
MODELING A TWO-LINK RIGID SWIMMER
SCALLOPING IN LINEAR VISCOELASTIC FLUID

by

Tania Ullah

SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN
PARTIAL FULFIJLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE
ATTHE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2007

©2007 Tania Ullah. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper
and electronic copies of this thesis document in whole or in part in any medium now

known or hereafter created.

Signature of Author: ....................................................... ...
Department {Mechanical Engineering

May 11, 2007

Certified by: .................................................. .......... . ........-..........v.......
Anette Hosoi

Associate Professor of Mechanical Engineering
Thesis Supervisor

Accepted by: ............... ................. ..... .......
.......... 'TU •••SJohn H. Lienhard, V

Prnfpee r orf Mephanicoal Eninerivi-nav1
MASSACHUSETTSiNSIN E

OF TECHNOLOGY

JUN 21 2007

LIBRARIES

Chairman, Undergraduate Thesis Committee

ARCHNES



[Page Intentionally Left Blank]



Modeling a Two-Link Rigid Swimmer
Scalloping in Linear Viscoelastic Fluid

by

Tania Ullah

Submitted to the Department of Mechanical Engineering on May 11, 2007
in partial fulfillment of the requirements for the Degree of

Bachelor of Science in Mechanical Engineering.

Abstract

In his renowned lecture on Life at low Reynolds number, E.M. Purcell established that a
rigid swimmer comprised of two links cannot swim in a viscous Newtonian fluid due to
the reciprocal nature of its movements. Viscoelastic fluid, on the other hand, has a
characteristic time scale associated with stress relaxation and can impart asymmetrical
stresses on the body of a swimmer to propel it forward. This work focuses on developing
a theoretical model for the fluid-structure interactions that influence the swimming of a
two-link specimen in viscoelastic fluid. Because the oscillation of the slender rods that
comprise the links of the swimmer elicit a response from the surrounding fluid at various
frequencies, the modeling consisted of a complex Fourier analysis. This paper discusses
in detail the physics of the specimen's swimming and the equations that govern its
movement in the fluid. The work done has been purely theoretical; however, a numerical
simulation to validate the theory will be conducted as future work.

Thesis Supervisor: Anette Hosoi
Title: Associate Professor, Department of Mechanical Engineering
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Chapter 1

Introduction
The objective of this thesis is to develop a model of a two-link rigid swimmer in

viscoelastic fluid. A brief background on locomotion at low Reynolds numbers and the

material characteristics of viscoelastic fluids are presented in this chapter. In Chapter 2, a

preliminary model is developed in order to understand the physics of the two-link

swimmer scalloping in a Newtonian fluid. Finally, Chapter 3 discusses the theoretical

approach taken to model the swimmer in viscoelastic fluid.

1.1 Background

1.1.1 E.M. Purcell's Life at low Reynolds number

Marine propulsion has long been a topic of interest for mechanical and ocean

engineers. The intuition naval engineers have developed in order to design efficient ships,

submarines, and other watercraft, however, applies only to large-scale fluid-structure

interactions. The mechanics and dynamics of fluid flow on the scale of tens of yards are

generally in the high Reynolds number regime. Recall that the Reynolds number is a

dimensionless ratio of the inertial and viscous forces. Consequently, when the Reynolds

number is large the inertia of the fluid dominates its flow characteristics.

If one is not interested in the fluid mechanics associated with propeller motion in

the turbulent ocean, but interested in the locomotion of microorganisms or tiny swimmers

in viscous fluids, we must enter the world of low Reynolds number fluid phenomena. In

this regime, inertia becomes irrelevant. As E.M. Purcell stated in his renowned lecture

Life at low Reynolds number, the square of a fluid's viscosity divided by its density gives

a measure of the force required to tow an object in that fluid [1]. Hence, relatively large

propulsive forces are required to move about in highly viscous fluids and bodies



experience relatively large drag forces. The velocities associated with their movements

are small. Thus, the effects of inertia are insignificant at low Reynolds numbers.

Figure 1-1: Slide from E.M. Purcell's renowned lecture depicting various swimmers and
indicating their Reynolds numbers (figure reproduced from [1]). The first is
a man, the second is a group of fish and the third is a microorganism.

The time scale associated with low Reynolds number locomotion is large and

rates of change are small. In his lecture, Purcell asks the audience to consider a man

swimming at the same Reynolds number as his own sperm [1]. He would be immersed in

a pool of molasses and would move only a few meters every couple of weeks. In this

case, time also makes no difference and the only factor in propulsion is the deformation,

or configuration, of the swimming body. The insignificance of inertia, and by extension

time, make low Reynolds number fluid phenomena distinct from those at high Reynolds

number.

1.1.2 Reciprocal Motion and the Scallop Theorem

As established earlier, time parameterization plays no role in the fluid-structure

interaction for low Reynolds number locomotion; a swimmer can deform its body in the

same manner quickly or slowly, its motion will be no different [1]. Therefore, the

propulsive forces imparted on the swimmer by the surrounding Newtonian fluid depend



only on the swimmer's configuration. As such, Purcell contends that reciprocal motion in

a Newtonian fluid results in no net motion [1]. By reciprocal motion he means a series of

shape changes that a swimming body undergoes such that the forward sequence is

identical to the sequence played in reverse. Any progress that a swimmer makes will be

undone in the reverse sequence.

"The Scallop Theorem," as stated by Purcell, says that a scallop in Newtonian

fluid at low Reynolds numbers will experience no net displacement no matter the pattern

of its movements. A scallop normally moves through a fluid by opening its shell and

closing it quickly. At low Reynolds numbers the scallop will not move because it has one

hinge and only one degree of freedom in its configuration [1]; it is bound to make

reciprocal motions. A swimmer that has three links, and therefore two hinges, can

manage to swim with non-reciprocal motions (see Fig. 1-2). As for the swimmer that has

N links and N-1 degrees of freedom, there are a great many configurations that the

swimmer can undergo and that will result in non-reciprocal motion as well. Such

swimmers, with links N>2, escape the symmetry that traps a two-link swimmer in one

place.

.14V3 Mi

Figure 1-2: A three-link swimmer whose motions are non-reciprocal (reproduced from
[1]).



1.1.3 Viscoelastic fluids

At this point, it has been established how a two-link swimmer behaves in

Newtonian fluid at low Reynolds numbers. The symmetry present in the reciprocal

motions of the scallop prevents it from swimming anywhere. The goal of this thesis is to

determine a model for this swimmer when it is attempting to move about in viscoelastic

fluid. Viscoelastic fluids are also called "memory fluids" because the past history of

deformation contributes to its present stress state [2]. This influence of time on the stress

and strain states of the fluid, and therefore on the rigid swimmer it interacts with, will

provide the asymmetry needed to propel the swimmer. The two-link rigid swimmer can

indeed defy the Scallop Theorem in viscoelastic fluid.

It is appropriate now to provide a comparison between the behaviors of

Newtonian and non-Newtonian (specifically viscoelastic) fluids. The shear stress in a

Newtonian fluid is linearly proportional to the shear strain rate by a constant of

proportionality, called the viscosity. Eq. 1.1 is called Newton's law of viscosity:

I= (1.1)

where t is the shear stress, j is the time derivative of the shear strain, and 07o is the

viscosity. Furthermore, the viscosity, l7o, is a fluid property and is independent of the

strain or strain rate. Common fluids such as air and water are Newtonian. Some non-

Newtonian fluids are ketchup and toothpaste. Ketchup experiences "shear thinning,"

which means that at higher strain rates the viscosity decreases. Toothpaste is termed

"plastic" because it does not begin to deform, or flow, until a finite stress level has been

reached [3].

A viscoelastic fluid, as the name indicates, possesses qualities of both viscous and

elastic materials. In fact, viscoelastic material properties and functions are generally

applicable to both fluids and solids, and the distinction between a viscoelastic fluid and a

viscoelastic solid is somewhat blurred [2]. Granite and glacial ice, for example, will

experience creep and flow under its own weight. Even water can rupture as a solid when

subjected to a large enough stress applied rapidly [2].



Fig. 1-3 shows the comparative response of Newtonian (linear viscous), Hookean

(elastic) and viscoelastic materials undergoing constant shear stress (I), constant shear

strain and strain rate (II), and an oscillatory shear strain (III).
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Figure 1-3: Comparative response of Newtonian (viscous), Hookean (elastic) and
viscoelastic materials to creep and stress relaxation tests (reproduced from
[2]).

For the creep test (I), the viscoelastic material response to a constant shear stress

is a non-linear strain increase. After the stress is removed, as it is at t = t1, the material

experiences "recoil" and recovers its strain. The Hookean, or elastic, solid response is

also to rebound or recover strain but it does so instantaneously. Strain recovery in a

viscoelastic material occurs at a finite rate.

As for the stress relaxation test (II), the viscoelastic response to a constant shear

strain is to experience an infinite and instantaneous stress. It behaves similarly to the

Newtonian, or viscous, fluid in that respect. However, the stress "relaxes" at a finite rate.

For a viscoelastic fluid, the stress relaxes to zero.

to t~ ttot

t t+



When a sinusoidal strain is applied to any of the three materials (III), the response

is oscillatory in all cases. The Hookean solid experiences no time lag and its stress

response is in phase with the strain. The Newtonian fluid response is 900 out of phase

with the applied strain. For the viscoelastic fluid, the stress is out of phase by less than

900, thereby producing both "in-phase" and "out-of-phase" stress response components.

The in-phase component of the stress response is due to the elastic and recoverable nature

of the fluid deformation. The out-of-phase component is due to its viscous and dissipative

nature. An understanding of the oscillatory response of a viscoelastic fluid is particularly

important in this work because the movements of the two-link swimmer, and therefore

the strain on the surrounding fluid, are oscillatory. The behavior exhibited by the fluid in

Fig. 1-3 shows the dual elastic and viscous nature of viscoelastic fluid.

1.1.4 Material Model

The behavior described in the previous section is a result of the combined viscous

and elastic nature of viscoelastic fluid. Material models, incorporating analogous

mechanical elements, have been developed in order to predict the response of such a fluid

for all time and all stress or strain states. The analogous mechanical elements are a

dashpot, representing the viscous character, and a spring, representing the elastic

character.

One of the simplest constitutive models, the Maxwell model, puts one spring and

one dashpot in series. This is the model that has been adopted to characterize the

viscoelastic fluid in which the two-link swimmer will move about. Although more

accurate constitutive models exist, they are more complex than we need at this stage of

our scallop modeling. These include the Voigt and the Standard Linear Solid (SLS)

models and they will not be discussed in this paper.
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Figure 1-4: Schematic of the Maxwell Model. Go is the shear modulus, represented by
the spring. rqo is the viscosity, represented by the dashpot.

Fig. 1-4 illustrates the analogous mechanical model for the Maxwell fluid. A

shear stress, r, is applied to the system. Because the elements are in series, the stress is

the same everywhere:

Te = Tv = T (1.2)

where the subscript 'e' pertains to the elastic, spring element and the subscript 'v'

pertains to the viscous, dashpot element. The shear strain in the spring is:

(1.3)Ye = Go

and the shear strain rate in the dashpot is:

YV (1.4)

If the total shear rate is the sum of the shear rates of each element, then the differential

equation relating shear stress and strain is:

- + Xt = j

where X is the characteristic time constant [2]. It is equivalent to:

(1.5)



(1.6)

In order to determine the relaxation modulus for the Maxwell fluid, we subject

our model to a constant shear strain, r = Yo u(t), at t=-0 u(t) is the unit Heaviside step

function. Integrating Eq. 1.5 and recognizing that the initial shear stress is GoYo gives us

the relaxation modulus.

GR(t) = Go e (1.7)

From the relaxation modulus, the stress in the Maxwell fluid can be determined for all

strain states and for all time. The expression in Eq. 1.7 will be used later on in this paper

when we begin to model the two-link swimmer in a viscoelastic fluid.

1.2 Motivation
Interesting fluids problems with biological relevance have been explored since the

1970s. Studies of flagellar bend propagation, sperm penetration of the egg and sperm

motility, however, have mostly involved Newtonian fluids. The motivation of this work

is to model swimming behavior that has true applications to biological phenomena.

New Scientist magazine has recently reported on a slew of medical devices that

are being developed to aid in the treatment of cardiovascular disease. Chinese engineers

have designed a microscopic swimming robot that will deliver drugs to or clear out

blockage in the arteries of humans [4]. This tiny robot, measuring 3mm x 2mm x 0.4mm,

can maneuver itself along the blood vessels. Miniature sensors [5] and catheters with

actuating mechanisms [6] are also being designed to migrate into the blood stream.

Concurrently, engineers are working towards shrinking these devices to the scale of a

tenth of a millimeter. Locomotion in blood (a non-Newtonian fluid) and on such a small

scale provides for unique fluid-structure interactions that we are interested in studying.

New types of biomimetic robots and machines are being developed everyday.

Engineers cannot efficiently design them or prescribe their locomotion without having an



understanding of low-Reynolds locomotion in non-Newtonian fluids. In this regard,

Professor Hosoi's group in the Hatsopoulos Microfluids Lab has undertaken many

projects that have new applications to bioengineering. Studying locomotion in non-

Newtonian fluids is giving us insights into the mechanisms with which organisms move

about in biofluids. Nature has optimized the swimming of Helicobacter pylori, a

bacterium responsible for peptic ulcers, within the mucous lining of the stomach's walls.

Nature has also optimized the wave motion of snails moving on a thin layer of mucous.

Studying swimming mechanisms in non-Newtonian fluids and understanding the

optimization animals have mastered in their locomotion is an exciting challenge for

mechanical and biological engineers alike.



Chapter 2

Preliminary Model: Newtonian Case
Prior to developing a model for a two-link swimmer in viscoelastic fluid, it was

necessary to model the case in which a swimmer is scalloping in a Newtonian fluid. As

mentioned earlier, E.M. Purcell and others have established that reciprocal motion, as

exhibited by a scallop slowly opening and closing its shell, produces no net motion in a

Newtonian fluid at low Reynolds numbers [1]. This chapter discusses the development of

a preliminary model---one in which the scalloping swimmer is in Newtonian fluid. In so

doing, we 1) verify that, indeed, it has not net motion and 2) gain an understanding of the

equations governing the motion of the linked rigid bodies.

2.1 The Swimmer

The figure below (Fig. 2-1) provides a comparison between the swimmer and the

scallop after which it was modeled. The swimmer is comprised of two, slender circular

rods that are joined and pivot about point O.

0~j

(a) (b)
Figure 2-1: (a) sketch of a scallop (reproduced from [1]) and (b) sketch of the two-link

swimmer, whose locomotion is similar to that of a scallop.



Scallops are bivalve mollusks and, as such, have a central adductor muscle that

opens and closes their two-part shells [2]. This opening and closing, hereafter referred to

as "scalloping," propels the mollusks at relatively high speeds in aquatic environments.

Real scallops swim at high Reynolds numbers; the two-link swimmer in this model is the

low Reynolds number counterpart. The two-link swimmer undergoes planar motion that

mimics the scalloping of a mollusk; the angle between the slender rods, 0, oscillates

between a small positive value and a larger positive value (see Fig. 2-2). In the model that

is developed, the time-varying angle (t) is prescribed and the observable result is the

swimmer's displacement over time.

Omt)

61t)

T = 27r/co 2T

Figure 2-2: Time-varying 6(t) as the swimmer attempts to propel itself forward.

2.2 Drag Forces
The equations of motion for the scalloping swimmer have been determined using

force equilibrium equations, a moment balance equation, velocity boundary conditions

and the function forcing 6(t), the angle between the two arms of the swimmer. To begin

the analysis, let us first look at the motion of just one slender rod settling in a viscous,

Newtonian fluid. Fig. 2-3 depicts the forces acting on the rod's center of mass, CM.

,F
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Figure 2-3: A rod settling in a Newtonian fluid at an angle Vp, with associated drag
forces and weight acting on the rod's center of mass, CM. &r and OtN are the
tangential and normal components of the velocity of the rod.

Along with the weight, mg, acting downward, there are tangential and normal

drag forces on the long, slender body (FT and FN, respectively) in the orientation shown

in Fig. 2-3. These retarding forces are components of the viscous drag and are

proportional to the center of mass velocity as follows:

FT=CTTL (2.1)
FN =CN ON L

where Cr and CN are the tangential and normal drag coefficients, Otr and zn are the

tangential and normal components of the velocity of the rod, and L is its length. A rod

settling in viscous fluid experiences more drag along its length, in the normal direction,

than it does in the tangential direction. The coefficients of drag on a slender cylinder in

viscous fluid are approximately [3]:

CT = 27/ (2.2)
CN = 4grio

where q70 is the viscosity of the Newtonian fluid.

In the case of two linked rigid rods, there are two sets of drag forces and two sets

of velocity components that interact with each other. Fig. 2-4 is a free body diagram of

the two-link swimmer in viscous fluid.
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Figure 2-4: Two-link swimmer and its free body diagram. The two arms of the
swimmer are joined at point O.

The subscript '1' pertains to the drag forces, angle and center of mass of the top

rod and the subscript '2' pertains to the drag forces, angle and center of mass of the

bottom rod. I and 02 are the positive angles the rods make with the horizontal x-axis.

As the angles change with time, so do the velocities and, therefore, drag forces on

the two centers of mass. The time varying quantities associated with the movement of the

two-link swimmer are the following variables: xi(t) and yi(t), the vertical and horizontal

position of the top rod's center of mass; 6A(t); x2(t) and y2(t), the position of the bottom

rod's center of mass; and 02(t). Determining these six unknowns requires six independent

equations and they are as follows:

(1) the force equilibrium equation in the x-direction

(2) the force equilibrium equation in the y-direction

(3) the moment equilibrium about point 0

(4) matching the x-component velocities of the two rods at point O

(5) matching the y-component velocities of the two rods at point 0

(6) a forcing function prescribing the angle between the links as a function of

time

F" '



The moment equilibrium is taken about point O for convenience. Matching the

velocities at point O is a boundary condition that ensures that the ends of the rods are

always joined. The forcing of the angles 01 and 62 will control the scalloping motion of

the swimmer and initiate propulsion.

2.3 Equations of Motion
The first two equations relating the unknown variables are the force equilibrium

equations:

Fx = F sin 09, - F cos0 -FN2 sin9 2 +F2 cos 2 =0 (2.3)

NI 1 Ti I N2 2 T2 CS0

Fy = F cos0i + F, sin 01 + FN2 cOs z + F2 sin 2 = 2mg (2.4)

The two rods that comprise the swimmer are of equal length L and equal mass m. Eqs. 2.3

and 2.4 are the force balances in the x- and y-directions, respectively. Given that the

normal and tangential forces are dependent on the normal and tangential velocity

components (see Eq. 2.1), and that the coefficients of drag are known and given by Eq.

2.2, the force balance equations are reduced to:

47ri% LOe, sin01 - 2•7n LOr cosO1 - 471 % LO sinr 2 + 27E LOT cos02 =0 (2.5)

4;r'% LO, cos01 + 27rn% LOn sire + 4irn7 LO2 cos02 + 27tn. LO sin02 = 2mg (2.6)

The equations above provide a relation between the tangential and normal

components of the velocity and the angles. The variables to be determined, however, are

each rod's center of mass x- and y-coordinates. A transformation of coordinates is

necessary. Fig. 2-5 is a representation of the velocity vectors.
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Figure 2-5: The normal and tangential velocities and equivalent horizontal and vertical
velocity components of (a) rod 1 and (b) rod 2.

According to this vector representation, the scalar normal and tangential velocity

components can be expressed in terms of the Cartesian velocities by Eq. 2.7 and Eq. 2.8.

15NI - 5x sirl - 1,, cos 12'0N --'xl sn 1 - yl c 01 (2.7)
,on =Ox cos0l - y sin01

5NOm2 x2 si=O 2 - y2 COS02
72 - Ox2 cos02 - y2 sid02 (2.8)

Substituting the equations above into the force equilibrium equations Eqs. 2.5 and 2.6

yield two simplified equations of motion:

(3 - cos2O1) 1x + (sin2O1) 1y1 + (3 - cos202) 'Ox2 - (sin26 2) ay2= 0 (2.9)

(sin201) 1x + (3 + cos2O1) , 1 - (sin20 2) 0 + (3 + cos202) y2 =- mg(2.10)
-27rl L

For the third equation of motion, a simple moment balance is taken about point O.

The free body diagram of Fig. 2-4 indicates that the only forces causing a moment about

point O are the normal components of drag and the weights of the rods. The moment

balance is:

1 1 1 1
SM zo=- FNIL L- F FL +- mgLcosO1+2 mgLcos02 = 0 (2.11)

Vy 1 NZ

a I t; 2



As was done with Eqs. 2.3 and 2.4, the drag forces are expressed in terms of Oxl, Oyl, 0x2,

Oy2, 1, and 01 and substituted into Eq. 2.11. The third equation of motion becomes:

(sin 1) Ox5 + (cos) 1, - (sinO2) Ox2 + (cosO2) y2 = -  rg (cosOL  + COS 2) (2.12)

As the swimmer moves in its fluid environment and as time progress, one

boundary condition must always be satisfied: the rods that constitute the arms of the

swimmer are joined at point O at all times. This boundary condition affects the

locomotion of the scalloping swimmer and factors into the equations of motion. The link

at point O means that the velocities of the two rods at point O are equal:

--- -4

010 = 02o (2.13)

where Aio is the velocity of the top rod at point O and 920 is the velocity of the bottom

rod at point O. In terms of the velocities in Cartesian coordinates, with the origin at point

O, the velocities are:

-> (-i 1. b.~ ( 1*>
o10 = 1 -- Lsin 01 e x+ -- 1Lcos01 ey

2 2
" Ib(2.14)

920 Ox2 2 Lsin02 ex+ y2 +-b2 LcosO2 ey
2 2

Equating the x and y velocity components yields the two equations of motion from the

velocity boundary conditions:

1* 1
tx- 1x 2 -1 iLsin 0, +-12 Lsin9 2 = 0 (2.15)

2 2

yl y2 1 LCOS 1 2 Lcos02 = 0 (2.16)
2 2



As mentioned earlier and as indicated by Fig. 2-2, the angle between the two arms

of the swimmer oscillates from a small positive value min to a larger positive value max.

The angle 0 is the sum of 60 and 02 and its rate of change is prescribed to be:

(t) = 6 + 2 0x nn) sin0t
o~t)=2

(2.17)

where wo is the angular frequency of oscillation. The rate of change of 0 is the forcing

function and it is the sixth and last equation of motion.

Putting together the six equations, Eqs. 2.9, 2.10, 2.12, 2.15, 2.16 and 2.17,

creates a system of equations relating the rates of change of the x and y coordinates of the

rods, as well as the angles they make with the horizontal. Eq. 2.18 expresses the system

in matrix form.

- sin202

3 + cos202
cos0 2

0

-1

0

0

0

0

-sinm 1

- cos0 1

1

0
0

0

sin0
2

- cos0 2

1
/

xxl

1-y1

Ox2

Oy2

21

62

0
mg

2nN L
cgL (cos01 + COS0 2)4nt• L

0
0

1 (0mx - 0nn) (o sint

(2.18)

The following section discusses the numerical integration of Eq. 2.18 to obtain

xI(t), yi(t), A4(t), x2(t), y2(t) and 60(t) and the Matlab simulation that allowed us to

visualize the movements of the swimmer as time progressed.

2.4 Simulation and Results
Determining xi(t), yI(t), x 2(t), y2(t), OI(t) and 2 (t) requires numerical integration

of Eq. 2.18. A Matlab code was written in order to carry out the integration with a

/ _ _
3 - cos2O1

sin201
sin0 1

1

0

0

sin201

+ cos201

cosO1

0
1
0

3 -cos202

- sin202

- sin02

-1
0

0

A •



specified time step and to output the coordinates of the center of mass of each rod and the

rod's angle with the horizontal as time progressed.

The initial conditions for the integration are xl(t=0), yi(t=0), x2(t=0), y2(t=0),

01(t=0) and 62(t=0). At t = 0, the scalloping swimmer is wide open and the angle between

its arms is Omax. Consequently, all the initial conditions are in terms of Omax:

L 0 rx
x, (0) = - 2 cos • O2

Y l (0 ) = -2 sin

O0ix2 2
01 (0)= 0

2 (2 .19 )
L 0 max

x2 (0)=- 2 Cos (2

Y 2 (0) - L sin 02ra

02 (0) 0 2

The origin of the coordinate system is placed at point O (see Fig. 2-4).

The simulation was carried out over two full cycles, where one full cycle is the

closing and then opening of the scalloping swimmer (see Fig. 2-2). Figure 2-6 on the next

page shows a graphical representation of the simulations results (only for 1.5 full cycles).

The figure shows the swimmer, in bold, and the orientation of the rods that

constitute its arms at every quarter period. Each plot is superimposed on all the previous

ones in gray in order to observe how far the swimmer is displaced as time progresses.



A

A

a)

*M

"Ci-9 04HE

*lcn

I=o

*)0

O

11~ 0°I-•

Cl
Ho

C)



2.5 Conclusions
This simulation successfully confirms that a scalloping swimmer in a Newtonian

fluid experiences no net motion due to the symmetry of its movements. The results of the

simulation summarized in Fig. 2-6 show that the swimmer propels itself forward at the

start of each cycle, when it was closing its arms. However, as the swimmer opens its arms

wide again in the second half of the cycle, it travels backward the same horizontal

distance it had moved forward. Again, the swimmer experiences no net movement in the

forward direction.

The simulation also served to provide us with a physical understanding of how the

swimmer's locomotion works. This understanding will prove to be helpful when

developing the model for the more complex case, where the swimmer is in viscoelastic

fluid.



Chapter 3

Viscoelastic Model
In the previous chapter, the theoretical analysis of a two-link swimmer in a

Newtonian fluid was carried out and a numerical model was developed to simulate its

swimming. The numerical simulation confirmed that, in Newtonian fluid, a body

comprised of two links does not have a net displacement because of the reciprocal nature

of its movements. This chapter introduces a viscoelastic model, which takes into account

the viscous and elastic nature of the fluid in order to determine its influence on the

swimmer's propulsion. This introduction is entirely theoretical. However, future work

will include a numerical simulation that is similar to, but more complex than the one

carried out for the Newtonian case.

3.1 Relaxation Spectrum
As discussed in Chapter 1, a viscoelastic fluid deviates from a Newtonian fluid

because accumulated stresses relax over time. The interaction between the time scale for

relaxation and the period of oscillation of the swimmer's arms produces in-phase and out-

of phase stresses on the swimming body [7]. The force distribution on the swimmer, and

thus its swimming speed, is affected by fluid viscoelasticity.

The Maxwell model, the simplest model characterizing the stress relaxation and

creep behavior of viscoelastic fluid, can be expressed in a more generalized form. The

following figure shows the mechanical analogue of the generalized Maxwell model.



G0

Figure 3-1: Mechanical analogue of generalized Maxwell model.

The parallel arrangement of the individual Maxwell elements, with different shear

moduli, Gi, and viscosities, 77i, show that there is a distribution in the relaxation times in

the generalized model. The relaxation time for each element, i, is:

G. (3.1)

In general, viscoelastic fluids will exhibit a spectrum of relaxation times. Many

polymeric fluids are considered viscoelastic and the spectrum of relaxation times is

caused by the distribution of polymer molecular weights and amount of cross-linking [2].

In an article published in Biorheology in 1998, Fulford, Katz, and Powell state

that the relaxation spectrum of a linear viscoelastic fluid will produce a series of different

responses to a given stress or strain state [7]. Therefore, a slender rod oscillating at an

angular frequency wo, much like the rods that comprise the arms of the scalloping

swimmer, will elicit a response at multiple frequencies from the surrounding viscoelastic

fluid. This is the underlying principle under which the proceeding theoretical analysis

will take place.
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3.2 Complex Fourier drag forces
The two slender rods that are joined and form the body of the scalloping swimmer

experience translation and oscillation at a frequency w. Thus, the velocities of the centers

of mass of the rods can be decomposed into a complex Fourier series:

__ 00 _(m)
1 = '01 e

im
o

M =- 0 
(3.2)

02 152 e im
m = -00

where 01 and z2 are the center of mass velocities of the top rod and bottom rod,

respectively (refer to Fig. 2-4 to see the swimmer). The 01(m) and 6jm) terms refer to the

Fourier coefficients (of order m) for the velocities.

Because a viscoelastic fluid has out-of-phase and in-phase behavior in response to

oscillatory stresses and strains, analysis involves complex material properties. The

complex viscosity is given by the following integral:

00

TI(m) = GR (T) - ime O dt (3.3)

0

where #m) is the complex viscosity of order m. GR(t) is the shear relaxation modulus of

the fluid. In Chapter 1, we calculated the Maxwell shear relaxation modulus to be:

_L t

GR (t) = ex (3.4)

where X is the relaxation time constant of the viscoelastic fluid. This equation is
thequivalent to Eq. 1.7. The mth order complex viscosity then becomes:

m)  e- imto (3.5)
1 +m2 (2 X2



Equations 2.1 and 2.2 still hold for the viscoelastic case because the Fourier

velocity terms are linear. Therefore, the mth term tangential and normal components of

the drag force on a rod are independent. They are as follows:

F(Tm ) = C(T)m , (Tm) L (3.6)
F(m) = C(m) a(m) L

N _ N

The coefficients C Tm) and CN/m) are the mth tangential and normal drag coefficients and

they are in terms of the complex viscosity (refer to Eq. 2.2). The OWm) and Wjr m) terms are

the Fourier coefficients of the tangential and normal components of the center of mass

velocity of a rod. The rod's length is given by L. Substituting Eq. 3.5, the expression for

the complex viscosity, into Eq. 3.6 and summing all the mth order modes of the drag

coefficient gives the total tangential and normal drag forces.

C~m lam e 00 27cTnL L 0(m) emo)(t~

M = - 00 m=-oo ý 20 X 37FN = C(m) L(m) L e m  (Tm) eim0(t 4-
M - 0m - + m2 (2 X2

(3.7)

m=-Z N=-o 1+m2 2X2  N

Eq. 3.7 applies to both the top rod (rod 1) and the bottom rod (rod 2). Note that the

complex exponential term is offset by the relaxation time constant. The response of the

fluid to the oscillation of the cylinders is out of phase, as expected.

3.3 Primary Equations of Motion
Although the free body diagram in Chapter 2 (Fig. 2-4) still applies to the

viscoelastic swimmer, a small modification will be made to it based on the results

obtained from the Newtonian model. Fig. 2-6, which illustrates the results of the

Newtonian simulation, shows that the net horizontal displacement of the swimmer over

one cycle is zero. What the figure does not show well is that the swimmer is sinking over

time. This is because the vertical displacement, due to the influence of gravity, is small



compared to the displacements in the horizontal direction and small compared to the size

of the swimmer. Thus, gravity will not be factored into equations of motion for the

swimmer in viscoelastic fluid (refer to the free body diagram in Fig. 3-2).

FT2

Figure 3-2: Free body diagram of swimmer in viscoelastic fluid. The weights of the rods
are neglected.

As noted for the Newtonian model, there are six independent equations relating

the drag forces on and the angles of the rotating rods. With the modifications discussed

above, they are now:

Fx= FNI sin01 - Fn cos01 - Fm sirn 2 + F2 cos02 = 0

FY, = FN cosO + Fn sinri + FN2 COSO2 + FM sinr0 2 = 0

M- 1o=- FNI L--FI FL=0

1* 1
xl - 0tx2 -- 01 LsinO1 +-02 Lsin 02 =0

2 2

O -Oy2 1 Lcos 0, 2 Lcos 02 = 0
2 + 22 =0(t)

61 +6 2 = 6 (t)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)



These primary equations of motion, as stated, solve only six unknowns. For the

Newtonian model, there were six unknowns: 0xl(t), dyI(t), 61(t), Ox2 (t), tOy2(t) and 62(t).

Numerical integration yielded xi(t), yi(t), A1(t), x2 (t), y2(t) and 02(t).

For the viscoelastic case, the x and y velocities of the centers of mass of the rods

are expressed in terms of complex Fourier series. The unknowns for each component of

the velocities are the number of Fourier coefficients. In order to best understand how this

works, let us assume that Eq. 3.2 is not an infinite sum, that there are a finite number of

complex Fourier coefficients for each velocity:

x 36(m) im"
m= n (3.14)

IOy1 • 5(m) ei
m=-n

Ox2 =I 15(m) eim"
"x2

m=-n (3.15)
1r"- 15y 

• ( m ) 
e"m~

~y2 Y y2
m=-n

Eq. 3.14 is the complex Fourier series for the center of mass velocity of the top rod and

Eq. 3.15 is the complex Fourier series for the center of mass velocity of the bottom rod.

OxI(t), Oty(t), 0, 2(t), and Oy2(t) are real valued functions of time, even though they are

complex sums (the imaginary parts cancel out).

Each velocity component, in this case, has 2n + 1 Fourier coefficients and there

are a total of 8n + 4 unknown mth term velocities. Along with the 01 and 02, that makes a

total of 8n + 6 unknowns that need to be solved for. Hence, 8n + 6 independent equations

are required. The following section discusses how to obtain more independent equations

that are imbedded within the set of six that were used in the Newtonian case (Eqs. 3.8-

3.13).



3.4 Secondary Equations of Motion
3.4.1 Finite Limits for Complex Sums

One equation of motion that will retain the same form in the viscoelastic case is

the forcing function on the angle between the arms of the scalloping swimmer. Eq. 3.13

gives a generic form of the equation of motion because 0(t) can theoretically be any

periodic function of frequency w. For convenience, 0(t) will remain the same:

1 + 2 = (0=x -0 nin) o sinot (3.16)

The results from the Newtonian swimmer simulation showed that, because the moment

on each rod was equal and opposite, 01(t) and 02(t) were the same for all time. Therefore,

it can be said that:

01 =02 = 0' (3.17)

Using 0' will be useful in the following calculations.

Looking at the equations of motion for the Newtonian swimmer, Eq. 2.18, there

seem to be a few expressions of sing', cos0', sin29', and cos29'. Because 9' is not a

constant value but a periodic function, all the trigonometric functions of 0' will be

periodic and have frequencies related to w. Here are the relevant trig functions and their

complex Fourier series:

3-cos20'= E a, e il t2 (t- X)  (3.18)
1=-00

sin20'= E 0, e il2m( t - X)  (3.19)

!=--o0

cos20'= E y, eil 2 (t--X) (3.20)
l=--00

00cos0'= E A ei t" (3.21)
1=-0o



00

sin0'= L B ei" wt (3.22)
1=-co

The terms a, fi, y, At and B, are the complex Fourier coefficients of their respective

trigonometric functions. The Fourier series related in Eqs. 3.18-3.20 are centered about t

= 2 for convenience, as will be seen later.

Determining the complex Fourier coefficients of known functions can be difficult

depending on what the function is. For Eqs. 3.18-3.22, the functions are trigonometric

functions of a trigonometric function, 0'. This makes determining the Fourier coefficients

challenging, at least analytically. Therefore, a, fl, y~, At and B, will be determined

numerically. This can be done by converting each trigonometric function into a discrete

data set and inputting it into Matlab's fast fourier transform algorithm, FFT. FFT outputs

the complex Fourier coefficients of the function. As this is a numerical calculation, the

more discrete data points that are provided, the larger the number of coefficients that can

be found and the more accurate they are.

It is expected that there will be a finite number of relevant Fourier coefficients for

the trigonometric functions above; that is, there will be more frequency modes close to CO

and the modes farther away are insignificant. Thus, Eqs. 3.18-3.22 can be written as finite

sums:

k

3 - cos20' = o) e el 2 )(t -X) (3.23)
l=-k

k

sin2O' L e3l eil2 (t- X) (3.24)
l=-k

k

3 + cos20'= L y, eil2(t- X) (3.25)
l=-k

k

cosO' = A, eil )t  (3.26)
l= k

k

sin ' = B, el" lt (3.27)
l=-k



The limit index k can be determined manually by looking at the Fourier coefficients that

the FFT algorithm outputs.

Because the limits on the complex Fourier series for the trigonometric functions

above are finite, we will see that that makes the number of unknown velocity coefficients

finite as well.

3.4.2 Velocity boundary conditions

In order to most clearly demonstrate how the equations of motion are going to be

obtained from Eqs. 3.8-3.13 and Eqs. 3.23-3.27, let us assume that the limit index k is 1.

With substitutions from Eq. 3.14, 3.15, 3.26, and 3.27, the equations for the velocity

boundary conditions, Eqs. 3.11 and 3.12, become:

S1 11
0x -m- 0 ( eime mo 1 L 1B, e "+ 2 L B, e"" = 0

X -x2 -2 0 1  li° +-20
M=- M=- 0=-

(3.28)

M00 M=0
Z Ir

l'• m eime -- Z V
2 (m ) eime 2 011 L A l e"l"--2L21 L At e il = O

(3.29)

Eqs. 3.28 and 3.29 have to hold for all time. Therefore, the coefficients of each mode

must sum to zero. This summing produces the extra equations needed to solve for the

unknown terms. The equations obtained from above are:

1*
150)0)_1 1 0 LB + 1+2LB1= 0

S x2 - 6L Bo + 62 LB o= 0 (3.30)

1-
1 x2) 1 LB + LB =0x 2 -1 22• -1



(1) -1•0(1) 1LA LAI=0yl - y2 2 -I2 2

(o) -0o) 101 LA 1 62 LA =0 (3.31)

(y •_ -1) 101LA -0 6LA =0-ly2 2 -1 22 -1

Notice that m is restricted to the interval -k < m < k. Equations for m beyond the interval

are redundant; that is they yield trivial solutions for the velocity terms. The coefficients At

and B1 are known. They are to be determined by the FFT algorithm.

Because m is now in the interval -k < m < k, there are 8k + 6 = 14 unknowns that

are going to be solved for. At this point, seven equations of motion (Eqs. 3.16, 3.30, and

3.31) are known and seven more need to be determined.

3.4.3 Force and Moment Equilibrium

To begin, the first primary equilibrium equation, Eq. 3.8, can be dissected.

Substituting the complex drag force terms of Eq. 3.7, performing a vector transformation

to obtain the x and y components of the velocities, and substituting in Eqs. 3.14 and 3.15

yields the following:

eE (t 0() (3 - cos20 ') + ~, 1 (sin2')
-m=-oo V1 + m2w2X 2  J m- o0 +22 2 M 20

+ e5x2 (3 - cos2 o )-0 (m)) (sin220')=
m= -"0 1+ 2 2 m=-W + 2 2 2•

(3.32)

The trigonometric terms are Fourier series as well (Eqs. 3.23-3.27) and the sums can be

combined to yield a double sum over m and 1:



1 11 iW(2l+m)(t-l) i e )(21+m)(t- X) ( 
)

e A + e 2 5y
m=- -1 V1+m2W2X2 V + m2W22

Seio( 2 1 
+ m)(t - X) ei r (

2 1
+m)(t- ) (3.33)

+ e (X ý (M I 15(m, = 01+m2l x2 2 "2 2V/ + m2)2X
2  I /1 + m22X2

Carrying out the sum over 1 and m is manageable because k = 1, but for larger k the sum

will be difficult to perform by hand. Summing and matching the coefficients for the

exponential terms, ultimately yields the following three independent equations:

o +1) 1 ( 1) 1(- 1)0y 1 5 ')=o
• 0 "-X1 YI- V yx2 0I 0 "y2 AY1x P I y

-1 (1) -Ffo__ 13(1) +(__ o(o) -0o0,,01(-) = 0

o 0 2A y x2 0y20

(X 0( )+P_-0 1 2 -X10( )12 0(l)1) 0 6 (- 1) 0 (- 1) 00(- 1) =0
( -1 x 1 AY " -"l 1 Vx2 -1 y2AYx22

(3.34)

The Fourier coefficients a and are known, so the only unknowns in Eq. 3.34 are the m

= -1 and m = 1 Fourier coefficients of each velocity component.

The double sum in Eq. 3.33 actually yields nine equations instead of three, but

many of these equations were eliminated because they were not independent of each

other. Take for example the following two equations that were obtained from the sum in

Eq. 3.33:

c 1z + , •01i) + 0O1 ) -f 3 (1) = 01 Axl yl x2 P" y21)(3.35)1Xo -) + - ,(- 1) + (- 1) 0(-1 (335
0•- I Ax " Y•- 1 I- • 1 x2 - I-- ]y2 --

The two equations above are nearly identical except that the index for the Fourier

coefficients for the trigonometric terms and the Fourier coefficients for the velocity terms

are opposite signs. When a real valued function is expressed in a complex Fourier series,

the sum of all the complex terms must be real. Therefore, each Fourier coefficient is the

complex conjugate of the coefficient that has the negative of its index. For example, a1



and a-, are complex conjugates, as are 0/,x1 ) and t9x (-1 , the m = 1 and m = -1 modes of

the top rod's x component velocity. Consequently, the two equations in Eq. 3.35 are

complex conjugates of each other, making them non-independent equations. The other

equations were eliminated in the same manner.

The force balance in the y direction, after much manipulation yields the following

set of equations:

0 Y + (1) (- B (- 1) A 1 0 1) = 0

x1+0w22 l V1x2 y2 •1+ Y 1 •2x2 Vy2
+ 0a ( ) + Ao o (o) = 0

0x yl A x2 0 y2

+ B -1) A1) 6(1) (-) Ay 1) (1) _(- 0
1+•2 2  yl x2 Vy2••x x2 (3y2

(3.36)

The 14 equations given by Eqs. 3.16, 3.30, 3.31, 3.34, 3.36, and 3.37 can be

solved numerically to solve for the Fourier velocity terms of mth order and, in turn, the

center of mass position of each rod as time progress. The positions, as well as the anglesAndof the rod, will provide the necessar only inputs for a numerical simulation of the swimmerB _I -1() -I -150() -- B_ I - a( ) + A -I - 5( )

scalloping in viscoelastic fluid. A numerical simulation has not been performed toy2

validate the theoretical model developed; however, the next section discusses the steps

necessary to simulate the two-link swimmer in viscoelastic fluid.
+ B 0a(o) + A 15,(o) - Bo 15(o) + A4 15(o)

•0 Ax "0 "" yl x2 " 0 vy2

+ BI 5(-1)+ Al15(- 1) BI15(-l)+ Al a(- 1)0
+ ( Ax " 1- -- (j2X x2 + y2  =

_/1 +2X•2 /1+022/1+ (0)2X2 I/ + 0)2X2

(3.37)

The 14 equations given by Eqs. 3.16, 3.30, 3.31, 3.34, 3.36, and 3.37 can be

solved numerically to solve for the Fourier velocity terms of mth order and, in turn, the

center of mass position of each rod as time progress. The positions, as well as the angles

of the rod, will provide the necessary inputs for a numerical simulation of the swimmer

scalloping in viscoelastic fluid. A numerical simulation has not been performed to

validate the theoretical model developed; however, the next section discusses the steps

necessary to simulate the two-link swimmer in viscoelastic fluid.



3.5 Setup for Simulation
As was the case with the swimmer scalloping in a Newtonian fluid, the time-

varying quantities that we want to solve for are xi(t), yi(t), 91(t), x2 (t), y2(t) and 62(t).

These quantities, when shown graphically in a simulation, show how the swimmer moves

in a fluid.

The time-varying positions are found by numerically integrating the equations of

motion. For a Fourier index limit k = 1, the equations of motion can be expression as a

linear system:

[A]-

(1)xl~(1)
yl

(1)
x2

(0)

xly2

0(0)Y °l5(o)
x2

a(O)
y2

15(o1)
(- 1)
xl

(- 1)
x2

( 1)-
y2

01

6

02

0
0
0
0
0
0
0
0
0
0
0
0
0

1 (0orMx-0) w sinw t--2 r

(3.38)

where A is a matrix of coefficients that is invertible at each time step of integration. It is

given by Eq. 3.39 on the next page.
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The matrix A is multiplying a vector of the unknown quantities that are being

calculated for each time step of integration. All the modes of each velocity component

are summed to find the total velocity of each rod.

1

x1 Z- l e)  im t
m=- -1 (3.40)

O'yl = L " ylO(m) eim

m=-1

0~ = O(M) eimox

m=- 1 (3.41)
S y 2  

, ( m) i m a o
"-- y2y2 e "

m=-I

Integration leads to the positions of the rods' centers of mass at each interval of time. The

initial conditions remain the same and they are given by Eq. 2.19.

The simulation ought to run for a few whole cycles so that any horizontal

displacement of the swimmer can be readily discernible and the displacement per cycle

can be determined.



Chapter 4

Discussion and Future Work

As E.M. Purcell established in his famous lecture on Life at low Reynolds number,

a rigid swimmer composed of two links will experience no net displacement if it attempts

to swim in a Newtonian fluid. This is due to the reciprocal nature of the swimmer's

movements. The Newtonian two-link swimmer was modeled and its movement was

simulated in order to confirm that E.M. Purcell's Scallop Theorem was indeed correct.

Future work entails integrating the theoretical complex Fourier analysis into a

numerical scheme that will allow us to see whether the rigid swimmer can actually move

about in viscoelastic fluid, despite the swimmer's reciprocal motions. This will validate

the theoretical model that has been developed in this paper.

In order to be able to efficiently perform the numerical simulation two techniques

need to be refined and automated:

(1) It is assumed that the complex Fourier series for the trigonometric functions of

0'(t) converge to finite sums. At this point, determining the limit index k must be

done manually. Matlab, or any other programming tool, should be used to

automatically obtain the value of k for which the series converge.

(2) For the case where the limit index was k = 1, the sums for the primary equations

of motion were written out by hand. As stated earlier in the paper, many of the

secondary equations of motion were found to be redundant and were discarded. The

process was done manually as well. For values of k larger than 1, this will be an

arduous task.

Aside from these two challenges that will need to be overcome in order to

efficiently simulate the scalloping of the rigid swimmer in viscoelastic fluid, the

theoretical analysis performed looks promising. The complex Fourier analysis takes into

account the behavior of the viscoelastic fluid that deviates from the Newtonian fluid.



Furthermore, modeling of locomotion and swimming in viscoelastic fluid is more

applicable to real world creatures like flagellar bacteria and mucous covered snails.
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