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Abstract

We investigate the use of an Amptek Cool-X X-ray Generator for an instructional
tool in the physics of x-rays, as well as a source for x-rays for crystal diffraction
experiments. The x-ray source is a solid-state two-phase air-cooled source with a time-
varying photon output. Two detectors are used in this experiment, the first being an
Amptek X-123 Spectrometer and the second a combination scintillator/Polaroid film
setup. We collimate the x-ray beam and determine that the system, although low
flux and low resolution, will function as a quick and easy tool for the investigation of
x-ray physics.
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Chapter 1

Introduction

The Cool-X X-ray Generator (Cool-X) [21 is a thermoelectrically cooled solid state

x-ray generator. Although this source is small and low-flux (_ 108 photons/sec), it

is an attractive x-ray source for many applications. Low-flux sources are ideal in an

educational environment, as they are easier to shield than their larger, more powerful

counterparts. We will be investigating the use of the Cool-X as a low-flux x-ray source

for use in an academic setting as a tool for illustrating x-ray physics and diffraction

phenomena, such as Bragg diffraction.

In Chapter 2, we will discuss the properties of the Cool-X source and the methods

used to collimate the x-rays produced.

In Chapter 3, we will examine the various methods available to us for x-ray de-

tection. We will examine the properties of the X-123 Spectrometer and XR-100CR

detector, as well as discuss phosphor screens and Polaroid film recording devices.

Chapter 4 contains a discussion on the properties of crystal systems and the Bragg

equation, what could be called the most important equation in x-ray diffraction.

In Chapter 5 we discuss the experimental procedure used to acquire acquire film

exposures utilizing our collimated x-ray source. We show the results obtained after

exposure.

Chapter 6 concludes our discussion and summarizes the next steps necessary in

using the Cool-X source as a diffractometer.





Chapter 2

Cool-X X-ray Source

2.1 X-ray Production

The heart of any x-ray system is the x-ray source. For many x-ray experiments,

sources such as synchrotrons, linear accelerators, rotating-anode tubes, and flash

tubes are employed for reasons including the ability to tune the radiation to a specific

wavelength, the need for a very large flux for long periods of time, or the need for a

very short-lived pulse of x-rays [4].

The x-ray source discussed here possesses a different mode of operation. The Cool-

X X-ray source, developed and distributed by Amptek, Inc., uses a pyroelectric crystal

to generate x-rays [2]. Pyroelectric crystals, such as LiTaO3 or LiNbO3, react to a

change in temperature at an appropriate pressure by creating an electric field that, in

a semi-vacuum system, will drive electrons in the gas away from the crystal and into a

target. The electrons will then stop within the target, emitting characteristic x-rays

on top of a bremsstrahlung spectrum. The crystal is also mounted on a Cu seat,

such that when the heating elements heat the crystal, electrons are driven towards

the Cu target, and during cool-down, electrons are driven at the Cu seat. We see the

Ka and the KO peaks quite clearly above the bremsstrahlung spectrum, as shown

in Figure 2-2. If you cycle the heating and cooling of this crystal, what emerges is

a time-changing x-ray flux that is characteristic of the target material. This flux is

emitted from the target isotropically. See Figure 2-1 for further elaboration.
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Figure 2-1: A schematic of the Cool-X x-ray source. Image courtesy Amptek, Inc.

The source employed during this work utilizes a Cu target for generation of x-

rays. We must be careful not to run the source for too long, as continued use can

damage the crystal elements in the source, resulting in a decrease in flux. We kept

the exposure time to under an hour and a half per day, as Amptek has advised [2],

will be made.

The Ka line we see in Figure 2-2 at 8.04 keV with a FWHM of 0.20 keV is actually

a superposition of two peaks of lesser intensity, the Kal and Ka 21 lines, which have

relative intensities compared to the peak of the spectrum of 0.94 and 0.34 respectively

[5]. Figure 2-2(b) does not have the resolution to see this peak separation, since the

detector employed has a FWHM of ; 150eV. The Kf line at 8.90keV with a FWHM

of 0.13 keV is likewise composed of multiple lines, in this case, five, but again, our

system doesn't have the resolution to observe this. Figure 2-3 diagrams the transitions

that give rise to the Ka and K/3 lines.

The source is internally collimated, in that the housing for the apparatus absorbs

all of the x-rays that are not emitted through the window. The window is a 250
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Figure 2-2: The output spectra of the Cool-X x-ray source.
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ym thick pure Be window. This window allows the transmission of x-rays from

the target to the outside world, while maintaining a semi-vacuum and minimizing

the attenuation of the Cu Ka and KO radiation. The profile resulting from this

collimation is discussed in Section 2.4. The collimation resulting from the housing

is insufficient for the purposes of crystallography, as it is widely divergent, but the

addition of a second collimation stage will help make the beam more suitable to our

purposes.

2.2 The Collimator

The object of our collimator is to make the x-rays as parallel as realistically possible

upon exiting the collimator. We require this as a condition for crystallography; it

is possible to do crystallography with divergent beams, but the more divergent the

beam, the more "smearing" of the diffraction pattern occurs.

Figure 2-4: Diagram of the collimator design for the Cool-X x-ray source. Figure not
to scale.

Figure 2-4 demonstrates the setup for our collimator. We have chosen a collimator

scheme where convergent beams from the edges of the source cross at the center of

the collimator. The maximum angle of divergence, 3, for small 0 is

2dtan j3 = 0 = - (2.1)

However, to use this setup, we have a constraint on the geometry, as Equation 2.1



immediately implies that

h 2d 2vtan ; = =- = h = d - 1 (2.2)
v - u/2 u 1

which gives us the conditions our dimensions must adhere to in order to use our

formula for the maximum divergence angle of our extended source.

Another consideration for this collimator is that we are attenuating the beam

considerably if we want to decrease the divergence of the beam to a level where tan 0

is small enough to be = 3. If our source was a point source, we could easily calculate

this; we would have a spherical wavefront propagating out of our source, and so the

intensity would only decrease by the ratio of d. However, our source is not nearly

a point source, and so we must do more work to get a more accurate value for the

intensity after collimation.

2.3 Collimator Attenuation

We will begin the analysis of our extended source, like [81, with a generic source inten-

sity distribution, s (x,, y,) and detector intensity Id (Xd, Yd) where (x,, y.) and (Xd, Yd)

represent the source and detector coordinates respectively. We insert a generalized

collimator in between source and detector and give it a space-dependent attenuation

coefficient .o (x, y, z) with general space coordinates. See Figure 2-5 for clarification.

An infinitesimal projection of the source intensity s(x,, y.) on the detector plane,

neglecting any attenuation, has the form of

dIi(xd, Yd) = dIo cos 3 0 (2.3)

The cos3 0 dependence can be interpreted as such: we get one factor of cos 0 from

the obliqueness of a projected circle on the detector area, and a factor of cos2 9 from

the ' dependence of the increasing infinitesimal spherical wavefront propagating from

the source element. For further detail see [3, 81.

We define dIo as being the infinitesimal intensity element on the axis such that
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Figure 2-5: Diagram to illustrate variables used in intensity calculation.

x- = Xd, ys = yd such that

do s (x,, y) dxdy, (2.4)dlo = 4r (2.4)
4ird2

We now look for a way to write cos 03 in terms of the position variables so we can

do an integration in Cartesian space. We find the simple trigonometric relationship

d 1
cos 0 = d= cos3 0 = 3 (2.5)

d2 + (Xd - X8 )2 + (yd - Ys) 2  1 +

where rd, = (xd - x) 2 + (Yd - ys) 2 .

If all our system was was the source and the detector, this would be a very good

first order attempt at modeling the system. However, we have a collimator, which we

provided for by inserting the general object into our system (see Figure 2-5). We will

insert a general object into our path before specifying that we have a collimator and

not a malformed blob.

Our detector intensity now takes on the form



did = dl, exp - J Po(x, y, z)dl (2.6)

where dl = vFdx 2 + dy2 + dz 2 = dz 1 + ~)2 2 It would simplify our com-

putation immensely if we changed our coordinates from (x, y) to (x8, y,) or (xd, Yd),

and so we'll parameterize our equation with

Xd - Xs Yd - Y.7
x- d z+x, andy = z + YS (2.7)

This parametrization comes from writing down the equation of the line that our

infinitesimal source element is shining through. This is also seen through magnifica-

tion effects on the object and the source [8]. Substituting our parametrization back

into Equation 2.6 and integrating over the source and detector variables we are left

with the following:

Id(Xd, Yd) = d(xsYs7XdYd)le~xaya) = dld(as s, y, a, yd)
1 ..s(xy 8 )

47rd2 f23
F1+ (!dd

exp- 1+ fP2 0 d X8 7 YdYsZ + ys) dz (2.8)

Equation 2.8 gives us a straightforward method of computing the intensity on the

entire detector surface, given a model of the object we are examining. In our case,

we are examining a collimator, so we can construct a model of this collimator and

insert it into our equation to get a numerical estimate of the attenuation due to the

collimator.

Our collimator simulation is fairly straightforward. The collimator is basically a

hole surrounded by a high absorption rate material (Al, in our case). This is easy to

implement in a numerical situation, and can be added easily into the integration that

occurs to get Id(Xd, Yd).



Another approach, which yields the same answer, involves analyzing a point source

as the x-ray travels through a series of infinitely thin sheets on the z-axis. This

approach naturally leads us to a convolutional representation of our intensity of the

form

_ 1 /( d ' XjY\
Id(Xd, d) -- s , * exp -- , ) (2.9)

where r is defined by

o0(x, y, z) = r(x, y)6(z - z0) (2.10)

with m = d and M - d.
z z

The same model we made for pLo(x, y, z) would suffice for this computation, with a

slight change to account for the delta function in z. For our purposes, both equations

are equivalent in terms of coding, and so the prior method of direct integration is

used.

2.4 Source Distribution

The source distribution s(x., y,) is crucial to the calculation of out intensity distri-

bution Id(Xd, Yd). If we had a simple point source, as explained in 2.2, we would have

a delta function source that would eliminate the need for our integration. However,

due to the non-point distribution of our source, we must be very careful about how

we model it.

It would be simplest for our simulation model if the surface of our source emitted

uniformly and isotropically, as we could then simply insert a uniform intensity for

our function s(x,, y,) and be done with it. We should expect the radiation to be

emitted isotropically, as the processes going on inside of the Cu target producing

radiation (bremsstrahlung emission, absorption and re-emission as Ka lines, etc.) are

all occurring isotropically throughout the target.

As seen in Figure 2.4, the output of the Cool-x is fairly uniform through a 180

degree arc in front of the source, with a fairly sharp drop-off at the edges. This
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Figure 2-6: Angular intensity distribution of the Cool-X source. Figure courtesy
Amptek, Inc.

fits with what we predict well; as in Figure 2-1, the target is located behind the Be

window and enclosed by an aluminum housing. This housing prevents x-rays from

leaking out any other way than through the Be window, and the short neck of the

housing also cuts off low-angle radiation from the source.

What we see across the face of the Cool-x is an uniform output, which is what we

expect when being directly in front of an extended source. We see that our assumption

of isotropism for the creation of our x-rays is not a bad assumption.

This implies that we can approximate our source function s(x9, yM) as uniformly

projecting in the forward direction. While the edges of our source might be less than

the middle in terms of intensity, the elements at the edges of the source will ultimately

contribute far less to the overall intensity of the spot at the end of the collimator,

and thus the defects can be ignored for our first-order approximation.

2.5 Intensity Reduction from Collimation

Using our newly acquired s(x,, y,) in Equation 2.8, we can now analyze this function

for our particular experimental setup. Although this function may not have a nice

analytical solution, it is a straightforward matter of numerical calculation. Using

Matlab, we can write a simulation that will compute the intensity Id(xd, Yd) on a

plane at the end of our collimator. The limiting factor of our resolution is the compute

time needed per operation, as numerical calculation requires integration across five

variables. We shall use measured fluxes for our experiment in place of Equation 2.8.





Chapter 3

X-ray Detection

3.1 X-123 Spectrometer

The device used in this experiment to measure the output spectrum of the Cool-X

source is an Amptek X-123 Spectrometer coupled with an XR-100CR detector. The

X-123 acts as a multi-channel analyzer (MCA), interfacing with a PC for the XR-

100CR element. Figure 3.1 shows the software interface that was used to acquire

data and calibrate the spectra. Calibration was achieved through identifying the

prominent Ka and K3 lines of the Cool-X. These points were used to linearly fit the

MCA bins with energy values.

The XR-100CR detector is a 680 pm thick Si detector, maintained in a vacuum

by a Be window 5 mm in radius and 1 mil (25.4 jIm)thick [1]. The detector has a

maximum resolution of 149 eV, as measured from the FWHM of the 5.9 keV emission

of "Fe. This spreading of a definite energy peak is due mostly to bremsstrahlung

interactions in the Be window, and limits just how precisely we can know the energy

peaks detected for calibration. The measured peaks were significantly wider than the

system resolution.



Figure 3-1: A screenshot of the Amptek ADMCA computer interface, showing an
uncollimated point-blank exposure of the XR-100CR detector to the Cool-X source.

3.2 Polaroid Film

Polaroid film has been used in x-ray diffraction studies since the 1960's [10, 12] for

their speed and simplicity of use. Polaroid film, in combination with a film cassette,

takes around a minute to develop, with no additional stopping or fixing agents nec-

essary. Because the film is easy to expose and to process, it is an ideal candidate

for rapidly obtaining images. Wet process film takes much longer than Polaroid film,

up to nearly an hour, in some cases [10], and requires precise timing of numerous

chemical baths in order to get the correct amount of contrast from the film.

Although Polaroid film is designed to be used in the visible spectrum, it will

expose upon direct exposure to x-rays. Because the film is optimized for exposure

to the visible spectrum, however, the rate at which exposure occurs is not very high.

See Figure 5-2 for examples of x-ray exposures of Type 59 Polacolor ER film.



3.3 Phosphor Screen

As shown in Figure 5-2, simply exposing the film as it is to x-rays will not result in

a very high contrast. We could expose the film for longer, in order to increase this

contrast, but for the reasons covered in Section 2.1, we must limit the time the source

operates. So we are left at an impasse. We need more signal from our source than

what we are getting, but we can't run our source any longer than we are. We must

use a phosphor screen.

Phosphor screens have been in use in x-ray studies since R6ntgen first noticed a

powder glowing in the vicinity of an evacuated tube with a heated filament in it [11].

And we shall use this same idea to assist in getting a better signal out of our system.

Because our film is designed for the visible spectrum and not for x-ray energies, it

would behoove us to convert these x-rays into visible photons. And this is exactly

what our phosphor will do.

Phosphor screens function, in the energy range that our source produces, through

the photoelectric effect. X-rays strike the surface of the phosphor, traveling through

and interacting. As these x-rays interact with the lattice of the phosphor, they

can knock electrons out of the valence band, giving them enough energy to tunnel

through any band gaps present to a conducting band, where they interact with other

electrons, the lattice, and the holes formed by the x-rays. As these holes are filled

by electrons within the valence band, they emit 7 radiation [9]. This radiation is

emitted isotropically, with half of the radiation going towards our film. Some of this

light will be absorbed as it travels through the medium, but some of it, especially the

light near the exiting edge of the powder, will escape and strike our film.

This phosphor screen adds in another limit on our system resolution. Instead of

being limited only by the grain size and absorption characteristics of the film, we

are now also limited by the resolution introduced by our scintillator. We can model

the emission of a visible photon as a spherically symmetric point source emitting a

single photon in some direction. As this is not radiating an uniform intensity over all

space, but is spitting out discrete photons, we must assign our system a resolution



relative to some standard. We define hpho, as the distance away from the axis formed

between a radiating point in the scintillator and the recording plane. ?lpho, is the

radius of the circle that encloses the area on the detecting plane where I of the2

forward-emitted photons impinge. This is characterized by tan = -Pho where 1 is

the distance between the phosphor and the recording plane. By defining qpho, in this

manner, we have characterized an average resolution of our system. Here we have

made the approximation that all photons are emitted from a single distance 1 from

the screen, but as long as the thickness tpho8 of the phosphor obeys tphos <I then we

can make this assumption.

Where in tphos our photons are emitted is another interesting question. Every

phosphor has a peak wavelength of emission; ours will be in the visible spectrum,

around 540 nm. This corresponds to an energy of roughly 20 eV, low enough so that

any light emitted on the source side of the phosphor will be absorbed before it can

escape and hit the recording plane. In order to avoid this problem, our phosphor

is designed so that the energy band gap will be sufficiently large that the excited

photons do not cause any further excitation of the crystals of the phosphor and have

a better chance at escaping. Even so, there will be some attenuation of our emitted

light, and so knowing where most of the light is emitted is crucial to determining how

much light we get out of the system.

The linear attenuation coefficient can be most precisely found by solving the Dirac

equation for the orbital electrons moving a static Hartree-Slater potential [6], but that

goes well beyond the scope of this project. Instead, we can approximate the linear

attenuation coefficient in the following manner.

The three largest contributors to x-ray attenuation are the photoelectric effect,

Rayleigh scattering, and Compton scattering. Our linear mass attenuation coeffi-

cient can be written as I = PIPE + AR + ic. These coefficients can be written as

experimentally fit functions of energy, atomic number Z, and density p:

I =pN9 f (E) + CR zE + Cp E- (3.1)



where Ng = NA is the electron mass density in electrons per gram, CR and Cp are

constants with a value of 1.25 x 10-24 and 9.8 x 10-24 respectively, E is the energy of

our x-ray, k,l,m, and n are constants with the values of 2.0, 1.9, 3.8 and 3.2, and f(E)

is the Compton scattering amplitude given by the Klein-Nishina function [8]. For a

compound of more than one element, the coefficient is simply the mass-weighted

summation of the individual coefficients, Y = E i where wi is the fraction bypi A
weight of the particular element in the compound.

We must also consider the efficiency of our phosphor system. Not every x-ray

that strikes the phosphor will be converted into a photon, and every x-ray that does

eventually get converted may generate many visible photons. The processes involved

with the creation of these visible photons are not easily characterizable, and the

interactions they undergo before leaving the phosphor are not straightforward, either.

What we do instead of calculating all of this is to assign the phosphor an efficiency

r that characterizes all of the phenomena associated with the creation and transport

of the visible photons. We set

Np = E (3.2)

where Evi, is the energy of the visible photons emitted, E is the energy of the x-rays

being used, and Nph is the number of photons emitted [9]. We can then use this

theoretical number Nph to make estimates for the exposure time of the film.





Chapter 4

Crystallographic Considerations

The Cool-X source would provide a conveniently small educational x-ray diffractome-

ter should it prove capable of doing so. Here we evaluate the needs of x-ray crystal

diffraction with respect to our current setup.

4.1 Crystal Basics

It is necessary to clarify some crystallographic basics before we discuss how we plan to

get any crystal images out of the system. To start with, we must imagine a crystal not

as a repeating pattern of ions and molecules and electrons, but as a regularly spaced

lattice of points. These points are separated in space by position vectors a, b, andc.

Every lattice point is uniquely defined from the lattice origin by the position vector

r = na + n'b + n'c. If n( is an integer, than the point in question lies on a lattice

point, one point in a three dimensional grid formed by repeated translation of a point

in steps of a, b, andc. If n( is not an integer, we can rewrite r so that it is the sum of

lattice points and fractions of the lattice spacings.

The representation of planes in this system is fairly straightforward; we assign

the planes a value corresponding to where in a given lattice cell the plane crosses the

three axes. If we express these values as fractions of the axial lengths, we can describe

a plane in a unit cell without talking about its physical dimensions. However, if a

plane is parallel to a crystallographic axis, we have a problem; we have to describe



the intercept as being at infinity. We define the Miller index as the reciprocal of the

fractional intercept, thereby eliminating the problem of our intercept being at infinity.

The spacing between two parallel planes is unique to the shape of the crystal, but

follows the form of
1 h2  k2  12

-- = a- + -  (4.1)'dhki 2 b* c

where h,k, and 1 are the Miller indices of the plane for an orthorhombic system.

The orthorhombic system is a generalization of the cubic system, the simplest cubic

system to analyze.

It is important to keep in mind that these lattice structures are purely mathemati-

cal constructs; they are important only in that real-life crystals exist in the same type

of structures as lattices make up. Crystals and lattices share symmetrical similarities,

and so the study of a lattice tells us much about the workings of a crystal. We will

expand upon the lattice properties further as the need for them increases.

4.2 Bragg Equation

In Section 4.1, we introduced the idea of having a periodic system of atoms arranged

in a repeating pattern in space. It has been experimentally well known since the

1890's that the spacing for this lattice falls in the region of a couple A. It was also

known that x-rays have wavelengths on the order of a couple A. In 1912, von Laue

discovered that x-rays could diffract through a regular crystal, treating each atom

as a new scattering center. Later that year, Bragg derived how to arrive at this

same conclusion with the simple case of reflecting x-rays off of a plane [13]. It is the

approach of Bragg that has seen more use since the 1912's, and it is this approach

that we will use to derive the scattering conditions here.

We imagine two parallel rays (rays 1 and 2 in Figure 4-1) striking two parallel

planes (P1 and P2) and scattering at an angle 0. The scattering mechanism itself

consists of electrons at points O and C oscillating in response to the incoming radiation

and re-emitting that radiation. The radiation is emitted isotropically, so we will

typically not see any coherence between rays 1' and 2'. However, we are interested
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Figure 4-1: Diagram to illustrate variables used in the derivation of Bragg scattering.

in the special case where rays 1'

equal angle 0.

and 2' are scattered from the parallel planes at an

Looking at the perpendicular between points O, A, and B, it becomes obvious

that LAOC= LBOC= 9, and that therefore AC=BC. The waves in ray 2' will be

in phase with those in 1' if the path length difference between them is an integer

multiple of the wavelength of the radiation. Thus AC+BC=nA, or using the fact

that ACId = sin 0 we get

2dsin = nA (4.2)

which is the famous Bragg equation [13]. For a more general three-dimensional proof

of this see [7]. It is important to note that what is most commonly measured is

actually the angle 29, as that is the angle between the initial x-ray beam and the

scattered rays.

In Equation 4.2, n is the order of refraction. By rewriting d in terms of the Miller

indices of our lattice, it is possible to view the reflection as first order off of a set of

;ýr



planes with indices (hkl), transforming Equation 4.2 to

2d(hkl) sin 0(hkl) = A. (4.3)

If we only get scattering off of two planes, we would expect to see very broad

maxima occurring on our recording device. In a macroscopic crystal, we get thousands

of planes reflecting, and so the maximum occurs at a very sharp value of 0. Diffraction

patterns in a real crystal often are only tenths of a degree away from what we would

expect from Bragg scattering [7].

One factor in the measurement of 0 is how precise we can make our measurements.

If we use 4.3 at a fixed value of A with a width of aA, where we approximate the

FWHM as the standard deviation of our source, we get that the

LA•
AA = 2dcos 0AO = AO = (4.4)

2d cos 0

Using Equation 4.3, we get that

AA
AO = A (4.5)

Equation 4.5 gives us a parameter for determining just how well we can ever hope to

get diffraction at a particular 0 at a certain A.

The fact that we get reflection off of crystal planes allows us to look at the indi-

vidual characteristics of the planes within a crystal and determine physical properties

of them, like the interplanar spacing d. In a similar manner to Equation 4.5, we find

that the variance of any measured d is

AA 2 (cos OA 2
as 0 ) +(46)

We can also do things like determine the orientation of various planes, look for

imperfections in the crystal, and, last but most certainly not least, derive a structure

for the crystal we are looking at. These procedures require mapping the planes



recorded as dots on our film to various maps and "nets" of a sort, both of which are

beyond the scope of this experiment.

4.3 Methods of Diffraction

In Equation 4.3, our three parameters are the interplanar spacing d, the reflection

angle 0, and the wavelength A of our radiation. There are three methods of diffraction

open to us, depending on what variables we wish to vary. If we want to keep 0 fixed

and vary A, we can use Laue diffraction. If we want to keep A fixed and vary 0, there

are two options. We can use the rotating-crystal approach or we can use the powder

diffraction method. The rotating-crystal method has physics identical to those of the

Laue method, only with a monochromatic x-ray source. We must rotate the crystal

to fulfill the Bragg equation, but the same resulting patterns of diffracted spots will

emerge. For further discussion of the rotating-crystal method, see [4, 7].

The Laue method consists of mounting a crystal in the path of an x-ray beam

consisting of many wavelengths, often referred to as "white" radiation. By doing

this, you fix the Bragg angle for every set of planes in the crystal, and the planes with

the appropriate d and at the right angle 0 will diffract the appropriate wavelength,

resulting in a set of dots on the photographic film used. The film can either be placed

between the source and the crystal or after the crystal. A transmission photograph

results in dots that lie on ellipses or hyperbolas aligned along the zone axis of the

reflecting plane (see Figure 4-2(b)). A zone is a set of crystal faces that share common

directions, or that have planes pointing in the same direction. The zone axis is the

axis that all planes in a zone are parallel to. The back-reflection results in hyperbolic

arrangements aligned along zone axes.

Another method of interest is the powder diffraction method. True to its name,

this method involves using either a powder of a crystal or a consolidation of randomly

oriented crystal grains. What this does is allows for a variety of planes to be imaged

with a single wavelength of radiation. What happens is that for certain particles in

the powder, the reflecting planes are positioned correctly for the wavelength of light



hitting them. And because we have a large number of particles in our sample, we

have every possible angle of incidence covered. For those angles that obey the Bragg

equation, we get constructive interference. What this results in is a series of cones

being projected from the sample, each cone being the result of Bragg scattering at a

particular 0. If we were to place this powder sample in front of a recording screen, we

would see rings forming at the values of 9 that fulfilled the Bragg equation. We would

actually measure 20, as this is the total deviation from the incoming x-ray beam. See

Figure 4-2(a) for a illustration. A subset of the powder method is the Hull/Debye-

Scherrer method, where a cylindrical film is used to record the rings formed by the

Bragg-diffracted x-rays. This avoids some problems inherent with the flat screen,

namely the obliqueness of the angle formed with the film. This contributes a factor

of to the width of the rings observed. This makes Equation 4.5 into

AO - A- (4.7)
cos 0 2d

which describes the width of any lines that appear on our flat screen recording media.

uated

(a) Powder diffraction setup. (b) Rotating crystal setup.

Figure 4-2: Different methods of x-ray diffraction.

The powder method has the advantage over the Laue method in that our current

setup has two prominent wavelengths, the Cu Ka and K,3 lines, and so would work

better with the equipment we already possess. However, any attempts to get an

image will be done in the style of a rotating crystal, as our spectrum has a strongly



monochromatic nature, and the crystals available to use are in a cohesive, non-powder

form. The rotating crystal transmission photograph is also useable as a method of

crystal orientation, and the powder diffraction method is completely unable to do

so, as we're not even using a crystal. The pure Laue method is unattainable, as we

do not have a very good white radiation source. However, the physics of the Laue

method and the projections needed to extrapolate crystal properties are exactly the

same in the rotating crystal method, with only slight modifications, and so we can

use the physics of the two interchangeably.





Chapter 5

Results

5.1 Experimental Setup

The Cool-X source, by itself and in combination with the X-123 spectrometer, is a

good tool for the study of x-ray spectra and absorption. One could set up and run an

experiment to calculate the absorption coefficient of various materials by placing them

between the source and the detector and comparing the rate of x-ray detection as a

function of the attenuator. There would be some difficulty with this, as the output

of the source is not constant, and so a long integration period would be necessary in

order to smooth out the count rate.

This experiment was not performed, as the ability of the source to perform in this

function is not in doubt. The main experiment performed with the Cool-X was to

see if the source was suitable for x-ray diffraction. The setup for this experiment was

as follows.

The entire experiment was enclosed in 1/2" thick leaded acrylic with .5mm lead

equivalent. The box was joined at the edges with stepped edges. This allowed us to

make sure none of the joints could result in a radiation leak if the edges separated.

This shielding was more than enough to stop the scattered x-rays from the experiment,

as well as any of the primary beam that penetrated through the film cassette. Even

though our source, with its peak at R8keV, lacked much penetrating power, it was

still necessary to shield our experiment. The maximum exposure from our source was



about 2 mCi, high enough that we want to shield ourselves. Although a low level, we

want to follow the ALARA (As Low As Reasonably Achievable) practices.

The source and detector were mounted on optical rails using post holders and

mounting plates fashioned in-house. These plates were fashioned in such a way as

to have the source pointing directly down the main axis of the optical rail, for the

convenience in aligning the X-123 spectrometer when it was used.

Our system was collimated according to the guidelines in Section 2.2. The col-

limator diameter d was 5mm, the collimator length u was 20mm, the collimator to

source distance v was 2.7cm, and the collimator to crystal distance w was 0, that is,

whenever we used a crystal, it was placed directly at the opening of the collimator.

This was done to preserve the x-ray flux coming out of the collimator, as the beam

was low enough in counts without letting it spread even further. The dimensions

resulted in a maximum divergence angle of 14.3 degrees.

Our source had a radius of 4.5mm and, for simulation purposes, was modeled as

being uniform in intensity in the forward direction.

The phosphor screen used for this investigation was a Lexel Imaging Solutions,

Inc. model PLGDXTB-20 screen 3" x3" square on a .15mm clear Mylar backing.

The model PLGDXTB-20 is a Gd20 2S:Tb type phosphor with an emission maximum

at 540nm [9]. This phosphor was kept at a distance of . 1mm from the film during

experimentation. Using Equation 3.1, the linear attenuation coefficient lP43 = 2.39 x

103cm - 1 . Our phosphor has an active element thickness of 80Itm, and so using I =

Io exp - AP43x we get that = 5 x 10-', which makes sense because the x-rays travel

through r 19 mean free paths in 80 ym of Gd 20 2S:Tb. This means that our phosphor

has a stopping power of our energy x-rays of nearly one. This is good in that we

converted many of these into visible photons for interaction with our film.

The film we used was Polaroid Type 59 Polacolor ER. This film has an ISO of 80,

corresponding to a relatively slow exposure time for visible light. The film was used

in conjunction with a Polaroid Land film holder #500. This was necessary to use, as

the Polaroid film was processed using the envelope the film was stored in. This was

extremely convenient, as we could remove the film from the x-ray beam and pull it



out of the housing, instantly processing the film.

The crystals that were used to attempt diffraction studies were CaF 2 and malonic

acid. The CaF2 was obtained from a geode and cut with a razor blade and hammer

to a width of 3mm on a side and a thickness of .5mm. The malonic acid crystal was

soft enough to cut with minimal pressure. The size of this crystal was the same as

the CaF2 crystal. They were both mounted on quartz rods with the aid of an epoxy

glue. In the future, samples should be mounted on glass or another amorphous solid

so we don't get any accidental diffraction from the crystalline quartz.

The crystals could be mounted on a two-axis goniometer. This goniometer was de-

signed so that a specific crystallographic axis, such as the growth axis, of a particular

crystal could be aligned parallel to the x-ray beam and the crystal could be rotated

about two axes perpendicular to the beam axis. This would allow the acquisition

of Laue patterns at specific angles, the data of which could be used to confirm the

predicted results of diffraction theory.

5.2 Experimental Procedure

All exposures presented in this section are the result of 80 minute source exposure

times. Distances from the collimator and other pertinent information are given with

the particular photograph. See Figure 5-1 for a picture of the laboratory setup.

The Polaroid Land film holder was covered in optically opaque black film in order

to make the cassette light-tight. This was to avoid any unwanted optical photons

from exposing the film.

Any crystals used in this process were inspected with a polarizing stereomicro-

scope, to show that they are indeed single crystals. The CaF 2 crystal faces were

aligned by eye.



Figure 5-1: Picture of the desktop setup for the experiments. Seen are the collimated
Cool-X source, the X-123 spectrometer, and the goniometer mount in back.

5.3 Experimental Results

What we have attempted to demonstrate is that, using a collimator and a system

of recording media, we can use the Cool-X source as a source for x-ray diffraction.

We had hoped that this would result in an experimental validation of Bragg's law

(Equation 4.2). With a properly aligned crystal and a sufficiently collimated source,

we were hoping to detect evidence of Bragg scattering in the form of a blurring or, if

all went well, actual diffraction rings or spots. What we saw after exposure, however,

was not what we were hoping for.

Figure 5-2(a) shows what happens to our film upon direct exposure to our x-rays.

We see that our x-rays will expose our film. There are artifacts along the bottom

right side of the image from a small opening in the light-tight enclosure. This 80

minute exposure without the collimator was taken at a distance of 5mm from the



(a) Example exposure of Po-
laroid type 59 optical film.
This is an 80 minute ex-
posure at point blank range
(5mm source to film) with no
collimator and no phosphor
screen.

(c) An example of the data
measured with no phosphor
screen and a collimator with
a diameter of 5mm. The colli-
mator was 5mm from the film.
Exposed section is in top half
of the picture

(b) Example exposure of Po-
laroid type 59 optical film
with the phosphor screen in
place. This is an 80 minute
exposure with a the phosphor
screen 1mm from the film and
the source 5mm from the film.

(d) The result of exposing the
phosphor screen with colli-
mated radiation. The collima-
tor was placed 5mm from the
film and 4mm from the phos-
phor. There is no exposure
due to the phosphor.

Figure 5-2: Sample exposures of Polaroid type 59 film to the Cool-X source. All
figures are at the same scale.



source, as this was as close as the film holder would allow. This picture served as the

baseline photograph for our investigation.

Figure 5-2(b) shows the same setup as Figure 5-2(a), only with the phosphor

screen positioned 1mm away from the film itself. This shows us something a little

surprising; the phosphor screen appears to be reducing the exposure of our film. This

was not initially expected, but there is a very good explanation for this.

This decrease in intensity can be explained by looking at where in the phosphor

the x-rays get absorbed. Using Equation 3.1, we see that the linear attenuation

coefficient for our Gd 20 2S:Tb is 2.39 x 103cm- 1, which corresponds to a mean free

path (distance at which one half of x-rays have interacted) of 4.18pIm. This is the

source of our phosphor troubles. Half of the x-ray interact in the first 4pm, only a

quarter remains after 8pm. After traversing the 80pm thickness, the beam has had

to travel through almost 20 mean free paths. The vast majority of our x-rays were

stopped within 4 or 5 mean free paths.

This seems like a good thing; the phosphor stops nearly all of our x-rays, so the

efficiency of our system should increase dramatically. And, using the published value

of 1 - 14.5%[9] in Equation 3.2, we see that every x-ray absorption event should

create around 500 photons. Again, this should drastically help to increase our overall

system efficiency. It would do so, but unfortunately for us, our phosphor is optically

opaque. This means that when the photons are emitted from x-ray interaction, they're

mostly absorbed before they can make it out the other side of the phosphor screen.

So while we are creating a great number of visible photons, they are being reabsorbed

before they are able to strike the Polaroid film.

We see this loss of signal in Figures 5-2(c) and 5-2(d). Figure 5-2(c) shows the

film after an 80 minute exposure with the collimator and no phosphor, and Figure

5-2(d) shows the film after an 80 minute exposure with the phosphor. The small

amount of signal in Figure 5-2(c) was not enough to illustrate any crystallographic

properties, and so we had hoped to increase the signal. As is apparent in Figure

5-2(d), this did not happen. Therefore the experiment was unsuccessful at producing

crystallographic features of x-ray diffraction.



Chapter 6

Conclusions

We have shown that, with the experimental setup presented, Bragg diffraction is not

observable. Although our film exposed to both visible photons and x-rays, we were

unable to get enough exposure to make any real measurements. This was due to the

absorption of our visible photons within the phosphor screen, lowering the system

efficiency drastically even as we created more potential signal through the use of our

phosphor screen.

Although we were unable to observe Bragg scattering, that does not mean that

our system is unable to function as a diffractometer. There are changes that could

be made to our system in order to help raise our overall efficiency.

The largest change comes in the form of a different phosphor screen. Instead of

our current Gd20 2S:Tb screen, we could use a less attenuating phosphor, Gd 20 2S:F.

This would allow us to maintain the same setup as previously while decreasing the

number of mean free paths the x-rays would traverse.

In a similar vein, We could also use a thinner scintillator. We wouldn't have

to change materials if we had a phosphor screen that was 4pm(1/20th our current

thickness). If a commercial supplier could be found that could manufacture such a

screen, then the efficiency of our system would drastically increase.

Another way to increase the amount of visible photons available is to do a "sand-

wiching" diffraction experiment. Instead of positioning the film after the sample and

scintillator, we instead place it in front of our sample. We could drill holes through



the film and film holder to allow the passage of the x-rays through the apparatus

without attenuation. We would hope to record Bragg diffraction incidents as the

x-rays passed through the crystal, scattered, and struck the scintillator, which would

then re-radiate in the visible spectrum. As we are now placing our film close to the

active surface of the sample, we now hope to see the effects of Bragg scattering. We

would have to ensure that the distances between scintillator and film were not so

drastic as to destroy the resolution of our system.

The major obstacle to this experiment right now is a lack of a film holder that we

can feel free to drill through. The film holder being used currently is property of the

MIT Technique, and so placing holes in it is out of the question. However, such an

experiment, if performed, could very well produce evidence of Bragg diffraction.

If we were to perform this experiment from scratch, one piece of equipment that

has the potential for improving our signal strength is a CCD camera. If we had a

sufficiently large fiber optic taper with the larger end coated with a thin (jil0m) x-

ray phosphor, the gains in our signal would be immense. Because the CCD functions

in real time, we would be able to do rotating crystal diffraction with ease. You could

position your sample, turn on the source, wait for three or four heating cycles (around

5 minutes), yielding ;22500 x-rays within 200eV of the copper Ka line at .041keV.

With a reasonably efficient (50% or so) CCD/phosphor system, we could reasonably

expect to be able to cover 90 degrees of rotation, with 5 degree rotations, in an hour

and a half.

While our experiment was unsuccessful at showing Bragg diffraction, we have

shown that our system is an excellent source for the study of x-ray properties. We

cannot show Bragg diffraction with our current experimental setup, but there are yet

options available for us to continue to attempt to show diffraction.



Appendix A

Bragg Interference

One interesting question not pertaining directly to this work is the question of whether

the fundamental idea behind using the Bragg equation is actually valid. We made

the leap from saying that the Bragg equation is correct for two scattering centers to

saying that it implied that reflection off of planes occurs. This result is not obvious

in the mathematical methods we initially used. It is a result of a three-dimensional

scattering problem, but we did not analyze the problem as such. Therefore we need

to prove to ourselves that this reflection phenomenon is actually valid. We shall do

so in a two-dimensional case which can be easily extrapolated to three dimensions.

This follows the derivation in [13].

Take three non-collinear points A, B, and C which all separately scatter an in-

coming beam in a direction that results in constructive interference (see Figure A-1).

We know that for constructive interference, the difference in path length must be an

integer multiple of the wavelength, so we see that

a-b =hA

c+d =kA (A.1)

where h and k are integers. We then assign the angles of incidence and reflection

from the line AB (plane AB, more appropriately) the values of 0 and ?'. Note that

these values are not always equal. If x is the distance between points A and B, and



Figure A-1: Parallel x-ray scattering off of three lattice points.

y is the distance between A and C, Equation A.1 becomes

xcos¢-xcos¢' = hA

ysino+ysin¢' = kA (A.2)

We now look at a different plane drawn through our system, plane RS (see Figure

A-2). We draw the plane so that it has an equal angle 0 from the scattered and

incident beams and an angle a with AB.

Figure A-2: Lattice plane RS reflection.

This gives us that 0 = 0 + a = 0' - a. We rearrange to get 0 and 0' and rewrite



Equation A.2 as

x [cos(9 - a) - cos(9 + a)] = hA

y [sin(9 - a) + sin(G + a)] = kA (A.3)

Expanding this with trigonometric functions leads us to

2xsin 0 sina = hA

2ysin 0 cosa = kA (A.4)

leading us to

tana = hy (A.5)kx
The interpretation of Equation A.5 is that as RS passes through A, it travels

repeatedly through lattice points shifted h in the y direction and k units in the x

direction. This is simply a lattice plane (h,k). This leads us to conclude that the

conditions for constructive scattering corresponds to reflection off of a lattice plane of

the correct orientation. We have now shown that the Bragg equations truly represent

reflection off of a plane, and may rest easy knowing that our assumptions in Chapter

4 are valid.
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