'(a,) + /1(V/(a2) - u2) - 2V'(a2)

Pointwise optimization w.r.t. Q1, U1 and U2 yields:

fa,(x|ai)v, V(U(u, x)) + A, (u) + p,(u) =(x I a,)
f (x a,)

& (u) + AU (u) f= (x I , (U) ( (x 1 )
f(x, I a =) f(x2 Ia2)

Therefore, Vu, V(.) = VU2 V(.).

We can rewrite the Lagrangian as

L = [j[6V(Q,U)+(2poqo +6U&J ++U2)(A /'1 fa ( I a a)f(x I a 2)dX1 X2f(x I a,)
fqE(x, I a,) + q2 2(ll)2 2 2 2

+ qE(x1 I a) + q2E(x2 I a2 ) + -,(1/(a,) - u)- u ,l) ' (al)+2 2 (+'(a 2)- u) -p2) l'(a 2)

Thus the objective function depends on Q only through V(Q, U).
Since
V(Q, U) = QeE(x, I a, (U)) + Q2E(x2 I a (U)) +...

= 2qoE(x2) + Q1 (E(xl a, (U)) - E(x2 a2 (U))) +...
and E(x, I a1 (U)) - E(x2 I a2 (U)) >0 iff aI (U) > a2 (U)
Thus the optimal volume award is

Q (u, x) = 2q0 if a (U(u,x)) > a2 (U(u, x))

S 0 otherwise

Lemma 3.1
a(x 2 ,t) - V(O,x 2, t + 1) - V(0, x2 - 1,t + 1) is non-increasing in x 2.

Proof.

We prove this by induction.
We first note that a(x 2, t) non-increasing in x2 is equivalent to Vbeing discretely
concave.



For ease of exposition, we also define a(O, t) - (v2 + h2 ) / 8. From the terminal value

definition, V(0, x 2 , i + T) = s 2x 2, thus a(x 2, v + T- 1) = s 2 . From assumption (ii), it is
also easy to see that a(1, r + T - 1) < a(O, r + T - 1). Therefore, a(x 2 , + T - 1) is non-
increasing in x2.
Assume for induction that cC(x2, t) is non-increasing in x2. Then condition (3-5) implies
that 3 x2 (t) s.t. it is optimal to substitute at period t if and only if x2 > x2 (t). T 2 (t) is
determined as the largest inventory level x2 such that Sa(x2 1t) v - g + h2 is true. In

the special case when da(1, t) < v, - g + h2 , we define -2 (t) = 0. Then from equation (3-

1), we have:
a(x 2,t - 1) = (1- %(t))[-h2 + a(x 2, t)] +l2(t)[-h 2 + 6(x 2 - 1,t)

(3-15)-h2 + oa(Xzt )  if x2 <2 (t) (3-15)+ (t) h2 + a(x 2 - 1,t) if x2 -1 > 2 (t)

V1 - g  if x2 - <: 2 (t)<x2

Given that ac(x 2,t) is non-increasing in x2, it is clear from equation (3-15) that

a(x 2 , t - 1) is non-increasing in x2 for all x2 Ž 1, finishing the induction proof. o

Proposition 3.2
With homogeneous Poisson demands, the substitution threshold x 2 (t) is non-increasing
in t.

Proof.

For the ease of representation, we drop the subscripts of x2 and 2 (t) in the proof.
Induction assumption: A(t) Y(t + 1) and a(x,t) 2 a(x,t + 1) Vx e [1, i(t)]
We need to show (t - 1) > A(t) and a(x,t - 1) > a(x,t) Vx e [1, Y(t - 1)].

From the definition of T(t), it is easy to see that &a(x, t) < v, - g + h2 if x > A(t) and

3a(x, t) 2 v, - g + h2 if x < Q(t) .
Assume for contradiction that Y(t - 1) < (t) , we then have &a(Y(t - 1),t) 2 v, - g + h.
From equation (3-15) , we have:
a(T(t), t - 1) - a(Y(t), t)

= (1 - A2)[a(i(t), t) - a(A(t), t + 1)] +A2 3[a( (t) - 1, t) - a(Y(t) - 1, t + 1)] By induction

9[a(Y(t), t)- a(A(t), t + 1)] if A(t) < 5(t + 1)

+1, 3[a(Y(t),t) - a(X(t) - 1,t + 1)] if A(t + 1) < A(t) - 1

16a((t),t) - (v, - g + h2 )  if A(t) - 1 < Y(t + 1)

assumption, the terms a(A(t), t) - a(Y(t), t + 1), a(A(t)- 1, t) - a(A(t)- 1,t + 1) are
nonnegative. We know from the definition of Y(t) that 8a(A(t), t) 2 v, - g + h . Under the

condition x(t + 1) < (t) -1 we have a(A(t), t) 2 (v, - g + h) / > a(Y(t) -1, t + 1). Thus
the term a(A(t), t) - a(A(t)- 1, t + 1) is positive. Hence we obtain



a(Y(t), t -1) > a(Y(t), t) > v1 - g + h which implies that 2(t - 1) > Y(t) . Therefore, we
have a contradiction. Thus we have proved Y(t - 1) 2 25(t) .
Next we need to show a(x, t -1) 2 a(x, t) Vx e [1, (t - 1)].
Given x(t -1) 2 Y(t) Vt = r + 1,r + 2,...,r + T , we can separate the interval
[1, 2(t - 1)]into three subintervals:

i) x [1, (t + 1)]; ii) x E ((t + 1), YQ(t)] and iii) x r ((t), 2(t- 1)].

i) Vx E [1, (t + 1)1
a(x, t - 1) - a(x, t)

= (1 - A)3[a(x,t) - a(x,t + 1)] +12 5[a(x - 1,t) - a(x - 1,t + 1)] + Ab8[a(x,t) - a(x,t + 1)]
By induction assumption, the RHS terms are all nonnegative, thus
a(x, t - 1) a(x,t) Vx e [1,5 (t + 1)]

ii) Vx E (Y(t + 1), Y(t)],
a(x,t - 1) - a(x,t) = (1 - A)3[a(x,t) - a(x,t + 1)] +A26[a(x - 1,t) - a(x - 1,t + 1)]

-[a(x,t)- a(x -1,t + 1)] if x-1> Y(t +1)
Sa(x, t) - (v, - g + h,2) if x - 1 < (t + 1) < x

&a(x, t) - (v, - g + h2 ) is nonnegative as x 5• (t) ,
a(x, t) - a(x -1, t + 1) is nonnegative because for x < Y(t) and x -1 > T(t + 1) we have
a(x,t) 2 (v, - g + h2 )/ and a(x- 1,t + 1) < (v, - g + h2)/
iii) x E (Y(t), 5(t - 1)]
since x > 5(t) and x 5 (t - 1), condition (5) implies a(x, t) < (v, - g + h2) / S and
a(x,t - 1) > (v - g + h2 ) / 6, thus a(x, t - 1) - a(x, t) is nonnegative.
Therefore, we have a(x, t - 1) > a(x, t) Vx e [1, (t - 1)], finishing the induction step.

Now we establish the base case. That is, we need to show 5(r + T - 1) 2 Y(r + T) and that
a(x, + T - 1) a(x, r + T) Vx e [1,Y(r + T - 1)]
Assumption (iii) vl-g>s2 is equivalent to a(x, r + T) < v, - g . Hence

Sa(x, r + T) < v, - g + h2 for x > 1, Thus it is optimal to substitute at period T whenever
inventory is positive, or equivalently A(r + T) = 0. Hence Y(r + T - 1) 2 Y(r + T) holds.

Since a(x, + T -1) = -h 2 + &2for x > 2, we havea(x, + T -1) < s 2 < - g + h2 for
x 2 2. Thus @(r + T - 1) < 2.
If 5(r + T - 1) < 1, the set [1, (r + T - 1)] contains no integral points; if Y(r + T - 1) 2 1,
a(l, r + T - 1) 2 (v, - g + h2)/6 > s 2 = a(1, r + T). Therefore the base case is true. o

Proposition 3.3
If the demands are non-homogeneous Poisson, but the holding cost h=O and the discount
factor 6=1, then x2(t) is non-increasing in t.

Proof.
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For the ease of representation, we drop the subscripts of x2 and ~2 (t) in the proof.
When there are no holding costs and 6=1, equation (4-8) becomes:
a(x, t - 1) = (1- 2(t))a(x, t) +2 2(t) a(x- 1, t)

a(x, t) if x < 5(t)
(3-15a)+ z1 (t) a(x - 1, t) if x- 1 > 1(t)

V -g if x-1 < (t)< x

Thus
a(x, t - 1) - a(x,t)

A[2(t)[a(x - 1,t)- a(x,t)] if x < 5(t)

= A(t)[a(x -1,t)- a(x,t)] if x -1 > A(t)

L22(t)[a(x - l,t) - a(x,t)] + 12(t)[v - g - a(x,t)] if x - I : (t) < x

Since a(x, t) is non-increasing in x, a(x - 1, t) - a(x, t) is nonnegative, the term

v, - g - a(x, t) is nonnegative for x > T(t) . Therefore, we have

a(x,t - 1) 2 a(x,t) Vt= r +1,r + 2,...,r + T.o

Proposition 3.4
If the total demand stays constant, k1 (t) is non-increasing in t and X2(t) is non-decreasing
in t, then 22(t) is a unimodal function of t: it is increasing in t before a certain time t and
decreasing in t after i.

Proof.

For the ease of representation, we drop the subscripts of x2 and Y2 (t) in the proof.
In order to show that Y(t) is a unimodal, it is sufficient to show the following:
a) Y(t + 1) 2 Y(t) - Y(t) 2 (t - 1)
b) (t - 1) 2 :Y(t) => Y(t) 2 Y(t + 1)
We prove a) first.
Given x(t + 1) >2 (t), we consider the following five cases:
i) 2(t) _ x - 1 < x < Y(t + 1)
ii) Y(t) 5< (t +1) < x - 1 < x
iii) x -1 < x < 5(t) I 5(t + 1)
iv) 3(t) 5 x -1 <5 (t + 1) < x
v) x -1 < Y(t) _ x 5 Y(t + 1)
It is easy to show that for each case a(x, t - 1) < a(x, t), which in turn yields
3(t) > Y(t -1)
We then prove b) Y(t - 1) 2 Y(t) => (t) > A(t + 1).
Assume for contradiction that Y(t) 5 Y(t + 1), from a), we have Y(t - 1) A ?(t), which
contradicts Y(t - 1) 2 Y(t) .
From a) and b), it is easy to see that T(t) is unimodal in t. o
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Proposition 3.5
V(xI,x 2,t) is jointly concave in xl and x2. There exists a unique pair of (xI,x2) such that
V(xj,x2,t) is maximized.

Proof.

Dfine a(x,, x 2,t) V(x,, x2, t +1)- V(x,, x 2 -1,t + 1) and

P(x1, x2,t) = V(x,x 2,t +1)- V(x -1,x 2,t + 1)
To show V is jointly concave, it is sufficient and necessary to show that a(x,, x 2 , t) and

P(x,1 x, t) are non-increasing in xrand x2. We prove this using induction.

From equations (3-1)-(3-4),
For x, 2 l,x2 >1

a(x., ,x,t-1) = -h 2 + (1- 2(t)A)Sa(xX, , t) + 22(t)A6a(x, x 2 - 1,t)
+ 2 (t)Ada(x, -1,x 2 ,t)

For x, = 0,x 2 Ž1, from equation (3-15), we have

a(x, , 2,t - 1) = -h 2 + (1- A(t)A)Sa(O, x 2 , t) +2 2(t)ASa(O, x2 -1,t)

Sa(O, x2 ,t) if x 2 :•(t)

+ A2 ( t ) A 6a(O,x2 - 1,t) if x 2 -1> 5(t)

vi - g + h2  if x2 -1 I ý(t) < x2

For ease of exposition, we also define f(O, x2 ,t) - (vI + h2 )/6
For x, 2, x 2  1

P(x Ix2,It- 1) = -h, + (1- 2(t)A)SfP(x 1,X t) +22(t)AS2J(x , x2 - 1,t)
+ A2 (t)APfl(xl - 1, x2 t)

For x, = 1,x2  1

(xl, X2,t -1) = -h + (1- A(t)A)Sfl(1, x ,t) +22(t)AS,(1, x 2 - 1, t)

+ (t)A((v, + h,) if x 2 < ((t)
[Sa(O, x2 , t) - h2 + g + h, o.w.

For x 2 1, x 2 =0

P(xl, x2,t - 1) = -h i + (1- (t)A)(x 1,0, t ) 0, t), 2(t)AS/(x ,0, t) + A2 (t)ASl(x1 - 1,0, t)

Therefore, we obtain the following recursive equations:

Regarding the partial difference a(x 1, x 2 ) - a(x 1, x2 -1)
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For x, 2 1, x2 • 2

a(x,x 2,, t -1)-a(x, x2 - 1,t - 1)= (1- 2(t)A)2[a(x1,x 2 ,t) -a(xl,x 2 -1,t)]
+22(t)A[a(Xl ,X2 - 1, t) - a(x 1, x2 - 2, t)]

+ A, (t)AS[a(x, - 1, x2, t)- a(x -1,x 2 -1,t)]

For xi = 0, x2 : 2
a(O, x2 , t -1) - a(O, -a( 1,t -1)

= (1 - A(t)A)9[a(O, x2, t) - a(O, x 2 -1, t)]

+A2(t)Ad[a(O,x 2 - 1, t) - a(O, x2 - 2, t)]

S[a(O, x2,t)- a(O, x 2 -1, t)] if x2 X(t)

S65[a(O, x2 - 1, t) -a(O, x2 - 2, t)] if x 2 - 2 > Y(t)
+ Az (t)A+ Sa(O, x2 -1,t)-(v, -g+h 2) if x2 -2: (t) < x2 -<x 2

(v, - g + h2) -&a(O,x 2 - 1,t) if x2 -2< x2 - (t) < x2

Regarding the partial difference f(x, x2) - P(x -1, x2

For x, > 3, x2 > 1

(x 1 ,x2 ,It -1) -/(x - 1, x 2,t - 1) = (1 -2(t)A)3[fl(x,,x 2,It) -f(x, - 1, X2, t)]
+22x(t)As[f(xl, x2 - 1, t)- -(x 1, x2 - 1, t)

+ A, (t)AS[[p(x, -1,x2,t ) - 1(x -2,x2,t ]
For x, = 2, x2 >

f8(2,x 2 , t - 1) - (1, 2 2, t - 1) = (1 - A(t)A)6[fP(2,x 2, t) - A(1, x 2 t),
+22(t)AS[fP(2,x 2 - 1, t) - (1, x2 -1, t)

()(s (1, x2,t)-(v + h,) if x 2 <Y(t)

t[f)(1,x 2 ,t)-a(O, x2 ,t)]+ h2 -h, - g o.w.

Regarding the cross partial difference a(x, x 2) - a(x - 1, x2)

For x1 2 2, x2 > 1

aI(x1,x 2 , t - 1)- a(x1 - 1, X2, t- 1)=(1- 2(t)A)6[a(x1,IX2,t)-a(x, - 1, x2, t)]
+22(t)AS[a(x, ,x 2 - 1,t) - a(x - 1, x2 - 1, t)

+ A, (t)A([a(x, - 1, X,2t ) - a(xx - 2, x2,t)]
For x, = 1, x2 > 1

a(1,x 2 ,t - 1)- a(O,x 2,t -1) = (1 - (t)A)S[a(1, x2 t) - a(O, x2 ,t)
+A2(t)A-[a( 1,t) - ,t) a(O,x 2 - 1,t)]

0 if x2 < Y(t)

+ A, (t)Ai 3[a(O, xt)-((O,x2 -1,t) ] if x2 - 1 > x(t)

[sa(0, x2 1t)-(v -g +gh) if x-2 - (t) < 2
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Regarding the cross partial difference 8f(x 1 , x2) - ,x1 x2 - 1):

For x, 2 2, x2 > 2

/J(xI, x2 ,t - 1) - l(X , X2 - 1,t - 1) = (1 - 2(t)A)6[fl(Xl,X 2,t) - fl(x1 , 2 - 1,t)]

+ 2 (t)A3[1(x ,, x2 - 1, t) - , xI -2, t)]

+ A, (t)AS[ (x -1,x 2,t) -(x - 1,x2 - 1,t)]
For x I = 1, x 2 Ž 2

(1,x2 ,t- 1) - f(1, 2 - 1,t- 1) = (1- 2(t)A)9S[/(1,x 2,t ) - l(1,,x 2 - 1,t)]
+A2 (t)AS[AL(,x 2 - 1,t)- X(1,x 2 - 2, t)]

0 if x2 < 5(t)

+ A2 (t)A 'a(o, x2 ,t)- (v - g + h2 )if x 2 - 1 <(t) < x2

8[a(o, x2,t) - at(o, x 2 - 1,t)] if x 2 - 1 > (t)

For x, 2 1, 2 = 1

fl(x1,, t- 1)- P(x ,0,t- 1) = (1- A(t)A)b[fl(xl ,1, t ) - ,f(x ,0, t)]
+ A (t)AS[fl(x, - 1,1, t)- fl(x1 - 1,0, t)]

Next we show by induction that these partial and cross partial differences are non-
positive.

We first establish the base case:
Since V(x,, x 2, + T + 1) = sx, + S2 2 ,it is easy to see that a(x,,x2 , + T) = sand

P(X,,X2,r + T) = s1 . Thus a(xl,x 2,x + T) - a(x , 2 -1,r + T) =0

f(x ,x 2, r+ T) - f(x - , X + T) = 0
aa(x,x 2, + T)-a(x - 1, x 2,r + T) = 0

/(x9,x 2 ,5 + T)- l(x 1 ,x 2 -1,r + T) =0
In addition, we have the following:
i) 3a(x,,1, r + T)- (v2 + h2 ) < 0
ii) Spf(1, x 2  + T)-(v, + h,) < 0

iii) 6[P(1,x2 ,r + T)-a(O,x2 ,r + T)]-g +h 2 < 0
Note that i)-iii) are direct results of Assumptions 1 i)-iv).

Induction assumption:
i) Sa(xl,l,t)-(v 2 + h2 ) _ 0
ii) S,(1, x 2 , t)-(v1 + hi) < 0

iii) [f(1,x 2 ,t)-a(0,x2 ,t)]- g + h2  0

iv) a(x,x 2 ,t) - a(x2,x 2 -1,t) • 0
v) a(x 1 ,x 2 ,t)-a(x1 - 1,x2,t) 5 0
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vi) ,f(x 1, x2,t) -/(xx - 1,x2, t) 5 0
vii) P(x, ,x 2 ,t) - (x,x 2 - 1, t) O 0

Induction step:

i)
a(x ,,l, t- 1) = -h 2 + (1- (t)A)Sa(x,l, t) +22(t)A(v2 + h2)+ 2 (t)ASa(xl - 1,1, t)

S-h 2 + (1- (t)A)(v 2 + h2 )+2 2(t)A(v2 + h2 ) + 2 (t)A(v 2 + h2)
= V2

Thus Sa(x,1, t - 1) 5 v2 + h2

ii)
P(1, X2 , t- 1) = -h + (1- (t)A)SP(1, x2,t) +2 2(t)AS3(1, x2 - 1, t)

+ ,(t)A(v, + h) if x2 < x(t)
Sa(0, x2,t) - h2 + g + h o.w.

• -h, + (1- 2A(t)A)3(v, + h,) +Z2(t)AS(v, + h,)

+ A, () (v +h,) if x2 <23(t)

(v -g + h2) - h2 + g + h o.w.

= V
1

(since x 2 > x(t) > ga(O, x2,t ) < v, - g + h2)

Thus SPf(1, x2,t- 1) v + h1

iii)

f(1, x2,t-1)- a(0, x 2, t- 1)

= -h, + h2 + (1 - A(t)A)8[f(1, x,, t) - a(O, x2 , t)] + 22 (t)AS[(1, x2 - 1, t) - a(0,x2 - 1,t)

v, + hl - Sa(0, x,t) if x2 < 3(t)

+ A, (t)A -h 2 + h, + g + g [a(O, x,0t)-a(O,x2 -1,t)] if x 2 -1 > 7(t)

- h2 + hi + ++ Sa(O, x 2,t)-(v1 - g + h2 ) o.w.

_ -h, + h2 + (1 - A(t)A)(-h 2 + g) +2 (t)A(-h 2 + g)

v + h - (v - g + h2) if x 2 < (t)

+ Ai (t)A - h2 + h + g if x 2 -1 > (t)

- h2 + h + g o.w.

_ -h, + h2 + (1 - (t)A)(-h 2 + h, + g) + 22 (t)A(-h 2 + h, + g) + A (t)A(-h 2 + h, + g)

=g

Thus 6[P(1,x2 ,t-1)-a(O,x2,t-1)] • h2 +g

Inductions for iv)-vii) are straightforward from the recursion equations.
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Therefore, we have shown that a(x,, , t) and A(x ,, X, t) are nonincreasing in x/and x2.
O

Proposition 3.7 (Order-up-to Policy)
If the current inventory position at the time of planning is x4, then the optimal order

quantities are (x* -x, X ;) if x4 < x and (0, x 2 (X )) ifx > x1

where (x*,x2) maximizes NW(xl,x2) and (x 2 (x) is defined as the optimal quantities of
the new product given that the planning quantity for the old product is restricted to x.

Ifx0 2 x*, then x2 (x x

Proof.

We can rewrite equation (3-11) as

NWc(xx 2 NW(xx, x2) if x4 < x1

Nc(xlNW(x,x) otherwise

where NW(x I ,x 2) is as defined in equation (3-10).

Let (x x, x ) be the optimal solution that maximizes NWc (xl, x2 , x). We then have

** ** ) X INWc(x, ,x, ) = ctx,
NW ** **

+NW(x ,x 2**) ifx <x 1

NW(x, x 2) otherwise

Thus if x4 < xI , (x*, x42) must be the optimal solution that maximizes NW(x,, x2). That

is, (x ,x2 )(X ,x)
If x0 > X*, then we must have that x**I - I = x and x72 = x2(x) where x2(X ) is the
optimal quantity that maximizes NW(x,, x2) given xI = x4

Next we show that ifx4 2 x, then x2 (0) x

This follows directly from the joint concavity of NW. x2 (X) is the optimal quantity given

x, , thus ONW
aX2 (xo,x2 (x))

a2NW
= 0. Since x > xt and

Ox21x1

NW(xl,x 2) is maximized at (x ,x~), thus aNW
ax2 (x,x;)

0, we have

= 0. Therefore,

aNW
ax 2 (X ,X2(X4))

< NW

ax2 (x;,x;>)

a2NWSince 5 0, this implies x2 (, ) x . O
aX22 -
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Proposition 4.1
h, (r,,x,,x 2 ) is quasi-concave in r, Vxj O 0,x 2  0,t e [O,T].

Proof.

c2h,(x,,x2) - 2 c91 (r,,t) 2 1( t)
2+ [r1  2 - Vt+ (x,,x2 -J V)+ V(+x(x1 - 1,x2)]
lr,l &r, ar21

Substituting equation (4-8) into the second order derivative yields
2h,(x,,Ix 2) = 2c(r t) a22(r, t) /2(r,t)

ar12 r, ar21 ' 1/
Thus for the second order derivative to be negative, we need
2(_ (r_, t) 2  2"(r t)(r

:2( ') a 2 1  Qjlt)
Br, 1 r21

From equations (4-2) and (4-3), it is easy to verify that this condition is satisfied. o

Lemma 4.1

(i) V,+(x,, x2 )- Vt+ (X 1  x2) V,,(x 1 + 1, x2 - 1)- Vt+,(x,,x 2 -1)

(ii) Vt+, (x0,x) -Vt+(xx 2 -+1) 2 +1 (x1 -1x2 + 1) - Vt+ (xI -1,x2)

Proof.

(i) For t=T, this is trivially true because LHS=RHS= s1 .
Assume for induction that

V,,(x,,x2)-V,+,(x , -1,x2) > V,l(x , + 1,x2 -1)-V,+,(x,x 2 -1) Vxx 2

we need to show V(x,, x2)- V,(x, --1, x2) > V,(x +1, x2 -1)- VY(x,, x 2 -1) (4-16)

V (X,,x2) -1 ,(xl - 1, X2)2 ht (r,t* (x - 1, Xz), XX2)- h, (r,* (x, - 1, x2), X1 - ,X2)

1= (r," (x, - 1, X2), t)[Vtl ( - 1 X2) - VW (XI - 2,x 2)]

+2,2 0 (*( -1, x2 ), t)[V+l (X1,X 2 -1)- VA, (x1 - 1,x2 -1)]
+ (1- A ))[Vt+ (Xl, x 2 ) - Vt+ ((xI -1, x 2 )

So [Vt+, (x -1, X2)- Vt+1 (x -2,x 2)]
+ 2 (t* (XI -1  2 , t) [Vt+, (x,,x 2 - 1)- Vt+ 1 (x1 - ,x2 -1)X2

- [V,,, (xI - 1, x2 - V 1 (X - 2, x 2 )]}
+ (1 - 20))[Vt+ (X , 2 ) - Vt+ 1(x 1 - 1, x2)
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V, (x, + 1, X2 - 1) - V, (x, X2 - 1)

Sh, (r, (x, + 1,x2 -1),x 1 +1,x 2 -1) - h, (r,*(x + 1,x2 -1),xx 2 -1)

= o [Vt , (x, ,x 2 -1) - V,+ 1 (x - 1,,x 2 - 1)]

+ 22(r<*(x 1 + 1,x 2 - 1),t){[V,+l(X 1 + 1, x2 -2)- VA+ (Xl,X 2 -2)]

- [V,, (xt, X2 - 1)- VI+ (x1 - 1 - 1)]}

+ (1- Ao)[V,+l (X, + 1,x2 - 1)- V,+,(x,,x 2 -1)]

Define the term to the right of the above equality sign as LB_LHS, signifying an upper
bound of the LHS of equation (4-16)

By induction assumption,

[V,+l ,(x , + 1, X2 - 2)- V,+,(xI,x2 - 2)]- [V,+,(X,X 2 - 1)- V,+I(x - 1,x X2 - 1)] < 0
Therefore

VI(x, + 1, X2 -1)-V,(x,,x 2 -1)

<4 2[V,+l (x,,x2- 1)-VIl(X -1,,x 2 -1)]+ Q1- 4)[VIA (X, + 1 X2 -1)-V,+,(XIX 2 -1)]
Define the term to the right of the above inequality sign as UB_RHS, signifying a lower
bound of the RHS of equation (4-16)

LB LHS-UB RHS

= o {[V+l (xI - 1,x2)- V+1, (x, - 2,x 2) -- [V+1 (X1 X2 - 1)- V+(x - 1,,x 2 - 1)]}

+(1-21)){[V+ (x,,x 2) - V+1(x -1, x 2)]- [V1 (xI +1,x2 -1)- V+(x, x2 -1)A}

= Al (r,* (x, -1, x2), t){ [V+ (xI -1,x 2) - V,+1 (x1 -2,x 2)] - [Vt+, (x,, x2  + - 2 1)]}
+ (1- 4)) {1 [V+, (x,, x2) - V,+, (x, - 1, X2) - [Vt+l (X1  + 1, X2 -1)- 1)-- 1, A)1(x, 2 -1

Again by induction assumption, the two terms within the curly bracket are both non-
negative. Therefore, we have

V (x 1,x 2) - Vt (xI - 1,x2) 2 LB LHS > UB _RHS 2 V, (x, + 1,x2 -1) - V(xl,x 2 -1)

Note the above analysis only considers the case x1, x2 2 2. We also need to show

Vt(1,x 2)- V(O, x2) > V,(2,x 2 - 1)-V,(1,x 2 -1)
V, (x, ,1) - V, (x, -1,1) > V,(x I + 1,0)- Vt(x1 ,0)

V, (1,1) - Vt (0,1) 2 Vt (2,0) - V, (1,0)
We follow similar inductive methods to show these are true.
We prove (ii) similarly.o
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Proposition 4.2

Vt (x 1, x2 = VI l(x , x2

+ o[r,*(x,,x 2 )-1-(VI+I(x,x2 ) -Vt.(xi - 1,x 2))] (4-10)

Vx 1 2 1,x2 20,t e[0,T]

where the optimal price is given by

rt (X,,X2) = r+ + (V,+I (x,x 2 - 1)- V+ (x - 1,x2) )  (4-11)
(4-11)

+ LambertW(ea (2)-2 (t)-(V,+1 (X~ ,X2 -)-V,t+ (x1 -' ))-

and

r,* (,0) = -P 2 + 1 + (V,1 (x,,0)- V+1 (x1 - 1,0)) (4-12)
+ LambertW(ea (I)-a2 (t)-(V,+l (X•,O)-V,+ (x, -1,0))-1)

If x1 = 0, the optimal price of the old product is the highest feasible price r, (0,x 2 ) =
and
V, (0,x2) = V (0,x2 O)-Ap + p(,t)[r2 + •1 - (Vt+ (0,x 2 )-V, (0,x 2 -1))] Vx 2 0
In addition, V,,+(x,,x 2) = six 1 + s 2x 2.

Proof.

Since rt* (x , x 2 )maximizes h,(r,,x ,x2 ), we have from equation (4-4) that

Vt (x,, x 2) = 1 (r,* (X X2 ),t)(r*t (, x2) + Vt+, (X - 1, x2))

+ 22 (r (X1, 2),t)(r2 + V,. (x,,X 2 -1))

+ (1 - Ao)VI+l (XI X2 )

Because A, (r, (x1 , t) + 22 (r*t (x, X2 ),t) = ,o, we can rewrite the above equation as

Vt (x,, x 2)= V,+, (XI X2)

+ [0 - 2 (r* ("1 2 ), t)1(r," (X., x 2 + V,,+1 (x, - 1, x 2  V,, (x, x 2 ))

+ 2 (r, (X ,X2),t)(r2 + V++1 (X1 , x 2 - - V1) t+ (X, X2

= Vl (X1,X 2)+ 2 0 (rt (X1,X2)+ VIA (x1 -1, x2 )- Vt+(x,X 2))

+ 2 (rt* (XIX2 ),t)(-r,* (,,x 2) + r2 - VI , (x1 - 1, x2)+ V+1 (XI, 2 - 1))

= V,+1 (X, x2 )+ 0 (rt (X1,X 2) V 1(x 1 -1, X2)-V+A1 (Xl,X 2))

- AOP 2 (r,* (XIX2 ),t)(r,* (X1, X2 ) - r2 + Vt+, (x1 -1,x 2) - V 1 (x,,x 2 -1))

From equation (4-8a), the last term is equal to - 10. Therefore

V, (xx 2 ) = V+1 (x,x 2 ) + 0 t X, x2) - - V, (xx2 --(k (XX 2  Vt+- (xI -1,x 2 ))]

Similarly, from equations (4-6) and (4-9), we obtain

V, (x,,0) = V, (x,,0) + 20 [r,* (x,,0) - 1- (V,+, (x,0) - V,+ (x1 - 1,0))].
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If x, = 0, the optimal price of the old product is the highest feasible price r* (0,x,) = x2

thus from equation (4-5), we have

V (0,x 2) = F1 ,t)(-p 1 + V 1 (0,x 2)) + 22 (',t)(r2 + V,1(01 ,x 2 - 1)) + (1-2 0 )V1 (0,x 2)

= V,+, (0, x 2) + / 1 ,t)(-p 1 )+2(,t)(r + 2 Vt+ V1 (01, x 2 - 1)- V+ (0, x 2))

= V,,, (, x2 )+( 0 -2 (,t))(-P 1)+2 (F,t)(r2 
+ Vt+,(0 ,,x 2 -)- V 1 (0, x2))

= Vt+ 1, (0,x 2)- 0P1 + 2 X,t)(r2 + P1 + Vt+1(01,x 2 -1)- Vt+1 (0,x 2))

= Vt+ (0,x 2 ) - 0 P1 + 0 p 2 0,t)[r2 + p1 - (Vt1 (01 ,x 2)- Vt (0,x 2 -1))]

Proposition 4.5
If 3T e [0,T] such that ea' ( )- a2 ( )+r2 +P2 - e - < E, where E is a very small positive number,
then r,1_,(x,, x2 ) r,(x,x 2) V 1,x 2 2 0andt e[i,T].

Proof.

(i) First we consider the case when x, Ž 1 and x2 Ž 2.

Note that Vt,(x 1,,x2  I ) V,(x, - 1,x2) [-r2 - P2 + er + p - e2]
Thus a,(t)-a2(t)- (V(x,x2 - 1)- V,+(x 1 - 1,x2))- 1 < a,(t)- a 2(t)+ r2 + P2 -e-1

Thus if ea' (7)-a2(T)+r2 +-2 -' < e , then e 'a, (F)-a 2 "()-(V+1 (XI IX2 -'•-Vt+2 (XI -1-X2 ) 6
From Assumption 4.2, a, (t) - a2(t) decreases in t.

Therefore e" (' )- ' (')- (V' ' (X' ' 2 - )-V +' (X' - '1 ' ))- I < 6 Vt e [,T].

When e is small enough, the LambertW function term in equation (4-11) becomes
negligible. We then have from equations (4-10) and (4-11) that

r,*(xt,x2) = r2 +l + Vl(xD,x2 -,1)- V 1(XI -,x 2) Vx 1 ,x 2 > 0 (4-11a)

V,(x 1 ,x 2) = V,+I(x 1,x 2)+ ±o[r2 +V4t(x,x2 -1)- Vt+I(x,x 2 )] Vxx,x2 > 0 (4-10a)

Therefore,

V (xI,x 2 - - V,(x, - 1,x2 ) = Vt+(X,,X 2 - 1) - Vt+, (x -1,x 2)

- O {[V,t, ((x,,x 2 - 1) - Vt+ (xIx 2 - 2)1- [V+, (x, -1, X2 -V,, (x, - 1,x2 - 1)1
VxI, X2 >0

The term within the curly bracket is non-negative from Lemma 4.1. Hence

V (X,, X2 - 1)- V (x1 - 1,x2) < V+1 (X1,x 2 - 1)- V,+1 (x1 - 1,x2)
Substitute the above inequality into (4-l1 a), we have

r,~*(xI,x 2)<rt*(xi,x 2) Vxt• l,x 2 2, tE[T,T]

(ii) Now consider the case when x, 21 and x2 = 0.
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As +, (x,,0) - V,+, (x, - 1,0) e [el, r, + p,]

a, (t)- a (t) - (Vr+ (x, ,0)- V,1, (x, - 1,0))-1 < a, (t)- a2 (t) - e -1
<a 1 (t)-a 2 (t)+r 2 + 2 - e -1

Therefore, if ea,'( )- a2(')+r2 P2 - ' < e, then clearly
ea,< )-a2 '(t

-(V,- (x,O°)-V, (x -1,o))-1 <e6 Vt e [7,T]. As a result, we ignore the LambertW

function term in equation (4-12) to obtain

r,*(x,,0) = -P 2 +1 + V (1 ,0) - VJ+1 (xI - 1,0) (4-12a)

V, (x,,0) = V,+1 (xI ,0) - p2
It follows that
V, (x,O) - V, (x, - 1,0) = V,,, (x,,0) - V,+ (x - 1,0)

Substitute the above inequality into (4-12a), we have
r,_l (x,,0) = r,'* (x,,0) Vx, 2 1, t [,T]

(iii) If x, > 1 andx 2 =1
V,(x9,x 2 1)- V(x 1 -1,x 2) = V+ 1 (X, x 2 - 1) - VI (x, -1,x 2)

-2 {r 2 - [V+1 (x1,1)- V+1 (x1,0)]} Vx1,x 2 > 0
The term within the curly bracket is non-negative because

t+ 1 (x,,1) - V,+, (x,,0) < r2 + P2
Substitute the above inequality into (11 a), we have

r,*,(x 1,1) r,*(x 1 ,l) Vx,,x 2 > 22, tE [,T]

(iv) If x, = 0, the optimal price of the old product is the highest feasible price
r,'(0,x2 ) = i, which satisfies r,*(x, x, 2), r,*(x,x2) Vt E [, T] trivially, thus finishing
the proof. o

Lemma 4.2
The first order condition for the optimal fixed-price is

AI (r)- GA (x,) + r[(r 1 +VQ, x• -1, x2))-(r2 + V(r, , x1,X2 -1)] = 0 (4-13)

where GA, () is the Poisson loss function for the random variable D,.

Proof.

V"F (r,,x ,x2)= E[r, min(D,,x,)-(D, -x,) + p, + (x, -D,) + sl]D,

+ E[r2 min(D2 ,x 2 )- (D2 -x 2) + 
2 +(x 2 - D2 )+s 2]D2

where D and D2are Poisson random variables with mean A (r') = o 21(ri,t)dt and

A2(r') = 1 2A (r,, t)dt respectively.
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Therefore, we can rewrite

VFP(r,,x,,x 2 )= P (Al)[nr
n=O

x2

+ •P (A2)[
n=O

A" e-n
where P, (A) = - is Poisson density with mean A.

n!
d d

Note that P, (A) = P,_- (A) - P,(A), thus P- (A) = (P,, (A) -
dA dr,

dAPn (A))dr,
(4-17)

x o

Define V,(r,x,)- ZP,(A 1 )[nr, +(x, -n)sl]+ ZP,(A1 )[x,r, -(n-x,)p, ]
n=0 n=x +1

x2

and V2(r1,x,2) - P,(A 2)[nr2 +(x2 -n)S 2]+ P(A 2)[xr2 X-(n-2 )P2
n=O n=x2 +1

We then have,
a , (r
d1

x' dP(A,)
,x,)= d "{ ( [nr1 +(x, -n)s, ]+ P,(A,)n}

n=O dr,
+ dP (A )

+ =x1 + dr1 [xr -(n-x,)p,]+P(AI)x,}
n= xl +1 dr

Substituting equation (4-17) into the above yields the following after some simple but
tedious algebra:
aV,(r

8r1

dA, [V
dr,

-V,(rl,x,)]+ ±-, + A, -GA, (x 1)dr,
Similarly, we obtain

-V 2 (r
5r,

dA2
dA2 [V2 (, , X2dr, dr,

Therefore,

Vk P (r
ar, xI,x 2) = - V(rV,x,)ar, + v (r, X2)

=A l - GA (x ) + d• V, (,, x,dr
dA ,

1)- Vl (r, x)] + r
dr,

dA 2  dA=+ 2 V2 (r, 2 -1)- V2 (r, 2) + r2dr, dr,
We know that dA1 = -dA 2 , thus

SvP(r, x, x,.x 2 )= A -GA, (XI)+ dA - r2 - [V
ar, dr,

Therefore, the first order condition is

Al - GA (x, )+ {r -r 2 -[VFP(r ,x,x 2 -dr,
1)-V"(r5 ,x, -l,x 2)]} =0.
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n=x +1
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n=x 2+1
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Proposition 4.6
(i) If x,, x 2 - oo, r,F (X,,X 2 ) decreases in t.
(ii) If x,,x2  2oo, rF(xx 2)< rt*(x,1x 2)

Proof.

From equation (4-13), rF(x, - oo, x 2 -+ oo) satisfies

A, (r, t)+ d [(r1 - s,) - (r2 - s)] = 0
dri

FTP (rl,,r)p 2(r1,r)dr
equae yV IL LJ

Note that the term

r1 -s , )- (r2 - S2)] = 1 (4-18)
pl(rl,r)d-r

AP (rl ,r)p 2 (r )dr
is a weighted average of p 2 with weight equal

p, (r,, r)dr

to p, (r,, r) at each r. Since p, (r,, r) decreases in t and p 2 (r,) increases in t, as t
increases, more weight is given to larger values of p 2. Therefore,

fTt p (r, T)p 2 (r1 , r)dv

fITp, (r,, r)dv
increases in t. From equation (4-18), it is clear that

rF(x 1 -> oO, x 2 -> 00) shall decrease in t.

From equation (4-2a), r,*(x, -> , x2 -> 00) satisfies p2 (r1,t)[r, -s, -(r -s 2)] = 1

Since p 2(rl,r) > p 2(rl,t)Vr > t, we have J

(4-19)

> p2(rl, t).

Compare equation (4-18) with equation (4-19), we then have r,P (00,00) _< r,'(00, 0).0

Lemma 4.3

(i) P, solves In (r [(r1 - S) -(r 2 -S 2)](p 1(r1,t)-p 1 (r,T)) = 0.
P2 (r ,t)

(ii) - solves In P2(rT) -( St -s +p)( 1 ,t) - P(r,T)) = O

P2 (r,t)
(iii) , < •,.
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Proof.

VD(rx,,x) = r1 min(D,x) - (D, - x,) p, + (x - D1)+s ]

+ r2 min(D2 ,2 )- (D2 - x2)+P2 + (x2 - D2)S2]

(i) IfD1 < x, D 2  2 x 2 , then

VD (rl,x) = ( -S1 -S(r2 -S 2))D, +(r2 -S 2)Do +x s, +x2 S2

ddD
VD(rlx2)= D + (r -s, -(r 2 -s 2) (4-20)dr1  drj

Substitute Assumption 4.4 into the demand, we obtain first order condition
In p' (T)In W2 1 - S) (r2 - S2 (t) - p, (T)) = 0

P2(t)

By Definition 4.5, , solves the above equation.

(ii) IfD1  x1, D 2  2 , then
V D (r ) = ( 1 + P2 - S)D + r2x 2 + x 1s 1 - P2 Do + P2X 2

d dDd V (r,x 1 2)= D1 +(r -s + P2) 1
drt dr,

Substitute Assumption 4.4 into the demand, we obtain first order condition

In P2 -(r1 - S1 + z)(Pl (t) - p(T)) = 0
P2 (t)

By definition 4.5, F solves the above equation.

(iii)

r1 - si + P2 > (r - SO) - (r2 - S2) , thus it is obvious that

In (T) _ (F - s - (r2 - S2z))(P (F1 t) - pl (, T))

> In T2 (F - s, + Pz)(P ,t) - , ,T)) = 0

p 2 (5 t T)
As In t -, -s ( 2 - S2 ))(P(, t)-P1(, T)) = 0, and

P2(t)n optimality)- , it should - ( 2 - S)1(t)- (T)) is decreasing in r,(second order condition

of optimality), it should be that t' • r, .r
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Proposition 4.7
If rod (t) > rnew(t), rD (x, x2) = max(rlold (t),it)

If rld (t) < r"ew(t) , then
rD (x,x 2) = max(r,"",-) if n > rnew and r," (x,,x2) = max(rlold, • ) otherwise.

Proof.

For a given pair of (x1 , x2 ) and a time t, we can easily obtain r1old , rnew ,, and ft. The

problem is to determine r, (x, x2) that maximizes the deterministic value

VD (rx1,IX 2 ) = rl min(D,,x,)-(D, - x)' p, + (xI - D1 )'s]

+ r2 min(D2 ,x 2)- (D2 -x22 ) 2 +(x2 -D 2)+ s2]

We separate into 2 cases:

(i) ri"d (t) > rlnew (t)

Al B I C

rlnew 
rold

Consider 3 intervals A, B and C
For r, E A, D, > x1,D 2  x2 , thus

VD (Q•x2) = x1 -(DI - X)pl +r2D2 + (x2 -D 2 )S2

=rx1 -(r 2 -S 2 + p)DI + xp,1 + x2s 2 -D 2s 2

dD
Because r2 - s2 + Pl >0, D-' <0, therefore the above first order derivative is always non-

negative. Hence the optimal r, within A is r"new. Thus we can ignore interval A.

For r, E B, D1• x,,D 2 > x2, thus

VD ( X1 2) = 1 -(P - P 2)D, - p2Do +p x1 +r 2 2 + p 2x2

d
We assume p1 = p2, thus rV' (r,,x ,x 2) = x2 1 0, therefore the optimal r, within B is

rld. Thus we can focus on interval C only.

For r, E C, D 1 • x.,D2 > x2 , thus

V rD xI , 1 2) = (r + P2 -s 1)D1 +r 2 2 + X1s -p 2Do +P 2x 2

115



From Lemma 4.3, ;, solves the above equation. However, if the 7 that satisfies this

equation is not within interval C, i.e., j < r, od , then the optimal r, within interval C is
old

Therefore, the optimal r, when rold(t) > rew(t) is r,D (x,x 2) = max(r (t),).

(ii) r °old (t) < rinew (t)

Al B I C
old new

Again consider 3 intervals A, B and C
For re A, D1 > x,,D2 < X 2, thus

D (r, x) = rx - (DI - x,)p 1 +r2D2  (x 2 - D2 )s 2

= rx -(r 2 -S 2 + p1)DI + x1p1 + X2S2 -D 2S2

d dDD (r ,x,x 2)= X1 -(r 2 - S2 + p 1)dr, dr,
dD1Because r2 - s 2 + p1 >0, dD <0, therefore the above first order derivative is always non-
dr1

negative. Hence the optimal r, within A is rold . Therefore, we can ignore interval A.

For r, E C, D1 < x, D 2 Ž X2, thus

VtD (r, ,xx2) = (rI + P2 - S1 )D1 + r2 2 + XISI - P2 Do + P2 X2

By Lemma 4.3, ?it solves the above equation.

For r5 e B, D 1 • x1 ,D 2 • X2, thus

(r , ) = (r - S1 -(r 2 - S2))D, +(r2 -S 2)Do + xs +x 2s 2

By Lemma 4.3, t solves the above equation.

Again we need to consider the scenarios when the above equations yield solutions that
are not within the specified interval.

Since < , , we only need to consider the following cases:

(a) rnew (t) t

Apparently r~"ew is optimal for interval B. Thus we only need to focus on interval

C, the optimal solution in this case is rtD(xx) =

(b) <! rn"ew( t ) < ^,
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<j r"ew(t) means r,"e is optimal for interval C and r,"" (t) < ^ implies that r"ew is

optimal for interval B. Therefore r,D (x1,x 2) = r,"' .

(c) 5 5 r<new(t)

As in case (b), we only need to consider interval B. If i is also greater than rljld

r,D ( 1 2 )= rt . Otherwise, rd is optimal. That is, r,D(x,x 2) = max(rlOd,t)

Therefore, we have:
If rold (t)> rnew(t) rD (xI, 2) = maX(rold (t),)

If r1o (t) r," ew(t) , then

if r,"" (t) _ f•,, rD(x,,x2)=

if < rnew(t) < , r,D (x,x 2)= l new

if r _ • _mnew(t), rtD(xIx 2 )= max(ri°d,t)

This can be further simplified to:
If r'~"(t) > rmnew(t) rD,X = maxOld(t), )

If r,°d (t) r•iew ( t), then

r•D (xI,x 2) = max(tr"w,',) if ne > rjew and rD(xt,x 2) = max(rold,Pt) otherwise. o

Proposition 4.8
(i) If x,, x2 -oo, rtD (x, x2) decreases in t.

(ii) If x,,x 2 ->oo, tFP(xI,X2) = r,D(x,,x2) rt*(x 1,x2)

Proof.

When x, ,x2 - 00, equation (4-13) is equivalent to

(r) dA (r)A (0 dr+ [(r, - s)) - (r2 -s 2)] = 0 where A, (rl)= A, (r,, t)dt.

From equation (4-20), the first order condition for r~ (x,x 2) when there are plenty of

inventories is D, + (r, -s, - (r2 - s2)) = 0 where D, = T (r, ,r)dr. Therefore
dr,

rFP (Xl, x2) = r• (x, x2 ). It follows then from Proposition 4.6 that rD (x1 , x) is also
decreasing in t and r(x x 2 ) r* (x2, x2 ).

Proposition 4.9

1 > JF(x,,x2) JD(X ) > JLB (x )
J*(x,,x) - J(X J*(X 2)
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Proof.

Clearly the solution to the fixed-price problem is a subset of the optimal dynamic pricing
solution. Therefore JP (X ,X2) J*(x, x2). Because r,f(x1 , x2) maximizes

VFP(r, ,x,,x 2), we have JFP(x,,x 2) JD(X ,XI2)

VFP (r,,x,x 2) = E[r, min(D,,x 1)-(D 1 -x,) ' p , +(x, -D1)'Sl]

+ E[r2 min(D2,x 2)-(D 2 -x 2)+P2 +(x 2 - D2) s 2]D2

= E[(r, -s,)DI + xs, -(r 1 -s, + p,)(D, - x) +]
D,

+ E[(r2 - s2)D2 + x2s2 - (r2 - S2 + p2)(D2 -x2) + ]

T
where D, and D2are Poisson random variables with mean A, (r1) = J Q(rl, t)dt and

A2 (r1) = 2 2(r, t)dt respectively.

For a random variable D1 with finite mean and variance A1, we have (from Gallego 1992)

E[(D - x)+ A + (x1 -A 1) 2 -(x 1 -A 1)
D, 2
Similarly

A2 + (x2 - A2) 2 - (x2 -A 2E[(D2 X2)
+ ]<

D2 2
Therefore

JD (XIX 2)ŽxIsl +(rD -s,)A 1 -[jA 1 +(A -x) 2 -(x, -A,)]/2

+ x2s 2 +(r 2 -S 2)A 2 -[ A2 +(A 2 -x 2) 2 -(x 2 -A 2)]/2

= JLB(X 1 2)

Proposition 4.10
If x,, x2 -- oo, a necessary condition for re-price in the two-price policy is

r. > r,*(x,,x 2 ) or r0 < rFP (X , X2).

Proof.

equation (4-15) gives a necessary condition for re-price.
H, (Xl IX2) - nH,+ (X,, X2) > -1 (ro , t)(ro + Ht+l (X - 1, x2) - nH,+ (Xl ,X2) )

+ A2 (r0, t)(r2 + H,,,(x, x 2 - 1) - H,,,(x,, x 2))
From the definition ofH, (x,, x2) ,
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H, (x,,x 2) - V (FP r, (X,X),,1  X2) 2 (1 ,t)(ro +H, (X - 1,x 2) - H,+ (x,,x 2 )) (4-21)+ 2 (ro, t)(r2 + H, (x,,x 2 - 1)- H+(XX2) )  (4-2

If X1, x 2 -- C ,
LHS of (4-21) -- 2, (rFP (x, x 2), t)(rF (x,, x2) - S) + 2 ( (r (X2,X), t)(r2 - S2)
RHS of (4-21) -+ * (ro,t)(ro - s,) + A2 (r0 , t)(r2 -s 2)

LHS - RHS = 2 (rP' (, ,x2),t)[(r,FP (X ,x2  s,)1) - (r2 - S2)]
- & (ro, t)[(rO - s) - (r2 - S2)

Define A(rl,t) - ,ý(r,, t)[(r, -s,) )-(r 2 - s2)], then

LHS - RHS = A(r,FP (1 ,X2 ),t) - A(ro,t)

Thus a necessary condition to re-price is A(r FP( x ,x 2 ),t) > A(r o, t)

8 o&(r,,t)9A(r, t) = 3,(r,, t) + [(r1 - s) - (r2 - S2)]
r, ar,

Observe that A(r,t)= 0 is the optimality condition for r,* (x1 , x2) when x,,x2 -
ar,

Hence if rFP (x,X 2) •o 0 1,* (XIX 2), A(r FP (X 1,X2 ), t) < A(ro,t), i.e., no re-price is

necessary.

Therefore, a necessary condition to re-price is ro > r,'(xl, x 2) or ro < rFP(x ,I 2 ) .-
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