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Abstract

Chapter 1 describes the development of an asymmetric nucleophile-catalyzed
[2+2] cycloaddition of ketenes with aldehydes. This is the first report of a catalytic
enantioselective synthesis of trisubstituted 13-lactones.

Two enantioselective phosphine-catalyzed [3+2] cycloadditions of allenoates are
detailed in Chapter 2. A method for the asymmetric synthesis of cyclopentenes via a
[3+2] cycloaddition of allenoates with enones is first discussed. This is followed by a
report of our efforts to extend this [3+2] methodology to imine electrophiles.

We conclude, in Chapter 3, with an account of the development of a novel
phosphine-catalyzed synthesis of bicyclo[3.3.0]octanones and bicyclo[4.3.0]nonanones.
Preliminary results for an enantioselective variant of this method are also disclosed.

Thesis Supervisor: Professor Gregory C. Fu
Title: Professor of Chemistry



Acknowledgments

My time at M. I. T. has presented me with numerous challenges, not all of which
have been related to frustrations in the laboratory. Fortunately, I have been surrounded
by supportive co-workers, friends, and family to get me through the past five years.

First I'd like to thank Greg for the opportunity and means to explore interesting
chemistry, for editing this thesis front to back, and for helping me obtain my future
position at Princeton. I'd also like to thank Prof. Danheiser for the feedback and
encouragment he provided me with during our yearly meetings.

Linda, without your instruction during my time at Merck, this journey I've just
completed would have been much longer. Your patience and guidance will always be
remembered. I wouldn't be half the chemist I am today without your mentoring.

Jeff Simpson, Bob Kennedy, and Dave Bray, your assistance has been invaluable.
I appreciate both your help in the lab and your willingness to listen.

I have been particularly blessed with a wonderful rotating cast of bench mates.
Steve, Wade, Matthias, Enda, Thomas, Jan, and Zhe, I couldn't ask for better companions
to work side by side with. Other Fu group members who have influenced me along the
way include Michael, Luke, Ivory, Liu, Ara, Ryo, Wayne, Fran, Christian, Ryan, and
Sheryl. To those of you mentioned above and the rest of the Fu group past and present, I
wish you all the best in your future endeavors, chemical and otherwise.

Tim, Joe, and Elaine, your loyal friends and I hope that we can maintain our
relationships for many years to come. I'm sorry your not here with me now to celebrate
this moment but your in my thoughts and I'm proud to have been your classmate.

Sean, you too, have been a loyal friend to me, even when I'm at my worst (which
is often). I sincerely appreciate your encouragement and friendship over the last 2 years.
My thoughts will certainly be with you as I depart. You will make it, you have a strong
will, much stronger than my own, and it will undoubtely serve you well in the remainder
of your time here and beyond.

My family has given me unwaivering support over the course of my time here,
and throughout my entire life. Mom and Dad, I love you. Dave, you've been a good
brother to me. I hope that you can learn from my mistakes, that way they will be worth
something.

To my new family, Martin, Rona, and Matt; I am grateful to you for accepting me
whole-heartedly into your family. Your encouragement, advice, and friendship has been
instrumental in the completion of this program.

I am indebted to all of you, and I hope that throughout the course of my life I will
be able to repay this debt. However, there is one person to whom I will never be able to
acknowledge or thank enough and that is my wife, Kate. You have seen me at my lowest
many times over the past five years, but you have only thought of my best. Every day of
this journey you have held my hand and let me know that you will stand by me whether I
fail or succeed. This degree and all of my acheivements would not have been possible
without your support. I love you and I am forever indebted to you.



Table of Contents

Chapter 1. Asymmetric Synthesis of Highly Substituted P-Lactones via Nucleophile-
Catalyzed [2+2] Cycloadditions of Disubstituted Ketenes with Aldehydes

A. Introduction 9-17
B. Results and Discussion 17-22
C. Conclusions 22
D. Experimental 22-39
E. References and Notes 40-41
F. 1H NMR Spectra of Selected Compounds 42-55

Chapter 2. Enantioselective Phosphine-Catalzed [3+2] Cycloadditions of Allenoates

Section 2.1. Enantioselective Phosphine-Catalyzed [3+2] Cycloadditions of Allenes
with Enones

A. Introduction 58-61
B. Results and Discussion 61-69
C. Conclusions 69
D. Experimental 70-98
E. References and Notes 99-100
F. 1H NMR Spectra of Selected Compounds 101-132

Section 2.2. Synthesis of Pyrrolines via Phosphine-Catalyzed Asymmetric [3+2]
Cycloadditions of Allenes with Imines

A. Introduction 134-137
B. Results and Discussion 137-141
C. Conclusions 141
D. Experimental 141-170
E. References and Notes 171-172
F. 1H NMR of Selected Compounds 173-208

Chapter 3. Phosphine-Catalyzed Synthesis of Bicylo[3.3.0]octanones and
Bicyclo[4.3.0]nonanones from Ynone-Enoates

A. Introduction 210-214
B. Results and Discussion 214-222
C. Conclusions 222
D. Experimental 222-268
E. References and Notes 269
F. 1H NMR of Selected Compounds 270-301

Curriculum Vitae 302



Appendix A. X-ray Crystal Structure Data 303-345



Preface

Parts of this thesis have been adapted from the following articles written and co-
written by the author. The following articles were reproduced in part with permission
from Wiley Interscience:

"Asymmetric Synthesis of Highly Substituted P-Lactones by Nucleophile-Catalyzed
[2+2] Cycloadditions of Disubstituted Ketenes with Aldehydes"
Wilson, J. E.; Fu, G. C. Angew. Chem. Int. Ed. 2004, 43, 6358.

"Synthesis of Functionalized Cyclopentenes through Catalytic Asymmetric [3+2]
Cycloadditions of Allenes with Enones"
Wilson, J. E.; Fu, G. C. Angew. Chem. Int. Ed. 2006, 45, 1426.



Chapter 1

Asymmetric Synthesis of Highly Substituted p-Lactones via
Nucleophile-Catalyzed [2+2] Cycloadditions of Disubstituted Ketenes

with Aldehydes



A. Introduction

P-Lactones have garnered significant attention because of their diverse biological

activity and vast potential as synthetic intermediates.1 Compounds containing a

p-lactone subunit have been shown to be effective as protesome inhibitors, as antitumor

agents, and as antibacterials.2-7 Roche's over-the-counter antiobesity drug, Xenical

(Tetrahydrolipstatin), contains a p-lactone substructure.8

Scheme 1.1. Structures of P-Lactones Possessing Interesting Biological Activity.
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In addition to their intriguing biological activity, P-lactones are valuable synthetic

intermediates. 9 The strain, inherent in the four membered ring, provides these lactones

with interesting electrophilic properties. The heterocycle may be opened at either the

carbonyl carbon, through an addition elimination sequence, or at the 4-position,

depending on the nature of the nucleophile and reaction conditions. Nucleophiles such as



amines and hydroxide react with p-lactones through an addition/elimination mechanism

to provide P-hydroxy amides and P-hydroxy acids, respectively. A two-step procedure,

consisting of ring opening by an alkoxyamine and a Mitsunobu reaction, allows for the

synthesis of a variety of P-lactam derivatives.'0 On the other hand, organocopper

compounds, azides, and thiols add at the C-4 position, providing access to a wide variety

of highly substituted carboxylic acid derivatives." Moreover, decarboxylation provides a

convenient and stereospecific route to highly substituted olefins.12

Scheme 1.2. Some Useful Transformations of P-Lactones.
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P-Lactones have been used extensively in the synthesis of natural products. Four

recent examples are outlined below (Schemes 1.3, 1.4, 1.5, and 1.6).
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Nelson's enantioselective synthesis of laulimalide employs a number of

enantioenriched P-lactone intermediates that are derived from cycloadditions of ketene

with various aldehydes. Four of the nine stereocenters contained within the structure of

laulimalide originate from P-lactone starting materials. 13

Scheme 1.3. Nelson's P-Lactone Strategy for the Synthesis of Laulamalide.
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Romo's synthesis of Brefeldin A employs a p-lactone as a substrate for an

intramolecular Lewis Acid mediated SN2 ring opening reaction with a pendant allyl

silane. This novel reaction allows for the synthesis of the densely functionalized

cyclopentanol core of brefeldin A.14

Scheme 1.4. Romo's P-Lactone Strategy for the Synthesis of Brefeldin A.
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A second application of p-lactone SN2 ring opening is illustrated in Romo's

expeditious synthesis of a Merck CCR5 antagonist intermediate. Here, a copper-



catalyzed SN2 addition of a Grignard reagent is employed for the formation of the desired

cyclopentanone intermediate.1 5

Scheme 1.5. Romo's P-Lactone Ring Opening Strategy for the Synthesis of a Merck

anti-HIV Intermediate.

0=Kii<OH 0?)cZE
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Merck Intermediate
for an anti-HIV CCR5 antagonist

Gin's utilization of a p-lactone intermediate in his synthesis of

Deoxyharringtonine allowed for the facile installation of the alkaloid's acyl sidechain.

Although numerous approaches to Cephalotaxine have been reported, introduction of the

sterically encumbered acyl side, which is necessary for biological activity, has remained a

challenge. The success of Gin's coupling of Cephalotaxine with the lactone-acid may be

attributed to the small size of the p-lactone intermediate relative to the ring-opened form

of the compound.16

Scheme 1.6. Gin's Use of a f-Lactone Intermediate in the Synthesis of

Deoxyharringtonine.
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Due to their significance both as synthetic intermediates and as pharmaceuticals,

the development of methods for the synthesis of p-lactones is an important objective.

Consequently, considerable effort has been devoted to the development of efficient

methods for their synthesis. These strategies include lactonization of P-hydroxy acids,

aldol / lactonization sequences, epoxide carbonylation, and [2+2] cycloadditions of

ketenes and aldehydes (Scheme 1.7).17

Scheme 1.7. Common Synthetic Approaches to P-lactones.
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H H R

Catalytic asymmetric [2+2] cycloaddition reactions have proven to be the most

effective and general methods for the synthesis of enantioenriched P-lactones.

Wynberg's pioneering work on cinchona alkaloid-catalyzed [2+2] cycloadditions of

ketene with electron deficient aldehydes (eq 1.1) laid the foundations for the development

of a series of highly efficient and selective nucleophile-catalyzed cycloadditions. 18 These

include Romo's modified version of Wynberg's reaction (eq 1.2)19, Romo's bicyclic P-

lactone synthesis by an intramolecular [2+2] cycloaddition (eq 1.3)20, and Nelson's [2+2]

cycloaddition of acid chlorides and aldehydes (eq 1.4).21



j RI0 R2 1-2% quinidine

H H CI CI toluene, -25 OC
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R ' = H, Me
R2 = 10 alkyl, 20 alkyl, 30 alkyl, aryl

0 R2
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68-95% yield

0

CI CI
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92% ee
54% yield
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76-96% de

68-85% yield

(1.1)

(1.2)

TMSQ; R = SiMe3
(1.3) Quinidine; R = H

Ac-quindine; R = Ac

(1.4)

Ketene / aldehdye [2+2] cycloadditions are also catalyzed by Lewis acids. Evans

has shown that copper-bisoxazoline complexes catalyze the cycloaddition of

trimethlsilylketene with a variety of aldehydes that contain a second coordinating group

(eq 1.5).22 Moreover, Nelson has demonstrated aluminum-triamine complexes to be

competent catalysts for the [2+2] cycloaddition of acid bromides with a wide range of

aldehydes (eq 1.6).23 Most recently, Peters has shown that aluminum diamine complexes

are effective catalysts for this transformation (eq 1.7).24

0

Me CIl
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Figure 1.1. Structure of Planar-Chiral Nucleophilic Catalysts.

MeN.NMe
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Over the last decade our group has developed a family of planar-chiral DMAP

and PPY derivatives that are excellent catalysts for a range of asymmetric processes

(Figure 1.1).25 In particular, we have found these compounds to be effective catalysts for

processes involving disubstituted ketenes. 26 Previously, our group has demonstrated that

(-)-1.1 and (-)-1.3 catalyze the [2+2] cycloaddition of ketenes with imines with high

levels of enantioselectivity and diastereoselectivity (eq 1.8 and eq 1.9).27 Quinidine

derivatives have also been shown to be effective catalysts for this process (eq 1.10).28

0 A2
R1  R2

O
R' Ra

RI R2

(eq 1.5)

(eq 1.6)

(eq 1.7)
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It is generally believed that nucleophile-catalyzed cycloadditions of ketenes with

aldehydes occur by the mechanism outlined in Scheme 1.8. Addition of the nucleophilic

catalyst to the ketene provides a zwitterionic enolate, which adds to the aldehyde to yield

an aldolate intermediate. An addition / elimination sequence ejects the nucleophile to

complete the catalytic cycle. An analogous pathway is thought to be operable for the

related nucleophile-catalyzed [2+2] cycloadditions of ketenes with imines.

Scheme 1.8. Proposed Mechanism for Nucleophile-Catalyzed [2+2] Cycloadditions of

Ketenes with Imines.
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Encouraged by our previous success in the area of nucleophile catalyzed

cycloadditions of ketenes with imines, we began our investigation of the [2+2]

cycloaddition of disubstituted ketenes with aldehydes. At the outset of our work, no

examples of nucleophile catalyzed [2+2] cycloadditions of disubstituted ketenes with

aldehydes had been reported.

B. Results and Discussion.

We began our studies by examining the [2+2] cycloaddition of diethylketene with

benzaldehyde. Interestingly, we found the reaction to have a strong dependence on

temperature. At low temperatures, the reaction is highly efficient and selective, but

higher temperatures lead to significantly lower yields (Table 1.1).

Table 1.1. Temperature Effects on the Nucleophile-Catalyzed [2+2] Cycloaddition of

Diethylketene and Benzaldehyde.

Et Et
Et Et

0

H Ph

10 mol% (-)-1.1

THF, T (oC)

O

Et
Et Ph

entry temperature (OC) ee (%) yield (%)

1 -78 91 92

2 -70 89 98

3 -60 88 65

4 -50 88 40

5 -40 n.d. -30

6 -20 n.d. <5

7 0 n.d. <5

Other planar-chiral DMAP and PPY derivatives are effective for this

cycloaddition. Interestingly, we observe the opposite stereoselectivity when the



cyclopentadienyl ligand is changed from Cp* to CsPh5 ((-)-1.1 to (-)-1.2, Table 1.2,

entries 1 and 4). Furthermore, the catalyst loading can be reduced to 5 mol% with little

effect on yield or ee, but lower loadings result in decreased efficiency (Table 1.2, entries

2 and 3). Cosolvents have little effect on the outcome of the process (Table 1.2, entries 6

and 7).29

Table 1.2. Catalyst and Solvent Optimization for the Nucleophile-Catalyzed [2+2]

Cycloaddition of Diethylketene with Benzaldehyde.

O catalyst 0

Et Et H Ph solvent, -78 OC Et E Ph

entry catalyst solvent ee (%) yield (%)

1 8% (-)-1.1 THF 89 98

2 4% (-)-1.1 THF 90 98

3 1% (-)-1.1 THF n.d. n.d.

4 8% (-)-1.2 THF -90a  30

5 8% (-)-1.3 THF 90 96

6 5% (-)-1.1 1:1 THF:toluene 87 87

7 5% (-)-1.1 1:1 THF:CH2CI 2  91 95

a A negative value indicates that the opposite enantiomer from that shown in
the equation was produced in excess.

Comparison of our reaction conditions to preexisting methodology for

enantioselective P3-lactone synthesis proved that our system is uniquely effective for

[2+2] cycloadditions of disubstituted ketenes with aldehydes. Both Wynberg's and

Nelson's conditions are unsuccessful for cycloadditions with this type of ketene (Table

1.3).



Table 1.3. Direct Comparison of Cinchona Alkaloid Based Catalyst Systems to

(-)-PPY* in the Nucleophile-Catalyzed Enantioselective [2+2] Cycloaddition of

Diethylketene and Benzaldehyde.

0 0 catalyst

Et Et H Ph conditions Et Ph

Entry Catalyst Conditions ee (%) yield (%)

1 10 mol% O-TMS-quini- THF:CH2C12 (1:1), n.d. <5
dine, 2 equiv. LiC10 4  -78 OC

2a  10 mol% O-TMS-quini- THF:CH2C12 (1:1), 1 21
dine, 2 equiv. LiC10 4  -78 oC to r.t.

3 5 mol% quinidine THF:toluene (1:1), n.d. <5
-78 OC to r.t.

4 5 mol% (-)-1.1 THF:toluene (1:1), 89 91
-78 0 C

All data are the average of two runs. aBecause the product could not be separated
from a side product, the lactone was reduced to a 1,3-diol with DIBAL-H to
determine both the yield and ee.

With an effective set of reaction conditions in hand, the substrate scope of our

system was investigated. Both electron-rich and electron-deficient aromatic aldehydes

are suitable reaction partners (Table 1.4, Entries 1-5). Moreover, the ketene component

can be changed to dimethylketene or hexamethyleneketene with little effect on the

enantioselectivity or yield of the process (Table 1.4, Entries 6 and 7). Most interestingly,

we are able to employ unsymmetrical ketenes, which yield 1-lactones containing two

adjacent stereocenters, one tertiary and one quaternary (Table 1.4, Entries 8 and 9).

These cycloadditions provide the cis-trisubstituted lactone with good levels of

enantioselectivity and diastereoselectivity.

We have breifly investigated cycloadditions of aliphatic aldehydes but these

experiments have been unsuccessful up to this point. This is most likely due to the

acidity of these compounds. Moreover, cycloadditions with cinnamaldehyde and

p-methoxybenzaldehyde resulted in low yields.



Table 1.4. Scope of Nucleophile-Catalyzed Enantioselective [2+2] Cycloaddition of

Ketenes with Aldehydes.

0 0O 5% (-)-1.1 O

H K R 3  
R1

R1" R2 -78 OC, THF R2 R

entry RI R2  R3  ee (%)a yielda

1 Et Et Ph 91 92

2 Et Et 1-naphthyl 89 77

3 Et Et p-CF3C6H4  80 74

4 Et Et p-MeCOC 6H4  81 76

5 Et Et p-MeC6H4  89 67

6b, c Me Me Ph 76 68

7 (CH 2)6  Ph 82 71

8d  i-Pr Me Ph 91 48

9d  Me Ph 88 53

a Average of two runs. b The product was reduced to the diol for analysis.
c 7% (-)-PPY* was used. d. d.r. = 4.2:1 to 4.6:1.

We have developed a model to explain the observed stereochemical outcome of

these cycloadditions. Two possible transition states, A and B, which result from

nucleophile-addition to the face of the ketene with the smaller substituent, are shown

which could explain the observed cis-selectivity of the process (Scheme 1.9). However,

only transition state B, where the zwitterionic enolate is coplanar with the catalyst

framework, accomodates the observed absolute stereochemistry. Although these

transition states, A and B, represent only the two extreme possibities for the structure of

the zwitterionic enolate, a structure closely related to B seems likely.30 However, further

experiments would be necessary to validate the proposed stereochemical model.



Scheme 1.9. Possible Transition State Ensembles for the PPY*-Catalyzed [2+2]

Cycloaddition.

A

Ph Rs

X _ o-RL
0

Wrong Enantiomer.

Ph
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B
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Re PO
RL o

Correct Enantiomer.

We have established that the sterically hindered trisubstituted p-lactone products

from our cycloaddition reactions are subject to a number of ring-opening reactions.

Reagents such as DIBAL-H and KOH add to the carbonyl group to deliver the 1,3-diol

and P-hydroxyacid, respectively. On the other hand, NaN 3 reacts by an SN2 mechanism

to furnish a P-azido acid, a precursor to a p-amino acid. These functionalizations proceed

in good yields and with no deterioration of enantiomeric excess.

Scheme 1.9. Ring Opening Reactions of Trisubstituted p-lactones.

DIBAL-H

THF, 0 OC to r.t.

OH OH

•I Ph
Et Et

88% yield
89% ee

0

91-92% ee Et ?q ,
Et Ph

KOH

THF / H20, 60 OC

NaN3

DMSO, 60 OC

Interestingly, we employed a kinetic resolution of aryl-alkyl carbinols, previously

developed in our group, to assign the absolute stereochemistry of the trisubstituted

P3-lactones generated from our reaction. Our products can be easily transformed into aryl-

alkyl carbinols, which are excellent substrates for kinetic resolutions catalyzed by

O

OH
HO2C )"'Ph

Et Et

N3
HO2C Ph

Et Et

94% yield
91% ee

85% yield
92% ee



(+)-1.4. 3 1 Because a turnover in stereoselectivity has never been observed for this family

of secondary alcohol resolutions, we believed this method would provide a

straightforward and accurate way to determine the absolute stereochemistry of our P-

lactone products. Reduction of the racemic p-lactone with DIBAL-H and selective TIPS

protection of the 10 alcohol provided the desired kinetic resolution substrates (eq 1.11

and eq 1.12). The resolution was highly selective in both cases examined. We then

reduced and TIPS protected an enantioenriched sample of p-lactone, derived from our

cycloaddition. Comparison by HPLC of this sample to a sample resolved with (+)-1.4

allowed us to determine the absolute stereochemistry of our p-lactone products.

S Me

H Me
racemic

1. DIBAL-H

2. TIPSC1

OH 5 mol%
(+)-DMAP-C

5Ph 5OTIPS
Me Ac2 0

Me

racemic s= 125

OAc

OSi(-Pr)3

Me

OH

• M OSi(-Pr)3

Me
Me

OH

OTIPS
Me

+

OH

NM OTIPS
, Me

5 mol%

(+)-DMAP-C 5Ph 5

Ac20

s= 13

OAc

N e OSi(iPr)3

+

OH

OSi(WPr) 3

CTýMe

C. Conclusions.

A nucleophile-catalyzed enantioselective [2+2] cycloaddition of ketenes with

aromatic aldehydes has been developed. We have shown that this system is uniquely

effective for the enantioselective cycloadditions of disubstituted ketenes with aldehydes.

Finally, we have established that these products undergo a number of interesting ring-

opening reactions.
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D. Experimental

I. General

THF was purified by passing it through a neutral alumina column. Zinc metal

(Strem) was activated with hydrochloric acid. Benzaldehyde (Aldrich),

ptrifluoromethylbenzaldehyde (Aldrich), p-tolualdehyde (Aldrich), and 2-bromo-2-

methylpropanoylbromide (Aldrich) were distilled prior to use. Quinidine (Avocado),

LiC10 4 (Alfa Aesar), 2-napthaldehyde (Aldrich), 4-acetylbenzaldehyde (Aldrich),

DIBALH (1.0 M in THF; Aldrich), sodium azide (Alfa Aesar), DMSO (Aldrich), and

n-propylamine (Aldrich) were used as received. Non-commercially available

a-bromoacid bromides were synthesized according to a literature procedure. 32 Catalysts

1.1, 33 1.3, 34 and O-TMS-quinidine 35 were prepared as previously reported. All ketenes

were prepared by treatement of a-bromoacid bromides with activated Zn0.36, 37 All

reactions were carried out under an atmosphere of nitrogen or argon in oven dried

glassware with magnetic stirring, unless otherwise indicated.

II. Synthesis of Ketenes

0

Me ' Me

Diethylketene. 37 A sonicated slurry of Zno (105 mg, 1.60 mmol) in THF (0.50

mL) in a Schlenk tube was treated with a solution of 2-bromo-2-ethylbutanoylbromide

(128 mg, 0.500 mmol) in THF (0.50 mL). THF (0.25 mL) was used to wash the walls of

the Schlenk tube. The reaction mixture was sonicated for 30 minutes at room

temperature, and then the resulting solution of the ketene was vacuum transferred into a

second Schlenk tube.

To quantify the amount of ketene generated by this procedure, the yellow ketene

solution was quenched with n-propylamine (300 pL, 3.65 mmol). Evaporation of the

solvent and the excess amine furnished a white solid (51.0 mg, 64%), which was

identified by 1H NMR to be 2-ethyl-N-propylbutyramide [551906-54-8].



0

Me lMe

Dimethylketene.3 7 A stirred slurry of Zno (82 mg, 1.25 mmol) in THF (0.50 mL)

in a Schlenk tube at -78 'C was treated with a solution of 2-bromo-2-

methylpropanoylbromide (115 mg, 0.500 mmol) in THF (0.50 mL). THF (0.25 mL) was

used to wash thewalls of the Schlenk tube. The reaction mixture was stirred for 10

minutes at -78 'C and then 20 minutes at 0 oC, and then the resulting solution of the

ketene was vacuum transferred into a second Schlenk tube.

To quantify the amount of ketene generated by this procedure, the yellow ketene

solution was quenched with n-propylamine (300 gL, 3.65 mmol). Evaporation of the

solvent and the excess amine furnished a white solid (63.0 mg, 97%), which was

identified by 'H NMR to be 2-methyl-N-propylpropanamide [108122-11-8].

0

Hexamethyleneketene. 37 A sonicated slurry of Zno (118 mg, 1.80 mmol) in THF

(0.60 mL) in a Schlenk tube was treated with a solution of 1-bromocycloheptanoyl-

bromide (170 mg, 0.600 mmol) in THF (0.60 mL). THF (0.30 mL) was used to wash the

walls of the Schlenk tube. The reaction mixture was sonicated for 30 minutes at 0 OC,

and then the resulting solution of the ketene was vacuum transferred into a second

Schlenk tube.

To quantify the amount of ketene generated by this procedure, the yellow ketene

solution was quenched with n-propylamine (300 gL, 3.65 mmol). Evaporation of the

solvent and the excess amine furnished a white solid (86.7 mg, 79%), which was

identified as N-propylcycloheptanamide.

'H NMR (CDC13, 300 MHz) 6 5.73 (broad, 1H), 3.19-3.12 (m, 2H), 2.23-2.14 (m,

1H), 1.87-1.80 (m, 2H), 1.77-1.68 (m, 2H), 1.65-1.36 (m, 10H), 0.88 (t, J=7.5 Hz, 3H).

13C NMR (CDC13, 75 MHz) 6 177.5, 47.7, 41.1, 31.9, 28.2, 26.8, 23.0, 11.5.

FTIR (NaC1) 3281, 3083, 2927, 2857, 1640, 1558, 1456, 1384, 1235, 1155 cm 1'.

HRMS (ESI, M+H) calc. for ClIH 22NO 184.1696, found 184.1695.



mp = 680 C.

0

Me Me
Me

Isopropyl methyl ketene.37 A sonicated slurry of Zno (105 mg, 1.60 mmol) in

THF (0.50 mL) in a Schlenk tube was treated with a solution of 2-bromo-2,3-

dimethylbutanoylbromide (129 mg, 0.500 mmol) in THF (0.50 mL). THF (0.25 mL) was

used to wash the walls of the Schlenk tube. The reaction mixture was sonicated for 30

minutes at room temperature, and then the resulting solution of the ketene was

vacuum transferred into a second Schlenk tube.

To quantify the amount of ketene generated by this procedure, the yellow ketene

solution was quenched with n-propylamine (500 gL, 6.08 mmol). Evaporation of the

solvent and the excess amine furnished a white solid (48.0 mg, 64%), which was

identified as 2,3-dimethyl-N-propylbutyramide.

'1H NMR (CDCI3, 300 MHz) 8 5.80 (s, 1H), 3.27-3.08 (m, 2H), 1.89-1.73 (m, 2H),

1.49 (m, 2H), 1.07 (d, J=7.0 Hz, 3H), 0.91-0.86 (m, 9H).
13C NMR (CDCl3, 75 MHz) 8 176.5, 48.8, 41.1, 31.5, 23.1, 21.2, 19.7, 15.3, 11.5.

FTIR (NaC1) 3296, 3087, 2874, 1644, 1557, 1461, 1371, 1235, 1157, 1086, 978,

709 cm-1.

HRMS (ESI, M+H) calc. for C9H2oNO 158.1539, found 158.1534.

mp = 500 C.

O

Me

Cyclopentyl methyl ketene.37 A sonicated slurry of Zno (105 mg, 1.60 mmol) in

THF (0.50 mL) in a Schlenk tube was treated with a solution of 2-bromo-2-

cyclopentylpropanoylbromide (142 mg, 0.500 mmol) in THF (0.50 mL). THF (0.25 mL)

was used to wash the walls of the Schlenk tube. The reaction mixture was sonicated for

30 minutes at room temperature, and then the resulting solution of the ketene was



vacuum transferred into a second Schlenk tube.

To quantify the amount of ketene generated by this procedure, the yellow ketene

solution was quenched with n-propylamine (500 pL, 6.08 mmol). Evaporation of the

solvent and the excess amine furnished a white solid (70.0 mg, 76%), which was

identified as 2-cyclopentyl-N-propylpropanamide.

'H NMR (CDC13, 300 MHz) 6 5.83 (s, 1H), 3.27-3.07 (m, 2H), 1.96-1.84 (m, 2H),

1.82-1.65 (m, 2H), 1.61-1.43 (m, 6H), 1.16-1.00 (m, 5H), 0.88 (t, J=7.5 Hz, 3H).
13C NMR (CDCl3, 75 MHz) 8 176.7, 47.7, 44.0, 41.1, 31.4, 30.7, 25.2, 25.1, 23.1,

17.2, 11.5.

FTIR (NaC1) 3291, 1634, 1557, 1455, 1232, 1156, 711 cm1.

HRMS (ESI, M+H) calc. for C11H22NO 184.1696, found 184.1691.

III. Asymmetric Synthesis of P-Lactones via Nucleophile-Catalyzed Cycloadditions

of Disubstituted Ketenes with Aldehydes (Tables 1.1, 1.2, and 1.3)

Table 1.1. The experiments in Table 1.1 were carried out using the procedure

outlined below. See Table 1.4, Entry 1.

Table 1.2. The experiments in Table 1.2 were carried out using the procedure

outlined below with the temperature being controlled by a cryocool cooler. See Table

1.4, Entry 1.

Table 1.3, entry 1. A solution of diethylketene (38 mg, 0.38 mmol), prepared as

described above immediately before use, in THF (1.5 mL) was vacuum transferred to a

Schlenk tube containing a solution of benzaldehyde (20

gL, 0.20 mmol), O-TMS-quinidine (8.0 mg, 0.020 mmol), and LiC10 4 (41 mg, 0.39

mmol) in CH2C12 (1.5 mL) at -78 'C. After 20 h at -78 'C, the reaction mixture was

filtered through a pad of silica gel with copious washings with Et2O. The solvent was

removed, and the product was purified by silica gel chromatography (10% Et20/pentane),

which furnished <2 mg of a mixture of the desired p-lactone and an unidentified side

product.



HPLC analysis: 1% ee [Daicel CHIRALCEL AD-H column; 1.0 mL/min; solvent

system: 10.0% isopropanol in hexanes; retention times: 9.6 min (minor), 12.6 min

(major)].

Second run: Diethylketene (38 mg, 0.38 mmol), benzaldehyde (20 gL, 0.20

mmol), O-TMS-quinidine (8.0 mg, 0.020 mmol), and LiC10 4 (41 mg, 0.39 mmol).

Mixture of the desired p-lactone and the unidentified side product: <2 mg.

(<5%; 0%ee).

Table 1.3, entry 2. A solution of diethylketene (38 mg, 0.38 mmol), prepared as

described above immediately before use, in THF (1.5 mL) was vacuum transferred to a

Schlenk tube containing a solution of benzaldehyde (20 gL, 0.20 mmol), O-TMS-

quinidine (8.0 mg, 0.020 mmol), and LiC10 4 (41 mg, 0.39 mmol) in CH 2C12 (1.5 mL) at -

78 'C. The resulting solution was immediately placed into a 0 oC ice-water bath, which

warmed to room temperature over -2 h. After 20 h at room temperature, the reaction

mixture was filtered through a pad of silica gel with copious washings with Et20. The

solvent was removed, and the product was purified by silica gel chromatography (10%

Et20/pentane), which furnished 15.6 mg of a mixture of the desired p-lactone and an

unidentified side product.

The mixture was treated with a solution of DIBAL-H in THF (1.0 M; 0.5 mL).

After stirring for 6 h at room temperature, the reaction mixture was quenched with NaOH

(1.0 N; 0.6 mL). The aqueous layer was extracted with Et20 (5 x 1 mL), and the

combined extracts were filtered through a short pad of silica gel with Et20 washings.

The solvent was removed, and the 1,3-diol was purified by silica gel chromatography

(10 -40% Et20O/pentane), which furnished 9.0 mg (22%) of the 1,3-diol as a clear oil.

HPLC analysis: 1% ee [Daicel CHIRALCEL AD-H column; 1.0 mL/min; solvent

system: 10.0% isopropanol in hexanes; retention times: 9.6 min (minor), 12.6 min

(major)].

Second run: Diethylketene (38 mg, 0.38 mmol), benzaldehyde (20 jiL, 0.20

mmol), O-TMS-quinidine (8.0 mg, 0.020 mmol), and LiC10 4 (41 mg, 0.39 mmol).

Mixture of the desired p-lactone and the unidentified side product: 15.3 mg; 1,3-diol: 8.1

mg (20%; 0%ee).



Table 1.3, entry 3. A solution of diethylketene (38 mg, 0.38 mmol), prepared as

described above immediately before use, in THF (1.5 mL) was vacuum transferred to a

Schlenk tube containing a solution of benzaldehyde (40 gL, 0.39 mmol) and quinidine

(6.5 mg, 0.020 mmol) in toluene (1.5 mL) at -78 'C. The resulting solution was

immediately placed into a 0 oC ice-water bath, which warmed to room temperature over

-2 h. After 20 h at room temperature, the reaction mixture was filtered through a pad of

silica gel with copious washings with Et20O. The solvent was removed, and the product

was purified by silica gel chromatography (10% Et20/pentane), which furnished 2.0 mg

of p-lactone (<5%).

Second run: Quinidine (6.5 mg, 0.020 mmol), diethylketene (38 mg, 0.38 mmol),

and benzaldehyde (40 tL, 0.39 mmol). <5% yield.

Table 1.3, entry 4. See the procedure in Section IV for Table 1.4, entry 1.

IV. Asymmetric Synthesis of 3-Lactones via (-)-1.1-Catalyzed [2+2] Cycloadditions

of Disubstituted Ketenes with Aldehydes (Table 1.4).

0
Me; I 0

Me

Table 1.4, entry 1. 3,3-Diethyl-4-phenyloxetan-2-one. General Procedure for

Table 1.4. A solution of (+)-1.1 (6.0 mg, 0.016 mmol) in THF (0.40 mL) was added

dropwise over 5 min to a -78 oC solution of diethylketene (38 mg, 0.38 mmol), prepared

as described above immediately before use, and benzaldehyde (32 giL, 0.32 mmol) in

THF (1.5 mL). The reaction mixture was stirred at-78 'C for 5.5 h, and then it was

filtered through a short pad of silica gel with copious washings with Et20. The solvent

was removed, and the product was purified by silica gel chromatography

(10% Et20/pentane), which furnished 61.0 mg (93%) of a clear oil.

HPLC analysis: 89% ee [Daicel CHIRALCEL AD column; 1.0 mL/min; solvent

system: 3.5% isopropanol in hexanes; retention times: 6.4 min (minor), 7.4 min (major)].

Second run: (-)-1.1 (6.0 mg, 0.016 mmol), diethylketene (38 mg, 0.38 mmol), and



benzaldehyde (32 gL, 0.32 mmol). 92% yield, 92% ee.

'H NMR (CDC13, 300 MHz) 6 7.43-7.24 (m, 5H), 5.38 (s, 1H), 1.98 (m, 2H),

1.48-1.36 (m, 1H), 1.31-1.19 (m, 1H), 1.13 (t, J=7.5 Hz, 3H), 0.77 (t, J=7.5 Hz, 3H).

13C NMR (CDC13, 75 MHz) 8 174.3, 135.4, 128.7, 128.5, 125.7, 80.9, 64.5, 24.7,

21.9, 8.7, 7.9.

FTIR (NaC1) 1824, 1454, 1248, 1102, 942 cm 1.

HRMS (ESI, M+Na) calc. for C13H 16NaO2 227.1043, found 227.1046.

[a]216D = +620 (c= 0.19, CH2C12; from reaction with (+)-1.1).

Me,,,

Me H

Table 1.4, entry 2. 3,3-Diethyl-4-(2-naphthyl)oxetan-2-one. The general

procedure was followed: (+)-1.1 (6.0 mg, 0.016 mmol), diethylketene (38 mg, 0.38

mmol), and 2-napthaldehyde (50.0 mg, 0.320 mmol). Reaction time: 5.5 hours. Purified

by silica gel chromatography (toluene), which provided 61.0 mg (75%) of a white solid.

HPLC analysis: 89% ee [Daicel CHIRALCEL AD column; solvent system: 3.5%

isopropanol in hexanes; retention times: 6.8 min (minor), 9.4 min (major)].

Second run: (-)-1.1 (6.0 mg, 0.016 mmol), diethylketene (38 mg, 0.38 mmol), 2-

napthaldehyde (50.0 mg, 0.320 mmol). 80% yield, 89% ee.

[a]216D = -2.90 (c= 0.48, CH2C12).

'1H NMR (CDC13, 300 MHz) 8 7.91-7.84 (m, 4H), 7.56-7.52 (m, 2H), 7.36-7.32

(m, 1H), 5.54 (s, 1H), 2.03 (m, 2H), 1.53-1.40 (m, 1H), 1.34-1.22 (m, 1H), 1.19 (t, J=7.5

Hz, 3H), 0.77(t, J=7.5 Hz, 3H).

13C NMR (CDC13, 75 MHz) 6 174.3, 133.2, 133.2, 132.9, 128.5, 128.2, 128.0,

126.8, 126.6, 125.0, 123.2, 81.0, 64.8, 24.7, 21.9, 8.3, 8.0.

FTIR (NaC1) 1824, 1458, 1247, 1101 cm 1.

HRMS (ESI, M+Na) calc. for C17H18NaO2 277.1199, found 277.1204.

[a]216D = -2.90 (c= 0.48, CH 2C 2; from reaction with (+)-1.1).

mp = 590 C.
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Table 1.4, entry 3. 3,3-Diethyl-4-(4-trifluoromethyl)phenyloxetan-2-one. The

general procedure was followed: (+)-1.1 (6.0 mg, 0.016 mmol), diethylketene (38 mg,
0.38 mmol), and 4-trifluoromethylbenzaldehyde (44 gL, 0.32 mmol). Reaction time: 5.5

hours. Purified by silica gel chromatography (0-20% Et2O/pentane), which

provided 66.6 mg (76%) of a clear oil.

HPLC analysis: 80% ee [Daicel CHIRACEL OJ column; 1.0 mL/min; solvent

system: 3.5% isopropanol in hexanes; retention times: 7.6 min (minor), 10.7 min

(major)].

Second run: (-)-1.1 (6.0 mg, 0.016 mmol), diethylketene (38 mg, 0.38 mmol), and

4-trifluoromethylbenzaldehyde (44 gL, 0.32 mmol). 72% yield, 79% ee.

1H NMR (CDC13, 300 MHz) 6 7.67 (d, J=8.0 Hz, 2H), 7.41 (d, J=8.0 Hz, 2H),
5.41 (s, 1H), 2.08-1.90 (m, 2H), 1.43-1.31 (m, 1H), 1.28-1.17 (m, 1H), 1.13 (t, J=7.5 Hz,
3H), 0.78 (t, J=7.5 Hz, 3H).

13C NMR (CDC13, 75 MHz) 68 173.5, 139.6, 130.7(q), 126.0(d), 125.8(d),

125.7(d), 80.0, 65.2, 24.6, 22.1, 8.8, 8.0.

FTIR (NaCl) 1831, 1622, 1461, 1418, 1326, 1127, 1068, 943, 899 cm1 .

HRMS (ESI, M+Na) calc. for C14H15F3NaO2 295.0916, found

295.0926. [a] 21.7D = +310 (c=0.65, CH 2Cl2; from reaction with (+)-1.1).

Me o0
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Table 1.4, entry 4. 3,3-Diethyl-4-(4-acetyl)phenyloxetan-2-one. The general

procedure was followed: (+)-1.1 (6.0 mg, 0.016 mmol), diethylketene (38 mg, 0.38

mmol),and 4-acetylbenzaldehyde (47 mg, 0.32 mmol). Reaction time: 5.5 hours. Purified

bysilica gel chromatography (5-10% acetone/pentane), which provided 59.3 mg (75%)of

a clear oil.

HPLC analysis: 82% ee [Daicel CHIRACEL AD column; 1.0 mL/min; solvent



system: 3.5% isopropanol in hexanes; retention times: 14.3 min (minor), 18.9 min

(major)].

Second run: (-)-1.1 (6.0 mg, 0.016 mmol), diethylketene (38 mg, 0.38 mmol), and

4-acetylbenzaldehyde (47 mg, 0.32 mmol). 77% yield, 80% ee.

1H NMR (CDC13, 300 MHz) 6 7.99 (d, J= 8.5 Hz, 2H), 7.38 (d, J=8.5 Hz, 2H),

5.40 (s, 1H), 2.61 (s, 3H), 1.97 (dq, J=2.0 Hz, J=7.5 Hz, 2H), 1.26 (m, 2H), 1.11 (t, J=7.5

Hz, 3H), 0.75 (t, J=7.5 Hz, 3H).
13C NMR (CDC13, 75 MHz) 6 197.6, 173.6, 140.7, 137.1, 128.7, 125.9, 80.2, 65.2,

26.8, 24.6, 22.0, 8.8, 8.0.

FTIR (NaCl) 1825, 1684, 1610, 1459, 1412, 1360, 1267, 1099 cm-1'.

HRMS (ESI, M+Na) calc. for C15H18NaO3 269.1148, found 269.1140.

[a]21.5D = +360 (c=0.34, CH 2C12; from reaction with (+)-1.1).

Me, 0

Me H

Table 1.4, entry 5. 3,3-Diethyl-4-(4-methyl)phenyloxetan-2-one. The general

procedure was followed: (-)-1.1 (6.0 mg, 0.016 mmol), diethylketene (38 mg, 0.38

mmol), and p-tolualdehyde (38 pL, 0.32 mmol). Reaction time: 24 hours. Purified by

silica gel chromatography (10% Et20O/pentane; the remaining aldehyde was removed

under vacuum), which provided 48.1 mg (69%) of a clear oil. The f3-lactone was reduced

to the diol with DIBAL-H for HPLC analysis (for the procedure, see Part IV).

HPLC analysis (1,3-diol): 89% ee [Daicel CHIRACEL AD-H column; 1.0

mL/min; solvent system: 10% isopropanol in hexanes; retention times: 6.5 min (major),

8.9 min (minor)].

Second run: (+)-1.1 (6.0 mg, 0.016 mmol), diethylketene (38 mg, 0.38 mmol),

andp-tolualdehyde (38 pL, 0.32 mmol). 64% yield, 88% ee.

'H NMR (CDCl 3, 300 MHz) 8 7.23-7.16 (m, 4H), 5.34 (s, 1H), 2.38 (s, 3H), 1.96

(q, J=7.5 Hz, 2H), 1.50-1.37 (m, 1H), 1.31-1.18 (m, 1H), 1.11 (t, J=7.5 Hz, 3H), 0.76 (t,

J= 7.5 Hz,3H).

13C NMR (CDC13, 75 MHz) 6 174.5, 138.4, 132.4, 129.4, 125.7, 81.1, 64.4, 24.7,



21.9, 21.4, 8.5, 8.0.

FTIR (NaC1) 1825, 1459, 1101, 943, 890 cm-'.

HRMS (ESI, M+Na) calc. for C14H18NaO 2 241.1199, found 241.1199.

[a21.7D = -280 (c=0.49, CH2C12; from reaction with (-)-1.1).

Me /
MeH

Table 1.4, entry 6. 3,3-Dimethyl-4-phenyloxetan-2-one. [52178-66-2] A

solution of (-)-1.1 (12.5 mg, 0.034 mmol) in THF (0.6 mL) was added dropwise over 8

min to a -78 'C solution of dimethylketene (33 mg, 0.48 mmol) and benzaldehyde (58

gL, 0.57 mmol) in THF (1.75 mL). The reaction mixture was stirred at -78 OC for 22 h,

and then it was filtered through a short pad of silica gel with copious washings with Et20.

The filtrate was immediately treated with LAH (4.8 mmol; 1.0 M in THF), and the

resulting mixture was stirred for 1 h at room temperature. The solution was then

quenched with 1 N NaOH (5 mL) and H20 (5 mL). The organic layer was separated, and

the aqueous layer was extracted with EtOAc. The organic extracts were combined,

concentrated under vacuum, and then purified by silica gel chromatography (20-50%

Et20/pentane), which furnished 55.0 mg (64%) of a white solid (1,3-diol; [33950-46-8]).

HPLC analysis: 78% ee [Daicel CHIRALCEL AD-H column; 1.0 mL/min;

solvent system: 5.0% isopropanol in hexanes; retention times: 14.5 min (minor), 15.8 min

(major)].

Second run: (-)-1.1 (18.7 mg, 0.050 mmol), dimethylketene (50 mg, 0.71 mmol),

and benzaldehyde (86 [tL, 0.85 mmol). 71% yield, 74% ee.

'H NMR (CDC13, 300 MHz) 6 7.38-7.30 (m, 5H), 4.64 (s, 1H), 3.61 (d, J=11.0

Hz, 1H), 3.53 (d, J=11.0 Hz, 1H), 2.59 (s, 2H), 0.90 (s, 3H), 0.86 (s, 3H).
13C NMR (CDC13, 75 MHz) 6 141.6, 127.9, 127.8, 127.7, 82.4, 72.3, 39.2, 23.0,

19.1.

HRMS (ESI, M+Na) calc. for C1lH12NaO2 199.0730, found 199.0732.

[a]20.9D = -19.60 (c=0.73, CH2C12; from reaction with (-)-1.1).



Table 1.4, entry 7. 3,3-Spirocycloheptyl-4-phenyl-oxetan-2-one. A solution of

(+)-1.1(10.9 mg, 0.029 mmol) in THF (0.90 mL) was added dropwise over 8 min to a -78

'C solution of hexamethyleneketene (60 mg, 0.48 mmol) and benzaldehyde (59 gL, 0.58

mmol) in THF (1.5 mL). The reaction mixture was stirred at -78 'C for 22 hours, and

then it was filtered through a short pad of silica gel with copious washings with Et2O.

The solvent was removed, and the product was purified by silica gel chromatography

(0-6% Et20/hexane), which provided 74.5 mg (68%) of a clear oil.

HPLC analysis: 83% ee [Daicel CHIRALCEL AD column; 1.0 mL/min; solvent

system: 2.0% isopropanol in hexanes; retention times: 7.2 min (minor), 9.3 min (major)].

Second run: (-)-1.1 (10.9 mg, 0.029 mmol), hexamethyleneketene (60 mg, 0.48

mmol), and benzaldehyde (59 gL, 0.58 mmol). 73% yield, 80% ee.

1H NMR (CDC13, 300 MHz) 8 7.46-7.27 (m, 5H), 5.31 (s, 1H), 2.31-2.22 (m, 1H),

2.18-2.11 (m, 1H), 1.97-1.81 (m, 1H), 1.68-1.50 (m, 4H), 1.48-1.19 (m, 5H).
13C NMR (CDC13, 75 MHz) 8 175.6, 135.5, 128.8, 128.7, 125.9, 84.3, 64.0, 35.4,

30.4, 29.2, 29.2, 23.8, 22.9.

FTIR (NaC1) 1821, 1497, 1457, 1355, 1112, 939 cm-'.

HRMS (ESI, M+Na) calc. for C1sH18NaO2 253.1199, found 253.1199.

[a]21.6D = ±180 (c=0.57, CH 2Cl 2; from reaction with (+)-1.1).

Me 0
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Table 1.4, entry 8. cis-3-Isopropyl-3-methyl-4-phenyloxetan-2-one. A solution

of (-)-1.1 (7.0 mg, 0.019 mmol) in THF (0.5 mL) was added dropwise over 5 min to a

-78 OC solution of isopropyl methyl ketene (36 mg, 0.37 mmol), prepared as described

above immediately before use, and benzaldehyde (113 gL, 1.11 mmol) in THF (1.5 mL).

The reaction mixture was stirred for 22 hours, during whichtime it slowly warmed from -

78 OC to -10 oC, and then it was filtered through a short pad of silica gel with copious



washings with Et20O. The crude reaction mixture was analyzed by 1H NMR to determine

the diastereoselectivity (4.1:1 cis:trans). The product was purified by silica gel

chromatography (1-5% Et20/pentane), which provided 22.5 mg of the cis diastereomer

(crystalline solid) and 14.5 mg of a mixture of diastereomers (49% yield, total). Although

a sample of the minor diastereomer could not be isolated in pure form the spectral data

resemble those of pure isomer of an analogous trans-j-lactone (See the supporting

information below for Table 1.4, entry 9). The major isomer was determined by X-ray

crystallography to be the cis isomer (see Appendix A).

HPLC analysis: 89% ee [Daicel CHIRALCEL AD column; 1.0 mL/min; solvent

system: 2.0% isopropanol in hexanes; retention times (cis diastereomer): 6.7 min (major),

8.7 min (minor)].

Second run: (+)-1.1 (7.0 mg, 0.019 mmol), isopropyl methyl ketene (36 mg, 0.37

mmol), and benzaldehyde (113 jiL, 1.11 mmol). 46% yield, 4.3:1 cis:trans, 92% ee (cis

diastereomer).

Major diastereomer (cis): 1H NMR (CDC13, 300 MHz) 6 7.45-7.34 (m, 5H), 5.26

(s, 1H), 2.02 (sept, J=7.0 Hz, 1H), 1.50 (s, 3H), 1.02 (d, J=7.0 Hz, 3H), 0.38 (d, J=7.0 Hz,

3H).
13C NMR (CDC13, 75 MHz) 6 175.0, 135.0, 129.1, 128.6, 127.0, 84.3, 63.7, 27.4,

17.7, 15.9,14.8.

FTIR (NaC1) 1821, 1456, 1111, 1078, 939 cm-1.

HRMS (ESI, M+Na) calc. for C13H 16NaO2 227.1043, found 227.1045.

[a]21.7D = +330 (c=0.20, CH2C12; from reaction with (+)-1.1).

mp = 760 C.

0° o
MeH

Table 1.4, entry 9. cis-3-Cyclopentyl-3-methyl-4-phenyloxetan-2-one. A

solution of (+)-1.1 (8.5 mg, 0.023 mmol) in THF (0.75 mL) was added dropwise over 8

min to a -78 OC solution of cyclopentyl methyl ketene (56 mg, 0.45 mmol) and

benzaldehyde (137 RL,1.35 mmol) in THF (1.5 mL). The reaction mixture was stirred at



-78 'C for 72 hours, and then it was filtered through a short pad of silica gel with copious

washings with Et20. The solvent was removed, and the product was purified by silica gel

chromatography (1-2% Et20O/pentane), which provided 43.3 mg of the major

diastereomer and 9.6 mg of the minor diastereomer (51%, 4.5:1 cis:trans).

HPLC analysis: 88% ee (cis diastereomer), 47% ee (trans diastereomer) [Daicel

CHIRALCEL AD column; 1.0 mL/min; solvent system: 2.0% isopropanol in hexanes;

retention times: cis diastereomer, 6.5 min (minor), 7.1 min (major); trans diastereomer,

6.3 min (minor), 7.6 min (major)].

Second run: (+)-1.1 (8.5 mg, 0.023 mmol), cyclopentyl methyl ketene (56 mg,

0.45 mmol), and benzaldehyde (137 jtL, 1.35 mmol). 55% yield, 4.7:1 cis: trans, 88% ee

(cis diastereomer).

Major diastereomer (cis): 1H NMR (CDC13, 300 MHz) 6 7.43-7.31 (m, 5H), 5.31

(s, 1H), 2.08-1.97 (m, 1H), 1.55 (s, 3H), 1.53-1.30 (m, 5H), 1.29-1.18 (m, 1H), 1.15-1.03

(m,1H), 1.00-0.89 (m, 1H).

'3C NMR (CDC13, 75 MHz) 8 174.7, 135.6, 128.6, 128.5, 126.1, 83.7, 63.3, 39.8,

28.2, 26.7, 25.8, 25.6, 17.0.

FTIR (NaC1) 1823, 1454, 1382, 1264, 1101, 945, 873 cm1.

HRMS (ESI, M+Na) calc. for C15H18NaO 2 253.1199, found 253.1193.

[a]21.7D = +310 (c=0.29, CH 2C12; from reaction with (+)-1.1).

O0
Me

Minor diastereomer (trans): 1H NMR (CDCl3 , 300 MHz) 8 7.45-7.32 (m, 3H),

7.27-7.25 (m, 2H), 5.40 (s, 1H), 2.30 (m, 1H), 2.03-1.84 (m, 2H), 1.83-1.53 (m, 5H),

1.51-1.36 (m, 1H), 0.92 (s, 3H).

13C NMR (CDCl3, 75 MHz) 6 174.1, 135.8, 128.8, 128.5, 125.6, 79.6, 63.5, 44.5,

28.5, 28.1, 25.7, 25.6, 15.8.

FTIR (NaC1) 1825, 1454, 1070, 942 cm -'.

[a]21.4D = +5.00 (c=0.68, CH2C12 ; from reaction with (+)-1.1).



V. Derivatization of the P3-Lactones (Scheme 1.9).

OH OH

MeM
Me

Scheme 1.9, top. 1-Phenyl-2,2-diethyl-1,3-propanediol. [63834-79-7] A

solution of DIBAL-H in THF (1.0 M; 0.30 mL, 0.30 mmol) was added to a 0 oC solution

of 3,3-diethyl-4-phenyloxetan-2-one (20.0 mg, 0.098 mmol; 91% ee) in THF (0.30 mL).

Upon completion of the addition, the reaction mixture was warmed to room temperature

over 2 h. Then, a solution of NaOH (1.0 N; 0.40 mL) was added. The aqueous layer was

extracted with Et20 (3 x 5 mL), and the combined extracts were washed with water and

then brine. The organic layer was concentrated, and the residue was purified by column

chromatography (10-40% Et20/pentane), which furnished 18.0 mg (88%) of a clear

oil.

HPLC analysis: 89% ee [Daicel CHIRALCEL AD column; 1.0 mL/min; solvent

system: 10.0% isopropanol in hexanes; retention times: 7.0 min (minor), 8.9 min

(major)].

IH NMR (CDC13, 300 MHz) 6 7.38-7.26 (m, 5H), 4.73 (d, J=5.5 Hz, 1H), 3.57

(dd, J=11.5 Hz, J=3.5 Hz, 1H), 3.49 (d, J=4.5 Hz, 1H), 3.44 (dd, J=10.5 Hz, J=5.5 Hz,

1H), 3.24 (dd, J=6.0 Hz, J=4.0 Hz, 1H), 1.84-1.60 (m, 2H), 0.99 (m, 2H), 0.93 (t, J=7.5

Hz, 3H), 0.78 (t, J=7.5 Hz, 3H).

13C NMR (CDCl3, 75 MHz) 6 141.8, 128.0, 127.8, 127.6, 80.6, 66.8, 43.3,

22.7, 22.6, 7.7, 7.6.

O OH

HO

MeM
Me

Scheme 1.9, middle. 2,2-Diethyl-3-hydroxy-3-phenylpropanoic acid. [59697-

81-3] A solution of KOH (1.0 N; 0.28 mL) was added to a solution of 3,3-diethyl-4-

phenyloxetan-2-one (28.4 mg, 0.139 mmol; 92% ee) in wet THF (0.50 mL). The reaction

mixture was sealed and heated to 60 oC for 5 h, and then it was cooled to room



temperature and treated with HCI (1.0 N; 0.30 mL). The aqueous layer was extracted

with EtOAc/Et20O (1:1; 5 x 3 mL), and the combined extracts were washed with brine,

dried over MgSO 4, filtered through a short plug of silica gel, and concentrated to a white

solid (29.1 mg, 94%). The ee was determined by reducing the 3-hydroxyacid to the 1,3-

diol with LiAlH4 in THF

(15 equiv.).

HPLC analysis: 91% ee [Daicel CHIRALCEL AD-H column; 1.0 mL/min;

solvent system: 10.0% isopropanol in hexanes; retention times: 7.2 min (major), 9.2 min

(minor)].

'H NMR (CDC13, 300 MHz) 8 7.34-7.32 (m, 5H), 4.89 (s, 1H), 1.79 (m, 2H), 1.73

(dq, J=15.0 Hz, J=7.5 Hz, 1H), 1.41 (dq, J=15.0 Hz, J=7.5 Hz, 1H), 0.97 (t, J=7.5 Hz,

3H), 0.94 (t, J=7.5 Hz, 3H).
13C NMR (CDC13, 75 MHz) 8 181.3, 140.2, 128.4, 128.3, 127.4, 77.1, 54.8, 25.8,

23.4, 8.94, 8.92.

O N3

HO
MeM

Me

Scheme 1.9, bottom. 2,2-Diethyl-3-azido-3-phenylpropanoic acid. Sodium

azide (21.0 mg, 0.323 mmol) was added to a solution of 3,3-diethyl-4-phenyloxetan-2-

one (33.0 mg, 0.162 mmol; 92% ee) in DMSO (1.0 mL). The reaction vessel was sealed

and heated to 65 'C for 48 h. The reaction was then quenched with HCI (1.0 N; 1.0 mL)

and H20 (1.0 mL). The aqueous layer was extracted with EtOAc (4 x 5 mL), and the

organic extracts were combined and washed with H20 and then brine. The extracts were

concentrated, and the residue was purified by column chromatography (1- 4%

MeOH/CH 2C12), which furnished 34.0 mg (85%) of the azide. To assay the ee, the acid

was converted to the methyl ester by treatment with excess diazomethane in Et 20 .

HPLC analysis: 92% ee [Daicel CHIRALCEL OJ-H column; 1.0 mL/min; solvent

system: 5.0% isopropanol in hexanes; retention times: 7.1 min (minor), 7.6 min (major)].

'1H NMR (CDC13, 300 MHz) 6 11.40 (br s, 1H), 7.41-7.31(m, 5H), 4.94 (s, 1H),

1.82-1.58 (m, 4H), 0.95 (m, 6H).



13 C NMR (CDC13, 75 MHz) 8 180.8, 136.2, 128.7, 128.6, 128.5, 70.6, 54.5, 25.4,

24.2, 9.3, 8.9.

FTIR (NaCI) 2973 (broad), 2103, 1699, 1453, 1252, 914, 742 cm1'.

HRMS (ESI, M-H) calc. for C13H16N30 2 246.1248, found 246.1244.

[(]214 D = +1230 (c=0.18, CH 2C12; from reaction with (-)-1.1)

VI. Determination of the Absolute Stereochemistry of the f-Lactones

OH OH OAc
5% (+)-2

OSi(i-Pr)3  5 OSi(i-Pr)3  OSi(i-Pr)3
e Ac2O I Me

Me Me Me

racemic s = 125

Eq 1.11. Kinetic resolution of (+)-2,2-diethyl-3-phenyl-l-triisopropylsiloxy-3-

propanol. Ac 20 (6.8 1iL, 0.072 mmol) was added to a stirred solution of the racemic

alcohol (35 mg, 0.096 mmol), NEt3 (6.6 gL, 0.072 mmol), and (+)-1.4 (3.0 mg, 0.0050

mmol) in t-amyl alcohol (0.25 mL) at 0 oC. 29 The reaction mixture was stirred for 7 days

at 0 oC, and then the reaction was quenched with MeOH (0.50 mL). The reaction

mixture was filtered through a pad of silica gel and concentrated. The 1H NMR spectrum

of the unpurified reaction mixture indicated -33% conversion. Purification by silica gel

chromatography (0.5-2.0% Et20/pentane) yielded 13.0 mg of the acetate and 14.0 mg of

the alcohol.

HPLC analysis of the alcohol: 48% ee [Daicel CHIRALCEL AD-H column; 1.0

mL/min; solvent system: 5.0% isopropanol in hexanes; retention times: 3.9 min (minor),

7.8 min (major)].

A sample of 2,2-diethyl-3-phenyl-1-triisopropylsiloxy-3-propanol was then

prepared from an enantioenriched sample of 3,3-diethyl-4-phenyloxetan-2-one (obtained

from a reaction conducted with (-)-1.1). This sample was enriched (HPLC analysis: 90%

ee) in the opposite enantiomer of the alcohol to that obtained from the kinetic resolution.

On this basis, we assign the absolute stereochemistry of the product of the reaction

illustrated in entry 1 of Table 1.4. The stereochemistry of entries 2-7 in Table 1.4 are

assigned by analogy (note that the HPLC elution order is the same for all entries: the



major enantiomer elutes more slowly).

OH OAc

OSi(W-Pr) 3  OSi(iPr) 3

5% (+)-2

OH Ac2O OH

OSi(i-Pr)3  OSi(i-Pr)3

Eq. 1.12. Kinetic resolution of (+)-2-cyclopentyl-2-methyl-3-phenyl-1-

triisopropylsiloxy-3-propanol (illustrated diastereomer). Ac 20 (4.6 jIL, 0.049 mmol)

was added to a stirred solution of the racemic alcohol (29.5 mg, 0.076 mmol), NEt3 (4.5

gL, 0.049 mmol), and (+)-1.4 (2.5 mg, 0.0040 mmol) in t-amyl alcohol (0.40 mL). The

reaction mixture wasstirred for 2 days at room temperature, and then additional NEt3 (4.5

gL, 0.049 mmol) and Ac20 (4.6 pL, 0.049 mmol) were added. After five more days, the

reaction was quenched with MeOH (0.5 mL). The reaction mixture was filtered through a

pad of silica gel and concentrated. The 1H NMR spectrum of the unpurified reaction

mixture indicated a 17% conversion. Purification by silica gel chromatography (2.5-

5.0% Et20O/pentane) yielded 5.0 mg of the acetate and 21.0 mg of the partially resolved

alcohol.

HPLC analysis of the alcohol: 17% ee [Daicel CHIRALCEL AD-H column; 1.0

mL/min; solvent system: 10.0% isopropanol in hexanes; retention times: 3.5 min

(minor), 5.5 min (major)].

A sample of 2-cyclopentyl-2-methyl-3-phenyl-1-triisopropylsiloxy-3-propanol

was then prepared from an enantioenriched sample of diastereomerically pure cis-3-

cyclopentyl-3-methyl-4-phenyloxetan-2-one (obtained from a reaction conducted with

(-)-1.1). This sample was enriched (HPLC analysis: 89% ee) in the opposite enantiomer

of the alcohol to that obtained from the kinetic resolution. On this basis, we assign the

absolute stereochemistry of the product of the reaction illustrated in entry 9 of Table 1.4.
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F. 1H NMR Spectra for Selected Compounds
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Chapter 2

Enantioselective Phosphine-Catalzed [3+2] Cycloadditions of Allenoates



Section 2.1

Enantioselective Phosphine-Catalyzed [3+2] Cycloadditions of
Allenes with Enones



A. Introduction.

Cyclopentanoids are ubiquitous in natural products, pharmaceuticals, and

materials. Therefore, numerous methods for the synthesis of five-membered carbocycles

have been devised.' Undoubtedly, cycloadditions represent the most convergent route to

not only five-membered rings, but to all cyclic compounds as these strategies allow the

target structure to be made from two similarly complex starting materials.2 , 3

It is not surprising then that cycloaddition and annulation reactions are popular

strategies for the synthesis of cyclopentanes and their derivatives (e.g., cyclopentenes,

cyclopentanols, and cyclopentanones). These strategies include [4+1] cycloadditions, 4

[2+2+1] cycloadditions (e.g., the Pauson-Khand reaction),5 and [3+2] cycloadditions

(Scheme 2.1.2).6 Although considerable progress has been made in these areas, very few

general catalytic asymmetric methods for the synthesis of cyclopentane derivatives exist.

No catalytic asymmetric [4+1] cycloadditions have been demonstrated to date. And

while a number of strategies have been developed for asymmetric intramolecular [2+2+1]

cycloadditions, 7 no general catalytic intermolecular variants have been described.8

However, a number of catalytic asymmetric [3+2] cycloadditions have emerged.

Scheme 2.1.1. Common Strategies for Cyclopentanoid Synthesis.

[3+2] R2 R R

R' R
2

[2+2+1] CO "
Pauson-Khand O

[4+1] C=X X

Davies has reported a highly enantioselective [3+2] cycloaddition of diazo

compounds with vinyl ethers catalyzed by rhodium-DOSP (eq 2.1.1).9 More recently,



Trost has reported a palladium-catalyzed asymmetric [3+2] trimethylenemethane

cycloaddition (eq 2.1.2).10 Furthermore, Bode has developed a N-heterocyclic carbene-

catalyzed enantioselective benzoin-oxy-Cope annulation of a,3-unsaturated aldehydes

with enones (eq 2.1.3)."

1 mol%[\ORh
N OjRh
SO2Ar - 4

Ar = p-C12H25C6H4
Rh2(S-DOSP) 4

CH2C12, r.t.

Ph

P-NP

Ph
1 f,, 10/

5 mol% Pd2(dba)3

toluene, -25 OC to r.t.

,, e Me

O " Me
10 mol %

15 mol% DBU
DCE, 0-23 OC

CO2Me

R2

EW(

R

70-99% ee
49-79% yield

58-92% ee
53-99% yield

CO2Me
N2

R2

TMS

AcO

RMe

MeO2C

(2.1.1)

(2.1.2)

(2.1.3)

In 1997, Zhang reported the first enantioselective phosphine-catalyzed [3+2]

cycloaddition of allenoates with acrylates (eq 2.1.4).12 This work was based on Lu's

studies of Ph3P- and (n-Bu)3P-catalyzed cycloadditions of allenoates (eq 2.1.5 and eq

2.1.6).13 Although a number of related phosphine-catalyzed cycloadditions and

annulation reactions have appeared in the interim, 14 few of them are asymmetric.' 5 Kwon

has reported preliminary results of (S,S)-DIPAMP catalyzing the [4+2] cycloaddition of

allenoates with imines with up to 34% ee (eq 2.1.7).16 Additionally, researchers at Pfizer

have reported up to 20% ee when (R,R)-Me-BPE is used as the catalyst in their

phosphine-mediated [4+2] annulation of bis(enones) (eq 2.1.8).17

96-99% ee
R2 25-93% yield

MeO2C

MeO
R
1

EWG

OHC1

R2



Ph,

10 mol% i-Pr Phr

toluene, 0 OC

88% yield, 93% ee
100:0 A:B

COR2  cat. PPh3  4 C 2R
1

A COR 2

N ,Ts

R3 I H

N,.Ts

R3.1 H

R2  O R3  O

R iBn
R
4

cat. PPh3
or

cat. P(n-Bu) 3

cat. P(n-Bu) 3

cat. PMe 3 or PCy 3

CO2R'

1 COR2

CO2R'

R Ts R3

Ts

R3

,Ts
NCO2R

C02R'

61-91% yield
3:1-10:1 A:B

57-99% yield

80-99% yield
up to 34% ee

w/ (S,S)-DIPAMP

33-79% yield
up to 20% ee

w/ (RR)-Me-BPE

OMe

Ph- P P__h 6Ph

O -OMe

(S,S)-DIPAMP

Me
Me

Me

(R,R)-Me-bpe

Our group has recently initiated efforts towards the development of a number of

asymmetric phosphine-catalyzed reactions. Dr. Ryan Wurz has demonstrated that

phosphepine 2.1 is an excellent catalyst for an enantioselective variant of Kwon's [4+2]

cycloaddition of 1,1-disubstitued allenoates with imines (eq 2.1.9).18 The following

CO2i-Bur CO2Et

(10 equiv)

C02i-Bu

CO2Et
A

C02-Bu

CO 2Et
(2.1.4)

B

CO2 R1

R2 
fCO2R'

R2"•,-C02
R 1

(2.1.5)

(2.1.6)

(2.1.7)

(2.1.8)



chapter describes my work on phosphepine 2.1-catalyzed [3+2] cycloadditions of

allenoates with enones and allenoates with imines (eq 2.1.10 and eq 2.1.11).

R3

R2 1
CO R' N T s  5 mol% (R)-2.1 - Ts 60-99% ee (2.1.9)

R 3 H CH2C, r.t.42-99% yield

R3 H CH2C12, r.t. FR2
COR 1

CO 2Et 0 10 mol% (R)-2.1 -CO 2 R 74-95% ee

Ph )  Ph toluene, r.t. COPh 32-97% yield (2.1.10)

Ph

CO Et COEtC0
2Et TNs 10 mol% (R)-2.1 C 70-80% eeFphI CN Ph 75-85% yield (2.1.11)

CH 2C12 , r.t. Ts

P-t-Bu

S(R)-2.1

B. Results and Discussion.

Our group has a standing interest in asymmetric nucleophile-catalyzed processes.

Most of our efforts up to this point have employed 4-dimethylaminopyridine and

4-pyrrolidinopyridine derivatives as catalysts. This family of compounds has proven

effective for a wide array of enantioselective nucleophile-catalyzed reactions, including

acyl transfer reactions, enantioselective protonations, and cycloadditions. 19 We have

found these compounds to be particularly effective for addition reactions and

cycloadditions of disubstitued ketenes. Encouraged by our success with asymmetric

[2+2] cycloadditions of ketenes catalyzed by 1.1 and 1.2, we decided to explore the

utility of these nucleophiles as catalysts for the [3+2] cycloaddition of an electron-

deficient allene (a cumulene that is electronically similar to a ketene) with an imine or

electron deficient-olefin. Unfortunately, our efforts in this vein proved to be fruitless.



However, we were well aware that tertiary phosphines were effective catalysts for

this subset of cycloadditions. Zhang's enantioselective phosphine-catalyzed synthesis of

cyclopentenes was the only example of asymmetric catalysis for this type of reaction at

the outset of our investigation. Although, Zhang's cycloaddition is highly

enantioselective, the scope of the reaction is severely limited with respect to the olefin.2 0

With the hope of expanding the scope of these cycloadditions, we began our

studies by investigating the [3+2] cycloaddition of ethyl-2,3-butadienoate 2 1 with a range

of P-substituted electron-deficient olefins. Of the olefins examined, chalcone proved to

be the most reactive, so we focused our attention on this class of compounds. Other

enones examined are shown in Figure 2.1.1. Alkyl ketones, 3-substituted, a,p-

unsaturated enoates, amides, and aldehydes were poor reaction partners.

We also briefly pursued reactions of 8-substituted allenes, both phenyl and ethyl,

but the [3+2] adducts were generally obtained in poor yields.

Figure 2.1.1. Olefins Tested in the Phosphine-Catalyzed [3+2] Cycloaddition.

0 0 0 00 0 0

Ph Me Me EtO Ph 0N Ph H Ph E Ph

A range of commercially available mono- and bi-dentate phosphines, traditionally

used as ligands for transition metals, were surveyed as catalysts for the [3+2]

cycloaddition of ethyl-2,3-butadienoate with chalcone (Table 2.1.1).22 Phosphepine

2.1,23 which can be prepared in enantiomerically pure form from (R)- or (S)-BINOL,

affords the targeted cyclopentene in good yield, enantioselectivity, and regioselectivity,

in contrast to a number of commercially available phosphines, which were either

ineffective as catalysts (Table 2.1.1, entries 1,5, and 6) or provided inferior

enantioselectivity and regioselectivity (Table 2.1.1, entries 2, 3, and 4). Use of a

derivative of 2.1 with a smaller P-substituent increased the yield of the cycloaddition but

significantly decreased the enantioselectivity (Table 2.1.1, Entry 8). With the hope of

rendering our reaction more user-friendly, we explored the possibility of employing the



air-stable HBF4 adduct of 2.1 in conjunction with bases such as NEt 3 and K2C0 3, but

these combinations failed to catalyzed the cycloaddition.

Interestingly, we observe the formation of cyclopentenes with the opposite

regioselectivity compared with previous phosphine-catalyzed [3+2] cycloadditions of

allenes with enones. Others have observed the same trend for phosphine-catalyzed [3+2]

cycloadditions of allenes with 13-substituted enones.15b

Table 2.1.1. Phosphine Screening for the Asymmetric [3+2] Cycloaddition of Ethyl-2,3-

butadienoate with Chalcone.

-CO02Et Ph O
Ph

10 mol% phosphine

toluene, r.t.

C0 2R

O COPh
Ph

CO02R

Ph

COPh

B

entry phosphine yield (%)a ee(%)b A:B

1 (S)-BINAPINE 0 n.d. n.d.

2 (R,R)-Me-BPE 61 -4 6:1

3 (R,R)-Et-DUPHOS 61 58 7:1

4 (R,R)-Ferrotane 64 11 7:1

5 (R)-BINAP 2 50 >20:1

6 (R)-NMDPP 4 -4 11:1

7 (R)-2.1 66 88 13:1

8 (R)-2.2 88 43 10:1

All data are the average of two experiments except for entry 8. alsolated yield of A and B.
bEnantiomeric excess of A. A negative value for the ee signifies that the illustrated enantiomer of
cyclopentene A is the minor, rather than the major, product.

The reasons for 2.1's superiority in phosphine-catalyzed cycloadditions of

allenoates is not currently well understood. Attempts to construct models, either with

ball and stick models or computationally, which accommodate both the sense of absolute

stereochemistry and regiochemistry for these cycloadditions have been unsuccessful.



Figure 2.1.2. Structures of the Phosphines Surveyed in Table2. 1.1.
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Phosphepine 2.1 catalyzes the cycloaddition of ethyl-2,3-butadienoate with a wide

range of enones. The ee of the cycloaddition is insensitive to electronic perturbations on

either the ketone substituent or the P-substituent (Table 2.1.2, entries 2-6). However,

reactions of electron-rich substrates are less efficient and require the use of two

equivalents of allene to obtain good yields (Table 2.1.2, entries 4 and 6).24 A variety of

enones bearing heterocyclic substituents are also suitable reaction partners (Table 2.1.2,

entries 7, 8, 9, and 10). In addition to P-(hetero)aryl enones, we have found P-alkynyl

(Table 2.1.2, entries 12 and 13) and P-alkyl enones (Table 2.1.2, entry 14) to be suitable

reaction partners. Although, the later reaction is sluggish, it is highly regioselective and

the balance of the enone may be recovered.



Table 2.1.2. Asymmetric Phosphine-Catalyzed [3+2] Cycloadditions of Allenes with

Various Enones.

10 mol% (R)-2.1

toluene, r.t.

C02Et

R O R
R 2

R

CO2Et

R'
R2
R
2

entry R 1 R2 yield (%)a ee (%)b A:B

C6H5

C6H4

C6H5

4-Cl-C6H4

C6H4  4-CH3-C6H4

C6H4  4-OCH 3-C6H4

4-Cl-C 6H4 C6H5

6 4-OCH3-C6H4

8c

9C 4-Cl-C 6H4

C6H5

11 H1 C5

12 Et3Si

13 C5Hil

14 4-OBn-C 6H4

C6H5

C6H5

C6H5

0
H3C

C6H5

13:1

7:1

20:1

>20:1

9:1

10:1

20:1

>20:1

>20:1

>20:1

7:1

C6H5

C6H5

4-Br-C6H4

All data are the average of two experiments except for entry 14. All cycloadditions
employed 1.2 equiv. of allene, except for entries 4, 6, 8, and 14, for which 2.0 equiv. were
used. alsolated yield of A and B. bEnantiomeric excess of A. CBecause of the low solubility
of the enone in toluene, CH2C12 was employed as a cosolvent. dThe enone can be recoverd
in 56% yield.

CO2Et  R -
O

R
2

U011



We surveyed a family of phosphepines related to 2.1 for the cycloaddition of the

P-alkyl enone. However, the selectivity is reduced, drastically in some instances, as the

size of phosphorous substituent is decreased. Although this is only an empirical

observation at this stage, this trend does seem to be general for all phosphine-catalyzed

allenoate cycloadditions we have investigated to date.

Table 2.1.3. Phosphine Survey for the [3+2] Cycloaddition of Ethyl-2,3-butadientoate

with a P-Alkyl Enone.

,-CO 2 Et n-C5 H11  O

Ph

10 mol% phosphine

toluene, r.t.

C02Et

n-C 5H11 Ph

CO2Et

n-C 5H,11

Ph

B

entry phosphine yield (%)a ee (%)b A:B

1 (R)-2.2 68 10 6:1

2 (R)-2.3 67 64 9:1

3 (R)-2.5 53 5 4:1

All cycloadditions employed 1.1 equiv. of allene. alsolated yield of A and B.
bEnantiomeric excess of A.

Catalyst 2.1 is also effective for cycloadditions of trisubstituted enones. This

unprecedented phosphine-catalyzed cycloaddition allows for the synthesis of densely

functionalized spirocyclic compounds containing adjacent quaternary and tertiary

stereocenters.25, 26 Moreover, a single regioisomer and diastereomer is observed in both

cases (eq 2.1.12 and eq 2.1.13).



CO2EtP 10 mol% (R)-2.1 Et0 2C Br (2.1.12)
C Brj Ph toluene, r.t. ,,) BPh

97% yield, 89% ee

0 10 mol% (R)-2.1 EtO2C
'CO 2 Et \ / Ph (2.1.13)

toluene, r.t.
Ph

32% yield, 95% ee

This cycloaddition process is not limited to the use of aryl ketones. Cycloaddition

of dibenzylideneacetone (dba) with ethyl-2,3-butadienoate yields the desired

cyclopentene in excellent yield, regioselectivity, and enantioselectivity. Because 1-alkyl

enones were observed to be less efficient reaction partners, we speculated that a site

selective cycloaddition of an unsymmetrical dienone containing two electronically

differentiated 3-substituents (i.e., one P-aryl substituent and one P-alkyl substituent)

would be possible. Unfortunately, this type of electronic differentiation was insufficient

for the realization of this goal (Table 2.1.4, Entry 2). Further exploration of this idea led

us to discover that a 3-2,6-dichlorophenyl substituent effectively blocks one olefin from

undergoing the cycloaddition. Although this group decreases the enantioselectivity of the

process, it does allow for highly regio- and site selective [3+2] cycloadditions of both 1-

aryl (Table 2.1.4, Entry 3) and P-alkyl dienones (Table 2.1.4, Entry 4).

Not surprisingly, in light of our success with trisubstituted exocyclic enones

(Scheme 2.1.8), dibenzylidenecyclohexanone and dibenzylidene cyclopentanone are

excellent substrates for the process. These substrates provide access to [4.4] and [4.5]

spirocyclic compounds containing adjacent quaternary and tertiary stereocenters as well

as two differentiated enones (Table 2.1.4, Entries 5 and 6).



Table 2.1.4. Phosphine Catalyzed Asymmetric [3+2] Cycloadditions of Ethyl-2,3-

Butadienoate with Various Dienones.

entry dienone cycloadduct(s) yield (%)a ee (%)

0

PhN 7 " Ph

0
2 b, c Ph , , C5Hl

0 CI

0 cI

4b C4H9 N

Ci

0

5 Ph Ph

0

Ph Ph

CO2Et

Ph

Ph 0

CO2Et

NC 5H 1l

Ph 0

CO2EtCI

Ph 0 CI

C4H9 O CI

PhEt02C 0

Ph

CO 2Et

C5Ph

C6H 1
0

All data are the average of two experiments, except for entries 2 and 4. All cycloadditions employed 2.0
equiv. of ethyl- 2,3-butadienoate and 10 mol% of (R)-2.1 unless noted otherwise. aOnly one regioisomer
is observed in all cases unless otherwise noted. b10 mol% PPh3 was used as catalyst. C1:1 mixture of
regioisomers was determined by 1H NMR analysis of a crude reaction mixture.

We hypothesized that our cyclopentene products may be prone to

diastereoselective transformations that would result in the generation of multiple

contiguous stereocenters. This is exemplified by the highly diastereoselective copper-

catalyzed 1,4-addition of alkyl Grignard reagents shown in Table 2.1.5.27,28

n.d.



Table 2.1.5. Copper (I)-Catalyzed 1,4-Additions of Alkyl Grignards to [3+2]

Cycloadducts.

Et02C 0

6R1
R2

10 mol% CuBr'SMe2
2 equiv TMSC1, 2 equiv HMPA

Et0 2C O

RR2

R3MgBr
THF, -780 C

entry RI R2  R3MgBr yield (%) d.r.

1 TES EtMgBr 62 >95:5

2 Br OBn EtMgBr 65 >95:5

C. Conclusions.

We have developed a phosphine catalyzed asymmetric [3+2] cycloaddition of

allenes with enones. For the first time, we have demonstrated that a variety of 3-

substituted enones and trisubstituted enones are efficient reaction partners for this

process. Moreover, a regio- and site-selective asymmetric [3+2] cycloaddition of

unsymmetrical dienones was developed by employing a sterically demanding blocking

group. Finally, we established that our cyclopentene products undergo a highly

diastereoselective copper-catalyzed 1,4-addition reaction.



D. Experimental

I. General

All reactions were carried out in oven-dried glassware under an atmosphere of

nitrogen or argon with magnetic stirring, unless otherwise indicated.

Toluene and CH2C12 were purified by passage through a neutral alumina column.

Chalcone (Avocado) was recrystallized from EtOH before use. Ethyl 2,3-butanedienoate

(Aldrich), 4-chlorochalcone (Avocado), 4-methoxychalcone (Aldrich), 4'-chlorochalcone

(Avocado), 4'-methoxychalcone (Aldrich), 2,5-dibenzylidenecyclopentanone (Alfa

Aesar), 2-benzylidene-1-tetralone (Lancaster), 2,6-dibenzylidenecyclohexanone (Alfa

Aesar), 2-cinnamoylthiophene (TCI), dibenzylideneacetone (Avocado), 2-Acetyl-5-

methylfuran (Avocado), benzaldehyde (Alfa Aesar) 4-chlorobenzaldehyde (Aldrich), 4'-

methylacetophenone (Aldrich), acetophenone (Aldrich), 2-furaldehyde (Alfa Aesar), 2-

quinolinecarboxaldehyde (Aldrich), trans-4-phenyl-3-buten-2-one (Aldrich), 2,6-

dichlorobenzaldehyde (Alfa Aesar), 2-octynal (Aldrich),

benzoylmethylenetriphenylphosphorane (Alfa Aesar), and 5-bromo-1-indanone (Alfa

Aesar) were used as received.

3-Triethylsilylpropynal 29 and catalyst 2.123 were prepared according to literature

procedures.

All NMR spectra were recorded in CDC13 unless noted otherwise.



II. Preparation of Substrates

These yields have not been optimized.

0

CI Me

General procedure for aldol-dehydration. 2-Acetyl-5-methylfuran (2.33 mL,

20.0 mmol) and 4-chlorobenzaldehyde (2.84 g, 20.2 mmol) were dissolved in ethanol (30

mL) and water (20 mL). After being cooled to 0 oC, the solution was treated with 1 N

NaOH (10.0 mL). The solution was allowed to warm to room temperature and then

stirred for 18 h. The reaction mixture was diluted with water (50 mL) and treated with 1

N HCI (10.0 mL). This mixture was extracted with CH2C12 (2 x 75 mL), and the extracts

were combined, washed with water and then brine, dried over MgSO 4, filtered, and

concentrated. The crude product was washed with cold 1:1 toluene:CH 2C12 (20 mL) to

provide 3.17 g (64%) of a white solid.

1H NMR (300 MHz) 8 7.76 (d, J=15.9 Hz, 1H), 7.54 (m, 2H), 7.39-7.31 (m, 3H),

7.24 (m, 1H), 6.20 (dd, J=3.6 Hz, J=0.8 Hz, 1H), 2.42 (s, 3H).

13C NMR (75 MHz)8 177.1, 158.5, 152.6, 141.9, 136.4, 133.5, 129.7, 129.3,

121.9, 119.9, 109.6, 14.4.

FTIR (thin film) 1651, 1600, 1510, 1489 cm1.

MS (EI) calc. for C14H11C10 2 [M] 246.04, found 246.04.



Me

[4224-87-7] This compound was prepared by the general procedure for aldol-

dehydration: 4'-methylacetophenone (2.67 mL, 20.0 mmol) and benzaldehyde (2.23 mL,

22.0 mmol). The product (2.65 g, 60%) was recrystallized from hot EtOH.

O

[39511-12-1] This compound was prepared by the general procedure for aldol-

dehydration: acetophenone (2.33 mL, 20.0 mmol) and 2-furaldehyde (1.69 mL, 20.4

mmol). The product (3.54 g, 89%) was purified by flash chromatography (5-20%

Et20/pentane).

0

[119118-42-2] This compound was prepared by the reaction of

benzoylmethylene-triphenylphosphorane (2.00 g, 5.25 mmol) and 2-

quinolinecarboxaldehyde (0.785 g, 5.00 mmol) in 1,2-dichloroethane at room

temperature for 18 h. The product (1.10 g, 85%) was purified by flash chromatography

(5-50% Et20O/pentane).

O CI

Trans-4-phenyl-3-buten-2-one (1.53 g, 10.5 mmol) and 2,6-dichlorobenzaldehyde

(1.83 g, 10.5 mmol) were dissolved in ethanol (10 mL) and water (5 mL). After being



cooled to 0 OC, the solution was treated with 1 N NaOH (5.0 mL). The solution was

allowed to warm to room temperature and then stirred for 18 h. The reaction mixture was

diluted with water (20 mL) and extracted with -50:1 Et20:CH2Cl2 (2 x 100 mL). The

extracts were washed with water and brine, dried over MgSO4, filtered, and concentrated.

The crude product was purified by flash chromatography (1-10% Et20O/pentane), which

furnished 1.61 g (51%) of a viscous yellow oil that solidified upon standing.

H NMR (300 MHz) 8 7.79 (d, J=16.1 Hz, 1H), 7.74 (d, J=16.1 Hz, 1H), 7.61 (m,

2H), 7.44-7.39 (m, 3H), 7.37 (d, J=8.1 Hz, 2H), 7.23 (d, J=16.2 Hz, 1H), 7.19 (dd, J=8.6

Hz, J=7.6 Hz, 1H), 7.06 (d, J=16.2 Hz, 1H).

13C NMR (75 MHz) 6 188.9, 144.3, 136.7, 135.3, 134.8, 133.3, 132.7, 130.9,

130.0, 129.2, 129.0, 128.7, 125.6.

FTIR (thin film) 1676, 1657, 1623, 1595, 1576, 1427, 1333, 1186 cm1 .

MS (EI) calc. for C17H12C12 0 [M+Na] 302.03, found 302.02.

O CI

Trans-oct-3-en-2-one (0.600 g, 4.76 mmol) was added dropwise over 10 minutes

to a -78 'C solution of LiHMDS (15.0 mL of 0.33 M solution in THF, 5.0 mmol). After

the mixture was stirred for 1 hour, 2,6-dichlorobenzaldehyde (0.840 g, 4.80 mmol) was

added as a solution in TIF (5.0 mL). After 45 minutes, the reaction was quenched with

saturated NH4Cl solution. The aqueous layer was extracted with Et20O, washed with H20,

washed with brine, dried over MgSO4, filtered, and concentrated. The crude material was

then treated with MeSO 2Cl (0.385 mL, 4.80 mmol) and NEt3 (1.0 mL, 7.50 mmol). This

mixture was stirred for 24 hours at room temperature. The solution was diluted with

Et20O and washed with H20. The extracts were dried over MgSO4, filtered, and

concentrated. The crude mixture was purified by flash chromatography (2-7% Et20 in

pentane) to yield 0.445 g (25%) of a yellow oil.

1H NMR (500 MHz) 6 7.70 (d, J=16.3 Hz, 1H), 7.37 (d, J=8.2 Hz, 2H), 7.20 (t,

J=8.2 Hz, 1H), 7.12 (d, J=16.3 Hz, 1H), 7.02 (dt, J=15.5 Hz, J=7.0 Hz, 1H), 6.42 (dt,



J=15.9 Hz, J=1.5 Hz, 1H), 2.32-2.28 (m, 2H), 1.51 (m, 2H), 1.38 (m, 2H), 0.94 (t, J=7.3

Hz, 3H).

Me

2-Octynal (1.14 mL, 8.00 mmol) and benzoylmethylenetriphenylphosphorane

(3.35 g, 8.80 mmol) were combined in 1,2-dichloroethane (40 mL) and stirred for 18 h at

room temperature. The reaction mixture was concentrated, redissolved in toluene (5

mL), and purified by flash chromatography (1-8% Et20O/pentane), which furnished 1.53 g

(85%) of a yellow oil.

IH NMR (300 MHz) 8 7.95 (m, 2H), 7.57 (m, 1H), 7.47 (m, 2H), 7.27 (dt, J=15.6

Hz, J=0.6 Hz, 1H), 6.90 (dt, J=15.6 Hz, J=2.2 Hz, 1H), 2.41 (m, 2H), 1.59 (m, 2H), 1.46-

1.28 (m, 4H), 0.92 (m, 3H).

13C NMR (75 MHz) 8 189.4, 137.5, 133.2, 132.7, 128.8, 128.7, 126.5, 102.4,

79.4, 31.3, 28.4, 22.4, 20.1, 14.1.

FTIR (thin film) 3062, 2956, 2932, 2860, 2212, 1660, 1589, 1448 cm1.

MS (EI) calc. for C16Hi 80 [M] 226.14, found 226.14.

0

Et3Si

3-Triethylsilylpropynal (1.21 g, 7.16 mmol) and benzoylmethylene-

triphenylphosphorane (2.99 g, 7.87 mmol) were combined in 1,2-dichloroethane (35 mL)

and stirred at room temperature for 18 h. The reaction mixture was then concentrated,

redissolved in toluene (5 mL), and purified by flash chromatography (1-2% Et20O in

pentane), which furnished 1.62 g (85%) of a yellow oil (trans isomer).

'H NMR (300 MHz) 8 7.98 (m, 2H), 7.60 (m, 1H), 7.50 (m, 2H), 7.39 (d, J=15.6

Hz, 1H), 6.91 (d, J=15.7 Hz, 1H), 1.04 (t, J=7.9 Hz, 9H), 0.68 (q, J=7.9 Hz, 6H).



13C NMR (75 MHz) 8 189.1, 137.3, 134.3, 133.4, 128.9, 128.7, 125.2, 104.1,

104.0, 7.6, 4.3.

FTIR (thin film) 2956, 2936, 2875, 1662, 1598, 1586, 1457, 1448 cm1.

MS (EI) calc. for C17H22OSi [M+Na] 270.14, found 270.14.

O

Me

LiHMDS (3.75 mL of a 1.0 M solution in THF, 3.75 mmol) was added to a

-78 TC solution of Trans-4-phenyl-3-buten-2-one (0.520 g, 3.56 mmol). After stirring for

1 hour a -78 "C, hexanal (0.442 mL, 3.60 mmol) was added all at once. After 10

minutes, the reaction was quenched with saturated NH4Cl solution. The aqueous layer

was extracted with Et20O. the extracts were washed with brine, dried over MgSO 4,

filtered, and concentrated. This material was then purified by flash chromatography (10-

50% Et20 in pentane) to 425 mg of the aldol product. The aldol product (0.405 g, 1.64

mmol) was dissolved in THF (10 mL) and treated sequentially with MeSO 2Cl (0.134 mL,

1.73 mmol) and NEt 3 (0.468 mL, 3.36 mmol) and then stirred for 24 hours. The reaction

mixture was diluted with Et20O and the organic layer was washed with H20 and brine.

The extracts were dried over MgSO 4, filtered, and concentrated. Purification by flash

chromatography yielded 0.245 g (65%) of a clear oil.

'H NMR (500 MHz) 8 7.65 (d, J=15.9 Hz, 1H), 7.59 (m, 2H), 7.41-7.39 (m, 3H),

7.02 (dt, J=15.4 Hz, J=7.0 Hz, 1H), 6.99 (d, J=15.9 Hz, 1H), 6.44 (dt, J=15.4 Hz, J=1.5

Hz), 2.29 (m, 2H), 1.52 (m, 2H), 1.35 (m, 4H), 0.91 (m, 3H).

Br

5-Bromo-1-indanone (1.11 g, 5.26 mmol) and benzaldehyde (560 mL,

5.52 mmol) were combined in EtOH (7.0 mL). The reaction vessel was purged with

argon, and concentrated HCI (5 drops) was added. The reaction mixture was refluxed for



18 h, and then cooled to room temperature. The solid was filtered and washed with

ethanol (3 x 5 mL) to provide 1.17 g of a white solid (75%).

1H NMR (300 MHz) 8 7.79-7.64 (m, 5-1), 7.57 (m, 1H), 7.51-7.39 (m, 3H), 4.03

(d, J=1.1 Hz, 2H).

13C NMR (75 MHz)8 193.3, 151.4, 137.1, 135.3, 134.9, 134.1, 131.5, 131.0,

130.1, 129.9, 129.6, 129.2, 125.9, 32.3.

FTIR (thin film) 1697, 1621, 1598, 1447, 1420 cm 1.

HRMS (EI) calc. for C16HIIBrNaO [M+Na] 320.9885, found 320.9897.



III. Catalytic Asymmetric [3+2] Cycloadditions

General Procedures for Phosphine Catalyzed [3+2] Cycloadditions (Table

2.1.1, Table 2.1.2, Table 2.1.3, Table 2.1.4, and Scheme 2.1.8):

Method A. In a glove box, a solution of (R)-2.1 (14.7 mg, 0.040 mmol) in

toluene (0.5 mL) was added to a stirring solution of the enone (0.400 mmol) and ethyl

2,3-butanedienoate (56 [L, 0.48 mmol) in toluene (1.5 mL). The mixture was stirred at

ambient temperature for 16 h, and then the product was directly purified by flash

chromatography.

Method B. In a glove box, a solution of(R)-2.1 (14.7 mg, 0.040 mmol) in

toluene (0.5 mL) was added to a stirring solution of the enone (0.400 mmol) and ethyl

2,3-butanedienoate (46 [tL, 0.40 mmol) in toluene (1.5 mL). After 3 h, ethyl 2,3-

butanedienoate (46 RiL, 0.40 mmol) was added, and the mixture was stirred for an

additional 16 h. The product was directly purified by flash chromatography.

Table 2.1.1, Entry 1. Method A was used. (S)-BINAPINE (14.7 mg,

0.020 mmol), 2,3-ethylbutadienoate (28.0 RL, 0.240 mmol), and chalcone (41.7 mg,

0.200 mmol). The reaction mixture was filtered through a pad of silica gel with Et20 and

concentrated. Analysis of the resulting residue by 1H NMR showed no desired

cycloadduct.

Second run: (S)-BINAPINE (14.7 mg, 0.020 mmol), 2,3-ethylbutadienoate

(28.0 [tL, 0.240 mmol), and chalcone (41.7 mg, 0.200 mmol). The reaction mixture was

filtered through a pad of silica gel with Et20 and concentrated. Analysis of the resulting

residue by 'H NMR showed no desired cycloadduct.

Table 2.1.1, Entry 2. Method A was used. (R,R)-Me-BPE (10.3 mg,

0.040 mmol), 2,3-ethylbutadienoate (56.0 [tL, 0.480 mmol), and chalcone (83.3 mg,

0.400 mmol). Purification by silica gel chromatography (2-30% Et20O in pentane) yields

the product as a 4.5:1.0 mixture of inseperable regioisomers (78.6 mg, 61%, -2% ee).



Second run: (R,R)-Me-BPE (10.3 mg, 0.040 mmol), 2,3-ethylbutadienoate

(56.0 [tL, 0.480 mmol), and chalcone (83.3 mg, 0.400 mmol). 78.9 mg (61%), 6.6:1.0 rs,

-5% ee.

Table 2.1.1, Entry 3. Method A was used. (R,R)-Et-DUPHOS (14.5 mg,

0.040 mmol), 2,3-ethylbutadienoate (56.0 tL, 0.480 mmol), and chalcone (83.3 mg,

0.400 mmol). Purification by silica gel chromatography (2-30% Et20O in pentane) yields

the product as a 4.4:1.0 mixture of inseperable regioisomers (77.1 mg, 60%, 60% ee).

Second run: (R,R)-Et-DUPHOS (14.5 mg, 0.040 mmol), 2,3-ethylbutadienoate

(56.0 [tL, 0.480 mmol), and chalcone (83.3 mg, 0.400 mmol). 80.0 mg (62%), 8.6:1.0 rs,

56% ee.

Table 2.1.1, Entry 4. (R,R)-Et-FerroTANE. Method A was used. (R,R)-Et-

FerroTANE (17.7 mg, 0.040 mmol), 2,3-ethylbutadienoate (56.0 RL, 0.480 mmol), and

chalcone (83.3 mg, 0.400 mmol). Purification by silica gel chromatography (2-30% Et20O

in pentane) yields the product as a 5.6:1.0 mixture of inseperable regioisomers (82.0 mg,

64%, 11% ee).

Second run: (R,R)-Et-FerroTANE (17.7 mg, 0.040 mmol), 2,3-ethylbutadienoate

(56.0 pL, 0.480 mmol), and chalcone (83.3 mg, 0.400 mmol). 82.1mg (64%), 7.4:1.0 rs,

11% ee.

Table 2.1.1, Entry 5. Method A was used. (R)-BINAP (10.3 mg, 0.020 mmol),

2,3-ethylbutadienoate (28.0 ptL, 0.240 mmol), and chalcone (41.7 mg, 0.200 mmol).

Purification by silica gel chromatography (2-30% Et20 in pentane) yields the product as a

40:1 mixture of inseperable regioisomers (<1.0 mg, 2%, 50% ee).

Second run: (R)-BINAP (10.3 mg, 0.020 mmol), 2,3-ethylbutadienoate (28.0 [pL,

0.240 mmol), and chalcone (41.7 mg, 0.200 mmol). (<1.0 mg, 30:1 rs, 2%, 50% ee).

Table 2.1.1, Entry 6. Method A was used. (R)-NMDPP (17.7 mg, 0.040 mmol),

2,3-ethylbutadienoate (56.0 pLL, 0.480 mmol), and chalcone (83.3 mg, 0.400 mmol).



Purification by silica gel chromatography (2-30% Et2O in pentane) yields the product as a

12.4:1.0 mixture of inseperable regioisomers (4.9 mg, 4%, -4% ee).

Second run: (R)-NMDPP (17.7 mg, 0.040 mmol), 2,3-ethylbutadienoate (56.0 [L,

0.480 mmol), and chalcone (83.3 mg, 0.400 mmol). 3.5 mg (3%), 9.2:1.0 rs, -3% ee.

Table 2.1.1, Entry 7. See Table 2.2, Entry 1.

Table 2.1.1, Entry 8. Method A was used. (R)-2.2 (7.0 mg, 0.020 mmol), 2,3-

ethylbutadienoate (58.0 [iL, 0.240 mmol), and chalcone (41.6 mg, 0.200 mmol).

Purification by silica gel chromatography (2-30% Et2O in pentane) yields the product as a

10.0:1.0 mixture of inseperable regioisomers (56.5 mg, 88%, 43% ee).

Table 2.1.2, entry 1. Method A was employed: Enone (83.3 mg, 0.400 mmol),

ethyl 2,3-butanedienoate (56 [pL, 0.48 mmol), and (R)-2.1 (14.7 mg, 0.040 mmol).

Purification by flash chromatography (2-30% Et20 in pentane) furnished the product as a

10:1 mixture of regioisomers (80.5 mg, 63%).

HPLC analysis: 88% ee [Daicel CHIRALCEL OD-H; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 9.6 min, (major) 14.4 min].

Second run: Enone (83.3 mg, 0.400 mmol), ethyl 2,3-butanedienoate (56 LL, 0.48

mmol), and (S)-2.1 (14.7 mg, 0.040 mmol). 81.9 mg (64%), 15:1 rs, 87% ee.

[a]20D = +2240 (c=0.20, CH2C12).

'H NMR (300 MHz) 8 7.78 (m, 2H), 7.50 (t, J=7.3 Hz, 1H), 7.38-7.17 (m, 7H),

7.11 (m, 1H), 4.89 (m, 1H), 4.13 (m, 2H), 3.58 (dt, J=9.1 Hz, J=4.7 Hz, 1H), 3.19 (ddt,

J=18.7 Hz, J=9.0 Hz, J=2.5 Hz, 1H), 2.72 (m, 1H), 1.15 (t, J=7.2 Hz, 3H).

13C NMR (75 MHz) 8 200.9, 164.2, 145.4, 145.1, 136.7, 135.8, 133.2, 129.1,

128.9, 128.6, 127.2, 126.9, 60.7, 60.4, 49.1, 42.3, 14.2.



FTIR (thin film) 3084, 3062, 3028, 2981, 2934, 2906, 1963, 1715, 1681, 1640,

1597, 1493, 1448 cm-.

HRMS (ESI) calc. for C21H20NaO3 [M+Na] 343.1304, found 343.1320.

CI

Table 2.1.2, entry 2. Method A was employed: 4'-chlorochalcone (97.1 mg,

0.400 mmol), ethyl 2,3-butanedienoate (56 tL, 0.48 mmol), and (R)-2.1 (14.7 mg,

0.040 mmol). Purification by flash chromatography (2-15% Et20 in pentane) furnished

the product as a 6:1 mixture of regioisomers (110 mg, 78%).

HPLC analysis: 82% ee [Daicel CHIRALCEL OD-H; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 8.2 min, (major) 38.9 min].

Second run: 4'-chlorochalcone (97.1 mg, 0.400 mmol), ethyl 2,3-butanedienoate

(56 [tL, 0.48 mmol), and (R)-2.1 (14.7 mg, 0.040 mmol). 105 mg (74%), 8:1 rs, 82% ee.

1H NMR (300 MHz) 8 7.69 (m, 2H), 7.34-7.24 (m, 5H), 7.19 (m, 2H), 7.09 (m,

1H), 4.82 (m, 1H), 4.12 (m, 2H), 3.55 (dt, J=9.0 Hz, J=5.5 Hz, 1H), 3.18 (ddt, J=18.9 Hz,

J=9.1 Hz, J=2.5 Hz, 1H), 2.73 (m, 1H), 1.16 (t, J=7.0 Hz, 3H).

13C NMR (75 MHz) 8 199.8, 164.1, 145.3, 144.8, 139.7, 135.7, 135.1, 130.3,

129.2, 128.9, 127.3, 126.9, 60.7, 60.5, 49.2, 42.3, 14.2.

FTIR (thin film) 3063, 3029, 2981, 2934, 2906, 2843, 1716, 1683, 1636, 1588,

1571, 1489, 1455 cm 1 .

HRMS (ESI) calc. for C21H19C1NaO 3 [M+Na] 377.0915, found 377.0916.



Table 2.1.2, entry 3. Method A was employed: Enone (89.0 mg, 0.400 mmol),

ethyl 2,3-butanedienoate (56 [tL, 0.48 mmol), and (R)-2.1 (14.7 mg, 0.040 mmol).

Purification by flash chromatography (5-20% Et20O in pentane) furnished the product as a

20:1 mixture of regioisomers (83.1 mg, 62%).

HPLC analysis: 87% ee [Daicel CHIRALCEL OD-H; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 8.6 min, (major) 18.8 min].

Second run: Enone (89.0 mg, 0.400 mmol), ethyl 2,3-butanedienoate (56 tL,

0.48 mmol), and (S)-2.1 (14.7 mg, 0.040 mmol). 80.9 mg (60%), 20:1 rs, 87% ee.

[a]20D= +2190 (c=-0.15, CH2C12).

1H NMR (300 MHz) 8 7.69 (m, 2H), 7.35-7.12 (m, 7H), 7.10 (m, 1H), 4.86 (m,

1H), 4.13 (m, 2H), 3.56 (dt, J=9.1 Hz, J=5.0 Hz, 1H), 3.18 (ddt, J=19.0 Hz, J=9.1 Hz,

J=2.5 Hz, 1H), 2.71 (m, 1H), 2.36 (s, 3H), 1.16 (t, J=7.1 Hz, 3H).

13C NMR (75 MHz) 8 200.4, 164.2, 145.3, 145.1, 144.0, 135.9, 134.1, 129.3,

129.1, 129.0, 127.1, 127.0, 60.6, 60.3, 49.1, 42.3, 21.8, 14.2.

FTIR (thin film) 3061, 3029, 2981, 2929, 2872, 1715, 1689, 1639, 1606, 1572,

1493, 1454 cm .

HRMS (ESI) calc. for C22H22NaO 3 [M+Na] 357.1461, found 357.1462.

OMe

Table 2.1.2, entry 4. Method B was employed: Enone (95.3 mg, 0.400 mmol),

ethyl 2,3-butanedienoate (93 ptL, 0.80 mmol), and (R)-2.1 (14.7 mg, 0.040 mmol).



Purification by flash chromatography (2-30% Et20O in pentane) furnished the product

(78.6 mg, 56%; >20:1 rs).

HPLC analysis: 88% ee [Daicel CHIRALCEL OD-H; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 13.7 min, (major) 34.3 min].

Second run: Enone (95.3 mg, 0.400 mmol), ethyl 2,3-butanedienoate (93 tL, 0.80 mmol),

and (S)-2.1 (14.7 mg, 0.040 mmol). 73.0 mg (52%), >20:1 rs, 87% ee.

[a]20D = +1860 (c=0.24, CH2C12).

1H NMR (300 MHz) 6 7.76 (dt, J=8.8 Hz, J=1.9 Hz, 2H), 7.35-7.23 (m, 3H),

7.23-7.17 (m, 2H), 7.09 (m, 1H), 6.82 (dt, J=9.0 Hz, J=1.9 Hz, 2H), 4.82 (m, 1H), 4.12

(m, 2H), 3.82 (s, 3H), 3.55 (dt, J=9.0 Hz, J=4.9 Hz, 1H), 3.18 (ddt, J=18.8 Hz, J=8.8 Hz,

J=2.6 Hz, 1H), 2.70 (m, 1H), 1.16 (t, J=6.9 Hz, 3H).

13C NMR (75 MHz) 8 199.3, 164.3, 163.9, 145.4, 145.1, 135.9, 131.3, 129.7,

129.1, 127.1, 127.0, 113.8, 60.6, 60.2, 55.6, 49.1, 42.3, 14.2.

FTIR (thin film) 3062, 3027, 2980, 2935, 2840, 1715, 1673, 1599, 1575, 1510,

1493, 1510 cm .

HRMS (ESI) calc. for C22H22NaO4 [M+Na] 373.1410, found 373.1427.

Table 2.1.2, entry 5. Method A was employed: Enone (97.1 mg, 0.400 mmol),

ethyl 2,3-butanedienoate (56 [tL, 0.48 mmol), and (R)-2.1 (14.7 mg, 0.040 mmol).

Purification by flash chromatography (5-20% Et20O in pentane) furnished the product as

an 8:1 mixture of regioisomers (107 mg, 75%).

HPLC analysis: 87% ee [Daicel CHIRALCEL OD-H; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 9.2 min, (major) 15.1 min].

Second run: Enone (97.1 mg, 0.400 mmol), ethyl 2,3-butanedienoate (56 JL,

0.48 mmol), and (S)-2.1 (14.7 mg, 0.040 mmol). 104 mg (73%), 9:1 rs, 87% ee.



'H NMR (300 MHz) 8 7.78 (m, 2H), 7.51 (m, 1H), 7.37 (m, 2H), 7.27 (m, 2H),

7.17-7.06 (m, 3H), 4.83 (m, 1H), 4.11 (m, 2H), 3.55 (m, 1H), 3.18 (ddt, J=19.0 Hz, J=9.1

Hz, J=2.5 Hz, 1H), 2.66 (m, 1H), 1.14 (t, J=7.1 Hz, 3H).

13C NMR (75 MHz) 8 200.6, 163.9, 144.9, 143.6, 136.6, 135.8, 133.4, 132.8,

129.2, 128.9, 128.7, 128.4, 60.7, 60.2, 48.4, 42.2, 14.2.

FTIR (thin film) 3085, 3063, 2981, 2935, 1714, 1682, 1639, 1596, 1580, 1492,

1447 cm1.

HRMS (ESI) calc. for C21H19C1NaO 3 [M+Na] 377.0915, found 377.0912.

El

Table 2.1.2, entry 6. Method B was employed: Enone (95.3 mg, 0.400 mmol),

ethyl 2,3-butanedienoate (93 RL, 0.80 mmol), and (R)-2.1 (14.7 mg, 0.040 mmol).

Purification by flash chromatography (2-30% Et20O in pentane) furnished the product as a

10:1 mixture of regioisomers (94.8 mg, 68%).

HPLC analysis: 87% ee [Daicel CHIRALCEL OD-H; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 11.8 min, (major) 18.3 min].

Second run: Enone (95.3 mg, 0.400 mmol), ethyl 2,3-butanedienoate (56 [tL,

0.48 mmol), and (S)-2.1 (14.7 mg, 0.040 mmol). 91.5 mg (65%), 10:1 rs, 86% ee.

[a]20D= +2350 (c=0.16, CH 2C12).

'H NMR (300 MHz) 8 7.78 (m, 2H), 7.50 (m, 1H), 7.36 (t, J=8.0 Hz, 2H), 7.15-

7.07 (m, 3H), 6.83 (m, 2H), 4.83 (m, 1H), 4.12 (m, 2H), 3.79 (s, 3H), 3.53 (dt, J=8.8 Hz,

J=5.2 Hz, 1H), 3.15 (ddt, J=19.0 Hz, J=9.1 Hz, J=2.5 Hz, 1H), 2.67 (m, 1H), 1.15 (t,

J=7.1 Hz, 3H).

13C NMR (75 MHz) 8 200.9, 164.2, 158.7, 145.2, 137.2, 136.7, 135.8, 133.2,

128.9, 128.6, 127.9, 114.3, 60.64, 60.60, 55.4, 48.4, 42.4, 14.2.



FTIR (thin film) 3062, 3032, 2981, 2935, 2907, 2837, 1716, 1683, 1636, 1611,

1596, 1581, 1514, 1447 cm1.

HRMS (ESI) calc. for C22H22NaO4 [M+Na] 373.1410, found 373.1422.

Table 2.1.2, entry 7. Method B was employed: Enone (79.3 mg, 0.400 mmol),

ethyl 2,3-butanedienoate (93 jxL, 0.48 mmol), and (R)-2.1 (14.7 mg, 0.040 mmol).

Purification by flash chromatography (2-25% Et2O in pentane) furnished the product

(60.1 mg, 48%; 22.9 mg, 18%, of the regioisomer).

HPLC analysis: 88% ee [Daicel CHIRALCEL OD-H; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 9.0 min, (major) 11.8 min].

Second run: Enone (79.3 mg, 0.400 mmol), ethyl 2,3-butanedienoate (93 [LL, 0.48

mmol), and (S)-2.1 (14.7 mg, 0.040 mmol). 66.3 mg (53%), 87% ee. 20.0 mg (16%) of

the regioisomer.

[a]20D= +2390 (c=0.16, CH 2Cl 2).

IH NMR (300 MHz) 8 7.91 (m, 2H), 7.54 (m, 1H), 7.42 (m, 2H), 7.35 (dd, J=1.9

Hz, J=0.9 Hz, 1H), 7.03 (dt, J=1.7 Hz, J=2.4 Hz, 1H), 6.28 (dd, J=3.0 Hz, J=1.7 Hz, 1H),

6.02 (m, 1H), 4.99 (m, 1H), 4.09 (m, 2H), 3.73 (dt, J=8.5 Hz, J=5.8 Hz, 1H), 3.04 (ddt,

J=18.4 Hz, J=8.8 Hz, J=2.5 Hz, 1H), 2.82 (m, 1H), 1.11 (t, J=7.1 Hz, 3H).

13C NMR (75 MHz) 8 200.9, 164.0, 156.2, 144.6, 141.9, 136.9, 135.8, 133.3,

128.9, 128.6, 110.4, 105.6, 60.7, 56.9, 42.6, 38.6, 14.1.

FTIR (thin film) 3118, 3064, 2981, 2937, 1716, 1682, 1637, 1596, 1580, 1507,

1448 cm 1 .

HRMS (ESI) calc. for C19H18NaO4 [M+Na] 333.1097, found 333.1109.



Table 2.1.2, entry 8. Method A was employed, except that CH 2C12

(0.2 mL)/toluene (2.0 mL) was used as the solvent, due to the low substrate solubility of

the enone in toluene: Enone (104 mg, 0.400 mmol), ethyl 2,3-butanedienoate (56 [tL,

0.48 mmol), and (R)-2.1 (14.7 mg, 0.040 mmol). Purification by flash chromatography

(5-40% Et20 in pentane) furnished the product (77.1 mg, 53%; 18:1 rs).

HPLC analysis: 88% ee [Daicel CHIRALCEL OD-H; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 13.0 min, (major) 23.1 min].

Second run: Enone (104 mg, 0.400 mmol), ethyl 2,3-butanedienoate (56 [tL,

0.48 mmol), and (S)-2.1 (14.7 mg, 0.040 mmol). 74.3 mg (50%), >20:1 rs, 88% ee.

[a]20D= +4070 (c=0.15, CH 2C12).

1H NMR (300 MHz) 8 8.01 (m, 4H), 7.78 (dd, J=8.0 Hz, J=1.4 Hz, 1H), 7.71 (td,

J=8.3 Hz, J=1.4 Hz, 1H), 7.53-7.43 (m, 2H), 7.33 (t, J=8.0 Hz, 2H), 7.18 (d, J=8.6 Hz,

1H), 7.07 (dd, J=4.4 Hz, J=2.5 Hz, 1H), 5.64 (m, 1H), 4.18-4.02 (m, 3H), 3.25 (ddt,

J=18.7 Hz, J=9.1 Hz, J=2.5 Hz, 1H), 2.97 (m, 1H), 1.12 (t, J=7.1 Hz, 3H).

13C NMR (75 MHz) 8 201.9, 164.2, 162.4, 147.9, 144.4, 137.1, 137.0, 136.4,

133.1, 129.8, 129.4, 129.1, 128.5, 127.7, 127.2, 126.4, 120.7, 60.6, 56.6, 51.6, 40.4, 14.2.

FTIR (thin film) 3059, 2981, 2934, 2842, 1714, 1681, 1639, 1618, 1598, 1503,

1447 cm1.

HRMS (ESI) calc. for C24H21NNaO3 [M+Na] 394.1413, found 394.1421.



EtO 2C 0

Me

CI

Table 2.1.2, entry 9. Method A was employed, except that CH2C12

(0.2 mL)/toluene (2.0 mL) was used as the solvent, due to the low substrate solubility of

the enone in toluene: Enone (98.7 mg, 0.400 mmol), ethyl 2,3-butanedienoate (56 tL,

0.48 mmol), and (R)-2.1 (14.7 mg, 0.040 mmol). Purification by flash chromatography

(5--40% Et20 in pentane) furnished the product (80.0 mg, 56%; >20:1 rs).

HPLC analysis: 89% ee [Daicel CHIRALCEL OD-H; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 12.4 min, (major) 22.3 min].

Second run: Enone (98.7 mg, 0.400 mmol), ethyl 2,3-butanedienoate (56 RL,

0.48 mmol), and (S)-2.1 (14.7 mg, 0.040 mmol). 73.0 mg (51%), >20:1 rs, 89% ee.

[a]20D = +2500 (c=0.24, CH 2C12).

1H NMR (300 MHz) 8 7.24 (dt, J=8.5 Hz, J=2.0 Hz, 2H), 7.12 (dt, J=8.5 Hz,

J=2.0 Hz, 2H), 7.03 (m, 1H), 6.86 (d, J=3.6 Hz, 1H), 6.06 (dd, J=3.6 Hz, J=0.9 Hz, 1H),

4.51 (m, 1H), 4.10 (q, J=7.1 Hz, 2H), 3.59 (dt, J=9.1 Hz, J=6.0 Hz, 1H), 3.14 (ddt,

J=18.8 Hz, J=8.8 Hz, J=2.5 Hz, 1H), 2.64 (m, 1H), 2.29 (s, 3H), 1.15 (t, J=7.1 Hz, 3H).

13C NMR (75 MHz) 6 188.2, 163.9, 158.7, 151.2, 145.2, 143.2, 135.2, 132.7,

128.9, 128.5, 120.7, 109.3, 60.7, 60.5, 48.8, 41.8, 14.2.

FTIR (thin film) 3122, 3063, 3027, 2982, 2927, 1715, 1668, 1588, 1515, 1493,

1444 cm1'.

HRMS (ESI) calc. for C20H19C1NaO 4 [M+Na] 381.0864, found 381.0879.



Et02C 0

Table 2.1.2, entry 10. Method A was employed: Enone (85.7 mg, 0.400 mmol),

ethyl 2,3-butanedienoate (56 [tL, 0.48 mmol), and (R)-2.1 (14.7 mg, 0.040 mmol).

Purification by flash chromatography (5-25% Et20 in pentane) furnished the product as a

5:1 mixture of regioisomers (96.9 mg, 74%).

HPLC analysis: 90% ee [Daicel CHIRALCEL OD-H; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 11.9 min, (major) 14.8 min].

Second run: Enone (85.7 mg, 0.400 mmol), ethyl 2,3-butanedienoate (56 [L,

0.48 mmol), and (S)-2.1 (14.7 mg, 0.040 mmol). 95.7 mg (73%), 6:1 rs, 89% ee.

1H NMR (300 MHz) 6 7.59 (dd, J=5.0 Hz, J=l.1 Hz, 1H), 7.38 (dd, J=3.8 Hz,

J=1.1 Hz, 1H), 7.35-7.16 (m, 6H), 7.10 (m, 1H), 4.69 (m, 1H), 4.12 (m, 2H), 3.64 (dt,

J=9.1 Hz, J=5.5 Hz, 1H), 3.19 (ddt, J=19.0 Hz, J=9.6 Hz, J=2.5 Hz, 1H), 2.73 (m, 1H),

1.15 (t, J=7.1 Hz, 3H).

13C NMR (75 MHz) 8 193.5, 163.9, 145.5, 144.8, 144.2, 135.3, 134.4, 132.9,

129.0, 128.2, 127.2, 127.0, 61.9, 60.7, 49.5, 42.2, 14.1.

FTIR (thin film) 3086, 3063, 3028, 2981, 2934, 2905, 1715, 1652, 1603, 1517,

1493 cm1.

HRMS (ESI) calc. for C19H18NaO3S [M+Na] 349.0869, found 349.0878.

Table 2.1.2, entry 11. Method A was employed: Enone (90.5 mg, 0.400 mmol),

ethyl 2,3-butanedienoate (56 [tL, 0.48 mmol), and (R)-2.1 (14.7 mg, 0.040 mmol).



Purification by flash chromatography (2-15% Et20O in pentane) furnished the product as a

6:1 mixture of regioisomers (85.3 mg, 63%).

HPLC analysis: 84% ee [Regis (R,R)-Whelk-02; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 13.2 min, (major) 21.6 min].

Second run: Enone (90.5 mg, 0.400 mmol), ethyl 2,3-butanedienoate (56 1tL,

0.48 mmol), and (R)-2.1 (14.7 mg, 0.040 mmol). 89.1 mg (66%), 5:1 rs, 85% ee.

'H NMR (300 MHz) 6 8.12 (m, 2H), 7.58 (tt, J=7.0 Hz, J=1.0 Hz, 1H), 7.47 (m,

2H), 6.93 (dd, J=2.5 Hz, J=1.5 Hz, 1H), 4.86 (m, 1H), 4.08 (m, 2H), 3.20 (m, 1H), 2.99

(m, 1H), 2.66 (m, 1H), 2.15 (m, 2H), 1.46 (m, 2H), 1.37-1.24 (m, 4H), 1.11 (t, J=7.0 Hz,

3H), 0.87 (m, 3H).

13C NMR (75 MHz) 6 200.7, 163.9, 144.3, 136.9, 135.7, 133.4, 129.1, 128.7,

82.9, 81.9, 60.7, 58.9, 41.2, 34.6, 31.2, 28.7, 22.4, 18.9, 14.2.

FTIR (thin film) 3063, 1716, 1683, 1640, 1597, 1580, 1465, 1448 cm - .

HRMS (ESI) calc. for C22H26NaO3 [M+Na] 361.1774, found 361.1789.

Table 2.1.2, entry 12. Method A was employed: Enone (109 mg, 0.400 mmol),

ethyl 2,3-butanedienoate (56 pL, 0.48 mmol), and (R)-2.1 (14.7 mg, 0.040 mmol).

Purification by flash chromatography (5-20% Et20 in pentane) furnished the product

(109 mg, 71%; >20:1 rs).

HPLC analysis: 86% ee [Regis (R,R)-Whelk-02; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 10.5 min, (major) 14.5 min].

Second run: Enone (109 mg, 0.400 mmol), ethyl 2,3-butanedienoate (56 [tL,

0.48 mmol), and (S)-2.1 (14.7 mg, 0.040 mmol). 104 mg (68%), >20:1 rs, 87% ee.

[a]20D = +1880 (c=0.23, CH 2C12).



1H NMR (300 MHz) 8 8.14 (m, 2H), 7.59 (m, 1H), 7.48 (m, 2H), 6.93 (m, 1H),

4.94 (m, 1H), 4.10 (m, 2H), 3.26 (dt, J=9.1 Hz, J=6.6 Hz, 1H), 3.06 (ddt, J=18.3 Hz,

J=8.9 Hz, J=2.5 Hz, 1H), 2.74 (m, 1H), 1.13 (t, J=7.1 Hz, 3H), 0.97 (t, J=7.7 Hz, 9H),

0.58 (q, J=8.0 Hz, 6H).

13C NMR (75 MHz) 8 200.5, 163.8, 143.9, 136.9, 135.6, 133.4, 129.1, 128.6,

109.2, 84.3, 60.7, 58.8, 41.1, 35.2, 14.1, 7.6, 4.5.

FTIR (thin film) 3063, 2173, 1716, 1684, 1642, 1597, 1580, 1448 cm1.

HRMS (ESI) calc. for C23H30NaO3Si [M+Na] 405.1856, found 405.1874.

Table 2.1.2, entry 13. Method B was employed: Enone (76 mg, 0.38 mmol),

ethyl 2,3-butanedienoate (93 [L, 0.80 mmol), and (R)-2.1 (14.7 mg, 0.040 mmol).

Purification by flash chromatography (2-12% Et20O in pentane) furnished the product

(48.9 mg, 41%; >20:1 rs).

HPLC analysis: 75% ee [Daicel CHIRALCEL OD-H; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 10.5 min, (major) 14.5 min].

Second run: Enone (76 mg, 0.38 mmol), ethyl 2,3-butanedienoate (93 [LL,

0.80 mmol), and (R)-2.1 (14.7 mg, 0.040 mmol). 43.0 mg (56%) of the enone was

recovered. 43.5 mg (37%), >20:1 rs, 75% ee.

[a]20D= - 12 50 (c=1.5, CDC13).

1H NMR (300 MHz) 8 8.03 (d, J=7.3 Hz, 2H), 7.58 (t, J=7.3 Hz, 1H), 7.49 (t,

J=7.4 Hz, 2H), 7.00 (m, 1H), 4.50 (m, 1H), 4.08 (m, 2H), 2.84 (m, 1H), 2.48 (m, 1H),

2.26 (m, 1H), 1.62-1.45 (m, 2H), 1.32-1.18 (m, 6H), 1.11 (t, J=7.1 Hz, 3H), 0.83 (t, J=6.7

Hz, 3H).

13C NMR (75 MHz) 8 202.3, 164.5, 145.9, 137.5, 136.1, 133.2, 128.9, 128.8,

60.6, 57.7, 44.5, 39.1, 36.2, 31.9, 27.5, 22.8, 14.24, 14.21.



FTIR (thin film) 2956, 2927, 2855, 2871, 1714, 1681, 1637, 1447, 1372 cm1.

HRMS (ESI) calc. for C20H26NaO3 [M+Na] 337.1774, found 337.1782.

Br

OBn

Table 2.1.2, Entry 14. Method A was employed: Enone (157 mg, 0.400 mmol),

ethyl 2,3-butanedienoate (56ptL, 0.48 mmol), and (S)-2.1 (14.7 mg, 0.040 mmol).

Purification by flash chromatography (2-25% Et20 in hexanes) furnished the product as a

7:1 mixture of regioisomers (125mg, 62%).

HPLC analysis: 86% ee [Daicel CHIRALCEL AD-H; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 19.2 min, (major) 24.2 min].
1H NMR (300 MHz, CDC13) 6 7.63 (m, 2H), 7.51-7.35 (m, 7H), 7.14-7.07 (m,

3H), 6.93 (m, 2H), 5.07 (s, 2H), 4.78 (m, 1H), 4.14 (m, 2H), 3.52 (dt, J=9.1 Hz, J=5.5 Hz,

1H), 3.16 (ddt, J=19.0 Hz, J=9.1 Hz, J=2.4 Hz, 1H), 2.70 (m, 1H), 1.18 (t, J=7.1 Hz, 3H).

13C NMR (75 MHz, CDC13) 6 200.1, 164.1, 157.9, 145.3, 137.02, 136.99, 135.5,

135.4, 131.9, 130.4, 128.7, 128.4, 128.2, 128.0, 127.64, 127.60, 115.4, 70.1, 60.7, 60.6,

48.5, 42.4, 14.2.

FTIR (thin film) 3064, 3033, 2980, 2934, 2870, 1716, 1683, 1568, 1584,

1511 cm-.

HRMS (ESI) calc. for C28H25NaO4 [M+Na] 527.0828, found 527.0844.

EtO 2C 0

Eq 2.1.12. Method B was employed: Enone (110 mg, 0.400 mmol), ethyl 2,3-

butanedienoate (93 [L, 0.80 mmol), and (R)-2.1 (14.7 mg, 0.040 mmol). Purification by



flash chromatography (2-25% Et2O in pentane) furnished the product as a single

regioisomer (159 mg, 97%).

HPLC analysis: 89% ee [Daicel CHIRALCEL OD-H; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 8.6 min, (major) 11.6 min].

Second run: Enone (110 mg, 0.400 mmol), ethyl 2,3-butanedienoate (93 ViL,

0.80 mmol), and (S)-2.1 (14.7 mg, 0.040 mmol). 158 mg (96%), 88% ee.

[a]20D= +91.40 (c=0.14, CH2C12).

1H NMR (300 MHz) 8 7.63 (d, J=8.0 Hz, 1H), 7.42 (dd, J=1.2 Hz, J=8.0 Hz, 1H),

7.26 (s, 1H), 7.16 (t, J=2.5 Hz, 1H), 7.15-7.09 (m, 3H), 7.01-6.95 (m, 2H), 4.10 (t, J=8.8

Hz, 1H), 4.01 (t, J=7.1 Hz, 2H), 2.96 (m, 2H), 2.93 (br s, 2H), 1.02 (t, J=7.1 Hz, 3H).

13C NMR (75 MHz) 6 208.1, 163.4, 154.7, 146.1, 139.7, 138.3, 136.1, 130.8,

130.1, 129.2, 128.4, 127.9, 127.3, 124.9, 64.6, 60.6, 53.7, 36.4, 34.4, 13.9.

FTIR (thin film) 3407, 3061, 3029, 2981, 1700, 1628, 1596, 1496 cm 1 .

HRMS (EI) calc. for C22H19BrO3 [M] 410.0512, found 410.0523.

Eq 2.1.13. Method B was employed: Enone (93.7 mg, 0.400 mmol), ethyl 2,3-

butanedienoate (93 [lL, 0.80 mmol), and (R)-2.1 (14.7 mg, 0.040 mmol). Purification by

flash chromatography (2-30% Et20 in pentane) furnished the product as a single

regioisomer (46.0 mg, 33%).

HPLC analysis: 96% ee [Daicel CHIRALCEL OD-H; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 8.4 min, (major) 9.6 min].

Second run: Enone (93.7 mg, 0.400 mmol), ethyl 2,3-butanedienoate (93 [tL,

0.80 mmol), and (S)-2.1 (14.7 mg, 0.040 mmol). 42.4 mg (31%), 93% ee.

[a]20D= +1060 (c=0.21, CH2C12).



1H NMR (300 MHz) 8 8.10 (dd, J=7.7 Hz, J=1.4 Hz, 1H), 7.38 (ddd, J=8.4 Hz,

J=8.4 Hz, J=1.6 Hz, 1H), 7.28 (m, 1H), 7.24-7.16 (m, 5H), 7.12 (dd, J=2.4 Hz, J=2.4 Hz,

1H), 6.98 (d, J=7.7 Hz, 1H), 4.30 (dd, J=9.6 Hz, J=8.1 Hz, 1H), 4.05 (q, J=7.1 Hz, 2H),

3.00 (ddd, J=9.6 Hz, J=8.5 Hz, J=2.2 Hz, 1H), 2.84 (ddd, J=10.1 Hz, J=7.9 Hz, J=3.1 Hz,

1H), 2.48 (m, 1H), 2.36-2.23 (m, 1H), 2.06-1.88 (m, 2H), 1.05 (t, J=7.2 Hz, 3H).

13C NMR (75 MHz) 8 200.1, 163.9, 145.1, 144.0, 142.3, 139.6, 133.4, 133.2,

128.6, 128.4, 127.9, 127.4, 126.6, 61.3, 60.6, 54.3, 35.7, 28.1, 25.6, 13.9.

FTIR (thin film) 3063, 3029, 2981, 2933, 1953, 1715, 1674, 1633, 1600, 1496,

1455 cm"1.

HRMS (ESI) calc. for C23H22NaO3 [M+Na] 369.1461, found 369.1475.

Table 2.1.4, Entry 1. Method B was employed: Enone (93.7 mg, 0.400 mmol),

ethyl 2,3-butanedienoate (93 [lL, 0.80 mmol), and (R)-2.1 (14.7 mg, 0.040 mmol).

Purification by flash chromatography (2-30% Et20 in pentane) furnished the product

(104 mg, 75%; >20:1 rs).

HPLC analysis: 89% ee [Daicel CHIRALCEL OD-H; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 10.2 min, (major) 34.4 min].

Second run: Enone (93.7 mg, 0.400 mmol), ethyl 2,3-butanedienoate (93 JAL, 0.80

mmol), and (R)-2.1 (14.7 mg, 0.040 mmol). 103 mg (74%), >20:1 rs, 89% ee.

[a]20D = -1660 (c=0.050, CH2C12).
1H NMR (300 MHz) 8 7.42-7.29 (m, 8H), 7.29-7.23 (m, 3H), 7.06 (m, 1H), 6.76

(d, J=16.2 Hz, 1H), 4.41 (m, 1H), 4.18 (m, 2H), 3.61 (dt, J=8.6 Hz, J=5.9 Hz, 1H), 3.18

(ddt, J=9.9 Hz, J=8.9 Hz, J=2.6 Hz, 1H), 2.73 (ddt, J=19.0 Hz, J=5.8 Hz, J=2.2 Hz, 1H),

1.25 (t, J=6.9 Hz, 3H).



13C NMR (75 MHz) 8 200.1, 164.2, 145.1, 144.9, 144.1, 135.5, 134.6, 130.6,

129.1, 128.9, 128.5, 127.1, 127.1, 125.7, 63.3, 60.7, 48.8, 42.0, 14.3.

FTIR (thin film) 3061, 3027, 1714, 1687, 1660, 1609, 1576, 1494, 1449 cm1.

HRMS (ESI) calc. for C23H22NaO3 [M+Na] 369.1461, found 369.1478.

Table 2.1.4, Entry 2. Ethyl-2,3-butadienoate (15 mg, 0.134 mmmol) and the

enone (30.5 mg, 0.134 mmol) were combined in toluene (0.75 mL) and PPh3 (3.5 mg,

0.013 mmmol) was added. The solution was stirred for 22 h at room temperature. The

reaction mixture was purified directly by flash chromatography (2-10% Et20 in pentane)

to yield 30.5 mg (67%) of a clear oil determined to be approximately a 1:1 mixture of the

above isomers by 1H NMR.

(left isomer, aromatic protons are unassigned) 1H NMR (500 MHz) 8 7.67 (d,

J=15.9 Hz, 1H), 6.98 (m, 1H), 6.88 (d, J=15.9 Hz, 1H), 4.21-4.11 (m, 2H), 3.87 (m, 1H),

2.84 (ddt, J=18.6 Hz, J=8.3 Hz, J=2.5 Hz, 1H), 2.48 (m, 1H), 2.24 (ddt, J=18.6 Hz, J=4.6

Hz, J=2.4 Hz, 1H), 1.58 (m, 1H), 1.49 (m, 1H), 1.36-1.18 (m, 9H), 0.87 (m, 3H).

(right isomer, aromatic protons are unassigned) 1H NMR (500 MHz) 8 7.02 (m,

1H), 6.62 (dt, J=15.8 Hz, J=7.0 Hz, 1H), 6.11 (dt, J=15.8 Hz, J=1.5 Hz, 1H), 4.30 (m,

1H), 4.21-4.11 (m, 2H), 3.49 (m, 1H), 3.13 (ddt, J=18.9 Hz, J=8.9 Hz, J=2.5 Hz, 1H),

2.68 (ddt, J=18.9 Hz, J=5.8 Hz, J=2.3 Hz, 1H), 2.11 (m, 1H), 1.36-1.18 (m, 9H), 0.89 (m,

3H).



EtO 2C 0 Cl

Table 2.1.4, Entry 3. Method B was employed: Enone (121 mg, 0.400 mmol),

ethyl 2,3-butanedienoate (93 [tL, 0.48 mmol), and (R)-2.1 (14.7 mg, 0.040 mmol).

Purification by flash chromatography (225% Et20 in pentane) furnished the product (109

mg, 66%; >20:1 rs).

HPLC analysis: 74% ee [Daicel CHIRALCEL OD-H; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 10.5 min, (major) 16.4 min].

Second run: Enone (121 mg, 0.400 mmol), ethyl 2,3-butanedienoate (93 [LL, 0.48

mmol), and (S)-2.1 (14.7 mg, 0.040 mmol). 114 mg (69%), >20:1 rs, 72% ee.

[a]20D = +1560 (c=0.33, CH 2C1 2).

'H NMR (300 MHz) 8 7.57 (d, J=16.5 Hz, 1H), 7.34-7.22 (m, 7H), 7.14 (dd,

J=7.5 Hz, J=8.5 Hz, 1H), 7.07 (dd, J=2.5 Hz, J=4.5 Hz, 1H), 6.89 (d, J=16.5 Hz, 1H),

4.37 (m, 1H), 4.19 (m, 2H), 3.69 (dt, J=8.8 Hz, J=6.0 Hz, 1H), 3.16 (ddt, J=19.0 Hz,

J=9.1 Hz, J=2.5 Hz, 1H), 2.72 (ddt, J=19.0 Hz, J=5.9 Hz, J=2.4 Hz, 1H), 1.25 (t, J=7.1

Hz, 3H).

13C NMR (75 MHz) 6 199.7, 164.0, 145.4, 144.4, 136.9, 135.3, 135.2, 133.3,

132.3, 129.9, 129.0, 128.9, 127.1, 127.05, 63.5, 60.8, 48.7, 41.4, 14.3.

FTIR (thin film) 3063, 3028, 2981, 1715, 1669, 1616, 1578, 1556, 1494 cm1 .

HRMS (EI) calc. for C23H20 C120 3 [M] 414.0784, found 414.0777.

EtO 2C 0 C

Me

Table 2.1.4, Entry 4. Ethyl-2,3-butadienoate (122 mg, 1.087 mmmol) and the

enone (308 mg, 1.087 mmol) were combined in toluene (3.0 mL) and PPh 3 (29 mg,



0.109 mmmol) was added. The solution was stirred for 16 h at room temperature. The

reaction mixture was purified directly by flash chromatography (2-12% Et20O in pentane)

to yield 297 mg (69%) of a yellow oil.

'H NMR (500 MHz, CDCl3) 8 7.73 (d, J=16.5 Hz, 1H), 7.36 (d, J=8.2 Hz, 2H),

7.19 (t, J=8.2 Hz, 1H), 6.99 (d, J=16.5 Hz, 1H), 6.99 (m, 1H), 4.21-4.11 (m, 2H), 3.86

(m, 1H), 2.83 (ddt, J=18.6 Hz, J=8.2 Hz, J=2.5 Hz, 1H), 2.49 (m, 1H), 2.25 (ddt, J=18.6

Hz, J=4.9 Hz, J=2.5 Hz, 1H), 1.63 (m, 1H), 1.50 (m, 1H), 1.35-1.30 (m, 4H), 1.24 (t,

J=7.2 Hz, 3H), 0.89 (m, 3H).

Table 2.1.4, Entry 5. Method B was employed: Enone (110 mg, 0.400 mmol),

ethyl 2,3-butanedienoate (93 VtL, 0.80 mmol), and (R)-2.1 (14.7 mg, 0.040 mmol).

Purification by flash chromatography (2-25% Et20 in pentane) furnished the product

(84.4 mg, 55%).

HPLC analysis: 93% ee [Daicel CHIRALCEL OD-H; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 7.3 min, (major) 10.4 min].

Second run: Enone (110 mg, 0.400 mmol), ethyl 2,3-butanedienoate (93 i[L, 0.80 mmol),

and (S)-2.1 (14.7 mg, 0.040 mmol). 92.0 mg (59%), 93% ee.

[a]20D = +4420 (c=0.13, CH2C12).

1H NMR (300 MHz) 8 7.69 (m, 1H), 7.43-7.21 (m, 10H), 7.02 (dd, J=3.0 Hz,

J=2.2 Hz, 1H), 4.25-4.16 (m, 3H), 2.97 (ddd, J=18.1 Hz, J=10.4 Hz, J=2.1 Hz, 1H), 2.84-

2.76 (m, 1H), 2.76-2.71 (m, 1H), 2.57 (m, 1H), 2.05-1.87 (m, 2H), 1.40-1.25 (m, 1H),

1.26 (t, J=7.0 Hz, 3H), 0.39 (m, 1H).
13C NMR (75 MHz) 8 205.2, 163.9, 143.6, 143.5, 138.9, 137.2, 136.14, 136.09,

130.4, 128.7, 128.50, 128.48, 128.39, 127.40, 62.7, 60.6, 56.1, 35.4, 29.1, 28.3, 20.1,
14.2.



FTIR (thin film) 3060, 3027, 2934, 2870, 1715, 1674, 1594, 1491, 1446 cm1.

HRMS (EI) calc. for C25H2603 [M] 386.1876, found 386.1887.

Table 2.1.4, Entry 6. Method B was employed: Enone (104 mg, 0.400 mmol),

ethyl 2,3-butanedienoate (93 [tL, 0.80 mmol), and (R)-2.1 (14.7 mg, 0.040 mmol).

Purification by flash chromatography (2-25% Et20 in pentane) furnished the product

(118 mg, 79%).

HPLC analysis: 89% ee [Daicel CHIRALCEL OD-H; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 8.2 min, (major) 18.2 min].

Second run: Enone (104 mg, 0.400 mmol), ethyl 2,3-butanedienoate (93 tL,

0.80 mmol), and (S)-2.1 (14.7 mg, 0.040 mmol). 122 mg (82%), 89% ee. [a]20D = +1000

(c=0.23, CH2Cl2).

1H NMR (300 MHz) 8 7.50 (m, 1H), 7.43-7.18 (m, 10H), 7.10 (dd, J=2.4 Hz,

J=2.4 Hz, 1H), 4.14 (q, J=7.2 Hz, 2H), 3.94 (app t, J=8.7 Hz, 1H), 2.96 (ddd, J=18.1 Hz,

J=9.6 Hz, J=1.9 Hz, 1H), 2.85 (ddd, J=18.2 Hz, J=8.3 Hz, J=2.9 Hz, 1H), 2.73 (m, 1H),

2.05 (m, 2H), 1.70 (m, 1H), 1.22 (t, J=7.2 Hz, 3H).

13C NMR (75 MHz) 8 210.7, 163.6, 145.3, 140.5, 138.8, 136.7, 135.8, 132.9,

130.8, 129.3, 128.7, 128.5, 128.4, 127.4, 64.5, 60.6, 54.4, 36.5, 27.2, 26.7, 14.2.

FTIR (thin film) 3061, 3027, 2979, 2938, 1700, 1623, 1574, 1492, 1448 cm1.

HRMS (EI) calc. for C2 5H240 3 [M] 372.1720, found 372.1716.



Table 2.1.5, Entry 1. To a slurry of CuBr'SMe2 (2.8 mg, 0.014 mmol) in THF

(1.25 mL) at -78 'C was added HMPA (48 ptL, 0.28 mmol), followed by EtMgBr (3.0 M

in Et20; 138 mL, 0.41 mmol). After 5 min, a solution of the [3+2] adduct (53.0 mg,

0.138 mmol; 86% ee; derived from a cycloaddition catalyzed by (R)-2.1 and TMSC1

(35 .L, 0.28 mmol) in THF (1.25 mL) was added dropwise. The mixture was stirred for

2 h at -78 *C. Then, a solution of saturated NH4CI was added, and the aqueous layer was

extracted with Et20O (5 x 3 mL). The extracts were washed with brine, dried over MgSO4,

filtered, and concentrated. The resulting residue was purified by flash chromatography

(2-10% Et20 in pentane), which furnished 33.5 mg (62%) of the desired compound.

HPLC analysis: 84% ee [Regis (R,R)-Whelk-02; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 6.3 min, (major) 8.1 min].

Second run: CuBr'SMe2 (2.7 mg, 0.013 mmol), HMPA (44 mL, 0.25 mmol),

EtMgBr (3.0 M in Et20O; 125 mL, 0.375 mmol), [3+2] adduct (48.0 mg, 0.125 mmol,

86% ee; from (R)-2.1, and TMSC1 (32 AL, 0.25 mmol). 31.5 mg (61%), 85% ee.

[a]20D = -79o (c=0.050, CH2C12).

1H NMR (300 MHz) 8 7.98 (m, 2H), 7.56 (m, 1H), 7.45 (m, 2H), 4.22 (dd, J=9.9

Hz, J=7.1 Hz, 1H), 3.83 (q, J=7.2 Hz, 2H), 3.19 (dt, J=9.4 Hz, J=6.9 Hz, 1H), 2.93 (m,

1H), 2.49-2.35 (m, 2H), 1.76 (m, 1H), 1.49 (m, 1H), 1.33 (m, 1H), 0.90-0.97 (m, 15H),

0.53 (q, J=7.9 Hz, 6H).

13C NMR (75 MHz) 8 199.6, 173.1, 137.0, 133.3, 128.8, 128.7, 110.1, 83.2, 60.6,

55.9, 53.2, 44.1, 39.5, 34.5, 28.2, 14.0, 12.6, 7.7, 4.6.

FTIR (thin film) 2957, 2911, 2875, 2168, 1737, 1683, 1597, 1459, 1448 cm 1 .

HRMS (ESI) calc. for C25H36NaO3Si [M+Na] 435.2326, found 435.2322.



EtOC

Me
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Table 2.1.5, Entry 2. The procedure used for Table 2.1.5, entry 1 was employed:

CuBr-SMe2 (2.5 mg, 0.012 mmol) in THF (1.0 mL), then HMPA (43 pL, 0.25 mmol),

EtMgBr (3.0 M in Et20; 125 ptL, 0.37 mmol), the [3+2] adduct (62.0 mg, 0.123 mmol;

86% ee), and TMSC1 (32 ptL, 0.25 mmol) in THF (1.0 mL). Yield: 43.0 mg (65%).

Crystals suitable for X-ray crystallography were grown by dissolving the

compound in a boiling solution of hexane/Et20 and allowing thesolution to cool to r.t.

HPLC analysis: 84% ee [Daicel CHIRALCEL AD-H; solvent system: 10%

isopropanol/hexanes; retention times: (minor) 9.8 min, (major) 15.2 min].

[a]20D = +540 (c=0.065, CH2C12).
1H NMR (300 MHz, CDC13) 6 7.62 (m, 2H), 7.50 (m, 2H), 7.43-7.31 (m, 5H),

7.15 (m, 2H), 6.87 (m, 2H), 5.01 (s, 2H), 4.04 (dd, J=10.5 Hz, J=9.3 Hz, 1H), 3.83 (m,

2H), 3.63 (m, 1H), 3.02 (dd, J=10.5 Hz, J=9.0 Hz, 1H), 2.57-2.37 (m, 2H), 1.78 (m, 1H),

1.54 (m, 1H), 1.39 (m, 1H), 0.96 (t, J=7.4 Hz, 3H), 0.94 (t, J=7.1 Hz, 3H).
13C NMR (75 MHz, CDC13) 6 199.1, 173.3, 157.7, 137.2, 136.1, 135.7, 131.9,

130.2, 128.8, 128.5, 128.3, 128.2, 127.7, 115.1, 70.2, 60.7, 56.9, 54.2, 47.4, 45.1, 41.2,

28.1, 14.0, 12.7.

FTIR (thin film) 3062, 3033, 2961, 2931, 2858, 1733, 1678, 1584, 1512 cm'.

HRMS (ESI) calc. for C30H31BrNaO4 [M+Na] 557.1298, found 557.1298.
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F. 1H NMR for Selected Compounds

101



0

/0

0)

M

Jc(

Cý

102



U,
0

E
CL.

CL
Lf

103

}NJ
C'Cj

cl



~jI~

C/)

I-

0

104

77

E0.n

toa

or,

- c'

- U,

-i

, , ,

I ,



-C,

- In

t-co
a)Lu

iN

105



0,

/

E
-C

t1.

N}oC,"

106

Cvj

N(o

t C



E
0.

a!0.

1-

co

107

a



0

/

108

E

-14 o

C3,

S0

o

ca

-cO

-mC



F
1-

109

GCL

F·

IN
- }"J

1K

JO

c;

-I O~

1

f



'0-

E-a
a

- N.

-C"

t'-

o-i

14

-0

F

110

co

.JCýIco

-(p

I



E

'-4

V

}o
C"

0

}ea

o

QO10
14

L

to

cc

0r,

111

j



a,

0O

49
UJ0v C

[
I-

- '-4

112

-N

tm

LO

- }

- 0'



E

- 4l

- C

LO

- (b

cl•

co

Cý

I

do

Srl

,-4

to

U2,

cnlcolc

C3

113

-0



114

E

a.

- -

IN- NN

CY

co

C)cJ

- co



- J cm

in

C!~

o

cn

I ceK

c

II

C!1i
12

o9

1~r~

115



~T

1lJ2

C

N
*4)

} I

116



toor

iN-t-

-0,

117

K
CY)

00

-L

·- Lf o

Co



o P0

1

K

118

ct
- 1 .

-,

-cO

1



S

J,w
O
0C

SN

1•.

,-' t

ct
'r' i

lcoCD

- to

oIi
C

N

119



.1-0

E

J.r=

120

* iN

cli

-(01 at%

-c



I

121

o

E

- C

- CD

C K
-N -o

-,-

!04 ]-

I



I L

J-

Cco

Lr) O

-r-.

Ln

122

C K>

clt

F

i



a i

0

I --
0.
0.

llý
C'i

Cý
Ln

Ln

123

I

U,

1r)

CV)

1· av,

123



/

O0

wl

E

124

-o o

cc

coCN



,-
",,0..

E

c1

-(0

125

1t1
CI
c,,.

J

coct14
a

RI
}.

1 '

----------



-O

- 0'

1

1, -om

a,

C3
) ,, 0

--4m

D.d

i-a>

126



O C•

a

- N

I ,,-4

' .

1w

[-4

OIK4-

127



E

U

O

O
cu

O

w

128

CL

CIQ

co
12.

1) 0

-1I

L/1

c,,c

-CD



0

w

129

E

rzY

- CLo

o

-N

0

-•,,

o

co

-00



O

W4g41

130

2
Q

-,0

- Mo

- to,

00
-0M



1

fi
o"
O

w

Jw

131

E
0.
0.

CDCi

- m

- c

Ln

131



I-

.°
o6

NJ

Ci
cv'

1! h

Lh Co

-cCc

132



Section 2.2

Synthesis of Pyrrolines via Phosphine-Catalyzed Asymmetric [3+2]
Cycloadditions of Allenes with Imines
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A. Introduction

Pyrrolidines, compounds readily accessed from pyrrolines, are a common subunit

in a number of pharmaceuticals and natural products with important biological activity

(Scheme 2.2.1).1, 2,3 Proline, a pyrrolidine-based amino acid, and its derivatives play a

crucial role in the folding of peptides and peptide-mimics.4 Furthermore, a number of

useful organocatalytic processes that make use of pyrrolidine-based catalysts have been

developed.5 Considering the broad utility of pyrrolidine derivatives, the development of

methods for the asymmetric synthesis of this class of heterocycles is an important

objective.

Scheme 2.2.1. Structures of Pyrrolidines with Interesting Biological Activity.

n

H 90
2H

H H
-N M e

H
OMe 0

n-BU2N.N O~ý Me

0

(-)-Quinocarcin Martinelline Atrasentan (Xinlay)
Vine extracts traditionally used In Phase III clinical trials for

to treat conjunctivitis. the treatment of prostate cancer.

Popular approaches to enantioselective pyrrolidine synthesis include [3+2]

cycloadditions of azomethine ylids with olefins, olefin-hydroamination, and reduction of

cyclic imines. 6 Both Zhang and Schreiber have developed Ag(I)-catalyzed asymmetric

[3+2] cycloadditions (eq 2.2.1 and eq 2.2.2).7
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Ar'N "CO 2Me
CO 2Me

CO 2Me

3 mol% AgOAc
3.3 mol% (S,S,Sp)-

xylyl-FAP

i-Pr2NEt, toluene

MeO2C CO2Me

Ar N CO2Me
H

70-97% ee
73-98% yield

3 mol% AgOAc
CO2t-Bu 3 mol% (S)-QUINAP

Ar'N CO2 Me
i-Pr2NEt, THF

NH HN
CpFe• FeCp

PCpFe PAr2 Ar2P" &

(S, S, Sp)-xylyl-FAP
Ar = 3,5-diMe-C6H 3

t-BuO2C
"u 89-96% ee

Ar,")"'CO2Me 89-95% yield (2.2.2)

H

(S)-QUINAP

More recently, Toste and Widenhoefer have devised enantioselective

intramolecular allene hydroamination reations that are based on Au(I)-alkyne activation

(eq 2.2.3 and eq 2.2.4).8 This methodology is applicable to both the synthesis of

pyrrolidines and piperidines.
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3 mol% (R)-C1MeOBiPHEP(AuPNB) 2

DCE, r.t.
PNB = 3,5-dinitrobenzoate

2.5 mol% (S)-3,5-t-Bu-4-MeOBiPHEP
2.5 mol% Au2 C12
5.0 mol% AgC10 4

xylene, -40 OC

Ts

R2 R1

Cbz

R2 R1

41-99% yield
70-99% ee (2.2.3)

61-99% yield (2.2.4)
up to 91% ee

MeO PPh2
MeO PPh2

(R)-CMeOBiPHEP

(R)-ClMeOBiPHEP

MeO PAr 2MeO PAr 2

(S)-3,5-t-Bu-4-MeOBiPHEP
Ar = 3,5-t-Bu-C6H 3

In 1997, Lu and coworkers reported a phosphine-catalyzed [3+2] cycloaddition of

allenes and imines that provides access to a wide variety of 2,3-disubstituted pyrrolines

(see eq 2.1.6). 9 In 2005, Kwon reported an extension of this work that describes the

synthesis of 2,3,5-trisubstituted pyrrolines. 10 The mechanism of the cycloaddition is

believed be similar to that of the phosphine-catalyzed [3+2] cycloaddition of allenoates

with acrylates. However, the phosphonium zwitterion reacts with the imine to form a

bond with the a-carbon initially, whereas reactions with [-substituted olefins proceed by

attack from the y-carbon (Figure 2.2.1)."

Scheme 2.2.2. Divergent Regiochemical Pathways for Phosphine-Catalyzed [3+2]

Cycloadditions.
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Recently, Marinetti and Gladysz have disclosed their efforts towards the

development of catalytic asymmetric variants of this process (eq 2.2.4 and eq 2.2.6).12,13

However, these methods are not general and do not provide pyrrolines with synthetically

useful levels of enantiomeric excess.

CO 2Et

Ts N
10 mol% (S)-Phanephos

CH 2C12, r.t.

CO2Et

N
Ts

64% ee
32% yield (2.2.5)

CO 2Et
Ts.N Ar 20 mol% (S)-2.8

CH2C12, r.t.

(S)-Phanephos

CO2Et

N Ar

Re,

ON"' PPh3

PPh
2

52-60% ee
90-93% yield

(2.2.6)

(S)-2.8

Considering our earlier success in the application of catalyst 2.1 to both [3+2] and

[4+2] cycloadditions of allenes, 14 we were optimistic that we could improve upon the

systems reported by Marinetti and Gladysz.

B. Results and Discussion

We commenced our studies by examining derivatives of phosphepine 2.1, because

of its utility in related asymmetric phosphine-catalyzed cycloadditions. Again, the t-butyl

phosphepine 2.1 proved to be optimal. Routine reaction optimization led us to find that

the cycloadditions occur with the highest levels of enantioselectivity in CH2C12. 15

Adjustment of other parameters, such as temperature, concentration, and additives, were

found to have no positive impact on the enantioselectivity. 16
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Table 2.2.1. Survey of Phosphines for the Enantioselective [3+2] Cycloaddition of

Allenoates and Imines.

CO2Et .Ts 10 mol% phosphine
NPh

Ph l solvent, r.t.

CO2Et

N Ph

entry phosphine solvent yield (%) ee(%)

1 (R)-2.1 toluene 80 55

2 (R)-2.3 toluene 79 9

3 (R)-2.1 CH 2C12  80 69

4 (R)-2.6 CH 2C12  69 9

5 (R)-2.4 CH 2C12 65 33

We then turned our attention to the modification of the allenoate ester. A

secondary alkyl ester provided little improvement (Table 2.2.2, entry 2) and a t-butyl

ester resulted in a substantial decrease in selectivity (Table 2.2.2, entry 3). Although we

obtained encouraging initial results with benzylic (Table 2.2.2, entries 5, 7, 16, and 17),

allylic (Table 2.2.2, entries 4 and 8), and propargylic esters (Table 2.2.2, entries 9, 10,

and 11), the enantioselectivity of the process remained modest. Other derivatives that

were explored included homobenzylic (Table 2.2.2, entries 12 and 13), fluorenyl (Table

2.2.2, entry 14), and methylenefluorenyl (Table 2.2.2, entry 15). Although, this final

example provided pyrrolines with exceptional enantiomeric excess, the ester substituent

underwent elimination when trialkylphosphines (e.g. 2.1) were employed resulting in

catalyst deactivation by phosphine protonation.
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Table 2.2.2. Allene Optimization in the Enantioselective [3+2] Cycloaddition of

Allenoates and Imines.

C02R ,TsNTS 10 mol% (S)-2.1

CH2C12

C02R

N Ph

Ts

entry R yield (%)a ee (%) entry R yield (%)a ee (%)

1 Et 75 69 12 Ph 99 70

2 Cy 87 >70

3 t-Bu 86 32 13 -(85 70

4 allyl 66 76

5 Bn 81 75

6 Ph 32 51 14 85 82

7 CHPh2  89 79

Ph 15 8 88

9 89 81

TMS
10 TMS 87 83 16 - 80 76

Me

11 Me 89 73 17 91 79

a Isolated yield.

The effect of the imine protecting group was also investigated. In the hope that we

would uncover a pair of substrates that would interact cooperatively to provide increased

levels of enantioselectivity, we investigated o-tosyl- and methanesulfonyl-protected

imines with a selection of our most promising allenes from Table 2.2.2. o-Tosyl-

protected imines when paired with a variety of allenes lead to decreased yields while

leaving the ee unaffected (Table 2.2.3, Entries 1-4). Methanesulfonyl-protected imines

provide no advantage over the p-tosyl-protecting group with a variety of allenes (Table

2.2.3, Entries 5 and 6).
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Table 2.2.3. Imine Optimization in Enantioselective [3+2] Cycloaddition of Allenoates

and Imines.

CR .R
2  10 mol% (R)-2.1 CR

Ph

Ph CH 2CI2 or N

toluene, r.t.

N\ ý N N N N
TsTs o-Ts o-Ts sMs

Entry 1, Entry 2, Entry 3, Entry 4, Entry 5, Entry 6,
68% ee 70% ee, 76% ee, 81% ee, 66% ee, 82% ee,

68% yield 62% yield 39% yield 40% yield 88% yield 98% yield

o-Ts = o-CH 3C6H 4SO 2-; Ms = CH3SO 2-

We then investigated a selection ofp-tosyl-imines with one of our more

promisting allene substrates to probe the electronic effects of the imine substituent. Both

electron-rich and electron-deficient imines are suitable reaction partners. However, the

enantioselectivity decreases for both electron-poor imines and imines containing an ortho

substituent. 17 Heterocyclic imines react to provide pyrrolines in good yield and modest

selectivity.

We have also surveyed a number of aliphatic imines, but the yields and

enantioselectivity for cycloadditions with these imines is significantly worse than

cycloadditions of aromatic imines.

Table 2.2.4. Examples of Enantioselective [3+2] Cycloadditions of Allenes and Imines.
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C0 2R ,TsNAr

Ar

10 mol% (R)-2.1

CH2C12, r.t.

CO2R

&ýýAr

Ts

entry Ar yield (%)a ee(%)

1 4-OMe-C 6H4  87 81

2 4-Cl-C6H4  84 70

3 3-furyl 88 63

4 3,4-OMe-C 6H4  88 70

R = CH 2-2-naphthyl. Data are for the average of two runs.
alsolated yield.

C. Conclusions.

An efficient, enantioselective phosphine-catalyzed [3+2] cycloaddition of

allenoates with imines has been developed. The selectivity of the reaction has been

shown to be sensitive to modifications of the allenoate ester substituent. Although the

system we have developed is the most general and highly enantioselective reported for

this process to date, much remains to be accomplished.

D. Experimental.

I. Substrate Preparation.

Allenes were generally prepared in three steps starting with the acylation of the

appropriate alchol with bromoacetylbromide, followed by reaction with

triphenylphosphine, and finally allene formation by reaction of the corresponding

phosphorane with ketene, generated from treatment of acetyl chloride with NEt3.19
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[884868-77-7] A solution of (cyclohexyloxycarbonylmethyl)-

triphenylphosphonium bromide (7.00 g, 14.48 mmol) in CH 2C12 (70 mL) was treated

with NEt3 (4.04 mL, 28.96 mmol) and stirred for 3 h. Then AcCI (1.03 mL, 14.48 mmol)

was added dropwise as a solution in CH2C12 (10 mL) over 20 min. This mixture was

stirred overnight. The reaction was washed with water, dried over MgSO 4, filtered, and

concentrated. Flash chromatography (1-10% Et20O in hexanes) yield the 723 mg (30%) of

a pale yellow oil.

[189078-68-0] A solution of (t-butoxycarbonylmethyl)triphenylphosphonium

bromide (1.0 g, 20.0 mmol) in CH2C12 (100 mL) was treated with NEt 3 (5.85 mL, 42.0

mmol) and stirred for 3 h. Then AcCl (1.50 mL, 21.0 mmol) was added dropwise as a

solution in CH2C12 (10 mE) over 20 min. This mixture was stirred overnight. The

reaction was concentrated and the resulting solids were washed with copious amounts of

pentane. The solution of allene in pentane was concentrated and the product was purified

by column chromatography (1-5% Et20 in pentane) to yield 41 mg (11%) of an pale

orange oil.

O

[91747-23-8] A solution of (allyloxycarbonylmethyl)triphenylphosphonium

bromide (8.83 g, 20.0 mmol) in CH 2C12 (100 mL) was treated with NEt3 (5.85 mL, 42.0

mmol) and stirred for 3 h. Then AcCl (1.50 mL, 21.0 mmol) was added dropwise as a

solution in CH 2C12 (10 mL) over 20 min. This mixture was stirred overnight. The

reaction was concentrated and the resulting solids were washed with copious amounts of

pentane. The solution of allene in pentane was concentrated and the product was purified

by distillation under reduced pressure to yield 540 mg (22%) of an orange oil.
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[187661-86-5] A solution of (benzyloxycarbonylmethyl)triphenylphosphonium

bromide (4.00 g, 8.14 mmol) in THF (40 mL) cooled to -78 'C was treated with n-BuLi

(5.13 mL of a 1.6 M solution in hexanes, 8.22 mmol) and stirred for 2 h. The solution

was warmed to room temperature and treated with NEt 3 (1.13 mL, 8.14 mmol). Then

AcCl (0.580 mL, 8.14 mmol) was added dropwise as a solution in CH 2C12 (10 mL) over

20 min. This mixture was stirred overnight. The reaction was washed with water, dried

over MgSO 4, filtered, and concentrated. Flash chromatography (1-10% Et20 in hexanes)

yielded 825 mg (58%) of a pale yellow oil.

[102690-46-0] A solution of (phenyloxycarbonylmethyl)triphenylphosphonium

bromide (4.78 g, 10.01 mmol) in CH 2Cl 2 (60 mL) was treated with NEt 3 (2.90 mL, 20.53

mmol) and stirred for 3 h. Then AcCl (0.715 mL, 10.01 mmol) was added dropwise as a

solution in CH2Cl 2 (10 mL) over 20 min. This mixture was stirred overnight. The

reaction was washed with water, dried over MgSO 4, filtered, and concentrated. Flash

chromatography (2-5% Et 20 in pentane) yielded 355 mg (22%) of a pale yellow oil.

[68809-49-4] A solution of (diphenylmethoxycarbonylmethyl)-

triphenylphosphonium bromide (1.85 g, 3.26 mmol) in CH 2C12 (30 mL) was treated with

NEt3 (1.00 mL, 7.70 mmol) and stirred for 3 h. Then AcCI (0.245 mL, 3.42 mmol) was

added dropwise as a solution in CH 2C12 (10 mL) over 20 min. This mixture was stirred

overnight. The reaction mixture was concentrated and purified by flash chromatography

(2-5% Et20 in pentane) to yield 275 mg (31%) of a white solid.
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[104892-30-0] A solution of (cinnamyloxycarbonylmethyl)triphenylphosphonium

bromide (0.515 g, 0.995 mmol) in THF (8 mL) cooled to -78 oC was treated with n-BuLi

(0.655 mL of a 1.6 M solution in hexanes, 1.05 mmol) and stirred for 1 h. The solution

was warmed to room temperature and treated with NEt 3 (0.139 mL, 0.995 mmol). Then

AcCl (0.071 mL, 0.995 mmol) was added dropwise. This mixture was stirred overnight.

The reaction was washed with water, extracted with Et20O, dried over MgSO 4, filtered,

and concentrated. Flash chromatography (2-10% Et20O in hexanes) yielded 92 mg (46%)

of a pale yellow oil.

O

A solution of (3-phenylprop-2-ynoxycarbonylmethyl)triphenylphosphonium

bromide (2.00 g, 3.88 mmol) in THF (20 mL) cooled to -78 'C was treated with n-BuLi

(0.655 mL of a 1.6 M solution in hexanes, 1.05 mmol) and stirred for 1 h. The solution

was warmed to room temperature and treated with NEt 3 (0.540 mL, 3.88 mmol). Then

AcCl (0.275 mL, 3.88 mmol) was added dropwise. This mixture was stirred overnight.

The reaction was washed with water, extracted with Et20, dried over MgSO4, filtered,

and concentrated. Flash chromatography (2-10% Et20 in hexanes) yielded 362 mg

(47%) of a pale yellow oil.

1H NMR (300 MHz) 6 7.47-7.44 (m, 2H), 7.34-7.30 (m, 3H), 5.71 (t, J=6.5 Hz,

1H), 5.27 (d, J=6.5 Hz, 2H), 4.98 (s, 2H).

13C NMR (75 MHz) 6 216.4, 165.2, 132.1, 128.9, 128.5, 122.3, 87.7, 86.7, 83.0,

79.9, 53.5.

FTIR (thin film) 3067, 2992, 2360, 2339, 2239, 1969, 1939, 1722, 1490, 1373,

1332, 1243, 1151 cm- .

LC-MS calc. for C13H100 2 [M+1] 199.1, found 199.0.
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SiMe 3

A solution of (3-trimethylsilyl-1-prop-2-ynoxy)triphenylphosphonium bromide

(2.00 g, 3.91 mmol) in CH 2Cl 2 (30 mL) was treated with NEt 3 (1.65 mL, 11.73 mmol)

and stirred for 4 h. Then AcCl (0.280 mL, 3.91 mmol) was added dropwise as a solution

in CH2C12 (8 mL) over 20 min. This mixture was stirred overnight. The reaction was

washed with water, dried over MgSO4, filtered, and concentrated. Flash chromatography

(1-5% Et2O in pentane) yielded 289 mg (38%) of a clear oil.

'H NMR (300 MHz) 8 5.69 (t, J=6.3 Hz, 1H), 5.27 (d, J=6.3 Hz, 2H), 4.76 (s,

2H), 0.19 (s, 9H).

0

Me

A solution of (but-2-yn-1-oxycarbonylmethyl)triphenylphosphonium bromide

(1.28 g, 2.28 mmol) in THF (15 mL) cooled to -78 'C was treated with n-BuLi (1.85 mL

of a 1.6 M solution in hexanes, 2.96 mmol) and stirred for 1 h. The solution was warmed

to room temperature and treated with NEt3 (0.395 mL, 2.82 mmol). Then AcCl (0.200

mL, 2.82 mmol) was added dropwise. This mixture was stirred overnight. The reaction

was washed with water, extracted with Et20, dried over MgSO 4, filtered, and

concentrated. Flash chromatography (2-10% Et20 in hexanes) yielded 167 mg (43%) of

a clear oil (this material was contaminated with ~20% acetyl but-2-yn-1-ol).

'H NMR (300 MHz) 6 5.61 (t, J=6.6 hz, 1H), 5.21 (d, J=6.6 Hz, 2H), 4.65 (q,

J=2.4 Hz, 2H), 1.80 (t, J=2.4 Hz, 3H).
13C NMR (75 MHz) 6 216.2, 165.1, 87.6, 83.4, 79.7, 73.1, 53.4, 3.7.

FTIR (thin film) 3069, 2992, 2323, 2241, 1970, 1941, 1716, 1438, 1373, 1331,

1245, 1185, 1083, 992 cm-'.

LC-MS calc. for C8H80 2[M+H] 136.0, found 136.0.
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A solution of (2-phenylethoxycarbonylmethyl)triphenylphosphonium bromide

(1.74 g, 3.44 mmol) in THF (25 mL) cooled to -78 'C was treated with n-BuLi (2.25 mL

of a 1.6 M solution in hexanes, 3.62 mmol) and stirred for 1 h. The solution was warmed

to room temperature and treated with NEt3 (0.480 mL, 3.44 mmol). Then AcCl (0.245

mL, 3.44 mmol) was added dropwise. This mixture was stirred overnight. The reaction

was washed with water, extracted with Et20, dried over MgSO 4, filtered, and

concentrated. Flash chromatography (2-10% Et20O in hexanes) yielded 275 mg (43%) of

a clear oil.

A solution of (2-indanoxycarbonylmethyl)triphenylphosphonium bromide (2.95 g,

5.71 mmol) in THF (30 mL) cooled to -78 'C was treated with n-BuLi (3.75 mL of a 1.6

M solution in hexanes, 5.99 mmol) and stirred for 1 h. The solution was warmed to room

temperature and treated with NEt 3 (0.955 mL, 6.85 mmol). Then AcCl (0.490 mL, 6.85

mmol) was added dropwise. This mixture was stirred overnight. The reaction was

washed with water, extracted with Et20O, dried over MgSO 4, filtered, and concentrated.

Flash chromatography (2-10% Et2O in hexanes) yielded 639 mg (56%) of a clear oil (this

material is contaminated with -20% of acetyl 2-indanol).

'H NMR (300 MHz) 6 7.29-7.20 (m, 4H), 5.65 (t, J=6.7 Hz, 1H), 5.62 (m, 1H),

5.22 (d, J=6.7 Hz, 2H), 3.37 (dd, J=17.0 Hz, J=6.6 Hz, 2H), 3.09 (dd, J=17.0 Hz, J=3.2

Hz, 2H).
13C NMR (75 MHz) 6 215.9, 165.7, 140.4, 126.8, 124.7, 88.2, 79.5, 76.0, 39.6.

FTIR (thin film) 3069, 3025, 2989, 2903, 1970, 1715, 1483, 1422, 1365, 1335,

1260, 1166 cm-1.

LC-MS calc. for C13H120 2 [M+Na] 223.1, found 223.0.
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A solution of (9-fluorenoxycarbonylmethyl)triphenylphosphonium bromide

(10.54 g, 18.64 mmol) in THF (125 mL) cooled to -78 "C was treated with n-BuLi (12.2

mL of a 1.6 M solution in hexanes, 19.57 mmol) and stirred for 1 h. The solution was

warmed to room temperature and treated with NEt3 (2.60 mL, 18.64 mmol). Then AcCl

(1.33 mL, 18.64 mmol) was added dropwise. This mixture was stirred overnight. The

reaction was washed with water, extracted with Et20, dried over MgSO4, filtered, and

concentrated. Flash chromatography (2-15% Et20 in hexanes) yielded 2.75 g (59%) of a

yellow solid (contaminated with acetyl fluorenol which is inseparable).
1H NMR (300 MHz) 8 7.69-7.66 (m, 2H), 7.62-7.57 (m, 2H), 7.45-7.40 (m, 2H),

6.98 (td, J=7.4 Hz, J=1.2 Hz, 2H), 6.87 (s, 1H), 5.78 (t, J=6.5 Hz, 1H), 5.25 (d, J=6.5 Hz,

2H).
13C NMR (75 MHz) 8 216.3, 166.8, 142.1, 141.2, 129.7, 128.0, 126.2, 120.2,

88.1, 79.9, 75.8.

FTIR (thin film) 3068, 2991, 2928, 1968, 1715, 1611, 1453, 1421, 1352, 1246,

1154 cm-1.

LC-MS calc. for C17H120 2 [M+1] 249.1, found 249.0.

o

A solution of (1-fluorenylmethoxycarbonylmethyl)triphenylphosphonium

bromide (1.35 g, 2.33 mmol) in THF (15 mL) cooled to -78 'C was treated with n-BuLi

(1.53 mL of a 1.6 M solution in hexanes, 2.45 mmol) and stirred for 1 h. The solution

was warmed to room temperature and treated with NEt3 (0.325 mL, 2.33 mmol). Then

AcCI (0.166 mL, 2.33 mmol) was added dropwise. This mixture was stirred overnight.

The reaction was washed with water, extracted with Et20, dried over MgSO4, filtered,
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and concentrated. Flash chromatography (2-10% Et20 in hexanes) yielded 250 mg

(41%) of a clear oil.

'H NMR (300 MHz) 8 7.79 (d, J=6.7 Hz, 2H), 7.67-7.62 (m, 2H), 7.46-7.40 (m,

2H), 7.36-7.31 (m, 2H), 5.76 (t, J=6.5 Hz, 1H), 5.33 (d, J=6.5 Hz, 2H), 4.43 (d, J=7.5 Hz,

2H), 4.27 (t, J=7.5 Hz, 1H).
13C NMR (75 MHz) 8 216.4, 165.9, 143.9, 141.5, 128.0, 127.3, 125.4, 120.2,

88.1, 79.7, 67.2, 46.9.

FTIR (thin film) 3066, 2360, 2341, 1969, 1717, 1450, 1256, 1160, 1080, 1017,

856 cm-1.

LC-MS calc. for C18H140 2 [M+Na] 285.1, found 285.0.

A solution of (1-naphthylmethoxycarbonylmethyl)triphenylphosphonium bromide

(2.01 g, 3.71 mmol) in THF (30 mL) cooled to -78 'C was treated with n-BuLi (2.44 mL,

3.90 mmol) and stirred for 1 h. The solution was warmed to room temperature and

treated with NEt3 (0.517 mL, 3.71 mmol). Then AcCi (0.265 mL, 3.71 mmol) was added

dropwise. This mixture was stirred overnight. The reaction was washed with water,

extracted with Et20, dried over MgSO 4, filtered, and concentrated. Flash

chromatography (2-10% Et20 in hexanes) yielded 510 mg (61%) of a clear oil.
1H NMR (300 MHz) 6 8.08-8.05 (m, 1H), 7.92-7.86 (m, 2H), 7.61-7.45 (m, 4H),

5.74 (t, J=6.6 Hz, 1H), 5.67 (s, 2H), 5.23 (d, J=6.6 Hz, 2H).

'3C NMR (75 MHz) 6 216.2, 165.7, 133.8, 131.6, 131.4, 129.4, 128.8, 127.6,

126.7, 126.1, 125.4, 123.7, 87.9, 79.7, 65.1.

FTIR (thin film) 3066, 2990, 1969, 1716, 1599, 1512, 1330, 1243, 1154,

1083 cm -1.

LC-MS calc. for C15H120 2 [M+Na] 247.1, found 247.0.
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A solution of (2-naphthylmethoxycarbonylmethyl)triphenylphosphonium bromide

(1.34 g, 2.47 mmol) in THF (20 mL) cooled to -78 'C was treated with n-BuLi (1.62 mL

of 1.6 M solution in hexanes, 2.59 mmol) and stirred for 1 h. The solution was warmed

to room temperature and treated with NEt3 (0.345 mL, 2.47 mmol). Then AcCI (0.176

mL, 2.47 mmol) was added dropwise. This mixture was stirred overnight. The reaction

was washed with water, extracted with Et20O, dried over MgSO 4, filtered, and

concentrated. Flash chromatography (2-10% Et20 in hexanes) yielded 510 mg (61%) of

a clear oil.

1H NMR (300 MHz) 8 7.75-7.48 (m, 4H), 7.53-7.48 (m, 3H), 5.76 (t, J=6.6 Hz,

1H), 5.38 (s, 2H), 5.26 (d, J=6.6 Hz, 2H).

'3C NMR (75 MHz) 6 216.2, 165.7, 133.4, 133.3, 128.5, 128.2, 128.1, 127.9,

127.5, 126.5, 126.4, 126.0, 88.0, 79.7, 67.0

FTIR (thin film) 3058, 2990, 1969, 1940, 1603, 1510, 1422, 1331, 1251,

1160 cm1.

LC-MS calc. for C15H120 2 [M+Na] 247.1, found 247.0.

All of the sulfonyl imines used in the above studies are known compounds.

[135822-88-7], [357417-22-2], [51608-60-7], and [194878-04-1].

This is a sample procedure for the preparation of sulfonyl imines:

N,TsN Js
MeO

MeO :

[137845-39-7] A flask was charged with 3,4-dimethoxybenzaldehyde (0.783 g,

4.71 mmol), p-toluenesulfonamide (1.61 g, 9.42 mmol), Amberlite IR-120 (plus) ion

exchange resin (0.120 g), and 4A MS (0.950 g). The flask was then purged with argon

and toluene (12 mL) was introduced. A Dean-Stark trap was attached and the mixture
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was refluxed for 24 h. After cooling to room temperature, the mixture was filtered over a

pad of celite washing with CH2C12 (60 mL). The organic extracts were washed with 1 N

NaOH (4x20 mL), dried over MgSO4, filtered, and concentrated. The material was dried

under vacuum overnight to yield 1.33 g (92%) of a white solid which was used without

further purification.

'H NMR (300 MHz) 8 8.9 (s, 1H), 7.87 (d, J=8.3 Hz, 2H), 7.50 (d, J=1.9 Hz, 1H),

7.42 (dd, J=8.3 Hz, J=1.9 Hz, 1H), 7.33 (d, J=8.3 Hz, 2H), 6.93 (d, J=8.3 Hz, 1H), 3.95

(s, 3H), 3.89 (s, 3H), 2.42 (s, 3H).
13C NMR (75 MHz) 6 169.8, 155.5, 149.8, 144.6, 135.8, 130.0, 129.5, 128.2,

125.7, 110.8, 110.3, 56.5, 56.3, 21.9.

II. Phosphine-Catalyzed Asymmetric [3+2] Cycloadditions of Allenoates with Imines

(Table 2.2.1, Table 2.2.2, and Table 2.2.3):

Table 2.2.1. See Table 2.2.2, Entry 1, for the experimental procedure.

O
0

N
Ts

Table 2.2.2, Entry 1. In a nitrogen filled glove box, a solution of(R)-2.1 (1.4

mg, 0.004 mmol) in CH2C12 (0.10 mL) was added to a solution of allene (4.8 mg, 0.043

mmol) and N-benzylidene-p-toluenesulfonamide (10.0 mg, 0.039 mmol) in CH2C12 (0.4

mL). After stirring for 16 h at room temperature this mixture was directly purified by

silica gel chromatography (5-50% Et20O in hexanes) to yield 10.8 mg (75%) of the

pyrroline as a white solid.

HPLC analysis: 69% ee. (Diacel CHIRALCEL AD-H column; 0.9 mL/min;

solvent system: 20% isopropanol in hexanes; retention times 18.8 min (major), 15.5 min

(minor).
'1H NMR (500 MHz) 8 7.42 (d, J=1.7 Hz, 1H), 7.41 (d, J=1.7 Hz, 1H), 7.25-7.20

(m, 5H), 7.15-7.13 (m, 2H), 6.79 (dd, J=4.0 Hz, J=2.0 Hz, 1H), 5.73 (m, 1H), 4.51 (dt,
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J=17.0 Hz, J=2.4 Hz, 1H), 4.39 (ddd, J=17.0 Hz, J=5.8 Hz, J=2.0 Hz, 1H), 4.09-3.59 (m,

2H), 2.37 (s, 3H), 1.10 (t, J=7.1 Hz, 3H).
13C NMR (125 MHz) 8 162.0, 143.5, 139.7, 136.3, 135.8, 135.7, 129.7, 128.5,

128.2, 128.1, 127.3, 69.3, 61.1, 55.1, 21.7, 14.1.

FTIR (thin film) 1721, 1643, 15988, 1494, 1456, 1346, 1265, 1163, 1092 cm-.

LC-MS calc. for C20H21N04S [M+1] 372.1, found 372.1.

O

N
Ts

Table 2.2.2, Entry 2. In a nitrogen filled glove box, a solution of allene (10.0 mg,

0.06 mmol) and N-benzylidene-p-toluenesulfonamide (13.0 mg, 0.050 mmol) in CH2C12
(0.5 mL) was added to (S)-2.1 (1.8 mg, 0.005 mmol). After stirring for 16 h at room

temperature this mixture was directly purified by silica gel chromatography (5-50% Et2O

in hexanes) to yield 18.4 mg (87%) of the pyrroline.

HPLC analysis: 70% ee. (Diacel CHIRALCEL AD-H column; 0.9 mL/min;

solvent system: 20% isopropanol in hexanes; retention times 12.9 min (major), 12.0 min

(minor).

1H NMR (500 MHz) 8 7.39-7.38 (m, 2H), 7.23-7.19 (m, 5H), 7.13-7.11 (m, 2H),

6.81 (m, 1H), 5.74 (d, J=5.8 Hz, 1H), 4.64 (m, 1H), 4.51 (m, 1H), 4.36 (ddd, J=17.0 Hz,

J=5.9 Hz, J=1.4 Hz, 1H), 2.36 (s, 3H), 1.69 (m, 1H), 1.62 (m, 1H), 1.49 (m, 1H), 1.44-

1.11 (m, 8H).

"3C NMR (125 MHz) 8161.6, 143.4, 139.7, 136.7, 136.0, 135.7, 129.6, 128.4,

128.2, 128.1, 127.3, 73.4, 69.2, 55.0, 31.5, 31.1, 25.4, 23.5, 23.3, 21.7.

FTIR (thin film) 2938, 1716, 1649, 1598, 1494, 1454, 1351, 1262, 1163, 1089,

1015 cm-1.

LC-MS calc. for C24H28NO 4S [M+1] 426.2, found 426.1.
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N
Ts

Table 2.2.2, Entry 3. In a nitrogen filled glove box, a solution of allene (6.0 mg,

0.043 mmol) and N-benzylidene-p-toluenesulfonamide (10.0 mg, 0.039 mmol) in CH2C12

(0.30 mL) was added to (R)-2.1 (1.4 mg, 0.004 mmol). After stirring for 24 h at room

temperature this mixture was directly purified by silica gel chromatography (5-50% Et20

in hexanes) to yield 13.4 mg (86%) of the pyrroline.

HPLC analysis: 32% ee. (Diacel CHIRALCEL AD-H column; 0.9 mL/min;

solvent system: 20% isopropanol in hexanes; retention times x min (major), x min

(minor).

1H NMR (500 MHz) 8 7.39 (d, J=8.1 Hz, 2H), 7.23-7.17 (m, 5H), 7.12 (d, J=8.1

Hz, 2H), 6.73 (m, 1H), 5.67 (d, J=5.9 Hz, 1H), 4.49 (dt, J=16.8 Hz, J=2.1 Hz, 1H), 4.33

(ddd, J=16.8 Hz, J=5.8 Hz, J=1.5 Hz, 1H), 2.36 (s, 3H), 1.24 (s, 9H).

'3 C NMR (125 MHz) 6 161.4, 143.4, 139.8, 137.7, 136.0, 134.9, 129.6, 128.4,

128.2, 128.1, 127.3, 81.9, 69.3, 54.9, 28.0, 21.7.

FTIR (thin film) 1714, 1649, 1598, 1494, 1456, 1349, 1283, 1163, 1092,

1074 cm "1.

LC-MS calc. for C22H25NO4S [M+1] 400.1, found 400.1.

0

N

Table 2.2.2, Entry 4. In a nitrogen filled glove box, a solution of allene (8.0 mg,

0.06 mmol) and N-benzylidene-p-toluenesulfonamide (13.0 mg, 0.050 mmol) in CH2C12

(0.5 mL) was added to (S)-2.1 (1.8 mg, 0.005 mmol). After stirring for 16 h at room

temperature this mixture was directly purified by silica gel chromatography (5-50% Et20O

in hexanes) to yield 12.6 mg (66%) of the pyrroline.
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HPLC analysis: 76% ee.(Diacel CHIRALCEL AD-H column; 0.9 mL/min;

solvent system: 20% isopropanol in hexanes; retention times 13.3 min (major), 15.8 min

(minor).

1H NMR (500 MHz) 8 7.42-7.41 (m, 2H), 7.25-7.21 (m, 5H), 7.15-7.13 (m, 2H),

6.83 (dd, J=3.7 Hz, J=2.0 Hz, 1H), 5.77-5.69 (m, 2H), 5.13 (dd, J=10.5 Hz, J=1.2 Hz,

1H), 5.08 (dt, J=17.2 Hz, J=1.4 Hz, 1H), 4.54-4.50 (m, 2H), 4.44 (ddt, J=13.5 Hz, J=5.5

Hz, J=1.3 Hz, 1H), 4.39 (ddd, J=17.2 Hz, J=5.9 Hz, J=1.9 Hz, 1H), 2.37 (s, 3H).
13C NMR (125 MHz) 8 161.7, 143.5, 139.7, 136.2, 135.9, 135.8, 131.6, 129.7,

128.6, 128.3, 128.1, 127.3, 118.5, 69.2, 65.5, 55.1, 21.7.

FTIR (thin film) 1723, 1648, 1598, 1494, 1456, 1348, 1259, 1163, 1094,

988 cm 1 .

LC-MS calc. for C21H21N0 4S [M+1] 384.1, found 384.1.

N
Ts

Table 2.2.2, Entry 5. In a nitrogen filled glove box, a solution of allene

(10.5 mg, 0.06 mmol) and N-benzylidene-p-toluenesulfonamide (13.0 mg, 0.050 mmol)

in CH2C12 (0.5 mL) was added to (S)-2.1 (1.8 mg, 0.005 mmol). After stirring for 16 h at

room temperature this mixture was directly purified by silica gel chromatography (5-50%

Et20 in hexanes) to yield 17.5 mg (81%) of the pyrroline.

HPLC analysis: 75% ee. (Diacel CHIRALCEL AD-H column; 0.9 mL/min;

solvent system: 20% isopropanol in hexanes; retention times 21.1 min (major), 23.6 min

(minor).

1H NMR (500 MHz) 8 7.41-7.40 (m, 2H), 7.30-7.20 (m, 8H), 7.14-7.12 (m, 2H),

7.06-7.04 (m, 2H), 6.85 (m, 1H), 5.76 (d, J=5.8 Hz, 1H), 5.08 (d, J=12.5 Hz, 1H), 4.94

(d, J=12.5 Hz, 1H), 4.51 (dt, J=17.1 Hz, J=2.1 Hz, 1H), 4.38 (ddd, J=17.1 Hz, J=5.8 Hz,

J=1.8 Hz, 1H), 2.37 (s, 3H).
13C NMR (125 MHz) 8 161.8, 143.5, 139.5, 136.6, 135.84, 135.77, 135.4, 129.7,

128.7, 128.6, 128.5, 128.3, 128.2, 128.1, 127.3, 69.2, 66.8, 55.1, 21.7.
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FTIR (thin film) 1721, 1645, 1598, 1495, 1455, 1348, 1265, 1163, 1089 cm-.

LC-MS calc. for C25H23N0 4S [M+1] 434.1, found 434.1.

Table 2.2.2, Entry 6. In a nitrogen filled glove box, a solution of allene

(10.0 mg, 0.06 mmol) and N-benzylidene-p-toluenesulfonamide (13.0 mg, 0.050 mmol)

in CH2C12 (0.5 mL) was added to (S)-2.1 (1.8 mg, 0.005 mmol). After stirring for 16 h at

room temperature this mixture was directly purified by silica gel chromatography (5-50%

Et20O in hexanes) to yield 13.0 mg (62%) of the pyrroline.

HPLC analysis: 51% ee. (Diacel CHIRALCEL AD-H column; 0.9 mL/min;

solvent system: 20% isopropanol in hexanes; retention times 16.5 min (major), 18.9 min

(minor).

'H NMR (500 MHz) 8 7.46-7.44 (m, 2H), 7.30-7.25 (m, 7H), 7.19-7.16 (m, 3H),

7.02 (dd, J=3.6 Hz, J=1.7 Hz, 1H), 6.84-6.83 (m, 2H), 5.86 (m, 1H), 4.61 (dt, J=17.3 Hz,

J=2.4 Hz, 1H), 4.47 (ddd, J=17.3 Hz, J=5.9 Hz, J=1.9 Hz, 1H), 2.39 (s, 3H).

"3 C NMR (125 MHz) 8 160.3, 150.2, 143.6, 139.5, 137.8, 135.7, 129.8, 129.6,

128.6, 128.4, 128.1, 127.4, 126.3, 121.4, 69.3, 55.3, 21.8.

FTIR (thin film) 1738, 1645, 1597, 1491, 1456, 1350, 1253, 1194, 1162, 1102,

1053 cm-'.

LC-MS calc. for C24H21NO4S [M+1] 420.1, found 420.1.

0 -

o /

N
Ts

Table 2.2.2, Entry 7. In a nitrogen filled glove box, a solution ofallene
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(15.0 mg, 0.06 mmol) and N-benzylidene-p-toluenesulfonamide (13.0 mg, 0.050 mmol)

in CH2C12 (0.5 mL) was added to (S)-2.1 (1.8 mg, 0.005 mmol). After stirring for 16 h at

room temperature this mixture was directly purified by silica gel chromatography (5-50%

Et20 in hexanes) to yield 22.5 mg (89%) of the pyrroline.

HPLC analysis: 79% ee. (Diacel CHIRALCEL AD-H column; 0.9 mL/min;

solvent system: 20% isopropanol in hexanes; retention times 37.2 min (major), 41.0 min

(minor).

'H NMR (500 MHz) 6 7.37-7.34 (m, 2H), 7.34-7.23 (m, 8H), 7.21-7.15 (m, 3H),

7.13-7.10 (m, 4H), 6.95 (dd, J=3.9 Hz, J=2.0 Hz, 1H), 6.75-6.71 (m, 3H), 5.84-5.82 (m,

1H), 4.53 (dt, J=17.2 Hz, J=2.4 Hz, 1H), 4.36 (ddd, J=17.2 Hz, J=5.9 Hz, J=1.9 Hz, 1H),

2.36 (s, 3H).
13C NMR (125 MHz) 8 161.1, 143.5, 139.8, 139.7, 139.4, 137.5, 135.9, 135.8,

129.7, 128.8, 128.7, 128.6, 128.42, 128.41, 128.3, 127.9, 127.3, 127.2, 126.7, 77.9, 69.1,

54.9, 21.7.

FTIR (thin film) 1723, 1646, 1598, 1495, 1455, 1348, 1259, 1163, 1086,

987 cm1 .

LC-MS calc. for C31H27NO4S [M+Na] 532.1, found 532.1.

0

N
Ts

Table 2.2.2, Entry 8. In a nitrogen filled glove box, a solution of allene

(12.0 mg, 0.06 mmol) and N-benzylidene-p-toluenesulfonamide (13.0 mg, 0.050 mmol)

in CH2Cl 2 (0.5 mL) was added to (S)-2.1 (1.8 mg, 0.005 mmol). After stirring for 16 h at

room temperature this mixture was directly purified by silica gel chromatography (5-50%

Et20 in hexanes) to yield 19.3 mg (84%) of the pyrroline.

HPLC analysis: 75% ee. (Diacel CHIRALCEL AD-H column; 0.9 mL/min;

solvent system: 20% isopropanol in hexanes; retention times 26.9 min (major), 35.1 min

(minor).
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'H NMR (500 MHz) 6 7.44-7.42 (m, 2H), 7.34-7.29 (m, 4H), 7.28-7.25 (m, 6H),

7.15-7.14 (m, 2H), 6.84 (dd, J=4.0 Hz, J=1.9 Hz, 1H), 6.44 (d, J=15.8 Hz, 1H), 6.07 (dt,

J=15.9 Hz, J=6.3 Hz, 1H), 5.77 (m, 1H), 4.70 (ddd, J=13.1 Hz, J=6.3 Hz, J=1.3 Hz, 1H),

4.59 (ddd, J=13.1 Hz, J=6.3 Hz, J=1.3 Hz, 1H), 4.52 (dt, J=17.2 Hz, J=2.3 Hz, 1H), 4.40

(ddd, J=17.2 Hz, J=5.8 Hz, J=1.9 Hz, 1H), 2.37 (s, 3H).

'3C NMR (125 MHz) 6 161.8, 143.5, 139.6, 136.3, 136.2, 136.0, 134.5, 129.7,

128.8, 128.6, 128.4, 128.3, 128.1, 127.3, 126.8, 122.6, 69.2, 65.5, 55.2, 21.7 (coincident

resonance).

FTIR (thin film) 1720, 1645, 1598, 1494, 1455, 1349, 1260, 1163, 1094,

969 cm'.

LC-MS calc. for C27H25NO4S [M+1] 460.2, found 460.1.

O0

N
Ts

Table 2.2.2, Entry 9. In a nitrogen filled glove box, a solution of allene

(12.0 mg, 0.06 mmol) and N-benzylidene-p-toluenesulfonamide (13.0 mg, 0.050 mmol)

in CH2C12 (0.5 mL) was added to (S)-2.1 (1.8 mg, 0.005 mmol). After stirring for 16 h at

room temperature this mixture was directly purified by silica gel chromatography (5-50%

Et20O in hexanes) to yield 20.3 mg (89%) of the pyrroline.

HPLC analysis: 81% ee. (Diacel CHIRALCEL IA column; 0.9 mL/min; solvent

system: 20% isopropanol in hexanes; retention times 16.4 min (major), 17.6 min (minor).

'H NMR (500 MHz) 8 7.46-7.42 (m, 2H), 7.41-7.37 (m, 2H),7.35-7.29 (m, 3H),

7.27-7.22 (m, 5H), 7.16-7.13 (m, 2H), 6.88 (m, 1H), 5.78 (m, 1H), 4.84 (d, J=15.7 Hz,

1H), 4.78 (d, J=15.7 Hz, 1H), 4.54 (dt, J=17.2 Hz, J=2.5 Hz, 1H), 4.41 (ddd, J=17.2 Hz,

J=5.8 Hz, J=2.0 Hz, 1H), 2.36 (s, 3H).

13C NMR (125 MHz) 8 161.7, 144.1, 139.9, 137.3, 136.2, 135.9, 132.5, 130.2,

129.6, 129.03, 129.01, 128.8, 128.5, 127.8, 122.6, 87.5, 82.9, 69.7, 55.7, 53.9, 22.2.

FTIR (thin film) 1727, 1644, 1598, 1491, 1456, 1346, 1256, 1163, 1084 cm '.

LC-MS calc. for C27H23NO 4S [M+Na] 480.1, found 480.1.
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Table 2.2.2, Entry 10. In a nitrogen filled glove box, a solution of allene

(15.0 mg, 0.06 mmol) and N-benzylidene-p-toluenesulfonamide (13.0 mg, 0.050 mmol)

in CH2C12 (0.5 mL) was added to (S)-2.1 (1.8 mg, 0.005 mmol). After stirring for 16 h at

room temperature this mixture was directly purified by silica gel chromatography (5-50%

Et20 in hexanes) to yield 19.6 mg (87%) of the pyrroline.

HPLC analysis: 83% ee. (Diacel CHIRALCEL IA column; 0.9 mL/min; solvent

system: 20% isopropanol in hexanes; retention times 9.1 min (major), 8.6 min (minor).

'H NMR (500 MHz) 6 7.43 (d, J=8.2 Hz, 2H), 7.25-7.22 (m, 5H), 7.15 (d, J=8.2

Hz, 2H), 6.86 (m, 1H), 5.76 (d, J=5.8 Hz, 1H), 4.62-4.51 (m, 3H), 4.41 (ddd, J=17.2 Hz,

J=5.7 Hz, J=1.4 Hz, 1H), 2.38 (s, 3H), 0.16 (s, 9H).

"3C NMR (125 MHz) 8 161.1, 143.6, 139.5, 136.8, 135.8, 135.4, 129.7, 128.5,

128.3, 128.0, 127.4, 98.4, 92.8, 69.2, 55.2, 53.3, 21.7, -0.12.

FTIR (thin film) 1730, 1645, 1598, 1494, 1456, 1346, 1251, 1164, 1085,

846 cm 1.

LC-MS calc. for C24H27NO4S [M+1] 454.1, found 454.1.

O

N
Ts

Table 2.2.2, Entry 11. In a nitrogen filled glove box, a solution of allene

(10.0 mg, 0.06 mmol) and N-benzylidene-p-toluenesulfonamide (13.0 mg, 0.050 mmol)

in CH2C12 (0.5 mL) was added to (S)-2.1 (1.8 mg, 0.005 mmol). After stirring for 16 h at

room temperature this mixture was directly purified by silica gel chromatography (5-50%

Et20 in hexanes) to yield 17.5 mg (89%) of the pyrroline.
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HPLC analysis: 79% ee. (Diacel CHIRALCEL AS-H column; 0.9 mL/min;

solvent system: 20% isopropanol in hexanes; retention times 44.1 min (major), 66.0

(broad) min (minor).

'H NMR (300 MHz) 6 7.43 (m, 2H), 7.24 (m, 5H), 7.15 (m, 2H), 6.83 (m, 1H),

5.75 (m, 1H), 4.56-4.48 (m, 3H), 4.40 (ddd, J=17.2 Hz, J=5.8 Hz, J=2.0 Hz, 1H), 2.37 (s,

3H), 1.80 (t, J=2.4 Hz, 3H).

"3C NMR (125 MHz) 8 161.8, 144.0, 139.9, 136.9, 136.2, 136.0, 131.3, 130.2,

129.0, 128.7, 128.5, 127.8, 84.3, 73.2, 69.7, 55.7, 53.8, 22.2.

FTIR (thin film) 1726, 1645, 1598, 1494, 1456, 1345, 1256, 1163, 1083 cm-1.

LC-MS calc. for C22H21NO 4S [M+1] 396.1, found 396.1.

Table 2.2.2, Entry 12. In a nitrogen filled glove box, a solution of allene

(11.3 mg, 0.06 mmol) and N-benzylidene-p-toluenesulfonamide (13.0 mg, 0.050 mmol)

in CH 2C12 (0.5 mL) was added to (S)-2.1 (1.8 mg, 0.005 mmol). After stirring for 16 h at

room temperature this mixture was directly purified by silica gel chromatography (5-50%

Et20O in hexanes) to yield 22.0 mg (99%) of the pyrroline.

HPLC analysis: 70% ee. (Diacel CHIRALCEL IA column; 0.9 mL/min; solvent

system: 10% isopropanol in hexanes; retention times 23.6 min (major), 22.1 min (minor).

1H NMR (500 MHz) 8 7.41 (d, J=8.3 Hz, 2H), 7.29-7.18 (m, 8H), 7.14 (d, J=8.0

Hz, 2H), 7.07 (d, J=8.3 Hz, 2H), 6.75 (dd, J=3.9 Hz, J=2.0 Hz, 1H), 5.71 (m, 1H), 4.49

(dt, J=17.2 Hz, J=2.4 Hz, 1H), 4.37 (ddd, J=17.2 Hz, J=5.8 Hz, J=1.9 Hz, 1H), 4.20 (m,

2H), 2.78 (t, J=6.9 Hz, 2H), 2.37 (s, 3H).

3C NMR (125 MHz) 68 161.9, 143.5, 139.6, 137.7, 136.1, 136.0, 135.8, 129.7,

129.0, 128.7, 128.6, 128.3, 128.0, 127.3, 126.8, 69.2, 65.5, 55.1, 35.0, 21.7.

FTIR (thin film) 1720, 1645, 1598, 1495, 1455, 1349, 1264, 1163, 1092 cm-1.

LC-MS calc. for C26H25NO4S [M+Na] 470.1, found 470.1.
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Table 2.2.2, Entry 13. In a nitrogen filled glove box, a solution of allene

(12.0 mg, 0.06 mmol) and N-benzylidene-p-toluenesulfonamide (13.0 mg, 0.050 mmol)

in CH2C12 (0.5 mL) was added to (S)-2.1 (1.8 mg, 0.005 mmol). After stirring for 16 h at

room temperature this mixture was directly purified by silica gel chromatography (5-50%

Et20 in hexanes) to yield 19.5 mg (85%) of the pyrroline.

HPLC analysis: 70% ee. (Diacel CHIRALCEL OD-H column; 1.0 mL/min;

solvent system: 10% isopropanol in hexanes; retention times 37.9 min (major), 34.0 min

(minor).

'H NMR (300 MHz) 8 7.39-7.34 (m, 2H), 7.26-7.06 (m, 11H), 6.76 (m, 1H), 5.65

(m, 1H), 5.41 (m, 1H), 4.49 (dt, J=17.0 Hz, J=2.5 Hz, 1H), 4.34 (ddd, J=17.0 Hz, J=5.9

Hz, J=2.0 Hz, 1H), 3.22 (dd, J=17.1 Hz, J=6.3 Hz, 1H), 3.11 (dd, J=17.1 Hz, J=6.3 Hz,

1H), 2.90 (dd, J=17.1 Hz, J=2.9 Hz, 1H), 2.59 (dd, J=17.0 Hz, J=2.7 Hz, 1H), 2.36 (s,

3H).
13C NMR (500 MHz) 6 161.9, 143.4, 140.32, 140.27, 139.6, 136.3, 135.98,

135.88, 129.6, 128.4, 128.1, 128.0, 127.3, 127.0, 124.84, 124.78, 76.0, 69.2, 55.1, 39.7,

39.5, 21.7.

FTIR (thin film) 1717, 1647, 1598, 1457, 1347, 1269, 1163, 1091 cm1.

LC-MS calc. for C27H 25NO 4S [M+1] 460.1, found 460.1.
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Table 2.2.2, Entry 14. In a nitrogen filled glove box, a solution of allene

(15.0 mg, 0.06 mmol) and N-benzylidene-p-toluenesulfonamide (13.0 mg, 0.050 mmol)

in CH2C02 (0.5 mL) was added to (S)-2.1 (1.8 mg, 0.005 mmol). After stirring for 16 h at

room temperature this mixture was directly purified by silica gel chromatography (5-50%

Et2O in hexanes) to yield 21.5 mg (85%) of the pyrroline.

HPLC analysis: 82% ee. (Diacel CHIRALCEL AD-H column; 0.9 mL/min;

solvent system: 20% isopropanol in hexanes; retention times 24.1 min (major), 27.2 min

(minor).

'H NMR (500 MHz) 6 7.64 (d, J=3.9 Hz, 1H), 7.62 (d, J=3.9 Hz, 1H), 7.42-7.30

(m, 5H), 7.29-7.11 (m, 9H), 6.89 (m, 1H), 6.86 (dd, J=3.8 Hz, J=1.1 Hz, 1H), 6.61 (s,

1H), 5.73 (m, 1H), 4.50 (dt, J=17.2 Hz, J=2.4 Hz, 1H), 4.38 (ddd, J=17.2 Hz, J=5.8 Hz,

J=2.0 Hz, 1H), 2.36 (s, 3H),
13C NMR (500 MHz) 8 162.8, 143.5, 141.8, 141.3, 141.0, 139.5, 137.0, 135.8,

135.7, 129.8, 129.7, 128.6, 128.3, 128.2, 128.0, 127.9, 127.4, 126.3, 126.0, 120.2, 120.1,

75.7, 69.1, 55.2, 21.7.

FTIR (thin film) 1719, 1646, 1598, 1494, 1453, 1349, 1258, 1163, 1098 cm1.

LC-MS calc. for C31H25NO 4S [M+1] 508.1, found 508.1.

O

Table 2.2.2, Entry 15. In a nitrogen filled glove box, a solution of allene
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(16.0 mg, 0.06 mmol) and N-benzylidene-p-toluenesulfonamide (13.0 mg, 0.050 mmol)

in CH2C12 (0.5 mL) was added to (S)-2.1 (1.8 mg, 0.005 mmol). After stirring for 16 h at

room temperature this mixture was directly purified by silica gel chromatography (5-50%

Et2O in hexanes) to yield 2.0 mg (8%) of the pyrroline.

HPLC analysis: 88% ee. (Diacel CHIRALCEL IA column; 0.9 mL/min; solvent

system: 20% isopropanol in hexanes; retention times 21.4 min (major), 18.2 min (minor).

'H NMR (500 MHz) 8 7.76 (d, J=3.1 Hz, 1H), 7.74 (d, J=2.6 Hz, 1H), 7.41-7.33

(m, 5H), 7.27-7.20 (m, 8H), 7.16-7.14 (m, 2H), 6.85 (s, 1H), 5.75 (d, J=5.6 Hz, 1H), 4.53

(m, 1H), 4.39 (dd, J=17.2 Hz, J=5.8 Hz, 1H), 4.33 (d, J=6.7 Hz, 1H), 4.08 (t, J=6.7 Hz,

1H), 2.38 (s, 3H).
13C NMR (125 MHz) 8 162.0, 143.7, 143.6, 143.5, 141.5, 141.4, 139.4, 136.8,

135.8, 129.7, 128.7, 128.4, 128.1, 128.0, 127.4, 127.32, 127.30, 125.01, 124.98, 120.3,

120.2, 69.1, 67.0, 55.1, 46.8, 21.7.

FTIR (thin film) 1720, 1645, 1598, 1451, 1348, 1263, 1163, 1091 cm'.

LC-MS calc. for C32H27NO 4S [M+1] 522.1, found 522.1.

0

N
Ts

Table 2.2.2, Entry 16. In a nitrogen filled glove box, a solution of allene

(13.0 mg, 0.06 mmol) and N-benzylidene-p-toluenesulfonamide (13.0 mg, 0.050 mmol)

in CH2C12 (0.5 mL) was added to (S)-2.1 (1.8 mg, 0.005 mmol). After stirring for 16 h at

room temperature this mixture was directly purified by silica gel chromatography (5-50%

Et20O in hexanes) to yield 19.4 mg (80%) of the pyrroline.

HPLC analysis: 76% ee. (Diacel CHIRALCEL AD-H column; 0.9 mL/min;

solvent system: 20% isopropanol in hexanes; retention times 31.2 min (major), 26.1 min

(minor).

1H NMR (500 MHz) 8 7.87 (d, J=8.8 Hz, 1H), 7.83 (d, J=8.2 Hz, 1H), 7.76 (d,

J=8.3 Hz, 1H), 7.53-7.46 (m, 2H), 7.39-7.36 (m, 3H), 7.28 (d, J=6.8 Hz, 1H), 7.23-7.19
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(m, 1H), 7.18-7.15 (m, 4H), 7.10 (d, J=8.1 Hz, 2H), 6.80 (dd, J=3.8 Hz, J=2.1 Hz, 1H),

5.73 (m, 1H), 5.52 (d, J=12.6 Hz, 1H), 5.43 (d, J=12.6 Hz, 1H), 4.47 (dt, J=17.2 Hz,

J=2.4 Hz, 1H), 4.35 (ddd, J=17.2 Hz, J=5.8 Hz, J=2.0 Hz, 1H), 2.35 (s, 3H).

3C NMR (500 MHz) 8 161.9, 143.5, 139.4, 136.6, 135.9, 135.6, 133.9, 131.7,

130.9, 129.7, 129.6, 128.9, 128.5, 128.3, 128.0, 127.6, 127.3, 126.9, 126.2, 125.4, 123.5,

69.2, 65.0, 55.1, 21.7.

FTIR (thin film) 1721, 1646, 1598, 1456, 1349, 1259, 1163, 1089 cm 1 .

LC-MS calc. for C29H25NO4S [M+1] 484.1, found 484.1.

Table 2.2.2, Entry 17. In a nitrogen filled glove box, a solution of allene

(13.5 mg, 0.06 mmol) and N-benzylidene-p-toluenesulfonamide (13.0 mg, 0.050 mmol)

in CH2C12 (0.5 mL) was added to (S)-2.1 (1.8 mg, 0.005 mmol). After stirring for 16 h at

room temperature this mixture was directly purified by silica gel chromatography (5-50%

Et20O in hexanes) to yield 22.0 mg (91%) of the pyrroline.

HPLC analysis: 79% ee. (Diacel CHIRALCEL AS-H column; 0.9 mL/min;

solvent system: 20% isopropanol in hexanes; retention times 53.1 min (major), 71.0 min

(minor).

'H NMR (500 MHz) 8 7.82 (dd, J=5.9 Hz, J=3.3 Hz, 1H), 7.76-7.74 (m, 2H), 7.53

(s, 1H), 7.50 (d, J=3.3 Hz, 1H), 7.48 (d, J=3.1 Hz, 1H), 7.40 (d, J=8.2 Hz, 2H), 7.28-7.22

(m, 5H), 7.13-7.12 (m, 3H), 6.87 (m, 1H), 5.77 (d, J=5.5 Hz, 1H), 5.25 (d, J=12.5 Hz,

1H), 5.09 (d, J=12.5 Hz, 1H), 4.51 (dt, J=17.2 Hz, J=2.1 Hz, 1H), 4.39 (ddd, J=17.2 Hz,

J=5.8 Hz, J=1.6 Hz, 1H), 2.36 (s, 3H).

'3C NMR (125 MHz) 8 161.2, 143.6, 139.5, 136.9, 135.7, 135.4, 132.1, 129.7,

129.1, 128.6, 128.5, 128.3, 128.0, 127.4, 122.2, 87.0, 82.5, 69.2, 55.3, 53.4, 21.7

(coincident resonances).

FTIR (thin film) 1722, 1646, 1598, 1494, 1456, 1346, 1262, 1163, 1088 cm'1.

LC-MS calc. for C29H25NO4S [M+1] 484.1, found 484.1.
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Table 2.2.3, Entry 1. In a nitrogen filled glove box, a solution of allene (6.8 mg,

0.06 mmol) and N-benzylidene-o-toluenesulfonamide (13.0 mg, 0.050 mmol) in CH 2C12

(0.5 mL) was added to (S)-2.1 (1.8 mg, 0.005 mmol). After stirring for 16 h at room

temperature this mixture was directly purified by silica gel chromatography (5-50% Et 20

in hexanes) to yield 12.5 mg (68%) of the pyrroline.

HPLC analysis: 68% ee. (Diacel CHIRALCEL AS-H column; 0.9 mL/min;

solvent system: 20% isopropanol in hexanes; retention times 12.6 min (major), 19.1 min

(minor).

1H NMR (500 MHz) 8 7.73 (d, J=7.9 Hz, 1H), 7.29 (t, J=7.4 Hz, 1H), 7.16-7.02

(m, 7H), 6.90 (m, 1H), 5.77 (m, 1H), 4.75 (ddd, J=17.1 Hz, J=2.4 Hz, J=2.4 Hz, 1H), 4.40

(ddd, J=17.1 Hz, J=5.8 Hz, J=1.8 Hz, 1H), 4.09-3.97 (m, 2H), 2.36 (s, 3H).
13C NMR (125 MHz) 8 162.1, 139.3, 138.4, 137.4, 136.3, 135.8, 133.0, 132.6,

130.8, 129.8, 128.2, 128.1, 127.7, 126.1, 100.0, 68.9, 61.1, 55.0, 20.3, 14.1.

FTIR (thin film) 2341, 2360, 1719, 1652, 1456, 1321, 1264, 1161, 1133, 1071 cm1.

LC-MS calc. for C20H2 1N0 4S [M+Na] 394.1, found 394.0.

0 /-G

N
o-Ts

Table 2.2.3, Entry 2. In a nitrogen filled glove box, a solution of allene

(10.5 mg, 0.06 mmol) and N-benzylidene-p-toluenesulfonamide (13.0 mg, 0.050 mmol)

in CH 2C12 (0.5 mL) was added to (S)-2.1 (1.8 mg, 0.005 mmol). After stirring for 16 h at

room temperature this mixture was directly purified by silica gel chromatography (5-50%

Et20 in hexanes) to yield 13.5 mg (62%) of the pyrroline.

163



HPLC analysis: 70% ee. (Diacel CHIRALCEL AS-H column; 0.9 mL/min;

solvent system: 20% isopropanol in hexanes; retention times 17.1 min (major), 24.7 min

(minor).

'H NMR (500 MHz) 8 7.73 (d, J=7.8 Hz, 1H), 7.30-7.24 (m, 4H), 7.15-7.08 (m,

4H), 7.05-7.03 (m, 5H), 6.97 (d, J=1.8 Hz, 1H), 5.79 (m, 1H), 5.09 (d, J=12.4 Hz, 1H),

4.94 (d, J=12.4 Hz, 1H), 4.75 (ddd, J=17.2 Hz, J=2.4 Hz, J=2.4 Hz, 1H), 4.40 (ddd,

J=17.2 Hz, J=5.9 Hz, J=1.8 Hz, 1H), 2.35 (s, 3H).

"3C NMR (125 MHz) 8 161.9, 139.1, 138.4, 137.4, 136.8, 135.9, 135.4, 133.0,

132.6, 129.8, 128.7, 128.4, 128.3, 128.2, 128.1, 127.8, 126.1, 68.8, 66.8, 55.0, 20.3.

FTIR (thin film) 1720, 1456, 1321, 1265, 1161, 1133, 1070 cm'1.

LC-MS calc. for C25H23NO4S [M+1] 434.1, found 434.1.

0 O

N

Table 2.2.3, Entry 3. In a nitrogen filled glove box, a solution of allene (12.0 mg,

0.06 mmol) and N-benzylidene-p-toluenesulfonamide (13.0 mg, 0.050 mmol) in CH2C12

(0.5 mL) was added to (S)-2.1 (1.8 mg, 0.005 mmol). After stirring for 16 h at room

temperature this mixture was directly purified by silica gel chromatography (5-50% Et20O

in hexanes) to yield 9.0 mg (39%) of the pyrroline.

HPLC analysis: 76% ee. (Diacel CHIRALCEL OD-H column; 0.9 mL/min;

solvent system: 20% isopropanol in hexanes; retention times 40.5 min (major), 27.5 min

(minor).

'H NMR (500 MHz) 6 7.74 (d, J=7.8 Hz, 1H), 7.40-7.38 (m, 2H), 7.34-7.26 (m,

4H), 7.15 (t, J=7.4 Hz, 1H), 7.12-7.00 (m, 6H), 5.83 (m, 1H), 4.86-4.76 (m, 3H), 4.44

(ddd, J=17.3 Hz, J=5.9 Hz, J=1.9 Hz, 1H), 2.37 (s, 3H).

3C NMR (125 MHz) 8 161.3, 139.0, 138.4, 137.4, 136.9, 135.5, 133.1, 132.6,

132.1, 129.8, 129.1, 128.5, 128.3, 128.2, 127.7, 126.1, 122.2, 87.1, 82.5, 68.9, 55.1, 53.4,

20.3.

FTIR (thin film) 1728, 1646, 1491, 1456, 1379, 1322, 1256, 1162, 1133,
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1070 cm"-.

LC-MS calc. for C27H 23NO4S [M+Na] 480.1, found 480.1.

O

N
o-Ts

Table 2.2.3, Entry 4. In a nitrogen filled glove box, a solution of allene

(15.0 mg, 0.06 mmol) and N-benzylidene-p-toluenesulfonamide (13.0 mg, 0.050 mmol)

in CH2C12 (0.5 mL) was added to (S)-2.1 (1.8 mg, 0.005 mmol). After stirring for 16 h at

room temperature this mixture was directly purified by silica gel chromatography (5-50%

Et20 in hexanes) to yield 10 mg (40%) of the pyrroline.

HPLC analysis: 81% ee. (Diacel CHIRALCEL AD-H column; 0.9 mL/min;

solvent system: 20% isopropanol in hexanes; retention times 17.9 min (major), 13.0 min

(minor).

'H NMR (500 MHz) 8 7.72 (d, J=7.9 Hz, 1H), 7.62 (t, J=8.4 Hz, 2H), 7.41-7.34

(m, 3H), 7.28-7.21 (m, 2H), 7.16-7.07 (m, 4H), 7.00-6.99 (m, 4H), 6.86 (d, J=7.5 Hz,

1H), 6.63 (s, 1H), 5.77 (m, 1H), 4.77 (m, 1H), 4.40 (ddd, J=17.3 Hz, J=5.9 Hz, J=1.5 Hz,

1H), 2.33 (s, 3H).

'3C NMR (125 MHz) 162.9, 141.8, 141.3, 141.0, 139.0, 138.4, 137.3, 137.1,

135.8, 133.0, 132.5, 129.9, 129.8, 129.7, 128.3, 128.10, 128.06, 127.9, 127.8, 126.3,

126.04, 126.02, 120.2, 120.1, 100.0, 75.7, 68.8, 55.0, 20.2.

FTIR (thin film) 1720, 1647, 1454, 1321, 1258, 1162, 1133, 1069 cm-1.

LC-MS calc. for C31H2 5NO4 S [M+Na] 530.1, found 530.1.

Table 2.2.3, Entry 5. In a nitrogen filled glove box, a solution of allene

Table 2.2.3, Entry 5. In a nitrogen filled glove box, a solution of allene

165



(12.0 mg, 0.06 mmol) and N-benzylidene-p-toluenesulfonamide (9.0 mg, 0.050 mmol) in

toluene (0.5 mL) was added to (S)-2.1 (1.8 mg, 0.005 mmol). After stirring for 16 h at

room temperature this mixture was directly purified by silica gel chromatography

(5-50% Et20O in hexanes) to yield 16.7 mg (88%) of the pyrroline.

HPLC analysis: 66% ee. (Diacel CHIRALCEL AD-H column; 0.9 mL/min;

solvent system: 20% isopropanol in hexanes; retention times 26.6 min (major), 17.9 min

(minor).

'H NMR (500 MHz) 8 7.41-7.30 (m, 10H), 7.03 (s, 1H), 5.84 (m, 1H), 4.88 (d,

J=15.7 Hz, 1H), 4.84 (d, J=15.7 Hz, 1H), 4.66 (m, 1H), 4.43 (ddd, J=17.1 Hz, J=5.8 Hz,

J=1.3 Hz, 1H), 2.44 (s, 3H).
3C NMR (125 MHz) 6 161.2, 139.0, 136.9, 135.4, 132.1, 129.1, 129.0, 128.9,

128.6, 128.1, 122.2, 87.1, 82.4, 68.8, 55.0, 53.5, 39.6.

FTIR (thin film)1726, 1491, 1338, 1256, 1154, 1072, 989, 758 cm1.

LC-MS calc. for C21H19NO4 S [M+Na] 404.1, found 404.0.

0

N

Table 2.2.3, Entry 6. In a nitrogen filled glove box, a solution of allene (15.0 mg,

0.06 mmol) and N-benzylidene-p-toluenesulfonamide (9.0 mg, 0.050 mmol) in CH2C12

(0.5 mL) was added to (S)-2.1 (1.8 mg, 0.005 mmol). After stirring for 16 h at room

temperature this mixture was directly purified by silica gel chromatography (5-50% Et2O

in hexanes) to yield 21.0 mg (98%) of the pyrroline.

HPLC analysis: 82% ee. (Diacel CHIRALCEL AD-H column; 0.9 mL/min;

solvent system: 20% isopropanol in hexanes; retention times 14.9 min (major), 13.3 min

(minor).
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'H NMR (500 MHz) 8 7.64 (m, 2H), 7.42-7.31 (m, 8H), 7.24 (m, 1H), 7.15 (t,

J=7.4 Hz, 1H), 7.00 (m, 1H), 6.66 (s, 1H), 5.79 (m, 1H), 4.63 (dt, J-=17.1 Hz, J=2.4 Hz,

1H), 4.41 (ddd, J=17.1 Hz, J=6.1 Hz, J=1.9 Hz, 1H), 2.41 (s, 3H).

13C NMR (125 MHz) 8 162.8, 141.8, 141.3, 141.2, 141.1, 139.0, 137.0, 135.7,

129.9, 129.7, 129.0, 128.8, 128.2, 128.1, 127.9, 126.3, 125.9, 120.3, 120.2, 75.8, 68.7,

55.0, 39.6.

FTIR (thin film) 1719, 1453, 1337, 1258, 1155, 1072, 966 cm-.

LC-MS calc. for C25H 21NO4S [M+Na] 454.1, found 454.0.

Table 2.2.4, Entry 1. In a nitrogen filled glove box, a solution of (R)-2.1

(7.4 mg, 0.020 mmol) in CH2C12 (1.0 mL) was added to a solution of allene (53.8 mg,

0.240 mmol) and N-(4-methoxy)benzylidene-p-toluenesulfonamide (57.7 mg, 0.200

mmol) in CH2C12 (1.0 mL). After stirring for 16 h at room temperature this mixture was

directly purified by silica gel chromatography (5-30% EtOAc in hexanes) to yield 86.0

mg (84%) of the pyrroline as a white solid.

This compound was recrystallized from 1:1 Et2O:hexanes to yield crystals

suitable for X-ray crystallography (See Appendix A).

HPLC analysis: 80% ee. (Diacel CHIRALCEL IA column; 1.0 mL/min; solvent

system: 25% EtOAc in hexanes; retention times 14.8 min (major), 18.4 min (minor).

Second run: (S)-2.1 (7.4 mg, 0.020 mmol), allene (53.8 mg, 0.240 mmol), and N-

(4-methoxy)benzylidene-p-toluenesulfonamide (57.7 mg, 0.200 mmol). 89% yield,

81% ee.

'H NMR (300 MHz) 7.84-7.79 (m, 1H), 7.76-7.71 (m, 2H), 7.51-7.46 (m, 3H),

7.43-7.39 (m, 2H), 7.17-7.10 (m, 5H), 6.84 (dd, J=3.9 Hz, J=2.2 Hz, 1H), 6.76-6.71 (m,

2H), 5.73 (m, 1H), 5.28 (d, J=12.9 Hz, 1H), 5.08 (d, J=12.9 Hz, 1H), 4.48 (dt, J=17.1 Hz,

J=2.5 Hz, 1H), 4.35 (ddd, J=17.1 Hz, J=5.7 Hz, J=1.9 Hz, 1H), 3.77 (s, 3H), 2.35 (s, 3H).
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13C NMR (300 MHz) 161.9, 159.6, 143.4, 136.4, 135.8, 133.3, 132.9, 131.8,

129.7, 129.3, 128.5, 128.2, 127.9, 127.32, 127.27, 126.53, 126.51, 125.8, 113.9, 68.7,

66.8, 55.5, 54.9, 21.7.

FTIR (thin film) 1721, 1610, 1511, 1457, 1345, 1251, 1162, 1085, 816 cm'.

LC-MS calc. for C30H27NOs5S [M+1] 514.1, found 514.1.

N
Ts

Table 2.2.4, Entry 2. In a nitrogen filled glove box, a solution of (R)-2.1

(7.4 mg, 0.020 mmol) in CH2C12 (1.0 mL) was added to a solution of allene (53.8 mg,

0.240 mmol) and N-(4-chloro)benzylidene-p-toluenesulfonamide (58.5 mg, 0.200 mmol)

in CH2C12 (1.0 mL). After stirring for 16 h at room temperature this mixture was directly

purified by silica gel chromatography (5-30% EtOAc in hexanes) to yield 87.0 mg (84%)

of the pyrroline as a white solid.

HPLC analysis: 70% ee. (Diacel CHIRALCEL IA column; 1.0 mL/min; solvent

system: 25% EtOAc in hexanes; retention times 12.9 min (major), 15.6 min (minor).

Second run: (S)-2.1 (7.4 mg, 0.020 mmol), allene (53.8 mg, 0.240 mmol), and N-(4-

chloro)benzylidene-p-toluenesulfonamide (58.5 mg, 0.200 mmol). 83% yield, 70% ee.
1H NMR (300 MHz) 8 7.85-7.82 (m, 1H), 7.78-7.74 (m, 2H), 7.54 (s, 1H), 7.53-

7.47 (m, 2H), 7.46-7.42 (m, 2H), 7.19-7.12 (m, 7H), 6.87-6.85 (m, 1H), 5.72-5.69 (m,

1H), 5.27 (d, J=12.4 Hz, 1H), 5.08 (d, J=12.4 Hz, 1H), 4.50 (dt, J=17.2 Hz, J=2.5 Hz,

1H), 4.39 (ddd, J=17.2 Hz, J=5.7 Hz, J=2.0 Hz, 1H), 2.37 (s, 3H).

"3C NMR (75 MHz) 8 161.7, 143.8, 138.3, 137.0, 135.5, 135.4, 134.1, 133.3,

133.2, 132.6, 129.8, 129.5, 128.7, 128.5, 128.1, 127.9, 127.5, 127.3, 126.6, 125.8, 68.4,

67.0, 55.2, 21.7.

FTIR (thin film) 1722, 1647, 1597, 1490, 1346, 1265, 1163, 1091, 815 cm'.

LC-MS calc. for C29H24CIN0 4S [M+1] 518.1, found 518.1.
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Table 2.2.4, Entry 3. In a nitrogen filled glove box, a solution of (R)-2.1

(7.4 mg, 0.020 mmol) in CH 2Cl2 (1.0 mL) was added to a solution of allene (53.8 mg,

0.240 mmol) and N-(3-furylidene)-p-toluenesulfonamide (50.0 mg, 0.200 mmol) in

CH2C12 (1.0 mL). After stirring for 16 h at room temperature this mixture was directly

purified by silica gel chromatography (5-30% EtOAc in hexanes) to yield 82.0 mg (87%)

of the pyrroline as a white solid.

HPLC analysis: 62% ee. (Diacel CHIRALCEL IA column; 1.0 mL/min; solvent

system: 25% EtOAc in hexanes; retention times 12.7 min (major), 15.7 min (minor).

Second run: (S)-2.1 (7.4 mg, 0.020 mmol), allene (53.8 mg, 0.240 mmol), and N-

(3-furylidene)-p-toluenesulfonamide (50.0 mg, 0.200 mmol). 89% yield, 63% ee.

1H NMR (300 MHz) 8 7.85-7.79 (m, 3H), 7.65 (s, 1H), 7.59-7.55 (m, 2H), 7.53-

7.47 (m, 2H), 7.44-7.43 (m, 1H), 7.29-7.26 (m, 2H), 7.22-7.19 (m, 2H), 6.80-6.78 (m,

1H), 6.23-6.22 (m, 1H), 5.85-5.82 (m, 1H), 5.32 (d, J=12.5 Hz, 1H), 5.20 (m, 1H), 4.44

(dt, J=17.3 Hz, J=2.3 Hz, 1H), 4.30 (ddd, J=17.3 Hz, J=5.3 Hz, J=1.9 Hz, 1H), 2.37 (s,

3H).
13C NMR (75 MHz) 8 162.8, 144.6, 144.1,141.8, 137.9, 136.2, 135.6,

134.0,133.6, 130.6, 129.3, 129.3, 128.9, 128.7, 128.14,128.12, 127.4, 126.5, 125.4, 110.0,

67.4, 61.2, 54.9, 21.8.

FTIR (thin film) 1721, 1646, 1598, 1346, 1163, 1089, 1020, 815 cm1.

LC-MS calc. for C27H23NOs5S [M+1] 474.1, found 474.1.
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Table 2.2.4, Entry 4. In a nitrogen filled glove box, a solution of (R)-2.1 (7.4

mg, 0.020 mmol) in CH2C12 (1.0 mL) was added to a solution of allene (53.8 mg, 0.240

mmol) and N-(3,4-dimethoxy)benzylidene-p-toluenesulfonamide (63.7 mg, 0.200 mmol)

in CH2Cl2 (1.0 mL). After stirring for 16 h at room temperature this mixture was directly

purified by silica gel chromatography (10-40% EtOAc in hexanes) to yield 94.0 mg

(87%) of the pyrroline as a white solid.

HPLC analysis: 70% ee. (Diacel CHIRALCEL IA column; 1.0 mL/min; solvent

system: 25% EtOAc in hexanes; retention times 17.6 min (major), 16.4 min (minor).

Second run: (S)-2.1 (7.4 mg, 0.020 mmol), allene (53.8 mg, 0.240 mmol), and N-

(3,4-dimethoxy)benzylidene-p-toluenesulfonamide (63.7 mg, 0.200 mmol). 88% yield,

71% ee.

'H NMR (300 MHz) 8 7.84-7.79 (m, 1H), 7.76-7.72 (m, 2H), 7.53 (s, 1H), 7.50 (t,

J=2.3 Hz, 1H), 7.46 (t, J=2.3 Hz, 1H), 7.39 (m, 2H), 7.36 (m, 1H), 7.16-7.10 (m, 2H),

6.87-6.85 (m, 1H), 6.77 (dd, J=8.3 Hz, J=2.0 Hz, 1H), 6.66 (d, J=8.2 Hz, 1H), 6.57 (d,

J=2.0 Hz, 1H), 5.76-5.73 (m, 1H), 5.27 (d, J=12.5 Hz, 1H), 5.09 (d, J=12.5 Hz, 1H), 4.52

(dt, J=17.1 Hz, J=2.4 Hz, 1H), 4.35 (ddd, J=17.1 Hz, J=5.8 Hz, J=2.0 Hz, 1H), 3.84 (s,

3H), 3.62 (s, 3H), 2.34 (s, 3H).

'3C NMR (75 MHz) 8 162.0, 149.0, 148.3, 143.4, 136.4, 135.9, 135.8, 133.24,

133.21, 132.8, 131.7, 129.5, 128.5, 128.1, 127.9, 127.3, 127.2, 126.6, 125.8, 120.7, 110.8,

69.0, 66.9, 56.0, 55.7, 54.9, 21.6.

FTIR (thin film) 1721, 1647, 1596, 1514, 1464, 1421, 1344, 1261, 1163, 1141,

1087, 1027, 815 cm-1

LC-MS calc. for C31H29N0 6S [M+1] 544.1, found 544.1.
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Mercier, E. Org. Lett. 2006, 8, 3643.

12. Jean, L.; Marinetti, A. Tet. Lett. 2006, 47, 2141.
13. Scherer, A.; Gladysz, J. A. Tet. Lett. 2006, 47, 6335.
14. (a) Wurz, R. P.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 12234. (b) Wilson, J. E.;

Fu, G. C. Angew. Chem. Int. Ed 2006, 45, 1426.

171



15. 1,2-dichloroethane gave comparable results to CH 2C12. Halogenated solvents
such as chlorobenzed, chloroform, and trifluorotoluene provided inferior
selectivities. Other solvents such as toluene, EtOAc, Et20, THF, MeOH, EtOH,
t-amylalcohol, benzene, and dioxane gave inferior results.

16. Concentration had little impact on the ee of the cycloaddition, but reactions run at
very high concentrations yielded complex mixtures. Reactions run at elevated
temperatures gave decreased selectivities. The reaction rate drastically slowed at
0 oC.

17. We have observed similar trends when other allenoates are used as reaction
partners.

18. Cycloadditions with a cyclohexyl, i-butyl, and cyclopropyl substituted imine gave
yields between 30-50% and enantioselectivity of 10-60%.

19. The allenoate synthesis was adopted from: Lang, R. W.; Hansen, H.-J. Organic
Syntheses 1984, 62, 202.
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F. H NMR Spectra for Selected Compounds
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Chapter 3

Phosphine-Catalyzed Synthesis of Bicyclo[3.3.0]octanones and

Bicyclo[4.3.0]nonanones from Ynone-Enoates
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A. Introduction.

Cycloadditions allow for the construction of cyclic compounds containing

multiple stereogenic elements in a single step. This characteristic has rendered these

reactions powerful tools for the synthesis of complex natural products and

pharmaceuticals. Although considerable effort has been devoted to the study of

pericyclic reactions over the years, this family of processes continues to inspire and

fascinate researchers resulting in creative and valuable chemical transformations.1

More than 60 years ago, Lewis acids were found to be efficient catalysts for many

types of cycloadditions. Since this time, much effort has been devoted to the

development of Lewis acid-catalyzed cycloadditions, and these reactions have seen broad

application in synthesis.2 More recently, our group and others have reported methods

that employ nucleophiles, more precisely, amines and phosphines, as catalysts for

cycloadditions.3 In contrast to Lewis acid-catalyzed cycloadditions, which generally rely

on electrophile activation, tertiary amines and phosphines catalyze cycloadditions by

activation of a latent nucleophile, usually an electron deficient alkene or alkyne. The

activated alkene or alkyne usually takes the form of a zwitterionic enolate/ylide.4

Examples of this include phosphine-catalyzed [3+2] and [4+2] cycloadditions of

allenoates with imines (eq 3.1 and eq 3.2).5, 6

,TsN
CO2Et PR3  EWG 1 R C02Et

RR3 P (3.1)

TsTs

N Ts

R' CO2Et pR 3  EWG R2  H RN NTs

R3P I• 
(3.2)

CO 2Et

Recently, Tomita reported a novel phosphine-catalyzed intramolecular annulation

reaction for the synthesis of bicyclic furanones (eq 3.3). 7
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0 0 R 1 = Ph, n-Bu
20 mol% P(n-Bu)3  H R2 = n-Bu-CC, Ph-CC, Me, H

• u RI•O (3.3)
R1  THF,r.t. )n n = 1, 2

STHF, r.t. R2  41-73% yieldR2

Tomita proposes that the reaction proceeds through a conjugated phosphonium

stabilized enolate C, which is thought to arise from tautomerization of allenoate B. Aldol

cyclization provides D, which undergoes C-O bond formation by alkoxide addition to the

vinyl phosphonium moiety. Subsequent proton transfer and elimination of the phosphine

provides the furanone E (Scheme 3.1).

Scheme 3.1. Proposed Mechanism of Tomita's Phosphine-Catalyzed Ynone-Carbonyl

Annulation.

o

R 0

R

A B c

[~
H

R R

While Tomita's reaction is the only study, to the best of our knowledge, that

makes use of a conjugated zwitterionic enolate such as C, other related phosphine-

mediated annulation reactions that implicate similar intermediates have been reported.8

Roush has evidence that a phosphonium-stabilized enolate is responsible for the high

levels of regioselectivty observed in his phosphine-mediated tandem Rauhut-

Currier/aldol reaction. His proposed mechanism invokes enolate F, which is a saturated

analog of Tomita's posited intermediate C.9
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Scheme 3.2. Roush's Phosphine-Mediated Tandem Rauhut-Currier/Aldol Reaction.

COCH 2R1

R2

[ COR
3

1-5 equiv. PMe3

TFE or t-amyl alchol
60-80 OC

o 0
PR3 0

PR3  Me

0
Me

Me0

CCMe

-ROH

-PR 3

PR3 O OR

Me

PR3 0

Me 0

o 0
PR3 O OR

Me
0

-ROH "-Me

PR, 0

Me

F

We became interested in the prospect of developing a reaction analogous to

Tomita's involving the cyclization of an ynone moiety with a Michael acceptor. This

type of reaction would provide access to [3.3.0] and [4.3.0] bicyclic systems, which are

prevalent substructures of numerous natural products (eq 3.4).

catalytic phosphine
0

RW H

EWG H )n

Moreover, the products of the proposed reaction, bicyclo[3.3.0]octan-2-ones, have

been employed as intermediates for the synthesis of structurally complex natural

products. The versatility of these compounds is exemplified by the imaginative synthesis

outlined below.

In Paquette's jatrophatrione synthesis, a bicyclo[3.3.0]octan-2-one dictates the

stereochemical course of a cascade reaction leading to a complex tetracyclic-1,3-diol that

is subsequently converted to the [5.9.5] tricyclic core of Jatrophatrione via a ring-

expanding fragmentation process. 10
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Scheme 3.3. Paquette's Use of a Bicyclo[3.3.0]octanone in a Synthesis of

Jatrophatrione.

Me,, O Me,,, HO Me

Me Me MeBn HMeBnOH Me
ring expansion- Me OH alkylation;

Me 0 fragmentation [3,3]-rearrangement;
intramolecular ene-rxn.

Jatrophatrione
diterpenoid tumor-

inhibition agent

0 OMe

MMe

MenO Br MeBnO

Aube employs a bicyclo[3.3.0]octan-2-one in his elegant synthesis of indolizidine

25 IF. The bicyclic ketone is used here as a substrate for a ring-expanding Schmidt

rearrangement that establishes the alkaloid's tricyclic core. 11

Scheme 3.4. Aube's Use of a Bicyclo[3.3.0]octanone in a Synthesis of Indolizidine

251F.

Me

N Me

HO

Me

Indolizidine 251F
alkaloid from the dendrobates

bombetes species of frog

Me 0

intramolecular HMe Me
SchmidtMe Me

Schmidt reaction

Me 0
BnO

Me Me

A third instance of the utility of bicyclo[3.3.0]octan-2-ones is demonstrated in

Winkler's synthesis of ingenol. Again, the bicycle serves as a substrate for a ring-

expanding fragmentation that provides the "inside-outside" ingenane carbon skeleton. 12
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Scheme 3.5. Winkler's Use of a Bicyclo[3.3.0]octanone in a Synthesis of Ingenol.

H Me
Me Me,,, Cl

Me, O -'H H Me H e Me,, o
Me " H > 0 Me

HO HO -OTBS deprotection; O [2+2]OHOH OTBS H HHO OH fragmentation photocycloaddition

Ingenol
anti-leukemic and

anti-HIV agent

It is apparent from the preceeding examples that the development of a general

method for the preparation of bicyclo[3.3.0]octan-2-ones would be a worthy undertaking.

Even more useful would be the development of a catalytic asymmetric variant of this

process. The following chapter describes the development of the process outlined in

equation 3.4.

B. Results and Discussion.

Our investigation commenced by examining the phosphine-catalyzed cyclization

of substrate 3.1. Tomita's conditions for intramolecular ynone-carbonyl cyclizations,

20 mol% P(n-Bu) 3 in THF (0.5 M), provide only small quantities of the

bicyclo[3.3.0]octanone (Table 3.1, Entry 1).7 However, the replacement of THF with

CH 2C12 led to a dramatic increase in yield. 13 More dilute conditions further improve the

efficiency of the cyclization, presumably due to the suppression of undesired

intermolecular processes (Table 3.1, Entries 2-6). Other phosphines catalyzed the

process, but less efficiently than P(n-Bu) 3. Trialkylphosphines smaller than P(n-Bu) 3

lead to more oligomerization (Table 3.1, Entries 7-9). Trialkylphosphines larger than

P(n-Bu) 3 either fail to catalyze the cyclization or do so very slowly (Table 3.1, Entries

10-14). A variety of triarylphosphines failed to catalyze the cyclization (Table 3.1,

Entries 16-19).

214



Table 3.1. Reaction Optimization: Effects of Solvent and Phosphine.

0

EtO 2C

3.1

phosphine

20 mol% phosphine

CH 2C12, conc.

P(n-Bu) 3

P(n-Bu) 3

P(n-Bu) 3

P(n-Bu) 3

P(n-Bu) 3

P(n-Bu) 3

PMe 3

PEt3

P(n-propyl) 3

P(i-Bu) 3

P(n-hexyl) 3

P(benzyl) 3

P(cyclopentyl) 3

P(cyclohexyl) 3

PEt2Ph

P(4-OMe-C 6H4)3

P(4-OMe-C 6H4)2Ph

P(4-NMe 2-C6H4)Ph2

entry

la

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

conc. [M]

0.50

0.10

0.05

0.03

0.02

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

O
H

Ph

EtO2C H

product : oligomer :

08 : 72 : 20

64 : 36: 00

81 :19 : 00

86 :14 : 00

88 :12 : 00

91: 09 : 00

51 :49: 00

64: 36 : 00

64: 17 :17

36 : 41: 23

15 : 42 : 43

traces : 00 : 95

83 :17 :00

46 : 22 : 32

78 : 22 :00

trace: 00 : 95

00: 00:100

trace : 00 : 95

00: 00: 100

a THF is used instead of CH2C12. bRatios are estimated by analysis of a crude reaction
mixture by 'H NMR.

Although preliminary studies indicated that the scope of this process would be

broad, we were puzzled to discover that substrate 3.2 was reluctant to cyclize under the

conditions developed for our model substrate 3.1. 1H NMR analysis showed that the

substrate was consumed under the reaction conditions but only trace amounts of the
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bicyclic product were observed. Further investigation led us to uncover a pronounced

solvent effect. The use of a CH2CI2:EtOAc (1:1) solvent system led to efficient

cyclization of 3.2 (eq 3.5).

0 0
CO2Et 20 mol% P(n-Bu) 3  (3.5)

COEt , (3.5)

Me02C Me02C H C02Et

3.2 CO2Et

CH 2CI2 (0.01 M), r.t. = complete conversion, no desired product

(1:1) CH 2C12:EtOAc (0.01 M) = complete conversion, 70-80% by 1H NMR

We were pleased to find that these new conditions were effective for the

cyclization of ynone 3.1 as well (Table 3.2, Entry 6). Detailed examination of the

CH 2Cl2:EtOAc ratio led to an improvement over our initial reaction conditions (Table

3.2, Entries 1-7). Hopeful that our new conditions may allow for a reduction in catalyst

loading or an increase in concentration, we reexamined these parameters. Unfortunately,

lower catalyst loadings (Table 3.2, Entries 8-11) or increased concentration (Table 3.2,

Entries 12 and 13) led to increases in oligomerization, as before. We also examined the

possibility of using the catalyst precursor (n-Bu) 3P-HBF 4 with K2C0 3 or NEt3, but this

combination failed to promote the reaction.
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Table 3.2. Reaction Optimization: Effects of Cosolvents, Concentration, and Catalyst

Loading.
O

Ph ýEtO2C

x mol% P(n-Bu)3

solvent, conc.

O

Ph

EtO2C H

entry x mol% P(n-Bu) 3  solvent conc. [M] product : oligomer : SMa

1 20 CH 2C12:EtOAc (19:1) 0.01 93 : 07: 00

2 20 CH 2C12: EtOAc (9:1) 0.01 94 : 06 : 00

3 20 CH2C12:EtOAc (4:1) 0.01 91:09:00

4 20 CH 2C12:EtOAc (7:3) 0.01 87 : 13 : 00

5 20 CH2C12:EtOAc (3:2) 0.01 79 : 21 : 00

6 20 CH 2C12:EtOAc (1:1) 0.01 74 :26: 00

7 20 CH 2C12:EtOAc (1:9) 0.01 52 : 48 : 00

8 15 CH 2C12:EtOAc (9:1) 0.01 93 : 07 : 00

9 10 CH 2C12:EtOAc (9:1) 0.01 86: 14 : 00

10 5 CH 2C12:EtOAc (9:1) 0.01 46 : 34 : 12

11 2 CH2C12:EtOAc (9:1) 0.01 15 : 10 : 75

12 20 CH 2CI2:EtOAc (9:1) 0.02 90: 10: 00

13 20 CH 2C12:EtOAc (9:1) 0.05 75 : 25 : 00

a Ratios are estimated by analysis of a crude reaction mixture by 'H NMR.

These reaction conditions are effective for the cyclization of a range of ynone-

enoate substrates. Both aromatic- and alkenyl-substituted ynones cyclize smoothly

furnishing bicyclo[3.3.0]octan-2-ones in excellent yields (Table 3.3, entries 1-3). Alkyl-

ynones are more problematic. It is necessary to employ 1 equivalent of P(n-Bu) 3 for

efficient cyclization of a 20-alkyl-ynone (Table 3.3, Entry 4).
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Table 3.3. Phosphine-Catalyzed Synthesis of Bicyclo[3.3.0]octanones.

20 mol% P(n-Bu)3

CH 2C12:EtOAc (9:1), r.t.

o
RN H

EtO2C

0 0 0 0
PhN H \N H \~. H N H

EtO 2C MeO EtO 2C EtO2C EtO2C

Entry 1, 89% yield Entry 2, 83%a Entry 3, 84% yield Entry 4, 45% yieldb

All data are the average of two runs. aCH 2zC2:EtOAc (1:1) was used. bl equiv of P(n-Bu) 3

was used.

Although, phosphine-catalyzed ynone to dieneone isomerization is not an issue

for aryl-ynones, this problem does arise for alkyl-substituted ynones. 14 Under our

optimized conditions we observe significant amounts of the undesired dienone side

product according to analysis of the crude reaction mixture by 1H NMR spectroscopy (eq

3.6). We do not observe the ynone to dienone isomerization in the case of the 20 -alkyl-

ynone (Table 3.3, Entry 4).

O
Me

EtO 2C '

20 mol% P(n-Bu) 3

CH 2C12:EtOAc (9:1), r.t. Me
EtO2C

This difficulty can be overcome through the use of the Thorpe-Ingold effect. No

dienone is observed in the cyclization of an alkyl-ynone containing a geminal diester

moiety in the backbone (Table 3.4, Entry 4). Presumably, the inclusion of a geminal

diester substituent increases the rate of cyclization but does not significantly affect the

rate of the ynone to dienone isomerization. Not surprisingly, aryl-, alkenyl-, methyl-, and
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20alkyl-ynones containing a geminal diester moiety cyclize as well (Table 3.4, Entries 1,

2, 3, and 5).

Table 3.4. Phosphine-Catalyzed Ynone Cyclizations of Thorpe-Ingold Substrates.

0 CO2Et 20 mol% P(n-Bu)3

R eO: C CO2Et CH 2C12:EtOAc (9:1), r.t.
MeO 2C \

O
RK H

MeO 2C H CO 2Et

CO 2Et

O
Ph 4H H

MeO 2C CO2EtH

CO2Et

Entry 1, 89% yield

O

Me2C H CO2Et

CO2Et

Entry 2, 87% yield

O
4 H

Me0 2C CO 2Et

CO2Et

Entry 3, 74% yield

O

Me H

MeO 2C H CO 2Et

CO2Et

Entry 4, 77% yield

O
Me H

MeO 2C H CO2Et

C0 2Et

Entry 5, 56% yield

All data are the average of two runs.

A benzo-fused alkyl-ynone-enoate cyclizes, indicating that other types of

backbone substitution are capable of rendering the cyclization competitive with the

undesired isomerization process (eq 3.7, top).15 The phenyl-substituted analog of this

substrate also cyclizes smoothly to deliver the tricyclic ketone in excellent yield (eq 3.7,

bottom).

20 mol% P(n-Bu) 3

CH2C12:EtOAc (9:1), r.t.

OH

R

EtO2C H

R = n-pentyl; 55% yield (3.7)
R = Ph; 88% yield

Homologated ynone-enoates cyclize efficiently under our optimized reaction

conditions to furnish bicyclo[4.3.0]nonanones (eq 3.8 and 3.9). Currently, this class of

cyclization is limited to backbone-substituted ynone-enoates. 16
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, CO2Et
P- 2 C0 2 Et

Ph Me02C N.

0

Ph,-CEt02C

20 mol% P(n-Bu) 3

CH2C12:EtOAc (9:1), r.t.

20 mol% P(n-Bu) 3

CH 2C12:EtOAc (9:1), r.t.

O H

Ph- CO2E t  59% yield

MeO 2C H CO2Et

OH0 H

Ph

EtO 2C H

(3.8)

72% yield (3.9)

Preliminary investigations show promise for the future development of

diastereoselective ynone-enoate cyclizations (eq 3.10). Suprisingly, the more sterically-

congested isomer is formed preferentially.

O

Ph EtO 2C

20 mol% P(n-Bu) 3

CH 2C12:EtOAc (9:1), r.t.

Although successful in many instances, we have found some limitations of this

new methodology. Compounds 3.3 and 3.5 decompose under the reaction conditions,

providing an intractable reaction mixture. Silyl-ynone 3.4 is recovered quantitatively,

indicating that the initial phosphine addition most likely does not occur. Complex

reaction mixtures are obtained when 3.6 is employed as a substrate. This may be due to

competitive addition to the enone. Attempts with substrates 3.7 and 3.9 to synthesize

bicycles containing a quaternary stereocenter either adjacent to the ester or at the ring

junction failed even under more forcing conditions.
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Scheme 3.6. Limitations of the Phosphine-Catalyzed Bicycl0[3.3.0]octan-2-one

Synthesis.

0

EtOE

3.3

O0

Ph

Et0 2C

3.7

o0

TBDMS
Et02C

0

EtO2C N

Et0 2C

3.8

o

Ph Ph

Ph

3.6
SOCO

2Et

P Me CO 2 Et
MeO 2C

3.9

Because the phosphine catalyst is bound to the substrate during the C-C bond-

forming event, catalytic enantioselective cyclizations should be feasible. Indeed, when

P(n-Bu) 3 is replaced with chiral phosphine 2.1, we observe modest enantioselectivity for

a range of ynone-enoate cyclizations (Scheme 3.7). Ester analogs of 3.1 (MeO-, BnO-,

t-BuO-, and PhO-) were prepared in the hopes of improving these initial results.

Unfortunately, these modifications offered no advantages.

Scheme 3.7. Examples of Enantioselective Bicyclo[3.3.0]octanone Synthesis Catalyzed

by 2.1.

0
Ph-" H

MeO 2C H C0 2Et

CO 2Et

50% ee

0 H

Ph/-

EtO2C H

45% ee

P-t-Bu

(R)-2.1

The bicyclic products from the phosphine-catalyzed ynone-enoate cyclization

may be functionalized with high stereoselectivity. The carbonyl group is reduced under

Luche conditions (eq 3.11), while hydrogenation with catalytic Pd/C reduces the olefin

(eq 3.12). Furthermore, Cu(I)-catalyzed 1,4-addition reactions of Grignard reagents

proceeds with excellent diastereoselectivity (eq 3.13). 17
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Ph Hr

EtO2C

O

Meo, Et02MeO - EIO2C: H

O
Pht H

EtO 2C

NaBH4, CeC13

MeOH, -10 OC

cat. Pd/C

H2 (1 atm), MeOH

10 mol%
CuBr SMe2

EtMgBr

TMSC1, HMPA
THF, -78 OC

OH

Ph ' H

EtO 2C H

95%, >20:1 d.r. (3.11)

(3.12)

O

MeO L••~i  95%, 7:1 d.r.
MeO EtO2EtOC2\H

Me.
OTMS

Ph " H

EtO 2C H

complete conversion,
>20:1 d.r. (3.13)

C. Conclusions.

A diastereoselective phosphine-catalyzed synthesis of bicyclo[3.3.0]octan-2-ones

and bicyclo[4.3.0]nonan-2-ones was developed. Initial studies indicate that an effective

asymmetric variant of the process may be feasible. Finally, some useful derivatizations

of the bicyclic products were developed.

D. Experimental

I. General

All reactions were carried out in oven-dried glassware under an atmosphere of

argon or nitrogen with magnetic stirring, unless otherwise noted. P(n-Bu) 3 (97%) was

purchased from Aldrich. All purchased materials were used as received. EtOAc

(anhydrous) was purchased from Fluka. CH2Cl 2 was purified by passage through neutral

alumina.

All NMR spectra were recorded in CDC13, unless otherwise noted.
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II. Substrate Preparation

Substrates for Table 3.3 and Eq 3.10:

O OH O
a HO b c d

0 R1  - - H - "

EtO2C N R' R2 2SEtEtO C R1  EtO 2C Ri EtO2C R1

a. DIBAL-H, toluene, -78 OC; then Ph3PCHCO 2Et. b. Swern oxidation. c. R2CCLi, THF, -78 OC to 0 OC. d. cat. TPAP, NMO, 4A MS,
CH2CI2:CH 3CN (10:1), r.t.

HO

EtO 2C'

[75958-95-1]. DIBAL-H (1.0 M solution in toluene; 25.0 mL, 25.0 mmol) was

added to a solution of the E-lactone (2.77 mL, 25.00 mmol) in toluene (50.0 mL) at -78

oC. The mixture was stirred for 2 h at -78 oC, and then EtOAc (75 mL) and a saturated

solution of disodium tartrate (30 mL) were added. This solution was warmed to room

temperature and stirred for 1 h (until the aqueous layer and organic layer separate easily).

The layers were separated, and the aqueous layer was extracted with EtOAc (3x20 mL).

The combined organic layers were washed with brine, dried over MgSO 4, filtered, and

concentrated. The crude lactol was dissolved in CHC13 (75 mL), treated with

(ethoxycarbonylmethylene)triphenylphosphorane (8.70 g, 25.0 mmol), and stirred at

room temperature for 18 h. Next, the reaction mixture was concentrated and directly

purified by flash chromatography (20-60% EtOAc in hexanes), which provided 2.77 g

(60%) of a clear, colorless oil.

O

H

EtO2C N

[98525-85-0]. DMSO (3.20 mL, 44.7 mmol) was added dropwise to a solution of

oxalyl chloride (1.95 mL, 22.4 mmol) in CH2C12 (50 mL) at -78 oC. After 10 min, a
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solution of the alcohol (2.77 g, 14.9 mmol) in CH 2C12 (50 mL) was added dropwise via

cannula. The solution was stirred for 30 min, and then it was treated with NEt3 (10.4 mL,

74.5 mmol). This mixture was stirred at -78 oC for 20 min, and then it was warmed to

room temperature and stirred for an additional 30 min. The reaction was quenched with a

saturated solution of NaHCO 3 (50 mL). The layers were separated, and the aqueous layer

was extracted with CH2 C12 (2x50 mL). The combined organic layers were washed with 1

N HCI (100 mL) and brine, dried over MgSO 4, filtered, and concentrated. The crude

material was purified by flash chromatography (10-30% EtOAc in hexanes), which

furnished 2.58 g (94%) of a clear, colorless oil.

'H NMR (300 MHz) 6 9.75 (t, J=1.5 Hz, 1H), 6.92 (dt, J=15.7 Hz, J=7.0 Hz, 1H),

5.80 (dt, J=15.7 Hz, J=1.6 Hz, 1H), 4.16 (q, J=7.1 Hz, 2H), 2.44 (td, J=7.2 Hz, J=1.6 Hz,

2H), 2.21 (qd, J=7.1 Hz, J=1.5 Hz, 2H), 1.69-1.59 (m, 2H), 1.53-1.44 (m, 2H), 1.26 (t,

J=7.1 Hz, 3H).
13C NMR (75 MHz) 6 202.4, 166.8, 148.5, 121.9, 60.4, 43.8, 32.1, 27.6, 21.7,

14.5.

OH

EtO 2C'

n-BuLi (1.6 M in hexanes; 3.88 mL, 6.21 mmol) was added to a solution of

phenylacetylene (0.682 mL, 6.21 mmol) in THF (20 mL) at -78 'C. After 30 min, this

solution was added by cannula into a flask that contained a solution of the aldehyde (1.14

g, 6.21 mmol) in THF (25 mL) at -78 'C. The resulting solution was stirred for 20 min

at -78 oC, and then it was warmed to 0 oC and stirred for an additional 30 min. The

reaction was quenched by the addition of a saturated solution of NH4C1. The layers were

separated, and the aqueous layer was extracted with Et20 (2x30 mL). The combined

organic layers were washed with brine, dried over MgSO 4, filtered, and concentrated.

The residue was purified by flash chromatography (5-40% EtOAc in hexanes), which

provided 1.56 g (88%) of a pale-yellow oil.
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1H NMR (300 MHz) 8 7.43 (m, 2H), 7.31-7.26 (m, 3H), 6.96 (dt, J=15.7 Hz,

J=7.0 Hz, 1H), 5.82 (dt, J=15.7 Hz, J=1.4 Hz, 1H), 4.59 (t, J=6.5 Hz, 1H), 4.17 (q, J=7.1

Hz, 2H), 2.32 (br s, 1H), 2.21 (m, 2H), 1.83-1.76 (m, 2H), 1.56-1.51 (m, 4H), 1.26 (t,

J=7.1 Hz, 3H).

13C NMR (75 MHz) 8 167.0, 149.3, 131.8, 128.6, 128.5, 122.8, 121.6, 90.2, 85.1,

62.9, 60.4, 37.7, 32.3, 27.9, 25.0, 14.5.

FTIR (thin film) 3423 (broad), 2981, 2938, 2860, 1716, 1652, 1490, 1443, 1490,

1443, 1368, 1270, 1187, 1043, 980, 757, 692 cm 1.

LC-MS calc. for C18H220 3 [M+1] 287.2, found, 287.1.

Ph

A mixture of the propargylic alcohol (1.53 g, 5.34 mmol), 4A MS (2.67 g), and

NMO (0.941 g, 8.01 mmol) in 10:1 CH2C12:CH 3CN (27 mL) at 0 oC was treated with

TPAP (0.056 g, 0.160 mmol). The mixture was immediately warmed to room

temperature, and then it was stirred for 2 h. Next, the reaction mixture was filtered

through a short pad of silica gel with Et2O washings (150 mL). The filtrate was

concentrated, and the residue was purified by flash chromatography (5--30% Et 20 in

hexanes), which provided 1.18 g (78%) of a pale-yellow oil.

1H NMR (300 MHz) 8 7.58-7.55 (m, 2H), 7.48-7.35 (m, 3H), 6.94 (dt, J=15.6 Hz,

J=7.0 Hz, 1H), 5.83 (dt, J=15.6 Hz, J=1.3 Hz, 1H), 4.16 (q, J=7.2 Hz, 2H), 2.68 (t, J=7.2

Hz, 2H), 2.24 (tdd, J=7.0 Hz, J=7.0 Hz, J=1.4 Hz, 2H), 1.75 (m, 2H), 1.53 (m, 2H), 1.27

(t, J=7.2 Hz, 3H).
13C NMR (75 MHz) 187.8, 166.8, 148.6, 133.3, 131.0, 128.9, 122.0, 120.1,

91.1, 87.9, 60.4, 45.4, 32.1, 27.5, 23.7, 14.5.

FTIR (thin film) 3059, 2981, 2937, 2865, 2202, 1715, 1673, 1489, 1444, 1366,

1271, 1221, 1186, 1098, 1043, 981 cm-'.

LC-MS calc. for C18H200 3[M+1] 285.1, found 285.1.
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OH

n-BuLi (1.6 M in hexanes; 2.59 mL, 4.15 mmol) was added to a solution of 2-

ethynyl-6-methoxynaphthalene (0.758 g, 4.15 mmol) in THF (20 mL) at -78 'C. After

30 min, this solution was transferred by cannula into a flask containing a solution of the

aldehyde (0.756 g, 4.11 mmol) in THF (20 mL) at -78 'C. The resulting solution was

stirred for 1 h at -78 oC, and then it was warmed to 0 "C and stirred for an additional 30

min. Next, the reaction was quenched with a saturated solution of NH4C1. The layers

were separated, and the aqueous layer was extracted with Et20 (3x30 mL). The

combined organic layers were washed with brine, dried over MgSO 4, filtered, and

concentrated. The residue was purified by flash chromatography (10-40% EtOAc in

hexanes), which provided 1.09 g (72%) of a pale-yellow oil.

'H NMR (300 MHz) 6 7.86 (s, 1H), 7.67 (d, J=6.4 Hz, 1H), 7.65 (d, J=6.1 Hz,

1H), 7.42 (dd, J=8.5 Hz, J=1.7 Hz, 1H), 7.14 (dd, J=9.0 Hz, J=2.5 Hz, 1H), 7.09 (d, J=2.5

Hz, 1H), 6.98 (dt, J=15.7 Hz, J=7.0 Hz, 1H), 5.83 (dt, J=15.7 Hz, J=1.6 Hz, 1H), 4.63 (m,

1H), 4.17 (q, J=7.1 Hz, 2H), 3.91 (s, 3H), 2.27-2.20 (m, 3H), 1.85-1.79 (m, 2H), 1.63-

1.52 (m, 4H), 1.26 (t, J=7.1 Hz, 3H).
13C NMR (75 MHz) 8 167.0, 158.8, 149.3, 134.4, 131.6, 129.5, 129.2, 128.6,

127.0, 121.7, 119.7, 117.6, 105.9, 90.0, 85.7, 63.0, 60.4, 55.6, 37.8, 32.3, 27.9, 25.0, 14.5.

FTIR (thin film) 3428 (broad), 3059, 2938, 2860, 2224, 1716, 1699, 1630, 1602,

1499, 1484, 1390, 1368, 1270, 1246, 1198, 1122, 1031, 891, 854 cm-'.

LC-MS calc. for C23H260 4 [M+Na] 389.2, found, 389.1.

A mixture of the propargylic alcohol (1.06 g, 2.88 mmol), 4A MS (1.44 g), and

NMO (0.509 g, 4.33 mmol) in 10:1 CH 2C12:CH 3CN (15.4 mL) at 0 "C was treated with
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TPAP (0.050 g, 0.144 mmol). The mixture was immediately warmed to room

temperature, and then it was stirred for 3 h. Next, the mixture was filtered through a

short pad of silica gel with Et20 washings (150 mL). The filtrate was concentrated, and

the residue was purified by flash chromatography (5-50% Et20 in hexanes), which

provided 0.843 g (80%) of a pale-yellow oil, which solidified upon being stored in a

freezer overnight.

Mp=59 oC

'H NMR (300 MHz) 8 8.05 (s, 1H), 7.73 (d, J=8.4 Hz, 1H), 7.70 (d, J=8.0 Hz,

1H), 7.52 (dd, J=8.5 Hz, J=1.7 Hz, 1H), 7.18 (dd, J=9.0 Hz, J=2.5 Hz, 1H), 7.11 (d, J=2.5

Hz, 1H), 6.96 (dt, J=15.7 Hz, J=7.0 Hz, 1H), 5.84 (dt, J=15.7 Hz, J=1.6 Hz, 1H), 4.16 (q,

J=7.1 Hz, 2H), 3.92 (s, 3H), 2.70 (t, J=7.2 Hz, 2H), 2.25 (qd, J=7.2 Hz, J=1.5 Hz, 2H),

1.79 (m, 2H), 1.55 (m, 2H), 1.26 (t, J=7.1 Hz, 3H).

13C NMR (75 MHz) 8 187.9, 166.8, 159.5, 148.7, 135.7, 134.5, 130.0, 129.4,

128.3, 127.4, 121.9, 120.2, 114.7, 106.0, 92.3, 88.1, 60.4, 55.6, 45.3, 32.1, 27.5, 23.8,

14.5.

FTIR (thin film) 2939, 2360, 2341, 2191, 1715, 1662, 1624, 1499, 1461, 1391,

1335, 1259, 1167, 1124, 1030, 978 cm-1.

LC-MS calc. for C23H240 4 [M+I] 365.1, found 365.1.

OH

EtO 2C N.

n-BuLi (1.6 M in hexanes; 7.29 mL, 11.7 mmol) was added to a solution of

cyclohex-l-enylacetylene (1.37 mL, 11.7 mmol) in THF (30 mL) at -78 'C. After 30

min, this solution was added by cannula into a flask that contained a solution of the

aldehyde (2.15 g, 11.7 mmol) in THF (40 mL) at -78 'C. The resulting solution was

stirred for 45 min at -78 oC, and then it was warmed to 0 oC and stirred for an additional

20 min. The reaction was quenched by the addition of a saturated solution of NH4Cl.

The layers were separated, and the aqueous layer was extracted with Et20O (2x30 mL).

The combined organic layers were washed with brine, dried over MgSO4, filtered, and
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concentrated. The residue was purified by flash chromatography (10-40% EtOAc in

hexanes), which provided 2.88 g (85%) of a pale-yellow oil.

'H NMR (300 MHz) 8 6.93 (dt, J=15.6 Hz, J=7.0 Hz, 1H), 6.05 (quintet, J=1.9

Hz, 1H), 5.78 (m, 1H), 4.44 (m, 1H), 4.14 (q, J=7.2 Hz, 2H), 2.27 (d, J=4.2 Hz, 1H), 2.19

(m, 2H), 2.08-2.05 (m, 4H), 1.72-1.44 (m, 10H), 1.25 (td, J=7.2 Hz, J=0.4 Hz, 3H).
1 3C NMR (75 MHz) 6 166.9, 149.3, 135.3, 121.5, 120.2, 87.5, 86.8, 62.8, 60.4,

37.8, 32.3, 29.3, 27.8, 25.7, 24.9, 22.4, 21.6, 14.4.

FTIR (thin film) 3427 (broad), 2980, 2934, 2859, 2217, 1717, 1652, 1447, 1436,

1368, 1309, 1269, 1185, 1043, 981, 919 cm-'.

LC-MS calc. for C18H 240 3 [M+1] 289.2, found, 289.1.

O

A mixture of the propargylic alcohol (2.85 g, 9.82 mmol), 4A MS (4.91 g), and

NMO (1.73 g, 14.7 mmol) in 10:1 CH 2C12:CH 3CN (55 mL) at 0 oC was treated with

TPAP (0.104 g, 0.295 mmol). The mixture was immediately warmed to room

temperature, and then it was stirred for 3 h. Next, the mixture was filtered through a

short pad of silica gel with Et 20 washings (150 mL). The filtrate was concentrated, and

the residue was purified by flash chromatography (5-30% Et20 in hexanes), which

provided 2.05 g (72%) of a pale-yellow oil.

'H NMR (300 MHz) 8 6.92 (dt, J=15.7, J=7.0 Hz, 1H), 6.43 (quintet, J=2.0 Hz,

1H), 5.80 (dt, J=15.7 Hz, J=1.5 Hz, 1H), 4.16 (q, J=7.1 Hz, 2H), 2.56 (t, J=7.2 Hz, 2H),

2.21 (m, 2H), 2.17-2.11 (m, 4H), 1.73-1.43 (m, 8H), 1.26 (t, J=7.1 Hz, 3H).

13C NMR (75 MHz) 6 188.1, 166.8, 148.7, 142.8, 121.9, 119.1, 93.7, 86.3, 60.4,

45.2, 32.1, 28.5, 27.5, 26.3, 23.8, 22.1, 21.3, 14.5.

FTIR (thin film) 2980, 2935, 2861, 2184, 1716, 1667, 1622, 1448, 1436, 1367,

1307, 1273, 1183, 1096, 1043, 981 cm .

LC-MS calc. for C18H240 3 [M+1] 289.1, found 289.1.
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OH

EtO 2C

n-BuLi (1.6 M in hexanes; 2.33 mL, 3.73 mmol) was added to a solution of

cyclohexylacetylene (0.480 mL, 3.73 mmol) in THF (25 mL) at -78 'C. After 1 h, this

solution was transferred by cannula into a flask containing a solution of the aldehyde

(0.680 g, 3.69 mmol) in THF (15 mL) at -78 'C. The resulting solution was stirred for 1

h at -78 'C, and then it was warmed to 0 oC and stirred for an additional 30 min. Next,

the reaction was quenched with a saturated solution of NH4Cl. The layers were

separated, and the aqueous layer was extracted with Et20 (2x30 mL). The combined

organic layers were washed with brine, dried over MgSO4, filtered, and concentrated.

The residue was purified by flash chromatography (10-40% EtOAc in hexanes), which

provided 0.849 g (79%) of a clear, colorless oil.

1H NMR (300 MHz) 8 6.94 (dt, J=15.6 Hz, J=6.9 Hz, 1H), 5.79 (dt, J=15.6 Hz,

J=1.4 Hz, 1H), 4.34 (dt, J=6.5 Hz, J=1.7 Hz, 1H), 4.15 (q, J=7.1 Hz, 2H), 2.35 (m, 1H),

2.23-2.16 (m, 2H), 2.00 (br s, 1H), 1.79-1.61 (m, 6H), 1.53-1.32 (m, 7H), 1.32-1.21 (m,

6H).
13C NMR (75 MHz) 8 166.9, 149.3, 121.6, 89.9, 81.2, 62.6, 60.4, 38.0, 32.8, 32.3,

29.1, 27.9, 26.0, 25.01, 24.96, 14.5.

FTIR (thin film) 3427 (broad), 2931, 2855, 1716, 1651, 1449, 1367, 1267, 1185,

1040, 981 cm1.

LC-MS calc. for C18H2803 [M+I] 293.2, found, 293.2.

A mixture of the propargylic alcohol (0.694 g, 2.37 mmol), 4A MS (1.19 g), and

NMO (0.418 g, 3.56 mmol) in 10:1 CH2C12:CH 3CN (12.0 mL) at 0 TC was treated with

TPAP (0.042 g, 0.119 mmol). The mixture was immediately warmed to room
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temperature, and then it was stirred for 2 h. Next, the mixture was filtered through a

short pad of silica gel with Et20 washings (100 mL). The filtrate was concentrated, and

the residue was purified by flash chromatography (5-30% Et20 in hexanes), which

provided 0.589 g (85%) of a clear, colorless oil.

'H NMR (300 MHz) 8 6.92 (dt, J=15.7 Hz, J=6.9 Hz, 1H), 5.80 (dt, J=15.7 Hz,

J=1.5 Hz, 1H), 4.16 (q, J=7.1 Hz, 2H), 2.58-2.49 (m, 3H), 2.20 (qd, J=7.0 Hz, J=1.5 Hz,

2H), 1.86-1.77 (m, 2H), 1.73-1.63 (m, 4H), 1.56-1.42 (m, 5H), 1.39-1.26 (m, 3H), 1.26 (t,

J=7.1 Hz, 3H).
13C NMR (75 MHz) 8 188.3, 166.8, 148.7, 121.9, 94.8, 81.0, 60.4, 45.4, 32.1,

31.8, 29.3, 27.5, 25.8, 24.8, 23.8, 14.5.

FTIR (thin film) 2980, 2933, 2857, 2206, 1716, 1673, 1449, 1367, 1314, 1268,

1235, 1182, 1042, 981 cm-1.

LC-MS calc. for C18H 260 3 [M+1] 291.1, found 291.1.

0

[85930-85-4]. A solution of E-caprolactone (2.22 mL, 20.0 mmol) in THF (20

mL) was added dropwise over 45 min to a solution of LiHMDS in THF (22.0 mL of a 1.0

M solution in THF + 28 mL of THF) at -78 'C. This mixture was stirred for an

additional 30 min, and then a solution of allyl bromide (2.08 mL, 24.0 mmol) in HMPA

(distilled from CaH2 prior to use; 3.0 mL) was added over 10 min. The reaction mixture

was warmed to -30 'C and stirred for 3 h at this temperature. Next, the reaction was

quenched with a saturated solution of NH4Cl, the layers were separated, and the aqueous

layer was extracted with Et20 (100 mL). The combined organic layers were washed with

H20 (3x20 mL) and brine, dried over MgSO 4, filtered, and concentrated. The crude

material was then purified by flash chromatography (5---30% EtOAc in hexanes), which

provided 2.07 g (67%) of a clear, colorless oil.
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1H NMR (500 MHz) 8 5.81 (m, 1H), 5.09-5.04 (m, 2H), 4.30-4.20 (m, 2H), 2.63

(m, 2H), 2.14 (m, 1H), 2.00-1.90 (m, 2H), 1.86-1.83 (m, 1H), 1.76-1.68 (m, 1H), 1.63-

1.54 (m, 1H), 1.45-1.36 (m, 1H).

13C NMR (75 MHz) 8 177.4, 136.1, 117.4, 68.7, 42.6, 36.8, 29.3, 29.1, 28.5.

FTIR (thin film) 3076, 2933, 2860, 1732, 1641, 1474, 1454, 1393, 1291, 1174,

1122, 1054, 915 cm' .

LC-MS calc. for C9H 140 2 [M+1] 155.1, found, 155.1.

HO CO 2Et

DIBAL-H (1.0 M solution in hexanes; 5.04 mL, 5.04 mmol) was added to a

solution of the lactone in toluene (12.0 mL) at -78 'C. After stirring for 2 h at -78 'C,

the reaction mixture was quenched with EtOAc (30 mL) and a saturated solution of

disodium tartrate (15 mL). This mixture was warmed to room temperature and stirred for

1 h. The layers were separated, and the aqueous layer was extracted with EtOAc (3x20

mL). The combined organic layers were washed with brine, dried over MgSO 4, filtered,

and concentrated. The crude lactol was dissolved in CHC13 (15 mL) and treated with

(ethoxycarbonylmethylene)triphenylphosphorane (1.72 g, 4.94 mmol). The mixture was

stirred at room temperature for 18 h. Then, it was concentrated and directly purified by

flash chromatography (10-40% EtOAc in hexanes), which provided 1.05 g (94%) of a

clear, colorless oil.
1H NMR (300 MHz) 8 6.74 (dd, J=8.8 Hz, J=15.6 Hz, 1H), 5.75 (d, J=15.6 Hz,

1H), 5.68 (m, 1H), 5.03-4.97 (m, 2H), 4.15 (qd, J=7.1 Hz, J=0.6 Hz, 2H), 3.59 (m, 2H),

2.26-2.08 (m, 3H), 1.72 (s, 1H), 1.57-1.43 (m, 3H), 1.39-1.23 (m, 3H), 1.26 (t, J=7.1 Hz,

3H).

13C NMR (75 MHz) 6 166.9, 152.7, 135.9, 121.5, 116.9, 62.9, 60.5, 42.5, 38.9,

33.7, 32.9, 23.7, 14.4.

FTIR (thin film) 3418 (broad), 3077, 2980, 2933, 2861, 1716, 1699, 1651, 1461,

1445, 1392, 1370, 1310, 1183, 1041, 986, 915 cm- .

LC-MS calc. for C13H220 3 [M+1] 227.2, found, 227.1.
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o

H 3 V "- CO 2Et

DMSO (0.974 mL, 13.7 mmol) was added dropwise to a solution of oxalyl

chloride (0.596 mL, 6.83 mmol) in CH 2C12 (20 mL) at -78 OC. After 10 min, a solution

of the alcohol (1.03 g, 4.55 mmol) in CH 2C12 (20 mL) was added dropwise via cannula.

The solution was stirred for 30 min, and then it was treated with NEt3 (3.17 mL, 22.8

mmol). This mixture was stirred at -78 OC for 20 min, and then it was warmed to room

temperature and stirred for an additional 30 min. The reaction was quenched with a

saturated solution of NaHCO3 (30 mL). The layers were separated, and the aqueous layer

was extracted with CH 2 C12 (2x30 mL). The combined organic layers were washed with 1

N HCI (30 mL) and brine, dried over MgSO 4, filtered, and concentrated. The crude

material was purified by flash chromatography (5-30% EtOAc in hexanes), which

provided 0.931 g (91%) of a clear, colorless oil.

'H NMR (300 MHz) 8 9.73 (t, J=1.7 Hz, 1H), 6.73 (dd, J=15.7 Hz, J=8.8 Hz, 1H),

5.78 (dt, J=15.7 Hz, J=0.7 Hz, 1H), 5.68 (m, 1H), 5.05-4.98 (m, 2H), 4.17 (q, J=7.1 Hz,

2H), 2.41 (m, 2H), 2.29-2.17 (m, 1H), 2.17-2.12 (m, 2H), 1.69-1.44 (m, 3H), 1.40-1.27

(m, 1H), 1.28 (t, J=7.1 Hz, 3H).
13C NMR (75 MHz) 8 202.4, 166.7, 151.9, 135.7, 121.9, 117.2, 60.5, 44.0, 42.4,

38.8, 33.2, 19.9, 14.5.

FTIR (thin film) 3077, 2980, 2932, 2722, 1716, 1651, 1369, 1310, 1268, 1185,

1159, 1040, 987, 917 cm -'.

LC-MS calc. for C13H200 3 [M+1] 225.2, found, 225.1.

OH

Ph ~ C0
2Et

n-BuLi (1.6 M in hexanes; 2.52 mL, 4.03 mmol) was added to a solution of

phenylacetylene (0.442 mL, 4.03 mmol) in THF (20 mL) at -78 'C. After 30 min, this

solution was transferred by cannula into a flask containing a solution of the aldehyde
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(0.903 g, 4.03 mmol) in THF (20 mL) at -78 'C. The resulting solution was stirred for

20 min at -78 *C, and then it was warmed to 0 OC and stirred for an additional 30 min.

The reaction was quenched with a saturated solution of NH4C1. The layers were

separated, and the aqueous layer was extracted with Et20 (2x30 mL). The combined

organic layers were washed with brine, dried over MgSO4, filtered, and concentrated.

The residue was purified by flash chromatography (10-40% EtOAc in hexanes), which

provided 1.19 g (91%) of a clear, pale-yellow oil.

'H NMR (300 MHz) 8 7.42-7.39 (m, 2H), 7.32-7.27 (m, 3H), 6.77 (dd, J=15.7 Hz,

J=8.8 Hz, 1H), 5.79 (dd, J=15.7 Hz, J=0.7 Hz, 1H), 5.69 (m, 1H), 5.04-4.98 (m, 2H), 4.57

(qd, J=6.5 Hz, J=1.7 Hz, 1H), 4.16 (qd, J=7.1 Hz, J=1.5 Hz, 2H), 2.28-2.08 (m, 4H),

1.81-1.72 (m, 2H), 1.56-1.37 (m, 4H), 1.26 (td, J=7.1 Hz, J=l.1 Hz, 3H).

'3C NMR (75 MHz)8 166.9, 152.6, 135.9, 131.9, 128.5, 122.8, 121.6, 117.0,

90.2, 85.1, 62.9, 60.5, 42.4, 38.8, 37.9, 33.4, 23.1, 23.0, 14.4.

FTIR (thin film) 3419 (broad), 3077, 2979, 2939, 2862, 1720, 1716, 1699, 1694,

1490, 1443, 1370, 1310, 1224, 1184, 1038, 986, 915 cm- .

LC-MS calc. for C2 1H26 0 3 [M+1] 327.2, found, 327.1.

o

Ph - CO2Et

A mixture of the propargylic alcohol (1.18 g, 3.62 mmol), 4A MS (1.81 g), and

NMO (0.637 g, 5.42 mmol) in 10:1 CH2C12:CH 3CN (19.8 mL) at 0 TC was treated with

TPAP (0.063 g, 0.108 mmol). The mixture was immediately warmed to room

temperature and then stirred for 2 h. The mixture was filtered through a short pad of

silica gel with Et20 washings (100 mL). The filtrate was concentrated and purified by

flash chromatography (5-30% Et20 in hexanes), which provided 1.01 g (86%) of a pale-

yellow oil.

'H NMR (300 MHz) 8 7.58-7.55 (m, 2H), 7.45 (m, 1H), 7.38 (m, 2H), 6.77 (dd,

J=15.7 Hz, J=7.8 Hz, 1H), 5.81 (dd, J=15.7 Hz, J=0.8 Hz, 1H), 5.69 (m, 1H), 5.04 (m,

1H), 5.00 (m, 1H), 4.17 (q, J=7.1 Hz, 2H), 2.65 (t, J=7.4 Hz, 2H), 2.34-2.09 (m, 3H),

1.82-1.48 (m, 3H), 1.45-1.32 (m, 1H), 1.27 (t, J=7.1 Hz, 3H).
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13C NMR (75 MHz) 8 187.8, 166.7, 152.0, 135.7, 133.3, 131.0, 128.9, 121.9,

120.1, 117.2, 91.1, 87.9, 60.5, 45.5, 42.4, 38.9, 33.0, 21.9, 14.5.

FTIR (thin film) 3076, 2979, 2931, 2870, 2202, 1715, 1668, 1489, 1444, 1368,

1309, 1222, 1096, 1039, 987, 917 cm1.

LC-MS calc. for C21H240 3 [M+1] 325.2, found, 325.1.

Substrates for Table 3.4 and Eq 3.8:

-OCO0 2Et a

CO 2Et

CO02 Et

Me2•• C02Et b
CO 2Et

HO/ n CO 2 Et C

Me0 2Cr v

O0 C02Et d
H "n "C0 2Et--

MeO 2C ýv

OH CO 2Et e 0 CO 2Et

n CO2Et R CO 2Et n = 2, 3

RMeO2C / RMeO2C

a. NaH, DMF; then BrCH 2CH=CHCO 2Me. b. 9-BBN, THF, r.t.; then NaBO3/H20. c. Swern oxidation. d. RCCLi, THF, -78 oC
to 0 OC. e. cat. TPAP, NMO, 4A MS, CH2CI2:CH 3CN (10:1), r.t.

CO 2Et
CO 2Et

MeO 2C

Diethyl allylmalonate (9.86 mL, 50.0 mmol) was added to a slurry of NaH (1.20

g, 50.0 mmol) in DMF (100 mL) at 0 oC. The mixture was warmed to room temperature

and stirred until it became clear (approximately 30 min). This solution was cooled to 0

'C and then treated with methyl 4-bromocrotonate (85%; 6.92 mL, 50.0 mmol) over a 5-

min period. The resulting mixture was stirred for 18 h at room temperature, and then it

was diluted with H20 (100 mL), and the layers were separated. The aqueous layer was

extracted with Et20 (2x150 mL). The combined organic layers were washed with brine,

dried over MgSO4, filtered, and concentrated. The crude mixture was purified by flash

chromatography (5-20% EtOAc in hexanes), which provided 10.5 g (70%) of a clear,

colorless oil.
1H NMR (300 MHz) 8 6.79 (dt, J=15.5 Hz, J=7.7 Hz, 1H), 5.87 (dt, J=15.5 Hz,

J=1.4 Hz, 1H), 5.69-5.55 (m, 2H), 5.17-5.09 (m, 2H), 4.19 (q, J=7.1 Hz, 4H), 3.71 (s,
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3H), 2.75 (dd, J=7.7 Hz, J=1.5 Hz, 2H), 2.64 (dt, J=7.4 Hz, J=1.1 Hz, 2H), 1.24 (t, J=7.1

Hz, 6H).
1 3C NMR (75 MHz) 8 170.4, 166.5, 143.1, 131.9, 124.9, 120.0, 61.8, 57.1, 51.8,

37.4, 35.4, 14.3.

FTIR (thin film) 3080, 2983, 2954, 1733, 1660, 1643, 1465, 1438, 1276, 1191,

1096, 1037, 925 cm 1.

LC-MS calc. for C15H220 6 [M+1] 299.1, found 299.1.

CO02Et
HO CO2Et

MeO 2C v

A solution of the olefin (3.58 g, 12.0 mmol) in THF (60 mL) at 0 oC was treated

with a solution of 9-BBN (0.5 M solution in THF; 24.2 mL, 12.1 mmol) and then stirred

vigorously at room temperature for 5 h. Next, H20 (20 mL) and NaBO3.4H20 (6.10 g,

39.6 mmol) were added, and the mixture was stirred for 2 h at room temperature. The

layers were separated, and the aqueous layer was extracted with Et20O (2x50 mL). The

combined organic layers were washed with brine, dried over MgSO 4, filtered, and

concentrated. The resulting crude material was purified by flash chromatography (10-

70% EtOAc in hexanes), which provided 3.07 g (81%) of a clear, colorless oil.

'H NMR (300 MHz) 8 6.78 (dt, J=15.5 Hz, J=7.7 Hz, 1H), 5.86 (dt, J=15.5 Hz,

1.4 Hz, 1H), 4.17 (q, J=7.1 Hz, 4H), 3.69 (s, 3H), 3.61 (m, 2H), 2.77 (dd, J=7.7 Hz, J=1.4

Hz, 2H), 1.92 (m, 2H), 1.47 (m, 2H), 1.23 (t, J=7.1 Hz, 6H).
13C NMR (75 MHz) 8 170.8, 166.5, 143.1, 124.8, 62.7, 61.8, 57.1, 51.8, 35.8,

29.3, 27.5, 14.3.

FTIR (thin film) 3441(broad), 2982, 2875, 1738, 1732, 1716, 1659, 1651, 1463,

1439, 1177, 1095, 1035, 859 cm .

LC-MS calc. for C15H240 7 [M+Na] 339.2, found 339.1.
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O
0 /CO 2Et

H C02Et

MeO 2C 'v

DMSO (0.728 mL, 10.2 mmol) was added dropwise to a solution of oxalyl

chloride (0.447 mL, 5.12 mmol) in CH2C12 (10 mL) at -78 'C. After 10 min, a solution

of the alcohol (1.08 g, 3.41 mmol) in CH 2C12 (12 mL) was added dropwise. The solution

was stirred for 30 min, and then NEt3 (2.38 mL, 17.0 mmol) was added. This mixture

was stirred at -78 'C for 20 min, and then it was warmed to room temperature and stirred

for an additional hour. The reaction was quenched with a saturated solution of NaHCO3

(20 mL). The layers were separated, and the aqueous layer was extracted with CH 2C12

(2x15 mL). The combined organic layers were washed with 1 N HCI (20 mL) and brine,

dried over MgSO4, filtered, and concentrated. The crude material was purified by flash

chromatography (15-30% EtOAc in hexanes), which provided 0.970 g (90%) of a clear,

colorless oil.

1H NMR (300 MHz) 8 9.72 (t, J=1.1 Hz, 1H), 6.77 (dt, J=15.5 Hz, J=7.7 Hz, 1H),

5.87 (dt, J=15.5 Hz, 1.4 Hz, 1H), 4.18 (qd, J=14.1 Hz, J=1.1 Hz, 4H), 3.70 (s, 3H), 2.75

(dd, J=7.6 Hz, J=1.4 Hz, 2H), 2.49 (m, 2H), 2.17 (m, 2H), 1.24 (t, J=7.1 Hz, 6H).
13C NMR (75 MHz) 8 200.6, 170.4, 166.3, 142.5, 125.2, 62.0, 56.4, 51.8, 39.3,

36.6, 25.5, 14.3.

FTIR (thin film) 2983, 2954, 1907, 2842, 1738, 1732, 1716, 1659, 1439, 1390,

1275, 1192, 1097, 1034, 859 cm .

LC-MS calc. for C15H 2207[M+1] 315.1, found 315.1.

n-BuLi (1.6 M in hexanes; 2.94 mL, 4.71 mmol) was added to a solution of

phenylacetylene (0.518 mL, 4.71 mmol) in THF (20 mL) at -78 'C. After 30 min, this

solution was transferred by cannula into a flask containing a solution of the aldehyde

(1.47 g, 4.67 mmol) in THF (20 mL) at -78 'C. The resulting solution was stirred for 20
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min at -78 "C, and then it was warmed to 0 OC and stirred for an additional 30 min. The

reaction was quenched with a saturated solution of NH4C1. The layers were separated,

and the aqueous layer was extracted with Et 2O (2x30 mL). The combined organic layers

were washed with brine, dried over MgSO 4, filtered, and concentrated. The residue was

purified by flash chromatography (10-40% EtOAc in hexanes), which provided 1.62 g

(83%) of a clear, pale-yellow oil.

1H NMR (300 MHz) 8 7.42-7.38 (m, 2H), 7.32-7.27 (m, 3H), 6.81 (dt, J=15.3 Hz,

J=7.7 Hz, 1H), 5.89 (dt, J=15.3 Hz, J=1.4 Hz, 1H), 4.58 (m, 1H), 4.19 (q, J=7.1 Hz, 4H),

3.65 (s, 3H), 2.79 (dd, J=7.7 Hz, J=1.4 Hz, 2H), 2.25 (d, J=5.3 Hz, 1H), 2.18-2.06 (m,

2H), 1.77-1.68 (m, 2H), 1.23 (t, J=7.2 Hz, 3H), 1.23 (t, J=7.1 Hz, 3H).
13C NMR (75 MHz) 170.73, 170.71, 166.5, 143.0, 131.9, 128.7, 128.5, 124.9,

122.6, 89.4, 85.5, 62.7, 61.9, 56.9, 51.8, 35.8, 32.6, 28.6, 14.3.

FTIR (thin film) 3493 (broad), 2981, 1727, 1727, 1659, 1490, 1442, 1368, 1177,

1095, 1032 cm1.

LC-MS calc. for C23H2807 [M+Na] 439.2, found 439.1.

O 0 C0 2Et
-p CO2Et

Ph'MeO2C-,E

A mixture of the propargylic alcohol (1.62 g, 3.90 mmol), 4A MS (1.95 g), and

NMO (0.687 g, 5.85 mmol) in 10:1 CH 2Cl2:CH 3CN (22 mL) at 0 oC was treated with

TPAP (0.041 g, 0.117 mmol). The mixture was immediately warmed to room

temperature and then stirred for 2 h. Next, the mixture was filtered through a short pad of

silica gel with Et 20 washings (150 mL). The filtrate was concentrated, and the residue

was purified by flash chromatography (5-30% Et 20 in hexanes), which provided 1.19 g

(74%) of a pale-yellow oil.

IH NMR (300 MHz) 6 7.58-7.55 (m, 2H), 7.48-7.34 (m, 3H), 6.81 (dt, J=15.4 Hz,

J=7.7 Hz, 1H), 5.90 (dt, J=15.5 Hz, J=1.3 Hz, 1H), 4.21 (qd, J=7.1 Hz, J=1.5 Hz, 4H),

3.69 (s, 3H), 2.79 (dd, J=7.7 Hz, J=1.3 Hz, 2H), 2.72 (m, 2H), 2.28 (m, 2H), 1.25 (t,

J=7.1 Hz, 6H).
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13C NMR (75 MHz) 8 186.1, 170.4, 166.3, 142.6, 133.3, 131.1, 128.9, 125.1,

119.9, 91.6, 87.7, 62.0, 56.5, 51.8, 40.8, 36.6, 27.1, 14.3.

FTIR (thin film) 2982, 2953, 2204, 1731, 1673, 1490, 1444, 1368, 1271, 1191,

1045 cm-'.

LC-MS calc. for C23H2607 [M+1] 415.2, found, 415.1.

OH .

n-BuLi (1.6 M in hexanes; 1.88 mL, 3.00 mmol) was added to a solution of 1-

ethynylcyclohexene (0.353 mL, 3.00 mmol) in THF (15 mL) at -78 OC. After 30 min,

this solution was transferred by cannula into a flask containing a solution of the aldehyde

(0.943 g, 3.00 mmol) in THF (15 mL) at -78 oC. The resulting solution was stirred for

20 min at -78 'C, and then it was warmed to 0 oC and stirred for an additional 30 min.

The reaction was quenched with a saturated solution of NH 4C1. The layers were

separated, and the aqueous layer was extracted with Et2O (2x30 mL). The combined

organic layers were washed with brine, dried over MgSO 4, filtered, and concentrated.

The residue was purified by flash chromatography (10-40% EtOAc in hexanes), which

provided 1.01 g (80%) of a clear, pale-yellow oil.

1H NMR (300 MHz) 8 6.79 (dt, J=15.5 Hz, J=7.7 Hz, 1H), 6.07 (m, 1H), 5.87 (dt,

J=15.5 Hz, J=1.3 Hz, 1H), 4.45 (m, 1H), 4.18 (q, J=7.1 Hz, 4H), 3.69 (s, 3H), 2.76 (dd,

J=7.7 Hz, J=1.3 Hz, 2H), 2.08-2.00 (m, 7H), 1.65-1.51 (m, 6H), 1.23 (t, J=7.1 Hz, 6H).
13C NMR (75 MHz) 6 170.72, 170.70, 166.4, 143.0, 135.7, 124.8, 120.1, 87.3,

86.7, 62.7, 61.8, 56.9, 51.8, 35.8, 32.8, 32.1, 29.3, 28.6, 25.8, 22.4, 21.6, 14.3.

FTIR (thin film) 3508, 2980, 2936, 2860, 2217, 1732, 1659, 1435, 1368, 1271,

1178, 1095, 1033, 919 cm-'.

LC-MS calc. for C23H320 7 [M+Na] 443.2, found 443.1.
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ýEt

O2Et

A mixture of the propargylic alcohol (0.927 g, 2.20 mmol), 4A MS (1.10 g), and

NMO (0.390 g, 3.30 mmol) in 10:1 CH2C12:CH 3CN (12 mL) at 0 'C was treated with

TPAP (0.023 g, 0.066 mmol). The mixture was immediately warmed to room

temperature and then stirred for 2 h. Next, the mixture was filtered through a short pad of

silica gel with Et20 washings (150 mL). The filtrate was concentrated, and the residue

was purified by flash chromatography (5-30% Et20 in hexanes), which provided 0.638 g

(69%) of a pale-yellow oil.

1H NMR (300 MHz) 8 6.79 (dt, J=15.5 Hz, J=7.6 Hz, 1H), 6.45 (q, J=2.0 Hz, 1H),

5.88 (dt, J=15.5 Hz, 1.3 Hz, 1H), 4.19 (qd, J=14.1 Hz, J=1.6 Hz, 4H), 3.70 (s, 3H), 2.76

(dd, J=7.7 Hz, J=1.4 Hz, 2H), 2.62-2.57 (m, 2H), 2.25-2.20 (m, 2H), 2.16-2.12 (m, 4H),

1.68-1.57 (m, 4H), 1.24 (t, J=7.1 Hz, 6H).
13C NMR (75 MHz) 8 186.3, 170.4, 166.3, 143.2, 142.7, 125.1, 119.0, 94.3, 86.0,

61.9, 56.5, 51.8, 40.7, 36.5, 28.5, 27.4, 26.4, 22.1, 21.3, 14.3.

FTIR (thin film) 2982, 2937, 2863, 2185, 1715, 1673, 1621, 1436, 1366, 1222,

1093 cm1.

LC-MS calc. for C23H300 7 [M+1] 419.2, found, 419.1.

OH e
U 2C-I

C0 2Et

n-BuLi (1.6 M in hexanes; 3.05 mL, 4.88 mmol) was added to a solution of

cyclohexylacetylene (0.629 mL, 4.88 mmol) in THF (25 mL) at -78 'C. After 30 min,

this solution was transferred by cannula into a flask containing a solution of the aldehyde

(1.52 g, 4.84 mmol) in THF (25 mL) at -78 'C. The resulting solution was stirred for 20

min at -78 °C, and then it was warmed to 0 OC and stirred for an additional 30 min.

Next, the reaction was quenched with a saturated solution of NH4C1. The layers were
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separated, and the aqueous layer was extracted with Et20 (2x30 mL). The combined

organic layers were washed with brine, dried over MgSO 4, filtered, and concentrated.

The residue was purified by flash chromatography (10-40% EtOAc in hexanes), which

provided 1.54 g (75%) of a clear, pale-yellow oil.

'H NMR (300 MHz) 8 6.78 (dt, J=15.5 Hz, J=7.7 Hz, 1H), 5.86 (dt, J=15.5 Hz,

J=1.3 Hz, 1H), 4.33 (qd, J=5.2 Hz, J=1.6 Hz, 1H), 4.18 (q, J=7.1 Hz, 4H), 3.68 (s, 3H),

2.75 (dd, J=7.7 Hz, J=1.3 Hz, 2H), 2.34 (m, 1H), 2.05-1.97 (m, 3H), 1.79-1.21 (m, 12H),

1.23 (t, J=7.1 Hz, 6H).

'3C NMR (75 MHz) 8 170.73, 170.72, 166.4, 143.0, 124.8, 90.4, 80.5, 62.4, 61.8,

56.9, 51.7, 35.7, 32.9, 32.8, 29.1, 28.5, 26.0, 25.0, 14.3.

FTIR (thin film) 3508, 2931, 2855, 2229, 1738, 1732, 1716, 1651, 1463, 1446,

1435, 1342, 1176, 1095, 1033, 860 cm .

LC-MS calc. for C23H340 7 [M+Na] 445.2, found 445.1.

O -

A mixture of the propargylic alcohol (1.50 g, 3.55 mmol), 4A MS (1.78 g), and

NMO (0.626 g, 5.33 mmol) in 10:1 CH2C12:CH 3CN (19.8 mL) at 0 OC was treated with

TPAP (0.037 g, 0.107 mmol). The mixture was immediately warmed to room

temperature and then stirred for 2 h. Next, the mixture was filtered through a short pad of

silica gel with Et20O washings (150 mL). The filtrate was concentrated, and the residue

was purified by flash chromatography (10-40% Et20 in hexanes), which provided 1.23 g

(82%) of a pale-yellow oil.

1H NMR (300 MHz) 8 6.77 (dt, J=15.5 Hz, J=7.7 Hz, 1H), 5.86 (dt, J=15.5 Hz,

J=1.4 Hz, 1H), 4.18 (qd, J=7.1 Hz, J=1.4 Hz, 4H), 3.69 (s, 3H), 2.74 (dd, J=7.7 Hz, J=1.3

Hz, 2H), 2.58-2.47 (m, 3H), 2.19 (m, 2H), 1.86-1.76 (m, 2H), 1.73-1.63 (m, 2H), 1.54-

1.40 (m, 3H), 1.36-1.26 (m, 3H), 1.23 (t, J=7.1 Hz, 6H).

'3C NMR (75 MHz) 8 186.4, 170.4, 166.3, 142.6, 125.0, 98.9, 80.6, 61.9, 56.5,

51.8, 40.8, 36.5, 31.7, 29.3, 27.2, 25.7, 24.8, 14.2.
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FTIR (thin film) 2982, 2934, 2857, 2206, 1732, 1674, 1447, 1367, 1270, 1173,

1096, 1035, 983, 860 cm'.

LC-MS calc. for C23H320 7 [M+1] 421.2, found, 421.1.

OH

Me C02Et

Me0 2C v

n-BuLi (1.6 M in hexanes; 2.48 mL, 3.96 mmol) was added to a solution of 1-

hexyne (0.470 mL, 4.16 mmol) in THF (10 mL) at -78 oC. After 30 min, this solution

was transferred by cannula into a flask containing a solution of the aldehyde (1.24 g, 3.96

mmol) in THF (15 mL) at -78 "C. The resulting solution was stirred for 20 min at -78

"C, and then it was warmed to 0 oC and stirred for an additional 30 min. The reaction

was quenched with a saturated solution of NH4C1. The layers were separated, and the

aqueous layer was extracted with Et20 (3x25 mL). The combined organic layers were

washed with brine, dried over MgSO4, filtered, and concentrated. The residue was

purified by flash chromatography (10-40% EtOAc in hexanes), which provided 0.758 g

(48%) of a clear, pale-yellow oil.

'H NMR (300 MHz) 6.79 (dt, J=15.5 Hz, J=7.8 Hz, 1H), 5.87 (dt, J=15.5 Hz,

J=1.4 Hz, 1H), 4.33 (m, 1H), 4.19 (q, J=7.2 Hz, 4H), 3.70 (s, 3H), 2.77 (dd, J=7.7 Hz,

J=1.4 Hz, 2H), 2.18 (td, J=7.0 Hz, J=1.9 Hz, 2H), 2.07-1.99 (m, 2H), 1.87 (d, J=5.2 Hz,

1H), 1.62-1.54 (m, 2H), 1.52-1.34 (m, 4H), 1.24 (t, J=7.2 Hz, 6H), 0.89 (t, J=7.2 Hz, 3H).
13C NMR (75 MHz) 170.8, 170.7, 166.5, 143.1, 124.8, 86.4, 80.6, 62.5, 61.8,

56.9, 51.8, 35.8, 32.9, 30.8, 28.6, 22.1, 18.5, 14.3, 13.8.

FTIR (thin film) 3508 (broad), 2958, 2873, 2232, 1731, 1659, 1438, 1368, 1179,

1095, 1036 cm 1 .

LC-MS calc. for C21H320 7 [M+Na] 419.2, found 419.1.
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:O2 Et

A mixture of the propargylic alcohol (0.662 g, 1.67 mmol), 4A MS (0.835 g), and

NMO (0.294 g, 2.50 mmol) in 10:1 CH2C12:CH 3CN (8.8 mL) at 0 OC was treated with

TPAP (0.025 g, 0.069 mmol). The mixture was immediately warmed to room

temperature and then stirred for 2 h. Next, the mixture was filtered through a short pad of

silica gel with Et20 washings (100 mL). The filtrate was concentrated, and the residue

was purified by flash chromatography (10-40% Et20 in hexanes), which provided

0.500 g (76%) of a clear, colorless oil.

1H NMR (500 MHz) 6.78 (dt, J=15.4 Hz, J=7.5 Hz, 1H), 5.87 (d, J=15.4 Hz, 1H),

4.22-4.14 (m, 4H), 3.70 (s, 3H), 2.75 (d, J=7.6 Hz, 2H), 2.56 (m, 2H), 2.34 (t, J=7.1 Hz,

2H), 2.20 (m, 2H), 1.54 (m, 2H), 1.41 (m, 2H), 1.24 (t, J=7.2 Hz, 6H), 0.90 (t, J=7.3 Hz,

3H).
13C NMR (125 MHz) 186.3, 170.4, 166.3, 142.6, 125.1, 100.0, 95.4, 80.7, 62.0,

56.5, 51.8, 40.7, 36.5, 29.9, 27.1, 22.2, 18.8, 14.2, 13.7.

FTIR (thin film) 2959, 2874, 2213, 1731, 1674, 1437, 1368, 1270, 1173, 1096,

1032, 860 cm-.

LC-MS calc. for C21H300 7 [M+1] 395.2, found, 395.1.

OH
C02Et

Me0O2C ~

Propynylmagnesium bromide (0.5 M solution; 5.32 mL, 2.66 mmol) was added to

a solution of the aldehyde (0.796 g, 2.53 mmol) in THF (15 mL) at -78 OC. The resulting

solution was stirred at -78 oC for 20 min, and then it was warmed to 0 oC and stirred for

an additional 30 min. The reaction was quenched with a saturated solution of NH4C1.

The layers were separated, and the aqueous layer was extracted with Et20 (2x30 mL).

The combined organic layers were washed with brine, dried over MgSO 4, filtered, and
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concentrated. The residue was purified by flash chromatography (10-60% EtOAc in

hexanes), which provided 0.503 g (57%) of a clear, colorless oil.

'H NMR (300 MHz) 8 6.78 (dt, J=15.5 Hz, 7.6 Hz, 1H), 5.86 (dt, J=15.5 Hz,

J=1.4 Hz, 1H), 4.29 (m, 1H), 4.17 (q, J=7.1 Hz, 4H), 3.68 (s, 3H), 2.75 (dd, J=7.7 Hz,

J=1.4 Hz, 2H), 2.11 (d, J=5.2 Hz, 1H), 2.02-1.97 (m, 2H), 1.80 (d, J=2.1 Hz, 3H), 1.59-

1.51 (m, 2H), 1.22 (t, J=7.1 Hz, 6H).

13C NMR (75 MHz) 13C NMR (75 MHz) 8 170.75, 170.73, 166.5, 143.1, 124.8,

81.7, 79.9, 62.4, 61.8, 56.9, 51.8, 35.6, 32.8, 28.4, 14.3, 3.7.

FTIR (thin film) 3509(broad), 2982, 1738, 1732, 1716, 1659, 1439, 1435, 1273,

1190, 1095, 1032 cm -'.

LC-MS calc. for C18H 260 7 [M+Na] 377.2, found 377.1.

O SC0 2Et
C02Et

Me Me0 2CE

A mixture of the propargylic alcohol (0.415 g, 1.40 mmol), 4A MS (0.700 g), and

NMO (0.246 g, 2.09 mmol) in 10:1 CH2C12:CH 3CN (7.7 mL) at 0 oC was treated with

TPAP (0.025 g, 0.069 mmol). The mixture was immediately warmed to room

temperature and then stirred for 2 h. Next, the mixture was filtered through a short pad of

silica gel with Et20 washings (100 mL). The filtrate was concentrated, and the residue

was purified by flash chromatography (10-50% Et20 in hexanes), which provided 0.255 g

(52%) of a pale-yellow oil.

1H NMR (300 MHz) 8 6.77 (dt, J=15.5 Hz, J=7.6 Hz, 1H), 5.86 (dt, J=15.5 Hz,

J=1.4 Hz, 1H), 4.17 (qd, J=7.1 Hz, J=1.1 Hz, 4H), 3.69 (s, 3H), 2.73 (dd, J=7.7 Hz, J=1.2

Hz, 2H), 2.55 (m, 2H), 2.19 (m, 2H), 1.99 (s, 3H), 1.23 (t, J=7.1 Hz, 6H).

13 C NMR (75 MHz) 8 186.2, 170.3, 166.3, 142.6, 125.1, 91.1, 80.1, 61.9, 56.4,

51.8, 40.6, 36.5, 26.9, 14.2, 4.3.

FTIR (thin film) 2983, 2848, 2221, 1731, 1674, 1436, 1368, 1274, 1096,

1033 cm -1.

LC-MS calc. for C18H240 7 [M+1] 353.2, found, 353.1.
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, TCO2Et

CO 2Et

[31696-00-1]. Diethylmalonate (6.07 mL, 40.0 mmol) was added to a slurry of

NaH (0.960 g, 40.0 mmol) in DMF (125 mL) at 0 OC. The mixture was warmed to room

temperature and stirred until it became clear (approximately 30 min). This solution was

cooled to 0 oC and then treated with 1-bromo-3-butene (4.06 mL, 40.0 mmol) over a 5-

min period. After stirring for 18 h at room temperature, the solution was diluted with

H20 (100 mL). The layers were separated, and the aqueous layer was extracted with

Et20 (2x150 mL). The combined organic layers were washed with brine, dried over

MgSO 4, filtered, and concentrated. The crude mixture was purified by flash

chromatography (5-20% EtOAc in hexanes), which provided 6.13 g (72%) of a clear,

colorless oil.

IH NMR (300 MHz) 8 5.73 (ddt, J=17.0 Hz, J=10.3 Hz, J=6.5 Hz, 1H), 5.04-4.95

(m, 2H), 4.16 (q, J=7.1 Hz, 4H), 3.32 (t, J=7.1 Hz, 1H), 2.11-1.92 (m, 4H), 1.23 (t, J=7.1

Hz, 6H).
13C NMR (75 MHz) 6 169.6, 137.1, 116.1, 61.5, 51.3, 31.5, 27.9, 14.2.

C0 2Et
SCO 2Et

MeO 2C v

Diethyl (3-butenyl)malonate (3.00 g, 14.0 mmol) was added to a slurry of NaH

(0.338 g, 14.1 mmol) in DMF (30 mL) at 0 oC. The mixture was warmed to room

temperature and stirred until it became clear (approximately 30 min). This solution was

cooled to 0 oC and then treated with methyl 4-bromocrotonate (85%; 1.94 mL, 14.0

mmol) over a 5-min period. After stirring for 18 h at room temperature, the solution was

diluted with H20 (50 mL). The layers were separated, and the aqueous layer was

extracted with Et20 (2x75 mL). The combined organic layers were washed with brine,

dried over MgSO4, filtered, and concentrated. The crude mixture was purified by flash
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chromatography (5-25% EtOAc in hexanes), which provided 3.26 g (75%) of a clear,

colorless oil.
1H NMR (300 MHz) 8 6.78 (dt, J=15.4 Hz, J=7.7 Hz, 1H), 5.86 (d, J=15.4 Hz,

1H), 5.74 (m, 1H), 5.04-4.94 (m, 2H), 4.18 (q, J=7.1 Hz, 4H), 3.70 (s, 3H), 2.78 (d, J=7.7

Hz, 2H), 1.96 (m, 2H), 1.95 (m, 2H), 1.23 (t, J=7.1 Hz, 6H).
13C NMR (75 MHz) 6 170.8, 166.5, 143.2, 137.3, 124.7, 115.8, 61.8, 57.1, 51.8,

35.7, 32.1, 28.5, 14.3.

FTIR (thin film) 3079, 2982, 1733, 1659, 1642, 1435, 1342, 1270, 1195, 1096,

1035, 917, 860 cm1 .

LC-MS calc. for C16H2406 [M+Na] 335.1, found 335.1.

HO "C02Et

-
C02Et

MeO 2C v

A solution of the olefin (3.23 g, 10.3 mmol) in THF (10 mL) at 0 oC was treated

with a solution of 9-BBN (0.5 M solution in THF; 20.9 mL, 10.4 mmol), and the

resulting mixture was stirred at room temperature for 7 h. Then, H20 (20 mL) and

NaBO3.4H20 (5.25 g, 39.6 mmol) were added, and the mixture was stirred vigorously for

2 h at room temperature. The layers were separated, and the aqueous layer was extracted

with EtOAc (2 x 75 mL). The combined organic layers were washed with brine, dried

over MgSO 4, filtered, and concentrated. The residue was purified by flash

chromatography (20-80% EtOAc in hexanes), which provided 2.70 g (79%) of a clear,

colorless oil.

1H NMR (300 MHz) 8 6.75 (dt, J=15.5 Hz, J=7.7 Hz, 1H), 5.84 (dt, J=15.5 Hz,

1.4 Hz, 1H), 4.15 (q, J=7.1 Hz, 4H), 3.68 (s, 3H), 3.58 (m, 2H), 2.74 (m, 2H), 1.88-1.82

(m, 3H), 1.53 (quintet, J=7.2 Hz, 2H), 1.30-1.18 (m, 2H), 1.21 (t, J=7.1 Hz, 6H).
13C NMR (75 MHz) 8 170.9, 166.5, 143.3, 124.6, 62.3, 61.7, 57.3, 51.8, 35.5,

32.7, 32.5, 20.4, 14.2.

FTIR (thin film) 3442 (broad), 2953, 2872, 1739, 1733, 1716, 1699, 1658, 1463,

1435, 1368, 1344, 1176, 1097, 1035, 860 cm-'.

LC-MS calc. for C16H260 7 [M+I] 331.2, 331.1.
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C02Et
C0 2Et

H
MeO 2C'

DMSO (1.71 mL, 23.9 mmol) was added dropwise to a solution of oxalyl chloride

(1.04 mL, 11.9 mmol) in CH 2C12 (30 mL) at -78 oC. After 10 min, a solution of the

alcohol (2.64 g, 7.98 mmol) in CH 2C12 (30 mL) was added dropwise via cannula. The

solution was stirred for 30 min, and then it was treated with NEt3 (5.56 mL, 39.1 mmol).

This mixture was stirred at -78 'C for 20 min, and then it was warmed to room

temperature and stirred for an additional 30 min. The reaction was quenched with a

saturated solution of NaHCO3 (50 mL). The layers were separated, and the aqueous layer

was extracted with CH2C12 (2x30 mL). The combined organic layers were washed with 1

N HCl (50 mL) and brine, dried over MgSO 4, filtered, and concentrated. The crude

material was purified by flash chromatography (15-30% EtOAc in hexanes), which

provided 2.41 g (92%) of a clear, colorless oil.

'H NMR (300 MHz) 8 9.71 (t, J=1.2 Hz, 1H), 6.74 (dt, J=15.5 Hz, 7.8 Hz, 1H),

5.85 (dt, J=15.5 Hz, 1.4 Hz, 1H), 4.16 (q, J=7.1 Hz, 4H), 3.67 (s, 3H), 2.75 (dd, J=7.8 Hz,

J=1.4 Hz, 2H), 2.43 (td, J=7.0 Hz, J=1.2 Hz, 2H), 1.83 (m, 2H), 1.55-1.45 (m, 2H), 1.21

(t, J=7.1 Hz, 6H).

13C NMR (75 MHz) 8 201.5, 170.5, 166.4, 142.9, 124.8, 61.8, 57.2, 51.7, 43.8,

35.5, 32.2, 16.8, 14.2.

FTIR (thin film) 2983, 2842, 2727, 2739, 1733, 1716, 1699, 1659, 1458, 1439,

1435, 1342, 1177, 1097, 1035, 860cm'.

LC-MS calc. for C16H240 7 [M+1] 329.1, 329.1.

C0 2Et
C0 2Et

OH
MeO 2C•

n-BuLi (1.6 M in hexanes; 1.91 mL, 3.06 mmol) was added to a solution of

phenylacetylene (0.336 mL, 3.06 mmol) in THF (15 mL) at -78 'C. After 30 min, this

solution was transferred by cannula into a flask containing a solution of the aldehyde
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(1.01 g, 3.06 mmol) in THF (15 mL) at -78 TC. The resulting solution was stirred for 20

min at -78 'C, and then it was warmed to 0 oC and stirred for an additional 30 min.

Next, the reaction was quenched with a saturated solution of NH4C1. The layers were

separated, and the aqueous layer was extracted with Et2O (3x20 mL). The combined

organic layers were washed with brine, dried over MgSO4, filtered, and concentrated.

The residue was purified by flash chromatography (10-40% EtOAc in hexanes), which

provided 1.16 g (88%) of a pale-yellow oil.

1H NMR (300 MHz) 8 7.41-7.37 (m, 2H), 7.32-7.26 (m, 3H), 6.79 (dt, J=15.5 Hz,

J=7.7 Hz, 1H), 5.87 (dt, J=15.5 Hz, J=1.4 Hz, 1H), 4.59 (m, 1H), 4.17 (qd, J=7.1 Hz,

J=1.6 Hz, 4H), 3.69 (s, 3H), 2.78 (dd, J=7.8 Hz, J=1.4 Hz, 2H), 4.41 (d, J=4.4 Hz, 1H),

1.94 (m, 2H), 1.79 (m, 2H), 1.49-1.38 (m, 2H), 1.21 (td, J=7.1 Hz, J=1.4 Hz, 6H).
13C NMR (75 MHz) 8 170.8, 166.5, 143.2, 131.9, 128.6, 128.5, 124.7, 122.7,

89.9, 85.2, 62.5, 61.8, 57.4, 51.8, 37.9, 35.5, 32.4, 19.9, 14.3.

FTIR (thin film) 3496 (broad), 2981, 2953, 2732, 1658, 1490, 1442, 1368, 1279,

1097, 1032, 917, 859 cm - .

LC-MS calc. for C24H300 7 [M+Na] 453.2, found 453.1.

A mixture of the propargylic alcohol (1.11 g, 2.58 mmol), 4A MS (1.30 g), and

NMO (0.455 g, 3.87 mmol) in 10:1 CH2C12:CH 3CN (14.3 mL) at 0 'C was treated with

TPAP (45 mg, 0.129 mmol). The mixture was immediately warmed to room temperature

and then stirred for 2 h. Next, the mixture was filtered through a short pad of silica gel

with Et20 washings (100 mL). The filtrate was concentrated, and the residue was

purified by flash chromatography (10-50% Et2O in hexanes), which provided 0.953 g

(86%) of a pale-yellow oil.

'H NMR (300 MHz) 8 7.57-7.54 (m, 2H), 7.45 (m, 1H), 7.37 (m, 2H), 6.79 (dt,

J=15.5 Hz, J=7.7 Hz, 1H), 5.88 (dt, J=15.5 Hz, J=1.4 Hz, 1H), 4.19 (q, J=7.1 Hz, 4H),
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3.70 (s, 3H), 2.80 (dd, J=7.8 Hz, 1.4 Hz, 2H), 2.69 (t, J=7.4 Hz, 2H), 1.92 (m, 2H), 1.69-

1.58 (m, 2H), 1.24 (t, J=7.1 Hz, 6H).
13C NMR (75 MHz) 6 187.0, 170.6, 166.4, 143.0, 133.3, 131.0, 128.9, 124.9,

120.0, 91.2, 87.8, 61.9, 57.3, 51.8, 45.4, 35.6, 32.1, 18.8, 14.3.

FTIR (thin film) 3059, 2982, 2905, 2201, 1732, 1669, 1490, 1444, 1343, 1276,

1174, 1094, 1038, 860 cm 1 .

LC-MS calc. for C24H280 7 [M+1] 429.2, found, 429.1.

Substrates for Eq 3.7 and eq. 3.9:

O
H0 2C a HO N. b HO (c), d H Ný e

Br Br EtO 2 C02 EtO 2C

OH 0

SR 
n =1,2

R Et 2C EtO 2C

a. LAH, Et20, 0 oC to r.t. b. cat. Pd2(dba)3/P(t-Bu) 3, CH 2=CHCO 2Et, Cy2NEt, 1,4-dioxane, 65 0C. c. Swern oxidation.
d. Ph 3PCHOMe, THF, -78 oC to r.t. e. RCCLi, THF, -78 0C to 0 C. f. cat. TPAP, NMO, 4A MS, CH2CI2 :CH 3CN (10:1), r.t.

HO

Br

LiAlH4 (1.0 M solution in Et20O; 100 mL, 100 mmol) was added dropwise to a

solution of 3-(2-bromophenyl)propionic acid (11.5 g, 50.2 mmol) in Et20 (60 mL) at 0

'C. The mixture was then warmed to room temperature and stirred for 4 h. Next, the

mixture was cooled to 0 oC, and H20 (50 mL) was added cautiously dropwise over 30

min. The layers were separated, and the aqueous layer was extracted with EtOAc (2x100

mL). The combined organic layers were washed with brine, dried over MgSO4, filtered,

and concentrated. The residue was passed through a short pad of silica gel with Et20

washings (250 mL), yielding 10.3 g (96%) of a clear, colorless oil.
1H NMR (300 MHz) 8 7.53 (d, J=7.9 Hz, 1H), 7.25-7.23 (m, 2H), 7.09-7.01 (m,

1H), 3.70 (m, 2H), 2.83 (m, 2H), 1.89 (m, 2H), 1.71 (t, J=5.2 Hz, 1H).
13C NMR (75 MHz) 6 141.3, 133.0, 130.6, 127.9, 127.7, 124.7, 62.3, 32.9, 32.6.
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FTIR (thin film) 3334 (broad), 3065, 2939, 2867, 1566, 1471, 1438, 1058, 1019,

748 cm-'.

LC-MS calc. for C9HjjBrO [M+Na] 238.9, found 238.9.

HO 

IEtO2C ~

In a glove box, P(t-Bu) 3 (0.202 g, 1.00 mmol) and Pd 2dba 3 (0.458 g, 0.500 mmol)

were combined and dissolved in 1,4-dioxane (50 mL). NCy2Me (6.43 mL, 30.0 mmol),

3-(2-bromophenyl)propanol (5.39 g, 25.0 mmol), and ethyl acrylate (4.00 mL, 37.5

mmol) were added sequentially to this solution. The mixture was then heated to 70 OC

for 18 h. Next, the reaction mixture was cooled and then filtered through a short pad of

silica gel with Et20 washings (200 mL) to remove the ammonium salt, catalyst, etc. The

crude mixture was concentrated, and the residue was purified by flash chromatography

(20-60% EtOAc in hexanes), which provided 5.53 g (94%) of a pale-yellow oil.

'H NMR (300 MHz) 6 8.03 (d, J=15.8 Hz, 1H), 7.57 (dd, J=6.1 Hz, J=1.9 Hz,

1H), 7.33-7.19 (m, 3H), 6.37 (d, J=15.8 Hz, 1H), 4.26 (q, J=7.1 Hz, 2H), 3.67 (m, 2H),

2.86 (m, 2H), 2.01 (m, 1H), 1.84 (m, 2H), 1.33 (t, J=7.1 Hz, 3H).

13C NMR (75 MHz) 8 167.4, 142.3, 141.9, 133.2, 130.3, 126.79, 126.78, 119.7,

62.1, 60.8, 34.5, 29.6, 14.5 (coincident resonances).

FTIR (thin film) 3419 (broad), 3063, 2980, 2940, 2873, 1706, 1716, 1703, 1699,

1694, 1647, 1634, 16000, 1483, 1455, 1367, 1316, 1216, 1179, 1097, 1035, 981, 863,

766 cm-'.

LC-MS calc. for C14H180 3 [M+1] 235.1, found 235.1.

O

H

EtO 2C

3.10. DMSO (5.00 mL, 70.1 mmol) was added dropwise to a solution of oxalyl

chloride (3.06 mL, 35.0 mmol) in CH 2C12 (60 mL) at -78 'C. After 10 min, a solution of

the alcohol (5.49 g, 23.4 mmol) in CH 2Cl 2 (60 mL) was added dropwise via cannula. The
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solution was stirred for 30 min before being treated with NEt3 (16.3 mL, 116 mmol).

This mixture was stirred at -78 'C for 20 min, and then it was warmed to room

temperature and stirred for an additional 30 min. Next, the reaction was quenched with a

saturated solution of NaHCO 3 (50 mL). The layers were separated, and the aqueous layer

was extracted with CH2C12 (2x50 mL). The combined organic layers were washed with 1

N HCI (100 mL) and brine, dried over MgSO 4, filtered, and concentrated. The crude

material was purified by flash chromatography (15-30% EtOAc in hexanes), which

provided 4.95 g (91%) of a clear, colorless oil.

'H NMR (300 MHz) 8 9.80 (t, J=1.1 Hz, 1H), 7.94 (d, J=15.8 Hz, 1H), 7.55 (dd,

J=7.2 Hz, J=1.6 Hz, 1H), 7.34-7.19 (m, 3H), 6.37 (d, J=15.8 Hz, 1H), 4.26 (q, J=7.1 Hz,

2H), 3.09 (t, J=7.6 Hz, 2H), 2.73 (td, J=7.6 Hz, J=1.1 Hz, 2H), 1.33 (t, J=7.1 Hz, 3H).
13C NMR (75 MHz) 8 201.0, 167.0, 141.6, 140.0, 133.3, 130.4, 130.1, 127.2,

127.1, 120.5, 60.8, 45.2, 25.6, 14.5.

FTIR (thin film) 3064, 2981, 2902, 2825, 1716, 1634, 1600, 1485, 1389, 1366,

1315, 1271, 1216, 1179, 1096, 1035, 980, 864, 766 cm-1 .

LC-MS calc. for C14H160 3 [M+1] 233.1, found 233.0.

OH

i-
Ph EtO2C

n-BuLi (1.6 M in hexanes; 3.54 mL, 5.67 mmol) was added to a solution of

phenylacetylene (0.622 mL, 5.67 mmol) in THF (25 mL) at -78 'C. After 30 min, this

solution was transferred by cannula into a flask containing a solution of the aldehyde

(1.32 g, 5.67 nmmol) in THF (25 mL) at -78 'C. The resulting solution was stirred for 20

min at -78 OC, and then it was warmed to 0 OC and stirred for an additional 30 min. The

reaction was quenched with a saturated solution of NH4C1. The layers were separated,

and the aqueous layer was extracted with Et20 (2x30 mL). The combined organic layers

were washed with brine, dried over MgSO4, filtered, and concentrated. The residue was

purified by flash chromatography (10-50% EtOAc in hexanes), which provided 1.83 g

(96%) of a clear, pale-yellow oil.
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'H NMR (300 MHz) 8 8.08 (d, J=15.8 Hz, 1H), 7.57 (m, 1H), 7.46-7.41 (m, 2H),

7.34-7.20 (m, 6H), 6.39 (d, J=15.8 Hz, 1H), 4.62 (m, 1H), 4.24 (q, J=7.1 Hz, 2H), 3.02

(m, 2H), 2.64 (d, J=5.4 Hz, 1H), 2.13-2.02 (m, 2H), 1.30 (t, J=7.1 Hz, 3H).

13C NMR (75 MHz) 8 167.3, 142.2, 141.2, 133.3, 131.9, 130.41, 130.36, 128.6,

128.5, 126.93, 126.90, 122.7, 119.9, 89.9, 85.4, 62.2, 60.8, 39.5, 29.1, 14.5.

FTIR (thin film) 3411 (broad), 3062, 3020, 2980, 2954, 2873, 1716, 1632, 1600,

1489, 1443, 1366, 1316, 1279, 1219, 1183, 1097, 1035, 979, 757 cm- .

LC-MS calc. for C22H220 3 [M+Na] 357.2, found 357.1.

O

Ph Et0 2C~

A mixture of the propargylic alcohol (1.83 g, 5.16 mmol), 4A MS (2.58 g), and

NMO (0.910 g, 7.74 mmol) in 10:1 CH 2C12:CH 3CN (27.5 mL) at 0 'C was treated with

TPAP (0.090 g, 0.26 mmol). The mixture was immediately warmed to room temperature

and then stirred for 2 h. Next, the mixture was filtered through a short pad of silica gel

with Et20O washings (150 mL). The filtrate was concentrated, and the residue was purified

by flash chromatography (5-30% Et20 in hexanes), which provided 1.26 g (73%) of a

pale-yellow oil.

'H NMR (300 MHz) 8 8.01 (d, J=15.6 Hz, 1H), 7.59-7.54 (m, 3H), 7.48-7.21 (m,

6H), 6.39 (d, J=15.6 Hz, 1H), 4.26 (q, J=7.2 Hz, 2H), 3.20 (m, 2H), 2.96 (m, 2H), 1.33 (t,

J=7.2 Hz, 3H).
13C NMR (75 MHz) 8 186.4, 167.0, 141.6, 139.9, 133.3, 131.0, 130.4, 130.2,

128.8, 127.3, 127.1, 120.5, 119.9, 91.6, 87.8, 60.8, 46.8, 27.4, 14.5 (coincident

resonances).

FTIR (thin film) 3063, 2980, 2938, 2901, 2203, 1714, 1674, 1633, 1600, 1488,

1444, 1365, 1314, 1280, 1218, 1177, 1093, 1034, 980 cm .

LC-MS calc. for C22H200 3 [M+1] 333.1, found, 333.1.
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OH

n-pentyl O2C:,'

n-BuLi (1.6 M in hexanes; 5.26 mL, 8.42 mmol) was added to a solution of 1-

heptyne (1.10 mL, 8.42 mmol) in THF (30 mL) at -78 'C. After 60 min, this solution

was transferred by cannula into a flask containing a solution of the aldehyde (1.96 g, 8.42

mmol) in THF (30 mL) at -78 'C. The resulting solution was stirred for 1 h at -78 'C,

and then it was warmed to 0 oC and stirred for an additional 30 min. Next, the reaction

was quenched with a saturated solution of NH4C1. The layers were separated, and the

aqueous layer was extracted with Et20 (2x30 mL). The combined organic layers were

washed with brine, dried over MgSO4, filtered, and concentrated. The residue was

purified by flash chromatography (10-30% EtOAc in hexanes), which provided 2.38 g

(86%) of a clear, pale-yellow oil.

1H NMR (300 MHz) 8 8.04 (d, J=15.8 Hz, 1H), 7.56 (d, J=7.9 Hz, 1H), 7.33-7.19

(m, 3H), 6.37 (d, J=15.8 Hz, 1H), 4.36 (m, 1H), 4.26 (q, J=7.1 Hz, 2H), 2.94 (m, 2H),

2.22 (td, J=7.1 Hz, J=1.9 Hz, 2H), 2.02 (d, J=5.8 Hz, 1H), 1.98-1.89 (m, 2H), 1.56-1.46

(m, 2H), 1.41-1.24 (m, 4H), 1.34 (t, J=7.1 Hz, 3H), 0.89 (t, J=7.0 Hz, 3H).

1 3C NMR (75 MHz) 8 167.3, 142.2, 141.4, 133.3, 130.4, 130.3, 126.89, 126.87,

119.9, 86.5, 80.9, 62.1, 60.8, 39.8, 31.3, 29.0, 28.6, 22.4, 18.9, 14.6, 14.2.

FTIR (thin film) 3430 (broad), 3064, 2933, 2860, 2231, 1716, 1699, 1634, 1600,

1484, 1466, 1455, 1367, 1315, 1279, 1178, 1095, 1033, 982, 765 cm -1.

LC-MS calc. for C21H280 3 [M+1] 329.2, found 329.2.

O

n-pentyl EtO 2C -

A mixture of the propargylic alcohol (2.37 g, 7.20 mmol), 4A MS (3.60 g), and

NMO (1.27 g, 10.8 mmol) in 10:1 CH 2C12:CH 3CN (39 mL) at 0 'C was treated with

TPAP (0.126 g, 0.360 mmol). The mixture was immediately warmed to room

temperature and then stirred for 3 h. Next, the mixture was filtered through a short pad of
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silica gel with Et20 washings (150 mL). The filtrate was concentrated, and the residue

was purified by flash chromatography (5-20% Et20 in hexanes), which provided 1.82 g

(77%) of a pale-yellow oil.

'H NMR (300 MHz) 8 7.97 (d, J=15.8 Hz, 1H), 7.55 (m, 1H), 7.34-7.21 (m, 3H),

6.37 (d, J=15.8 Hz, 1H), 4.27 (q, J=7.2 Hz, 2H), 3.11 (m, 2H), 2.82 (m, 2H), 2.35 (t,

J=7.1 Hz, 2H), 1.61-1.52 (m, 2H), 1.42-1.25 (m, 4H), 1.34 (t, J=7.2 Hz, 3H), 0.89 (m,

3H).

13C NMR (75 MHz) 6 186.7, 167.1, 141.9, 140.0, 133.3, 130.4, 130.2, 127.2,

127.0, 120.4, 95.5, 80.9, 60.8, 46.8, 31.2, 27.6, 27.4, 22.3, 19.2, 14.6, 14.1.

FTIR (thin film) 3064, 2934, 2871, 2214, 1714, 1674, 1633, 1600, 1485, 1463,

1366, 1313, 1271, 1177, 1035, 980 cm- .

LC-MS calc. for C2 1H260 3 [M+1] 327.2, found, 327.1.

A solution of KHMDS (0.3 10 g, 1.55 mmol) in THF (2.0 mL) was added to a -78

'C suspension of (triphenylphosphonium)methoxymethyl chloride (0.514 g, 1.50 mmol)

in THF (3.0 mL). This solution was stirred for 45 minutes at -78 "C before adding a

solution of aldehyde 3.10 (0.233 g, 1.00 mmol) in THF (2.0 mL). The resulting mixture

was allowed to warm to room temperature over 1 hour and then stirred for an additional

hour at room temperature. 1 N HCI (6.0 mL) was added and the mixture was stirred

vigorously for 3 hours. The aqueous was extracted with Et20 (2 x 20 mL). The extracts

were washed with brine, dried over MgSO 4, filtered, and concentrated. Purification by

flash chromatography (10-30% EtOAc in hexanes) furnished 0.130 g (53%) of the

aldehyde.

'H NMR (300 MHz) 8 9.77 (t, J=1.4 Hz, 1H), 7.99 (d, J=15.7 Hz, 1H), 7.58 (dd,

J=7.6 Hz, J=1.4 Hz, 1H), 7.32 (td, J=7.4 Hz, J=1.4 Hz, 1H), 7.27-7.18 (m, 2H), 6.38 (d,

J=15.7 Hz, 1H), 4.28 (q, J=7.1 Hz, 2H), 2.80 (t, J=7.7 Hz, 2H), 2.49 (td, J=7.2 Hz, J=1.4

Hz, 2H), 1.89 (m, 2H), 1.35 (t, J=7.1 Hz, 3H).
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EtO 2C N

n-BuLi (1.6 M in hexanes; 0.350 mL, 0.559 mmol) was added to a solution of

phenylacetylene (0.061 mL, 0.559 mmol) in THF (3.0 mL) at -78 'C. After 30 min, this

solution was transferred by cannula into a flask containing a solution of the aldehyde

(0.130 g, 0.532 mmol) in THF (3.0 mL) at -78 'C. The resulting solution was stirred for

20 min at -78 'C, and then it was warmed to 0 oC and stirred for an additional 30 min.

The reaction was quenched with a saturated solution of NH4Cl. The layers were

separated, and the aqueous layer was extracted with Et20 (2x10 mL). The combined

organic layers were washed with brine, dried over MgSO4, filtered, and concentrated.

The resulting material was combined with 4A MS (2.58 g), and NMO (0.910 g,

7.74 mmol) in 10:1 CH2C12:CH3CN (1.1 mL) and was treated with TPAP (0.005 g, 0.014

mmol). The mixture was stirred for 2 h at room temperature. Next, the mixture was

filtered through a short pad of silica gel with Et20 washings (50 mL). The filtrate was

concentrated, and the residue was purified by flash chromatography (5-30% Et20O in

hexanes), which provided 0.075 g (41% over two steps) of a pale-yellow oil.

'H NMR (300 MHz) 8 8.02 (d, J=15.8 Hz, 1H), 7.58-7.54 (m, 3H), 7.47-7.21 (m,

6H), 6.38 (d, J=15.8 Hz, 1H), 4.25 (q, J=7.1 Hz, 2H), 2.84 (t, J=7.7 Hz, 2H), 2.71 (t,

J=7.2 Hz, 2H), 2.02 (m, 2H), 1.33 (t, J=7.1 Hz, 3H).
13C NMR (75 MHz) 8 187.5, 167.1, 141.9, 141.1, 133.2, 130.9, 130.34, 130.28,

128.8, 127.0, 126.9, 120.1, 120.0, 91.0, 87.9, 60.7, 44.8, 32.4, 25.7, 14.5.

FTIR (thin film) 2360, 2202, 1711, 1668, 1633, 1600, 1488, 1444, 1313, 1271,

1178, 1101, 1038, 980 cm1.

LC-MS calc. for C23H220 3 [M+1] 346.2, found 346.1.

III. Phosphine-Catalyzed Cyclizations

General Procedure for Cyclizations: A flask was charged with the substrate,

and then it was evacuated and refilled with argon three times. The appropriate volume of

CH2C12:EtOAc (9:1) was added to make a 0.01 M solution of the substrate. P(n-Bu) 3
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(0.20 equiv) was added by syringe, and the solution was stirred for 20 h at room

temperature. Then, the reaction mixture was exposed to air for 1 h, filtered through a

short pad of silica gel with Et20O washings (100 mL), and concentrated. The crude

material was purified by flash chromatography to afford the pure cyclized product.

O H

Ph
Et02C H

Table 3.3, entry 1. The general procedure was followed. Ynone (114 mg, 0.400

mmol), P(n-Bu) 3 (20 [L, 0.080 mmol). Purification by flash chromatography (5-25%

Et20 in hexanes) furnished the product (104 mg, 91%) as a pale-yellow oil.

Second run: Ynone (114 mg, 0.400 mmol), P(n-Bu) 3 (20 [tL, 0.080 mmol).

Product: 98.9 mg, 87%.

'H NMR (300 MHz) 8 7.60-7.57 (m, 2H), 7.52 (d, J=1.6 Hz, 1H), 7.44-7.38 (m,

3H), 4.22-4.03 (m, 2H), 3.88 (s, 1H), 3.02 (td, J=9.2 Hz, J=3.7 Hz, 1H), 2.87 (q, J=7.4

Hz, 1H), 2.11-1.86 (m, 3H), 1.61-1.52 (m, 2H), 1.17 (t, J=7.1 Hz, 3H), obscured peak

under the triplet at 1.17 (m, 1H).
13C NMR (75 MHz) 8 210.3, 173.4, 137.0, 134.5, 133.5, 131.0, 130.3, 129.0,

61.4, 51.3, 50.5, 44.5, 33.9, 29.9, 26.1, 14.3.

FTIR (thin film) 3057, 3026, 2957, 2871, 1731, 1622, 1575, 1494, 1448, 1367,

1293, 1233, 1173, 1117, 1094, 942 cm-.

LC-MS calc. for C18H2003 [M+1] 285.1, found 285.1.
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E = CO2Et

Table 3.3, entry 2. The general procedure was followed, except CH2C12:EtOAc

(1:1) was used. Ynone (109 mg, 0.300 mmol), P(n-Bu) 3 (15 pL, 0.060 mmol).

Purification by flash chromatography (5-40% Et20 in hexanes) furnished the product

(91.5 mg, 84%) as a yellow solid.

Second run: Ynone (109 mg, 0.300 mmol), P(n-Bu)3 (15 pL, 0.060 mmol).

Product: 89.6 mg, 82%.

Mp=87 "C.
1H NMR (300 MHz) 8 8.05 (s, 1H), 7.78 (d, J=9.3 Hz, 1H), 7.74 (d, J=8.9 Hz,

1H), 7.67-7.64 (m, 2H), 7.17 (dd, J=8.9 Hz, J=2.5 Hz, 1H), 7.12 (d, J=2.5 Hz, 1H), 4.15

(m, 2H), 4.00 (s, 1H), 3.93 (s, 3H), 3.06 (m, 1H), 2.90 (m, 1H), 2.12-1.89 (m, 3H), 1.63-

1.53 (m, 2H), 1.19 (t, J=7.2 Hz, 3H), 1.31-1.17 (m, 1H).

13C NMR (75 MHz) 8 210.6, 173.7, 159.3, 137.5, 135.5, 132.5, 132.0, 130.6,

129.8, 128.8, 128.1, 127.5, 119.8, 105.8, 61.4, 55.6, 51.4, 50.7, 44.5, 34.0, 29.9, 26.1,

14.4.

FTIR (thin film) 2957, 2870, 1727, 1610, 1482, 1394, 1268, 1249, 1173,

1029 cm1.

LC-MS calc. for C23H2404 [M+1] 365.1, found 365.1.
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Table 3.3, entry 3. The general procedure was followed. Ynone (115 mg, 0.400

mmol), P(n-Bu) 3 (20 jgL, 0.080 mmol). Purification by flash chromatography (5-25%

Et20 in hexanes) furnished the product (97.0 mg, 84%) as a pale-yellow oil.

Second run: Ynone (115 mg, 0.400 mmol), P(n-Bu) 3 (20 pL, 0.080 mmol).

Product: 96.3 mg, 83%.

'H NMR (300 MHz) 8 7.01 (s, 1H), 6.28 (t, J=3.9 Hz, 1H), 4.21-4.03 (m, 2H),

3.84 (s, 1H), 2.88 (td, J=9.3 Hz, J=3.6 Hz, 1H), 2.72 (q, J=8.3 Hz, 1H), 2.31-2.24 (m,

2H), 2.24-2.17 (m, 2H), 2.04-1.79 (m, 3H), 1.68-1.49 (m, 6H), 1.20 (t, J=7.1 Hz, 3H),

1.24-1.10 (m, 1H).

'3 C NMR (75 MHz) 8 210.6, 174.1, 142.3, 140.9, 135.3, 129.4, 61.2, 51.1, 49.9,

44.2, 33.9, 29.8, 27.0, 26.9, 26.1, 22.6, 21.6, 14.3.

FTIR (thin film) 2936, 2866, 1737, 1603, 1447, 1388, 1367, 1308, 1219, 1156,

1116, 1094, 1032 cm-1 .

LC-MS calc. for C18H240 3[M+1] 289.1, found 289.1.

-rCEPt

Table 3.3, entry 4. The general procedure was followed, except 1:1

CH2CI2:EtOAc was used. Ynone (87.1 mg, 0.300 mmol), P(n-Bu) 3 (75 RL, 0.30 mmol).

Purification by flash chromatography (5-25% Et20 in hexanes) furnished the product

(38.1 mg, 44%) as a colorless oil.

Second run: Ynone (87.1 mg, 0.300 mmol), P(n-Bu) 3 (75 LL, 0.30 mmol).

Product: 39.8 mg, 46%.
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1H NMR (300 MHz) 8 6.53 (dd, J=10.6 Hz, J=1.9 Hz, 1H), 4.11 (q, J=7.1 Hz,

2H), 3.56 (m, 1H), 2.96 (m, 1H), 2.82 (m, 1H), 2.31 (m, 1H), 2.05-1.51 (m, 10H), 1.32-

1.06 (m, 6H), 1.23 (t, J=7.1 Hz, 3H).
13C NMR (75 MHz) 8 209.8, 173.9, 146.4, 133.4, 61.2, 52.4, 48.5, 43.2, 39.2,

33.7, 31.9, 31.5, 29.6, 26.2, 25.9, 25.51, 25.47, 14.3.

FTIR (thin film) 2927, 2853, 1732, 1645, 1448, 1368, 1294, 1266, 1246, 1174,

1031, 935 cm-.

LC-MS calc. for C18H260 3[M+1] 291.1, found 291.1.

Table 3.4, entry 1. The general procedure was followed, except 1:1

CH2C12:EtOAc was used. Ynone (124 mg, 0.300 mmol), P(n-Bu) 3 (15 RL, 0.060 mmol).

Purification by flash chromatography (5-40% Et20 in hexanes) furnished the product

(110 mg, 89%) as a pale-yellow oil.

Second run: Ynone (109 mg, 0.300 mmol), P(n-Bu) 3 (15 pL, 0.060 mmol).

Product: 109 mg, 88%.

11H NMR (300 MHz) 8 7.60-7.56 (m, 3H), 7.46-7.39 (m, 3H), 4.20 (m, 2H), 4.10

(q, J=7.1 Hz, 2H), 3.91 (s, 1H), 3.67 (s, 3H), 3.15 (m, 1H), 3.02 (m, 1H), 2.84 (ddd,

J=14.4 Hz, J=10.1 Hz, J=1.5 Hz, 1H), 2.52 (dd, J=13.5 Hz, J=7.0 Hz, 1H), 2.35 (dd,

J=14.4 Hz, J=4.3 Hz, 1H), 1.71 (dd, J=13.5 Hz, J=11.5 Hz, 1H), 1.24 (t, J=7.1 Hz, 3H),

1.18 (t, J=7.1 Hz, 3H).
3C NMR (75 MHz) 8 207.9, 173.2, 171.7, 170.9, 138.8, 134.1, 131.9, 131.2,

130.7, 129.2, 62.1, 61.9, 61.1, 52.8, 50.0, 48.9, 43.1, 40.1, 36.1, 14.22, 14.16.

FTIR (thin film) 3057, 2982, 2874, 1731, 1621, 1494, 1448, 1367, 1261, 1097,

1064, 1028, 955 cm-.

LC-MS calc. for C23H260 7[M+1] 415.2, found, 415.1.
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E = C0 2 Me

Table 3.4, entry 2. The general procedure was followed. Ynone (126 mg, 0.300

mmol), P(n-Bu) 3 (15 gpL, 0.060 mmol). Purification by flash chromatography (10-40%

Et20 in hexanes) furnished the product (113 mg, 90%) as a pale-yellow oil.

Second run: Ynone (126 mg, 0.300 mmol), P(n-Bu) 3 (15 pL, 0.060 mmol).

Product: 106 mg, 85%.
1H NMR (300 MHz) 8 7.06 (s, 1H), 6.32 (t, J=3.7 Hz, 1H), 4.18 (m, 2H), 4.10 (q,

J=7.1 Hz, 2H), 3.89 (broad, 1H), 3.66 (s, 3H), 3.01 (m, 1H), 2.87 (m, 1H), 2.79 (ddd,

J=14.3 Hz, J=10.2 Hz, J=1.4 Hz, 1H), 2.49 (dd, J=13.3 Hz, J=7.0 Hz, 1H), 2.29-2.21 (m,

5H), 1.74 (dd, J=13.3 Hz, J=11.5 Hz, 1H), 1.68-1.54 (m, 4H), 1.23 (t, J=7.1 Hz, 3H), 1.19

(t, J=7.1 Hz, 3H).
13C NMR (75 MHz) 6 208.2, 173.9, 171.8, 171.0, 143.6, 142.8, 135.2, 127.8,

62.0, 61.8, 61.1, 52.6, 49.8, 48.3, 42.8, 40.1, 36.1, 27.1, 26.8, 22.5, 21.5, 14.22, 14.18.

FTIR (thin film) 2981, 2935, 2862, 1715, 1603, 1436, 1366, 1222, 1096, 1064,

1028, 941, 860 cm-1.

LC-MS calc. for C23H300 7 [M+1] 419.2, found, 419.1.

O H
CO2Et

CO2Et
EH

E = C0 2Me

Table 3.4, entry 3. The general procedure was followed, except 1:1

CH2C12:EtOAc was used. Ynone (126 mg, 0.300 mmol), P(n-Bu) 3 (15 [IL, 0.060 mmol).

Purification by flash chromatography (5-40% Et20 in hexanes) furnished the product

(90.5 mg, 72%) as a colorless oil.
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Second run: Ynone (126 mg, 0.300 mmol), P(n-Bu) 3 (15 pL, 0.060 mmol).

Product: 96.0 mg, 76%.

1H NMR (300 MHz) 8 6.60 (dd, J=10.6 Hz, J=1.8 Hz, 1H), 4.21-4.13 (m, 2H),

4.11 (q, J=7.1 Hz, 2H), 3.65 (s, 3H), 3.60 (s, 1H), 2.94 (m, 1H), 2.78 (ddd, J=14.3, J=10.2

Hz, J=1.5 Hz, 1H), 2.49 (m, 1H), 2.33-2.25 (m, 2H), 1.76-1.59 (m, 5H), 1.52-1.44 (m,

1H), 1.36-1.10 (m, 6H), 1.23 (t, J=7.1 Hz, 3H), 1.19 (t, J=7.2 Hz, 3H).
13C NMR (75 MHz) 8 207.2, 173.6, 171.7, 171.0, 148.2, 132.1, 62.0, 61.9, 61.1,

52.5, 51.2, 46.9, 41.8, 39.9, 39.4, 35.8, 31.8, 31.4, 25.9, 25.5, 25.3, 14.23, 14.17.

FTIR (thin film) 2982, 2929, 2853, 1732, 1644, 1447, 1367, 1259, 1185, 1099,

1064, 1028, 932 cm'.

LC-MS calc. for C23H320 7[M+1] 421.2, found, 421.2.

Me

Table 3.4, entry 4. The general procedure was followed. Ynone (79 mg, 0.20

mmol), P(n-Bu) 3 (10 gL, 0.040 mmol). Purification by flash chromatography (5-40%

Et20O in hexanes) furnished the product (60.4 mg, 77%) as a colorless oil.

Second run: Ynone (79 mg, 0.20 mmol), P(n-Bu) 3 (10 pLL, 0.040 mmol). Product:

61.0 mg, 77%.
1H NMR (300 MHz) 8 6.78 (td, J=7.7 Hz, J=1.9 Hz, 1H), 4.18 (m, 2H), 4.11 (q,

J=7.1 Hz, 2H), 3.65 (s, 3H), 3.57 (broad, 1H), 3.08 (m, 1H), 2.94 (m, 1H), 2.78 (ddd,

J=14.4 Hz, J=10.2 Hz, J=1.3 Hz, 1H), 2.49 (dd, J=13.3 Hz, J=7.1 Hz, 1H), 2.27 (dd,

J=14.4 Hz, J=4.2 Hz, 1H), 2.21 (m, 2H), 1.70 (dd, J=13.4 Hz, J=10.6 Hz, 1H), 1.46-1.20

(m, 4H), 1.23 (t, J=7.1 Hz, 3H), 1.19 (t, J=7.1 Hz, 3H), 0.87 (t, J=7.2 Hz, 3H).
13C NMR (75 MHz) 8 206.6, 173.3, 171.7, 171.0, 144.1, 134.2, 62.0, 61.9, 61.1,

52.5, 51.2, 47.0, 41.8, 39.9, 35.9, 30.5, 29.9, 22.7, 14.23, 14.18, 14.08.

FTIR (thin film) 2958, 2873, 1732, 1645, 1587, 1445, 1367, 1261, 1187, 1100,

1064, 1028, 935, 861 cm -1.

LC-MS calc. for C21H300 7 [M+1] 395.2, found, 395.1.
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Table 3.4, entry 5. The general procedure was followed. Ynone (70.5 mg, 0.200

mmol), P(n-Bu) 3 (10 [tL, 0.040 mmol). Purification by flash chromatography (5-40%

Et20 in hexanes) furnished the product (39.8 mg, 56%) as a colorless oil.

Second run: Ynone (70.5 mg, 0.200 mmol), P(n-Bu) 3 (10 [tL, 0.040 mmol).

Product: 38.8 mg, 55%.

'H NMR (300 MHz) 6 6.87 (qd, J=7.2 Hz, J=1.8 Hz, 1H), 4.18 (m, 2H), 4.11 (q,

J=7.1 Hz, 2H), 3.66 (s, 3H), 3.59 (broad, 1H), 3.08 (m, 1H), 2.97 (m, 1H), 2.78 (ddd,

J=14.4 Hz, J=10.2 Hz, J=1.4 Hz, 1H), 2.49 (dd, J=13.3 Hz, J=7.1 Hz, 1H), 2.27 (dd,

J=14.4 Hz, J=4.0 Hz, 1H), 1.88 (dd, J=7.3 Hz, J=1.0 Hz, 3H), 1.71 (dd, J=13.4 Hz,

J=11.4 Hz, 1H), 1.24 (t, J=7.1, 3H), 1.19 (t, J=7.1 Hz, 3H).

13C NMR (75 MHz) 8 206.3, 173.1, 171.7, 171.0, 138.9, 135.4, 62.0, 61.9, 61.1,

52.5, 51.3, 46.9, 41.6, 39.9, 35.9, 15.8, 14.23, 14.17.

FTIR (thin film) 2983, 2875, 1732, 1651, 1585, 1437, 1367, 1262, 1186, 1100,

1064, 1029, 919, 860 cm -1.

LC-MS calc. for C18H 240 7 [M+l] 353.2, found, 353.1.

O H

Ph \
EtO 2C H

Eq 3.7, bottom. The general procedure was followed. Ynone (133 mg, 0.400

mmol), P(n-Bu) 3 (20 pL, 0.080 mmol). Purification by flash chromatography (5-40%

Et20 in hexanes) furnished the product (115 mg, 86%) as a pale-yellow oil.

Second run: Ynone (133 mg, 0.400 mmol), P(n-Bu) 3 (20 pL, 0.080 mmol).

Product: 121 mg, 91%.
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1H NMR (300 MHz, C6D6 ) 8 7.60 (d, J=1.6 Hz, 1H), 7.37 (m, 1H), 7.35 (m, 1H),

6.98 (m, 2H), 6.93-6.80 (m, 5H), 4.42 (d, J=1.6 Hz, 1H), 3.99-3.78 (m, 3H), 3.47 (d,

J=16.2 Hz, 1H), 3.21 (m, 1H), 2.90 (dd, J=16.1 Hz, J=8.7 Hz, 1H), 0.81 (t, J=7.1 Hz,

3H).

13C NMR (75 MHz, C6D6) 8 208.0, 173.0, 143.4, 143.3, 137.5, 135.0, 133.7,

131.5, 130.4, 129.2, 128.3, 127.9, 125.5, 124.5, 61.6, 52.1, 50.6, 50.1, 36.3, 14.4.

FTIR (thin film) 3068, 3024, 2980, 2936, 2909, 2835, 1715, 1622, 1575, 1448,

1315, 1290, 1222, 1199, 1154, 1095, 1029, 957 cm-1 .

LC-MS calc. for C22H200 3 [M+1] 333.1, found, 333.1.

0  H

EtO 2C H -
Me

Eq 3.7, top. The general procedure was followed. Ynone (97.9 mg, 0.300

mmol), P(n-Bu) 3 (15 [tL, 0.060 mmol). Purification by flash chromatography (5-40%

Et20 in hexanes) furnished the product (51.3 mg, 52%) as a colorless oil.

Second run: Ynone (97.9 mg, 0.300 mmol), P(n-Bu) 3 (15 [tL, 0.060 mmol). Product:

55.3 mg, 56%.
1H NMR (300 MHz, C6D6) 8 7.01-6.85 (m, 4H), 6.71 (td, J=7.7 Hz, J=1.8 Hz,

1H), 4.02 (broad, 1H), 3.98-3.87 (m, 3H), 3.42 (d, J=16.1 Hz, 1H), 3.22 (app t, J=8.1 Hz,

1H), 2.87 (dd, J=16.1 Hz, J=8.6 Hz, 1H), 2.07-1.81 (m, 2H), 1.06-0.84 (m, 6H), 0.90 (t,

J=7.1 Hz, 3H), 0.69 (t, J=7.1 Hz, 3H).
13C NMR (75 MHz, C6D6) 8 206.3, 172.7, 143.3, 143.2, 141.7, 135.2, 127.9,

127.3, 125.3, 124.1, 61.0, 51.5, 49.9, 48.6, 35.8, 31.7, 29.9, 28.0, 22.7, 14.2, 14.1.

FTIR (thin film) 2929, 2857, 1732, 1645, 1459, 1444, 1367, 1328, 1313, 1269,

1235, 1163, 1133, 1028, 939 cm 1.

LC-MS calc. for C2 1H260 3 [M+1] 327.2, found, 327.2.
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Eq 3.8. The general procedure was followed. Ynone (128 mg, 0.300 mmol),

P(n-Bu) 3 (15 [tL, 0.060 mmol). Purification by flash chromatography (5-40% Et20O in

hexanes) furnished the product (73.0 mg, 57%) as a colorless oil.

Second run: Ynone (128 mg, 0.300 mmol), P(n-Bu) 3 (15 ptL, 0.060 mmol).

Product: 79.8 mg, 62%.

1H NMR (300 MHz) 6 7.66 (d, J=1.2 Hz, 1H), 7.57-7.54 (m, 2H), 7.46-7.39 (m,

3H), 4.23 (q, J=7.2 Hz, 2H), 4.08 (qd, J=7.1 Hz, J=1.2 Hz, 2H), 3.72 (s, 3H), 3.71 (s, 1H),

3.00 (m, 1H), 2.83 (m, 1H), 2.44-2.32 (m, 2H), 2.17 (m, 1H), 1.64 (m, 1H), 1.44 (m, 1H),

1.27 (t, J=7.1 Hz, 3H), 1.17 (t, J=7.2 Hz, 3H), 1.10 (t, J=13.0 Hz, 1H).
13C NMR (75 MHz) 6 205.4, 172.8, 171.7, 170.5, 137.7, 134.2, 132.1, 131.0,

130.5, 129.2, 61.8, 61.6, 54.2, 52.7, 51.0, 45.3, 36.3, 34.5, 27.3, 19.1, 14.3, 14.2.

FTIR (thin film) 2980, 2954, 1732, 1627, 1448, 1367, 1315, 1229, 1175, 1127,

1050, 1018 cm '.

LC-MS calc. for C24H280 7 [M+1] 429.2, found, 429.1.

Relative Stereochemistry:

HH7

)2Et

Protons were assigned based upon a gCOSY experiment and J couplings.
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Relative stereochemistry of H1 to H2 is based upon the lack of a J coupling. H1

appears as a singlet and shows no cross peak in the gCOSY, indictating a dihedral angle

of 80-90', which is consistent with the assigned structure.

Relative stereochemistry of H2 to H3 is assigned based upon a strong NOESY

cross peak. Moreover, H2 has a large J coupling to H8 , which is an apparent triplet

(JH2H8=JH H JH ialH ial Jgemina l). H2 must be in an axial-axial relationship with Ha. So if

H3 were axial (it is not, it is equatorial), H2 should be an apparent td (two JHaxiaHa xial, one

JHaxialHeq).

Olefin Geometry: NOESY crosspeak between H1 and H11 .

Eq 3.9. The general procedure was followed. Ynone (66.5 mg, 0.192 mmol),

P(n-Bu) 3 (9.5 [tL, 0.038 mmol). Purification by flash chromatography (5-30% Et20 in

hexanes) furnished the product (48.0 mg, 72%) as a pale yellow oil.

'H NMR (300 MHz) 8 7.57 (d, J=1.8 Hz, 1H), 7.53-7.49 (m, 2H), 7.42-7.36 (m,

4H), 7.19 (td, J=7.5 Hz, J=1.3 Hz, 1H), 7.11 (td, J=7.4 Hz, J=0.8 Hz, 1H), 7.03 (d, J=7.5

Hz, 1H), 4.26-4.16 (m, 3H), 3.95 (d, J=8.8 Hz, 1H), 3.17 (m, 1H), 2.72-2.56 (m, 2H),

2.41 (m, 1H), 1.89 (m, 1H), 1.23 (t, J=7.1 Hz, 3H).
13C NMR (75 MHz) 8 207.3, 173.1, 137.6, 137.0, 136.7, 134.3, 132.9, 131.0,

130.4, 129.32, 129.30, 129.0, 126.9, 126.8, 61.7, 55.0, 46.0, 42.2, 26.4, 22.1, 14.3.

FTIR (thin film) 3059, 3023, 1980, 2934, 1723, 1622, 1575, 1493, 1449 cm-1.

LCMS calc. for C23H220 3 [M+1] 347.2, found 347.1.

EtO2C H .
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Eq 3.10. The general procedure was followed. Ynone (130 mg, 0.400 mmol),

P(n-Bu) 3 (20 tIL, 0.080 mmol). Purification by flash chromatography (5-25% Et2O in

hexanes) furnished the product (93 mg, 72%) as a pale-yellow oil.

Second run: Ynone (130 mg, 0.400 mmol), P(n-Bu) 3 (20 VIL, 0.080 mmol).

Product: 98.7 mg, 76%.

1H NMR (300 MHz) 8 7.63-7.55 (m, 3H), 7.48-7.41 (m, 3H), 5.77 (ddt, J=17.1

Hz, J=10.1 Hz, J=7.0 Hz, 1H), 5.09-4.99 (m, 2H), 4.24-4.06 (m, 2H), 3.91 (broad, 1H),

3.09 (m, 1H), 2.48 (t, J=9.2 Hz, 1H), 2.43-2.34 (m, 1H), 2.22-2.01 (m, 2H), 1.90-1.77 (m,

2H), 1.49-1.25 (m, 2H), 1.20 (t, J=7.2 Hz, 3H).
13C NMR (75 MHz) 8 210.1, 173.2, 137.4, 136.6, 134.5, 133.1, 131.1, 130.4,

129.7, 129.1, 128.7, 116.6, 61.4, 51.3, 50.0, 49.0, 45.9, 37.8, 32.2, 27.8, 14.3.

FTIR (thin film) 3073, 2956, 1716, 1622, 1494, 1448, 1367, 1255, 1159, 1098,

1030, 993, 921 cm .

LC-MS calc. for C21H2403 [M+1] 325.2, found, 325.1.

Determination by NMR of the stereochemistry of the product. The protons were

assigned on the basis of a gCOSY experiment.

Stereochemistry of the allyl group: There is a NOESY cross peak between H8 and

H9. The relative volume of the cross peaks (HS,H9):(H8,H7) is 781:432, which indicates

that there is direct transfer from H8 to H9. H7 is an apparent triplet, indicating that JH7H1 H

JH H6, which is consistent with the proposed structure.

Olefin geometry: There are NOESY cross peaks between H8 and H14. The

gHMBC relative cross peak volume for H13 ,C':H13 ,C2 is 3.7:4.4, so H13 is 1800 from C2

and 00 from C'.
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The NMR spectra for all other [3.3.0] systems are similar with regard to chemical

shifts and splitting patterns, and the structures are therefore assigned by analogy with the

above.

IV. Derivatizations

HOSH

Ph/
EtO2C H

Eq 3.11. CeC13 (64 mg, 0.26 mmol) was added to a stirred solution of enone (49

mg, 0.17 mmol) in MeOH (3.5 mL) under argon. This solution was stirred for 10 min at

room temperature, and then it was cooled to -10 oC. Next, a solution of NaBH4 (7.6 mg,

0.21 mmol) in MeOH (1.0 mL) was added dropwise. The resulting mixture was stirred at

-10 'C for 20 min, and then it was warmed to room temperature and stirred for an

additional hour. The reaction was quenched with H20 (5 mL), and the mixture was

extracted with Et20 (3x10 mL). The combined organic layers were washed with brine,

dried over MgSO 4, filtered, and concentrated. The crude material was purified by flash

chromatography (10-40% EtOAc in hexanes), which provided 44.5 mg (90%) of a clear,

colorless oil.

Second run: CeC13 (68 mg, 0.28 mmol), enone (52 mg, 0.28 mmol), NaBH4 (8.2

mg, 0.22 mmol). Product: 47.1 mg (89%).

1H NMR (300 MHz) 8 7.37-7.23 (m, 5H), 6.62 (m, 1H), 5.02 (d, J=7.1 Hz, 1H),

4.25-4.08 (m, 2H), 3.29 (s, 1H), 2.77-2.66 (m, 2H), 2.06 (broad, 1H), 1.91 (m, 1H), 1.59

(m, 1H), 1.49-1.40 (m, 3H), 1.32 (m, 1H), 1.26 (t, J=7.1 Hz, 3H).
13C NMR (75 MHz) 6 174.5, 143.1, 136.8, 128.8, 128.5, 127.1, 123.7, 76.1, 61.2,

52.0, 45.3, 45.2, 35.4, 26.1, 25.7, 14.4.

FTIR (thin film) 3439 (broad), 2952, 2867, 1715, 1599, 1494, 1446, 1368, 1320,

1259, 1222, 1142, 1029, 921 cm-'.

LC-MS calc. for C1 8H220 3 [M+Na] 309.1, found 309.1.
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MeO"

Eq. 3.12. The enone (0.043 g, 0.118 mmol) was added to a flask as a solution in

MeOH (1.5 mL) containing Pd/C (degussa type) (0.005 g, 5% weight on carbon). The

flask was purged with a balloon of H2 and then a fresh balloon was attached and the

mixture was stirred vigorously for 3 h at room temperature. The mixture was then

filtered through silica gel with Et20 washings (60 mL) and concentrated to yield 41 mg

(95%) of a clear oil which was determined to be a 7:1 mixture of diastereomers by 'H

NMR analysis. A pure sample of the major isomer could be obtained by column

chromatography (5-30% Et20 in hexanes).

Second run: Enone (0.039 g, 0.107 mmol) and Pd/C (0.005 g). 0.038 g product,

97%, 8:1 d.r.

'H NMR (500 MHz, C6D6) 8 7.52-7.50 (m, 2H), 7.45 (d, J=8.9 Hz, 1H), 7.33 (dd,

J=8.5 Hz, J=1.6 Hz, 1H), 7.12 (obscured by solvent peak, 1H), 6.86 (d, J=2.3 Hz, 1H),

3.71-3.58 (m, 2H), 3.33 (s, 3H), 3.24 (dd, J=13.9 Hz, J=5.3 Hz, 1H), 3.07 (m, 1H), 2.95

(dd, J=13.9 Hz, J=6.5 Hz, 1H), 2.52 (m, 1H), 2.37 (m, 1H), 2.17 (dd, J=12.1 Hz, J=8.9

Hz, 1H), 1.80 (m, 1H), 1.45 (dd, J=12.6 Hz, J=6.4 Hz, 1H), 1.35-1.20 (m, 2H), 1.16-1.09

(m, 1H), 0.85 (m, 1H), 0.73 (t, J=7.1 Hz, 3H).
13C NMR (125 MHz, CDC13) 8 218.8, 174.9, 157.5, 134.0, 133.4, 129.2, 129.1,

128.5, 128.0, 127.0, 118.9, 105.8, 61.0, 55.7, 55.5, 51.7, 50.9, 43.5, 31.1, 32.9, 29.4, 25.2,

14.2.

FTIR (thin film) 2954, 2868, 1738, 1732, 1634, 1606, 1506, 1484, 1264,

1227 cm -'.

LC-MS calc. for C23H260 4 [M+Na] 367.1, found 367.0.
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Me.
OTMS

Ph-- H

EtO 2C HH
Eq 3.13. EtMgBr (0.065 mL of a 3.0 M solution in Et20, 0.189 mmol) was added

to a -78 'C solution of HMPA (0.022 mL, 0.126 mmol) and CuBr-SMe 2 (1.3 mg, 0.006

mmol) in THF (0.75 mL). A solution of the enone (Table 3.3, entry 1) (18 mg, 0.063

mmol) and TMSC1 (0.016 mL, 0.126 mmol) in THF (0.75 mL) was added dropwise.

This solution was stirred a -78 TC for 2h, diluted with Et2O, and then quenched with

saturate NH4Cl solution. After warming to room temperature the layers were separated,

and the aqueous was extracted again with Et20. The combined extracts were washed

with brine, dried over MgSO 4, filtered, and concentrated to yield a 18.5 mg of a clear oil

(70%). 1H NMR showed primarily one diastereomer (>10:1).
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F. 1H NMR Spectra of Selected Compounds
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Appendix A. X-ray Crystal Structure Data
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IA... ·1..

Chapter 1. A colorless ether / pentane (1:1) solution of 1 was prepared. Crystals

suitable for X-ray structural analysis were obtained by solvent evaporation.

A colorless block of dimensions 0.41 x 0.29 x 0.19 mm3 was mounted under STP

and transferred to a Bruker AXS/CCD three-circle diffractometer equipped with a cold

stream of N2 gas. An initial unit cell was determined by harvesting reflections I > 20 s(I)

from 45 x 10-s frames of 0.300 o scan data with monochromated Mo Ka radiation (1=

0.71073 A). The cell thus determined was orthorhombic.

A hemisphere of data was then collected using wo scans of 0.300 and 10-s frames.

The raw data frames were integrated using the Bruker program SAINT+ for NT version

6.01. The data that were collected (8734 total reflections, 2926 unique, Rint = 0.0454)

had the following Miller index ranges: -5 to 10 in h, -14 to 14 in k, and -17 to 17 in 1.

No absorption correction was performed. All aspects of the solution and refinement were

handled by SHELXTL NT version 5.10. The structure was solved by direct methods in

the orthorhombic space group P2(1)2(1)2(1), a = 8.1417(5) A; b = 10.8215(6) A; c =

13.4224(8) A; a = 900; f3 = 900; y = 900, and refined using standard difference Fourier

techniques. Final, full-matrix least-squares refinement (2926 data for 140 parameters) on

F2 yielded residuals of R1 and wR2 of 0.0408 and 0.1112 for data I > 2s(I), and 0.0442

and 0.1140, respectively, for all data. During the final refinement, all non-hydrogen

atoms were treated anisotropically. Hydrogen atoms were included in calculated

positions and refined isotropically on a riding model. Residual electron density

amounted to a maximum of 0.202 e/A 3 and a minimum of -0.219 e/A 3 .
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Tables 1-6 provide the full crystallographic data for the X-ray structure.

Table 1. Crystal data and structure refinement for 04075JWm.

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system, space group

Unit cell dimensions

Volume

Z, Calculated density

Absorption coefficient

04075jwm

C13 H16 02

204.26

193(2) K

0.71073 A

Orthorhombic, P2(1)2(1)2(1)

a = 8.1417(5) Aa = 90 '

b=10.8215(6) A = 90

c = 13.4224(8) A y = 90 0

1182.59(12) A3

4, 1.147 Mg/m3

0.076 mm-

F(000) 440

Crystal size 0.41 x 0.29 x 0.19 mm

Theta range for data collection 2.42 to 28.28 o

Limiting indices -5<=h<=10, -14<=k<=14, -17<=1<=17

Reflections collected / unique 8734 / 2926 [R(int) = 0.0454]

Completeness to theta = 28.28 99.9 %

Absorption correction None

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2926 / 0 / 140

Goodness-of-fit on F^2 1.007

Final R indices [I>2sigma(I)] R1 = 0.0408, wR2 = 0.1112

R indices (all data) RI = 0.0442, wR2 = 0.1140

Absolute structure parameter -0.1(10)

Extinction coefficient 0.041(6)

Largest diff. peak and hole 0.202 and -0.219 e.A-3
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Table 2. Atomic coordinates (A2 X 104) and equivalent isotropic displacement parameters

(A2 x 103) for 04075JWm. U(eq) is defined as one third of the trace of the

orthogonalized U' tensor.

x y z U(eq)

0(1)

0(2)

C(1)

C(2)

C(3)

C(4)

C(5)
C(6)

C(7)

C(8)
C(9)

C(10)

C(11)

C(12)

C(13)

1212(2)

3613(1)

2073(2)

2027(2)

3793(2)

2022(2)

696(2)

-1041(2)

843(2)

4224(2)

5092(2)

5585(2)

5223(2)

4328(2)

3826(2)

6343(1)

6696(1)

6985(1)

8258(1)

7904(1)

9269(1)

8396(1)

8250(2)

9628(2)

7726(1)

8644(1)

8500(1)

7420(2)

6497(1)

6647(1)

9649(1)

8833(1)

9145(1)

8668(1)

8313(1)

9470(1)

7856(1)

8291(1)

7301(1)

7237(1)

6745(1)

5764(1)

5266(1)

5735(1)

6718(1)

54(1)

49(1)

39(1)

36(1)

37(1)

49(1)

44(1)

65(1)

69(1)

34(1)

41(1)

50(1)

54(1)

48(1)

39(1)

Table 3. Bond lengths [A] and angles [o] for 04075JWm.

0(1)-C(1)

0(2)-C(1)

0(2)-C(3)

C(1)-C(2)

C(2)-C(4)

C(2)-C(5)

1.1966(17)

1.3585(17)

1.4891(14)

1.5196(16)

1.5347(16)

1.5433(18)
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C(2)-C(3)

C(3)-C(8)
C(5)-C(7)

C(5)-C(6)

C(8)-C(9)

C(8)-C(13)

C(9)-C(10)

C(10)-C(1l1)

C(11)-C(12)

C(12)-C(13)

C(1)-0(2)-C(3)

0(1)-C(1)-0(2)

0(1)-C(1)-C(2)

0(2)-C(1)-C(2)

C(1)-C(2)-C(4)

C(1)-C(2)-C(5)

C(4)-C(2)-C(5)

C(1)-C(2)-C(3)

C(4)-C(2)-C(3)

C(5)-C(2)-C(3)

0(2)-C(3)-C(8)

0(2)-C(3)-C(2)

C(8)-C(3)-C(2)

C(7)-C(5)-C(6)

C(7)-C(5)-C(2)

C(6)-C(5)-C(2)

C(9)-C(8)-C(13)

C(9)-C(8)-C(3)

C(13)-C(8)-C(3)

C(10)-C(9)-C(8)

C(11)-C(10)-C(9)

1.5626(18)

1.4991(17)

1.532(2)

1.538(2)

1.3863(18)

1.3979(16)

1.3859(19)

1.378(2)

1.388(2)

1.3896(19)

91.91(9)

125.54(12)

138.62(14)

95.83(10)

110.51(9)

113.74(11)

115.10(11)

83.31(9)

113.01(11)

117.05(10)

111.25(9)

88.95(9)

122.73(10)

110.21(13)

111.88(13)

111.58(11)

118.68(11)

119.06(11)

122.23(11)

121.28(12)

119.62(13)
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C(10)-C(11)-C(12)

C(13)-C(12)-C(l 1)

C(12)-C(13)-C(8)

120.19(13)

120.06(12)

120.14(12)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A2 x 103) for 04075JWm.

The anisotropic displacement factor exponent takes the form:

-2 piA2 [ hA2 a*A2 U11 + ...+ 2 hk a* b* U12 ]

Ull U22 U33 U23 U13 U12

0(1)

0(2)

C(1)

C(2)

C(3)

C(4)

C(5)
C(6)

C(7)

C(8)
C(9)

C(10)
C(11)

C(12)

C(13)

72(1)

58(1)

51(1)

43(1)

40(1)

61(1)

43(1)

43(1)

75(1)

33(1)

41(1)

49(1)

57(1)

53(1)

40(1)

45(1)

46(1)

36(1)

32(1)

35(1)

39(1)

52(1)

91(1)

71(1)

33(1)

36(1)

50(1)

65(1)

42(1)

32(1)

45(1)

43(1)

31(1)

32(1)

36(1)

46(1)

37(1)

61(1)

61(1)

37(1)

47(1)

50(1)

39(1)

49(1)

46(1)

10(1)

12(1)

2(1)

3(1)

1(1)

-8(1)

4(1)

4(1)

28(1)

-2(1)

-3(1)

7(1)

-6(1)

-14(1)

-2(1)

3(1)

-1(1)

-6(1)

1(1)

-6(1)

7(1)

-1(1)

-1(1)

6(1)

-4(1)

0(1)
9(1)

4(1)

-9(1)

-6(1)
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-10(1)

15(1)

-1(1)

2(1)

2(1)

0(1)

13(1)

16(1)

31(1)

4(1)

-1(1)

1(1)

12(1)

9(1)

4(1)



Table 5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103)

for 04075JWm.

x y z U(eq)

H(3)

H(4A)

H(4B)

H(4C)

H(5)

H(6A)

H(6B)

H(6C)

H(7A)

H(7B)

H(7C)

H(9)

H(10)

H(11)

H(12)

H(13)

4634

949

2234

2879

864

-1288

-1100

-1843

88

1972

562

5354

6170

5586

4059

3211

8429

9286

10072

9093

7718

8956

7485

8217

9632

9734

10307

9387

9142

7308

5761

6014

8653

9800

9159

9962

7360

8723

8680

7747

6732

7063

7753

7088

5436

4599

5385

7037

44

73

73

73

53

97

97

97

103

103

103

49

60

64

58

47

Table 6. Torsion angles [0] for 04075JWm.

C(3)-0(2)-C(1)-O(1)

C(3)-0(2)-C(1)-C(2)

O(1)-C(1)-C(2)-C(4)

0(2)-C(1)-C(2)-C(4)

O(1)-C(1)-C(2)-C(5)

0(2)-C(1)-C(2)-C(5)

-178.90(13)

-0.27(9)

66.5(2)

-111.85(12)

-64.77(19)

116.92(11)
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0(1)-C(1)-C(2)-C(3)

0(2)-C(1)-C(2)-C(3)

C(1)-0(2)-C(3)-C(8)

C(1)-0(2)-C(3)-C(2)

C(1)-C(2)-C(3)-0(2)

C(4)-C(2)-C(3)-0(2)

C(5)-C(2)-C(3)-0(2)

C(1)-C(2)-C(3)-C(8)

C(4)-C(2)-C(3)-C(8)

C(5)-C(2)-C(3)-C(8)

C(1)-C(2)-C(5)-C(7)

C(4)-C(2)-C(5)-C(7)

C(3)-C(2)-C(5)-C(7)

C(1)-C(2)-C(5)-C(6)

C(4)-C(2)-C(5)-C(6)

C(3)-C(2)-C(5)-C(6)

0(2)-C(3)-C(8)-C(9)

C(2)-C(3)-C(8)-C(9)

0(2)-C(3)-C(8)-C(13)

C(2)-C(3)-C(8)-C(13)

C(13)-C(8)-C(9)-C( 10)

C(3)-C(8)-C(9)-C(1 O)

C(8)-C(9)-C(10)-C(11)

C(9)-C(10)-C(11)-C(12)

C(O0)-C(11)-C(12)-C(13)

C( 11)-C(12)-C(13)-C(8)

C(9)-C(8)-C(13)-C(12)

C(3)-C(8)-C(13)-C(12)

178.57(17)

0.26(9)

-124.71(11)

0.26(9)

-0.23(8)

109.24(10)

-113.51(11)

114.55(12)

-135.98(11)

1.27(17)

-172.39(11)

58.67(15)

-77.70(14)

63.61(16)

-65.33(16)

158.30(13)

-153.09(11)

103.82(14)

24.85(16)

-78.25(15)

-0.98(19)

177.03(12)

-0.6(2)

1.8(2)

-1.4(2)

-0.19(19)

1.37(17)

-176.57(12)
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H02C 0

Br
Ph

Chapter 2.1. The [3+2] adduct (77.0 mg, 0.187 mmol) from the reaction

catalyzed by (S)-2 was dissolved in THF (2.0 mL) and treated with 1 N NaOH (1.87 mL,

1.87 mmol). The reaction mixture was heated to 60 OC for 24 h, and then IN HCI (2.0

mL) was added.The mixture was extracted with Et20O (3 x 5 mL), and the combined

extracts were dried over MgSO 4, filtered, and concentrated. The residue was purified by

flashchromatography (0-2% MeOH in CH 2C12), which provided 49.8 mg (70%) of the

carboxylic acid.

Recrystallization by diffusion of pentane into a solution of the acid in CH2C12

provided crystals suitable for X-ray crystallography.

1H NMR (300 MHz) 6 9.80-8.60 (br s, 1H), 7.57 (m, 1H), 7.40 (m, 1H), 7.24 (m,

2H), 7.12 (m, 3H), 6.99-6.91 (m, 2H), 4.03 (t, J=8.8 Hz, 1H), 3.03-2.93 (m, 2H), 2.91 (s,

2H).
13C NMR (75 MHz) 6 208.0, 168.6, 154.6, 149.5, 138.8, 138.0, 135.9, 130.9,

130.3, 129.3, 128.5, 128.2, 127.5, 125.2, 64.5, 54.2, 36.7, 34.1.

[a]20D = +880 (c=0.13, CH 2C12).

FTIR (thin film) 3560-2650 (broad), 1710, 1685, 1626, 1596, 1426, 1318,

1268 cm-1.

HRMS (ESI) calc. for C20H14BrO3 [M-H] 381.0121, found 381.0122.

312



Low-temperature diffraction data were collected on a Siemens Platform three-

circle diffractometer coupled to a Bruker-AXS Apex CCD detector with graphite

monochromated Mo Ka radiation (I = 0.71073A), performingj- and w-scans. Raw data

frames were integrated using the Bruker program SAINT+ for NT version 6.01. All

structures were solved by direct methods using SHELXS and refined against F2 on all

data by full-matrix least squares with SHELXL-97 (Sheldrick, G. M. SHELXL 97,
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Universittit G6ttingen, Gdttingen, Germany, 1997). SADABS absorption correction was

performed. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms

were included in the model at geometrically calculated positions and refined using a

riding model. The isotropic displacement parameters of the hydrogen atoms were fixed to

1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups).

05143:

A colorless plate of dimensions 0.08 x 0.03 x 0.03 mm3 was mounted under STP

and transferred to a Siemens Platform three-circle diffractometer equipped with a cold

stream of N2 gas. The data that were collected (28404 total reflections, 2865 unique, Rint

= 0.0590) had the following Miller index ranges: (- 10 to 10 in h, -10 to 10 in k, and - 39

to 40 in 1). The structure was solved in the monoclinic space group P3(1)21, a =

9.2451(7) A, b = 9.2451(7) A, c = 35.204(6) A, a = 900; b = 900; g = 1200, and refined

using standard difference Fourier techniques. Final, full-matrix least squares refinement

(2865 data for 218 parameters) on F2 yielded residuals of R1 and wR2 of 0.0557 and

0.1378 for data I > 2s(I), and 0.0592 and 0.1393, respectively, for all data. Residual

electron density amounted to a maximum of 0.885 e/A 3 and a minimum of -0.615 e/ A 3
The absolute structure (Flack) parameter for the correct enantiomer is 0.064(19), thus

confirming the absolute stereochemistry.

Table 1. Crystal data and structure refinement for 05143.

Identification code 05143

Empirical formula C2oH14 BrO3

Formula weight 382.22

Temperature 100(2) K

Wavelength 0.71073 A

Crystal system Trigonal

Space group P3(1)21

Unit cell dimensions a = 9.2451(7) A a= 900.

b = 9.2451(7) A b= 900.
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c = 35.204(6) A

2605.8(5) A3

6

Density (calculated)

Absorption coefficient

F(000)

Crystal size

Theta range for data collection

Index ranges

Reflections collected

Independent reflections

Completeness to theta = 24.400

Absorption correction

Max. and min. transmission

Refinement method

Data / restraints / parameters

Goodness-of-fit on F2

Final R indices [I>2sigma(I)]

R indices (all data)

Absolute structure parameter

Largest diff. peak and hole

1.461 Mg/m 3

2.380 rmu 1

1158

0.08 x 0.03 x 0.03 mm 3

2.54 to 24.400.

-10<=h<=10, -10<=k<=10, -39<=1<=40

28404

2865 [R(int) = 0.0590]

99.9 %

Semi-empirical from equivalents

0.9320 and 0.8324

Full-matrix least-squares on F2

2865 / 0 /218

1.216

R1 = 0.0557, wR2 = 0.1378

R1 = 0.0592, wR2 = 0.1393

0.064(19)

0.885 and -0.615 e.A-3

Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters

(A2 x 103) for 05143. U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor.

x y z U(eq)

Br(l)

0(1)

8439(1)

3786(5)

2829(1)

4102(5)

410(1)

-973(1)

50(1)

34(1)
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0(2)

0(3)

C(1)

C(2)

C(3)
C(4)

C(5)

C(6)

C(7)

C(8)
C(9)

C(10)
C(11)

C(12)

C(13)

C(14)

C(15)

C(16)

C(17)

C(18)

C(19)

C(20)

4961(6)

5052(6)

6601(6)

5155(7)

5768(7)

4904(8)

5723(9)

7357(8)

8262(8)

7437(7)

8087(7)

6184(7)

6739(7)

7590(8)

6924(7)

5348(8)

7933(7)

9695(7)

10517(9)

9670(12)

7909(11)

7055(9)

1483(5)

1780(6)

5052(7)

4264(7)

3847(6)

3115(8)

2871(7)

3286(8)

4009(7)

4290(7)

4990(8)

4231(8)

5295(8)

7064(8)

6825(7)

2371(8)

8250(7)

9207(8)

10456(8)

10693(9)

9769(11)

8541(9)

-1343(1)

-1973(1)

-1212(2)

-919(2)

-578(2)

-246(2)

52(2)

5(2)

-327(2)

-620(2)

-1013(2)

-1595(2)

-1882(2)

-1739(2)

-1330(2)

-1629(2)

-1044(2)

-1059(2)

-775(2)

-503(3)

-489(3)

-760(2)

39(1)

47(1)

25(1)

24(1)

22(1)

31(1)

36(2)

35(2)

31(1)

25(1)

25(1)

31(1)

32(1)

36(2)

29(1)

34(1)

32(1)

39(2)

52(2)

65(2)

71(3)

53(2)
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Table 3. Bond lengths [A] and angles [o] for 05143.

Br(1)-C(6) 1.908(6)

O(1)-C(2) 1.213(7)

O(2)-C(14) 1.233(7)

O(3)-C(14) 1.301(7)

C(1)-C(10) 1.499(8)

C(1)-C(2) 1.551(8)

C(1)-C(13) 1.568(8)

C(1)-C(9) 1.568(7)

C(2)-C(3) 1.459(8)

C(3)-C(4) 1.387(8)

C(3)-C(8) 1.392(8)

C(4)-C(5) 1.375(9)

C(5)-C(6) 1.370(10)

C(6)-C(7) 1.396(9)

C(7)-C(8) 1.385(8)

C(8)-C(9) 1.516(8)

C(10)-C(11) 1.324(8)

C(10)-C(14) 1.496(9)

C(11)-C(12) 1.504(9)

C(12)-C(13) 1.536(9)

C(13)-C(15) 1.547(8)

C(15)-C(20) 1.395(10)

C(15)-C(16) 1.413(8)

C(16)-C(17) 1.426(11)

C(17)-C(18) 1.323(12)

C(18)-C(19) 1.412(13)

C(19)-C(20) 1.389(11)

C(10)-C(1)-C(2) 114.6(5)
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C(10)-C(l)-C(13) 99.1(4)

C(2)-C(1)-C(13) 109.6(4)

C(10)-C(1)-C(9) 113.1(5)

C(2)-C(1)-C(9) 104.5(4)

C(13)-C(1)-C(9) 116.4(5)

O(1)-C(2)-C(3) 127.9(5)

O(1)-C(2)-C(1) 123.8(5)

C(3)-C(2)-C(1) 108.2(4)

C(4)-C(3)-C(8) 121.1(5)

C(4)-C(3)-C(2) 128.2(5)

C(8)-C(3)-C(2) 110.8(5)

C(5)-C(4)-C(3) 119.5(6)

C(6)-C(5)-C(4) 118.9(6)

C(5)-C(6)-C(7) 123.2(6)

C(5)-C(6)-Br(1) 118.4(5)

C(7)-C(6)-Br(1) 118.4(5)

C(8)-C(7)-C(6) 117.3(6)

C(7)-C(8)-C(3) 119.9(5)

C(7)-C(8)-C(9) 128.5(5)

C(3)-C(8)-C(9) 111.5(5)

C(8)-C(9)-C(1) 104.8(4)

C(11)-C(10)-C(14) 125.3(6)

C(11)-C(10)-C(1) 113.9(6)

C(14)-C(10)-C(1) 120.6(5)

C(10)-C(11)-C(12) 110.4(5)

C(11)-C(12)-C(13) 101.8(5)

C(12)-C(13)-C(15) 117.4(5)

C(12)-C(13)-C(1) 104.6(5)

C(15)-C(13)-C(1) 115.9(5)

O(2)-C(14)-O(3) 123.3(6)

O(2)-C(14)-C(10) 120.8(5)
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0(3)-C(14)-C(10) 115.9(5)

C(20)-C(15)-C(16) 120.4(6)

C(20)-C(15)-C(13) 118.0(5)

C(16)-C(15)-C(13) 121.6(6)

C(15)-C(16)-C(17) 117.5(7)

C(18)-C(17)-C(16) 121.5(7)

C(17)-C(18)-C(19) 121.6(8)

C(20)-C(19)-C(18) 118.9(8)

C(19)-C(20)-C(15) 120.1(7)

Symmetry transformations used to generate equivalent atoms:
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Table 4. Anisotropic displacement parameters (A2 x 103) for 05143. The anisotropic

displacement factor exponent takes the form: -2p 2 [ h2 a*2 Ull + ... + 2 h k a* b* U12 ]

Ull U22 U33 U2 3 U13 U12

Br(1)

0(1)
0(2)

0(3)
C(1)
C(2)

C(3)
C(4)

C(5)
C(6)

C(7)

C(8)

C(9)

C(10)

C(11)

C(12)

C(13)

C(14)

C(15)

C(16)

C(17)

C(18)

C(19)

C(20)

63(1)

15(2)

53(3)

65(3)

13(3)

13(3)

22(3)

29(3)

52(4)

49(4)

28(3)

23(3)

18(3)

29(3)

18(3)

22(3)

19(3)

36(3)

18(3)

19(3)

27(4)

64(6)

55(5)
35(4)

65(1)

35(2)

32(2)

44(3)

25(3)

14(3)

14(2)

32(3)

33(3)

41(4)

31(3)

19(3)

30(3)

37(3)

46(4)

38(4)

26(3)

44(4)

23(3)

27(3)

22(4)

35(4)

54(5)

34(4)

33(1)

48(3)

29(2)

30(2)

38(3)

37(3)

27(3)

33(3)

31(3)

23(3)

33(3)

35(3)

29(3)

31(3)

32(3)

41(4)

37(3)

24(3)

51(4)

53(4)

83(6)

90(7)

98(7)

83(6)

10(1)

6(2)

-1(2)

-5(2)

4(2)

1(2)

-2(2)

-3(3)

4(3)

-4(3)

-1(3)

-2(2)

2(3)

3(3)

3(3)

15(3)

2(3)

0(3)

14(3)

14(3)

22(4)

-18(4)

-41(5)

-23(4)

-4(1)

1(2)

-2(2)

-4(2)

-1(2)

4(2)

1(2)

0(3)

13(3)

-7(3)

-5(3)

2(3)

0(2)

3(3)

-1(2)

2(3)

-6(3)

0(3)

2(3)

-14(3)

-17(4)

-32(5)

-14(5)

-13(4)

40(1)

11(2)

19(2)

25(3)

9(2)

1(2)

8(2)

17(3)

27(3)

29(3)

14(3)

12(2)

14(3)

19(3)

16(3)

9(3)

8(3)

22(3)

6(2)

-2(3)

-6(3)

20(4)

23(4)

11(3)
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Table 5. Hydrogen coordinates ( x 104) and isotropic displacement parameters

(A2 x 10 3) for 05143.

x y z U(eq)

H(3)

H(4)

H(5)

H(7)

H(9A)

H(9B)

H(11)

H(12A)

H(12B)

H(13)

H(17)

H(18)

H(19)

H(20)

4741

3755

5165

9399

8392

9079

6616

7268

8821

5799

11699

10262

7317

5870

2327

2784

2423

4296

4257

6121

4986

7763

7574

6727

11133

11504

9984

7898

-2107

-224

285

-350

-1154

-995

-2143

-1889

-1743

-1348

-782

-312

-297

-753
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Table 6. Hydrogen bonds for 05143 [A and o].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

O(3)-H(3)...Br(1)#1 0.84 2.94 3.386(4) 115.7

Symmetry transformations used to generate equivalent atoms:

#1 -x+y+1,-x+1,z-1/3

EtO2C 0
Et

Chapter 2.1. Low-temperature diffraction data were collected on a Siemens

Platform three-circle diffractometer coupled to a Bruker-AXS Apex CCD detector with

graphite monochromated Mo Ka radiation (I = 0.71073A), performingj- and w-scans.

Raw data frames were integrated using the Bruker program SAINT+ for NT version 6.01.

All structures were solved by direct methods using SHELXS and refined against F2 on all

data by full-matrix least squares with SHELXL-97 (Sheldrick, G. M. SHELXL 97,

Universittit Gdttingen, Gdttingen, Germany, 1997). SADABS absorption correction was

performed. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms

were included in the model at geometrically calculated positions and refined using a

riding model. The isotropic displacement parameters of the hydrogen atoms were fixed to

1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups).

05195:

A colorless plate of dimensions 0.50 x 0.15 x 0.04 mm3 was mounted under STP

and transferred to a Siemens Platform three-circle diffractometer equipped with a cold

stream of N2 gas. The data that were collected (23224 total reflections, 6799 unique, Rint
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= 0.0323) had the following Miller index ranges: (- 40 to 40 in h, -7 to 7 in k, and - 21 to

21 in 1). The structure was solved in the monoclinic space group C2, a = 31.348(6) A, b =

5.6825(9) A, c = 15.832(3) A, a = 900; b = 115.239(5)0; g = 900, and refined using

standard difference Fourier techniques. Final, full-matrix least squares refinement (6799

data for 318 parameters) on EF yielded residuals of R1 and wR2 of 0.0276 and 0.0614 for

data I > 2s(I), and 0.0317 and 0.0625, respectively, for all data. Residual electron density

amounted to a maximum of 0.637 e/A 3 and a minimum of -0.232 e/ A 3. The absolute

structure (Flack) parameter for the correct enantiomer is 0.008(5), thus confirming the

absolute stereochemistry.
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Table 1. Crystal data and structure refinement for 05195.

Identification code 05195

Empirical formula C30H31BrO4

Formula weight 535.46

Temperature 100(2) K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group C2

Unit cell dimensions a = 31.348(6) A

b = 5.6825(9) A

c = 15.832(3) A

Volume 2551.0(8) A3

Z

Density (calculated)

Absorption coefficient

F(000)

Crystal size

Theta range for data collection

Index ranges

Reflections collected

Independent reflections

Completeness to theta = 29.130

Absorption correction

Max. and min. transmission

Refinement method

Data / restraints / parameters

Goodness-of-fit on F2

Final R indices [I>2sigma(I)]

R indices (all data)

Absolute structure parameter

a= 900.

b= 115.239(5)0.

g = 900.

4

1.394 Mg/m3

1.645 mm 1

1112

0.50 x 0.15 x 0.04 mm3

2.41 to 29.130.

-40<=h<=42, -7<=k<=7, -21<=1<=21

23224

6799 [R(int) = 0.0323]

99.8 %

Semi-empirical from equivalents

0.9371 and 0.4934

Full-matrix least-squares on F2

6799 / 1 / 318

0.984

R1 = 0.0276, wR2 = 0.0614

R1 = 0.0317, wR2 = 0.0625

0.008(5)
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Largest diff. peak and hole

Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters

(A2 x 103) for 05195. U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor.

x y z U(eq)

Br(1)

0(1)

C(1)
0(2)

C(2)

0(3)
C(3)
C(4)

0(4)

C(5)
C(6)

C(7)

C(8)
C(9)

C(10)

C(11)

C(12)

C(13)

C(14)

C(15)

C(16)

C(17)

C(18)

1954(1)

3930(1)

4213(1)

4251(1)

4592(1)

4876(1)

5069(1)

4929(1)

3544(1)

4513(1)

4255(1)

3964(1)

3738(1)

3796(1)

4086(1)

4310(1)

3850(1)

3386(1)

3338(1)

2913(1)

2534(1)

2570(1)

2999(1)

3189(1)

-1961(3)

1985(3)

1363(2)

2646(3)

-721(2)

2780(3)

2974(4)

867(2)

1223(3)

1134(3)

2975(4)

2843(3)

863(3)

-979(3)

-818(3)

129(3)

944(3)

3136(4)

3784(3)

2237(3)

53(3)

-585(3)

1331(1)

1320(1)

1399(1)

3412(1)

2420(1)

3472(1)

2343(1)

1289(1)

-3099(1)

883(1)

-171(1)

-705(1)

-1672(1)

-2139(1)

-1630(1)

-652(1)

1344(1)

1310(1)

1662(1)

1685(1)

1325(1)

956(1)

963(1)

25(1)

22(1)

14(1)

20(1)

15(1)

31(1)

16(1)

16(1)

20(1)

14(1)

14(1)

16(1)

17(1)

17(1)

17(1)

16(1)

15(1)

14(1)

16(1)

18(1)

18(1)

19(1)

17(1)
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C(19)

C(20)

C(21)

C(22)

C(23)

C(24)

C(25)

C(26)

C(27)

C(28)

C(29)

C(30)

4601(1)

4192(1)

3899(1)

5398(1)

5530(1)

3578(1)

3241(1)

2930(1)

2630(1)

2643(1)

2948(1)

3247(1)

887(3)

-249(3)

-2367(3)

4742(3)

4547(3)

-1218(3)

-1025(3)

-2863(3)

-2755(3)

-813(4)

1039(3)

941(3)

3154(1)

4075(1)

3579(1)

2926(1)

3972(1)

-3581(1)
-4604(1)

-5035(1)
-5991(1)

-6507(1)

-6078(1)

-5129(1)

17(1)

23(1)

28(1)

19(1)

26(1)

23(1)

19(1)

23(1)

24(1)

26(1)

26(1)

22(1)
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Table 3. Bond lengths [A] and angles [o] for 05195.

Br(l)-C(16)

O(1)-C(12)

C(1)-C(12)

C(1)-C(5)

C(1)-C(2)

O(2)-C(19)

O(2)-C(20)

C(2)-C(19)

C(2)-C(3)

O(3)-C(19)

C(3)-C(22)

C(3)-C(4)

C(4)-C(5)
O(4)-C(9)

O(4)-C(24)

C(5)-C(6)

C(6)-C(1 1)

C(6)-C(7)

C(7)-C(8)
C(8)-C(9)
C(9)-C(10)

C(10)-C(11)

C(12)-C(13)

C(13)-C(14)

C(13)-C(18)

C(14)-C(15)

C(15)-C(16)

C(16)-C(17)

C(17)-C(18)

1.9029(17)

1.218(2)

1.527(2)

1.549(2)

1.589(2)

1.350(2)

1.463(2)

1.526(2)

1.553(2)

1.209(2)

1.532(2)

1.537(2)

1.545(2)

1.382(2)

1.438(2)

1.514(2)

1.397(2)

1.408(2)

1.389(2)

1.400(2)

1.395(2)

1.404(2)

1.505(2)

1.398(3)

1.399(2)

1.400(2)

1.389(2)

1.396(2)

1.390(2)
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C(20)-C(21)

C(22)-C(23)

C(24)-C(25)

C(25)-C(26)

C(25)-C(30)

C(26)-C(27)

C(27)-C(28)

C(28)-C(29)

C(29)-C(30)

C(12)-C(1)-C(5)

C(12)-C(1)-C(2)

C(5)-C(1)-C(2)

C(19)-0(2)-C(20)

C(19)-C(2)-C(3)

C(19)-C(2)-C(1)

C(3)-C(2)-C(1)

C(22)-C(3)-C(4)

C(22)-C(3)-C(2)

C(4)-C(3)-C(2)

C(3)-C(4)-C(5)

C(9)-0(4)-C(24)

C(6)-C(5)-C(4)

C(6)-C(5)-C(1)

C(4)-C(5)-C(1)

C(11)-C(6)-C(7)

C(11)-C(6)-C(5)

C(7)-C(6)-C(5)

C(8)-C(7)-C(6)

C(7)-C(8)-C(9)

0(4)-C(9)-C(10)

112.52(13)

115.94(13)

104.07(12)

117.31(14)

112.81(13)

112.48(12)

105.06(12)

114.16(14)

114.34(13)

104.42(12)

101.87(13)

116.47(13)

116.15(13)

115.52(13)

101.23(12)

117.51(14)

119.64(14)

122.83(14)

121.12(16)

120.41(16)

124.26(15)

1.514(3)

1.531(2)

1.513(2)

1.394(2)

1.398(2)

1.401(3)

1.384(3)

1.389(3)

1.392(3)
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0(4)-C(9)-C(8)

C(10)-C(9)-C(8)

C(9)-C(10)-C(1 1)

C(6)-C(11 )-C(1 O)

O(1)-C(12)-C(13)

O(1)-C(12)-C(1)

C(13)-C(12)-C(1)

C(14)-C(13)-C(18)

C(14)-C(13)-C(12)

C(18)-C(13)-C(12)

C(13)-C(14)-C(15)

C(16)-C(15)-C(14)

C(15)-C(16)-C(17)

C(15)-C(16)-Br(1)

C(17)-C(16)-Br(1)

C(18)-C(17)-C(16)

C(17)-C(18)-C(13)

O(3)-C(19)-O(2)

O(3)-C(19)-C(2)

O(2)-C(19)-C(2)

0(2)-C(20)-C(21)

C(23)-C(22)-C(3)

O(4)-C(24)-C(25)

C(26)-C(25)-C(30)

C(26)-C(25)-C(24)

C(30)-C(25)-C(24)

C(25)-C(26)-C(27)

C(28)-C(27)-C(26)

C(27)-C(28)-C(29)

C(28)-C(29)-C(30)

C(29)-C(30)-C(25)

115.94(14)

119.77(15)

119.02(15)

122.17(15)

120.62(15)

121.03(15)

118.35(14)

119.21(14)

121.71(14)

118.98(15)

120.67(15)

118.64(16)

121.88(16)

117.98(13)

120.14(13)

118.56(16)

121.00(15)

123.63(16)

126.07(15)

110.30(14)

111.13(14)

113.61(14)

109.40(13)

119.43(16)

119.60(15)

120.94(16)

120.20(17)

119.86(17)

120.20(17)

120.21(17)

120.09(17)

330



Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A2 x 103) for 05195. The anisotropic

displacement factor exponent takes the form: -2p 2 [ h2 a*2 U1 1 + ... + 2 h k a* b* U12 ]

ull U22 U33 U23 U13 U12

Br(l)

0(1)

C(1)
0(2)

C(2)

0(3)
C(3)
C(4)

0(4)

C(5)
C(6)

C(7)

C(8)

C(9)

C(10)

C(l1)

C(12)

C(13)

C(14)

C(15)

C(16)

C(17)

C(18)

16(1)

22(1)

13(1)

21(1)

15(1)

33(1)

15(1)

13(1)

21(1)

14(1)

12(1)

16(1)

17(1)

15(1)

18(1)

13(1)

14(1)

15(1)

15(1)

21(1)

13(1)

15(1)

19(1)

30(1)

16(1)

15(1)

23(1)

16(1)

31(1)

17(1)

18(1)

21(1)

16(1)

16(1)

16(1)

16(1)

20(1)

17(1)

16(1)

18(1)

17(1)

15(1)

17(1)

24(1)

23(1)

17(1)

34(1)

32(1)

15(1)

19(1)

16(1)

36(1)

16(1)

17(1)

14(1)

15(1)

16(1)

19(1)

19(1)

17(1)

17(1)

18(1)

13(1)

12(1)

18(1)

20(1)

19(1)

18(1)

15(1)

8(1)

1(1)

1(1)

0(1)

-1(1)

15(1)

-1(1)

0(1)

-1(1)

1(1)

-1(1)

-2(1)

2(1)

1(1)

-2(1)

1(1)

1(1)

1(1)

1(1)

3(1)

6(1)

2(1)

1(1)

15(1)

16(1)

7(1)

12(1)

7(1)

23(1)

7(1)

7(1)

5(1)

7(1)

7(1)

9(1)

8(1)

7(1)

9(1)

6(1)

6(1)

7(1)

8(1)

12(1)

8(1)

5(1)

7(1)

5(1)

0(1)

1(1)

0(1)

1(1)

12(1)

0(1)

0(1)

3(1)

0(1)

-3(1)

-2(1)

0(1)

-2(1)

0(1)

1(1)

0(1)

1(1)

-1(1)

2(1)

4(1)

-4(1)

-1(1)

331



C(19)

C(20)

C(21)

C(22)

C(23)

C(24)

C(25)

C(26)

C(27)

C(28)

C(29)

C(30)

18(1)
25(1)

35(1)

19(1)

24(1)

29(1)

18(1)

26(1)

20(1)

21(1)

31(1)

21(1)

19(1)

33(1)

30(1)

20(1)

31(1)

22(1)

23(1)

23(1)

29(1)

37(1)

29(1)

23(1)

15(1)

15(1)

21(1)

19(1)

19(1)

17(1)

16(1)

22(1)

23(1)

17(1)

21(1)

22(1)

-1(1)

-2(1)

0(1)

-2(1)

-3(1)

-1(1)

-1(1)

2(1)

-7(1)

0(1)

5(1)

-1(1)

8(1)

12(1)

14(1)

8(1)

6(1)

7(1)

8(1)

13(1)

8(1)

6(1)

13(1)

10(1)

-1(1)

-7(1)

-10(1)

-3(1)

-2(1)

6(1)

4(1)

0(1)

-4(1)

6(1)

3(1)

-1(1)
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Table 5. Hydrogen coordinates ( x 104) and isotropic displacement parameters

(A2 x 10 3) for 05195.

x y z U(eq)

H(1)

H(2)

H(3)
H(4A)

H(4B)

H(5)
H(7)

H(8)

H(10)

H(11)

H(14)

H(15)

H(17)

H(18)

H(20A)

H(20B)

H(21A)

H(21B)

H(21C)

H(22A)

H(22B)

H(23A)

H(23B)

H(23C)

H(24A)

4039

4516

5236

5192

4828

4639

3922

3543

4131

4506

3597

2883

2306

3031

4036

4506

3599

3839

4071

5691

5244

5246

5760

5666

3499

3453

4240

1246

2501

4592

-388

4331

4103

-2323

-2078

4195

5253

-975

-2082

587

-781

-1838

-3338

-3297

4706

6280

4755

5769

2993

-2620

1096

2585

2564

1135

1059

1107

-398

-2019

-1940

-306

1888

1942

706

729

4415

4538

3086

4028

3303

2832

2698

4079

4309

4198

-3305
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H(24B)

H(26)

H(27)

H(28)

H(29)

H(30)

3905

2920

2418

2443

2954

3454

-1399

-4193

-4011

-747

2376

2213

-3516

-4680

-6284

-7157

-6434

-4838
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0

Ns /OMe

Chapter 2.2. Low-temperature diffraction data were collected on a Siemens

Platform three-circle diffractometer coupled to a Bruker-AXS Apex CCD detector with

graphite monochromated Mo Ka radiation (I = 0.71073A), performingj- and w-scans.

Raw data frames were integrated using the Bruker program SAINT+ for NT version 6.01.

All structures were solved by direct methods using SHELXS and refined against F2 on all

data by full-matrix least squares with SHELXL-97 (Sheldrick, G. M. SHELXL 97,

Universitdit Gdttingen, G6ttingen, Germany, 1997). SADABS absorption correction was

performed. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms

were included in the model at geometrically calculated positions and refined using a

riding model. The isotropic displacement parameters of the hydrogen atoms were fixed to

1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups).

07091:

A colorless needle of dimensions 0.40 x 0.35 x 0.30 mm3 was mounted under STP

and transferred to a Siemens Platform three-circle diffractometer equipped with a cold

stream of N2 gas. The data that were collected (27299 total reflections, 6844 unique, Rint

= 0.0219) had the following Miller index ranges: (- 15 to 15 in h, -15 to 15 in k, and - 14

to 15 in 1). The structure was solved in the monoclinic space group P2(1), a = 11.0860(3)

A, b = 11.1996(3) A, c = 11.1086(3) A, a = 900; b = 117.6786(4)0; g = 900, and refined

using standard difference Fourier techniques. Final, full-matrix least squares refinement

(6844 data for 336 parameters) on F2 yielded residuals of R1 and wR2 of 0.0284 and

0.0774 for data I > 2s(I), and 0.0292 and 0.0782, respectively, for all data. Residual

electron density amounted to a maximum of 0.327 e/A 3 and a minimum of -0.236 e/ A 3

The absolute structure (Flack) parameter for the correct enantiomer is 0.00(4), thus

confirming the absolute stereochemistry.
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0(3)
0(4)

0(5)

0(1)
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Table 1. Crystal data and structure refinement for 07091.

Identification code 07091

Empirical formula C30H27NOsS

Formula weight 513.59

Temperature 100(2) K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group P2(1)

Unit cell dimensions a = 11.0860(3) A

b = 11.1996(3) A

c= 11.1086(3) A

Volume 1221.40(6) A3

Density (calculated)

Absorption coefficient

F(000)

Crystal size

Theta range for data collection

Index ranges

Reflections collected

Independent reflections

Completeness to theta = 29.570

Absorption correction

Max. and min. transmission

Refinement method

Data / restraints / parameters

Goodness-of-fit on F2

Final R indices [I>2sigma(I)]

R indices (all data)

Absolute structure parameter

a= 900 .

b= 117.6786(4).

g = 900 .

1.396 Mg/m 3

0.176 mm-1

540

0.40 x 0.35 x 0.30 mm3

2.07 to 29.570.

-15<=h<=15, -15<=k<=15 , -14<=1<=15

27299

6844 [R(int) = 0.0219]

99.9 %

Semi-empirical from equivalents

0.9490 and 0.9329

Full-matrix least-squares on F2

6844 / 1 / 336

1.055

R1 = 0.0284, wR2 = 0.0774

R1 = 0.0292, wR2 = 0.0782

0.00(4)
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Largest diff. peak and hole

Table 2. Atomic coordinates (A2 x 104) and equivalent isotropic displacement

parameters (A2 x 103) for 07091. U(eq) is defined as one third of the trace of the

orthogonalized Uij tensor.

x y z U(eq)

S(1) 8780(1) 379(1) 8437(1) 17(1)

0(1) 8310(1) -747(1) 8682(1) 24(1)

0(2) 10217(1) 630(1) 9055(1) 26(1)

0(3) 5319(1) 3897(1) 9979(1) 24(1)

0(4) 4546(1) 2023(1) 9276(1) 18(1)

0(5) 2761(1) 367(1) 3376(1) 24(1)

N(1) 8129(1) 1404(1) 8997(1) 17(1)

C(1) 8620(1) 2653(1) 9163(1) 20(1)

C(2) 7625(1) 3273(1) 9506(1) 19(1)

C(3) 6602(1) 2557(1) 9342(1) 15(1)

C(4) 6710(1) 1330(1) 8820(1) 15(1)

C(5) 5439(1) 2927(1) 9574(1) 17(1)

C(6) 3295(1) 2297(1) 9338(1) 20(1)

C(7) 2275(1) 2886(1) 8040(1) 17(1)

C(8) 2091(1) 2480(1) 6796(1) 16(1)

C(9) 1089(1) 2992(1) 5570(1) 15(1)

C(10) 829(1) 2549(1) 4274(1) 16(1)

C(11) -169(1) 3042(1) 3105(1) 20(1)

C(12) -936(1) 4030(1) 3173(1) 20(1)

C(13) -697(1) 4483(1) 4408(1) 20(1)

C(14) 298(1) 3966(1) 5640(1) 16(1)

C(15) 511(1) 4374(1) 6934(1) 20(1)

C(16) 1466(1) 3839(1) 8105(1) 20(1)

338

0.327 and -0.236 e.A~-3



C(17)

C(18)

C(19)

C(20)

C(21)

C(22)

C(23)

C(24)

C(25)

C(26)

C(27)

C(28)

C(29)

C(30)

5623(1)

5410(1)

4469(1)

3713(1)

3900(1)

4849(1)

2552(1)

8117(1)

7139(1)

6562(1)

6946(1)

7949(1)

8548(1)

6313(1)

1117(1)

1941(1)

1723(1)

668(1)

-156(1)

71(1)

1190(1)

558(1)

-231(1)

-43(1)

933(1)

1703(1)

1522(1)

1174(1)

Table 3. Bond lengths [A] and angles [0] for 07091.

S(1)-O(1)

S(1)-0(2)

S(1)-N(1)

S(1)-C(24)

0(3)-C(5)

0(4)-C(5)

0(4)-C(6)

0(5)-C(20)

0(5)-C(23)

N(1)-C(1)

N(1)-C(4)

C(1)-C(2)

C(2)-C(3)

1.4380(10)

1.4388(9)

1.6266(10)

1.7595(11)

1.2063(14)

1.3453(14)

1.4534(13)

1.3696(13)

1.4319(18)

1.4808(16)

1.4931(14)

1.4951(16)

1.3304(16)
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7364(1)

6343(1)

4995(1)

4667(1)

5681(1)

7018(1)

2310(1)

6669(1)

5789(1)

4391(1)

3871(1)

4775(1)

6169(1)

2368(1)

14(1)

15(1)

16(1)

18(1)

20(1)

18(1)

29(1)

15(1)

16(1)

16(1)

15(1)

16(1)

17(1)

22(1)



C(3)-C(5)

C(3)-C(4)

C(4)-C(17)

C(6)-C(7)

C(7)-C(8)

C(7)-C(16)

C(8)-C(9)

C(9)-C(10)

C(9)-C(14)

C(10)-C(11)

C(11)-C(12)

C(12)-C(13)

C(13)-C(14)

C(14)-C(15)

C(15)-C(16)

C(17)-C(18)

C(17)-C(22)

C(18)-C(19)

C(19)-C(20)

C(20)-C(21)

C(21)-C(22)

C(24)-C(25)

C(24)-C(29)

C(25)-C(26)

C(26)-C(27)

C(27)-C(28)

C(27)-C(30)

C(28)-C(29)

O(1)-S(1)-O(2)

O(1)-S(1)-N(1)

1.4869(15)

1.5170(15)

1.5217(15)

1.5095(16)

1.3774(15)

1.4171(16)

1.4181(15)

1.4205(15)

1.4237(15)

1.3710(16)

1.4186(17)

1.3683(17)

1.4223(16)

1.4200(16)

1.3761(17)

1.3941(15)

1.3971(15)

1.3926(15)

1.3962(16)

1.3947(17)

1.3882(16)

1.3889(15)

1.3953(15)

1.3941(15)

1.3910(15)

1.3969(15)

1.5048(15)

1.3869(15)

119.93(6)

106.36(5)
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O(2)-S(1)-N(1)

O(1)-S(1)-C(24)

O(2)-S(1)-C(24)

N(1)-S(1)-C(24)

C(5)-O(4)-C(6)

C(20)-O(5)-C(23)

C(1)-N(1)-C(4)

C(1)-N(1)-S(1)

C(4)-N(1)-S(1)

N(1)-C(1)-C(2)

C(3)-C(2)-C(1)

C(2)-C(3)-C(5)

C(2)-C(3)-C(4)

C(5)-C(3)-C(4)

N(1)-C(4)-C(3)

N(1)-C(4)-C(17)

C(3)-C(4)-C(17)

O(3)-C(5)-O(4)

O(3)-C(5)-C(3)

O(4)-C(5)-C(3)

O(4)-C(6)-C(7)

C(8)-C(7)-C(16)

C(8)-C(7)-C(6)

C(16)-C(7)-C(6)

C(7)-C(8)-C(9)

C(8)-C(9)-C(10)

C(8)-C(9)-C(14)

C(10)-C(9)-C(14)

C(11)-C(10)-C(9)

C(10)-C(11)-C(12)

C(13)-C(12)-C(11)

105.62(5)

108.14(5)

107.85(5)

108.49(5)

115.99(9)

117.21(10)

111.89(9)

120.72(8)

122.56(8)

101.41(9)

111.60(10)

124.11(10)

112.59(10)

123.23(10)

99.50(9)

114.48(9)

112.59(9)

125.04(10)

124.76(10)

110.20(9)

110.81(9)

119.90(10)

120.67(10)

119.40(10)

120.93(10)

122.11(10)

119.04(10)

118.84(10)

120.96(11)

120.21(11)

120.07(11)
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C(12)-C(13)-C(14)

C(15)-C(14)-C(13)

C(15)-C(14)-C(9)

C(13)-C(14)-C(9)

C(16)-C(15)-C(14)

C(15)-C(16)-C(7)

C(18)-C(17)-C(22)

C(18)-C(17)-C(4)

C(22)-C(17)-C(4)

C(19)-C(18)-C(17)

C(18)-C(19)-C(20)

0(5)-C(20)-C(21)

0(5)-C(20)-C(19)

C(21)-C(20)-C(19)

C(22)-C(21)-C(20)

C(21)-C(22)-C(17)

C(25)-C(24)-C(29)

C(25)-C(24)-S(1)

C(29)-C(24)-S(1)

C(24)-C(25)-C(26)

C(27)-C(26)-C(25)

C(26)-C(27)-C(28)

C(26)-C(27)-C(30)

C(28)-C(27)-C(30)

C(29)-C(28)-C(27)

C(28)-C(29)-C(24)

121.08(11)

122.20(11)

119.01(10)

118.78(10)

120.65(11)

120.44(10)

118.79(10)

120.80(10)

120.38(10)

121.19(10)

119.22(10)

115.84(10)

123.97(11)

120.19(10)

119.88(11)

120.71(11)

120.79(10)

119.85(8)

119.31(8)

119.44(10)

120.74(10)

118.75(10)

121.76(10)

119.48(10)

121.39(10)

118.84(10)

Symmetry transformations used to generate equivalent atoms:
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Table 4. Anisotropic displacement parameters (A2x 103)for 07091. The anisotropic

displacement factor exponent takes the form: -2p2 [ h2a* 2U11 + ... + 2 h k a* b* U12

ull U22 U33 U23 U13 U12

S(1)

0(1)

0(2)

0(3)

0(4)

0(5)

N(1)

C(1)

C(2)

C(3)

C(4)

C(5)
C(6)

C(7)

C(8)
C(9)

C(10)

C(11)

C(12)

C(13)

C(14)

C(15)

C(16)

C(17)

C(18)

C(19)

17(1)

33(1)

16(1)

26(1)

15(1)

20(1)

14(1)

18(1)

19(1)

16(1)

14(1)

17(1)

17(1)

13(1)

14(1)

13(1)

16(1)

19(1)

19(1)

18(1)

15(1)

19(1)

18(1)

14(1)

15(1)

16(1)

23(1)

23(1)

42(1)

23(1)

22(1)

30(1)

21(1)

25(1)

22(1)

18(1)

17(1)

20(1)

30(1)

21(1)

19(1)

17(1)

20(1)

24(1)

21(1)

16(1)

16(1)

19(1)

24(1)

16(1)

15(1)

18(1)

11(1)

19(1)

15(1)

24(1)

15(1)

16(1)

15(1)

17(1)

15(1)

10(1)

13(1)

11(1)

14(1)

15(1)

16(1)

15(1)

15(1)

16(1)

19(1)

24(1)

18(1)

21(1)

18(1)

12(1)

14(1)

13(1)

3(1)

7(1)

0(1)

-4(1)

0(1)

-7(1)

-2(1)

-4(1)

-3(1)

-1(1)

1(1)

2(1)

1(1)

-2(1)

-1(1)

-1(1)

-1(1)

1(1)

6(1)

3(1)

-1(1)

-4(1)

-7(1)

-1(1)

-1(1)

1(1)

5(1)

14(1)

4(1)

12(1)

6(1)

3(1)

6(1)

8(1)

7(1)

4(1)

6(1)

5(1)

8(1)

6(1)

7(1)

7(1)

8(1)

9(1)

7(1)

9(1)

7(1)

8(1)
8(1)
6(1)

5(1)

5(1)

7(1)

10(1)

8(1)

2(1)

1(1)

-2(1)

2(1)

-3(1)

-1(1)

2(1)

2(1)

3(1)

1(1)

-3(1)

-1(1)

-3(1)

-2(1)

-2(1)

0(1)
1(1)

-2(1)

0(1)

-3(1)

1(1)

1(1)

2(1)
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C(20) 13(1) 23(1)

C(21)

C(22)

C(23)

C(24)

C(25)

C(26)

C(27)

C(28)

C(29)

C(30)

18(1)

18(1)

25(1)

14(1)

19(1)

17(1)

15(1)

16(1)

14(1)

23(1)

19(1)

17(1)

43(1)

17(1)

14(1)

16(1)

19(1)

18(1)

21(1)

28(1)

23(1)

18(1)

14(1)

12(1)

17(1)

14(1)

12(1)

16(1)

15(1)

11(1)

-4(1)

0(1)

-3(1)

2(1)

2(1)

-2(1)

1(1)

1(1)

-2(1)

1(1)

10(1)

9(1)

3(1)

6(1)

9(1)

6(1)

6(1)

8(1)

6(1)

5(1)

15(1) -5(1) 4(1)

Table 5. Hydrogen coordinates ( x 104) and isotropic displacement parameters

(A2 x 103) for 07091.

x y z U(eq)

H(1A)

H(1B)

H(2)

H(4)

H(6A)

H(6B)

H(8)

H(10)

H(11)

H(12)

H(13)

H(15)

H(16)

H(18)

8580

9563

7712

6655

3499

2900

2643

1354

-347

-1616

-1204

-12

1585

5915

2967

2725

4078

699

2836

1552

1847

1902

2720

4377

5153

5023

4110

2665

8312

9908

9804

9429

10115

9484

6758

4216

2247

2360

4443

6992

8964

6572
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1(1)

-3(1)

-1(1)

4(1)

5(1)

3(1)

0(1)

3(1)

-1(1)

-1(1)

1(1)



H(19)

H(21)

H(22)

H(23A)

H(23B)

H(23C)

H(25)

H(26)

H(28)

H(29)

H(30A)

H(30B)

H(30C)

4343

3379

4973

2269

1842

3403

6864

5900

8226

9239

5753

7032

5740

2286

-870

-492

1964

882

1286

-894

-586

2364

2044

489

1301

1889

4307

5456

7706

2504

1444

2253

6137

3786

4428

6773

1869

2104

2153
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