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Abstract
In the system being developed for accessing lexical items from the speech signal,
an initial step is to identify landmarks which indicate the presence of vowel, glide,
and consonant segments. This thesis addresses the problem of identifying the glide
landmarks. The acoustic properties measured to locate glide landmarks are based on
a model of glide production. This model states that a tight constriction is formed
within the vocal tract, and this narrowing causes the energy in the output speech
signal to be attenuated [Bickley and Stevens, 1986). This tight constriction causes
the RMS amplitude to decrease, in addition to Fl values being very low and F2 values
being either extremely high (for /j/) or extremely low (for /w I).

The acoustic properties measured include RMS amplitude, formant frequencies,
and the transitions of these properties into and out of the glide. Previous work has
located abrupt consonantal landmarks [Liu, 1995]. Further, one can expect that a
reasonably error-free method can be developed for locating vowels within the speech
stream. Given this information, the algorithm devised in this thesis determines
whether or not a glide occurs between a consonant landmark and the following vowel
by determining if the acoustic properties listed above fall into a certain range. In
particular, one obtains means and covariances of glides and non-glides for the given
acoustic properties from a training set, and performs hypothesis testing to determine
if a given measurement in the test set is a glide or not. The thesis discusses the
algorithm and the results, along with the effects of context and variability in speech
and how it affects the recognition process. The overall recognition results were 88.0%
for glide detection, and 90.6% for non-glide detection.

Thesis Supervisor: Kenneth Noble Stevens
Title: LeBel Professor of Electrical Engineering
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Chapter 1

Introd uction

In the process of speech recognition, a computer must recognize and ultimately in-

terpret the utterances of human beings, much in the way two human beings interpret

and understand each other. Two major techniques of speech recognition can be found

in current research. In one method, a speaker trains a recognition device by speak-

ing sample utterances into the machine before the actual recognition process begins.

This method usually relies on the idea of a hidden Markov model or a neural net-

work. The computer tries to "learn" the particular speaker and his/her variabilities

through the training data, and then uses this information to help" understand" what

the speaker says. Another major technique in speech recognition is the knowledge-

based approach. Here, algorithms are developed based on the knowledge of the speech

perception process and the acoustics and physiological aspects of speech production.

From this information, one tries to model the production of each sound. Then, during

the process of speech recognition, the computer tries to match every produced sound

to one particular model from all of the possible models involved in speech production

for the particular language of interest. Many speech recognition systems incorporate

aspects of both techniques.

The thesis research discussed here focuses on the approach of knowledge-based

analyses. A knowledge-based approach seeks to model what a human being sees and

hears. In the area of speech recognition, this is accomplished by determining how

differences in vocal tract shape and how glottal excitations influence the acoustic
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waveforms measured in sound recordings. In particular, different phonemes, char-

acteristic sounds in a language, each have unique features that can be identified,

although the acoustic properties depend to some extent on the context. These prop-

erties are present in the sound in the vicinity of landmarks that are located at a

release or closure for consonants and at a minimum or maximum vocal tract opening

for glides and vowels. Upon completion of this process, a labeled waveform can be

translated into a meaningful sequence of words by accessing a lexicon.

In this thesis, a knowledge-based approach towards detecting and recognizing the

glides (/w / and /j/) is developed. Detecting glides is one aspect of a complete lexical

access project, which already has in place a procedure for locating landmarks for

abrupt consonants [Liu, 1995]. Finding glides is somewhat difficult because, unlike

abrupt consonants which have sudden changes in energy, movement into and out of a

glide is generally gradual, so measured acoustic parameters have smooth transitions

into and out of the glide.

Previous work in this area of recognition was performed by Sharlene Liu [1995]

and Carol Espy-Wilson [1987]. Liu's work focused on finding abrupt consonant land-

marks, and her findings are used to aid in the recognition of glides discussed in this

thesis. Espy- Wilson's work focuses on recognizing semivowels, both glides and liq-

uids, in a controlled environment using a carrier phrase, and distinguishing between

the different semivowels.

Additional goals of this thesis are to examine variabilities between individual glides

and within phonemes and to devise models that might account for such interspeaker

and intraspeaker differences. Recognition was performed on both isolated and con-

tinuous speech. A subset of the continuous speech was used for training the data,

while the remainder of the speech served as the test set.

Chapter two provides a background about glides from previous work performed

by others, discusses landmark detection, and introduces the classification method

of hypothesis testing, the method used in this thesis for glide recognition. Chapter

three discusses the procedures followed to create the corpus of data, generate the

waveforms, and extract the features from the data. Chapter four summarizes the
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different preliminary methods considered, and reasons why these ideas did not work

or were not pursued further. Chapter five provides an in-depth discussion of the

results obtained from the VCV database, and explains how different vowel contexts

affect recognition. Chapter six discusses the final results obtained both in the VCV

and sentences databases. Finally, the seventh chapter gives a summary and provides

suggestions for future work.
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Chapter 2

Background

Glides have been looked at in the past by several authors, including [Lehiste and Pe-

terson, 1961], [Bickley and Stevens, 1986], [Espy-Wilson, 1987], [Arman and Stevens,

1993], and [Stevens, forthcoming]. The glide detection algorithm being developed

here fits into a larger lexical access project, which has the ultimate goal of accessing

words in a lexicon by making appropriate measurements to identify the distinctive

features. As part of this project, Liu [1995] completed a thesis which discussed the

procedure for finding acoustic landmarks of abrupt consonants. Discussion of this

past work on glides and landmark detection is summarized in this chapter.

2.1 Characteristics of Glides

Glides belong to the class of sonorant consonants. This class of consonants includes

nasals and liquids, as well as glides. Sonorants usually have steady, periodic voicing

at the glottis. They usually have extreme formant values and they often have extra

pole/zero pairs in the vocal tract transfer function. The extra pole/zero pair, as seen

in a nasal, comes from the fact that the nasal cavity is open, leading to a new passage

in the vocal tract. Stevens [forthcoming] goes into greater detail with regard to the

characteristics of glides.

Glides are members of the class of segments known as semivowels. This name is

given to glides because, like vowels, all of the formants are excited in the vocal tract.
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In essence, the vocal tract is in a vowel-like configuration, with the Iw I like the luw I,
and the hi like the liy I, except having a tighter constriction [Arman and Stevens,

1993]. Furthermore, glides are always in onset position in a syllable, and hence are

followed by vowels. Glides, as their name may indicate, provide a smooth transition

of formant frequencies and amplitudes into the following vowel.

2.1.1 Amplitude and Spectrum Shape for Glides

Glides are generally voiced, although cases occasionally occur where they are pro-

duced without glottal vibration. This circumstance can occur only when the segment

preceding the glide is an unvoiced consonant. The word twin is an example of such an

exception. The overall amplitude in a glide is usually decreased relative to the am-

plitude in the following vowel. Bickley and Stevens [1986] and Stevens [forthcoming]

report that the amplitude of the first formant peak at the most constricted point in

a glide is at least 2-3 dB lower than that of vowels, with decreases becoming as large

as 7-8 dB when the adjacent vowels are low vowels having high Fl. The amplitude of

the second formant peak is also lower by about 9 dB than the amplitude that would

be observed with a vowel having about the same formant frequencies. These observa-

tions suggest that vocal-cord vibrations can be altered slightly by a tight constriction,

with the effect being a change in the amplitude, shape, and area of the glottal pulses.

2.1.2 Formant Frequencies

The formant locations for glides are at "extreme" values. FI drops to about 260 Hz

on average for males, and a little higher for females. This value can be predicted

from the Helmholtz resonance corrected for the mass of the walls. For I j I, the back

of the vocal tract is a volume which is terminated with a narrow opening in the oral

cavity. Thus, it can be approximated by a Helmholtz resonator. For Iw I, the narrow

opening is at the lips with another constriction formed by the raised tongue body.

This lowest natural frequency is computed using the following formula:
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(2.1)

where FIe is the natural frequency due to the mass of the vocal tract walls and the

compliance of the air volume and FI' is the Helmholtz resonance. For hi, the volume

behind the narrow constriction is about 50 em3, with the length of the constriction

approximately 3 em, and the cross-sectional area around 0.17 em2• The speed of
,

sound in the vocal tract is approximately 35400 ~:. These values yield an FI of

about 190 Hz. The natural frequency from the wall effects (mass and compliance)

result in an FIe of about 180 Hz, leading to a value of 262 Hz for Fl' The presence

of the wall effects reduces the variability of FI in glides due to anatomical differences

in vocal tract length and variation in the size of the constriction.

F2, likewise, is at an extreme. For Iw I, F2 is in an extremely low position. This

is due to the secondary constriction caused by the raising of the tongue body in the

velar region. The decrease in area near the middle of the vocal tract, a region where

the volume velocity is a maximum for F2 frequencies, causes a decrease in the formant

frequency. This effect can be shown acoustically through an analysis of perturbation

theory.

On the other hand, F2 for hi is at an extremely high position. This can be

attributed to the raising of the tongue blade in the palate, a region in the vocal tract

where the volume velocity is a minimum for F2 frequencies. Hence, with perturbation

theory, one would expect an increase in F2•

Espy- Wilson [1987] made measurements of glide formant locations in word-initial

(#GV), prevocalic (CGV), and intervocalic (VGV) position, where # = word bound-

ary, G = glide, V = vowel, and C = consonant. Although the measured values for

FI were not as low as the theoretical value of 260 Hz, they were still low. Table 2.1

shows the results obtained by Espy-Wilson. These values also show the high F2 for

Ijl and the low F2 for Iw j.

The formant frequencies at the point of maximum constriction for glides are ex-
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Glide FI (Hz) F2 (Hz)
Word-initial
/w/ 347 739
h/ 281 2190
Prevocalic
/w/ 351 793
/j/ 305 2190
Intervocalic
/w/ 349 771
/j/ 361 2270

Table 2.1: Formant values for glides as measured by Espy-Wilson [1987].

pected to depend on the gender of the speaker, much like the formant frequencies for

vowels depend on gender. These differences are a consequence of a difference in av-

erage vocal-tract length for males and females, which is about 17%. However, based

on data for the vowels /iy / and /uw /, it is expected that gender differences in FI for

/w / and /j/ and in F2 for /w / are much smaller than 17%, whereas differences in F2

for /j/ might be as large as 20% [Peterson and Barney, 1952; Fant, 1959].

2.1.3 Rates of Formant Movements for Glides and Non-

Glides

Previous work has shown that formant transition times for stops are much shorter

than those for glides. This result, and its corresponding relation to the transition

times for RMS amplitude, will prove useful within this thesis. Following is a summary

of past studies on these transition times.

Comparison of Initial Transition Times between Stops and Glides

Miller and Baer [1983] analyzed the durations of initial formant transitions for both

/b / and /w / to show that this acoustic property could differentiate these two conso-

nants. Miller and Baer considered two variables in their analysis: the duration of the

FI transition and the length of the syllable (/ba/ or /wa/) containing this transition.

The data showed that while the transition time for /b / in /ba/ stayed more or less

constant at about 40 milliseconds with increasing syllable duration, the transition
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time for /w / in /wa/ increased linearly with syllable duration. The transition du-

ration for /wa/ varied from about 50 to 150 milliseconds. Consequently, for longer

syllable durations, larger separation of transition times could be seen between /b/

and /w f. In fact, for all syllable durations studied (from 100 to 700 milliseconds),

the mean formant transition time for /w / was longer than that for /bf. However, for

syllable durations less than 250 milliseconds, some overlap of data was found.

Thus, from Miller and Baer, one can conclude that longer formant transition

durations are expected for the glide /w/ than for the stop /b/. However, since some

overlap exists in these measurements for quickly spoken syllables, one can expect

occasional errors when using this as an absolute rule.

Duration of Initial Transitions from Consonant into Vowel

Lehiste and Peterson [1961] discussed formant movements related to transitions,

glides, and diphthongs in their paper. In their work, they reported measurements

of the duration of formant transitions and rates of change of formant movements.

Lehiste and Peterson found that labials have shorter initial transitions than lingual

consonants. The shorter transitions for labials are presumably a consequence of the

fact that in labials, the tongue body is free to prepare itself for the position of the

following vowel. Consequently, only a small tongue body movement is required, re-

sulting in a shorter transition time. The importance of this result is that labials have

much shorter durations than lingual consonants, glides included. Mack and Blumstein

[1983] show yet further support in the following section.

More Transition Contrasts between the Stop and the Glide

The duration of the FI transition for /b/ and /w / with different following vowels was

also measured by Mack and Blumstein [1983]. Their data also showed significantly

longer FI transitions for the glide. Mack and Blumstein then hypothesized that,

based on the nature of the articulatory configuration for stops and glides, one would

expect similar rates of change for energy measurements. Their experiments confirmed

this, demonstrating that the rate of change of energy at a stop consonant release was
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significantly greater than the rate of change for a glide.

Formant Transitions and their Effect on Amplitude Transitions

As briefly discussed in Mack and Blumstein above, stops have much faster rates of

change of energy than glides. From an articulatory standpoint, one can observe that

the release of a closure in the vocal tract for stops leads to an abrupt increase in

transglottal pressure, which causes a sudden increase in the RMS amplitude of the

signal. In glides, no such pressure build-up occurs. Consequently, such a sudden

change would not be expected to occur.

In relation to formant frequencies, a sudden increase in Fl with all other factors

held constant will cause a sudden increase in the overall RMS amplitude of the signal

because the amplitude of the formant peak in the transfer function is proportional

to the either the frequency or the square of the frequency of the formant at low

frequencies. This is true because the amplitude of the first formant component of

the vocal tract transfer function is equal to the first formant frequency divided by

its bandwidth. The spectrum amplitude of the glottal waveform at low frequencies is

approximately constant or decreases only as the inverse of the frequency. In addition,

the amplitude of the radiation characteristic of the signal from the mouth opening

is proportional to the frequency of the signal. Thus, the observed amplitude of Fl

in the speech signal, which is determined by a cascade of the vocal tract transfer

function with the glottal waveform and the radiation characteristic (a product of the

amplitudes in the frequency domain), will be proportional to Fl or to the square of

Fl divided by the bandwidth. For the case being discussed here, the bandwidth is

assumed to remain constant. Consequently, the overall energy, which is due in large

part to the low frequency energy, will increase when Fl increases.

2.2 Previous Work on Lexical Access

Previous studies in the Speech Communication Group have focused on automatic

semivowel detection in a controlled environment, and landmark detection of abrupt
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consonants in continuous speech. Results found from such studies are discussed below.

2.2.1 Semivowel Detection

Espy- Wilson [1987] used an acoustic-phonetic approach to arrive at the recognition

of semi vowels in the controlled environment of a carrier phrase ("- pa"), where the

- is a polysyllabic word containing a semivowel. The "pa" at the end reduces the

possibility of glottalization that often occurs in utterance-final position. Recognition

was limited to voiced and nonsyllabic semivowels. The work found in the following

chapters furthers Espy-Wilson's work by performing glide recognition within contin-

uous speech for both voiced and unvoiced glides, and for some glides within words

in utterance-final position. The analysis of Espy-Wilson involved (1) specifying the

features necessary to distinguish the semivowels, (2) finding ways to account for in-

traspeaker and interspeaker variations, (3) extracting these features from the speech

waveform, and (4) combining the acoustic properties to create an algorithm for recog-

nition.

The detection of semivowels required finding minima and maxima in the F2 and

F3 formant tracks. After these landmarks were located, different acoustic properties

were considered to see if this region was possibly a glide or a liquid. A landmark

having a low FI, a low F2, and gradual onset time into the vowel (the onset time was

defined as the time between the maximum change of energy going into the vowel and

the energy peak within the vowel) was classified as a /w /. One having low FI, high

F2, and gradual onset time into the vowel was determined to be a /j/.
In the end, Espy- Wilson found a range of recognition rates depending on the

context. For / w/, she found recognition ranges from 21% (intervocalic) to 80% (word-

initial); for /j/, between 78.5% and 93.7%. Overall, the recognition rate for semivowels

including both liquids and glides ranged between 87% and 95%.
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Band Frequency Range (kHz)
1 0.0 - 0.4
2 0.8 - 1.5
3 1.2 - 2.0
4 2.0 - 3.5
5 3.5 - 5.0
6 5.0 - 8.0

Table 2.2: Frequency Bands Used by Liu

2.3 Landmark Detection
Liu [1995] completed work on landmark detection of segments with abrupt acoustic
changes. Liu used the Lexical Access from Features (LAFF) database, a database
with few consonant clusters or syllables,the DARPA TIMIT Acoustic-Phonetic Con-
tinuous Speech Corpus, noisy speech (LAFF database corrupted with noise), and tele-
phone speech (from network TIMIT, a database of information similar to TIMIT, but
with the speech transmitted through telephone linesin New England across NYNEX).
In her landmark detection algorithms, Liu separated the spectral signal into six fre-
quency bands. Table 2.2 summarizes these frequency bands. The frequency bands
were chosen so that each band could track the strength of particular formant frequen-
cles.

Next, six different possible labels were appended to the data (+g, -g, +s, -s, +b,
-b). The landmark most useful for the analysis made on glides is the +g landmark.
The g stands for glottis,and a +g landmark indicates the point where strong glottal
vibration, or voicing, begins. These landmarks are found when the rate of change
of band one energy is a maximum. Likewise, the -g landmark (end of voicing) is
determined by maximum negative rates of change of band one energy. The s land-
mark indicates an abrupt sonorant (nasals and /1/). These landmarks are located by
searching for peaks in the rates of change of band energies two through five. Possible
s landmarks must liebetween +g and -g landmarks because of the assumption that
these abrupt sonorants are voiced. The sonorant detector is examined briefly in the
analysis in chapter five. Finally, the b landmark is used to locate bursts. Similar to
the sonorant landmark, the process of locating bursts involves finding extreme rates
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of change in the higher order energy bands (bands three through six). As opposed to

the sonorant landmark, possible regions for bursts must be unvoiced. Thus, a burst

landmark must not lie between a +g and a -g. This landmark detector was successful

in clear speech, having a detection rate of 90%. Insertion rates ranged from 6% to

9%.

2.3.1 Executing the Landmark Detector on Speech

Running the program to obtain landmarks required three steps. First, spectrograms

of the data were generated using sgram of ESPS. The spectrograms were 512-point

FFTs of six millisecond windows, updated every millisecond. Since the sampling rate

was 16 kHz, the FFT size used allowed for a frequency resolution of 32 Hz. One

spectrogram was pre-emphasized with a first difference (1_Z-1), while the other was

not pre-emphasized. Next, a program entitled hpror was executed to create rate of

rise data to be used in the landmark routine. Finally, another program called lm was

used to locate the abrupt landmarks. The C code that was made may be found in

the Appendix of Liu's thesis.

2.4 Hypothesis Testing

The method of hypothesis testing was the method used in this thesis to determine

if a given set of measurements qualified as a glide. Binary hypothesis testing is

appropriate for glide detection because the hypothesis one wants to test is whether

or not a glide is centered at a given point in time (only two possibilities). The means

and covariance matrices used for the analysis were determined from a training set

of data. Following will be a brief explanation based on information obtained from

Willsky et al. [forthcoming] regarding the concept of hypothesis testing. A much

more complete discussion may be found in Willsky et al.

Based on a Bayesian approach, hypothesis testing involves knowing the apriori

probabilities of each of the two different events, along with modeling the probability

density functions of each of the events. Since the exact probabilities of each of the
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two events were not known, it was assumed that the two possibilities (glide versus

non-glide) were equally likely. Normally, this may seem unusual, but in the anal-

ysis given in the following chapters, it is noted that the test for a glide occurs by

taking data starting thirty milliseconds from the point of the onset of voicing. In

cases where the distance between the landmark and the following vowel was less than

thirty milliseconds, the region in question was automatically labeled as a non-glide

section. This is reasonable because the duration from a glide into a vowel is more than

thirty milliseconds, with minimums being only as small as fifty milliseconds in con-

tinuous speech. Thus, only regions where the duration from landmark to vowel was

more than thirty milliseconds were considered in the hypothesis test. The remaining

speech segments in question were modeled to have a 50% chance of being a glide, and

50% chance of being a non-glide. Albeit a rough estimate, setting the two apriori

probabilities equal served as a reasonable assumption which would at the same time

simplify computation. Next, the probability distribution had to be modeled. The

variability of the parameters selected was modeled to be distributed in a Gaussian

probability density function around its mean. This distribution was used as a simpli-

fication for detection without specification of context, and can likely be improved if

specific contexts are considered separately since the measurements will be localized

around different means for different vowels which follow the glides. However, in this

thesis, a general hypothesis test is performed on each new set of measurements with-

out regard to specific context. The covariances of this distribution were determined

by taking the covariance of the sampled data from the training set. Likewise, the

means were the sample means of the training data.

The hypothesis test compares the probability of one hypothesis given the obser-

vation versus that of the other hypothesis. The one which is greater is the one more

likely to be the correct hypothesis. As a result, this hypothesis is taken as the pre-

diction. Stated in the form of equations, with Y being the observation vector, p(x)

being the probability of some event x, Ho being one hypothesis, and HI being the

other,

26



HI is chosen when

p(HI I Y) ~ p(Ho I Y)

Ho is chosen when

p(HI I Y) < p(Ho I Y)

Applying Bayes' Law, which says that

(2.2)

(2.3)

(2.4)

provided that p(a) =1= 0, and the stated assumption that p(Hd = p(Ho) = !, one

obtains

p(Y I Hd Op(Y I Ho) (2.5)

where one would select HI if 0 were ~, else Ho if 0 were <.

In this thesis, HI served as the hypothesis of a set of observations being consistent

with a glide, while Ho is that consistent with a non-glide. The variables involved in

vector Yare RMS maximum slope, RMS amplitude range, FI maximum slope, and

FI frequency range (these measurements will be discussed later). Since the measure-

ments are not independent, a covariance matrix (C) had to be used to represent the

variances in the measurements (and not four independent variances). In addition,

the means of each of the measures had to be determined. The covariance and means

were determined from samples in the training data set. With this information, the

probability density function p(Y I Hi) (where icould be zero or one) was constructed

as follows:

(2.6)

for i=O,l, where my is the sample mean of the observation vector Y, and det(C) is

the determinant of C. This density function was used to compute the probabilities of

each observation for i=O,l, and then classification was made based on the hypothesis

test.
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Chapter 3

Development of Database

Two different databases were used in the thesis, one being isolated vowel-consonant-

vowel utterances, and the other being continuous speech. This chapter discusses the

characteristics of the former and the development of the latter. The two databases

allowed one to compare the characteristics of the glides under different phrasal con-

texts.

3.1 VCV Database

The first major step in the process of developing methods for detecting and recognizing

glides was to find and/or create a database with which to do analysis. An existing

vowel-consonant-vowel (VCV) database was available for use as training data for the

algorithm being developed. The VCV database was good for initial measurements

because it was a well-controlled set of clearly spoken utterances. The VCV database is

a set of vowel-consonant-vowel utterances created within the Speech Communication

Group at MIT. This database has three speakers, two male (DW and KS) and one

female (CB). Each speaker produced all possible combinations of the vowel-consonant-

vowel utterances for the vowels /aa/, /ah/, /eh/, /iy/, fowl, and /uw/ and the

consonants /b/, /ch/, /d/, /dh/, /dj/, Iff, /g/, /h/, /j/, /k/, /1/, /m/, /n/, /ng/,

/p/, /r/, /s/, /sh/, /t/, /th/, /v/, /w/, /z/, and /zhf.

To extract the data from the VCVs, the consonant and the final vowel were hand-
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labeled through listening to the utterances and visually observing the spectrograms.

The final vowelwas labeled at the maximum of RMS amplitude, while the consonant

was labeled at the onset of voicing for the obstruents, and at the appropriate energy

minimum for the sonorants. The region between the consonant and the final vowel

was examined to determine transition rate and ranges, as seen in chapter 5.

After using the VCVs as a training database, another set of speech waveforms

was needed for the testing. To verify the robustness of the algorithm developed, a

database which had more variability and a variety of contexts was desired. Thus, a

set of sentences was created by careful construction. The next section provides details

on how this sentences database was created.

3.2 Sentences Database

The sentences database consisted of forty-two sentences spoken by five native English

speakers. As will be explained at the end of this section, two of the forty sentences had

to be removed. The sentences were created with several goals in mind. A primary

goal was that the sentences had to be rich in glides. Another goal was to design

utterances in which the glides occurred in a variety of different contexts. Words were

found in which glides were followed by a variety of different vowels. A set of words

containing glides followedby a number of followingvowels was developed by referring

to the list of one-syllable words in Moser [1957]. All of the following possible vowel

sounds were sought for words containing glides. After a list of possible words was

created, sentences containing these words were made. Words containing glides were

located at the beginning, in the middle, and at the end of sentences to allow the most

possible variability. Some of the glides were also located before reduced vowels to see

the effects of vowelreduction on detecting glides. In addition, some glides were placed

in intervocalic position, while others were located after consonants. The remainder

were located at the beginning of a new syllable. For glides located at the beginning of

a syllable, some were sentence-initial, while others were in the form of either C#GV

or V#GV. Of the forty sentences eventually used for analysis, twenty had glides in

29



the initial word (fourteen of these glides were the first phoneme in the word, also) and

twenty-three had glides in the last word of the sentence. In total, the forty sentences

had 128 glide occurrences, with one or two less for some speakers because of variability

between different speakers. That is, some speakers did not produce glides in all places

where glides can be produced in some dialects. For example, the word tune can be

pronounced as jtunj or jtjunj. Twelve of the 128 glides were followed by reduced

vowels, while the remainder were followed by full vowels. Table 3.1 shows the list of

sentences in the sentences database. Each utterance was spoken twice by each speaker

(the characteristics of the speakers will be explained in the following section), and

the first repetition was taken, unless a mistake was made, in which case the second

recording was used.

It should be noted that two sentences that were recorded were removed from

the database because of errors in their production. These were the sentences Blow

away your woes, and you will quickly recover, and Will you put another yule on the

fireplace?

3.3 Recording and Labeling Procedures

Five adult, native English speakers were chosen for recording the sentences. Three

subjects were male (ARI, KS, and MJ), while the other two were female (JW and

SSH). None of the speakers had any noticeable accents, and all but one (ARI) had

previous experience in making recordings for data analysis. The four who had expe-

rience were subjects in a Lexical Access from Features (LAFF) database, which was

used extensively by Liu [1995] in her work on lexical access. The recordings were

made in a sound-proof room. Measurements were made of the ambient noise level

inside and outside the sound-proof room with a sound level meter (Quest Electron-

ics). The sound pressure level ('A' scale) in the room was 27 dB. Sentences were

spoken with the microphone about 8 inches away from the mouth of the speaker,

with the omnidirectional microphone at a level a couple of inches above the mouth of

the speaker to avoid the puffs of air which come about when one speaks. The signal
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1 We were away a year ago.
2 You should use your yacht.
3 Be sure to reuse after you use.
4 You went to rewire items in Gwen's yacht.
5 Few twins like pure cubes of sugar.
6 Blow them, and the leaves will flyaway.
7 Ask Gwen to play a tune.
8 The twins dwell in their yacht.
9 Gwen went to rewire the twin's cabins.
10 You will dwell upon the cube problem.
11 We used the yacht a year ago.
12 Blow the horn, and it will playa tune.
13 You will yell if water gets in the yacht.
14 Reuse the yarn first.
15 The young man dwelled upon his woes.
16 We wanted to yell while at the yellow yard in Watertown.
17 Which way to Yellowstone?
18 You will learn if Will walks you through it.
19 Do not dwell on yesterday's whims.
20 The willow tree wimpered in the wind.
21 The youth used a wireless phone on the yacht.
22 Yukon is in Western Canada.
23 This yacht yawed away from its way to Yorktown.
24 Gwen will quickly buy a ball of twine.
25 Swim towards your willow tree.
26 Move to your winter home.
27 Swing at the large, yellow ball with the bat.
28 Weave a sweater with the yarn.
29 Take the wheat to the market.
30 Your car wheel is wobbling.
31 The worm washed away in the water.
32 He yearns to increase his net worth to millions.
33 The wolves yanked apart the wool.
34 Are you going to the yacht race at Yale this year?
35 Egg yolks are yummy.
36 We yawn when we are tired.
37 Without warning, we yelled out to the yacht in the water.
38 The yeast has not yet risen.
39 Many legends of yore involve the city of York.
40 Newborn babies yearn to yell.

Table 3.1: Sentences database (rich in glides).
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to noise ratio (SNR) was found to be around +30 dB using the sound level meter,

'A' scale.

The utterances were low-pass filtered at 7500 Hz and then digitized at a sampling

rate of 16000 Hz. Spectrograms were made for each of the utterances, along with for-

mant tracks created using ESPS [Entropic Signal Processing System, 1992] according

to the algorithm set forth by Talkin [1987]. The spectrograms were individually ana-

lyzed whenever the formant values obtained automatically seemed questionable. The

parameters used for the formant tracker were as follows: 40 msec cos4x window,

frame updates every 2.5 msec, preemphasis using a filter with z-transform (1-0.7z-1),

tracking of four formants under 5000 Hz for females, five for males. The reason

why four formants were tracked for females instead of five comes from the fact that

females have higher formant values than males, so one would expect that only four

formants reside under the 5000 Hz rate. Although the frequency range available was

from 0 to 7500 Hz (based on the low pass filter performed previous to digitizing),

it was determined that formants above 5000 Hz would not be needed in any of the

work performed. Consequently, in an effort to compute just what was necessary, the

formant tracker looked for formants only betwenn 0 and 5000 Hz. This idea, which

was suggested by Johnson [1996] (via personal communication with author), made

the tracking much more accurate.

The vowel locations of the data were then hand transcribed along with the loca-

tions of the glides. A program to locate landmarks, written by Sharlene Liu [1995],

was run on the sentences to find the onsets of voicing (+g landmarks) from conso-

nants into the vowels. The landmarks, along with the vowel locations, were needed

because the final algorithm searched the RMS amplitude in this region for maximum

rates of change and amplitude ranges. The glides were hand labeled so that auto-

matic recognition results could be checked against these results. An example of this

labeling process is shown in Figure 3-1 for the sentence Swim towards your willow tree

spoken by KS. The phonetic transcription of this sentence, as determined by listening

to the sentence, is Is w ih ml It ao r d zllj erllw ih l owl It r iy;' Liu's program

gave voicing (+g) landmarks at 0.31, 0.68, 0.97, and 1.53 seconds in the utterance.
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Figure 3-1 shows these landmarks with tall vertical bars.

The vowels were labeled in the middle of the segment, as determined by the

maximum RMS amplitude. Glides were labeled at the minimum of R11S amplitude.

Nasals and liquids were also marked at their midpoints. The middles for the nasals

and liquids were determined by finding the beginnings and ends, and locating the

midpoint between them. Nasals and liquids were labeled because it was expected that

these sonorants would occasionally be mistaken as glides in the automatic detection,

and some measure of these errors was desired. The middles were chosen because

it was more likely that the middle would fall in the range of analysis (from thirty

milliseconds beyond the onset of voicing after an abrupt consonant to the following

vowel) whenever it was mistaken for a glide. The short lollipops in Figure 3-1 locate

the vowels and the sonorants.

For the RMS amplitude computation, different window sizes were analyzed. Ta-

ble A.l in the appendix shows the m-file written in MATLAB used to compute the

R11S amplitude of speech signals.

Originally, smaller windows were thought to be better. However, these windows

tended to yield similar results to longer windows. The only noticeable difference was

that the smaller rectangular windows tend to create bigger dips in consonant regions,

as expected. Since this held for both glides and non-glides, no advantage was gained

with a smaller window. Eventually, the window length chosen was 49 msec. Figure 3-

2 compares the RMS amplitude for the utterance Swim towards your willow tree by

KS, using different time windows. Another window size may have led to better overall

results, especially in nasals where the abruptness of closures might have been lost in

the analysis with the smoothing due to the large window size. Optimization of the

window length can be a topic of future work.
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Figure 3-1: Labeled spectrogram of the utterance Swim towards your willow tree.
The tall vertical lines indicate onsets of voicing following non-sonorant consonants,
while the short lollipops show locations of vowels and sonorants.
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Chapter 4

Preliminary Experiments

The development of the final algorithm described in the next chapter evolved through

a series of approaches that looked at many different features of the speech signal.

Characteristics which were analyzed included the root-mean-square amplitude, the

formant frequencies (primarily the first three formant values), different band ener-

gies, voicing, and the rates of changes of these values. In each of the experiments,

three issues had to be considered. They were (1) what parameters or measurements

should be extracted in order to detect glides, (2) how could measurements be obtained

automatically without error, and (3) how should the measurements be combined for

classification. Locally adaptive thresholding and best fit sinusoids, two techniques

first considered but then dismissed, are discussed in this chapter. The reasons against

using each of these two methods are explained. A reader interested in pursuing future

work may find this chapter useful in preventing himself or herself from running into

the same problems encountered here.

4.1 Detection via Formant and RMS Amplitude

Thresholding

Originally, an approach using formant frequencies appeared quite promising. After

all, the extreme locations of FI and F2 and the smoothness of the formant movements
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seemed to be excellent ways to locate the glides. An algorithm was developed that

used formant frequencies and RMS amplitude as factors in determining if a glide was

present in a particular region in the speech waveform. The method involved applying

a locally adaptive thresholding method adapted from Niblack [1986] to F1, F2, and

the RMS amplitude of the speech waveform, and then combining these results with

absolute thresholds to determine where the glides are.

4.1.1 Obtaining Measurements

First, measurements had to be performed on the data to obtain the parameters

needed. The RMS amplitude was computed using a 49 millisecond window. The

code used to compute this is included in Table A.l in the appendix. Formant tracks

were obtained using the formant tracking routine in Entropic Signal Processing Sys-

tems based on work developed by Talkin [1987]. To reduce the effects of noise, the

data was smoothed with a ten millisecond moving averager. This duration was chosen

because the finite movement rate of the tongue and the vocal cavity is slow enough

that abrupt changes within ten milliseconds can be deemed to be noise.

4.1.2 Selecting Thresholds for Detection

Next, a method of automatic detection was considered. Because formant values and

RMS amplitude are time-varying (different speakers have formants that differ some-

what, and RMS amplitude can vary based on how loud someone is speaking), a locally

adaptive method was implemented along with the absolute measures. Figure 4-1 il-

lustrates when a locally adaptive method works better than just absolute measures.

In this example, an absolute threshold of 50 dB (dash-dotted line) allows one to find

the glide at 0.25 sec, but as the overall amplitude in the waveform increases from .4

to .7 seconds, perhaps caused by an increase in speaker sound intensity, the second

dip in energy is not detected at 0.775 sec using absolute measures. A l~cally adaptive

thresholding method detects both of the dips in energy. Dotted lines indicate local

thresholds computed at 0.25 and 0.775 sec; the window lengths are 250 milliseconds,
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and the dotted lines span that range in which the mean and standard deviation are

computed. The higher of the two dotted lines represents the sum of the mean and

some constant (as specified by the user) times the standard deviation of the region,

while the lower line represents the mean less the same constant times the standard

deviation. In this case, the coefficient of the standard deviation is very large, almost

large enough that the two minimums barely get classified as glides.

A combination of absolute thresholds was combined with adaptive thresholds to

determine the location of glides. Since the union of candidate regions was considered,

the absolute thresholds chosen were conservative values. For example, needing to

have F2 larger than 2000 Hz or less than 800 Hz in order for a certain region to even

possibly be classified as a glide region is more than reasonable because glides have

much more extreme values. See Table 2.1 for glide formant frequencies. The locally

adaptive window length was set to 250 milliseconds because measurements were made

of glide transitions into vowels, and the durations seemed to vary between 75 and 175

milliseconds. Consequently, with the window centered on the glide landmark, it was

most desirable to have the window contain the entire time frame up to the center of the

vowel. 125 milliseconds (to one side of the landmark, 250 milliseconds total) appeared

to be a reasonable average of the possible range of glide to vowel transition times.

For Fl' F2' and RMS amplitude, measurements were made from the VCV database of

these parameters at the hand-labeled glide landmarks, and compared with the local

mean and standard deviations. From these measurements, it was determined that

most (over 95%) of the glide parameters fell outside of the following ranges: for Fl'

J-LFI ::f: O.4CTFl; for F2' J-LFI ::f: O.7CTFl; and for RMS amplitude, J-LRMS::f: O.3CTRMS, where J-L

is the average and CT is the standard deviation of the data inside the 250 millisecond

window.

So, for a given speech waveform, the 250 millisecond window was centered at the

first data point (the first and last 125 milliseconds were mirrored, so that the first and

last windows did not cover undefined regions; this did not affect the analysis because

the beginnings and ends of waveforms usually contained silence), its Fl' F2' and

RMS amplitude individually compared with the local threshold, with the point being
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Parameter Value
Fl k (coeff) 0.4
F2 k (coeff) 0.7
RMS k (coeff) 0.3
Fl less than 400 Hz
F2 less than 800 Hz or more than 2000 Hz
\i\Tindow Length 250 msec
Sample Updates every 2.5 msec

Table 4.1: Parameter values chosen for glide detection analysis

marked as a potential glide if all three parameters (F1, F2, and RMS amplitude) were

outside the threshold ranges. Then, the window was moved down 2.5 millisecond,

and the process was repeated. It should be noted that no prior labels were used in

this analysis; so, this algorithm, if successful, would have been self-sufficient. At the

end, certain regions of the speech waveform were marked as possible glide locations.

Next, the absolute measures were implemented. Absolute thresholds of Fl less than

400 Hz, F2 less than 800 Hz or greater than 2000 Hz were run on the waveforms

to mark another set of possible glide points. The two sets of thresholds (local and

global) were then combined together, and points in time where both methods found

a possibility of a glide location were marked as glide locations. Since glides have slow

transitions, only regions which had 10 milliseconds (five consecutive points) marked

as glides were considered as legitimate glide regions, and the landmark was located at

the center of this set of points. Regions with four or less consecutive points marked

as glides were deemed points found from noise or formant tracking errors (more on

this on tracking errors will be discussed below). Table 4.1 summarizes the thresholds

used on each parameter.

4.1.3 Results

This algorithm was run on the sentences database, resulting in an accuracy of 71%

for properly locating glides. Further, approximately 1.1 improperly labeled glide

points were made in each of the sentences, on the average. Such a result made the

author decide that other approaches could be found to obtain better results. Errors
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Time (see) Glide Error?
Correct Sentence
0.24 Iw I (in we) no
0.48 Iw I (in were) no
0.75 Iw I (in away) no
1.16 hi (in year) no
Sentence with Errors
0.31 hi (in you) yes
0.48 Iw I (in went) no
1.20 Iw I (in wire) no
2.09 Iw I (in Gwen) yes
2.43 hi (in yacht) yes

Table 4.2: Legend for glide labels in two sentences shown in Figure 4-2 and Figure 4-3.

in formant tracking were the primary cause of errors in this detection process.
Figure 4-2 shows an example where the formant tracking worked fine, or reason-

ably well, as was often the case. The three lines represent F1, F2, and F3, with Fl

being the line with the lowest frequency, F2 being the line in the middle of the two
other lines, and F3 being the line on top. The lollipops represent glide locations
hand-labeled. In cases such as the one shown in Figure 4-3 (again, the lines represent
the three formants, as in Figure 4-2, and the lollipops represent glide locations), the
formant tracking failed in the region of the glides. This error was a result of the
amplitude of the signal being so small that the formant tracking routine of Entropic
could not track it. Table 4.2 provides information regarding the particular glide la-
beled by the lollipops in the figures. In the second sentence, Fl has just barely found
its correct value while F2 is stillsearching for the actual F2 at the location of the hi
in your (time 0.31 seconds). Likewise, at 2.09 and 2.43 seconds, Fl is unreliable, and
F2 for the former is wavering between F2 and F3 tracks.

4.1.4 Drawbacks
In fact, ifthese tracking errors were removed from the listof errors (leading mostly to
improper labels of glides), the average of improper labels would be less than 0.9 per
sentence. The errors in formant tracking occurred in regions of low energy; such as in a
glide, and more so in stops and voiceless fricatives.In these cases, the formant tracker
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Figure 4-2: Example where automatic formant tracking from Entropic tools worked in
the region of the glides. Utterance was We were away a year ago. Table 4.2 provides
a legend for the lollipops shown.
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Table 4.2 rovides a legend for the lollipops shown.
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would sometimes abruptly jump to the next higher formant if the lower formant track

was lost. And in regions between closure and release, where discussing formants is

irrelevant, sometimes the tracker would move along so that its values would satisfy

the constraints for a glide. This would result in a false find of a glide because of its

rapid deviation from the local average of the waveform.

Thus, errors in formant tracking played a major role in why this technique was not

pursued further. However, this does not mean that 100% detection and no false glide

labels would be obtained if a perfect formant tracker were used, since the thresholding

on the RMS amplitude data on occasion failed to locate glides.

4.2 Modeling the Transition as a Sinusoid

A characteristic of a glide is that it has an initial brief steady-state for Fl and RMS

amplitude, which moves up gradually, and then reaches another steady-state when

it approaches the following vowel. This movement appears similar to the movement

of a sinusoid from its minimum to its maximum. Thus, a method to find a best-

fit sinusoid on Fl and RMS amplitude on the transition from the RMS amplitude

minima to the center of the following vowel was made, with mean-square error being

the error criterion to be minimized.

4.2.1 Obtaining Measurements

The data desired for this analysis was Fl and RMS amplitude. Fl was obtained using

the formant tracker from Entropic Signal Processing Systems, while RMS amplitude

was found using a 49 millisecond rectangular window. The center of the vowel was

labeled as the point of maximum RMS amplitude and used as one edge for the region

of analysis, and the minimum of RMS amplitude in the consonant was labeled and

used as the other edge of the region. However, having these points as the endpoints

did not force the sinusoid to have zero slope at both ends (only at the end of the

vowel). The frequency of the sinusoid was left as a parameter, also; so, the best fit

line was sought with only the single constraint that the right endpoint had to be
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a maximum. Other methods of free parameters could have been chosen. The ones

discussed were the ones chosen for this analysis. To reduce the effects of noise, a ten

millisecond moving averager was performed on the data before the best fit was made.

4.2.2 Parameters Used in Sinusoidal Best Fit

The maximum of the sinusoid was fixed on the right end where the middle of the

vowel was. The free parameters allowed were the DC offset, the coefficient on the

sinusoid, and the frequency of the sinusoid. The frequency, however, was restricted

to the range of 2.86 Hz to 6.67 Hz because this region maps to a half-sinusoid period

range of 75 milliseconds to 175 milliseconds, the range of possible glide durations as

measured and discussed in the previous section (4.1.2).

4.2.3 Determining the Best Fit

Following is the definition of mean-square error (MSE) for the problem at hand.

n
M SE = I)A - Bcos(wti) - Xi)2

i=O

(4.1)

ti are the times the data was sampled, and Xi are the sampled data values. Now, the

process was to find A, B, and w to minimize the MSE. These constants were solved

for my taking derivatives with respect to each of the variables and setting them equal

to zero.
d n n

dAMSE = 2(nA - BLcos(wti) - LXi) = 0 (4.2)
i=O i=O

d n n n
-MSE = 2(A L COS(wti) - B L cOS2(wti) - L(XiCOS(wti))) = 0 (4.3)
dB i=O i=O i=O

The system of equations is non-linear, and a closed form solution would be difficult

to find. However, the closed form solution for A and B, given a constant w, could

be found easily. As a result, A and B were found for constant w, and in the m-file
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written, different values of w were chosen, with the minimum MSE being found by

finding which value of w gave such a result. With this restriction, the closed form

solutions for A and B were found to be

B = n r.:r=o XiCOS(wti) - r.:r=o Xi Er=o COS(wti)
(Er=o cos(wti))2 - n E~o cOS2(wti)

The code used to solve for the best sine fit may be found in Appendix A.2.

4.2.4 Results

(4.5)

(4.6)

Examples of curve fits may be seen in Figure 4-4, 4-5, and 4-6. Figure 4-4 shows

that the RMS transition for a glide (from a Iw I to a laa/) fits a sine curve well.

Figure 4-5 shows the case where the Fl of the glide leads to a reasonable fit (it is the

transition from a hi into the vowel laa/); so, it can been seen that a best sine fit

on the formants works well, too. Figure 4-6 shows the poor sine fit for a transition

of a non-glide into the vowel (a Idjl into an laa/). As can be seen, the fits for the

glides into the vowel appear to be quite sinusoidal, while for the example provided,

the non-glide into the vowel does not fit a sine.

4.2.5 Drawbacks to This Method

The results shown make this idea somewhat appealing, but the drawback is that

many non-glide consonants have fits which are sinusoidal. This is particularly true

for liquids and unvoiced fricatives. An example of this may be found in Figure 4-7,

which shows that the sinusoid model fits the particular Ir I transition into the vowel

Iehl well. Furthermore, the lack of a perfect formant tracker prevents assurance that

Fl best fits are made on accurate formant tracks. Consequently, this method was also

abandoned for the time being. With a good formant tracker, plus a more thorough

analysis of varying the parameters, one could possibly obtain better results using this

method.

46



2500

2000

~ 1500
.~a.
E
~
CfJ

~ 1000

500

o-80 -70 -60 -50 -40 -30
Time to Vowel (msec)

-20 -10 o

Figure 4-4: Best fit sine (dotted line) along with the actual RMS amplitude (solid
line) for the glide jy j going into the vowel j aaj
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Chapter 5

Development of Recognition

System

5.1 VCV Data

The development of the final algorithm began with an analysis of the VCV database as

a training set to extract particular acoustic properties. After the data were collected,

information was organized according to different vowel contexts (aa, ah, eh, iy, and

uw). The maximum rate of change of the RMS amplitude along with the maximum

dB range of RMS amplitude were measured for the VCVs. Furthermore, the same

two measurements were made for Fl. In all of these measurements, thirty millisecond

shifts forward from the landmark were made before analysis. This number was chosen

because the landmark detector used to locate release points of obstruent consonant

landmarks was accurate to within :i:: 30 milliseconds [Liu, 1995 (Ch. 3.3)]. Figure 5-

1 shows a sample transition of both a glide and a non-glide. As one can see, the

sharp transition occurs well within the first thirty milliseconds, while most of the

smoothness of the glide transition can still be seen after thirty milliseconds.

Plots of amplitude and frequency range versus maximum rates of change were

made for RMS and Fl, respectively, and the means and covariance matrices were

computed separately for glides and non-glides. This information was then used as

the probability distribution models for glides and non-glides for each particular con-
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Figure 5-1: Example of RMS transitions for (top) glide between consonant release
and vowel (abrupt consonant-glide-vowel utterance) and for (bottom) no glide from
release to vowel (abrupt consonant-vowel utterance). The abrupt landmark release is
at time t=O; notice how the transition with the glide is much smoother than the one
without the glide.

text. Using these models, a hypothesis test was used to determine whether the given

properties were more like that of a glide, or a non-glide.

Figure 5-2 shows a scatterplot of RMS amplitude range versus the maximum rate

of change of RMS amplitude for all of the VCV data. The dots represent non-glide

tokens, while the G's represent glide tokens.

Some overlap can be seen between the glides and non-glides. This overlap could

be better separated by looking at the context more carefully, both of the following

vowel and the particular non-glide consonant. Following will be an analysis of how

different types of consonants compare to the glides. Afterwards, a discussion of the

effects of different following vowels will be given.
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5.2 Comparing Consonants

A comparison of each class on consonants with the glides was made from the VCV

database. Following are the results for RMS amplitude.

5.2.1 Affricates

The affricates /dj/ and /ch/ in English are a mix between stops and fricatives. They

have a closure and release, but the release is filled with frication; hence the name.

The production of an affricate is much different than that for a glide, so one would

expect its characteristcs to be much different. As expected, such is the case, with

affricates generally having a much lower range and rate of change of RMS amplitude.

Figure 5-3 shows this result graphically.

5.2.2 Voiced Stops

The voiced stops /b/, /d/, and /g/ all have a closure and an abrupt release, char-

acteristic of all stops. After thiry milliseconds from the release, the RMS amplitude

is just about at the steady state value. As a result, the dB range and the maximUln

RMS amplitude change are much smaller than those found in glides. Figure 5-4 illus-

trates this. As was the case for affricates, the voiced stops are also easy to distinguish

as non-glides.

5.2.3 Unvoiced Stops

The unvoiced stops /p/, /t/, and /k/ are similar to the voiced stops, except for

voicing. This difference amounts to a period of voiceless aspiration out of the release.

Again, after thirty milliseconds from the onset of voicing, the energy in a voiced stop

is practically at its final value. Thus, the RMS amplitude range is small, along with

a small rate of change of RMS amplitude at the release. As Figure 5-5 indicates,

separation of glides with unvoiced stops is clear.
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5.2.4 Voiced Fricatives

The voiced fricatives Idhl, lvi, Izl, and Izhl have characteristics similar to those of

glides. Both have a constriction within the vocal tract, and both are voiced. The only

difference is that fricatives have noisy spectra, whereas glides do not. Unfortunately,

sometimes this difference does not lead to significant differences in maximum slope

and dB range characteristics, as seen in Figure 5-6. In addition, sometimes the

landmarks in voiced fricatives are not properly located, leading to erroneous data

being computed. The voiced fricatives with correctly labeled landmarks lie in a region

close to the bottom left of the plot, while the remaining points are due to errors. As a

result, separating voiced fricatives from glides is more difficult than any of the other

types of consonants listed above. The errors made were primarily confusions of Idhl
and Iv I, since these two fricatives most closely resemble glides when no abruptness

is produced while uttering these consonants. It will be seen in the following chapter

of results on the sentences database that voiced fricatives are one class of consonants

in which the recognition algorithm occasionally classifies as a glide.

5.2.5 Unvoiced Fricatives

The unvoiced fricatives If I, Isl, Ishl, Ithl, on the other hand, are not as difficult to

separate from the glides. Although these consonants are made with a constriction,

the lack of voicing makes it easier to distinguish from glides. Figure 5-7 shows the

distribution of unvoiced fricatives compared to glides.

5.2.6 Nasals

The nasals Iml, Inl, and Ingl belong to a larger class of sonorants to which glides

belong, also. Sonorants are sounds produced without a build-up of pressure in the

vocal tract. As a result, large changes in RMS amplitude are generally not seen in

any of the sonorants, although changes in amplitude in higher frequency ranges may

be more abrupt. As a result, nasals and glides have very similar features. Figure 5-8

compares the two types of sonorants. It can be observed that differences between the
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nasals and glides are difficult to detect using the two characteristics (max slope of

RMS amplitude, and RMS amplitude range). From the graph, one may observe that

nasals generally have a smaller amplitude range, but not significantly smaller. The

only major difference that aids in locating nasals is an abrupt change in low frequency

energy first due to the closure of the major articulator (lips, tongue blade, or tongue

body) and then the opening of the velopharyngeal port.

5.2.7 Liquids

The liquids /1/ and /r/ pose a problem similar to that of nasals because they are

also sonorant consonants. In fact, liquids are even more similar than nasals because
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the energy into and out of a liquid is often smooth. In fact, observation of Figure 5-

9, which shows the plot of liquids and glides for the VCVs, shows that almost no

separation can be found between these two classes of sonorants.

5.3 Effects of Vowel Context

The particular vowel following the consonant also played a role in the measurements.

This effect was expected for the following two reasons. First, different vowels have

different amplitudes [Peterson and Barney, 1952]. Table 5.1 shows the amplitude

measurements of Fl made by Peterson and Barney. Furthermore, since the energy

of a glide or a vowel is dominated by the low frequency energy, Fl amplitude should
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Vowel relative Fl
amplitude (dB)

aa -1
ah -1
eh -2
uw -3
lY -4

Table 5.1: Relative Fl amplitudes of vowels as reported by Peterson and Barney
[1952].

Vowel Position Fl (Hz) Fl (Hz)
(High/Low) adult male adult female

aa Low 730 850
ah Low 640 760
eh Neither 530 610
uw High 300 370
lY High 270 310

Table 5.2: Fl frequencies of vowels as reported by Peterson and Barney [1952].

be a good measure of the overall energy of the signal. From Peterson and Barney's
measurements, one can see that vowels such as /aa/ have two and three decibels more
energy than /uw / and /iy/, respectively.

Second, low vowels have high Fl' while high vowels have low Fl' As a result, the
change in frequency from a glide to the following vowel can vary substantially based
on the final steady-state value of the following vowel. Table 5.2 shows the Fl values
as measured by Peterson and Barney [1952].

Figure 5-10 and Figure 5-11 show the distributions of the different vowels in a plot
of Fl range versus maximum Fl rate of change for /w / and h/, respectively. As one
can observe, the /uw / and /iy/ tokens are near the bottom of the plot, while those
for /aa/, /ah/, and /eh/ are closer to the top. This can be attributed to the fact that
Fl does not have to move up as far from the glide into the high vowels. It should also
be noted that even though the tokens for different vowels are separated, they alltend
to liealong a straight line through the origin, as witnessed in the graphs by the high
eccentricity (close to one) of the ellipse. This indicates that the points lie all along
one direction. Consequently, one can conclude that each token has a similar ratio of
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U=uw), while the second letter is the speaker (C=CB, D=DW, K=KS).

FI range to maximum rate of change. This fact illustratesthat the time it takes to go
from the glide into the following vowel is more or less constant. As a result, the rate
of movement is adjusted to conform to the constant duration. This result is observed
also for RMS amplitude data. A quantitative discussion of this information follows
in the next section.
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5.3.1 Determining Glide to Vowel Duration using a Sinu-

soidal Model

If one assumes a sinusoid model for the transition from the glide to the vowel, one can

determine the duration from the glide to the following vowel on an RMS or Fl range

versus maximum rate of change plot by finding the slope of the line which the points

more or less lie on. This can be seen by the following: if one wants to model the

transition as a sinusoid, then one can write write the sinusoid as -D cos(;~), where T

is the time from glide to vowel, the glide begins at time t=O, and the maximum RNIS

amplitude value for the vowel occurs at time t=T. The range of the signal (RMS or

Fr) is 2*D, while the maximum slope is obtained by taking the derivative of the above

expression with respect to t, and finding the maximum at t = ~. This maximum slope

is D ¥. Consequently, the slope of the line on a range versus maximum slope plot will

be ~~, which simplifies to 2;. Thus, the time it takes to go from a glide to the vowel
T

is equivalent to the slope times ~.

The slope of a given set of data points was obtained by finding the best fit line

through the data points, with the constraint that the line goes through the origin.

Such a line must pass through the origin because whenever the maximum range is

0, the maximum slope in that region must be zero, and vice versa. Thus, using the

familiar mean-square-error criterion on the set of N data points (Xi,Yi) for i=1,2, ... ,N,

the optimal m was sought to minimize L~l (Yi - mXi). Taking a derivative with

respect to m and setting the result to zero, a closed form solution for m was found.

This solution was

(5.1)

Determining Duration for Non-Glides to Vowels

The slopes of the lines fitting the points for the non-glides were also examined. How-

ever, the model for these tokens was different from that for a glide. Since non-glides

tend to have more abrupt initial transitions, the the region from thirty seconds after

the onset of voicing to the vowel was modeled as one fourth of a period of a sinusoidal
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wave. Thus, having the endpoints being t=O (thirty seconds from the voicing land-

mark) and t=T (the location of the vowel), the model for the sinusoid can be written

as D sin(;;'). The range is thus D, and the maximum slope is f;. Thus, the slope

of the line in the range versus maximum slope plot will be 2;, as was the result from

before.

5.3.2 Differences between VCVs and Sentences

Originally, the VCV database was to be used as the training set, and the sentences

database was to be used as the test set. However, it was determined that the

rate of speech in isolated utterances (VCV) versus continuous utterances (sentences

database) varied enough that the sample means and covariance matrices determined

from the VCV database could not be accurately used as standards for hypothesis

testing on the sentences database. As a result, the first ten sentences of the sentences

database was selected as a means of training and obtaining averages and covariance of

the data, while the remaining thirty were used for testing. The following subsections

discuss the analysis which led to the realization that the rate of speech in the VCV

database was sufficiently different from that in the sentences database for one to be

used as a training set and the other to be the test set.

5.3.3 Differences in RMS Amplitude

Figure 5-12 shows a plot of the RMS amplitude range versus the maximum RIvIS

amplitude rate of change for the VCV glides. The following vowel is denoted by

the first character (A=/aa/, a=/ah/, E=/eh/, I=/iy/, U=/uw), while the second

letter represents the specific speaker is (C=CB, D=DW, K=KS). Contrary to what

one might expect, the distribution of data in Figure 5-12 does not conform to the

supposition that higher energy vowels should have larger ranges and larger rates of

change. A suggested explanation for this, based on listening to the speech represented

by the data shown, is that the speakers make an extra tight constriction for the high

vowels, since the tongue and vocal tract are already in a narrower constriction for the
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vowel. Consequently, the range ends up larger, and the rate of change becomes larger

to maintain a constant glide to vowel duration.

In the plot, the best fit line is shown, along with an ellipse which represents

the equal probability contour at 1.5 standard deviations away from the mean. The

outliers, points which fell outside of the ellipse, were looked at individually to see why

they deviated from the mean by such a marked amount. It was found that three of

the four data points with large rates of change of energy (above .28 dB/msec) were

VCV s which had the vowel /iy /. This can be explained by the fact that since the

vowel /iy / already has a somewhat tight constriction in the vocal tract, each speaker

must make an even stronger constriction to make the difference from the vowel to the

glide and back to the vowel audible. The slope of the best fit line, which represents

~ times the time between the glide and the vowel when using a sinusoid as a model,

was found to be 42.8 milliseconds. This translates into a glide to vowel time of about

67.2 milliseconds when using the sinusoidal model.

Data for glides in the sentences database were examined next. Figure 5-13 shows a

plot of the averages for each of glides in the forty sentences in the sentences database.

The slope of the best fit line through the origin for this data was 30.8 milliseconds.

Correspondingly, this time showed an average glide to vowel time of 48.4 milliseconds,

somewhat smaller than that for the VCVs. The differences in these durations were

enough for one to decide that using the VCV database for training would not be

adequate for testing on the sentences database. Similar results were obtained for FI

data. The next section discusses these results.

For each of the non-glide classes, the duration from consonant to vowel was de-

termined. Table 5.3 summarizes the results. As one can see, the durations of non-

sonorant consonants are much smaller than those for the glides. Also notice that the

unvoiced stops and fricatives are shorter in duration than their voiced counterparts.

Such is the case in part because the onset of voicing occurs further in the transition

into the vowel for unvoiced segments.
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Figure 5-12: Plot of RMS amplitude characteristics of glide tokens from VCV
database, along with the 1.5 standard deviation curve and the best fitline through
the origin.

Consonant Duration (msec)
Affricates 26.7
Voiced Stops 20.9
Unvoiced Stops 15.7
Voiced Fricatives 20.4
Unvoiced Fricatives 18.1
Sonorants
Nasals 62.8
Liquids 68.1
Glides 67.2

Table 5.3: Duration of Different Classes on Consonants as Determined by Fitting the
Model for VCV Data (note: the fiton the voiced fricativesincluded only those values
which were obtained from cases where the landmark was correctly detected)
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Figure 5-13: Plot of RMS amplitude characteristics of glide from sentences database,
along with the 1.5 standard deviation curve. Each data point represents the average
of all glides within each of the forty sentences (so, a total of forty data points may
be found).
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5.3.4 Differences in Fl

As with RMS amplitude, plots of Fl rates of change versus Fl range were analyzed.

Figure 5-14 shows the distribution of VCV glides on an Fl range versus maximum

Fl rate of change plot. This plot is noisy because a few major outliers resulted

from errors made in the formant tracking algorithm. The slope of the best fit line

was found to be 89.0 milliseconds, which translates to a time of 139.7 milliseconds.

At first glance, this may seem rather unusual that the time for the Fl transition is

longer than that for the RMS amplitude movement. One may wonder whether the

sinusoidal model is still good for Fl. Looking at the plots of transitions in Section

4.2 (Modeling the Transition as a Sinusoid), it can be seen that the transitions for

Fl appear sinusoidal, much like that for the RMS amplitude movements. Thus, this

result indicates that it takes longer for the transition of Fl to settle when going into

a vowel, as compared with RMS amplitude. One can explain this in terms of the

production model. At the point of maximum constriction in a glide, the vocal tract

is so constricted that vibrations in the glottis are affected. Once the constriction

becomes less strict, the glottis begins to vibrate normally and at full energy. At this

point, the RMS amplitude will have already come close to its final level. However, at

this point, the tongue is still in the process of moving to its final vowel position, so

the Fl transition takes more time to complete.

Likewise, the data for the sentences database was computed. The slope of the

best fit line was found to be 32.1 milliseconds, which translates to a glide to vowel

duration of 50.4 milliseconds. Figure 5-15 shows a plot of the glide distribution, with

one point for each of the forty sentences. An average for each of the sentences across

all five speakers was made for plotting purposes because plots having all 640 tokens

were too congested for reasonable observations to be made. The numerical results

detailed later are averages of the total set of tokens, and not an average of these

data points in the plots. As in the case of RMS amplitude, the average glide to vowel

duration for continuous speech was shorter than that of isolated speech. Interestingly,

though, the glide to vowel duration for sentences was more similar between Fl and
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Figure 5-14: Plot of Fl characteristics of glide tokens from VCV database, along with
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Figure 5-15: Plot of Fl characteristics of glide from sentences database, along with
the 1.5 standard deviation curve. Each point on the graph represents the average of
all glide tokens within each of the forty sentences (so, a total of forty points are on
the plot).

RMS amplitude than for the same two measurements for the VCV database. A
possible explanation is that in continuous speech, the transitions are so rapid that
the movements of the vocal tract are less pronounced, thus allowing it to reach the
vocal tract's final position about the same time the glottis attains its fullvibrating
position, instead of being much later in time.
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5.4 Summary of Recognition Process

The development of the recognition algorithm was the bulk of the work performed

for this thesis. Three important ideas were drawn from this work. First, the fact that

a best fit line can yield a reasonably good model of how the data lie allows one to

conclude that the duration from the glide to the vowel is more or less constant. As a

result, whenever a large range of RMS amplitude or PI energy is traversed, the rate

of change merely becomes larger.

Second, differences can be seen between the RMS amplitude and PI frequency

characteristics of glides in isolated versus continuous speech. This fact resulted in the

VCV database not being used as a training set. However, the information obtained

from the VCV database was useful in learning the relative characteristics of different

consonants and following vowels.

Finally, modeling the other consonants in the VCV database allowed one to see

how similar the sonorant consonants were to each other, and how different they were

as a whole to the other classes of consonants. Voiced fricatives became somewhat of

an issue mainly because of errors in the landmark detection and formant tracking.

Otherwise, the fricatives, stops, and affricates were clearly separated from the glides.
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Chapter 6

Final Algorithm and Results

This chapter summarizes the glide detection results obtained in the VCV database

analysis, along with those used for the training and testing performed on the sentences

database.

6.1 VCV Results

Hypothesis testing (discussed in Section 2.4) was performed using the measurements

of RMS amplitude range, maximum RMS rate of change, Fl frequency range, and

maximum Fl rate of change. It should be noted that in this case, the testing and

training were both the same VCV database, so results will be a little better than in

the sentences database case, where the testing and training sets are disjoint. Few

errors were made in classification in this database after the landmark errors and Fl

tracking errors were corrected by hand. The results, shown in Table 6.1, account

for corrections in Fl but not the landmark errors. This was done because a better

formant tracker may be implemented in the near future, while improvements in the

landmark detector may be more difficult because the methods used in this thesis

(RMS amplitude, Fl = low frequency energy) are similar to those used by Liu in her

landmark detector. The means and covariance matrices computed were based on the

corrected data, since using the errors would not contribute to a better estimate of the

actual glide characteristics. Furthermore, during times when the formant tracking
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Consonant Detected as Glide Detected as N on-G lide
Glides 93.3% 6.7%
Non-Glides 6.6% 93.4%
Divided into classes
For non-glides
Liquids 34.6% 65.4%
Nasals 31.6% 68.4%
Affricates 0.0% 100.0%
Voiced Fricatives 23.3% 76.7%
Unvoiced Fricatives 0.0% 100.0%
Voiced Stops 0.0% 100.0 %
Unvoiced Stops 0.0% 100.0 %

Table 6.1: Performance of Thresholds on VCV data; it performs perfectly well on
stops, unvoiced fricatives,and affricates

Measurement Glide Non-Glide
RMS Max Slope (dB /msec) .195 .122
RMS Amplitude Range (dB) 8.05 3.29
Fl Max Slope (Hz/msec) 3.10 4.07
Fl Frequency Range (Hz) 278.3 163.2

Table 6.2: Average values of the differentmeasurements made on the VCV database.

was difficultto correct, the values found were discarded. The issue of Fl errors will
be discussed in more detail in the future work section. Table 6.1 summarizes the
results found for the VCVs. Table 6.2 summarizes the average values found for the
differentmeasurements.

6.1.1 Preliminary Sentences Database Issues
As mentioned in the previous chapter, preliminary tests on the sentences database
showed that the means of the measurements in the sentences database differed from
those of the VCV database. Consequently, the firstten sentences were used as a
training set,while the remaining thirty sentences were used as a test set.

A couple of issues arose before any further data could be collected. In the sen-
tences database, finding where to start the analysis was an issue. The basis for the
approach taken was twofold. First,as mentioned earlier,itisknown that allglides are
followed by a vowel. Second, vowels are easier to locate than glides using a formant
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tracker since the energy of the signal within a vowel is much stronger. Thus, the final

problem statement was developed as follows: given the location of vowels and abrupt

consonantal releases (as found by Liu's [1995] program), can one determine if a glide

exists in the region preceding a vowel (call this the right landmark), and ahead of the

previous (left) landmark? Analysis of the waveform data began thirty milliseconds

after the landmarks.

The left landmark can be one of two different possibilities. This landmark most

frequently is the indicator for the start of voicing. However, when such a landmark is

not present, as in the case when a vowel at the end of a syllable is followed immediately

by a vowel in the beginning of the next syllable, voicing may never cease. This occurs

also when the landmark detector fails to find a landmark between a VCV utterance.

When such a situation arises, the most recent landmark before the right landmark

will be the previous vowel.

It is known that the transition out of a glide and into the vowel is a smooth one

for RMS amplitude. Figure 5-1 shows sample RMS amplitude transitions from a

consonant release to a vowel (like from the /s/ to /I/ in sim), and from a consonant

release through a glide and to a vowel (like from the /s/ to /I/ in swim). This model

is one which the theory of glides dictates (the slow rise in amplitude, and the small

amplitude range).

However, the strong amplitude increase at the point of release became a problem.

If analysis began at the release, then sometimes, even if a glide occurs between the

consonant and the following vowel, the maximum rate of change would be measured

in this initial region, causing to errors in identification. Starting the analysis 30

milliseconds from the landmark solved this problem. Such an adjustment proved to

be a major factor in making the analysis of the sentences viable.

6.2 Sentences Database Results

First, averages and the covariance matrix were found for the data collected from the

first ten sentences, the training set. Table 6.3 summarizes the averages determined
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Consonant Measurement Average Value
Glide RMS Max Slope .171
Non-Glide RMS Max Slope .148
Glide RMS Amplitude Range 4.95
Non-Glide RMS Amplitude Range 2.94
Glide Fl Max Slope 9.52
Non-Glide Fl Max Slope 7.85
Glide Fl Frequency Range 318.8
Non-Glide Fl Frequency Range 208.5

Table 6.3: Averages found for the glides and non-glides from the first ten seutences.

Consonant type (Speaker) Classified as Glides Classified as Non-Glides
Glides (ARI) 86.7% 13.3%
Non-G lides (ARI) 10.5% 89.5%
Glides (JW) 89.4% 10.6%
Non-G lides (JW) 8.1% 91.9%
Glides (KS) 91.5% 8.5%
Non-Glides (KS) 6.3% 93.7%
Glides (MJ) 85.2% 14.8%
Non-G lides (MJ) 11.2% 88.8 %
Glides (SSH) 87.4% 12.6%
Non-Glides (SSH) 10.7% 89.3%
Glides (Total) 88.0% 12.0%
Non-Glides (Total) 9.4% 90.6%

Table 6.4: Overall results found from the sentences database.

in the sentences, while Table B.1 in the appendix lists the covariances of the glides

and non-glides. The covariance matrices are left in the Appendix because not much

can be gained intuitively from a quick glance at the matrix itself. Its usefulness is

primarily in the computation.

Analysis was made on all of the speakers in the thirty remaining sentences. In

total, the forty sentences spoken by five speakers totaled 640 glides and 1805 vowels.

Of the 1805 vowels, 1522 were full, which 283 were reduced.

Test Results

Table 6.4 tabulates the total results for the different speakers, along with the overall

results. From these results, it can be seen that locating non-glides works better than

finding glides. However, the percentages for both are still reasonable. Of the non-
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Consonant Percentage of 9.4% Overall Number of
Detected as Glide (%) percentage (%) Occurrences

/m/ 17.7 1.7 11
/n/ 16.1 1.6 10
/ng/ 8.1 0.8 5
/1/ 29.0 2.8 18
/r/ 24.2 2.3 15
Voiced Fricatives 3.9 0.5 3
All Others 2.6 0.3 2
Total 100 9.4 62 (out of 640 tokens)

Table 6.5: Breakdown of errors of non-glides being detected as glides. The overall
percentage indicates the percentage of times that a non-glide, which was classifiedas
a glide, happened to be the particular consonant listed in the leftmost column.

glides which were within the threshold, most of them were sonorants. The next section
breaks down these results,and provides a discussion regarding how these errors might
be corrected.

Nasals and Liquids being Classified as Glides

As discussed in the previous chapter, nasals, liquids, and glides are all sonorants.
Consequently, they share many features. In the analysis, much overlap exists between
these three consonant types. Furthermore, the consonant /h/, which can be classified
as another glide, fitsinto this group of consonants as well. From Table 6.4, it can be
seen that 9.4% of the time, non-glides were classifiedas glides. Table 6.5 shows the
breakdown of how this 9.4% is distributed. From this table, it can be seen that the
problem liesmostly in these other sonorants and a littlebit with the voiced fricatives.

The errors attributed to something other than a sonorant or a voiced fricativecan
be assumed to be an esoteric error, possibly caused by either errors in labeling, or an
unusual variability in the speech. For the others, however, the results are reasonable.
To remove the errors due to the nasals, Liu's program was run again to find the
abrupt landmarks in nasals. The landmark detector written by Liu locates abrupt
consonants. The algorithm designed by her also has the capabilities of finding the
abruptness of nasals most of the time when abruptness in the mid-frequency range is
measured.
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Sonorant Landmark Detector Errors

Liu's landmark detector finds three types of landmarks, g, s, and b, where g=glottis,

s=sonorant, and b=burst. The glottis landmark determines the time in which the

amplitude of glottal vibration changes abruptly. This is the landmark used to find the

release point of abrupt consonants. The sonorant landmark supposedly finds closures

and releases of nasals and the /1/. To find these landmarks, the routine searches for

high frequency abruptness in energy bands from 1.3 kHz to 8 kHz. Closures created

in the nasals or the /1/ cause quick changes in higher frequency energy [Liu, 1995].

This algorithm was tested on some of the sentences in the sentences database.

Unfortunately, it was found that the accuracy of this measure was not very good. In

fact, for a set of ten randomly selected sentences in the database of the five speakers,

it was found that 50% (35 out of 70) of the actual glides that were found by Liu's

landmark detector were erroneously labeled as abrupt sonorants (nasals or the /1/).
Meanwhile, 43% (26 out of 61) occurrences of abrupt sonorants were not identified as

sonorants landmarks. With accuracy around 50%, using this information would likely

not help in increasing recognition accuracy. In essence, little or no improvement can

be had from using this landmark detector to filter out nasals and liquids from the

glides. Consequently, the issue of finding a good detector for nasals is a possible topic

for future research.

Effect of Context on Gtides

Preliminary work by the author [Sun, 1995a] showed that the context of a glide within

a sentence had an effect on its characteristics. Consequently, while analyzing the data

from the sentences database, the effect of stress was considered. In many situations,

normal, fluid speech introduces contractions or simplications of spoken utterances.

For example, sentence six is Blow them, and the leaves will flyaway. For all five

speakers, the /w / in will was deleted. Consequently, the sentence became Blow them,

and the leaves'll flyaway. Deleted glides were not considered as glides in the analysis.

In the same sentence, the vowel in the word the was reduced. Such a reduction
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Consonant type Classified as Glides Classified as Non-Glides
Reduced Vowels
Glides 76.7% 23.3%
Non-Glides 13.7% 86.3%
Full Vowels
Glides 90.1 % 9.9%
Non-Glides 8.7% 91.4 %

Table 6.6: Comparison of Glide Recognition Results for Consonants Followed by Full
Vowels and those by Reduced Vowels.

shortened the length of the utterance, and also kept the amplitude of the vowel low

compared to other vowels in the same sentence. These characteristics are normal

for reduced vowels. The decrease in energy poses more of a problem for the glide

detection algorithm because the change in amplitude becomes smaller, thus moving

towards the mean of measurements consistent with non-glides (which would lead to

a hypothesis test result of anon-glide). Table 6.6 shows the performance of the

algorithm on consonants followed by reduced vowels compared with the performance

on full vowels.

From this table, it can be observed that for full vowels, the recognition rate (num-

ber of times glides are properly classified as glides plus number of times non-glides

are properly classified as non-glides divided by the total number of vowels analyzed)

is about 90.80/0. Of the incorrectly labeled non-glides, many of the errors come from

other sonorants which have characteristics similar to those of glides. Once a better

detector for these consonants is found, the overall accuracy rate of this program can

be improved.

Common Source of Errors

Mistakes in glide detection seemed to stem from a few isolated sources. As described

already, the problem of detecting nasals and liquids as glides was a common problem.

In addition, voiceless glides, as in which, were difficult to locate. This was the case

because, at times, the landmark indicating the onset of voicing was beyond the loca-

tion of the glide. Consequently, the search for the glide was begun in a region past the

actual location of the glide landmark. Errors in precision from the landmark detector
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and from manually labeling the location of the vowels also probably contributed to

the overall errors.
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Chapter 7

Conclusions and Future Work

The approach of finding glides before vowels is one which yields good results in contin-

uous speech. The algorithm developed used knowledge about glides and other sounds

in the English language, along with results from previous results in knowledge-based

speech recognition and lexical access ([Liu, 1995], [Espy-Wilson, 1993], and [Li, 1993]).

Previous work detected glides in isolated carrier phrases, and labeled abrupt conso-

nants. This work combined these two ideas, and detected glides in clearly spoken

sentences much in the same way that abrupt consonantal landmarks were found.

7.1 Summary

The process of developing the algorithm for detecting glides eventually required a

search of literature describing the attributes of all consonants in the English lan-

guage. At first, it was believed that just understanding the characteristics of glides

was all that was necessary to locate them in speech. A literature review of Stevens

[forthcoming], Arman and Stevens [1993], and other papers provided enough informa-

tion for a reader to know that Iw I's have extremely low Fl and F2, while hi's have

extremely low Fl' and extremely high F2• Furthermore, one would also know that the

RMS amplitude in glides is weaker than that in vowels. However, the problem is that

other sonorant consonants exhibit similar reductions in RMS amplitude. For exam-

ple, the liquid Ir I has a low F2' also. So, an analysis of nasals, liquids, and obstruent
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consonants was made, and findings were briefly summarized in chapter two.

A new database of sentences was created which was full of glides. Originally, it was

proposed that the VCV database be used as the training data, and then the sentences

as the test data. However, a thorough analysis of the two databases showed differences

between isolated (VCV) and continuous (sentences) speech; so, instead, one-fourth of

the sentences database was used as the training set, while the remaining 75% served as

the test set. The measurements collected included maximum RMS amplitude change,

RMS amplitude range (from glide to vowel), maximum Fl frequency change, and Fl

frequency range. The training data were used to obtain sample means and covariances

for glide and non-glide tokens. Then, a hypothesis test was used for each new set

of measurements made on a test token, and a determination was made whether the

token was a glide or not. Implicit in this analysis was the fact that the duration from

the release to the center of the following vowel had to be at least 30 milliseconds in

order for the region to even be tested for the existence of a glide. So, for durations

less than 30 milliseconds, these tokens were automatically labeled as non-glides.

It was determined that potential problems could occur with nasals, liquids, and

voiced fricatives. Knowledge about nasals and liquids already made it reasonable

for one to believe that the similarities of these sonorants would made it difficult to

separate glides from the nasals and liquids. This algorithm was performed on the

VCV database, with the resulting glide detection rate of 93.3%, and the non-glide

detection accuracy of 93.4%. For non-glides which were classified as glides, none of

these errors were attributed to stops or unvoiced fricatives, which was reasonable

based on the vast differences in the production models of these consonants compared

with glides. The problems were more with the nasals and liquids.

When this algorithm was tested on the test section of the sentences database,

glides were correctly detected 88.0% of the time, and non-glides were found as such

90.6% of the time. These results were similar to the ones found for the VCVs, but

somewhat worse. As expected, 91.9% (57 out of 62) of the non-glides which were

found to be glides were actually nasals or liquids. With sentences, it was possible to

look at glides and non-glides before reduced vowels. Results were somewhat worse
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under these conditions, with glide detection rates at 76.7%, and non-glides being

found 86.3% of the time, as opposed to 90.1 % of the time for glides before full vowels,

and 91.4% for non-glides before full vowels.

Many different approaches can be made towards recognizing glides, but as of now,

none of them provide an error-free way of identifying all glides in speech, especially in

continuous speech where vowels are sometimes reduced, and words occasionally not

clearly spoken. Root-Mean-Square amplitude seems to be a useful technique because

theory clearly indicates that the tight constriction of glides causes strong decrease

in energy. Likewise, though, formant values and transitions, when correctly tracked,

provide excellent information in finding glides because of their extreme values.

7.2 Future Work

Much future work is needed to develop landmark detection for the complete lexical

access project. The next immediate step is locating the vowels from formant and

RMS amplitude information. This is of considerable importance because the work

presented here uses the assumption that the vowel landmarks will soon be found. As

mentioned in earlier chapters, this assumption is reasonable because formant trackers

are generally reliable in regions of high energy, like vowel regions. Analysis of par-

ticular energy bands, as previous work has done, may provide additional information

uniquely characterizing different phonemes in the English language.

A nasal and liquid detector is also another useful project for future work. Such

a detector would have immediate effect on the work in this thesis, as one of the

problems of glide detection involves finding and removing nasals and liquids from the

potential set of glides detected. An approach at finding the nasals should probably

take advantage of the known fact that the spectrum has an extra pole/zero pair,

which appears because of the nasal cavity opening. It would appear as if locating

nasals would not be so difficult; with the strong dip in amplitude at a low frequency

(around 1100 to 2000 Hz) due to the zero from the nasal cavity opening. Liquids,

on the other hand, may be more difficult to detect. The problem of finding them is
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similar to the difficult problem of finding glides without any other landmarks.

A locally adaptive method may be considered to locate glides. This method, which

was looked at in Sun [1995b], allows the detection of glides without the need of finding

the location of the following vowel. The major drawback of this analysis was the lack

of a highly effective formant tracker. In fact, in the analysis made within this thesis,

formant tracking errors occurred in the glide region (region where measurements were

important for correct recognition) about 6% of the time. Although this number may

seem small, such errors can lead to the degradation of detection by that amount, and

a reduction of accuracy from, say 94% down to 88% would be a significant decrease

in correct recognition. Improvements in formant tracking may make this technique

viable in the future.

The idea of curve-fitting glide transitions with sinusoids is also a promising area of

research. Some researchers today are using sinusoids to model transitions in synthesis

projects. The smooth transition seems to naturally imply such a model, so work in

synthesis may bring to light some more possibilities for modeling glides in the future.
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Appendix A

MATLAB M-file Code
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function out
% COMPUTERMS
% Usage:
%
%
%

% WSun 4/15/96

computerms(in,samp,windlen)
Computes the rms of a speech signal
OUT = COMPUTERMS(IN,SAMP,WINDLEN)
IN is the input waveform, SAMP is the
sampling rate of the waveform, and
WINDLEN is the length of the window

in = in(:);
wind = ceil(windlen*samp); % Create window length
% Zero pad at both ends
in = [zeros(ceil(windlen*samp/2),1);in;zeros(ceil(windlen*samp/2),1)];
leng = length(in);
out = zeros(leng-wind+l,l);
% Compute RMS at each point
for ctr = 1:(leng-wind+1),

out(ctr) = sqrt(sum(in(ctr:ctr+wind-1).-2)/wind);
end
out = 20*log10(out);

Table A.I: MATLAB M-file for ComputeRMS.m; program to compute RMS Ampli-
tude.
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function [A,B,omega,MSE,xhat,x] = bestsine(x,vowel);
% BESTSINE [A,B,omega,MSE,xhat] = bestsine(x,vowel)
% where the best sine fit is: xhat = A - B cos(omega t)
% x is the data input and vowel is the location of the vowel (samplewise)
% This program assumes a data sampling rate of 500 Hz.

% WSun 5/6/96

% Smooth data
x = xC:);
x = conv(x,ones(5,1)/5); % Smooth via 10 msec window
Len = length(x);
x = x(5:Len-4); Len = Len - 8;
[tmp,a] = min(x);
data = x(a:vowel);
newlen = length(data);
val = [0.002*(1-newlen):0.002:0];
freq = 2*pi*[(1/.35): .01:(1/.15)]; % Frequency Range
coswt = cos((val')*freq); % Matrix of values for cos(wt) evaluation
xcos = (data')*coswt;
pcos = sum(coswt);
sqcos= sum(coswt.-2);
datasum = sum(data);

% Solve for parameters as a function of frequency
Bx = ( (newlen*xcos) - datasum*pcos )./( pcos.-2 - newlen*sqcos );
Ax = (Bx.*pcos + datasum*ones(1,length(freq)))/newlen;

error = ones(newlen,1)*Ax - (coswt).*(ones(newlen,1)*Bx) -
data*ones(1,length(freq));

MSEE = sum(error.-2);
[value,loc] = min(MSEE); % Find frequency that minimizes MSE
omega = freq(loc);
MSE = MSEE(loc);
B = Bx(loc);
A = Ax(loc);
xhat = A - B*cos([-.125:.001:0]*omega);

Table A.2: MATLAB M-file for BESTSINE.M; program to find best sine fit.
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Appendix B

Covariance Matrices
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(

.005 .149 .015 -1.531)
.149 7.095 1.755 22.914

Cglides = .015 1.755 8.490 421.8
-1.531 22.914 421.8 30750

Table B.l: Covariance matrix for glides (with variables in the following order: RMS
Max Slope, RMS Amplitude Range, PI Max Slope, PI Frequency Range).

(

.005 .1277 .006 -1.815)
.1277 8.25 3.05 92.07

Cnon-glides = .006 3.05 9.08 450.6
-1.815 92.07 450.6 31355

Table B.2: Covariance matrix for non-glides (with variables in the following order:
RMS Max Slope, RMS Amplitude Range, PI Max Slope, PI Frequency Range).
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