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Abstract

Ever since the birth of the first quantum error correcting code, many error correcting
techniques and formalism has been constructed so far. Among those, generating a
quantum code on a locally planar geometry have lead to some interesting classes
of codes. Main idea of this thesis stems from Kitaev's Toric code, which was the
first surface code, yet it suffered from having a asymptotically vanishing encoding
rate. In this paper, we propose a quantum surface code on a more complicated
closed surface which has large genus, namely the Hurwitz surface. This code admits
a constant encoding rate in the asymptotic limit that the number of genus goes to
infinity. However, we give evidence that , where n is the number of qubits and
t is the number of correctible errors, converges to 0 asymptotically. This is based
on numerically generating many Hurwitz surfaces and observing the corresponding
quantum code in the limit that genus number goes to infinity.
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Chapter 1

Introduction

One of the pioneers of quantum computing was Richard Feynmann. In the early

1980s, he realized that with digital computer, it would be computationally hard to

simulate a quantum system efficiently, since it seems that we need to process 2' - 1

complex numbers to specify n spin-! particles system. Even with only 100 parti-

cles, 1030 number of complex amplitudes change in time and it will take more than

the age of the universe to compute all these numbers. However, instead of viewing

this as a negative result, he proposed that maybe we will be able to perform some

computational tasks much faster than classical computation by exploiting the laws of

quantum mechanics.[1I In 1984, David Deutsch proposed a model of universal quan-

tum Turing machine, which, in a naive sense, is a generalization of Universal Turing

Machine(UTM) that allows a superposition and interference of states.[2] Following

this was the birth of the first quantum algorithms, the Deutsch-Jozsa algorithm.[3]

In 1994, Peter Shor, then at AT&T Lab, found a quantum algorithm that solves

factoring and discrete logarithm problem in polynomial time, which had been a key

ingredient for modern day public key cryptosystem.[4] This drew a huge interest in

quantum computation and resulted in a rapid development of this field.

There was one problem nonetheless. It seemed that quantum computation- al-

though it promised a great computational power over a classical computer- cannot

operate robustly. Since quantum states are extremely fragile to the interaction with

the external systems, this can result in a unwanted collapse of quantum state. Fur-



thermore, since measurement collapses quantum state, error-correction seemed im-

possible. This had been one of the most well-known reasonings against quantum

computer. Skeptics had claimed that quantum computer is not very much different

from analog computer. Their claim was that both analog computer and quantum

computer have better computational power over digital computer, but their inability

to correct the error with little overhead makes them useless in practice.

In fact, for the case of quantum computer, it was proved that the claim of the

skeptics were false. In 1995, Peter Shor showed that one can detect errors of the

quantum system and correct it without disturbing the essential information encoded

in the quantum state.[5] Other quantum codes have been discovered thereafter and

from the existence of such quantum codes, a threshold theorem was proved indepen-

dently by many authors. [6] [7] [8] [9] [10] [11] Threshold theorem tells us that as far

as the error rate c is small enough, noisy quantum computer can simulate a noise-

less quantum computer efficiently with poly(log ½) overhead. This is slightly different

from a modern digital computer, since its error rate is so low that we do not usually

need to actively correct the errors. Therefore, a role of quantum code for quantum

computer seems to be more important than the role of digital error-correcting code

for digital computer at this point.

In this paper, I will introduce a quantum code which can be embedded on Hurwitz

surfaces. I will first start by describing quantum operation in Chapter 2, which will

lead to the error models on quantum states. Chapter 3 will describe examples of

well-known quantum codes, such as Shor 9-Qubit code, stabilizer code, and Toric

code. Chapter 4 contains main result of this paper. I will start this chapter with

mathematical background related to Riemannian geometry. Then I will compare this

geometrical structure to Toric code to help the readers in understanding the idea. The

code's asymptotic behavior will be discussed as well. Chapter 5 will give a summary

of the result.



Chapter 2

Preliminary Results

2.1 Qubit

As bit is the basic unit of information in classical digital computation, qubit is the

basic unit of information in quantum computation. More formally, qubit is a two-

state quantum system whose basis states are denoted as 10) and i1). We can impose

a unitary transformation on any state so that it can transform into another state.

However, this itself does not draw any interesting picture, since in this way, each

of the qubits act independently with other qubits. Therefore, to make something

more interesting, we need the qubits to interact with each other. Furthermore, to

fully exploit the quantum mechanical effects of the system, we would like to perform

arbitrary unitary transformation on the system. In other words, if we have n qubits,

the dimension of the Hilbert space is 2" . What we want is to perform arbitrary

unitary transformation in SU(2n). If we can do so, we call such scheme as a univeral

quantum computation.

One of the founding results of quantum computation is that with discrete set

of gates, we can perform arbitrary unitary transformation in SU(2) efficiently.[12]

Furthermore, together with a controlled-NOT(CNOT) gate, we can perform arbi-

trary unitary transformation in SU(2"), although this can be done efficiently only for

certain classes of operations.



2.2 Density Operator

Density operator is a generalization of normalized projection operator onto a one-

dimensional subspace. Due to the probabilistic nature of quantum mechanics, it might

be somewhat ambiguous to discuss the probability distribution of quantum states.

However, density operator captures this precisely, and has several nice properties. It

is defined as following.

Definition 1 Density operator p on a normalized quantum state {I k) } with proba-

bility distribution {lrk} is defined as

P - 7 rk 1k4 (Ok (2.1)
k

As one can see from this definition, density operator is a natural generalization of

quantum state. Its trace is always 1, due to the relation Tr(p) = Ek 7rkTr&(Ik) (4 k1) =

Ekk 7rk. Moreover, this fact can be generalized to arbitrary hermitian operator A.

Tr(pA) = Ek rk (4k I A I4k), which is an expected value of the hermitian operator.

Note that Tr(p 2 ) = 1 if and only if p is a normalized rank-1 projection operator. If

this is the case, p is called as a pure state. Otherwise, it is called mixed state. This

is a very convenient notation when we want to quantify error on the quantum state.

For instance, suppose we initially had a pure state 10) (01. After certain amount of

time goes, due to the interaction with the external system, the state may not be in

its original form. If we can specify the probability that the state remains the same

as Po, the density operator of the state will be the following.

P' = Po 1) (01 + (1 - Po)p" (2.2)

where p" is some mixed state caused by the error. From now on, we will denote R-d

as a Hilbert space of dimension d. Correspondingly, D•d is a set of density operators

in 7-d.



2.3 Quantum Operation

In a Copenhagen interpretation of quantum mechanics, there are two procedures

allowed on a quantum system. One is a unitary transformation, which is reversible,

and another one is measurement, which is not reversible in general. However, these

two seemingly disjoint notions can be unified into a single picture. Suppose we are

looking at a d-dimensional quantum system. The state of this system can be expressed

as a density operator. Therefore, in a closed system, any physical operation is required

to map any density operator into another density operator. As discussed in the

previous subsection, any density operator must have a trace equal to 1. Furthermore,

any density operator is nonnegative- that is, all its eigenvalues are not negative.

Lemma 1 Any density operator is nonnegative.

Proof Suppose we have a density operator p. Since it is a linear combination of rank-

1 hermitian operators, it is hermitian. If p has a negative eigenvalue, (|I p 10) < 0

for some IV). However, this is impossible because of the following relation.

(I P I') = Z kI( 1k) 12 > 0 0 (2.3)
k

Therefore, it will be interesting to see a family of linear operators that preserves

nonnegativity and trace. A family of map corresponding to this operation is called

completely-positive trace-preserving map(CPTP). Let B(Hd) be a set of linear oper-

ators on ld. A map being completely positive means the following.

Definition 2 A map P is completely positive if Ik ® : Ckxk 0 Cdxd is a positive

map for all k.

Definition 3 Let ( be a linear map such that D : -ld -4 Rld 2 . 4 is a completely

positive trace-preserving(CPTP) map if it is completely positive and preserves trace.

Note that a naive thought may lead a quantum operation to be only positive.

However, one must note that if we only impose the condition of positivity, there



might be a larger Hilbert space where the density operator of this new system is

not positive anymore. This is the reason the map must be completely positive. We

define the quantum operation to be a completely positive operation. Typical examples

are the unitary evolution and Von Neumann measurement which play central roles

in Copenhagen interpretation of quantum mechanics. In fact, these two are just a

trivial example of quantum operation. For instance, consider a unitary operation U.

For any density operator p,

4uv(p) = UpUt. (2.4)

Since the eigenvalue spectrum is invariant under unitary evolution, this map is com-

pletely positive. Similarly, for the measurement operation,

DM(P) = Ii) (il (ii p ii) , (2.5)
i

where li) forms a countable set of orthonormal basis. Since each |i) (iI is positive and

have nonnegative coefficients, '4M (p) is nonnegative as well. Therefore, measurement

operation is positive as well. Readers should note that even though quantum opera-

tion encompasses large range of physical change of states, there are physical changes

which cannot be expressed as quantum operation. These examples can be found

in [13]. Nevertheless, we assume our error model based on the quantum operation

formalism, since most of the operations can be described by it.

2.3.1 Operator-Sum Representation

It is quite certain that quantum operation covers wide range of operations, including

the canonical examples such as unitary operation and Von Neumann measurement

operation. However, there clearly seems to exist a family of quantum operations

which are neither a unitary operation nor a Von Neumann measurement operation.

In those cases, how can we represent a quantum operation? It turns out that for any

quantum operation, there exists an extremely useful representation which is called as

Operator Sum Representation(OSR).



Definition 4 OSR of a linear map P : B(-d) --+ B(Td) is a 1-tuple (El, E2, -... E)

such that

1

(p) = EkpEk (2.6)
k=1

Theorem 1 Any quantum operation admits OSR and vice versa. [13]

Proof of this theorem can be found in [13].

2.3.2 Canonical OSR

By the virtue of Theorem 1, now we know that any quantum operation can be ex-

pressed as OSR. However, there still remains a question. That is, is there a canonical

way of expressing the quantum operation as OSR? Not surprisingly, the answer is yes

if the input Hilbert space and output Hilbert space have same dimension, and these

turn out to be a complete orthonormal basis of B(7-d).

Theorem 2 Any quantum operation whose input and output Hilbert space are same

can be represented as a OSR whose components are complete orthogonal basis of B(Nd)

Proof: To see this, suppose we have a quantum operation (E1 , E 2,..., Ek) for

some k. Consider a matrix A whose entries are defined as Aij = Tr(EiEt). Since

each of the Ek are d x d matrix, there exists at most d2 linearly independent Eks.

Since At = Aij, A is hermitian, and therefore there exists a unitary matrix which

diagonalizes A with at most d2 nonzero entries. In other words, there exists u e U(k 2)

such that

uAut = A', (2.7)

where A' is a diagonalized matrix with at most d2 entries. Furthermore, we have the

following relation.

S (u-mEm)p(u-mEm)t = EmpEmulmu*m (2.8)
I m I m



Since

Ulmuj m = umu = 6m, (2.9)
m m

we have

E E(ulmEm)p(uimEm)t = 5 EipEt. (2.10)
Im m

In other words, if we have a quantum operation, it can be expressed as

d
2

D(p) = EkpEt, (2.11)
l=1

where Tr(E tEj) = d6j. E

In other words, given any quantum operation, we can use the orthonormal basis

of B3(Nd) with some coefficients in front of them. When the dimension of the Hilbert

space is 2, we can find a well-known example, which is a Pauli matrix.

X = Y = Z = (2.12)
1 0 i 0 0 -1

As one can easily check, together with the identity matrix, these four matrices sat-

isfy the orthonormality condition. Furthermore, these matrices are unitary and her-

mitian at the same time. For higher dimensions (> 2), there are two well-known

generalizations of pauli matrices that exists in all dimensions. Unitary generalization

corresponds to generalized Pauli matrices and hermitian generalization corresponds

to generalized Gell-mann matrices. However, in fact we do not need a generalization

for Pauli matrices for all dimensions. Since the basic unit of quantum computation

is qubit, a complete orthonormal basis for B(7- 2n) will be useful enough. In fact, a

concatenation of pauli matrices serves this role quite nicely.

Definition 5 Pauli group is a multiplicative group with elements of form a 9=1 uk,

where = 1, -1, i, -i and ik = O,x,y,z. (o = I, a1 = X, U2 =YU3 = Z)

If we take a projective look at the elements, there are 4n = (2 n)2 elements of the

group, and clearly these are orthogonal to each other since each pauli matrices have



trace 0. Moreover, the group elements are unitary and has eigenvalue spectrum which

are 2n--fold degenerate.

2.4 Quantum Channel for Many-Qubit System

Quantum channel is not so different from a quantum operation. In fact, those two

are different two names of the same entity. However, since we are interested in a

many-qubit system, it will be much more helpful in gaining insight to restrict our

Hilbert space to be of dimension 2' for some n. In this procedure, we assume that

each qubits act independently, so that we can look at the behavior of single qubit.

Furthermore, if we are looking how the error acts on quantum state, we may set the

input Hilbert space and output Hilbert space to be the same dimension.

In this case, by Theorem 2, we know that any quantum operation can be written

as a OSR with orthonormal basis of B(7~d) with some coefficients in front of them.

The most convenient and the most widely used OSR is the Pauli group in such cases.

Using the elements of the Pauli group, any quantum operation on a qubit system can

be written as the following.

D(p) = aop + a•XpX + o2YpY + &3ZpZ, (2.13)

where Ek ck = 1, by the trace-preserving property. When a, = a 2 = a3, we say this

channel to be a depolarizing channel. If o, a•1 are the only nonvanishing coefficients,

it is called as a bit flip channel. If ao, a3 are the only nonvanishing coefficients, it is

called as a phase flip channel.





Chapter 3

Quantum Code

Classical error correcting code was devised to gain resilience against noise. Simplest

among those is a repetition code, which encodes 0 and 1 as

0 --+ 000 1 --+ 111. (3.1)

Encoding 0 and 1 this way, if we set the probability of each bit flip as p, the probability

that the bit flip occurs on this code becomes O(p2). The reason is simple. When we

receive the message, we simply look at each of the bits and take the majority vote.

If only one of the bits is flipped, we can detect this error and correct it. Only case

we detect the error in a wrong way is when all of three or two bits are flipped, and

probability of this instance is 3p 2 + p3 = O(p2). Therefore, if p is small enough in a

sense of
1

p < 1_E, E>0, (3.2)

using large enough repetition code, we can lower the error rate sufficiently enough.

This is the idea of error correction.

In quantum world, this may not seem possible, since no-cloning theorem states

that we cannot replicate a quantum state in general. [14] Furthermore, if the qubits are

entangled, it becomes highly nonintuitive to imagine whether even error detection is

possible. Contrary to common belief, Peter Shor showed that in fact error correcting

code for quantum state exists. Further developments on quantum code lead to more



remarkable results, which will be discussed in the latter part of this section.

The main idea of quantum error correction is that we can measure the syndrome-

the quantity that quantifies the error - without destroying the original state. For

instance, in analogy with the classical error correcting code, if we set the code space

as

10L) -1 000) IlL) --+ 111), (3.3)

we can detect a bit flip error and correct it. Here the subscript L denotes a logical

qubit. Since 1000) and 111) form a complete basis for two state system, we can

detect any bit flip error as far as the bit flip occurred at only one place. This can

be done by measuring ZZI, ZIZ, IZZ. What is remarkable is that 1000) and 1i11)

are simultaneous eigenstate of these operators with same eigenvalues. Furthermore,

if one of the bits is flipped, two of the syndrome measurements ZZI, ZIZ, IZZ

outputs -1. This can be summarized in a table.

Flipped Bit ZZI ZIZ IZZ

1 -1 -1 +1

2 -1 +1 -1

3 +1 -1 -1

No Bit Flip +1 +1 +1

As one can see, when a single bit flip occurs, the syndrome measurement can

distinguish which qubit underwent a bit flip operation. After we detect this error, by

applying an operator X to the corresponding qubit, we can fix the error. Of course

this error correcting scheme cannot correct a phase flip error or a combination of

phase flip and bit flip error. However, we can devise a quantum code which is capable

of correcting a phase flip error. Consider the following code space.

IOL) -- + + +) I L) -+ - - -), (3.4)

where

1
+) ( - f( ) + 1)) (3.5)

20



1I-) - VL(0) - 1)). (3.6)

Syndrome measurements XXI, XIX, IXX can successfully detect the phase flip

error. Since I0L) and 1IL) are simultaneous eigenstate of XXI, XIX, IXX with same

eigenvalue, we can measure any superposition of these two states without disturbing

it. Now the syndrome measurement result becomes the following.

Flipped Bit XXI XIX IXX

1 -1 -1 +1

2 -1 +1 -1

3 +1 -1 -1

No Bit Flip +1 +1 +1

Thus we can see that the syndrome measurement indeed detects the error unam-

biguously. By applying a Z operation to the phase flipped qubit, we can correct the

error.

3.1 Shor 9-Qubit Code

As we have seen, there are simple ways of correcting a bit flip error or phase flip

error, yet a code that can correct both of these may seem elusive. Peter Shor was

the one who first found a way to correct both of these errors. Since I, X, Y, Z form a

canonical OSR of any quantum operation on qubit, and Y = iZX, this implies that

any error can be detected and corrected. Let us see the construction. Logical qubit

of Shor's code is the following.

1

IOL) = -(1000) + I111))® 3  (3.7)

1
11L) = (000) - 1111))03 (3.8).18



Note that the codewords of Shor's code are simultaneous eigenstates of following

operators with same eigenvalues.

IZZIIIIII ZIZIIIIII ZZIIIIIII (3.9)

IIIZZIIII IIIZIZIII IIIIZZIII (3.10)

IIIIIIZZI IIIIIIZIZ IIIIIIIZZ (3.11)

IIIXXXXXX (3.12)

XXXIIIXXX (3.13)

XXXXXXIII (3.14)

For detecting bit flip, by using the first nine measurements, we can easily detect the

bit flip error and correct it. For detecting the phase flip error, we can use the last

three measurements and easily detect the error, and correct it. Note that the error

correcting procedure is exactly the same as for the quantum error correcting code

that can only correct bit flip error or the one that can only correct phase flip error.

Therefore, as far as the error occurs in a single qubit, we can correct any bit flip error

and phase flip error. Furthermore, note that the only remaining canonical element of

quantum operation, Y, is simply iZX. Therefore, in fact any error can be detected

and corrected as far as the error occurs in only one qubit.

3.2 Stabilizer Code

Stabilizer code encompasses large class of well-known quantum codes, including Shor

9-Qubit code[5], CSS code[15], and toric code[16]. Stabilizer formalism lies on a group

structure of the Pauli group G, whose projective elements can form a canonical OSR,

as we discussed in Chapter 2. Given a group element g E G,, we say that a quantum

state 1|) is stabilized if g |V) = I4). Furthermore, the state IV) is stabilized by group

S c G, if for all elements in g E S, g I4) = 14). Note that the pauli operators are

hermitian and unitary at the same time. The logical quantum state, which we use to

process quantum information, are the states that are simultaneously stabilized by the



stabilizer operators. Let the vector space spanned by these vectors as Vs. Suppose we

measure the quantum state by stabilizer operator, which is hermitian. If the vector

lies in Vs, the out come will be a positive eigenvalue, +1. However, if it does not lie

in Vs. It will either measure +1, and project the state into Vs, or measure -1, which

makes the vector outside of Vs. However, since from the syndrome measurements we

can uniquely determine which error this is, we can recover the error. Of course, more

detailed procedure and the error-correction criterion must be discussed. For these

materials, readers should consult [17]. There is one fact that is worth mentioning,

since it helps in determining the dimension of the logical code space.

Lemma 2 Let S =< gi, - - , gn-k > be generated by n-k independent and commuting

elements from Gn, and such that -I e S. Then Vs is a 2k-dimensional vector space.

The proof can be found in [13].

3.3 Toric Code

Toric Code was first introduced by Kitaev.[161 It is a special case of stabilizer code,

since the stabilizer formalism applies to the Toric code as well. In addition to the

properties of the Stabilizer codes, toric code has an interesting feature : it can be

mapped to a gridded torus. Suppose we have a torus. In general, any point on the

torus can be represented by a two-dimensional coordinate system with identification.

(x, y) (x + a, y + b) Vx, yER (3.15)

By Eq.3.15, we can divide the surface of the torus into smaller fundamental re-

gions. That is, we can divide the torus into smaller regions such that finite number of

replication reconstructs the torus. Since Eq.3.15 is topologically identical to a rect-

angle, we can divide this into k x k grid. Now, each of the edges become a qubit and

we define following operators.

UZ) = HIaEA(s)C'z (x) beB(v)c, (3.16)



where A(s) is a set of edges surrounding a surface s, and B(v) is a set of edges

surrounding a surface v. Since each operators asz) and oz) only simultaneously acts

on even number of edges, all of them commute with each other. Note that if the

number of edges are 2k2, number of vertices are k2 and the number of faces are

k2, since the local structure is the same everywhere on the surface. However, this

does not necessarily mean that a minimal number of elements that generate this

stabilizer code is 2k2. In fact, since the multiplication of all Z-type operator results

in an identity, we have 1 constraint. Similarly, multiplication of all X-type operator

results in an identity as well. Therefore, 2k2 - 2 is the minimal number of elements

that generate the stabilizer code. Therefore, toric code encodes 2 qubits into 2k2

qubits. Furthermore, one can see that the maximal number of correctible qubits are

k. Note that X or Z error for any qubits can be represented as a set of lines. If the

line is not closed, it anticommutes with at least one of the stabilizer measurements.

Therefore, any error represented by an open line is correctible. Furthermore, any error

represented by a contractible closed line is in fact one of the stabilizer measurements.

Therefore, these 'errors' are in fact not errors. Only remaining errors are closed line

which are not contractible. Since the minimum length of this line is k, with this

quantum code we can correct k errors. Therefore, toric code encodes 2 qubits into

2k2 qubits, and can correct at most k errors. In fact, for any closed 2-dimensional

surface, the number of encoded qubits is identical to the number of noncontractible

loops which cannot be mapped to each other with continuous transformation. This

quantity turns out to be 2g for hyperbolic surfaces, where g is a number of genuses.



Chapter 4

Quantum Code on a Hurwitz

Surface

As Kitaev's construction of Toric code, in fact any graph on a closed two-dimensional

surface suffices to construct a quantum code, since the commutativity of the operators

do not depend on the topology of the surface, but rather comes from the construc-

tion of the operators themselves. Therefore, the stabilizer formalism can be applied

to these geometrical quantum codes as well. Hurwitz surface is a two-dimensional

closed surface with some additional structure that we will explain and exploit in con-

structing a quantum code. As a Toric code can be constructed by tiling a torus with

squares, code on a Hurwitz surface can be constructed by tiling a Hurwitz surface

with triangles.

4.1 Riemann's Uniformization Theorem and Hy-

perbolic Geometry

4.1.1 Uniformization Theorem

Riemann's uniformization theorem says that any surface admits a Riemannian metric

of constant Gauss curvature. Furthermore, from this, a surface is a quotient of either a

sphere, Euclidean plane, or hyperbolic plane by a free action of a discrete subgroup of



an isometry group. If we want to study a structure of some Riemann surface, we can

impose a quotient on the universal cover, which is a Poincard disk. Poincard disk is a

unit circle centered at the origin on the complex plane. Since the geometry on this disk

can be understood in a straightforward manner, by looking the surface in this way,

we can compute several interesting quantities, such as the shortest noncontractible

geodesic on the surface, which is related to the number of correctible errors.

4.1.2 Hyperbolic Geometry

Hyperbolic geometry is a non-Euclidean geometry, which means that the parallel

postulate of Euclidean geometry is not true any more. It is a curved space. There

are many models of hyperbolic geometry, which are conformally equivalent to each

other. In this paper, we will use the hyperbolic geometry of Poincard disk model. In

this model, a metric gij is given by

1
gij = 2ij - • 2• (4.1)1 - Ek k

where the Euclidean norm satisfies 14 < 1. Therefore, we have

dx2 +d 2
ds 2 = 4 + 2 (4.2)1 - 2 _ 2'

and
dxdy

dA = 4 dxdy (4.3)1 - X2 - 2

Here the notion of 'straight line' is not identical to the notion of straight line in

Euclidean space. In fact, one can see that the notion of 'straight line' in Euclidean

geometry can be just generalized to a geodesic. Geodesic in Poincard disk is part of a

circle that is perpendicular to the unit disk. Using these geodesic lines, we can define

a 'triangle', which is formed as an intersection of three geodesic lines. Of course, we

must require each of the geodesics to intersect with the other two in two different

points. Calculating area of a triangle directly from Eq.4.3 is somewhat nontrivial.



The derivation procedure is in [18], and the result is

A = 7 - a - 0 - 7, (4.4)

where a, /3, and 7-y are the internal angles of the triangle.

4.2 Tiling Group

Tiling group, as the name suggests, is a group whose elements can completely tile a

surface. Simplest example will be a tiling of a 2-dimensional Euclidean plane with

finite sized squares. Except for the identity element, elements of the tiling group must

map one square to another square. It can either be rotation around the vertex, or a

translation which has two degrees of freedom. In fact, this group is infinite since there

can be infinitely many faces. However, if we identify some points, thereby wrapping

around the surface, the surface becomes closed. Since there are finitely many faces,

now we have a finite group. Furthermore, one can easily see that the local structure

of the surface does not change, whereas the global structure, such as the translation,

becomes different. Instead of allowing infinitely long translation, long enough trans-

lation eventually comes back to the starting point due to the identification of the

points.

Now let us see how the geometry and the corresponding group structure changes.

Before we identify points, we have translations which are commutative to each other,

rotations, and reflections which reverses the orientation. If we identify points so that

the surface becomes a torus with discretized coordinates (i, j), i, j E {1, 2,-... , n -

1, n}, there are n2 squares which can be mapped to each other by the group element.

Therefore, including the orientation-reversing isometries, the order of the group is

IGI = 2n 2 . Note that this example can be generalized naturally to more complicated

surfaces. If we take a look at how the tiling worked, one can see that tiling elements,

which was a square in the example, are identical geometrical objects, and therefore

have same areas. Each of these geometrical objects are called as fundamental region.



By mapping any fundamental region via the 2n 2 group elements, we can fully recover

the original surface. However, the group that includes the orientation-reversing ele-

ments will not be used in this paper, since it induces a redundancy in counting the

number of tilings that tiles the surface. Therefore, in this example, although the full

symmetry group has order 2n2 , once we only take care of the orientation-preserving

group, the order of the symmetry group will have order n 2 , and it will only include

translations and rotations.

As one can see in this example, tiling of the surface and its corresponding tiling

group are intimately related to each other. Particularly, since we are looking at

the structure of the quantum code, the essential features such as the encoding rate

and the rate of correctible errors, can be computed from the group elements. For

instance, computing the encoding rate is trivial since the number of qubits encoded

on the surface is 2g, where g is the genus of the surface, and the total number

of qubits is proportional to the number of tilings on the surface. For the number

of correctible errors, once we can represent the group elements as translation and

rotation operators, we can compute the minimal translation lengths that is equal to

the identity operation. Of course the latter computation will not be easy in general,

since representing an abstract group element is not an easy task to do. However, for

Hurwitz group, which is an orientation-preserving tiling group of Hurwitz surface,

such representation exists in a form that is easy to compute its translation lengths.

Furthermore, Vogeler showed a combinatorial approach on calculating all the lengths

of closed geodesics on Hurwitz surfaces by using the representation of the group

elements.[19] Therefore, at least for the case of Hurwitz group, it is in fact possible

to do this computation.

4.3 Hurwitz Group

Hurwitz group is a special tiling group on a hyperbolic geometry which is, in a sense,

a maximal symmetry group on a closed hyperbolic surface with constant Gauss cur-



vature. To understand this, let us start with Gauss-Bonnet theorem.

I jKdA = 27rX(M), (4.5)

where K is the curvature of the surface, X is Euler characteristic, and M is the

corresponding manifold. Since we are concerned with a surface with constant Gauss

curvature, we have

A = 47r(g- 1). (4.6)

Since we are looking for a discrete symmetry group on this surface, this area must be

an integer multiple of the area of the fundamental region. If the fundamental region

is a hyperbolic triangle, it has an area

11 1
7(1- - + -), (4.7)

1 m n

where j, , are the angles on each of the vertices. Furthermore, 1, m, n must

be integer-valued since otherwise the group will not be discrete or the fundamental

regions will overlap with each other. From this condition, we can derive Riemann-

Hurwitz equation for genus g.

g = 1 + (1 - ( + - + - )) (4.8)2 I m n

Since we are studying the geometry on a hyperbolic plane, the maximum area of a

triangle is bounded by the following inequality. [18]

( + -I +  ) < 7r. (4.9)Imn

It is easy to check that in fact the maximum area for integer values of 1, m, n can be

achieved when (1, m, n) = (2, 3, 7). In this case, the Riemann-Hurwitz equation can

be expressed as the following.
|GI

g = 1 + 84 (4.10)
84



A group G which achieves this bound is called as Hurwitz group. Note that Eq.4.10

is merely a bound, and does not guarantee the existence of such group. However, in

fact, there are infinitely many Hurwitz groups with different group orders.[20] This is

the reason that we can see the asymptotic behavior on such surfaces.

4.4 Quantum Code on a Hurwitz Surface

Since Hurwitz group maps one of the tiles to another tile on the surface, it is easy to

see that for a Hurwitz surface of genus g, total number of faces is 84(g - 1). Since

the fundamental region is triangle, each faces have 3 edges. Therefore, dividing by

the overcounting factor, total number of edges become 126(g - 1). Since this surface

encodes 2g qubits, encoding rate becomes

k 2g 1 1k 2 g - + O ( ) (4.11)
n 126(g - 1) 63 g

in the asymptotic limit. However, ratio between the correctible errors and total

number of qubits, which is
t_ f(sys(M)) (4.12)
n 126(g - 1)

still remains elusive. Here sys(M) is a length of the shortest noncontractible geodesic

on a Riemannian manifold M, and is called as systole. f is some function which

satisfies t = f(sys(M)). We will see how f behaves later in this paper. Obviously,

for same encoding rate, one would like to prefer a quantum code which is capable

of correcting more errors. Therefore, it is worth mentioning the bound on howt

behaves. Quantum Gilbert-Varshamov bound for stabilizer code, which gives an

asymptotic limit of the quantum code, was derived in [17].

k> 2 log(3)t (2t) (4.13)
->2 1 - ___ - H(-) (4.13)
n n n

Asymptotically the left hand side converges to -. Numerically computing the



bound on we find that the bound is achieved near

2t2t~ 0.1852 (4.14)
n

in an asymptotic limit. One might think that the code will behave better by dividing

up the fundamental regions. For instance, one can imagine dividing the fundamental

region into m identical pairs. The encoded qubit still remains as 2g and the total

number of qubits grows as 126(g - 1)m. However, since the length of the systole is

roughly proportional to V/-i, in an asymptotic limit that m -+ oo, we get the error
t

correcting ratio I -*0, no matter what the g is. In fact, we can never escape from

this problem as far as the quantum code is a surface code, or a generalization of it.[21]

There is a known Lower bound on the systole length. [22]

4
sys(M) > - log(g), (4.15)

3

but we do not know whether the bound on the inequality is saturated or not. If the

bound is saturated for Hurwitz surfaces, the corresponding quantum code will have

Sasymptotically converging to 0. We will examine this by numerically generating

Hurwitz group and calculating the length of closed translations.

4.4.1 Generating Hurwitz Group

Note that the fundamental region of the Hurwitz surface is a triangle which has angle

, , and ". Furthermore, one can see that two consecutive reflection on different

edges result in a rotation of order 2, 3, and 7, and applying these three rotations

consecutively results in an identity element. Since Hurwitz group only includes the

orientation-preserving group elements, we can see that any Hurwitz group will have

a group presentation of the following form.

G =< a, bla 3 , b7, (ab) 2, . . . >, (4.16)



where -.. are the extra relators that 'wrap up' the surface. In [19], the author showed

that in fact any extra relator must be a hyperbolic translation and any hyperbolic

translation can be written as a repetition of two letters R = b, L = ba-'. Here R and

L can be thought as a 'right turn', and 'left turn' on a slightly modified tiled surface.

Instead of tiling Hurwitz surface with (2, 3, 7) triangle, we can gather 14 triangles

to form a heptagon, and let this heptagon be a fundamental region. Even though

the surface has changed, note that the group structure remains the same, since order

7 rotation corresponds to the rotation through the center of the heptagon, 3 to the

rotation through the vertices, and 2 to the rotation through the center of each edges.

In this tiling structure, R can be thought as taking a right turn on the vertex,and L

can be thought as taking a left turn on the vertex. Since each vertex meets with 3

edges, this definition makes sense.

He also showed that any hyperbolic translation can be written in a proper label,

which does not have three consecutive Rs or Ls in its sequence, starts with R, and

ends with L.

Definition 6 A label is proper if it begins with R, ends with L, and contains neither

RRR nor LLL as a consecutive subsequence.

This significantly reduces the number of possible extra relators, and thus we can

generate Hurwitz groups with reduced redundancy. By choosing extra relators, we

generated the corresponding Hurwitz group by using MAGMA.

4.4.2 Computing the Length of the Systole

A fractional linear transformation T is a transformation defined on a complex plane.

az + b
TM(z) = z + (4.17)

cz + d

It is convenient to think this as a

M , (4.18)
c d

32



since one can show that

TM• O TM2 = TM MM2 . (4.19)

In [19], the author shows that there is a group representation of Hurwitz group with

a -- A, b --+ B, where

S cos § sin ( cos bsin (4.20)

-sin E cos / -sin E cos E3 3 b 7 7)

Here b = (cot Z)(cot ) + V(cot E)(cot 1) + 1. Furthermore, the translation length

can be computed as

2cosh-1 1Tr(M) . (4.21)
2

Therefore, once we generate Hurwitz group, we can compute all the translation length

using Eq.4.21. Furthermore, since we have the group in our hand, we can find a

translation that generates all the translation on that axis. By finding the order of

this translation, one can compute the length of closed geodesic. The minimum length

among these will correspond to the length of the systole.

4.4.3 Relation between Systole Length and Correctible Er-

rors

Roughly speaking, if we embed a graph on Hurwitz surface, as the systole length

increases, the number of correctible errors should increase as well. However, those

two do not have a strict linear relationship, since the number of correctible errors is

proportional to the length of the shortest closed translation which follows the edges

of the heptagon, following the R and L label. Since there is always at least one

translation caused by R and L which deviates from the geodesic line, the length of

the systole cannot be directly translated to a number of correctible errors. This can

be seen in FIG.4-1

Of course this inconvenience can be remedied by dividing up the fundamental

regions into smaller pieces. In the limit this division goes to infinity, the systole



Figure 4-1: Arrowed line is a geodesic, and the heptagons are the fundamental regions.
As one can see, except for some trivial cases, the geodesic does not overlap with the
edges of the fundamental region.

length becomes proportional to the number of correctible errors. However, as we

have explained, further division of the fundamental region decreases bothk and ,

which is not desirable. In fact, we can set a bound between a number of correctible

errors and systole lengths. To show this, I will first introduce some definitions and

useful facts which were introduced in [19].

Definition 7 Suppose t is a hyperbolic translation. Label-length of t is the minimal

length taken by the label A(E) as E ranges over all edge-paths from el to t(el), where

el ranges over all edges in the tiling.

Definition 8 Suppose X is the axis of a translation t. The corridor C(X) of X is

the collection of faces in the tiling which have non-empty intersection with X.



Lemma 3 Suppose E is an edge-path corresponding to a translation gE with axis X.

If A(E) is proper, then E is contained in C(X). (Vogeler, 2003)

Theorem 3 Let 1(t) be a minimal length of edge-path for hyperbolic translation t.

Let IE(t) be a length of translation t. For any hyperbolic translation t, I(t) 5 alE(t)

for some a.

Proof : Note that any hyperbolic translation admits a proper label. Let X be the

translation axis of t. The edge-path corresponding to this proper label lies in C(X).

Let tF be a segment of t which intersects with one of the tiling face F. Divide t into

tFs. Note that for each tF, the corresponding truncated minimal edge-path is always

smaller than alE(tF), for some universal constant a. Therefore, summing up these

truncated pieces, we have

1(t) 5 a IE E(tF)= alEt. (4.22)
F

Li

Since 1(t) > 1E(t) by definition, we have

IE(t) _ 1(t) _ alcE(t) (4.23)

for some a. Since 1(t) is proportional to the number of correctible errors, one can see

that indeed the length of the systole is a good measure of the number of correctible

errors, even in the absence of further division of fundamental regions.

4.4.4 Numerical Results

We generated as many Hurwitz groups as possible by experimenting on different extra

relators. However, there were many instances where the program failed to generate

a group. This may be due to the memory limit of the computer. As a result, among

the Hurwitz groups we have generated, the number of genus was always smaller than

the maximal genus numerically found in [19]. The plot between the genus and the

systole length is shown in FIG.4-2
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Figure 4-2: Plot between the genus and the systole length. One can see that the
systole length increases at the beginning, but the increasing rate dramatically falls as
the genus grows larger.

Similarly, the plot between the genus and the "sys(M) was also obtained. Note that9
in, FIG.4-3 the sys(M) is plotted in log scale. Although the decreasing rate seems9
subexponential, it still seems to go down superpolynomially, or at least polynomially

with a large degree. Since the number of correctible errors is linearly bounded by the

length of the systole, it will not be able to make a difference in the order of magnitude

change shown in FIG.4-3. Since sys(M) is linearly bounded by I, FIG.4-3 suggests
9 nI

that asymptotically _ should vanish very fast in the limit g -+ oc. Therefore, it seemsn

highly unlikely that the code generated on Hurwitz surfaces are good quantum error

correcting code, in a sense that it cannot saturate the Gilbert-Varshamov bound.

)o
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Chapter 5

Conclusion

In this paper, We studied properties of quantum code on Hurwitz surfaces. As we

could see in the numerical result, in the asymptotic limit g -+ oc, _ seems to convergen

to 0. However, in this limit, we observe that the encoding rate converges to 1, which
63'

is a constant value. Our work can be compared to [23]. In [23], the authors construct

a quantum code whose encoding rate converges to 1 but the number of correctible

errors remains as 1. On the contrary, our code, achieves a smaller encoding rate, but

is able to correct more errors, since asymptotically the systole length grows at least

logarithmically.[22] From these results, it seems that there is a tradeoff between kn

and _ for topological quantum codes. It will be interesting to elucidate this aspect,
since it seems to be largely dependant on the structure of large-genus surface.since it seems to be largely dependant on the structure of large-genus surface.
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