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ABSTRACT

Transposable elements comprise a significant portion of both prokaryotic and eukaryotic
genomes. These mobile segments of DNA have helped to shape the course of evolution
by generating genetic mutations and contributing to genomic rearrangements.
Transposable elements often target transposition to non-random DNA sites. Ideal target
sites must be common, so as to ensure efficient propagation of the transposable element,
and yet non-essential, so as to protect the host cell on which the element depends.
Transposable elements have devised a plethora of strategies for targeting transposition to
desirable DNA.

This thesis investigates the molecular mechanisms involved in Mu transposition. We
explore the interactions between the Mu transposase, MuA, and a Mu-encoded accessory
protein, MuB. Together, these two proteins regulate Mu transposition and targeting. We
demonstrate that MuB interacts with multiple subunits of the MuA transposase complex
to stimulate transposition. These results corroborate previous theories that MuB acts as an
allosteric regulator of MuA. We also investigate the mechanism by which Mu transposes
into selected DNA. We find that MuB "delivers" favorable target DNA to the Mu
transposase by tethering the DNA to MuA. This interaction is independent of ATP
hydrolysis by MuB. The work described herein has contributed to our understanding of
the protein-protein interactions involved in Mu transposition.

Thesis Supervisor: Tania A. Baker
Title: E. C. Whitehead Professor of Biology



Acknowledgements

I am grateful to my advisor, Tania Baker, for being a dedicated mentor and for

fostering a friendly and collaborative laboratory environment. Her patience,

encouragement, and guidance have been invaluable. I would like to thank the members of

my thesis committee, Chris Kaiser, David Bartel, Stephen P. Bell, and Margie Oettinger

for their advice and for reading this thesis.

I am indebted to Katie Lemberg for both her friendship and for her contributions to

this thesis. Thank you! I especially want to thank all members of the Baker lab with

whom I have had the pleasure to work. I cannot imagine a more supportive and caring

group of people. I feel lucky to have met all of you. I would like to thank the members of

the Kaiser and Grossman labs for contributing to an educational, helpful, and fun tearoom

environment and for making the 5th floor of building 68 an excellent place to work.

Finally, I would like to thank my family and my friends whose love and support

made this endeavor possible.



Table of Contents

TITLE PAGE 1
ABSTRACT 2
ACKNOWLEDGEMENTS 3
TABLE OF CONTENTS 4
CHAPTER I: Introduction 6

Overview 7
Target site choice 8

Target sites that benefit the host 8
Target sites that are benign to the host 10
Target sites that benefit the transposon 12
Target sites that unknown benefits 13

Mechanisms of transposon targeting 15
Role of DNA sequence vs. DNA structure in target site choice 16
Target site recognized by transposase 17
Target site recognized by transposon-encoded proteins 18
Target site recognized by host-encoded proteins 21

Summary 22
Overview of Mu Transposition 23
References 25

CHAPTER II: Dissecting MuB's role in target delivery during Mu
transposition: ATP hydrolysis is not obligatory 30

Abstract 31
Introduction 31
Results 36

Design of MuB fusion proteins 36
Characterization of the fusion proteins 37
Fusion proteins support INTER and do not depend on ATP

hydrolysis 39
Fusion proteins target transposition to DNA near the Arc

operator site 43
Discussion 47
Materials and Methods 49
References 54

CHAPTER III: The dynamic Mu transpososome:
MuB activation prevents disintegration 57



Abstract 58
Introduction 58
Results 61

Mixed mutant transpososomes efficiently generate relaxed
target DNA 61

Transpososomes with onejoined Mu DNA end efficiently
reverse strand transfer 65

The MuB activator promotesjoining and antagonizes reversal 68
MuB promotes a cooperative allosteric change in the Mu

transpososome 71
Discussion 77
Materials and Methods 83
References 88

CHAPTER IV: Summary and future directions 91
References 99



Chapter I

Introduction



Overview

Transposable elements, or transposons, are segments of DNA capable of non-

homologously recombining into a target DNA molecule. These elements are often

described as "selfish DNA" or as "genetic parasites" because they depend upon a host

cell for replication and survival, without necessarily providing an advantage to the host.

Additionally, transposons can deleteriously affect their hosts by inserting into essential

genes. However, closer inspection reveals that transposons do have the potential to

benefit their hosts in the long run by creating genetic variation required for evolution.

Transposable elements have been detected in every organism in which their presence has

been examined (Curcio and Derbyshire, 2003), and it is estimated that at least 40% of the

human genome is composed of sequences related to once active transposable elements.

(Lander et al., 2001). Therefore, to fully understand the evolution of modern species, one

needs to consider the role that transposons have had in shaping genomes.

Transposable elements are often described as integrating "randomly" into target

DNA. However, studies of transposon targeting reveal that most transposable elements

chose target sites with some degree of specificity. Both the nature of the preferred target

sites as well as the molecular mechanisms underlying targeting are as varied as

transposons themselves. Nevertheless, some common themes do emerge. Elucidating the

factors that determine transposon targeting is crucial to understanding why transposable

elements have become so wide spread and how these elements have impacted evolution.

This introduction reviews where and how transposable elements target

transposition. First, this chapter describes the types of preferential target sites chosen by



transposons. Second, this chapter discusses common molecular mechanisms that dictate

target selection.

Target Site Choice

Most transposable elements display some degree of selectivity in choosing target

sites. In some cases, the transposable elements target transposition to sites that

specifically benefit the element itself, such as sites that avoid disrupting existing copies

of the element. In other cases, transposable elements choose sites that are less likely to

harm the host. Presumably, protecting the well being of the host increases the likelihood

that the transposon will be replicated and transferred to the next generation. However, not

all transposable elements preferentially transpose into "safe" sites, and many seem just as

likely to integrate into essential regions of the host's genome as into benign sites. Some

transposons, in fact, have survived despite a penchant for integrating into coding DNA.

Below, four genres of transposon target selection are described. These genres include

preferential target sites that are: i) beneficial to the host, ii) benign to the host, iii)

beneficial to the transposon (without necessarily being beneficial or benign to the host),

and iv) neither beneficial to the host nor to the transposon.

Target Sites that Benefit the Host

All transposable elements have the ability to promote the evolution of their host

species by serving as a source of genetic variation, and numerous bacterial transposons

carry antibiotic resistance genes, offering their host yet another advantage. However, to

date, only two transposable elements are known to target transposition to sites that will



specifically benefit the host. The Het-A and TART elements in Drosophila specifically

target the chromosome ends (Table 1). As Drosophila lack telomerase, Het-A and TART

are responsible for maintaining the integrity of the chromosome ends (Biessmann et al.,

1992; Biessmann et al., 1997). These two transposable elements engage in a symbiotic

relationship with the Drosophila host cells. The host cells provide the transcription

machinery necessary for transpositon and replicate the transposons during cell division.

For their part, the transposons protect the ends of the Drosophila chromosomes.

Keplicative ULonsensus site,
target immunity,
flanking A/T rich

DNA

I ransposase
recognizes consensus
site & interacts with

element-encoded MuB
protein

Bacteria Cut-and-paste glmSterminator, Transposase interacts
conjugative with element-encoded
plasmids, proteins: TnsD,

target immunity TnsE, TnsC
Yeast Retro- Polymerase III Ty3 integrase interacts

transposition promoters with host-encoded
(LTR) I transcription factors

Ys .TFIIIB and TFIIIC
Yeast Retro- Heterochromatin Transposase interacts

transposition with host-encoded
(LTR) Sir4p

Fly Retro- Telomeres Element-encoded Gag
transposition proteins likely
(non-LTR) involved

Frog Retro- TxlD TxlL endonuclease
transposition (a cut-and-paste recognizes tandem
(non-LTR) transposon) repeat, PTR-1, within

S_ Tx1D

Table 1: Characteristics of Several Well-Studied Transposons. See text for
references. For review see: Craig NL, Craigie R, Gellert M & Lambowitz AM (2002)
Mobile DNA I/. ASM Press, Washington, DC.



Target Sites that are Benign to the Host

Several transposable elements target transposition to benign regions of the host

genome. Integration into such "safe sites" is not likely to harm the host, thus increasing

the chance that the transposon will be passed on to the next generation. A particularly

well-studied transposon that chooses safe integration sites is the yeast retroelement Ty5

(Table 1). Ty5 preferentially inserts into heterochromatin at the telomeres and silent

mating loci (HML and HMR), thereby avoiding actively transcribed regions of the yeast

genome (Zou et al., 1996; Zou et al., 1995). A number of transposable elements target

transposition to safe sites near or within genes. For example, the Tfl retrotransposon

from Saccharomyces pombe prefers to integrate into the promoter region of genes

transcribed by polymerase II (Behrens et al., 2000; Kelly and Levin, 2005; Singleton and

Levin, 2002). It has been demonstrated that Tfl integration into polymerase II promoters

does not affect the expression levels of the downstream gene products, confirming the

benign nature of this target site (Behrens et al., 2000). The yeast retrotransposons Tyl,

Ty2, Ty3 (Table 1), and Ty4 all preferentially insert upstream of genes transcribed by

polymerase III (Chalker and Sandmeyer, 1992; Devine and Boeke, 1996; Kim et al.,

1998) . By targeting transposition to polymerase III promoters, Tyl -Ty4 leave coding

regions intact. The bacterial transposon Tn7 also targets transposition to a particular site

within a host gene that avoids disrupting coding DNA (Table 1). A Tn7 transposition hot-

spot exists in the transcriptional terminator of the glmSgene, and transposition into this

target site does not alter the g/mScoding sequence (Gay et al., 1986). Interestingly, Tn7

directs transposition to the g/mStranscriptional terminator by recognizing a sequence

within the coding region of glmS(Qadri et al., 1989; Waddell and Craig, 1989).



Therefore, Tn7 recognizes a sequence that is well conserved but integrates into a site that

prevents gene disruption. Taken together, multiple transposons have evolved mechanisms

to target transposition to benign sites within the host genome.

Another strategy used by transposable elements to protect host function is to

target transposition to already disrupted sites. This behavior is exhibited by numerous

transposons from bacteria, plants, and insects that transpose into or near DNA that shares

homology with their own sequences (Ason and Reznikoff, 2004; Galas et al., 1980;

Goryshin et al., 1998; Guimond et al., 2003; Noma et al., 1997; Olasz et al., 1997;

Suoniemi et al., 1997; Tower et al., 1993; Tu and Cohen, 1980; Yamazaki et al., 2001).

By targeting transposition to DNA that contains a copy of the transposon's own genome,

these elements avoid altering new regions of the host's genome. A dramatic example of a

transposon that targets transposition to pre-disrupted sites is the TxlL element from

Xenopus laevis (Table 1). Tx1L targets transposition to another transposable element

Tx1D, also present in Xenopus laevis (Christensen et al., 2000; Garrett et al., 1989).

Similarly, the bacterial transposon Tn5053 targets integration to the resolution (res) sites

of other transposable elements (Minakhina et al., 1999). Transposon res sites are

sequences that undergo homologous recombination to resolve intermediate DNA

structures formed during transposition (Figure 1). Interestingly, Tn5053 contains its own

res site, which might compensate for the destruction of the target res site (Minakhina et

al., 1999). Perhaps, by inserting into regions of the DNA that already contain a mobile

element, transposons avoid disrupting new genes, and therefore, avoid generating new

mutations that would be potentially deleterious to the host. In summary, a multitude of



transposable elements have evolved to preferentially target transposition to benign sites

that are unlikely to harm the host.

Donor
Plasmid

Iransposonr Transposition
Res Site

Recombination
Between Res Sites

Plasmid Cointegrate

Figure 1: Resolution of transposition intermediate by recombination between res
sites. A donor plasmid contains a transposon with an internal res site. Replicative
transposition into a target plasmid results in a cointegrate structure that contains the
donor plasmid, the target plasmid, and two copies of the transposon. Homologous
recombination between the res sites yields the original two plasmids, each with a copy of
the transposon.

Target Sites that Benefit the Transposon

Some transposons choose target sites that benefit the transposon directly,

irrespective of whether or not these sites would be harmful to the host. For example, Tn3,

Tn7, and Mu all avoid inserting into already existing copies of their own genomes (Table

1) (Arciszewska et al., 1989; Lee et al., 1983; Reyes et al., 1987). This phenomenon,

termed target immunity, ensures that a transposon will not commit self-destruction by

integrating into and destroying its own genes or regulatory sequences. Target immunity is

an important feature of Mu transposition, and this topic will be discussed throughout this

thesis. Another self-beneficial targeting strategy is exhibited by transposons that

preferentially integrate into DNA that is homologous to their own sequences (Ason and

Reznikoff, 2004; Galas et al., 1980; Goryshin et al., 1998; Guimond et al., 2003; Noma et

al., 1997; Olasz et al., 1997; Suoniemi et al., 1997; Tower et al., 1993; Tu and Cohen,



1980; Yamazaki et al., 2001). As previously explained, targeting transposition near

existing copies of the transposon's own genome might benefit the host by preventing new

disruptions to the host's genome. However, this targeting strategy is also likely to benefit

the transposon itself by potentially promoting the creation of new, composite elements.

For example, if two copies of a given transposable element are either overlapping or

close to one another, it might be possible for one end from each element to be used in a

recombination reaction, resulting in the creation of a novel element (Kleckner et al.,

1996). Interestingly, targeting transposition to sequences that are self-similar represents

the opposite goal of target immunity. However, both strategies have been employed by

transposable elements to choose target sites that will benefit the transposon.

Target Sites with Unknown Benefits

Many transposons target transposition to particular regions that have no known

benefit for either the host or the transposon. Frequently, transposable elements prefer to

integrate into DNA that conforms to a certain consensus sequence, though the

significance of such consensus sequences is unclear. In many cases, the consensus motif

relates to the region of the target site that occurs between the staggered insertions of the

transposon ends. This is the region of the DNA that is duplicated as a result of

transposition (Figure 2). Commonly, consensus sequences are palindromic, reflecting the

symmetrical nature of certain transposition reactions. For example, Mu prefers to

integrate on either side of the palindromic sequence 5'-C-CIT-GIC-A/G-G-3' (Haapa-

Paananen et al., 2002; Mizuuchi and Mizuuchi, 1993) (Table 1), whereas Tn5 targets

transposition to the palindrome 5'-G-N-T-CIT-AIT-A/G-A-N-C-3' (Goryshin et al.,



1998). Likewise, TnlO0 prefers to integrate on either side of the sequence 5'-N-G-C-T-N-

A-G-C-N-3' (Huisman et al., 1987). Often, the sequence of the target DNA flanking the

transposon insertion sites also contributes to a consensus motif. The maise transposons

PIF and mPIF choose target sites in which the sequence 5'-C-A/T-C-3' flanks the

insertion sites on the target DNA (Zhang et al., 2001). Similarly, IS903 preferentially

transposes into regions flanked by the sequence 5'-T/A-T-TIA-C/T-A-N-3' (Hu and

Derbyshire, 1998).

Figure 2: Schematic of insertion-site duplication. The ends of the transposon insert
into the target DNA at staggered sites. The resulting gaps in the DNA are filled-in by
DNA replication. This process creates a duplication of the DNA sequence between the
staggered insertion sites.

5'. . HO -- Transposon
OH 5'

5' ATCTTAAGTCGCCCGGGTATTTAGC Target DNA
TAGAATTCAGCGGGCCCATAAATCG 5'

Transposon attaIks target DNA
at 6bp-staggered sites

5' HO

5' ATCTrAAGTCT TArTAAAGC
TAGAATTC'AGCGGGCC T TCG 5'

Insertion of transposon resultsin 6bp gaps

5' A GTT CG a CCCGGGTATTTAGC
TAGAATTCAGCGGGCCC - ATAAATCG 5'

DNA replication repairs the gaps,
yielding a duplication of the 6bp region

5'ATCTTAAGTCG c .... CCCGGGTATTTAGC
TAGAATTCAGCGGGCCC gOOO ATAAATCG 5'



Interestingly, a few transposable elements preferentially target coding DNA. In

the presence of the E. coli protein H-NS (histone-like nucleoid structuring protein), IS903

biases transposition toward coding regions (Swingle et al., 2004). Likewise, the Tosl7

retrotransposon from rice targets transposition to low copy number regions that are

enriched for genes (Yamazaki et al., 2001). Perhaps targeting transposition to coding

DNA or to particular consensus sequences confers benefits that have yet to be uncovered.

Alternately, these targeting mechanisms might have arisen by chance and then been

maintained during evolution because they were neither detrimental to the transposon nor

to the host.

Mechanisms of Transposon Targeting

As discussed above, most transposable elements do not target transposition to

completely random DNA sites. Rather, transposons have evolved mechanisms to direct

recombination to particular regions of the host genome. Just as there are many different

types of target sites used by transposons, so are there a large variety of molecular

mechanisms that mediate target site choice. Some transposons identify preferred target

sites with a specific nucleotide sequence, whereas other transposons identify sites with a

certain DNA structure. Many factors, including nucleotide sequence, A/T-richness, DNA

methylation, and histone modification, contribute to the global structure of a region of

DNA. Preferred target sites, whether defined by their sequence or by the DNA structure,

can be recognized by the transposase, by transposon-encoded accessory proteins that

interact with the transposase, or by host-encoded proteins that interact with the

transposase. Though the molecular basis of target-site choice has been elucidated for



several well-studied transposons, it remains unclear how most transposable elements

choose their preferred target sites.

Role of DNA Sequence vs. DNA Structure in Target Site Choice

Several of the previously discussed transposable elements identify target sites

with a particular nucleotide sequence. As mentioned above, certain transposons

preferentially integrate into target DNA that matches a defined consensus sequence

(Goryshin et al., 1998; Haapa-Paananen et al., 2002; Huisman et al., 1987; Mizuuchi and

Mizuuchi, 1993). As has been discussed, Tfl, Tyl, and Ty3 (Table 1) recognize specific

promoter sequences (Behrens et al., 2000; Chalker and Sandmeyer, 1992; Devine and

Boeke, 1996; Kelly and Levin, 2005; Singleton and Levin, 2002), Tn7 recognizes the

glmS gene (Table 1) (Gay et al., 1986), and Tn5053 recognizes the resolution sites within

other transposable elements (Minakhina et al., 1999). Furthermore, the Txl L element

from Xenopus laevis targets transposition to the Txl D element by identifying a tandem

repeat, PTR-1, within Tx1D (Table 1) (Christensen et al., 2000; Garrett et al., 1989).

Additionally, transposons that target transposition to self-similar sequences, as well as

those that avoid inserting into their own sequences, are able to identify DNA with

homology to the transposon's own genome. Thus, transposable elements can asses the

desirability of a given target site based on the nucleotide sequence at that site. As will be

discussed below, recognition of target sites with particular nucleotide sequences can

occur directly, via the transposase, or indirectly, via accessory proteins.

Not all target sites are selected based on nucleotide sequence. Some transposons

identify target sites with particular DNA structures. For example, experiments with IS903



demonstrate that a specific consensus sequence will be targeted for transposition more or

less frequently depending on the location of that consensus sequence within a plasmid

(Hu et al., 2001). This result provides evidence that the DNA context contributes to target

site selection for IS903. Tn7, in the presence of an element-encoded targeting protein

TnsE, preferentially transposes into conjugative plasmids (Table 1) (Wolkow et al.,

1996). In addition, experiments with tnsEmutants have exposed a propensity for Tn7 to

integrate in one specific orientation with respect to the direction of DNA replication

(Peters and Craig, 2001). This result is notable since transposons can generally insert in

two possible orientations, given that they have non-identical right and left ends. Taken

together, these data suggest that the TnsE targeting protein of Tn7 might recognize

replicating DNA (Peters and Craig, 2001). Yet another example, TnlO, preferentially

targets transposition to sites in which the DNA is easily bent (Bender and Kleckner,

1992b; Pribil and Haniford, 2003). Likewise, Sleeping Beauty, a reconstructed fish

transposon, targets transposition to A/T-rich DNA that readily forms bent structures

(Vigdal et al., 2002; Yant et al., 2005). Tcl, Tc3, and Himarl have also been implicated

in targeting transposition to highly bendable DNA (Vigdal et al., 2002). In summary,

these examples illustrate the role that DNA structure plays in determining preferred target

sites. Thus, transposons evaluate both the sequence and the physical structure of DNA

when selecting where in the genome to insert.

Target Site Recognized by Transposase

Transposons direct integration to particular target sites by recognizing features of

the DNA sequence and/or structure. These DNA attributes can be detected by the



transposase, by transposon-encoded accessory proteins, or by host-proteins. The

transposases of TnlO, Tn5, Mu, and Tcl directly recognize DNA sites that conform to

specific consensus sequences. Mutations in the Tn10O transposase can alter target

specificity without affecting other aspects of transposition, indicating that the Tn10

transposase is responsible for recognizing Tn10O consensus sequences (Bender and

Kleckner, 1992a). Both the Tn5 and Mu transposases target transposition to preferred

sequences in in vitro assays that lack any additional proteins (Table 1) (Goryshin et al.,

1998; Haapa-Paananen et al., 2002). Similarly, the Tcl transposase directs transposition

to TA dinucleotides in vitro, as it does in vivo (Vos et al., 1996). Hence, several

transposases have been identified that directly mediate target site selection by

recognizing a preferred nucleotide sequence in the DNA.

Target Site Recognized by Transposon-Encoded Proteins

Several transposable elements encode accessory proteins that select target DNA.

In general, these accessory proteins interact with the transposase or integrase to target

transposition to the selected site. As explained above, the Het-A and TART retroelements

from Drosophila direct insertion to telomeric DNA (Table 1). This target specificity is

likely established by element-encoded Gag proteins, the retroviral versions of which are

involved in packaging and exporting viral RNA (Rashkova et al., 2002a; Rashkova et al.,

2002b). Comparison of Gag proteins from Het-A, TART, and non-telomeric Drosophila

retroelements, reveals that only the Gag proteins from Het-A and TART efficiently

localize to the nucleus (Rashkova et al., 2002a). Additionally, the Het-A and TART Gag

proteins are associated with the chromosome ends, implicating these Gag proteins in the



overall process of targeting Het-A and TART transposition to the telomeres (Rashkova et

al., 2002b).

Both Tn7 and Mu rely on element-encoded proteins to target transposition to sites

with particular attributes. Tn7 encodes two different accessory proteins, TnsD and TnsE,

each of which targets transposition to distinct locations described above (Table 1). The

TnsD accessory protein binds to the transcriptional terminator of the gImS gene and

directs transposition to this site via its interaction with the transposase (Waddell and

Craig, 1988; Waddell and Craig, 1989). Alternately, the TnsE protein interacts with the

transposase to target transposition to conjugative plasmids, possibly by recognizing

replicating DNA (Peters and Craig, 2001; Wolkow et al., 1996). Mu also encodes an

accessory protein, MuB, that directs target site choice. MuB's preference for A/T rich

DNA creates Mu transposition hot-spots flanking A/T rich regions (Table 1) (Manna et

al., 2001; Mizuuchi and Mizuuchi, 1993).

In addition to targeting transposition to particular, preferred sites, Mu and Tn7

avoid inserting into DNA that contains a copy of the transposon's own genome, a process

termed target immunity (Table 1) (Arciszewska et al., 1989; Lee et al., 1983; Reyes et al.,

1987). The molecular mechanisms underlying target immunity have been well studied for

both Tn7 and Mu, and in both cases, transposon-encoded accessory proteins are essential.

Tn7 target immunity is mediated by three Tn7-encoded proteins, TnsA, TnsB, and TnsC

(Skelding et al., 2003; Stellwagen and Craig, 1997). Together, these three proteins

prevent TnsD or TnsE-stimulated transposition into sites that already contain a copy of

Tn7. TnsA and TnsB bind to the ends of the Tn7 genome and catalyze transposition.

TnsC, in conjunction with TnsD or TnsE, binds target DNA and activates TnsA/TnsB's



catalytic activities (Bainton et al., 1993). When TnsC bound to target DNA interacts with

both TnsA and TnsB, TnsC stimulates TnsA/TnsB to catalyze transposition into the

bound DNA (Skelding et al., 2003). Target immunity occurs because TnsC avoids

binding to DNA that is near any copies of the Tn7 genome. This binding preference

stems from the fact that TnsC binds target DNA in an ATP dependent manner, and TnsB

(in the absence of TnsA) can stimulate TnsC to hydrolyze ATP (Stellwagen and Craig,

1997). Therefore, when TnsC comes into contact with TnsB alone, it will hydrolyze ATP

and dissociate from the DNA (Skelding et al., 2003). Since TnsB is bound to the ends of

the Tn7 genome, TnsC will be cleared from regions of the DNA close to any Tn7 ends.

Thus, only Tn7 hot-spots that are far from any copies of the Tn7 genome will be bound

by TnsC and will be efficiently targeted for transposition. The presence or absence of

TnsA plays a critical role in Tn7 target immunity. If TnsA is present, an interaction

between TnsB and TnsC will result in stimulation of transposition into the TnsC-bound

DNA. However, if TnsA is absent, an interaction between TnsB and TnsC will result in

dissociation of TnsC from the DNA to establish target immunity (Skelding et al., 2003).

Bacteriophage Mu utilizes a similar mechanism to establish target immunity. Two

Mu-encoded proteins, MuA and MuB, are important for directing transposition to non-

Mu sequences (Adzuma and Mizuuchi, 1988; Maxwell et al., 1987). MuA is the

transposase, and MuB binds target DNA and stimulates MuA to catalyze transposition

into bound DNA (Baker et al., 1991; Surette and Chaconas, 1991; Yamauchi and Baker,

1998). Much like TnsC, MuB binds target DNA in an ATP dependent manner. MuA

stimulates MuB's ATPase activity, causing MuB to dissociate from DNA near MuA

(Greene and Mizuuchi, 2002a; Greene and Mizuuchi, 2002b; Greene and Mizuuchi,



2002c; Maxwell et al., 1987). Since MuA binds to the ends of the Mu genome (Craigie et

al., 1984), MuB will accumulate on DNA that is far from any copies of Mu (Adzuma and

Mizuuchi, 1988). Therefore, DNA that is far from copies of the Mu genome will be well-

populated by MuB and will serve as an efficient substrate for transposition. It remains

unclear what factors determine whether a given MuA-MuB interaction will result in

stimulation of transposition into the MuB bound DNA or will result in dissociation of

MuB from the DNA. It has been suggested that the oligomeric state of MuB might

determine the outcome of an interaction between MuA and MuB, such that MuB

monomers would be cleared from the DNA and MuB multimers would stimulate

transposition into bound DNA (Greene and Mizuuchi, 2002b). However, this hypothesis

has yet to be proven.

In summary, many transposable elements encode accessory proteins that mediate

target site selection. These accessory proteins can act to direct transposition into

favorable sites or to inhibit transposition into undesirable locations. In general,

transposon-encoded accessory proteins function by recognizing particular target sites and

interacting with the transposase to stimulate integration into the selected sites.

Target Site Recognized by Host-Encoded Proteins

Since transposons only exist within the context of a host, both transposons and

their hosts have evolved in concert. Thus, host cells have developed mechanisms to

control transposition, and transposons have evolved strategies to exploit features of the

host cell. Many transposons take advantage of host proteins to target transposition to

preferred sites. For example, Ty5, Ty3, Tyl, Mu, and Tn7, whose preferred target sites



were described above (Table 1), all utilize host proteins to mediate targeting. Ty5, which

targets transposition to heterochromatin, does so via an interaction between the Ty5

integrase and Sir4p, a host protein associated with heterochromatin (Table 1) (Xie et al.,

2001). Targeting of Ty3, which preferentially integrates upstream of polymerase III

transcribed genes (Chalker and Sandmeyer, 1992), is accomplished by the interaction of

the Ty3 integrase with the yeast polymerase III transcription factors TFI II B and TFI lIC

(Table 1) (Kirchner et al., 1995). Tyl also targets transposition upstream of polymerase

III transcribed genes. Although the exact mechanism of Tyl site selection has yet to be

determined, preferential insertion into polymerase III transcribed genes is transcription

dependent, suggesting that host transcription factors play a role (Devine and Boeke,

1996). In some cases, host factors negatively regulate transposition into particular sites.

Studies have shown that Mu is less likely to transpose into sites that are efficiently

transcribed, implicating the host transcription machinery in suppression of Mu

transposition (Manna et al., 2004). Similarly, Tn7 transposition into the gimSgene, a

transposition hot-spot via the TnsD pathway, is reduced upon g/mS transcription (DeBoy

and Craig, 2000). In summary, host-encoded proteins that are associated with particular

DNA sites can influence the efficiency of transposition into those sites.

Summary

Though most transposable elements display some degree of target specificity, the

nature of the target sites, as well as the mechanisms governing site choice, vary widely.

Whereas some transposons direct transposition to sites that are beneficial or benign to the

host, others seek sites that offer advantages to the transposon itself. For several preferred



target sites, it remains unclear what, if any, benefits these sites confer upon the host or the

transposon. Transposons have evolved diverse mechanisms to target transposition to

favored sites. Transposable elements can identify particular target sites based on the

nucleotide sequence or the structural properties of the DNA at that site. These DNA

attributes can be recognized by the transposase directly or by accessory proteins that

interact with the transposase. The accessory proteins can be transposon-encoded or host-

encoded. Refining our understanding of transposon target site choice will clarify the

factors influencing the prevalence of transposons and the impact these elements have had

on host organisms.

Overview of Mu Transposition

This thesis investigates the process of transposon target site choice using the Mu

transposon as a model system. Mu is a bacteriophage that replicates its genome within its

bacterial host via the process of replicative transposition. As discussed above, Mu

preferentially transposes into DNA that is far from any pre-existing copies of the Mu

genome, a phenomenon termed target immunity (Reyes et al., 1987). Since Mu is a well-

studied transposon with a defined target choice mechanism, it provides an attractive

model to explore the molecular mechanisms underlying transposition targeting.

The Mu transposon encodes two proteins necessary for transposition, MuA and

MuB. MuA is the transposase, and it binds to specific DNA sequences located at the ends

of the Mu genome (Craigie and Mizuuchi, 1987; Craigie et al., 1984). A total of four

MuA subunits will bind to the two Mu DNA ends, resulting in a complex termed the

transpososome (Lavoie et al., 1991; Surette et al., 1987). Following formation of the



transpososome, MuA catalyzes the DNA cleavage andjoining reactions necessary for Mu

transposition (Aldaz et al., 1996; Mizuuchi and Adzuma, 1991; Namgoong and Harshey,

1998; Williams et al., 1999). MuA is aided by a second Mu-encoded protein, MuB. MuB

promotes assembly of the transpososome, stimulates MuA's catalytic activities, binds

target DNA, and directs transposition into the bound DNA (Adzuma and Mizuuchi, 1988;

Baker et al., 1991; Chaconas et al., 1985; Coelho et al., 1982; Mizuuchi et al., 1995;

Surette and Chaconas, 1991; Williams et al., 1999; Yamauchi and Baker, 1998). As

described in the introduction, interactions between MuA and MuB ultimately determine

which DNA sequences are most likely to be bound by MuB, and therefore, which DNA

sequences are most likely to serve as the target site for transposition. Thus, understanding

the molecular interactions between MuA and MuB is crucial to elucidating the

mechanism of Mu target site choice.

The research described herein examines the biochemical interactions between

MuA and MuB that mediate target selection and transposition into selected target DNA.

The first chapter dissects the MuA-MuB interactions responsible for directing

transposition into selected target DNA. There, we describe the engineering of a novel

MuB fusion protein that alters Mu target site specificity. The second chapter describes

interactions between MuA and MuB that regulate transposase activity. Finally, the third

chapter summarizes our results and suggests future experiments.



References

Adzuma, K. and Mizuuchi, K. (1988) Target immunity of Mu transposition reflects a
differential distribution of Mu B protein. Cell, 53, 257-266.

Aldaz, H., Schuster, E. and Baker, T.A. (1996) The interwoven architecture of the Mu
transposase couples DNA synapsis to catalysis. Cell, 85, 257-269.

Arciszewska, L.K., Drake, D. and Craig, N.L. (1989) Transposon Tn7. cis-Acting
sequences in transposition and transposition immunity. J Mol Biol, 207, 35-52.

Ason, B. and Reznikoff, W.S. (2004) DNA sequence bias during Tn5 transposition. J
Mol Biol, 335, 1213-1225.

Bainton, R.J., Kubo, K.M., Feng, J.N. and Craig, N.L. (1993) Tn7 transposition: target
DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in
vitro system. Cell, 72, 931-943.

Baker, T.A., Mizuuchi, M. and Mizuuchi, K. (1991) MuB protein allosterically activates
strand transfer by the transposase of phage Mu. Cell, 65, 1003-1013.

Behrens, R., Hayles, J. and Nurse, P. (2000) Fission yeast retrotransposon Tfl integration
is targeted to 5' ends of open reading frames. Nucleic Acids Res, 28, 4709-4716.

Bender, J. and Kleckner, N. (1992a) IS10 transposase mutations that specifically alter
target site recognition. Embo J, 11, 741-750.

Bender, J. and Kleckner, N. (1992b) TnlO insertion specificity is strongly dependent
upon sequences immediately adjacent to the target-site consensus sequence. Proc
Natl Acad Sci US A, 89, 7996-8000.

Biessmann, H., Valgeirsdottir, K., Lofsky, A., Chin, C., Ginther, B., Levis, R.W. and
Pardue, M.L. (1992) HeT-A, a transposable element specifically involved in
"healing" broken chromosome ends in Drosophila melanogaster. Mol Cell Biol,
12, 3910-3918.

Biessmann, H., Walter, M.F. and Mason, J.M. (1997) Drosophila telomere elongation.
Ciba Found Symp, 211, 53-67; discussion 67-70.

Chaconas, G., Giddens, E.B., Miller, J.L. and Gloor, G. (1985) A truncated form of the
bacteriophage Mu B protein promotes conservative integration, but not replicative
transposition, of Mu DNA. Cell, 41, 857-865.

Chalker, D.L. and Sandmeyer, S.B. (1992) Ty3 integrates within the region of RNA
polymerase III transcription initiation. Genes Dev, 6, 117-128.

Christensen, S., Pont-Kingdon, G. and Carroll, D. (2000) Target specificity of the
endonuclease from the Xenopus laevis non-long terminal repeat retrotransposon,
Tx1 L. Mol Cell Biol, 20, 1219-1226.

Coelho, A., Maynard-Smith, S. and Symonds, N. (1982) Abnormal cointegrate structures
mediated by gene B mutants of phage Mu: their implications with regard to gene
function. Mol Gen Genet, 185, 356-362.

Craigie, R. and Mizuuchi, K. (1987) Transposition of Mu DNA:joining of Mu to target
DNA can be uncoupled from cleavage at the ends of Mu. Cell, 51, 493-501.

Craigie, R., Mizuuchi, M. and Mizuuchi, K. (1984) Site-specific recognition of the
bacteriophage Mu ends by the Mu A protein. Cell, 39, 387-394.

Curcio, M.J. and Derbyshire, K.M. (2003) The outs and ins of transposition: from mu to
kangaroo. Nat Rev Mol Cell Biol, 4, 865-877.



DeBoy, R.T. and Craig, N.L. (2000) Target site selection by Tn7: attTn7 transcription
and target activity. J Bacteriol, 182, 3310-3313.

Devine, S.E. and Boeke, J.D. (1996) Integration of the yeast retrotransposon Tyl is
targeted to regions upstream of genes transcribed by RNA polymerase III. Genes
Dev, 10, 620-633.

Galas, D.J., Calos, M.P. and Miller, J.H. (1980) Sequence analysis of Tn9 insertions in
the lacZ gene. J Mol Biol, 144, 19-41.

Garrett, J.E., Knutzon, D.S. and Carroll, D. (1989) Composite transposable elements in
the Xenopus laevis genome. Mol Cell Biol, 9, 3018-3027.

Gay, N.J., Tybulewicz, V.L. and Walker, J.E. (1986) Insertion of transposon Tn7 into the
Escherichia coli glmS transcriptional terminator. Biochem J, 234, 111-117.

Goryshin, I.Y., Miller, J.A., Kil, Y.V., Lanzov, V.A. and Reznikoff, W.S. (1998)
Tn5/IS50 target recognition. Proc Natl Acad Sci U S A, 95, 10716-10721.

Greene, E.C. and Mizuuchi, K. (2002a) Direct observation of single MuB polymers:
evidence for a DNA-dependent conformational change for generating an active
target complex. Mol Cell, 9, 1079-1089.

Greene, E.C. and Mizuuchi, K. (2002b) Dynamics of a protein polymer: the assembly and
disassembly pathways of the MuB transposition target complex. Embo J, 21,
1477-1486.

Greene, E.C. and Mizuuchi, K. (2002c) Target immunity during Mu DNA transposition.
Transpososome assembly and DNA looping enhance MuA-mediated disassembly
of the MuB target complex. Mol Cell, 10, 1367-1378.

Guimond, N., Bideshi, D.K., Pinkerton, A.C., Atkinson, P.W. and O'Brochta, D.A.
(2003) Patterns of Hermes transposition in Drosophila melanogaster. Mol Genet
Genomics, 268, 779-790.

Haapa-Paananen, S., Rita, H. and Savilahti, H. (2002) DNA transposition of
bacteriophage Mu. A quantitative analysis of target site selection in vitro. J Biol
Chem, 277, 2843-2851.

Hu, W.Y. and Derbyshire, K.M. (1998) Target choice and orientation preference of the
insertion sequence IS903. J Bacteriol, 180, 3039-3048.

Hu, W.Y., Thompson, W., Lawrence, C.E. and Derbyshire, K.M. (2001) Anatomy of a
preferred target site for the bacterial insertion sequence IS903. J Mol Biol, 306,
403-416.

Huisman, O., Raymond, W., Froehlich, K.U., Errada, P., Kleckner, N., Botstein, D. and
Hoyt, M.A. (1987) A Tnl0-lacZ-kanR-URA3 gene fusion transposon for insertion
mutagenesis and fusion analysis of yeast and bacterial genes. Genetics, 116, 191-
199.

Kelly, F.D. and Levin, H.L. (2005) The evolution of transposons in Schizosaccharomyces
pombe. Cytogenet Genome Res, 110, 566-574.

Kim, J.M., Vanguri, S., Boeke, J.D., Gabriel, A. and Voytas, D.F. (1998) Transposable
elements and genome organization: a comprehensive survey of retrotransposons
revealed by the complete Saccharomyces cerevisiae genome sequence. Genome
Res, 8, 464-478.

Kirchner, J., Connolly, C.M. and Sandmeyer, S.B. (1995) Requirement of RNA
polymerase III transcription factors for in vitro position-specific integration of a
retrovirusl ike element. Science, 267, 1488-1491.



Kleckner, N., Chalmers, R.M., Kwon, D., Sakai, J. and Bolland, S. (1996) TnlO and IS10
transposition and chromosome rearrangements: mechanism and regulation in vivo
and in vitro. Curr Top Microbiol Immunol, 204, 49-82.

Lander, E.S., et al. (2001) Initial sequencing and analysis of the human genome. Nature,
409, 860-921.

Lavoie, B.D., Chan, B.S., Allison, R.G. and Chaconas, G. (1991) Structural aspects of a
higher order nucleoprotein complex: induction of an altered DNA structure at the
Mu-hostjunction of the Mu type 1 transpososome. Embo J, 10, 3051-3059.

Lee, C.H., Bhagwat, A. and Heffron, F. (1983) Identification of a transposon Tn3
sequence required for transposition immunity. Proc Natl Acad Sci U SA, 80,
6765-6769.

Manna, D., Breier, A.M. and Higgins, N.P. (2004) Microarray analysis of transposition
targets in Escherichia coli: the impact of transcription. Proc Natl Acad Sci US A,
101, 9780-9785.

Manna, D., Wang, X. and Higgins, N.P. (2001) Mu and IS1 transpositions exhibit strong
orientation bias at the Escherichia coli bgl locus. J Bacteriol, 183, 3328-3335.

Maxwell, A., Craigie, R. and Mizuuchi, K. (1987) B protein of bacteriophage mu is an
ATPase that preferentially stimulates intermolecular DNA strand transfer. Proc
Natl Acad Sci U S A, 84, 699-703.

Minakhina, S., Kholodii, G., Mindlin, S., Yurieva, 0. and Nikiforov, V. (1999) Tn5053
family transposons are res site hunters sensing plasmidal res sites occupied by
cognate resolvases. Mol Microbiol, 33, 1059-1068.

Mizuuchi, K. and Adzuma, K. (1991) Inversion of the phosphate chirality at the target
site of Mu DNA strand transfer: evidence for a one-step transesterification
mechanism. Cell, 66, 129-140.

Mizuuchi, M., Baker, T.A. and Mizuuchi, K. (1995) Assembly of phage Mu
transpososomes: cooperative transitions assisted by protein and DNA scaffolds.
Cell, 83, 375-385.

Mizuuchi, M. and Mizuuchi, K. (1993) Target site selection in transposition of phage Mu.
Cold Spring Harb Symp Quant Biol, 58, 515-523.

Namgoong, S.Y. and Harshey, R.M. (1998) The same two monomers within a MuA
tetramer provide the DDE domains for the strand cleavage and strand transfer
steps of transposition. Embo J, 17, 3775-3785.

Noma, K., Nakajima, R., Ohtsubo, H. and Ohtsubo, E. (1997) RIRE1, a retrotransposon
from wild rice Oryza australiensis. Genes Genet Syst, 72, 131-140.

Olasz, F., Farkas, T., Kiss, J., Arini, A. and Arber, W. (1997) Terminal inverted repeats
of insertion sequence IS30 serve as targets for transposition. J Bacteriol, 179,
7551-7558.

Peters, J.E. and Craig, N.L. (2001) Tn7 recognizes transposition target structures
associated with DNA replication using the DNA-binding protein TnsE. Genes
Dev, 15, 737-747.

Pribil, P.A. and Haniford, D.B. (2003) Target DNA bending is an important specificity
determinant in target site selection in TnlO transposition. J Mol Biol, 330, 247-
259.



Qadri, M.I., Flores, C.C., Davis, A.J. and Lichtenstein, C.P. (1989) Genetic analysis of
attTn7, the transposon Tn7 attachment site in Escherichia coli, using a novel
M13-based transduction assay. J Mol Biol, 207, 85-98.

Rashkova, S., Karam, S.E., Kellum, R. and Pardue, M.L. (2002a) Gag proteins of the two
Drosophila telomeric retrotransposons are targeted to chromosome ends. J Cell
Biol, 159, 397-402.

Rashkova, S., Karam, S.E. and Pardue, M.L. (2002b) Element-specific localization of
Drosophila retrotransposon Gag proteins occurs in both nucleus and cytoplasm.
Proc Natl Acad Sci U SA, 99, 3621-3626.

Reyes, O., Beyou, A., Mignotte-Vieux, C. and Richaud, F. (1987) Mini-Mu transduction:
cis-inhibition of the insertion of Mud transposons. Plasmid, 18, 183-192.

Singleton, T.L. and Levin, H.L. (2002) A long terminal repeat retrotransposon of fission
yeast has strong preferences for specific sites of insertion. Eukaryot Cell, 1, 44-
55.

Skelding, Z., Queen-Baker, J. and Craig, N.L. (2003) Alternative interactions between
the Tn7 transposase and the Tn7 target DNA binding protein regulate target
immunity and transposition. Embo , 22, 5904-5917.

Stellwagen, A.E. and Craig, N.L. (1997) Avoiding self: two Tn7-encoded proteins
mediate target immunity in Tn7 transposition. Embo J, 16, 6823-6834.

Suoniemi, A., Schmidt, D. and Schulman, A.H. (1997) BARE-1 insertion site preferences
and evolutionary conservation of RNA and cDNA processing sites. Genetica,
100, 219-230.

Surette, M.G., Buch, S.J. and Chaconas, G. (1987) Transpososomes: stable protein-DNA
complexes involved in the in vitro transposition of bacteriophage Mu DNA. Cell,
49, 253-262.

Surette, M.G. and Chaconas, G. (1991) Stimulation of the Mu DNA strand cleavage and
intramolecular strand transfer reactions by the Mu B protein is independent of
stable binding of the Mu B protein to DNA. J Biol Chem, 266, 17306-17313.

Swingle, B., O'Carroll, M., Haniford, D. and Derbyshire, K.M. (2004) The effect of host-
encoded nucleoid proteins on transposition: H-NS influences targeting of both
IS903 and Tnl0. Mol Microbiol, 52, 1055-1067.

Tower, J., Karpen, G.H., Craig, N. and Spradling, A.C. (1993) Preferential transposition
of Drosophila P elements to nearby chromosomal sites. Genetics, 133, 347-359.

Tu, C.P. and Cohen, S.N. (1980) Translocation specificity of the Tn3 element:
characterization of sites of multiple insertions. Cell, 19, 151-160.

Vigdal, T.J., Kaufman, C.D., Izsvak, Z., Voytas, D.F. and Ivics, Z. (2002) Common
physical properties of DNA affecting target site selection of sleeping beauty and
other Tcl/mariner transposable elements. J Mol Biol, 323, 441-452.

Vos, J.C., De Baere, I. and Plasterk, R.H. (1996) Transposase is the only nematode
protein required for in vitro transposition of Tcl. Genes Dev, 10, 755-761.

Waddell, C.S. and Craig, N.L. (1988) Tn7 transposition: two transposition pathways
directed by five Tn7-encoded genes. Genes Dev, 2, 137-149.

Waddell, C.S. and Craig, N.L. (1989) Tn7 transposition: recognition of the attTn7 target
sequence. Proc Natl Acad Sci USA, 86, 3958-3962.



Williams, T.L., Jackson, E.L., Carritte, A. and Baker, T.A. (1999) Organization and
dynamics of the Mu transpososome: recombination by communication between
two active sites. Genes Dev, 13, 2725-2737.

Wolkow, C.A., DeBoy, R.T. and Craig, N.L. (1996) Conjugating plasmids are preferred
targets for Tn7. Genes Dev, 10, 2145-2157.

Xie, W., Gai, X., Zhu, Y., Zappulla, D.C., Sternglanz, R. and Voytas, D.F. (2001)
Targeting of the yeast Ty5 retrotransposon to silent chromatin is mediated by
interactions between integrase and Sir4p. Mol Cell Biol, 21, 6606-6614.

Yamauchi, M. and Baker, T.A. (1998) An ATP-ADP switch in MuB controls progression
of the Mu transposition pathway. Embo J, 17, 5509-5518.

Yamazaki, M., Tsugawa, H., Miyao, A., Yano, M., Wu, J., Yamamoto, S., Matsumoto,
T., Sasaki, T. and Hirochika, H. (2001) The rice retrotransposon Tosl7 prefers
low-copy-number sequences as integration targets. Mol Genet Genomics, 265,
336-344.

Yant, S.R., Wu, X., Huang, Y., Garrison, B., Burgess, S.M. and Kay, M.A. (2005) High-
resolution genome-wide mapping of transposon integration in mammals. Mol Cell
Biol, 25, 2085-2094.

Zhang, X., Feschotte, C., Zhang, Q., Jiang, N., Eggleston, W.B. and Wessler, S.R. (2001)
P instability factor: an active maize transposon system associated with the
amplification of Tourist-like MITEs and a new superfamily of transposases. Proc
Natl Acad Sci US A, 98, 12572-12577.

Zou, S., Ke, N., Kim, J.M. and Voytas, D.F. (1996) The Saccharomyces retrotransposon
Ty5 integrates preferentially into regions of silent chromatin at the telomeres and
mating loci. Genes Dev, 10, 634-645.

Zou, S., Wright, D.A. and Voytas, D.F. (1995) The Saccharomyces Ty5 retrotransposon
family is associated with origins of DNA replication at the telomeres and the
silent mating locus HMR. Proc Natl AcadSci U SA, 92, 920-924.



Chapter II

Dissecting MuB's role in target delivery during
Mu transposition: ATP hydrolysis is not obligatory



Abstract

A close collaboration between the MuA transposase and its activator protein,

MuB, is essential for properly regulated transposition. MuB serves several roles,

including activation of MuA's catalytic activity, selection of target DNA, and stimulation

of transposition into the selected target DNA. MuB is an ATPase, and appropriate target

DNA selection requires ATP hydrolysis by MuB. By fusing the MuB protein to a site-

specific DNA binding protein (Arc repressor), we generated a version of MuB that can

select target DNA independently of ATP. This Arc-MuB fusion protein, can be used to

probe whether ATP-binding and hydrolysis by MuB is necessary for stimulation of

transposition into selected DNA (target delivery). We find, using these fusion proteins,

that MuB-dependent target delivery can efficiently occur in the absence of ATP

hydrolysis. Furthermore, mapping experiments establish that the fusion protein directs

transposition to regions of the DNA within 40-750 bps of its own binding site. Taken

together, these results suggest that target delivery by MuB can occur as a consequence of

MuB's ability to stimulate MuA while simultaneously tethering MuA to a selected target

DNA. This mechanism is an attractive model to explain other examples of protein-

stimulated control of transposition target site selection.

Introduction

Transposable elements have been found in every species studied, and these

"selfish DNAs" appear to have a tremendous impact on the evolution of their hosts

(Curcio and Derbyshire, 2003). To comprehend how transposons have become ubiquitous

and what effect they have had on evolution, we must understand the mechanisms that



govern their activity and their target site choice. Several transposons depend on

nucleotide cofactors to regulate transposase activity or to choose appropriate target sites.

For example, the bacterial Tn552 transposon requires GTP for efficient transposition, as

demonstrated by in vivo assays with purine biosynthetic mutants (Coros et al., 2005).

Likewise, GTP stimulates assembly of the initial synaptic complex of the Drosophila P

element transposase (Kaufman and Rio, 1992; Tang et al., 2005). In contrast, GTP

inhibits target DNA capture by the RAG proteins that mediate V(D)J recombination,

thereby suppressing RAG-mediated transposition (Tsai and Schatz, 2003). Two well

studied systems, Mu and Tn7, encode target-selection proteins that require ATP to choose

the target DNA (Adzuma and Mizuuchi, 1988; Gamas and Craig, 1992; Maxwell et al.,

1987; Stellwagen and Craig, 1997; Stellwagen and Craig, 1998). Thus, although it is

clear that nucleotide cofactors are involved in regulating a number of transposons, it is

largely uncertain the extent to which such cofactors affect the individual steps of

transposition. Here, we investigate the role of ATP in target delivery during Mu

transposition.

The genome of the Mu bacteriophage is a replicative transposon. Transposition is

mediated by two Mu-encoded proteins: MuA and MuB. MuA, the transposase, is a

member of the transposase/retroviral integrase protein family (Baker and Luo, 1994; Rice

and Mizuuchi, 1995). MuA binds as a tetramer to specific sites at the ends of the Mu

genome (Craigie et al., 1984), where it catalyzes the cleavage andjoining reactions

necessary for transposition (Aldaz et al., 1996; Mizuuchi and Adzuma, 1991; Namgoong

and Harshey, 1998; Williams et al., 1999). The second protein, MuB, is an activator of

MuA (Baker et al., 1991; Surette and Chaconas, 1991; Williams et al., 1999; Yamauchi



and Baker, 1998). Unlike MuA, MuB is an ATPase (Maxwell et al., 1987). As such, it

exists in two distinct states: ATP-bound and ADP-bound. MuB bound to ATP binds

DNA tightly (Kd=80nM) and with little sequence preference (Yamauchi and Baker,

1998). In contrast, MuB bound to ADP binds DNA much less tightly (Kd=790nM), as

does MuB in the absence of nucleotide (Kd=1200nM) (Yamauchi and Baker, 1998).

MuB's ability to hydrolyze ATP and thereby release the DNA is essential for determining

the target sites during Mu transposition, as will be explained below.

Mu avoids transposing into or near its own genome, a process termed target

immunity (Reyes et al., 1987). Other transposons, including Tn7 and Tn3, also exhibit

target immunity, thought to be an evolutionary strategy for avoiding self-destruction

(Arciszewska et al., 1989; Lee et al., 1983; Maekawa et al., 1996; Stellwagen and Craig,

1997). In the case of Mu, target immunity is mediated by MuB and its interactions with

MuA and ATP (Adzuma and Mizuuchi, 1988; Maxwell et al., 1987). Steps in this

process, as currently understood, are as follows. Initially, MuB*ATP binds DNA non-

specifically. MuA, which is bound to the Mu genome ends, can stimulate MuB's ATPase

activity (Greene and Mizuuchi, 2002b; Greene and Mizuuchi, 2002c; Maxwell et al.,

1987) . Since MuB*ADP has a lower affinity for DNA, hydrolysis causes MuB to

dissociate from the DNA (Greene and Mizuuchi, 2002a). As a result, MuB molecules

bound to DNA near Mu genome ends, and thus near MuA, will be cleared from the DNA.

Eventually, MuB will accumulate on DNA far from copies of the Mu genome (Adzuma

and Mizuuchi, 1988). A second interaction between MuB and MuA must also occur, in

which MuB stimulates MuA to catalyze transposition into the MuB-bound DNA. In this



interaction, MuB "delivers" the target DNA to MuA. Thus, MuB serves two key roles in

Mu targeting: selecting distant DNA and promoting transposition into this DNA.

One can observe Mu target immunity in vitro (Maxwell et al., 1987; Mizuuchi,

1983). In such transposition assays, a donor plasmid containing a modified version of the

Mu genome (pMK586 (Mizuuchi et al., 1991)) and a second, non-Mu, target plasmid are

incubated with MuA, MuB, and ATP. Under these conditions, MuB preferentially selects

the non-Mu plasmid and delivers this plasmid to the transposase. We will refer to this

process as intermolecular transposition or "INTER" (Figure 1A). In contrast, if MuB is

absent from the in vitro reaction, or if ADP is present in place of ATP, then target

immunity fails, and transposition events occur almost exclusively into the donor

plasmid's own DNA (intramolecular transposition or "INTRA") (Figure 1A). MuB does,

however, play a role in I NTRA, as demonstrated by the fact that I NTRA is more efficient

in the presence of MuB bound to ADP than in the absence of MuB (Surette and

Chaconas, 1991; Yamauchi and Baker, 1998). Therefore, in addition to MuB's ability to

select target DNA and to deliver selected DNA to MuA, MuB can also stimulate

transposition into nearby, unselected DNA.

We have described three roles of the MuB protein: to select target sites that are far

from any copies of the Mu genome, to deliver selected DNA to the transposase (i.e.

stimulate INTER), and to activate transposition into non-selected DNA (i.e. stimulate

INTRA). These three activities differ based on their requirement for ATP hydrolysis by

MuB. Target selection relies on MuB's ATPase activity (Adzuma and Mizuuchi, 1988;

Maxwell et al., 1987) , whereas stimulation of INTRA, is independent of ATP hydrolysis

(since this process is supported by MuB-ADP) (Yamauchi and Baker, 1998). It remains



unknown, however, whether or not delivery of selected target DNA requires ATP

hydrolysis. Therefore, we sought to determine whether ATP hydrolysis by MuB is

necessary for efficient activation of INTER.

Figure 1: A) Diagram of Mu transposition. B) Illustration of the Arc-MuB fusion protein
highlighting its flexible linker region.

In this manuscript, we describe experiments aimed at determining whether or not

MuB requires ATP hydrolysis for target delivery. To this end, we have created MuB

fusion proteins that bind target DNA irrespective of MuB's nucleotide state. We find that

these fusion proteins can stimulate intermolecular transposition, even under conditions



that prevent ATP hydrolysis. Thus, we conclude that ATP hydrolysis by MuB is not

critical for efficient intermolecular transposition and, therefore, is not essential for target

delivery. We also map the location of transposition events mediated by our MuB fusion

proteins. The results of these mapping experiments offer insight into the mechanism by

which MuB targets transposition to bound DNA.

Results

Design of MuB fusion proteins

Since MuB's ATP-bound state is coupled to its ability to bind target DNA

(Yamauchi and Baker, 1998), it is difficult to investigate the role of one activity without

disturbing the other. Therefore, to determine whether ATP hydrolysis by MuB is

fundamentally important for the mechanism of target delivery, we designed a MuB fusion

protein that binds DNA independently of ATP. Specifically, we fused the Arc repressor

protein (Arc) (Susskind, 1980) to the N-terminus of MuB. In contrast to MuB, Arc does

not bind ATP or ADP, and therefore, its DNA binding activity is nucleotide independent.

Arc is a dimer (Vershon et al., 1985), and two Arc dimers bind tightly to a specific Arc

operator DNA sequence (half-maximal binding at 40 nM Arc monomer equivalents)

(Robinson and Sauer, 1996). Arc also binds less tightly to non-specific DNA (half-

maximal binding at 460 nM Arc monomer equivalents) (Robinson and Sauer, 1996). We

made two version of the fusion protein: one with Arc fused to wild type MuB (FPWT) and

one with Arc fused to MuBinsl1ON (FPinN) (Figure 1B). MuBinslOiN contains an

asparagine inserted into the Walker A box of the ATP binding domain (Walker et al.,

1982) (Pause and Sonenberg, 1992) (Yamauchi and Baker, 1998). This previously



characterized mutant is defective in DNA binding and in ATP hydrolysis, but is still

capable of stimulating MuA for INTRA (Yamauchi and Baker, 1998). By uncoupling

MuB's ability to hydrolyze ATP from its ability to bind target DNA, these fusion proteins

provide a tool for studying the role of ATP in target delivery.

Characterization of the fusion proteins

To characterize the DNA binding activity of our MuB fusion proteins, we

performed gel shift assays using 80bp DNA fragments that either did or did not contain

the 21 bp Arc operator sequence. These gel shift assays were performed under the same

conditions as our transposition assays. Results indicate that FPwr in the presence of ADP

binds Arc operator DNA half-maximally at a concentration of -20 nM monomer

equivalents (Figure 2A). Although this apparent binding affinity is weaker than that

previously reported for Arc, this discrepancy is likely due to a difference in buffer

conditions. Since the strength of this binding is of the same order as for MuB*ATP to

DNA, we have successfully uncoupled MuB's nucleotide state from its ability to bind

DNA. In the presence of ADP, FPwr bound non-Arc operator DNA half-maximally at a

concentration of -300 nM (Figure 2B). This preference of FPwr for the Arc operator site

over non-specific DNA indicates that the Arc domain of the fusion protein is functional.
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Figure 2: A) Gel shift assay performed with 0.1 nM oligonucleotide, FPw-, and either
ADP or ATP. 80bp oligonucleotide contained a single copy of the Arc operator sequence.
B) Same as in A except that oligonucleotide lacked Arc operator sequence.
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FPwr binds DNA equally well whether or not ADP is present (Figure 2). As MuB

binds DNA approximately one and a half times more tightly in the presence of ADP than

in its absence, the fact that FPwr's ability to bind DNA is unaffected by ADP, suggests

that the fusion protein is binding principally via the Arc domain. It should be noted,

however, that FPwr bound non-Arc operator DNA more tightly in the presence of ATP

than in its absence (data not shown). We also tested the functionality of the MuB domain

of our Arc-MuB fusion proteins by assaying its ability to stimulate formation of INTRA

in vitro. I NTRA was much more efficient in the presence of our fusion proteins,

indicating that the MuB domains of our fusion proteins are indeed active (data not shown,

see below).

Fusion proteins support INTER and do not depend on A TP hydrolysis

To determine whether ATP hydrolysis is necessary for MuB-stimulated target

delivery, we assayed the ability of our fusion proteins to direct transposition into foreign

target DNA. We performed in vitro recombination assays, in which the MuB fusion

proteins, MuA, "mini-Mu" donor DNA (pMK586), and a second, non-Mu, target plasmid

were incubated for two hours at 30"C. The target plasmid either did, or did not, contain a

single copy of the Arc operator. After incubation, samples were run on an agarose gel to

separate the I NTRA products from the INTER products. Both FPwr bound to ADP and

FPin,N bound to ATP are unable to hydrolyze ATP but are able to bind target DNA via

their Arc domains. If MuB must hydrolyze ATP to deliver target DNA, then the fusion

proteins should be inefficient at INTER. Consequently, one would expect the majority of

the recombination products to be the result of I NTRA. On the other hand, if ATP



hydrolysis is not necessary for target delivery, then the fusion proteins should support

recombination into bound DNA. In this case, we would expect to see a preference for

INTER when the target DNA contains a copy of the Arc operator site.
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Nucleotide T

INTER -

INTRAJ

+ + +++ +

WT FPwf InsN FPw
D D T T
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-NT
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Figure 3: A) Agarose gel of products from in vitro transposition reactions. Reactions
were incubated for 2 hours and contained Arc operator target plasmid (pCS13). Lanes are
from the same gel with the same image contrast. B) Same as in A except target plasmid
lacked Arc operator sequence (pUC19). Lanes are from the same gel with the same
imaging contrast.
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Both fusion proteins did support INTER into plasmids containing the Arc

operator sequence (Figure 3A, lanes 5 and 7). The identity of INTRA and INTER

products were verified by Southern blot (data not shown). As expected, wild type

MuB*ATP also supported efficient INTER, whereas MuBinsN*ATP and wild type

MuB*ADP failed to generate these INTER products (Figure 3A). Moreover, when the

target DNA lacked the Arc operator site, only wild type MuB*ATP efficiently targeted

recombination to intermolecular sites (Figure 3B). Though the fusion proteins did support

a modest level of INTER into non-Arc target DNA, this activity can be explained by

Arc's relatively high affinity for non-specific DNA. We repeated the experiments in

Figure 3 with a second set of Arc and non-Arc target plasmids and obtained analogous

results (data not shown).

To determine whether the fusion proteins preferentially support INTER over

INTRA, we calculated the percentage INTER products out of total transposition products

formed in each sample (See values below gel in Figures 3A and 3B). Remarkably, with

both FPWT*ADP and FPinsN*ATP, more than half of the transposition products were

INTER, indicating that the fusion proteins preferentially directed transposition into the

intermolecular target DNA. In summary, our results indicate that FPWT-ADP and

FPInsN*ATP can preferentially target transposition to intermolecular DNA, and this

targeting activity depends on the presence of an Arc operator site in the target DNA.

From these data, we conclude that ATP hydrolysis by MuB is not mechanistically

required to stimulate recombination into a distant target.

We consistently observed that FPWT*ADP and FPwTrATP were equally efficient

at stimulating INTER into Arc operator containing plasmids (Figure 4C - compare lanes



1 and 3). If our fusion proteins were binding target DNA via their MuB domains, we

would expect INTER to be more efficient in the presence of ATP, since MuB binds DNA

approximately ten times more tightly in the presence of ATP than in the presence of

ADP. Since our fusion proteins exhibit similar activity in the presence of ATP or ADP,

we conclude that the fusion proteins are primarily binding target DNA via their Arc

domains.

Figure 4: A) Agarose gel of in vitro transposition products. Reactions were incubated for
the length of time indicated. B) Graphical representation of the data from A. C) Agarose
gel of in vitro transposition products. Reactions were incubated for 2 hours and contained
Arc operator target plasmid (pCS13).



Although we determined that our fusion proteins can support INTER, we wanted

to investigate whether these fusion proteins stimulate INTER with similar kinetics to wild

type MuB. Using in vitro recombination reactions, we find that FPwT*ADP forms INTER

at approximately 40% the efficiency of MuB*ATP (Figures 4A and 4B). The reduced

activity of FPwr as compared with MuB is likely due to the difference in the number of

binding sites in the target DNA for each protein. Whereas only two Arc dimers bind to

the single Arc operator sequence present in the target DNA, wild type MuB can bind to

any site along the entire target plasmid. To reduce the discrepancy in the number of

binding sites for FPwr and MuB, we attempted in vitro recombination reactions using

short DNA fragments as target DNA. Unfortunately, such short target molecules altered

the reaction's dependence on MuB, making results difficult to compare and interpret

(data not shown).

Fusion proteins target transposition to DNA near the Arc operator site

Although it is clear that the fusion proteins can target transposition to Arc

operator containing plasmids, it is uncertain where on the plasmid recombination is

occurring. Do the fusion proteins target transposition directly into the Arc operator site,

nearby the Arc site, or throughout the plasmid? To address this question, we globally

mapped transposition events from in vitro transposition reactions containing FPwt*ADP

and either Arc or non-Arc target plasmids. Mapping was accomplished by PCR

amplifying the donor-targetjoints using one primer specific to the Mu-end on the donor

DNA and one plasmid specific to the target plasmid. The PCR products were run on an

agarose gel. A given band on the gel corresponds to a transposition event at a particular



distance from the target primer. This experiment was repeated with four different target

primers, spaced evenly around the target plasmid (Figure 5).

The results of our global mapping experiment demonstrate that there is a different

pattern of transposition events into plasmids containing the Arc operator site compared to

plasmids lacking the Arc operator site (Figure 5). Specifically, we observe a cluster of

bands that correspond to insertion events -40 bps to -340 bps 3' of the Arc operator site.

These bands only appeared in samples in which the target plasmid contained the Arc

operator site (Figure 5, compare lanes 3 and 4). Another set of bands that were from

insertion events -110 bps to -10 bps 5' of the Arc operator site also appeared in an Arc

operator dependent manner (Figure 5, compare lanes 3 and 4). We did not, however,

detect bands unique to the Arc operator samples at positions far from the Arc operator

(Figure 5, lanes 6-17). Overall, we observed that the presence of an Arc operator site in

the target DNA alters the profile of transposition events mediated by our fusion proteins.

In fact, we find that regions of the DNA on either side of the Arc operator become more

susceptible to transposition.

It should be noted that the samples in Figure 5 contained different amounts of

total DNA. Transposition is more efficient into plasmids containing a copy of the Arc

operator, and therefore, these samples contained a much larger number of donor-target

joints that could be amplified during PCR. Therefore, PCR yielded a greater amount of

product for the Arc operator samples than for the non-Arc operator samples. This

discrepancy is apparent upon inspecting the net signal per lane for Arc operator verses

non-Arc operator samples in Figure 5. It is valid, however, to compare the relative

intensities of bands within a given lane.
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Figure 5: A) Agarose gel of PCR amplified donor-target joints from in vitro
transposition reactions containing FPwt*ADP and either pCS 14 (non-Arc), pCS 15 (Arc),
or pCS 16 (1/2 Arc) target plasmids. Cartoons above the gel indicate the position of the
target primer relative to the Arc operator. B) Graph representing the frequency of
transposition events at positions along the target DNA. We mapped a total of 33 events
into pCS15 (Arc target) and 35 events into pCS 14 (non-Arc target) from reactions
containing FPwt*ADP. Individually mapped events were binned into 50bp intervals.
Donor-target joints were PCR amplified using "primer 1" (see A).



To investigate the number of Arc operator-bound fusion proteins required to

mediate target delivery, we created target plasmids that contained only the right half of

the Arc operator. This half site should bind one Arc dimer, as compared to the tetramer-

bound full site. We find that target plasmids containing the Arc half site are less efficient

substrates for INTER (data not shown). Likewise, in our mapping experiments, samples

containing half operator target plasmids exhibited a banding pattern between that of

samples containing non-Arc operator plasmids and that of samples containing full Arc

operator plasmids (Figure 5). From these data, we conclude that the half Arc operator is a

less robust signal than the full Arc operator for targeting transposition into nearby DNA

in reactions containing our fusion proteins.

To validate the results of our global mapping experiments, we cloned the PCR

amplified donor-target joints from Figure 5, lanes 3 and 4. The clones were sequenced to

map individual insertion events into target DNA that either contained or lacked an Arc

operator site. The position of our PCR primer allowed us to map insertion events from -

150 bps 5' of the Arc operator site to -1400 bps 3' of the Arc operator site. Consistent

with our global mapping experiments, we find that FPWTrADP targets transposition to

different locations depending on whether or not the target DNA contains the Arc operator

site (Figure 5B). Also, interestingly, we did not observe a single insertion event into the

Arc operator itself. The data in Figure 5B was derived from multiple in vitro

transposition reactions that were PCR amplified and cloned separately, and the results

were consistent from reaction to reaction. We conclude that our fusion proteins target

transposition to locations near the Arc operator site but never directly into it.



Discussion

We have created Arc-MuB fusion proteins that effectively uncouple MuB's

ATPase activity from its ability to bind target DNA. We find that these fusion proteins

can target transposition to distant plasmids containing a copy of the Arc operator site.

This targeting is robust even if only ADP is present in the reaction or if the MuB portion

of the fusion protein is mutated to prevent ATP hydrolysis. Therefore, fusion protein-

mediated stimulation of INTER can occur independently of ATP hydrolysis. These data

indicate that MuB does not require ATP hydrolysis to deliver target DNA.

Though ATP hydrolysis is not necessary for target delivery, it is necessary for

target site choice. The process of target immunity, by which MuB accumulates on DNA

far from any copies of the Mu genome, depends on MuA stimulated ATP hydrolysis by

MuB (Adzuma and Mizuuchi, 1988; Maxwell et al., 1987; Reyes et al., 1987). However,

our data suggest that once a MuB gradient has formed, transposition into the MuB-bound

DNA can occur independently of ATP hydrolysis. That MuB's ATPase activity is solely

necessary for target selection, highlights the evolutionary importance of target site choice

for transposable elements.

Our data indicate that MuB need not hydrolyze ATP to stimulate INTER.

Likewise, MuB stimulation of INTRA is independent of ATP hydrolysis by MuB

(Yamauchi and Baker, 1998). Therefore, we propose that MuB activates MuA to perform

INTER in much the same way that it activates MuA to perform INTRA. In other words,

we hypothesize that MuB stimulates INTER by activating MuA's catalytic activity (as for

I NTRA) while simultaneously increasing the local concentration of the bound target

DNA. Thus, MuB "delivers" target DNA by tethering that DNA to the MuA tetramer.



Numerous other transposases select target DNA by interacting with proteins that are

bound to the preferred target site. For example Tn7 interacts with TnsC/D to mediate

target immunity in a manner similar to Mu (Stellwagen and Craig, 1997), Ty5 interacts

with Sir4p to target transposition to silent DNA (Xie et al., 2001), and Ty3 interacts with

transcription factor TFI II B to target transposition upstream of RNA polymerase III

promoters (Kirchner et al., 1995).

That MuB preferentially targets transposition to bound DNA is less intuitive than

one might think. When MuB bound to target DNA interacts with the MuA tetramer, the

local concentration of the MuB-bound DNA relative to the MuA tetramer increases.

However, the local concentration of the flanking donor DNA relative to the MuA

tetramer should also be quite high. Why, then, do the majority (75%-95%) of the

transposition events occur into the MuB-bound DNA? One possible answer is that the

flanking donor DNA is in a particularly poor orientation to be accessed by the

transposase.

We mapped the locations of individual transposition events mediated by our

fusion proteins into plasmids that either did, or did not, contain a copy of the Arc operator

sequence. Interestingly, we found that transposition occurred into different locations

depending on whether or not the Arc site was present. In particular, transposition hot-

spots unique to the Arc operator containing plasmids, were observed near, but never

directly into, the Arc operator site. That transposition occurs near, rather than into, the

DNA to which our fusion proteins are bound, supports the model that MuB can act to

tether target DNA to the transposase.



Neither the transposition hot-spots observed with the Arc operator plasmid, nor

those observed with the non Arc plasmid, correspond to the Mu consensus sequence (5'-

C-CIT-GIC-A/G-G-3') (Haapa-Paananen et al., 2002; Mizuuchi and Mizuuchi, 1993). It

remains unclear why particular regions of the DNA are preferred target sites for Mu

transposition under our reaction conditions. Perhaps, as has been previously suggested,

the local structure of the DNA determines the location of Mu targeting (Manna et al.,

2004).

In creating our Arc-MuB fusion proteins we have engineered a version of MuB

that can preferentially target transposition to a particular DNA molecule. We hope that

this system will prove a useful tool for further investigation of the mechanisms

underlying Mu transposition.
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Materials and Methods

DNA:

The donor plasmid was pMK586 (mini-Mu) (Mizuuchi et al., 1991). Non-Arc

target plasmid was either pUC19 or pCS14 (pJF122 with 180bps added to the multiple

cloning site). Arc target plasmid was either pCS13 (pUC19 with atagtagagtgcttctatcat

cloned into EcoR1 site) or pCS15 (pCS14 with atagtagagtgcttctatcat cloned into EcoR1

site). V2 Arc target plasmid was pCS16 (pCS14 with atagtagagtgctgtattcat cloned into the

EcoR1 site). All plasmids were purified by QIAGEN Plasmid Mega kit followed by



CsCI/ethidium bromide ultracentrifugtation. 80bp oligonucleotides used in our gel shift

assays were ordered from Invitrogen. The sequences are as follows: Arc Operator =

5 'catcaccgaaacgtccgaggcagcaagttatgatagaagcactctactatggagtcataatgtgcctgtcattgagacga3';

Non-Arc Operator =

5 'catcaccgaaacgtccgaggcagcaagtttcgcacgtccgcacagcacgtggagtcataatgtgcctgtcattgagacga3'

Proteins:

MuA was purified as in Baker et al., 1993 (Baker et al., 1993). HU was purified

as in Baker and Luo, 1994 (Baker and Luo, 1994). Wild-type MuB and MuBinsl01N

were purified as described in Yamauchi and Baker, 1998 (Yamauchi and Baker, 1998).

FPwr and FPinslOl1N were cloned into pET20b (Novagen) and expressed in bacterial

strain ER2556. Cells were grown in TB to an OD600 of 0.55-0.75, induced with 0.7mM

IPTG for 2 hours, centrifuged at 6,000 g for 20 minutes. Cell pellets were resuspended in

50mM Tris pH8, 10% sucrose, 2.5mM DTT, 12.5mM EDTA, plus protease inhibitor

cocktail (CalBiochem). Cell were French pressed, and lysate was cleared by

centrifugation at 20,000g for 30min. AmSO 4 was added to 35% and precipitation was

allowed to occur for 1hr at 4VC. Sample was centrifuged for 15 min at -40,000g, and the

resulting pellet was resuspended in denaturing buffer (6M GuHCl, 100mM NaH 2PO4,

10mM Tris, 10mM Imidazole, pH 8.0). Protein was then batch bound to Ni-NTA beads

(QIAGEN), washed with denaturing buffer, and eluted with 6M GuHCI, 20mM

NaH 2PO4, 10mM Tris, 400mM Imidazole, pH 8.0. Eluted samples were subjected to

several dialysis steps: first into MuB buffer (1M NaCI, 25mM Hepes pH 7.6, 0.1mM



EDTA, 20% glycerol, 2mM DTT) + 2M GuHCI, then into MuB buffer + 0.5 GuHCI, and

finally into MuB buffer.

Gel shift assays:

Binding reactions contained 100mM NaCI, 0.1mM EDTA, 2.5mM HEPES-KOH

pH 7.6, 3.5% glycerol, 1mM DTT, 25mM Tris-HCI pH 8, 10mM MgCI 2, 0.1nM 80bp

oligonucleotide (see DNA) that was P32 radiolabeled at the 5' end, and FPwr

(concentration varied). Some reactions also contained 2mM ADP. Reactions were

incubated for 4hrs at 300C. 0.8 volumes of a loading solution (11.25% glycerol, 2.25X

loading dye) were added to each sample immediately prior to loading the sample onto a

polyacrylamide gel. Samples were run on a 5% native polyacrylamide gel (19:1

acrylamide:bis-acrylamide) in 0.5X TBE at -15 V/cm. Gels were dried at 76°C and

exposed on a storage phosphor screen (Amersham Biosciences) for 2-3 days. Exposed

phosphor screens were viewed using a Typhoon 9400. Bands were quantitated using

ImageQuant, and curves were fit using KaleidaGraph.

Transposition Assays:

Transposition reactions in Figures 3A, 3B, and 4C included: 100mM NaCl, 3.5%

glycerol, 1mM DTT, 25mM Tris-HCI pH 8, 10mM MgCI 2, 2mM ADP or ATP (as

indicated), 0.1 mg/ml BSA, 10 ipg/ml pMK586 (donor), 10 pg/ml pUC19 (non-Arc

target) or pCS13 (Arc target) (as indicated), 130 nM HU, 40 nM MuA, 300 nM MuB or

MuBinsll01 N or FPwT or FPinsN (as indicated). Reactions were incubated for 2 hours at

30*C and stopped with 0.2 vol STOP solution (2.5% SDS, 50 mM EDTA, 30% glycerol,



bromophenol blue). Reaction products were run on a 0.9% HGT-agarose (Cambrex) gel

in 1 X TAB (40 mM Tris-HCI pH 8.0, 3.6 mM EDTA, 27 mM sodium acetate) at -5

V/cm for 2 hours at 4VC. Gels were stained with Vistra Green (Amersham Biosciences)

(1:10000 dilution) and visualized on a Molecular Dynamics fluorimager. Band intensities

were quantitated using ImageQuant.

Reactions in Figure 4A were performed as above, except that the MuA

concentration was 30 nM, and the reactions were stopped after the indicated amount of

time. Reactions for the mapping experiments in Figure 5 were also performed as above,

except that the MuA concentration was 30nM, the reactions were incubated for 3 hours,

and pCS14 (non-Arc), pCS15 (Arc), or pCS16 (1/2 Arc) were used as the target plasmids.

Global mapping experiment:

To globally map the location of Mu transposition events, transposition reactions

were performed as described above. The products of these reactions were subjected to

proteinase K treatment followed by Phenol:Chloroform extraction and EthOH

precipitation. Samples were resuspended in H20 and used as the template in subsequent

PCR. PCR was performed with a Mu specific primer

(5'cccggtttttttcgtacttcaagtgaatcaataca3') and one of four different target specific primers:

(primerl = 5'cgttttttgggctaacaggaggaattaacctag3'; primer2 =

5'caacttcagcagcacgtaggggac3'; primer3 = 5'cgggtgtggtcgccatgatcg3'; primer4 =

5'gcatgtgtcagaggttttcaccgtcatc3'). PCR products were run on a 1.8% metaphore agarose

(Cambrex) gel in 1X TBE at 5 V/cm at 4VC. Gels were stained with Vistra Green

(Amersham Biosciences) (1:10000 dilution) and visualized on a Typhoon 4900.



Mapping insertion sites:

To specifically map individual insertion events, we cloned and sequenced the

PCR-amplified donor-targetjoints generated in the global mapping experiments (above).

We cloned those donor-targetjoints that had been "primerl" amplified from transposition

reactions containing FPwT*ADP and pCS14 (non-Arc target) or pCS15 (Arc target).

Donor-targetjoints were cloned using the TOPO TA Cloning kit (Invitrogen), and

individual clones were sequence by the MIT Biopolymers Laboratory.
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Chapter III

The Dynamic Mu Transpososome:
MuB activation prevents disintegration

This chapter is part of a manuscript that has been submitted by Kathryn M. Lemberg,
Caterina T. H. Schweidenback, and Tania A. Baker. I contributed the data concerning
MuB's interaction with the transpososome (Figure 5). In addition, I was actively involved
in the writing of this manuscript.



Abstract

DNA transposases use a single active center to sequentially cleave the

transposable element DNA andjoin this DNA to a new target site. Successful

recombination requires controlled conformational changes within the transposase to

ensure that these chemically distinct steps occur at the right time and place, and that the

reaction proceeds in the net forward direction. Mu transposition is catalyzed by a stable

complex of MuA transposase bound to paired Mu DNA ends (a transpososome). We find

that Mu transpososomes efficiently catalyze disintegration when recombination on one

end of the Mu DNA is blocked. The MuB activator protein controls the integration vs.

disintegration equilibrium. When MuB is present, disintegration occurs slowly and

transpososomes that have disintegrated remain able to catalyze subsequent rounds of

recombination. In the absence of MuB, disintegration goes to completion. This analysis

provides evidence for an Initial Joined Complex (IJC) as part of the transition to a stable

transposition product. MuB controls progression of recombination by specifically

stabilizing a concerted transition to the 'joining' configuration. Thus, MuB's interaction

with the transpososome actively promotes coupledjoining of both ends of the

transpososome DNA into the target site and provides a mechanism to prevent single-end

transposition products.

Introduction

The multiple steps of genetic recombination are often carried out by a single

nucleoprotein complex (Curcio and Derbyshire 2003; Gueguen et al. 2005; Grindley et al.

2006). To prevent formation of anomalous products-and thus potential damage to the



genome-DNA processing within these complexes is carefully orchestrated.

Recombinases of the transposase/retroviral integrase superfamily (the DDE-motif

transposases) have an extra challenge as these proteins use a single active site to catalyze

the two distinct chemical steps of DNA cleavage and DNAjoining (Rice and Baker 2001,

Mizuuchi and Baker 2002, Gueguen et al. 2005). Successful recombination requires that

each active site promotes the proper chemistry at the proper time and that the reaction

progresses forward, such that the substrate DNA molecules are efficiently converted to

the product configuration. How transposase-DNA complexes change throughout the

recombination pathway to alter the active site and ensure this forward progress is largely

unknown.

Phage Mu encodes an extremely active DDE-transposase, the MuA protein,

responsible for transposition of the phage genome (Baker and Luo 1994; Rice and

Mizuuchi 1995). To initiate transposition, a tetramer of MuA assembles on specific DNA

recognition sites (L1, L2, R1, and R2) located at the left and right ends of the Mu DNA

(called the donor DNA). These assembled complexes are known as Mu transpososomes

(Fig la).

Once the Mu transpososome has assembled to form a stable synaptic complex

(SSC or type 0 complex) (Mizuuchi et al. 1992), MuA cleaves the DNA at thejunction of

the Mu genome and flanking DNA to generate 3'OH nicked ends (Craigie and Mizuuchi

1987). This form of the transpososome is called the cleaved donor complex (CDC or type

1 complex) (Craigie and Mizuuchi 1987; Surette et al. 1987; Lavoie et al. 1991). With the

help of the ATP-dependent activator protein, MuB, the transpososome associates with the

new DNA segment that will serve as the site for transposon insertion (the target DNA)



(Maxwell et al. 1987; Adzuma and Mizuuchi 1988). The 3' hydroxyl groups generated by

the cleavage step then attack andjoin to opposite strands of the target DNA in a reaction

called DNA strand transfer; this step generates the strand transfer complex (STC or type

II complex) (Mizuuchi 1984; Mizuuchi and Adzuma 1991; Mizuuchi et al. 1991).

The MuB activator plays several roles in the transposition process. MuB promotes

assembly of the MuA tetramer, selects target DNA, and stimulates conversion of the

transpososome from the CDC to the STC. MuB interacts with MuA via direct protein-

protein contact with MuA's C-terminal domain. (Adzuma and Mizuuchi 1988; Baker et

al. 1991)

What drives the DNAjoining process forward? For each strand transfer reaction,

a phosphodiester bond in the target DNA is broken, while the new bond between the Mu

DNA and the target DNA is formed. Thus, DNAjoining is isoenergetic with respect to

phosphodiester bonds. However, the transposition reaction proceeds in the forward

direction because the STC is more stable than the CDC (Surette et al. 1987). This

increased stability must be due to changed contacts within the transposase-DNA complex

that serve to ensure that most CDCs progress forward to complete strand transfer. In fact,

the STC is such a stable complex that the host-encoded AAA+ ATPase ClpX is required

to destabilize its protein structure prior to phage DNA replication (Levchenko et al. 1995;

Nakai and Kruklitis 1995; Kruklitis et al. 1996). Despite this evidence that the STC is an

irreversible product of Mu transposition, little is known about specific changes that occur

within the transpososome to generate the STC. Understanding this transition is essential

to elucidating the overall mechanism of recombination and how transposition is

regulated.



Here, we describe a state of the transpososome (the Initial Joined Complex, IJC)

in which DNA joining has occurred, but the active site is still in a configuration that can

readily reverse this chemistry. These complexes are abundant when processing of one

end of the Mu DNA is blocked by the presence of an inactive MuA subunit within the

transpososome. These results demonstrate that DNA joining and generation of the final

stable strand transfer complex are separable events, dependent upon the ability of the

transpososome to complete recombination of both Mu DNA ends. Furthermore, we find

that MuB, by binding to MuA, has a substantial controlling influence on whether the

transpososome favors integration into, or disintegration from, the target. We propose that

a normal function of MuB is to stabilize the transient IJC long enough for both ends of

the Mu DNA to complete strand transfer. Once these reactions are complete, the

transpososome undergoes the final conformational change to render joining effectively

irreversible.

Results

Mixed mutant transpososomes efficiently generate relaxed target DNA

To probe the interactions within the Mu transpososome responsible for stabilizing

final strand transfer products, we studied the properties of complexes that were only able

to process one end of the Mu DNA due to the presence of a subunit (or subunits) carrying

an active-site mutation (Figure lb). These mixed transpososomes were assembled using a

1:1 ratio of wild-type MuA (MuA) and MuADE/NQ. MuADE/NQ carries two mutations in

catalytic residues (D269N and E392Q). These mutations abolish the cleavage and joining



activities of the transposase, but not its ability to assemble into stable transpososomes at

near wild-type efficiencies (Baker and Luo 1994).

Figure 1: Cartoon of Mu Transposition Pathway A) The stable synaptic complex (SSC) is
formed upon assembly of the MuA tetramer at the ends of the Mu genome. MuA hydrolyzes the
3' end of each strand of the genome, resulting in a cleaved donor complex (CDC). After target
DNA is delivered to the transpososome, the majority of the joined complexes undergo stabilizing
changes to form final strand transfer complexes (STC). "Strand transfer" encompasses reaction
steps between the CDC and STC, and the branched DNA structure stabilized within the STC is
known as "strand transfer product" (STP). B) Cartoon of a strand transfer complex formed with a
mixture of WT MuA and catalytically inactive MuA (DE/NQ). C) Agarose gel of plasmid
recombination products. Reactions contained WT MuA or a mixture of MuA and MuA DE/NQ.
Over long time courses (6 hours), the MuA reactions form double-end joined products (DEJP)
(lanes 4-5.) During the same incubation period, mixed reactions form single-end joined product
(SEJP) when complexes assemble with one WT MuA catalytic monomer and one MuA(DE/NQ)
catalytic monomer (lanes 7-10). These reactions also yield a series of target-only products (T*)
that migrate between To and Do. Reactions were stopped at times indicated in 0.2 x vol STOP
solution. Dc: supercoiled donor, Tc: supercoiled target, Do: nicked donor, To: nicked target.
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As observed previously, transpososomes comprised of only MuA efficiently

generated products that have both ends of the Mu donor plasmid (donor DNA)joined to

the target DNA (DEJP) (Fig. Ic, lanes 3-5). In contrast, transpososomes carrying a

mixture of MuA and MuADEF NQ (mixed complexes) generated substantial amounts of the

single-endjoined product (SEJP), as well as cleaved donor DNA (Do) (Fig. Ic, lanes 7-

10) (Baker et al. 1994). Reactions with mixed complexes also generated a family of novel

products, apparently absent from reactions carrying only MuA. We will refer to these

products as T* (Figure Ic). The mobility of these T* products, as well as hybridization

results, indicated that they contain only target DNA (see below, Goldhaber-Gordon et al.

2002). They are, however, formed by a process requiring MuA, MuB, Mg2 , and donor

DNA (data not shown). Mixed complexes made with MuA and either MuAD269N or

MuAE392Q also formed the T* products, revealing that the double mutant was not

necessary for their production (data not shown).

To investigate the structure of the T* products, the DNA species generated by

mixed transpososomes were analyzed by native two-dimensional gel electrophoresis

followed by Southern hybridization with probes specific to either the target or the donor

DNA (Fig. 2a and data not shown). The second gel dimension was in the presence of

ethidium bromide and intercalation of this reagent into closed circular DNA molecules

induces positive supercoiling, leading to rapid migration of this DNA through the gel

matrix. By contrast, the conformation of nicked or linear DNA products is not greatly

affected by ethidium bromide and therefore these molecules migrate slowly in the second

dimension compared to their covalently closed counterparts.



Figure 2: Identification of novel products by 2D gel and Southern analysis A)
Southern blot hybridized with radiolabeled target DNA. A photo of the first dimension
gel slice separating the mixed reaction products is positioned horizontally across the top
of the blot to illustrate where the reaction products migrated. Tc: supercoiled target, To:
nicked target, T and Tr: closed, relaxed target, Tintra: intramolecular recombination
product, SEJP: single-endjoined product. B) Model for disintegration from SEJP.
Supercoiled donor and target DNA molecules arejoined to form SEJP. The free 3' OH
group on the end of the target DNA attacks the Mu end, separating the SEJP into closed,
relaxed target and nicked donor DNA.

Hybridization of a target probe revealed that the T* products migrated slowly,

near the position of nicked target DNA, during the first dimension. However, in the

second dimension the majority of these molecules migrated rapidly, in fact slightly more

rapidly than the unreacted, supercoiled target DNA (Fig. 2a). Hybridization with the



donor DNA probe confirmed that these products contained only target DNA sequences

(data not shown). We conclude that the majority of the T* DNA product is relaxed,

covalently closed target DNA (marked Tr). In addition to this relaxed fraction, a portion

of the T* DNA migrated between the nicked target (To) and nicked donor DNA (Do) in

both gel dimensions (marked Tintra). These molecules are the intramolecular transposition

product described by Goldhaber-Gordon et al. (2002), formed when mixed

transpososomes assemble using one Mu DNA end and one "pseudo end" present on the

target DNA.

The analysis presented above reveals that closed but relaxed target DNA is an

abundant product of transposition by complexes containing a mixture of active and

inactive MuA. Other abundant products include nicked donor DNA and the single-end

joined product. Formation of relaxed target DNA suggests that during recombination the

originally supercoiled target DNA is sometimes nicked and then re-closed. Given the

requirements for both MuA and MuB in generating these products, we hypothesized that

disintegration of single-endjoined complexes is likely responsible for generating the

relaxed target (Fig. 2b). Attack of the free 3' hydroxyl of the target DNA on thejunction

between the donor and target portions of the single-endjoined product would lead to

production of both relaxed target and nicked donor DNA.

Transpososomes with onejoined Mu end efficiently reverse strand transfer

To test for disintegration by transpososomes, we needed to establish a direct

relationship between single-endjoined complexes (SEJCs) and the Tr products.

Therefore, we assembled and purified SEJCs and then asked if the DNA from these



complexes could be "chased" into the T, products upon further incubation (Fig. 3a). The

experiment was set up as follows: SEJCs were generated as before using a 1:1 mixture of

MuA:MuADE/NQ, the Mu donor DNA plasmid, the target DNA, and MuB. These

complexes were isolated by native gel electrophoresis from free DNA and protein. The

purified complexes were then reactivated by the addition of Mg2+ to the gel slice, and

incubated at 370C. After different times of incubation, the reaction was stopped, and the

DNA was extracted from the complexes and run on a second gel to observe how the

distribution of DNA products changed over time (Fig. 3b).

Figure 3: Isolated transpososomes chase into reversal products A) Description of the
experimental procedure. B) Denaturing gel of transposition products after second
incubation. In samples 1-3, the entire reaction was incubated at 370 for 10hrs. In samples
4-7, purified complexes were incubated at 37°C in the presence of Mg 2 for the indicated
amount of time. Small amounts of Tc, Dc in lanes 4-7 are due to the method used to
excise complexes from the native gel.



As expected, a major DNA species extracted from the purified SEJC prior to the

second incubation was the SEJP. (Contamination by DEJP, and free donor and target

DNA was also observed.) However, after incubating the isolated SEJC for four hours, all

detectable SEJP disappeared whereas the amount of relaxed target DNA (Tr) and cleaved

donor DNA (Do) in this sample clearly increased. This experiment therefore strongly

supports the hypothesis that the SEJC is the precursor of the relaxed target DNA and

cleaved donor DNA. We conclude that mixed transpososomes that havejoined one Mu

DNA end to the target DNA efficiently catalyze disintegration from this target DNA.

In contrast to the results observed with the mixed complex SEJCs, transpososomes that

contained exclusively wild-type MuA made only the double-end joined complexes

(DEJCs) and these complexes were not affected by the second incubation; little change in

the distribution DNA products was observed. These data indicate that disintegration is

infrequent after both Mu DNA ends have completed DNA strand transfer.

In addition to supporting the reversal ofjoining hypothesis, this chase experiment

also revealed that the isolated SEJCs promote disintegration more completely than do

non-isolated complexes (compare Fig. Ic, lane 10 to Fig. 3b, lane 7). Without isolation,

the SEJP was clearly present even after 7 hours. In contrast, the isolated complexes had

completed reversal in less than 4 hours. Therefore, we looked for factors in the

transposition reaction that influence the partitioning between SEJCs and complexes that

have undergone disintegration.



The MuB activator promotesjoining and antagonizes reversal

Because MuB is a strong stimulator of strand transfer complex formation (Baker

et al. 1991; Naigamwalla and Chaconas 1997; Goldhaber-Gordon et al. 2003), we

considered that it might have a specific role in preventing disintegration. To address this

question, we developed a two-stage assay to monitor MuB's role in the fate of complexes

(Fig. 4a). In the first stage, mixed complexes were incubated in the presence of MuB and

ATP to generate SEJCs. These complexes were then separated from free protein and

nucleotide by gel filtration. Western blotting confirmed that all detectable MuB was

removed from the fractions containing the protein-DNA complexes (data not shown). The

persistence of the SEJCs was then measured (by the amount of SEJP present) as a

function of time during a second incubation, with or without the addition of MuB and

ATP.

When MuB was not added back to the purified complexes, more than half of the

SEJC originally present disappeared after 40 min (Fig. 4b lane 2). By five hours, less than

15% of thesejoined complexes remained (lane 3). Coincident with this disappearance in

the SEJP was the appearance of the relaxed target (Tr), as expected from disintegration.

By contrast, when MuB and ATP were added back to the purified complexes, the SEJP

remained for much longer time periods; after five hours approximately half of the initial

level of this product was still present (lanes 6&7). ATP was required for this effect,

indicating that nucleotide-bound MuB was responsible (lanes 5&7).
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transpososomes that had catalyzed single-end joining in a manner that favors the joined

configuration and thereby antagonizes the disintegration reaction (SEJP persistence); or

(2) MuB could deliver target DNA molecules to free cleaved donor complexes (CDCs)

and thereby promote the continued formation of new joined products (SEJP re-formation,

Fig. 4c).

Inspection of the product distribution from reactions containing MuB suggested

that it was very likely that MuB was promoting re-formation of SEJPs. For example, in

the reactions containing MuB in the second incubation, the supercoiled target DNA

decreased throughout the time course, and new high-molecular weight DNA products

accumulated (Fig. 4b, compare lane 3 to lane 7). Continued transposition requires the

presence of active CDCs among the purified complexes. New CDC formation via

transpososome assembly is prevented under these conditions because the free MuA was

removed by the gel filtration. (Also note that the amount of supercoiled donor DNA (De)

did not change significantly during the second incubation.) Therefore, the most likely

source of active CDCs is the single-end joined complexes that undergo disintegration.

These complexes participate in re-formation of SEJPs.

We then sought to determine if MuB-stimulated re-formation of SEJPs was

sufficient to account for the higher levels of these joined products or if MuB also

influences the persistence of the SEJCs. To distinguish between the MuB-stimulated

persistence and re-formation of SEJPs, we purified SEJCs and added back MuB*ATP

along with a four-fold excess of a second target DNA. Because it is present at a higher

concentration, the second target is more likely to be used by the CDCs and DNA joining

should result in a new type of SEJP, distinguishable by gel electrophoresis since the two



target DNAs are different sizes. Therefore, the probability of re-forming the original type

of SEJP (SEJP-1) was decreased substantially in this experiment, and the presence of

SEJP-1 would largely be a measure of the influence of MuB on the stability/lifetime of

the pre-existing single-endjoined complexes.

In the presence of MuB, ATP, and a second target DNA, the original single-end

joined complexes (SEJC-1) persisted longer than in the absence of MuB (Fig. 4d). Over

four hours of incubation, SEJP-1 only decreased to 55% of its initial levels when both

second target and MuB were added. Although some disintegration takes place over the

time course, we conclude that the prolonged presence of SEJP-1 was due to MuB-

stimulated persistence of SEJC-1s. Addition of the second target also prevented

disappearance of the original supercoiled target DNA, and formation of a second type of

SEJP was observed (SEJP-2) (Figure 4d, inset). These findings lend further support to the

conclusion that SEJCs that undergo disintegration give rise to active CDCs.

Based on this analysis, we conclude that MuB has a substantial influence on the

transpososome even after the first DNAjoining reaction has been completed. MuB serves

both to extend the lifetime of the initialjoined complexes, as well as to promote the

turnover of transpososomes that have completed disintegration.

MuB promotes a cooperative allosteric change in the Mu transpososome

Previous experiments (Baker et al. 1991; Surette and Chaconas 1991; Yamauchi

and Baker 1998; Williams and Baker 2004) together with the analysis presented above

reveal that MuB is a multifaceted activator of MuA and that it is especially important in

driving the recombination reaction forward to the final strand transfer complex. To



understand how MuB functions to control the activity of the transpososome, we sought to

determine if it makes preferential contacts with specific MuA subunits within the

transpososome. The transpososome is a homotetramer of MuA. This tetramer contains

two types of MuA subunits: (1) those bound near the cleavage sites (to the R1 and L1

binding sites), which donate their catalytic domains for the DNA cleavage andjoining

reactions; and (2) those bound to the distal sites (R2 and L2) which do not participate as

directly in the reaction chemistry (see Fig. la).

To test which subunits of the transpososome interact with MuB, we modified a

method developed previously which involves "marking" MuA subunits bound to specific

sites using UV-induced protein-DNA crosslinking (Aldaz et al. 1996; Williams et al.

1999). This crosslinking approach is achieved by using synthetic DNA fragments as the

donor DNA. These fragments carry the first 50 bp from the right end of the Mu DNA,

with 5-lodouracil (IdU) base substitutions at the R1 and R2 sites (Figure 5a). Upon

exposure to UV light, the IdU bases crosslink to the MuA subunits present nearby (at the

R1 and R2 sites). Since our donor DNA fragments contain nicks on either side of the IdU

bases, denaturation of the DNA will yield a 10 base oligonucleotide covalently attached

to a MuA subunit. By radiolabeling the 5' end of the IdU containing oligonucleotide at

eitherthe R1 orthe R2 position, it is possible to distinguish MuA subunits that bind to

one site or the other. Those subunits that bind to the radiolabeled site, upon crosslinking,

will become covalently attached to the radiolabel. MuA subunits bound to the non-

labeled site will still crosslink to the DNA, but as this DNA not radiolabeled, the subunits

will be invisible in subsequent autoradiography steps
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To determine which subunits within the transpososome interact with MuB, we

established conditions in which efficient recombination was highly dependent on the

presence of MuB. As shown in Figure 5b, strong MuB-dependence was observed with

donor fragments in which the transferred strand extended substantially past the cleavage

site (here 28 nucleotides). In contrast, MuB had little effect on the reaction rate or

efficiency when the donor DNA was pre-cleaved (data not shown). Control experiments

confirmed that MuB principally affected a post-cleavage step, rather than complex

assembly or donor DNA cleavage (Goldhaber-Gordon et al. 2003; Williams and Baker

2004; and data not shown).

To decipher whether MuB stimulates transposition by interacting with MuA

subunits bound to the RI and/or R2 positions, we performed in vitro transposition using

the crosslinkable Mu end DNA fragments described above. Transpososomes were

assembled, purified and assayed as follows. The modified Mu end fragments were

incubated with a 2:1 ratio of MuA'6 15 to full-length MuA and allowed to form mixed

complexes. MuA1-615 carries a C-terminal truncation that renders it unable to interact with

MuB, but fully functional in transpososome assembly and catalysis of recombination

(Baker et al. 1991). Target DNA, MuB and ATP were added to these mixed complexes

and recombination was allowed to proceed. The reactions were then UV-irradiated and

those complexes that had successfully recombined with the target DNA were isolated on

a native agarose gel. Because the reaction conditions are such that recombination is

strongly stimulated by MuB (Fig. 5b), this step selects for tetramers that were able to

interact with MuB. Finally, the purified complexes are run on a denaturing

polyacrylamide gel that separates full-length MuA from MuAl-615. The autoradiograph of



the gel reveals the ratio of MuA 1-615 to full-length MuA that were bound to the

radiolabelled site (either R1 or R2) in the purified, active complexes. If MuB is absent

from the reaction, then we would expect to recover radiolabeled MuA from the purified

complexes in approximately the same ratio as the starting conditions (2:1 MuA'-6 15:full-

length MuA). Likewise, if MuB is present in the reaction but does not interact with the

MuA subunits at a given site, we expect to recover a 2:1 ratio of MuA'l-l:full-length

MuA. However, if the MuA subunits at the assayed position do interact with MuB, then

there should be an enrichment of full-length subunits bound to that position in the

purified complexes.

Full-length MuA was enriched at both the R1 and R2 positions in the purified

recombination complexes when MuB was present (Fig. 5d). As a control, reactions were

also performed in the absence of MuB. Although recombination was much less efficient

without MuB, a small amount of product was generated under this condition (Fig. 5c). As

expected, there was little or no enrichment for full-length MuA at either the R1 or R2

position in these purified complexes (Fig. 5d). Thus, we conclude that MuB-contact with

R1- and R2-bound MuA subunits stimulates recombination.

In the experiments shown in Figure 5, samples that contained a 2:1 ratio of

MuAl-61s to full-length MuA recombined at a rate that was -85% that seen in reactions

containing only full-length MuA (Figure 5c). Since only 1.2% of the transpososomes that

assembled with this 2:1 mixture of MuA are expected to contain four full-length MuA

subunits (assuming random assortment during assembly, see Discussion), it is very

unlikely that MuB must interact with all four MuA subunits to stimulate efficient

recombination.



We therefore asked whether MuB must interact with either both R1-bound or both

R2-bound subunits to stimulate transposition. Using the experimentally observed rates of

STP formation in the presence or absence of MuB and basic probability, we were able to

model the expected enrichment of full-length MuA subunits under three possible reaction

scenarios (Fig. 5e). These scenarios were: (1) MuB must interact with both MuA subunits

at a given position (either both R1 subunits or both R2 subunits) to stimulate

recombination. (2) MuB must interact with only one MuA subunit at a given position

(one R1 subunit or one R2 subunit) to stimulate recombination; or (3) MuB is not

required to interact with either subunit at a given position to stimulate recombination. The

points on the graph in Figure 5d indicate the experimentally observed enrichment for full-

length MuA in reactions either with or without MuB at either the R1 or R2 position. In

reactions without MuB, the fraction of full-length MuA recovered from the purified STPs

was 0.37, was approximately the same as that of the initial reaction conditions (e.g 0.33).

When MuB was present, enrichment of full-length MuA was observed at both the R1 and

R2 sites. However, the observed level of enrichment was lower than would be expected if

both subunits at a given position were required to interact with MuB for efficient

recombination. Therefore, these data indicate that MuB can stimulate recombination by

interacting with MuA subunits bound to either the R1 or R2 positions, but MuB need not

interact with both of the subunits at either position to be effective.

That MuB does not need to contact both MuA subunits at either position is

interesting, as >80% of recombination events resulted in successful strand transfer of

both Mu end fragments (data not shown). Taken with previous experiments (Mizuuchi et

al. 1995; Yang et al. 1995; Mariconda et al. 2000), these results support the conclusion



that MuB can interact with the MuA transpososome to stimulate recombination of one

Mu DNA end without interacting with the MuA subunit that directly catalyzes

recombination of that end. Thus, this analysis supports models in which MuB acts to

promote a cooperative allosteric change in the transpososome that favors the

conformation of the complex that promotes DNA joining (see Discussion).

Discussion

Successful transposition requires the sequential processing of multiple DNA sites

bound by a single transposase complex. Whereas DNA cleavage is energetically

favorable, the DNA strand transfer reaction itself is not. Therefore, to drive transposition

toward recombinant products, DNA joining must be coupled to a conformational change

in the transposase-DNA complex that stabilizes the recombined DNA and thus

effectively prevents reversal of DNA joining. By studying reactions catalyzed by

transpososomes that can process only one of the two Mu DNA ends bound within the

complex, we find evidence for a new state of the transpososome, the initial joined

complex (IJC), in which Mu DNA is joined to the target DNA, but the final stabilization

process has not yet occurred (Figure 6a). These complexes efficiently promote

disintegration, to generate relaxed, covalently closed target DNA and active cleaved

donor complexes. Thus, we conclude that STC stabilization is not obligatorily coupled to

DNA joining, but a separable molecular event that normally only occurs after both Mu

DNA ends are successfully joined. Furthermore, our data dramatically illustrate the need

for this final stabilizing conformational change in the transpososome, as we find that the

joined DNA products are not long-lived in its absence.
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Figure 6: Model of How MuB Affects the MuA Tetramer A) Model for progression of
Mu transposition. The IJC is a newly-defined state of the transpososome in which Mu
DNA has been joined to target DNA, but the final stable STC conformation has not yet
been achieved. MuB promotes the "joined" state of the transpososome and antagonizes
disintegration. B) Model of MuB's allosteric effect on the cleavage-favored vs. joining-
favored states of the MuA tetramer. C) Proposed structure of the transpososome based on
Yuan et al (2005). R2 subunits: dark blue and yellow; RI subunits: red and green; Mu
DNA backbone: light blue and orange; target DNA: grey.

Analysis of reactions in which the IJC is well populated also revealed a new role

for the transposase-activator protein MuB. Previously, MuB was known to deliver target

DNA to MuA (Adzuma and Mizuuchi 1988; Naigamwalla and Chaconas 1997), stimulate

DNA strand transfer (Baker et al. 1991 and see below), and protect transpososomes from

premature destabilization by ClpX (Levchenko et al. 1997). We find that MuB also

)0



antagonizes disintegration, thereby prolonging the lifetime of the IJCs. Thus, an attractive

role for MuB in the normal transposition pathway is to inhibit the disintegration of one

Mu DNA end, so as to allow the second Mu end a chance tojoin to the target DNA. Once

joining of both ends is complete, the final stabilizing conformational change in the

transpososome can occur, to form the STC. Once the STC is formed, with both ends

joined, this complex is long-lived even in the absence of MuB.

In this study, disintegration was only convincingly detected with transpososomes

containing one inactive catalytic center due to the presence of a mutant subunit. Several

lines of evidence indicated that the presence of the uncleaved Mu DNA end in one active

site is the principal cause for the propensity of these complexes to catalyze reversal (data

not shown). However, we cannot rule out that the amino acid sequence changes in the

mutant subunit also have a contributing role. These residues are undoubtedly in intimate

contact with the substrate and product DNA molecules, and could therefore participate in

important contacts involved in stabilizing the final STC. Mutations at these residues

could also slow the conformational change needed for the final stabilization reaction, and

thereby increase the lifetime of the IJC.

The retroviral integrases (Chow et al. 1992; Jonsson et al. 1993; Gerton et al.,

1999), as well as several DNA transposases (Polard et al. 1996; Beall and Rio 1998;

Stewart et al. 2002; Au et al., 2004), and the Rag recombinases (Melek and Gellert, 2000)

have been shown to reverse DNA strand transfer. In the majority of these studies, the

transposase/integrase was assembled on a synthetic DNA substrate designed to mimic the

normal DNA product of thisjoining process. As a result of this experimental design, it

has been difficult to determine if the protein assembles on these substrates in the same



way that it would be bound if it hadjust made the new DNAjunction. In fact, in some

cases the products generated by transposase acting on these disintegration substrates

clearly suggest alternative modes of transposase-DNA interaction (P.A. Rice and K

Mizuuchi, personal communication; Au et al., 2004; Melek and Gellert, 2000; Mazumder

et al., 1994). In contrast, we observe that transpososomes that havejust completed DNA

cleavage andjoining of one Mu DNA end clearly also catalyze the disintegration of that

DNA end. This reversal reaction is efficiently observed because, by blocking catalysis on

one DNA end, we "catch" the transpososomes before they undergo the stabilizing events

that normally accompany the final steps of recombination. Another study reports the

reversal of DNAjoining by MuA using transpososomes that had joined both DNA ends

to a target site (Au et al. 2004). In this study the reversal reaction was only observed after

incubating the STCs at high temperature (75 oC). Similar to the conclusions of our study,

these authors deduce that after DNAjoining, the Mu transpososome undergoes an

important stabilizing conformational change that functions to prevent reversal. By

incubating at high temperature, this conformation is destabilized, making reversal a

detectable reaction.

Discovery of the IJC provides new insight into how MuB modifies the activity of

the Mu transpososome. When MuB is present, transpososomes reside for longer times in

the conformation where the donor DNA isjoined to the target site. In contrast, when

MuB is removed from the mixed transpososomes, disintegration is efficient, and goes to

completion. These observations strongly suggest that the transpososomes can exist in two

distinct confirmations: the "cleavage favored" and the 'joining favored" states (Figure

6b). Protein-protein contact between MuB and MuA within the transpososome serves to



tip the balance toward thejoining-favored configuration. We also investigated which

MuA subunits in the homotetrameric transpososome contact MuB for MuB-stimulated

recombination to occur. Our data indicate that MuB interacts with MuA subunits at both

the R1 and the R2 positions. Furthermore, MuB does not need to interact with both

subunits at either position to effectively stimulate recombination of both Mu ends.

Therefore, MuB can stimulate recombination of a particular Mu end without directly

interacting with the MuA subunit that is responsible for catalysis of that end. These data

are in concert with the idea that MuB functions as allosteric activator that promotes a

cooperative change in the MuA tetramer. Previous research has suggested that MuB

allosterically activates MuA (Baker et al. 1991; Williams et al. 1999; Williams and Baker

2004). Thus, we propose a model in which MuB contacts MuA to promote a

conformational change that favors DNAjoining and disfavors disintegration. Though this

conformational change can happen in the absence of MuB, contact of some MuA

subunits by MuB increases the stability of the entire transpososome in the 'joining

favored" configuration, and consequently DNAjoining will both occur and persist.

That MuB can promote an allosteric change in the MuA tetramer by interacting

with subunits at either the R1 or the R2 position is especially interesting given recent

insight into the structure of the transpososome. Structural analysis indicates that the MuA

subunits at the R1 and R2 positions are in different relative orientations, and the two R2

subunits probably do not contact each other (Figure 6c) (Yuan et al. 2005). Therefore, it

is not immediately obvious how an allosteric signal would be transmitted between these

subunits; a likely solution is that the conformational signal is mediated through the R1-

R2 interfaces. Furthermore, the proposed target DNA binding site within the



transpososome (grey cylinder in Figure 6c) is near the C-terminal (MuB-interacting)

domains of the R2 but not the R1 MuA subunits. How, then, do MuB molecules bound to

the target DNA contact the MuA subunits at the R1 position? Must the target DNA wrap

around to contact these subunits? Clearly, more experiments are necessary to understand

the elemental steps involved in delivering the target DNA and promoting conversion to

the '"joining favored" conformation of the transpososome prior the generation of the final

strand transfer complex.

How do other transposases prevent disintegration? Based on limited in vitro

analysis, the intrinsic efficiency of disintegration promoted by different transposase

family members varies widely. For example, the retroviral integrases and Rag

recombinases are rather efficient at disintegration, whereas the TnlO transposase

promotes this reaction only very feebly. It has been argued that efficient disintegration

by the Rag proteins may be stabilizing to the genome, as it will prevent generation of

Rag-induced genomic rearrangements. In contrast, the Tn0O and Mu transposases are

very inefficient at catalyzing disintegration once the final strand transfer product has been

created, thereby driving the reaction toward recombination, transposon movement, and its

associated genome rearrangements. The cost is that the strand transfer complex is very

stable, and requires energy-dependant disassembly by protein-unfolding enzymes to

resolve these structures. However, based on the results presented here, we find it

attractive to consider that recombination pathways promoted by transposase/integrase

family members may have transient intermediate complexes in which disintegration is a

robust reaction; these complexes are well positioned to be regulated by interactions with

cellular or element encoded accessory proteins. Many transposases interact with other



DNA binding proteins, and these interactions are increasingly found to have regulatory

consequences (e.g. Tn7 transposase is regulated by TnsC/D (Stellwagen and Craig,

1997), Ty5 integrase is regulated by Sir4p (Xie et al., 2001), and Ty3 integrase is

regulated by promoter-bound transcription factor TFIIIB (Kirchner et al., 1995)).

Controlling thejoining verses disintegration choice may provide an important additional

checkpoint to ensure the balance between successful transposition and healthy genomic

integrity.
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Materials and Methods

DNA:

ýX174 RFI was purchased from either New England Biolabs or Invitrogen. The

mini-Mu plasmid was pMK586 (Mizuuchi et al. 1991), and was purified by

CsCI/ethidium bromide ultracentrifugation. Oligonucleotides for fragment assays

described were synthesized by Invitrogen and purified by denaturing PAGE.



Proteins:

HU was purified as described by Baker and Luo (1994). Wild-type MuA, MuA

(1-615), MuA(DE/NQ), MuA(E392Q), and MuA(D269N) were purified as in Baker et al.

(1993). MuA and HU were diluted into 25 mM HEPES-KOH (pH 7.6), 300 mM NaCI,

0.1 mM dithiothreitol, and 10% glycerol (Baker et al. 1991).

Wild-type MuB was purified by the method described in Yamauchi and Baker

(1998). MuB dilutions were done in 1 M NaCI, 25 mM HEPES-KOH (pH 7.6), 0.1 mM

EDTA, 20% glycerol, and 1 mM dithiothreitol.

Transposition Assays:

Reversal products were observed following a two-step plasmid transposition

assay. Blocking one end of the transpososome was achieved by a 1:1 ratio of WT

MuA:MuA(DE/NQ) in the assay. The first incubation at 30'C was as described by Baker

et al. (1994). Briefly, reactions included: 25 mM Tris-HCI pH8, 156 mM NaCI, 10 mM

MgCI 2, 1 mM dithiothreitol, 10 ug/mi BSA, 15% glycerol, 2 mM ATP, 10 ug/ml mini-

Mu donor, 10 ug/ml target plasmid (usually ýX174 RFI), 130 nM HU, 130 nM MuB, 26

nM wild-type MuA, and 26 nM MuA(DE/NQ). Addition of 0.02 vol 50% glycerol prior

to a second incubation at 370 C (Goldhaber-Gordon et al. 2002) enhanced the production

of reversal products. Time points were stopped in 0.2 vol STOP solution (2.5% SDS, 50

mM EDTA, 30% glycerol, bromophenol blue). Reaction products were run on a 1.0%

HGT-agarose (Cambrex) gel in 1 X TAB (40 mM Tris-Hcl pH 8.0, 3.6 mM EDTA, 27

mM sodium acetate) at 70V for 2.5 hours. Gels were stained using Vistra Green (1:10000

dilution) and visualized on a Molecular Dynamics fluorimager.



The fragment assay in Figure 5B contained 25 mM Tris-HCI at pH8, 30 mM

dithiothreitol, 2 mM ATP, 100 ug/ml bovine serum albumin, 15% glycerol, 100 mM

NaCI, 0.1% Triton X-100, 10 mM MgCI 2 , 48 nM donor fragment, 30 ug/ml ýX174 RFI,

20 ug/ml MuA, 24 ug/ml MuB. Reactions were incubated at 300, stopped in STOP

solution (see above), and run on a 0.9% HGT-agarose gel. Gels were stained in Vistra

Green (1:10000 dilution) and visualized on a Molecular Dynamics fluorimager.

Fragment assays in Figures 5C and 5D were performed as in 5B, except that the

concentrations of donor fragment, 4X174 RFI, MuA, and MuB were all increased 5 fold.

The crosslinking experiment in Figure 5D was performed as described in Aldaz et al

(1996).

2D Gel Analysis:

To analyze the topologies and sequences of reversal products, two-dimensional

gel electrophoresis was followed by Southern analysis. Products of mixed transposition

reactions (described above) were run on a 0.4% HGT-agarose in 1X TBE (89 mM Tris,

89 mM boric acid, 2 mM EDTA) at 1 V/cm for 24 hours. The gel was stained in 0.3

ug/ml ethidium bromide and lanes of interest were excised over a UV transilluminator.

Gel slices were embedded horizontally across the top of a 1.1% HGT-agarose gel with 5

ug/ml EtBr. The second dimension was run in 1xTBE and 5 ug/ml EtBr with

recirculation of buffer. Products were transferred to a Gene-Screen Plus membrane in 10

X SSC (3 M NaCI, 0.3 M sodium citrate.) Products were visualized by hybridizing blots

with 32P labeled fragments randomly primed off either target or donor plasmid. Blots



were exposed to phosphoimager plates overnight and scanned using a Molecular

Dynamics Phosphoimager.

Chase Experiment:

SEJCs, formed by incubating plasmid transposition reactions at 300C for 2 hours,

were isolated by native gel electrophoresis (0.85% SeaPlaque agarose (Cambrex), 80

ug/ml BSA) in 1X TAB and 1 mM DTT with recirculation of the buffer. Half of the

native gel was stained in 0.3 ug/ml EtBr, and complexes were visualized on a UV-

transilluminator. Unstained complexes were then excised by aligning the two halves of

the gel. Gel slices were submerged in plasmid assay buffer (25 mM Tris-HCI pH8, 156

mM NaCI, 10 mM MgCI2, 1 mM dithiothreitol, 10 ug/ml BSA, 15% glycerol) to a

volume that was 3x their mass and incubated at 370C. Products were extracted from gel

slices at various time points using a Qiagen gel extraction kit. Complexes were denatured

by addition of 0.2 vol SDS buffer and products were run on 0.9% HGT-agarose gel.

SEJC Purification by Gel Filtration:

For purification of complexes by gel filtration, 5x assembly reactions were

prepared (130 nM MuA and DE/NQ, 650 nM MuB, 650 nM HU, 50 ug/ml donor, 50

ug/ml target). Complexes were purified on a 1 mL column of either BioGel A15m beads

(BioRad) or ABT 4% plain agarose beads (Iberagar) (Burton and Baker 2003). Peak

fractions were pooled and incubated at 370C for up to 5 hours with addition of one or

more of the following components: ATP (2 mM), MuB (650 nM or 2.6 uM), pUC19

DNA (90 ug/mi). Samples of reactions were stopped at various intervals with 0.2 vol 5x



STOP buffer. DNA products were analyzed by 1.0% HGT-agarose gel and visualized as

described above. Presence of SEJP was analyzed using ImageQuant.
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Chapter IV

Summary and Future Directions



Transposable elements are a ubiquitous feature of known genomes (Curcio and

Derbyshire, 2003). No doubt, these mobile genetic elements have influenced the

evolution of those species within whose genomes they reside. To comprehend the

dynamics of transposon-host relationships, it is necessary to understand the factors

governing transposition targeting. Mu provides a tractable system for the study of

transposition targeting because it is well characterized and exhibits defined targeting

preferences. Specifically, Mu preferentially transposes into DNA that is far from any

copies of the Mu genome (Adzuma and Mizuuchi, 1988; Maxwell et al., 1987). The

process by which Mu targets transposition to non-Mu DNA, termed target immunity,

involves two Mu-encoded proteins, MuA and MuB. MuA catalyzes transposition,

whereas MuB selects the target DNA and activates MuA-mediated transposition into the

selected DNA. This thesis addresses the biochemical interactions between MuA and MuB

that direct Mu transposon into selected DNA.

The MuB protein serves multiple roles during Mu transposition. MuB selects

target DNA, delivers selected target DNA to MuA, and activates MuA's catalytic activity

(Adzuma and Mizuuchi, 1988; Baker et al., 1991; Chaconas et al., 1985; Coelho et al.,

1982; Surette and Chaconas, 1991; Williams et al., 1999; Yamauchi and Baker, 1998).

MuB is an ATPase, and ATP hydrolysis by MuB is essential for the process of target

selection but not for the process of MuA activation. The role of ATP hydrolysis in target

delivery by MuB, however, remained unclear. To address whether ATP hydrolysis by

MuB is obligatory for target delivery, we created Arc-MuB fusion proteins capable of

selecting target DNA in the absence of ATP. In vitro assays reveal that these MuB fusion

proteins can efficiently deliver intermolecular target DNA, even in the presence of ADP.



Therefore, ATP hydrolysis by MuB is not necessary for target delivery. Additionally, we

mapped the location of transposition events mediated by our MuB fusion proteins. Our

results indicate that the MuB fusion proteins target transposition to DNA between 40-750

base pairs from the Arc operator site to which they are bound. We did not observe any

fusion protein-mediated transposition events directly into the Arc operator site. These

results suggest that MuB targets transposition to a general region of the DNA, rather than

to a specific location near its own binding site. We hypothesize a model in which MuB

delivers target DNA by tethering the target DNA to MuA while simultaneously

stimulating MuA's catalytic activity.

MuA
Tetramer

Right End of

/ Mu DNA

R2 Site

R1 Site

Figure 1: The MuA tetramer. A total of four MuA subunits bind to the two ends of the
Mu genome, with two subunits bound to each end. The two MuA binding sites present on
the right end of the Mu genome are referred to as "R1" and "R2". The R1 binding site is
the site closer to the end of the Mu genome, and the MuA subunit bound at this position
catalyzes the cleavage andjoining reactions necessary for transposition of the Mu left
end.

MuA binds as a tetramer to the ends of the Mu genome, where it catalyses the

cleavage andjoining reactions necessary for transposition (Aldaz et al., 1996; Craigie et



al., 1984; Lavoie et al., 1991; Mizuuchi and Adzuma, 1991; Namgoong and Harshey,

1998; Williams et al., 1999). Though it is well established that MuB stimulates catalysis

by MuA (Baker et al., 1991; Surette and Chaconas, 1991; Williams et al., 1999;

Yamauchi and Baker, 1998), it was unknown which subunits of the MuA tetramer were

activated by MuB. We investigated whether MuB stimulates MuA subunits at the R1, R2,

or R1 and R2 positions (See Figure 1) by performing in vitro transposition assays under

conditions that were highly MuB-dependent. Our assays contained mixtures of wild type

MuA and MuAl -615, a MuA mutant that is catalytically active but unable to interact with

MuB (Baker et al., 1991). Using DNA crosslinking, we were able to distinguish those

MuA subunits bound to the R1 position from those bound to the R2 position. Analysis of

complexes that had successfully undergone transposition revealed that wild type MuA

was enriched at both the R1 and the R2 positions. These results indicate that MuB

contacts MuA subunits at the R1 and R2 positions. Furthermore, the level of wild type

MuA enrichment suggests that MuB need not contact both MuA subunits at either

position to successfully stimulate recombination of both Mu ends. Therefore, MuB can

stimulate MuA-mediated recombination of a particular Mu end without directly

contacting the MuA subunits responsible for catalysis of that end. Our results are in

agreement with the previously suggested role of MuB as an allosteric activator of MuA

(Baker et al., 1991; Williams and Baker, 2004; Williams et al., 1999). In addition,

experiments analyzing the ability of Mu transposition complexes to undergo

disintegration reveal that MuB inhibits the process of disintegration. Thus, we propose a

model in which MuB promotes a conformational change in MuA that favors

recombination.



Taken together, the data presented in this thesis have clarified the mechanisms

underlying two of MuB's activities: activation of MuA and target delivery. We suggest

that MuB activates the MuA tetramer by interacting with both R1 and R2 subunits to

promote an allosteric change in the entire complex. We also argue that target delivery

results from MuB tethering bound DNA close to the MuA tetramer, thereby increasing

the likelihood that this DNA will serve as the target for transposition.

An interesting question that has not been addressed in this thesis is how the MuA-

MuB interactions underlying the stimulation of Mu transposition differ from the MuA-

MuB interactions involved in target selection. As discussed above, MuB interacts with

MuA to activate MuA's catalytic activity. However, interactions between MuB and MuA

also mediate target immunity. As a reminder, target immunity is established by the

following mechanism. MuB accumulates on DNA that is far from any copies of the Mu

genome, thus "selecting" this DNA as a preferred substrate for transposition (Adzuma

and Mizuuchi, 1988). MuA establishes this MuB gradient by stimulating nearby MuB

molecules to hydrolyze ATP and dissociate from the DNA (Greene and Mizuuchi, 2002a;

Greene and Mizuuchi, 2002b; Greene and Mizuuchi, 2002c; Maxwell et al., 1987). Since

MuA binds to the ends of the Mu genome (Craigie et al., 1984), MuB is cleared from

DNA near copies of the Mu genome and accumulates on distant DNA (Adzuma and

Mizuuchi, 1988). Though it is known that MuA-MuB interactions are important for both

stimulation of transposition and for target selection, it is unclear what distinguishes these

two reactions. In other words, what determines whether a given interaction between MuA

and MuB will result in dissociation of MuB from bound DNA, thereby establishing target



immunity, or will result in stimulation of MuA-mediated transposition into the MuB-

bound DNA?

Two possible factors that might determine the outcome of an interaction between

MuA and MuB are the polymeric state of MuB and/or the conformational state of the

MuA tetramer. Perhaps, when MuB monomers interact with MuA, they dissociate from

the DNA, but when MuB polymers interact with MuA, they stimulate transposition. This

is an attractive model since MuB does form polymers along selected DNA (Greene and

Mizuuchi, 2002a). Data also indicate that MuB undergoes a conformational change upon

polymer formation (Greene and Mizuuchi, 2002a; Greene and Mizuuchi, 2002b).

However, it has yet to be clearly demonstrated whether the length and/or conformation of

a MuB polymer directs the outcome of an interaction with MuA. Alternatively, the

conformational state of the MuA tetramer might dictate how MuA interacts with MuB. It

is possible that only MuA tetramers in a particular state stimulate MuB to hydrolyze ATP

and dissociate from the DNA. This hypothesis could be addressed by assaying the ability

of MuA tetramers that are stalled at various points along the transposition pathway to

support target immunity. The experimental design of such assays will be described

below.

As a reminder, the MuA tetramer, or transpososome, exists in several states

throughout the process of Mu transposition (Figure 2). First, four MuA monomers bind to

the ends of the Mu genome, forming the stable synaptic complex (SSC or type 0

complex) (Mizuuchi et al., 1992). MuA then nicks the DNA at thejunction between the

Mu genome and the flanking donor DNA, creating the cleaved donor complex (CDC or

type 1 complex) (Craigie and Mizuuchi, 1987; Lavoie et al., 1991; Surette et al., 1987b).



MuA subsequently catalyzes a reaction in which the nicked Mu ends attack the target

DNA, generating a branched DNA structure (Mizuuchi, 1984; Mizuuchi and Adzuma,

1991). Based on our data, the transpososome forms an initial joined complex (IJC)

immediately following target joining (See chapter 2). This complex matures into the

strand transfer complex (STC or type 2 complex) that is unable to undergo reversal (See

chapter 2; Mizuuchi et al., 1991). Finally, the transpososome is remodeled by ClpX to

create the strand transfer complex II (STC II) (Burton et al., 2001; Kruklitis et al., 1996;

Levchenko et al., 1995).

Figure 2: States of the MuA tetramer during the transposition reaction. Assembly
of the MuA tetramer onto the Mu DNA ends forms the stable synaptic complex.
Cleavage of the Mu ends by MuA yields the cleaved donor complex. MuA-catalyzed
joining of the Mu ends to the target DNA results in the initial joined complex that
undergoes a conformational change to become the strand transfer complex I. This
complex is remodeled by ClpX creating the strand transfer complex II.

To test at which stage(s) during Mu transposition the MuA tetramer establishes

target immunity, one could create transpososomes in vitro that are stalled at various

points along the transposition pathway. Transpososomes can be captured in the stable

synaptic complex by using MuA mutants that are defective in catalysis (Baker and Luo,

SSC CDC IJC STC I STC II
(Stable Synaptic (Cleaved Donor (Initial Joined (Strand Transfer (Strand Transfer

Complex) Complex) Complex) Complex I) Complex II)

Mu Remodeled
DNA MuA

OH ClpX Tetramer

Tetramer

Donor Target
DNA DNA

DNA



1994). Alternately, transpososomes can be stalled at the cleaved donor complex by

assembling MuA active site mutants onto pre-cleaved Mu DNA. Transpososomes that

have undergone both DNA cleavage and joining will remain as stable synaptic complexes

in the absence of ClpX (Surette et al., 1987a), and remodeling of SSC I complexes by

ClpX will result in stable SSC II complexes. Once created, the stalled complexes could

be purified from free protein and DNA using gel filtration.

To investigate the influence of transpososome state on target immunity, each of

the stalled complexes would be tested as potential targets in in vitro transposition assays

containing MuA and MuB. Those complexes that effectively mediate target immunity

should be poor targets for transposition. Conversely, those complexes that fail to establish

target immunity should prove favorable targets. These experiments would offer insight

into how the state of the MuA tetramer affects the MuA-MuB interactions responsible for

target immunity. Perhaps, the results would elucidate factors that differentiate MuA-MuB

interactions involved in target selection from those involved in stimulation of

transposition.

This thesis has investigated the protein-protein interactions involved in Mu

transposition. Specifically, the work analyses the nature of the interactions between two

Mu-encoded proteins, MuA and MuB, during the processes of target delivery and

recombination. These results contribute to a general body of knowledge concerning the

molecular mechanisms underlying transposition targeting. It is our hope that the study of

transposition targeting will uncover the factors influencing transposon-host relationships

and will elucidate the roles of transposable elements in shaping modern genomes.
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