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ABSTRACT

The Wells G and H Superfund site, located in the Aberjona watershed in Woburn,
Massachusetts, has been studied by a number of MIT research groups since 1987. Initial
research conducted to characterize the hydraulic properties of the wetland deposits, did
not indicate the classical trend linking changes in hydraulic conductivity to changes in total
porosity. It was hypothesized, therefore, that hydraulic conductivity was changing in
response to changes in the effective porosity of the deposits.

Equipment was developed to enable measurement of hydraulic conductivity, as
well as the measurement of breakthrough curves resulting from pulses of a conservative
tracer solution, while controlling the flow rate and effective stress acting on a soil
specimen. The breakthrough curves (concentration vs. time data) could then be analyzed
with a curve fitting package to obtain estimates of the hydrodynamic dispersion
coefficient, effective porosity, and the mass transfer coefficient governing the transport of
contaminants between the mobile and immobile regions in the soil.

A preliminary set of experiments was performed using two specimens of uniform
silica sand, followed by two specimens of the Aberjona wetland deposits. While there
were not enough data to confirm the presence or absence of the anticipated trends, the
suitability of the equipment for use in obtaining the hydrologic properties of the wetland
deposits was established.

Thesis Co-Supervisor: Dr. Patricia J. Culligan-Hensley
Title: Assistant Professor of Civil and Environmental Engineering

Thesis Co-Supervisor: Dr. John T. Germaine
Title: Principle Research Associate in Civil and Environmental Engineering



ACKNOWLEDGMENTS

I would like to thank the following for their help and contributions during my stay at MIT:

The Center for Environmental Health Studies at MIT for funding this project.

Professor Culligan-Hensley, Dr. Germaine, and Professor Ladd, for encouraging me and
motivating me to complete this work and my degree. I would especially like to thank
Professor Culligan-Hensley and Dr. Germaine for acting as my advisors, for reading and
editing this thesis, and for the many hours they spent helping with equipment development,
and analyzing the experimental data.

Stephen Rudolph for his expertise in both conceptualizing and manufacturing many of the
components of the experimental equipment described in this thesis.

The people at Microelectrodes, Inc. for their input on equipment design, and for their help
in trouble shooting transducer problems (especially those beyond their control).

Samir Chauhan for willing to get involved with the various circuitry problems that many of
us encountered, and especially for building and testing the automated multi-channel
conductivity meter that was central to this research.

Mary Elliff for making sure the grad students didn't go hungry, for the many purchase
orders she processed, and for always seeing the bright side of everything.

Doug Cauble, Joe Sinfield, and Marika Santagata for their friendship, assistance and
advice.

Sang Ratnam for his friendship, assistance, and camaraderie during many hours of
studying and problem solving.

My family for their love and support.

My son "Little John" who made it difficult to leave on Sunday nights, yet his smiles made
my weekends, as well providing something for me to smile about when something didn't
seem to be going well.

I would especially like to thank my wife Kathleen for her love and support, as well as
doing a wonderful job taking care of Little John in my absence.

Finally (and least of all), I would like to thank my $200 VW for making seventy-six 430
mile round trips without leaving me stranded.



TABLE OF CONTENTS

List of Tables

List of Figures

1. INTRODUCTION

1.1 INTRODUCTION

1.2 ORGANIZATION

1.3 DESCRIPTION AND HISTORY OF THE ABERJONA WATERSHED

1.4 THE MIT SUPERFUND BASIC RESEARCH PROGRAM AND THIS
PROJECT

1.5 THESIS SCOPE AND OBJECTIVES

1.6 LITERATURE REVIEW
1.6.1 INTRODUCTION
1.6.2 EQUIPMENT

1.6.2.1 Flexible Versus Rigid Wall Columns
1.6.2.2 Flow Control Systems
1.6.2.3 Measurement of Breakthrough curves

1.6.3 MODELS
1.6.4 PREVIOUS STUDIES OF HYDRAULIC CHARAC'

OF PEAT
1.6.4.1 Hydraulic Conductivity of Peats
1.6.4.2 Transport of Contaminants in Peats

1.6.5 THE CORRELATION BETWEEN LABORATORY
IN SITU CONDITIONS

2. EXPERIMENTAL EQUIPMENT AND PROCEDURES

TERISTICS

DATA AND

2.1 TRIAXIAL PERMEAMETER
2.1.1 TRIAXIAL CELL
2.1.2 MANIFOLD CONTROL SYSTEM
2.1.3 FLOW CONTROL SYSTEM
2.1.4 PEDESTAL

2.2 DATA ACQUISITION SYSTEMS
2.2.1 MIT GEOTECHNICAL CENTRAL DATA ACQUISITION

SYSTEM



2.2.2 CONDUCTIVITY MEASUREMENT AND DATA LOGGING
SYSTEM 64

2.2.2.1 Conductivity of Influent 64
2.2.2.2 Conductivity of Effluent 65

2.2.3 pH AND OXIDATION-REDUCTION POTENTIAL 67

2.3 EXPERIMENTAL PROCEDURES 67
2.3.1 TEST PREPARATION FOR SAND SPECIMEN 67
2.3.2 TEST PREPARATION FOR WETLAND DEPOSIT SPECIMEN 69
2.3.3 TESTING PROCEDURES 71
2.3.4 DATA REDUCTION 73
2.3.5 CXTFIT DATA FITTING MODEL: SETTINGS USED FOR

THIS RESEARCH 74

3. EXPERIMENTAL RESULTS 103

3.1 TESTING PROGRAM 103
3.1.1 MATERIALS TESTED 103

3.1.1.1 SAND 103
3.1.1.2 WETLAND DEPOSITS 104

3.1.2 TESTING CONDITIONS 104

3.2 TESTING PROBLEMS 105
3.2.1 PEDESTAL 1 106
3.2.2 PRESSURE TRANSDUCERS 106
3.2.3 COMPRESSIBILITY OF WETLAND DEPOSITS 107
3.2.4 ROLLING DIAPHRAGMS 107
3.2.5 DOUBLE BURETTE 108

3.3 MEASURED AND CALCULATED RESULTS 108
3.3.1 EXPERIMENTS ON SAND 108
3.3.2 EXPERIMENTS ON WETLAND DEPOSITS 109

3.4 FITTED RESULTS 112
3.4.1 EXPERIMENTS ON SAND 113
3.4.2 EXPERIMENTS ON WETLAND DEPOSITS 115

4. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 151

4.1 SUMMARY OF OBJECTIVES 151

4.2 SUMMARY OF EQUIPMENT, PROCEDURES, AND MODEL 152

4.3 SUMMARY OF RESULTS 153
4.3.1 MEASURED AND CALCULATED RESULTS 153



4.3.1.1 Experiments on Sand
4.3.1.2 Experiments on Wetland Deposits

4.3.2 FITTED RESULTS
4.3.2.1 Experiments on Sand
4.3.2.2 Experiments on Wetland Deposits

4.4 RECOMMENDATIONS FOR CONTINUED RESEARCH

REFERENCES

APPENDIX A:

APPENDIX B:

APPENDIX C:

APPENDIX D:

APPENDIX E:

APPENDIX F:

EPOXY DATA SHEETS

TRANSDUCER DATA SHEETS

CONDUCT.BAS LISTING

CONTINUOUS INPUT CURVES AND ASSOCIATED
EQUILIBRIUM READINGS

INFORMATIONAL PAGES OF CXTFIT INPUT AND
OUTPUT FILES

CIRCUIT DIAGRAM AND PARTS LIST FOR MIT
SINGLE CHANNEL ELECTRICAL CONDUCTIVITY
METER

153
154
155
155
156

157

160

163

167

180

184

189

217



List of Tables

Table 1.1: Engineering and Physical Properties of Aberjona Deposits;
Boring 1 (Bialon, 1995)

Table 1.2: Engineering and Physical Properties of Aberjona Deposits;
Boring 2 (Bialon, 1995)

Table 2.1: Performance of YSI Model 35 Conductivity Meter

Table 2.2: MIT Conductivity Meter Resistors

Table 2.3: Measured Resistance of Relay Box Resistors

Table 3.1: Summary of Experimental Conditions

Table 3.2: Measured and Calculated Results of Tests on Sand

Table 3.3: Measured and Calculated Results of Tests on Peat

Table 3.4.a: Fitted Results of Tests on Sand; TRM

Table 3.4.b: Fitted Results of Tests on Sand; ORM

Table 3.5.a: Fitted Results of Tests on Peat; TRM

Table 3.5.b: Fitted Results of Tests on Peat; ORM

Table 3.6: Column Length, eeff, a, Column and Grain Peclet Numbers,
and D/Dmd for Sand

Table 3.7: Column Length, eeff, a, Column and Grain Peclet Numbers,
and D/Dmd for Wetland Deposits

118

119

119

120

120

120

120

121

121



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Figure 1.10

Figure 1.11

Figure 1.12

Figure 1.13

Figure 1.14

Figure 1.15

Figure 1.16

Figure 1.17

List of Figures

Location of the Aberjona Watershed (Durant, 1991)

Location of Wells G and H (Myette et al., 1987)

Map of Surface Waters in the Aberjona Watershed
(Durant, 1991)

Geologic Section at Wells G and H (Myette et al., 1987)

Geologic Section Along the Line Containing Wells G and H
(Myette et al., 1987)

Site Map with Locations of Borings 1, 2, and 3 (Bialon, 1995)

Schematic of Rigid Wall Permeameter (Daniel et al., 1985)

Schematic of Flexible Wall Permeameter (Daniel et al., 1985)

Schematic of Constant Head Permeability Test
(Holtz et al., 1981)

Schematic of Falling Head Permeability Test
(Holtz et al., 1981)

Schematic of Flow-Control Permeability System
(Olsen et al., 1985)

Sample Break-Through Curves for Pulse and Continuous
Source Experiments (Shackelford, 1994)

Schematic of Column Experiment Apparatus (Li et al., 1994)

Schematic of Column Experiment Apparatus
(Taylor et al., 1987)

Schematic of Four-Pin Electrical Conductivity Probe Operation

Schematic Soil Model (Li et al., 1994)

Schematic Soil Model (Loxham et al., 1983)

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53



Figure 1.18 Experimental and Model Break-Through Curves
(Loxham et al., 1983)

Figure 1.19 Experimental and Model Break-Through Curves
(Price and Woo, 1986)

Figure 2.1 Standard MIT Triaxial Cell (from Hadge, 1979)

Figure 2.2 Diagram of the Manifold Control System

Figure 2.3 Diagram of the Flow Control System

Figure 2.4 Standard MIT Pressure/Volume Control Device

Figure 2.5 Transmission System for Flow-Control Device
(Drawn by Steven Rudolf)

Figure 2.6 Section of Removable Pedestal

Figure 2.7 Diagram of Temperature Transducer Circuit (Analog Devices)

Figure 2.8 Location of Conductivity Probes

Figure 2.9 Section of In-Line Conductivity Probe

Figure 2.10 Plan View of Drainage Line Through Pedestal

Figure 2.11 Schematic of 2-Pin Probe Operation

Figure 2.12 Diagram of MIT Single Channel Conductivity Meter (SCCM)

Figure 2.13 Diagram of MIT Relay Box for Conductivity Meter

Figure 2.14 Diagram of O-ring Placement

Figure 2.15.a-i Data Reduction Spreadsheet

Figure 2.16 Numerical Function to Adjust Conductivity Values for
Temperature (Head, 1983)

Figure 2.17 Numerical Function to Fit Conductivity Data to Concentration
Values (Head, 1983)

Figure 2.18 Sample CXTFIT Input File

54

55

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

101

101

102



Figure 3.1 Grain Size Distribution for Sand Samples (Ratnam, 1996)

Figure 3.2 Boring Profiles (Bialon, 1995)

Figure 3.3 First Generation Removable Pedestal

Figure 3.4 Integrated Mass Curves for Influent and
Sand 2 Test 1

Figure 3.5 Integrated Mass Curves for Influent and
Sand 2 Test 2

Figure 3.6 Integrated Mass Curves for Influent and
Sand 2 Test 3

Effluent Probes,

Effluent Probes,

Effluent Probes,

Figure 3.7 Plot of Void Ratio vs. log of Hydraulic Conductivity;
Peat 1 and Peat 2

Figure 3.8 Integrated Mass
Peat 1 Test 1

Figure 3.9 Integrated Mass
Peat 1 Test 2

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Figure 3.15

Figure 3.16

Integrated Mass
Peat 2 Test 1

Integrated Mass
Peat 2 Test 2

Curves for Influent and Effluent Probes,

Curves for Influent and Effluent Probes,

Curves for Influent and Effluent Probes,

Curves for Influent and Effluent Probes,

Plot of Observed and Fitted Breakthrough Curves
Sand 1 Test 1

Plot of Observed and Fitted Breakthrough Curves
Sand 1 Test 2

Plot of Observed and Fitted Breakthrough Curves
Sand 2 Test 1

Plot of Observed and Fitted Breakthrough Curves
Sand 2 Test 2

Plot of Observed and Fitted Breakthrough Curves
Sand 2 Test 3

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137



Figure 3.17.

Figure 3.18

Figure 3.19

Figure 3.20

Figure

Figure

Figure

Figure

Figure

Figure

3.21

3.22

3.23

3.24

3.25

3.26

Figure 3.27

Figure 3.28

Figure 3.29

Plot of Observed and Fitted Breakthrough Curves
Peat 1 Test 1

Plot of Observed and Fitted Breakthrough Curves
Peat 1 Test 2

Plot of Observed and Fitted Breakthrough Curves
Peat 2 Test 1

Plot of Observed and Fitted Breakthrough Curves
Peat 2 Test 2

Plots of cc, D, and 0 vs. Seepage Velocity for Sand

Plot of ct vs. DT for Sand Specimens

Plot of c vs. vs 2 for Sand Experiments

Plot of D / Dmd vs. Grain Peclet Number for Sand
Experiments

Plots of c, D, and 0 vs. Seepage Velocity for Peat

Plot of Effective Void Ratio vs. Hydraulic Conductivity,
Peat 1 and Peat 2

Plot of Effective Void Ratio vs. Hydraulic Conductivity,
Peat 1 and Peat 2 With 0 = 0.37 Assumed for Peat 1 Test 1

Plot of c vs. vs2 for Peat Experiments

Plot of a vs. DT for Peat Experiments

138

139

140

141

142

143

144

145

146

147

148

149

150



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 INTRODUCTION

The City of Woburn, Massachusetts, located approximately 10 miles north of

Boston (see Figure 1.1), began drawing water from the Aberjona watershed through wells

labeled G and H in 1964 and 1967, respectively (Figure 1.2). A high incidence of

childhood leukemia in areas served by the wells led to careful analysis of the water, and

ultimately their closure in 1979. Two sites within the Aberjona watershed have since been

placed on the National Priorities List for remediation under CERCLA, also known as the

Superfund.

This project is part of the MIT Superfund Basic Research Program (MSBRP)

which has been studying the site and related problems since 1987. This project focuses on

the development of equipment and methods that will be used to characterize parameters

affecting contaminant transport through the watershed deposits.

1.2 ORGANIZATION

This project has been organized into four chapters. Brief descriptions of the

chapters are provided in the following paragraphs.

The remainder of Chapter I will provide background information related to this

research. It will include a physical description and history of the Aberjona watershed, a

discussion of the MIT research effort that is focused on the wetland, the scope and

objectives of this thesis, and a literature review. The literature review discusses the

equipment, methods, models, and results of previous research, and ends with a discussion

of the relevance of results obtained in laboratories to in situ conditions.



Chapter 2 discusses the equipment, procedures, analyses and models used in this

research program. Topics include modifications to existing equipment, data acquisition

systems, detailed experimental procedures, data reduction spreadsheets, and the computer

program used to fit transport parameters to the experimental data.

The results are presented and discussed in Chapter 3. The discussion includes

descriptions of the materials tested, the testing conditions, problems encountered,

measured and calculated results, and results fitted to the data using the computer package,

CXTFIT (Parker and van Genuchten, 1984). The results of experiments conducted using

sand and the Aberjona wetland deposits are discussed separately.

Finally, Chapter 4 summarizes the outcome of this research program, and provides

recommendations for continued work on the project.

1.3 DESCRIPTION AND HISTORY OF THE ABERJONA WATERSHED

The Aberjona watershed is located approximately 10 miles north of Boston, and

encompasses the majority of Winchester and Woburn, as well as portions of Burlington,

Lexington, Reading, Stoneham, and Wilmington (see Figure 1.1). The Watershed

encompasses approximately 25 square miles, and has a population of approximately

50,000 (MSBRP Project Book). This study concentrated on the wetland in the vicinity of

the Wells G and H Superfund site. The locations of Wells G and H are indicated in Figure

1.2.

The Surface waters draining the watershed are shown in Figure 1.3, which also

indicates Massachusetts Department of Environmental Protection (DEP) sites as well as

the two Superfund sites within the watershed. The largest waterways are the Aberjona

River, which flows into the Upper Mystic Lake, and its tributary, the Horn Pond Brook.

A representative geologic section in the vicinity of Wells G and H is presented in

Figure 1.4. A buried valley is believed to have been cut by a glacial lobe during the last ice

age, and subsequently filled with glacial till and outwash, consisting mainly of fine to



coarse sands and gravels. The valley runs along the length of the Aberjona river, which

has subsequently cut its own valley in the sediments (McBrearty, 1995).

In the vicinity of Well G and H, the depth of the till and outwash range from zero,

near the east and west banks of the valley, to approximately 120 feet beneath the Aberjona

river. Above the till and outwash is a layer 0 to 25 feet thick, consisting of sand, silt, clay

or peat. A section along the line containing Wells G and H is provided in Figure 1.5

(Myette et al., 1987).

The Aberjona watershed had been host to many industrial operations, including

tanneries, and manufacturing outlets of chemicals, glues, and pesticides. The first tannery

was established in 1666, and between 1838 and 1988, over 100 tanneries, finishing

companies and rendering operations were operated at 67 sites within the Aberjona

watershed (Durant, 1991). In addition, sites such as the Industriplex (the second

Superfund site in the watershed), which was established by the Chemical Works Company

in 1853, began to appear in the Aberjona Valley in the mid to late 1800s. Many of the

operations that were not directly producing leather goods used wastes from the leather

industries, from which they extracted grease, glue, and gelatins, while others produced

chemicals and supplies to be used by the leather industry. The net effect is that most of

the industrial waste found in the watershed was of similar composition, and contained

substances related to the leather industry such as Chromium, Copper, Lead, Arsenic, and

Zinc.

One of the large attractions of the area to industry was the availability of water,

both for use in manufacturing and to carry away the wastes. In 1876, the Massachusetts

Board of Health estimated that 7% of the inflow to the Upper Mystic Lake was waste

discharge from industries. When municipal sewer systems were placed in service,

sediments from industrial discharge began clogging them. Thus, ordinances were passed

which led to construction of settling lagoons. One series of lagoons (at the Industriplex

site) is estimated to have over 1000 tons of Chromium distributed over a 35 acre area



(Durant, 1991). Groundwater leaching through these sites into the Aberjona River has

made it a conduit for the transportation of contaminants.

After the closure of Wells G and H, a pump study was conducted to determine

their area of influence and zone of contribution. The resulting cone of depression was

3,000 ft long, 1,700 ft wide, and had a maximum draw-down of 2 feet. Additionally, up

to 60% of the water pumped from the wells was drawn through the wetland deposits from

the Aberjona River (Myette et al., 1987). Thus, contaminants being transported by the

river were drawn into the wetland sediments during the operation of Wells G and H, and

may have been consumed by the population that were being served by the wells.

Between 1970 and 1986, the rate of childhood leukemia reported in one

neighborhood served by the wells was over 4 times the expected rate based on national

statistics. A total of 28 leukemia cases were reported for this 16 year period, 16 of which

resulted in death (Latowski, 1994). Residents had complained of foul-tasting and

discolored drinking water throughout the late 1960's, but it wasn't until chloroform,

trichloroethene, and tetrachloroethene were detected at concentrations above federally

acceptable levels that the wells were closed.

When the areas surrounding Wells G and H were determined to be widely

contaminated with solvents, plasticizers, pesticides and toxic metals, well water was

quickly blamed for the high incidence of leukemia. A highly publicized series of lawsuits

ended in 1987, however a plausible cause of the childhood leukemia has never been

established (MSBRP Project Book).

1.4 MIT SUPERFUND BASIC RESEARCH PROGRAM AND THIS PROJECT

The focus of the MIT Superfund Basic Research Program can be broken into two

broad areas; 1) community assessment, and 2) community cleanup. The Community

assessment effort can be further broken down into a) projects relating to identifying the



presence of contaminants and studying their movement within the watershed, and b)

measurement of chemicals and their mutational spectra in Aberjona residents.

There are twelve projects involved in the study. The titles of each are listed below

and are generally self explanatory. Detailed descriptions can be found in the MSBRP

project book.

SECTION la.

Project 1: Chemical Transport, Transformation and Human Exposure on the
Aberjona Watershed.

Project 2: Fate of Semivolatile Organic Compounds Discharged to Surface Drainage
Basins from Superfund Sites.

Project 3: New Approaches for the Physical Characterization of Wetland Deposits
with Emphasis on Wells G and H Site. (This thesis forms part of Project
3).

Project 4: Geologic and Geophysical Characterization.

Project 5: Hydrodynamic Controls on Metal Remobilization from Sediments of the
Mystic Lakes.

Project 6: Characterizing the Groundwater Contamination at a Heterogeneous Field
Site: the Aberjona River Watershed.

SECTION lb

Project 7: Human Cell Culture Studies of Mutagens on the Aberjona Basin.

Project 8: Mutational Spectrum in Human Blood Samples from the Aberjona
Communities.

Project 9: Proteins and DNA - New Methods of Adduct Detection.

SECTION 2

Project 10: Human Cell Mutagen Formation During the Thermal Destruction of
Hazardous Wastes.

Project 11: Oxidation and Hydrolysis of Hazardous Chemicals in Subcritical and
Supercritical Water.



Project 12: Fundamental Study of Thermal Decontamination of Soils.

As indicated, this research is one phase of Project 3. Previous studies included a

determination of the hydraulic conductivities of the wetland sediments (discussed in

Section 1.6 below) and the development of a piezocone penetrometer that was used to

map the subsurface geology in the vicinity of Wells G and H, in order to obtain a better

understanding of the probable paths between the chemical sources and public water

supplies.

This research effort focused on developing experimental technology to estimate

contaminant transport parameters for deposits present in the wetland. It was the first

phase in a project that is intended to ultimately yield a model which will (a) relate the

hydraulic properties of the peat to vertical effective stress, (b) relate the physical

mechanisms of contaminant transport to vertical effective stress, and (c) describe the

behavior of a weakly sorbing ion under changing hydraulic conditions.

The motivation for the overall project is to obtain accurate predictions for

contaminant flow through the wetland deposits during, and subsequent to, the operation

of the wells. As the wells drew water through the deposits, the induced suction pressures

would have increased the effective stress in the deposits, thereby leading to consolidation

and changes in the subsurface hydraulics of the wetland system. When the wells were shut

down, the excess effective stresses would have dissipated as the pore pressures increased

to their equilibrium levels. Thus, the deposits would most likely have experienced an

elastic rebound, again altering the subsurface hydraulics of the system (Culligan-Hensley,

1994). Thus, in order to be representative of the conditions operating in the field at the

time of pumping, studies of the Aberjona deposits must consider linking changes in the soil

effective stress to the subsurface flow conditions.



1.5 THESIS SCOPE AND OBJECTIVES

The objective of this work was to develop equipment and methods that would

allow determination of the hydraulic characteristics of a sample of wetland sediment under

varying effective stresses and flow conditions. The parameters being studied for each

specimen include hydraulic conductivity, hydraulic porosity, the macroscopic dispersion

coefficient for chloride, and the inter-region transport coefficient. These parameters will

be discussed in more detail in the following section. This work will provide the basis for

an extensive series of experiments aimed at characterizing representative samples of the

different layers and types of soils existing at the Wells G and H study area.

The scope of this project was to develop the physical equipment and methods,

complete a series of proof tests on sand, and to obtain some preliminary data on the

Aberjona deposits based on existing samples which were obtained during earlier projects

(from Borings 1, 2, and 3, located as indicated in Figure 1.6). The equipment

development included modifying a standard triaxial permeameter to enable continuous

measurements of effluent concentrations, and obtaining better control over flow conditions

through alterations to the standard MIT volume change device. The work also included

the development of software for data acquisition, and the development of circuitry to

perform conductivity measurements with multiple probes (conductivity is an indicator of

ion concentration).

1.6 LITERATURE REVIEW

1.6.1 Introduction

In order to understand the processes by which contaminant transport occurred in

the Aberjona Watershed, a study of the physical and chemical hydrogeology of the

wetland deposits was proposed based on laboratory column testing (Culligan-Hensley,

1994). Laboratory column tests are sometimes used to evaluate and model the flow of



water and contaminants through soil specimens. The flow of water through a porous

media is generally described by Darcy's equation, and is a function of the hydraulic

gradient and hydraulic conductivity of the media. Contaminant transport is often

described by the advection-dispersion equation, which assumes that transport is a function

of advective flow, hydrodynamic dispersion (defined by Daniel (1993) to include diffusion

and mechanical dispersion), and retardation. To determine the hydraulic conductivity of a

soil, a known quantity of water is usually passed through a column of soil of known

diameter, under a known hydraulic gradient. The time it takes for a given quantity of

water to flow through the column is measured, and the hydraulic conductivity of the

specimen is calculated using the Darcy equation mentioned above. The parameters used in

the advection-dispersion equation are often obtained by introducing a conservative tracer

at the inlet of a column of soil, and monitoring changes in the concentration of the effluent

with time. The resulting breakthrough curve is then fitted to the transport parameters

using one of a variety of models, such as the CXTFIT code (Parker and van Genuchten,

1984) that was used for this research.

1.6.2 Equipment

1.6.2.1 Flexible Versus Rigid Wall Columns

The column is the portion of the apparatus that contains the soil specimen, and is

one of two general types; rigid wall or flexible wall (shown in Figures 1.7 and 1.8,

respectively). The rigid-wall column generally consists of a metal or plastic cylinder

clamped between two end caps. The cylinder is often a compaction mold, which facilitates

the testing of compacted soils such as those used in a soil-liner system for a landfill. Three

disadvantages of rigid columns are that (i) stresses can not be applied in any other than the

axial direction, (ii) it is difficult to determine whether or not the specimen is saturated

prior to testing, and (iii) there is the potential for side-wall leakage. For example, if a

permeant which causes the specimen to shrink is used in the experiment, there is the



potential for preferential flow paths at the side walls, or through tension cracks: this

would result in the measurement of artificially large values of hydraulic conductivity.

However, tests in rigid columns are generally easier to set up and are, therefore, generally

less costly than flexible wall tests.

Flexible-wall tests are usually performed in triaxial cells similar to those commonly

used in soil strength testing. They generally consist of a cylindrical soil specimen enclosed

in a latex, butyl, or neoprene rubber membrane, which is, in turn, submerged in a

pressurized cell fluid such as distilled water or silicon oil. Control of the confining (cell)

pressure allows approximate replication of the in situ state of stress in the soil. If the

drainage valves at the top and bottom of the soil column are closed, the degree of

saturation in the specimen can be determined by measuring the response of the pore

pressure in the specimen to changes in applied cell pressure. Assuming incompressible soil

particles and complete saturation, the ratio of the change in pore pressure to the change in

cell pressure should be approximately one (Lambe et al., 1969). If the permeant causes

the specimen to shrink or swell, the pressurized cell fluid will ensure continued contact

between the membrane and soil. Constant applied cell pressures also reduce the extent of

tension cracks under shrinking conditions. The flexible membrane facilitates the testing of

"undisturbed" specimens, because they can adapt to slightly irregular surfaces which are

present even in the most carefully trimmed specimens. Another advantage includes the

ability to monitor changes in the porosity of the specimen during testing, by measuring the

flow of the cell fluid in response to changes in the applied effective stress.

A disadvantage of the flexible-wall system that the effective stress must be

coordinated with the gradient to maintain contact between the membrane and soil. For

example, suppose a clay specimen (7.62 cm in length) was to be tested, a back-pressure of

4 ksc was to be applied to ensure saturation, and a gradient of 100 needed to be

introduced in order to complete the test within a reasonable period of time. At the influent

end of the specimen, the gradient would require a pressure of 4.76 ksc. To prevent



"ballooning" of the membrane, the minimum cell pressure would also have to be 4.76 ksc.

Therefore, the down-gradient end of the specimen (where the pressure would be 4 ksc)

must be exposed to a minimum effective stress of 0.76 ksc. In order to reduce the applied

effective stress, the gradient must also be reduced, which may require impractical test

durations for some low-permeability soils (Daniel et al., 1985).

Thus, there is not a single best column type. The choice as to whether a fixed or

flexible wall column should be used depends on the soil type and the desired test

conditions.

1.6.2.2 FLOW CONTROL SYSTEMS

There are two types of flow-control systems commonly used in column testing;

gradient control, and flow rate control. Gradient control usually consists of a constant or

falling head system in which the flow is measured. With a flow rate system, the volumetric

discharge is controlled by a constant-rate pump, and the gradient is measured, usually with

pressure transducers.

Gradient controlled systems (see Figures 1.9 and 1.10 for diagrams of constant and

variable head systems, respectively) have the advantage that they are simple, and therefore

inexpensive to set up. They are satisfactory when the hydraulic conductivity of the soil

allows measurable flow rates at relatively low gradients. However, with low permeability

soils, high gradients must be applied in order to obtain measurable flow within reasonable

time periods. In addition to the problems mentioned above, high gradients (which are not

common in natural ground water) can cause consolidation of the soil specimen due to

seepage forces, and thus change the hydraulic conductivity of the soil. High gradients can

also cause migration of particles within a specimen, which could further change the flow

characteristics of the specimen. On the other hand, very low gradients applied to

specimens of low hydraulic conductivity may require extended testing periods (on the

order of months to years). Within that time frame, bacterial growth and fabric changes



due to changes in the pore solution chemistry can also alter the flow properties of the

specimen (Olsen et al., 1985).

The flow rate system (see diagram in Figure 1.11) eliminates many of the problems

associated with gradient driven systems. Assuming saturation of the system, steady flow,

even at low gradients, is established quickly. Olsen et al. (1985) report times required for

equilibrium ranging from less than a minute for sand, to approximately 200 minutes for a

silty clay specimen. Since the flow rate is controlled, the head, and therefore the hydraulic

conductivity, can be measured as soon as steady flow is established. Thus, with shorter

times to steady state, lower gradients can be used, better simulating in situ conditions.

Furthermore, lower gradients permit lower effective stresses in flexible wall systems.

1.6.2.3 Measurement of Breakthrough Curves

Chemical transport parameters are determined using columns similar to those

described above. Measurements of hydraulic porosities, hydrodynamic dispersion

coefficients, inter-region transfer coefficients, and retardation factors (discussed below,

together with the computer model) are usually accomplished by fitting theoretical curves

of concentration, as a function of time and distance along a column, to measured values

obtained in a column test (Shackelford, 1994). If the distance, x, along the column is

equal to the column length, L, the curves are known as break-through curves. Although it

is possible to measure concentrations within the soil column (x < L), this approach is often

more complicated than measuring the concentration of the effluent, and therefore not

commonly done. This section will first discuss some of the experimental methods used to

obtain breakthrough curves, and then one of the models used to fit theoretical curves to

the experimental data.

There are two different concentrations commonly measured, namely, flux averaged

and volume averaged. The flux averaged concentration is the mass passing through a

given area over some time interval. The volume averaged is the average concentration in



the pore water of a specified volume of the specimen at a specific point in time. The

effluent breakthrough curve, which is being considered here, is, by definition, a flux

averaged concentration, being measured at x = L. Breakthrough curves can be measured

either for an injected pulse of solute, or for a continuous injection. For an injected pulse

analysis, a finite amount of a tracer solution is introduced at the influent end of the

specimen, and flushed through with distilled water. An injected pulse yields a "bell

shaped" breakthrough curve of concentration vs. time. In a continuous injection

experiment, the tracer is continuously injected at the influent end of the specimen, and the

resulting curve is "S shaped." Figure 1.12 shows a comparison of the two types of curves.

In Figure 1.12, time has been normalized and is expressed as pore volumes of flow.

Similarly, the concentration of the tracer has been normalized with respect to the

concentration initially injected. The disadvantage of a continuous injection system is that

the concentration of the influent must be held constant for the duration of the test,

whereas for the pulse-type experiment the concentration of the influent must be held

constant only for the duration of the pulse (Shackelford, 1994). A diagram of an

experimental apparatus used for the pulse-type column tracer experiment conducted by Li

et al. (1994) is given in Figure 1.13. This happens to be a flow-controlled experiment

conducted in a rigid-wall column. Although not shown, one can imagine two beakers

connected to the pump by a three-way valve. Water would be pumped through the

specimen until steady flow was obtained, the valve would then be redirected to the tracer

solution for the duration of the pulse, after which it would be returned to the beaker of

water for the remainder of the experiment. Li et al. (1994) collected the effluent and used

an auto-fraction collector to specimen the effluent over a time period, 6t. The value of the

sampling time was taken to be the middle of the sampling period. The concentration of

the tracer in each specimen was obtained using an ion analyzer.

An alternative system used by Taylor et al. (1987) is shown in Figure 1.14. They

used a constant head system, a rigid-wall column, and a flow-through system to measure



the changes in concentration continuously with time. Although this setup is designed for

continuous injection, a second, identical, influent system could be added with a three-way

valve at the inlet of the specimen to accommodate a pulse-type test.

In either of the systems described here, the rigid columns could be replaced with

flexible-wall columns. Additionally, the electrical conductivity of the effluent could be

measured, either continuously with a flow-through device, or using a fraction collector

together with a bench-top conductivity probe, and related to the concentration in order to

obtain the break-through curve (Head, 1983).

There are two types of probes commonly used to measure the conductivity of a

medium in the laboratory; two-pin and four-pin. With a two-pin probe, a known,

constant, alternating current is usually forced through the circuit, the voltage across the

pins is measured, and the resistance of the solution can be directly calculated (assuming a

geometric probe constant of one). Long-term stability problems with this type of probe

often occur when the resistances of the probe wires change due to oxidation, loss of

platinum black coating, etc.

The four-pin probe was developed to overcome the long term stability issue. A

schematic of a four-pin system is provided in Figure 1.15. An alternating current is

applied to the system, and the voltage across the inner two pins (Vm), as well as the

voltage (Vr) across the reference resistor (with known resistance R), is measured. Since

the current, I, is constant around the circuit, the resistance of the solution (Rs) is

proportional to VmRVr. In this system, there is a constant of proportionality which is

based on the probe geometry that can be calibrated for. In theory, problems with stability

are eliminated because voltage is a high impedance measurement, thus, small changes in

the resistance of the inner two pins do not affect the voltage measurement across them.

Retardation factors are an indicator of the ability of a given soil to adsorb a given

solute during transport. Retardation, usually indicated by tailing in a breakthrough curve,

is generally defined as the ratio of the advective seepage velocity of a non-sorbing solution



to the average velocity of the center of mass of the sorbing chemical species being studied.

Instead of using a conservative tracer in the above systems, the chemical species in

question is used as the tracer, and an appropriate detection system is used to monitor the

changes in concentration with time.

1.6.3 Model

One model used to fit measured to theoretical breakthrough curves is CXTFIT,

developed by Parker & van Genuchten (1984). CXTFIT is a computer program, written

in FORTRAN, that uses a nonlinear least-squares inversion method to identify several

parameters in a number of one-dimensional theoretical transport models. One of the

models is a one region model (ORM) based on the advection-dispersion equation, and

includes terms to account for linear equilibrium adsorption, zero-order production, and/or

first order decay. Another model, which they call a "two-site/two-region non-equilibrium

model," (TRM) does not consider production or decay. CXTFIT also contains models for

the evaluation of field tracer studies that are beyond the scope of this paper.

The TRM was the primary model used for the purpose of this research, however

the ORM was also used to fit a curve to the data for comparison purposes. The TRM is an

extension of the ORM, thus the following discussion will be limited to the two-region,

two-site model. "Two-site" refers to the different constituents of a soil specimen for

which sorption occurs at varying rates, for example the soil minerals and organic matter.

At one site, adsorption is assumed to be instantaneous ("type-1" sites), and at the other,

adsorption is assumed to be time dependent ("type-2" sites).

"Two-region" refers to mobile and immobile regions of flow. Mobile regions are

pore spaces where there is actual flow of fluid, and advective-dispersive transport takes

place. In immobile regions, the pore fluids are stagnant, and transport is assumed to be

diffusion-limited (Parker and van Genuchten, 1984).

The governing equations for this model as given by Parker and van Genuchten are:
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where ®m and Eim are the volumetric water contents (volume of water / total volume of

porous medium) in the mobile and immobile regions, respectively (such that 0 = ®m + 0

im ), f is the fraction of sorption sites that equilibrate with the mobile liquid phase, p is the

bulk density of the porous medium (mass of solids / total volume), k is an empirical solid-

liquid partition coefficient, cm and cim are the resident concentrations in the mobile and

immobile regions, respectively, Dm is the hydrodynamic dispersion coefficient for the

mobile region, q is the liquid flux density ( = vs5 m, where vs is the seepage (pore)

velocity = q/n) and ac* is the first order rate constant that governs the rate for solute

transfer between the mobile and immobile regions.

When a conservative tracer is used, as was the case for this research, k approaches

zero, and Equations la and lb can be simplified to

dOc cim d 2cm cm (2a)
Om C +O(m -= mDm q (2a)

9t 4t tdx 2  dx

and

dcim
Oim ci a(cm- cim). (2b)

dt

In dimensionless form, Equations 2a and 2b become
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and

where C is the normalized concentration (c/co) in either the mobile (Cm) or immobile

(Cim) regions, T is dimensionless time (pore volumes of flow = vst/L), f3 is the ratio of

mobile to total porosity (rm/E), P is the Peclet number (vsL/D), X is the normalized

distance (x/L), and co is the dimensionless mass transfer coefficient (cL*L/q) (Li et al.).

In using the two-site/two-region model, the data points for the break-through

curve are entered as part of an input file along with a number of program-control

parameters, such as the number of observations, and the number of desired iterations. The

seepage velocity, dispersion coefficient, retardation coefficient, duration of pulse, ratio of

mobile region to total pore space, and a normalized coefficient describing transport

between the mobile and immobile regions can all either be fitted to the data, or fixed if

their values are known. Variables that are being fitted can be confined between reasonable

upper and lower limits, if such limits are also known in advance. Initial estimates of the

variables to be fitted are also required in the input file. For this research, the retardation

factor was fixed at unity, and the remaining variables were fit.

The output file produced by the program contains a summary of the fixed and

fitted variable values, a statistical evaluation of the fitted values, and a table of actual and

fitted data which can be plotted for comparison.

Li et al. provided insight as to the behavior of a in their study of the mechanisms

controlling mass transfer in locally stratified soils. To understand their conceptual model,



refer to Figure 1.16, which is reproduced from their paper, and applies to stratified soils

with constant hydraulic conductivity contrast between the layers. If the velocity difference

between the two layers is large (as shown in Figure 1.16.a), the plumes will separate, as

shown, and the resulting concentration gradients will cause inter-region diffusion to

dominate mass transfer. In this case, Li et al. indicate that the mass transfer coefficient, a.,

should scale as DT/h2, where DT is the inter-region diffusion coefficient, and h is the

thickness of the stratified layers). If, on the other hand, the velocity contrast between the

regions is small (as shown in Figure 1. 16.b), the plumes will move together, there will not

be a large concentration gradient between the regions, and longitudinal dispersion (due to

longitudinal interaction) will dominate inter-region mass transfer. Under these conditions

Li et al. theorize that ct should scale as V2/D. For the case where the grain Peclet number

(seepage velocity * grain size/molecular diffusion coefficient) is less than unity, Li et al.

observed that D did not change linearly with velocity, and a. scaled as V2 . For the case

where the grain Peclet number was greater than unity, D and ca were both observed to

scale linearly with velocity. Their work also indicated that 3 depends on soil structure,

and should be approximately constant for a given soil.

1.6.4 Previous Studies of Hydraulic Characteristics of Peat

There have been few studies of the hydraulic characteristics of wetland deposits,

and thus the migration of water and contaminants in these soils is poorly understood

(Hoag and Price, Price and Woo). The hydraulic conductivity of peats will be discussed

first, based on studies by Bialon (1994) and Boelter (1964). This will be followed by a

discussion of contaminant transport in peats, which is based on studies by Hoag and Price

(1995), Loxham and Burghardt (1983), and Price and Woo (1986).



1.6.4.1 Hydraulic Conductivity of Peats

Boelter (1964) performed a number of field and laboratory experiments to

determine the hydraulic conductivities of eight different peats from northern Minnesota.

He reported that field-measured values were consistently lower than lab-measured values,

but did not offer an explanation. He used a rigid-wall system in his laboratory

experiments, which, as discussed above, could result in preferential flow paths along the

side walls, thus possibly explaining the higher laboratory values. For relatively

undecomposed moss found near the soil surface, he reported hydraulic conductivity values

in the range of 6 x 10-4 cm/sec to 4 x 10-2 cm/sec. For more dense, highly decomposed

materials, he reported values as low as 8 x 10-6 cm/s.

Bialon (1995) completed an extensive study, based primarily on constant rate of

strain (CRS) consolidation testing, to characterize the hydraulic conductivities of the

materials at the Wells G and H Superfund site. The results of his testing program are

summarized in Table 1.1 and 1.2 for Borings I and 2, respectively (the locations of these

borings are mapped in Figure 1.6). He reported hydraulic conductivities ranging from 3 x

10-4 cm/sec to 2 x 10-6 cm/s. For the sedge materials (which were tested for this thesis),

he reported values ranging from 9 x 10-6 to 2 x 10- 5 cm/sec.

Bialon also performed a number of analyses aimed at enabling him to predict the

insitu hydraulic conductivities of the wetland deposits. Although he reported that Ck, the

ratio of the change in void ratio to change in log of hydraulic conductivity, varied as the

initial void ratio and organic content, he found no direct relationship between hydraulic

conductivity and either void ratio or organic content. The lack of correlation led him to

develop and test three different models, all of which attempted to relate void ratio, organic

content, and hydraulic conductivity. These models are described in sequence below.

In the first model, Bialon found a void ratio that was common (but corresponded

to different hydraulic conductivities for different specimens) to every specimen within a

soil strata, and attempted to correlate hydraulic conductivity and organic content at that



void ratio. In the second model, he found a hydraulic conductivity that was common (but

corresponded to different void ratios for different specimens) to every specimen within a

soil strata, and attempted to correlate void ratio and organic content at that hydraulic

conductivity. For the third model, Bialon assumed that some portion of the pore space

was not taking part in the flow through the specimens, and attributed the dead space to

pore water being physically bound to organics, and thus immobile. He took a common

hydraulic conductivity for the specimens within a strata, assumed an effective void ratio of

1.5, and calculated the volume of "bound water" based on the measured void ratios,

measured organic contents, and assumed unit weights of both mineral and organic solids.

The bound water was expressed as a multiple (X) of the volume of organics, and

correlated to organic content. Bialon reported values of X ranging from 1.9 to 2.3 for

sedge specimens with organic contents of 56% and 73%, respectively.

Different models were found to better predict the hydraulic conductivities of

specimens from different strata, thus none of the three models were selected over the

others as having better universal predictive capabilities. Additionally, there was no

consistent trend observed with respect to over or under predicting the measured values.

The estimated values he obtained were generally within one order of magnitude of the

experimental hydraulic conductivities.

1.6.4.2 Transport of Contaminants in Peat

Loxham (1983) used computer aided image analysis to study sections of peat

specimens, which he described to be a "low moor, sedge peat," and concluded that about

15% of the volume of those specimens was taking part in pore fluid movement.

Additionally, the specimens had porosities of approximately 85%, hence, approximately

18% of the void space (13 w 0.18) was taking part in the flow. Based on these data, he

defined an active zone, in which solute migration occurs by advection, dispersion, or

molecular diffusion, and an inactive zone, in which transport could only occur by



molecular diffusion. He further assumed that transfer between the two zones occurred

only by molecular diffusion across the interface between them. A schematic of his

assumed pore-space geometry is reproduced from his paper and presented in Figure 1.17.

Using this geometry, and the assumption that adsorption is both linear and reversible in

both zones, Loxham presented the following equations for the active and inactive zones,

respectively:

C _1 dC +D C +1 dCS= (-qn I - +D +2 b =o ) (4a)
Ot R Oz dz2  nad9x

and

OC_1 -0 2 C9• D )  (4b)
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where R and r are the retardation factors for the active and inactive zones, respectively, C

the solute concentration, na the active porosity, q the rate of fluid flow divided by the area

of the specimen, D the hydrodynamic dispersion coefficient, D the in-pore molecular

diffusion coefficient, x the distance perpendicular to flow from the zone interface, z the

distance in the direction of advective flow, and t the time coordinate.

Loxham ran column tracer experiments to test the model, the results of which are

given in Figure 1.18. The best fit occurred with a ratio of active zone to total volume of

0.14, and an in-pore molecular diffusion coefficient of 3.7 x 10-6.He concludes (as

Figure 1.18 indicates) that the model results in a better fit than the advection-dispersion

equation without consideration of the structure of peat (i.e. active and inactive zones),

which he refers to in the figure as Equation 8.

Price and Woo ran a series of column tracer tests through poorly decomposed

mosses and sedges, and used the solution to the one-dimensional advection-dispersion



equation, with retardation, to fit a curve to their data. The equation used as a model in

their study was:

C 1 x -v't v't x+v't
-- [erfc( +)exp )erfc( )] (5)Co 2 2 (D't) D' 2 (D't)

where v' = v/R with v being the linear velocity (seepage velocity, calculated using the

active porosity, which was measured from thin sections), R the retardation coefficient, D'

= D/R, and erfc is the complementary error function.

To determine whether the chloride tracer was sorbing onto the peat, they

conducted a series of batch tests in which the chloride solution was mixed with peat

specimens. The mixture was allowed to equilibrate for 24 hours, before a chloride analysis

was performed on the solution. After the equilibration period, no change in concentration

could be detected, thus it was concluded that none of the chloride ions had sorbed to the

solid particles.

They ran two tracer tests, one at a fast rate (v = 0.043 cm/sec) and one at a slow

rate (v = 0.0081 cm/sec). They got the best fit using retardation coefficients of 1.6 and

1.5 for the slow and fast tests, respectively. Since there was no sorption, but clear

evidence of tailing (or retardation of mass transport), they concluded that the retardation

was due to the solute diffusing into and out of the inactive pore spaces of the specimen.

With faster flow, there was less time for diffusive flow, hence the lower retardation

coefficient. Their results are reproduced as Figure 1.19, and show that better fits are

obtained when a retardation factor other than unity is assumed.

Hoag and Price (1995) conducted a field solute transport experiment at a

Newfoundland blanket bog, in which they released 200 liters of a 1.4 x 105 mg/I solution

of NaCl into the well instrumented wetland area. Although they didn't explicitly describe

the subsurface materials, they did report that the primary species covering the surface of



the test area was Sphagnum Hummocks. The solution was released slowly enough (1

liter/min) so that it seeped into the ground rather than running over the surface, yet

quickly enough so that they considered it an instantaneous source. The plume was

monitored over a 30 day period.

Hoag and Price reported that the average groundwater flow was 2.2 times faster

than movement of the front of the plume (thus implying an "effective retardation

coefficient" of 2.2). They state that the majority of the flow took place in the upper

0.45 m of the deposits (they call the upper, hydrologically active region the acrotelm).

Thus the retardation was due both to diffusion into and out of the immobile pore space

within the acrotelm, as well as diffusion into and out of the catotelm, (lower region where

the material is more highly decomposed, the water storage approximately constant, and

the average hydraulic conductivity can be 5 orders of magnitude lower than that for the

acrotelm). They also measured temporary decreases in concentration during rain events.

They hypothesized that mixing due to the rain may have remobilized the solute that had

diffused into the immobile zone, thus allowing an increase to the measured pre-rain

concentrations. Finally, they noted that evaporation did not have an appreciable effect on

the solute concentration, which was attributed to the small flux derived from the

unsaturated zone.

1.6.5 The Correlation Between Laboratory Data and In Situ Conditions

The correlation between laboratory and in situ estimates of hydraulic transport

parameters is often poor. Olson and Daniel (1981) cite over 60 comparisons of field and

laboratory values of hydraulic conductivity. They report ratios of field to laboratory

hydraulic conductivities ranging from 0.3 to 46,000, however 90 percent fall in the range

from 0.38 to 64.0. Similarly, Taylor et al. (1987) report that "Field measurements of

dispersivity have generally produced results that are three to four orders of magnitude

greater than laboratory tests." However, Taylor et al. also indicate that with careful



sampling they were able to obtain laboratory values of dispersivity that were within one

order of magnitude of the in situ values. The consistent difference between field values

and those obtained in the laboratory are generally attributed to scale effects. As Taylor et

al. state, it is not possible to obtain a small scale specimen for laboratory testing that is

statistically representative of the in situ porous medium. As discussed above, Price and

Woo also attribute differences between lab and field-scale experiments to precipitation and

evaporation during test periods, and to large scale variabilities in hydraulic conductivities

and dispersivities which are characteristic of natural systems.



Range of Various Properties and Test Results for the Wettand Deposits
for Boring 1

Physical Properties and Organic Content

Layer Depth
(cnm)

Typha Peat 50-100

Sedge Peat 100-140

Red Woody Peat

Diatomaceous
Earth

Void Moisture
Ratio Content

(X)

6.48-9.65 419-699

13.73 870

140-175 11.10-13.00 765-875 0.98-1.04

175-250 1.31-9.51 75-450 1.0Z-1.48 4-36

Engineering Properties

Layer Depth
(cm)

Typha Peat 50-100

Sedge Peat 100-140

HydrauLic
Conductivity

(cm/sec)

5.2E-06 to
2.0E-05

2.0E-05

Ck

1.04-1.67

Compressibility
Parameters

RR CR

0.013-0.029 0.301-0.98

0.466

Red Woody Peat

Dlatomaceous
Earth

140-175 6.0E-06 to
8.5E-05

175-250 • 2.OE-06 to
1.7E-04

1.51-1.86 0.027-0.033 0.323-0.649

0.23-3.38 0.002-0.016 0.224-0.412

Table 1.1: Engineering and Physical Properties of Abeijona Deposits; Boring 1 (Bialon,
1995)

Unit
Weight

(gm/cm'3)

1.00-1.10

.96

Organic
Content

(X)

63-96

83

73-90



Range of Various Properties and Test ResuLts for the Wettand Deposits
for Boring 2

Physical Properties and Organic Content

Layer

Live Root Mat

Depth

(cm)

0-30

Void Moisture
Ratio Content

)3.46-6.00 330-4

3.46-6.00 330-475

Typha Peat 30-65 4.67-6.00 300-430 " 1.03-1.06 51-61

Sedge Peat 65-100 6.48-10.44 481-800 0.97-1.04 56-81

Red Woody Peat 100-140 5.42-9.45 350-645 0.95-1.03

Engineering Properties

Layer

Live Root Mat

Depth
(cm)

0-30

Hydraulic
Conductivity

(cm/sec)

6.0E-05 to
1.OE-04

Typha Peat 30-65 O.SE-06 to
2.OE-05

Sedge Peat 65-100

Ck

0.51-0.96

ConpressibiLity
Parameters

RR CR

0.112 0.275-0.361

:0.92-1.29 0.064-0.096 0.313-0.347

8.OE-06 to 1.33-1.79
8.9E-05

*** 0.302-0.391

Red Voody Peat 100-140 8.5E-05 to
3.1E-04

0.87-1.63 0.045-0.086 0.429-0.619

Table 1.2: Engineering and Physical Properties of Aberjona Deposits; Boring 2 (Bialon,
1995)

Unit
Weight

(gm/c-'3)

1.08-1.17

Organic
Content

(%)

35-53

56-81
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Figure 1.7 Schematic of Rigid Wall Permeameter (Daniel et al., 1985)



Figure 1.8 Schematic of Flexible Wall Permeameter (Daniel et al., 1985)
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Figure 1.11 Schematic of Flow-Control Permeability System
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Figure 1.14 Schematic of Column Experiment Apparatus (Taylor et al., 1987)
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CHAPTER 2

EXPERIMENTAL EQUIPMENT AND PROCEDURES

As discussed in Chapter 1, the objective of this work was to develop the

technology required to study the hydraulic characteristics of wetland sediments under

varying effective stresses and flow conditions. This required a system that (i) enabled

control of effective stresses and flow conditions, (ii) allowed the introduction of a pulse of

tracer solution, and (iii) was capable of monitoring changes in the concentration of the

effluent with time.

A flexible wall column was selected to allow control of effective stresses, as well

as to reduce preferential flow paths along the sides of the specimen. Furthermore, by

measuring the flow of fluid into and out of the cell via a double burette system, changes in

the volume, and thus the porosity, of the specimen could be monitored.

The usual method of measuring hydraulic conductivity in the laboratory

(establishing a known gradient and measuring the flow) was abandoned in favor of a

system that controlled the flow (and allowed the gradient to be measured). A flow-

controlled system was selected over a gradient-controlled system to provide better flow

stability in a shorter period of time. This form of system is especially useful for materials

with high hydraulic conductivities, for which steady flow is difficult to establish using

gradient controlled systems. The gradient was measured with pressure transducers, to

allow calculation of hydraulic conductivity, as was the effective stresses applied to the soil.

Measurement of the electrical conductivity of the effluent was selected as the

means to monitor variations in the influent and effluent concentration with time. The

effluent conductivity probes were placed in the pedestal to eliminate the need to have

wires penetrating the cell. Flow through the samples was thus required to be downward

during testing. Two independent conductivity probes were placed in the pedestal to allow

redundant monitoring of the effluent concentrations. In addition, a third conductivity



probe was placed in the influent line to provide an indication of the mass entering the

specimen, thus enabling a check on the mass balance. Two additional conductivity probes

were placed in the effluent drainage line.

The flow system consisted of two influent reservoirs with air-water interfaces

connected to the same air-pressure regulator. Equal pressures in the influent lines were

designed to maintain a steady flow (and thus gradient and effective stress) while the pulse

of tracer solution was being introduced. The system maintained constant pressure and

supply of influent at the up-gradient end of the specimen, while the effluent was restrained

by a moving piston at the down gradient end, thus forcing a steady flow rate.

The data were recorded using two systems. The influent conductivity, pressures,

flow-control piston displacement, and temperature were recorded using the MIT

geotechnical laboratory's central data acquisition system (discussed below), while the

effluent conductivities were recorded on an IBM PC. An automated conductivity meter

was developed to collect data from up to four two-pin conductivity probes at a time. The

conductivities were then converted to concentrations, and entered into the CXTFIT model

to obtain the fitted hydraulic properties of the specimen.

2.1 TRTAXIAL PERMEAMETER

2.1.1 Triaxial Cell

A standard MIT triaxial cell with a removable pedestal (see Figure 2. 1) was

selected for this test series to take advantage of existing equipment and parts. The cell

manifold and pedestal were modified as discussed in sections 2.1.2 and 2.1.4, respectively.

In addition, the fixed top cap was replaced with an independent top cap to facilitate the

application of isotropic stresses. The triaxial cell was designed to accommodate a

cylindrical specimen 3.56 cm (1.4 in.) in diameter by 8.13 cm (3.2 in.) high. The specimen

was confined on the top and bottom by filter fabric, porous stones, and the top cap and

pedestal, respectively. The circumference of the specimen was confined by two



prophylactic membranes, which were sealed to the top cap and pedestal using o-rings.

Isotropic stresses were applied to the specimen via the cell fluid (distilled water). The cell

itself was made of clear acrylic to allow visual inspection of the specimen, which helped in

the detection of problems during testing. The acrylic cylinder is clamped between the base

and top plate assembly as indicated in Figure 2.1. The valve on the top plate facilitates

venting during filling or draining of the cell. The cell was filled through the cell-pressure

connection.

The experiments discussed in this paper were performed under isotropic stresses,

therefore, the loading piston in the top plate assembly was not utilized. To reduce the

probability of leakage, the rolling diaphragm was not cut to allow penetration by the

piston. However, the loading piston was left in place to support the diaphragm.

Drainage lines were placed in the center of both the top cap and pedestal. The top

cap was connected, via a three-way valve, to two influent reservoirs, one containing

distilled water, and the other a salt tracer solution (0. 1M NaC1). The pedestal was

connected (also via a three-way valve) to the effluent reservoir (flow control device), as

well as to the influent reservoir containing distilled water to facilitate back-pressure

saturation.

All metal components in contact with the permeant were made of stainless steel to

prevent corrosion and reaction. Non-metallic components included the acrylic top cap,

the pedestal epoxy, Teflon tubing, Buna-N O-rings, the carborundum porous stones, and

filter fabric.

2.1.2 Manifold Control System

Figure 2.2 is a diagram of the manifold control system, which illustrates the

functions of the various valves. The pressures of the influent and cell fluid were

established at the air-fluid interface of the respective reservoirs. Air pressures were

controlled by Fairchild regulators, shown in the wall system of Figure 2.2. To maintain



constant influent pressures during different phases of testing, both of the influent

reservoirs were connected to the same air-pressure regulator. The pressure gauges in the

wall system provided continuous indication of the cell and pore pressures.

The pressure transducers were made by Data Instruments, Inc. and have a range of

0 to 14 ksc (0-200 psi) with 100 mV full scale output and 5.5 volt input. Their output is

stable to ± 0.02 mV, resulting in a stable pressure resolution of± 2.6 x 10- 3 ksc. To

enable detection of small gradients, the zeros of the salt and back-pressure transducers

were calculated to produce readings equal to the pressure measured by the pore-pressure

transducer under no flow conditions, at elevated back-pressures (approximately 4 ksc).

The double burette, which is connected to the cell fluid, was used to measure the

volumetric change during consolidation of the specimen. Assuming complete saturation,

and no leakage, the change in the volume of the cell fluid should approximately

correspond to the change in the volume of the specimen.

The effective stress was assumed to be the difference between the pressure of the

cell fluid, and the average of the pressures at the pedestal and top cap. The minimum

effective stress was therefore half of the pressure gradient, as the cell pressure must be at

least as great as the pressure at the up-gradient end of the specimen to prevent ballooning

of the membranes. The actual equilibrium effective stress was, therefore, not uniform

throughout the specimen, rather it varied linearly along the gradient within the specimen.

2.1.3 Flow-Control System

Figure 2.3 illustrates the flow-control system. The pressure at the influent end of

the specimen is held steady via the manifold system, while the flow-control device draws

pore fluid from the effluent end of the specimen at a constant rate. Steady state flow was

assumed when the pore pressure at the pedestal reached a constant value (i.e. when the

gradient became constant).



The flow control device is similar to the standard pressure/volume control devices

used in the MIT triaxial systems (Figure 2.4), was modified to allow a wider range of flow

rates (approximately 10-5 cc/s to 10-1 cc/s), as well as a larger total volume of flow

(approximately 270 cc). The larger range of flow rates was attained with the transmission

system described below. The total volumetric flow capacity was improved by increasing

the diameter of the piston to 4.128 cm (1.625 in.), and the stroke of the flow control

device from the standard 15.24 cm (6 in.), to 20.32 cm (8 in.). The device consists of a

stainless steel cylinder, clamped between two stainless steel end caps. The stainless steel

piston extends through the bottom end cap into the cylinder, and is sealed to the end cap

with O-rings. As the piston is withdrawn, pore fluid is drawn from the specimen into the

flow control device.

The piston is driven by an electric DC motor and transmission system, as shown in

Figure 2.5. The motor and a matching 180:1 gear reducer can be placed in one of two

locations on the transmission to gain additional reductions of 5:1 or 400:1 respectively. In

the 5:1 position, a 4-thread worm (Gear A) drives a 20 tooth, 4 thread worm gear (Gear

B), which is attached to the ball-screw actuator drive shaft. In the 400:1 position, a single

thread worm (Gear C) drives an 80 tooth, single thread worm gear (Gear D), which shares

a shaft with a 16-tooth spur gear (Gear E), driving an 80 tooth spur gear (Gear F), which

is attached to the actuator drive shaft. The ball screw actuator unit moves the piston 2.54

cm (1 in.) for each 25 revolutions of the drive shaft. The full stroke of the actuator, and

therefore the piston, is 20.32 cm (8 inches).

The range of flow rates can be altered by substituting components in the drive

system. For example, the flow rate can be reduced by a factor of four by replacing the ball

screw actuator with one that produces 2.54 cm (1 in.) of travel per 100 revolutions of the

drive shaft. Alternatively the flow rate can be increased by replacing the gear reducer

(attached to the DC motor) to achieve reductions of 100:1, 50:1, 25:1, and 12.5: 1, rather

than 180:1.



The motor has a tachometer which puts out approximately 3.5 volts per thousand

rpm (± 10%). The input to the motor is controlled by a manual rheostat, which is adjusted

until the motor speed (as indicated by the tachometer) associated with the desired flow

rate is attained.

The displacement of the piston is measured by a direct current displacement

transducer (DCDT). The DCDT barrel is attached to the flow-control device by an

aluminum mounting block, as shown in Figure 2.4. The stem is attached to the plate

which connects the ball-screw actuator to the piston. The DCDT output is stable to ± 2

mV, resulting in a stable displacement resolution of ±4.5 x 10-3 cm (1.8 x 10-3 in.).

2.1.4 Pedestal

A section of the removable pedestal is shown in Figure 2.6. The seating area rests

on the base of the triaxial cell, and the narrow gap between the pedestal and the base is

sealed with o-rings. The pedestal is held in place by the cell pressure, and has a threaded

port in the bottom for the o-ring fitting on the end of the drainage line. The stainless steel

component of the pedestal is a continuous machined piece. The transducers (discussed

below) were fit into a machined epoxy tube (cast with the same epoxy as that used for the

rest of the pedestal to ensure proper adhesion), which held them in place while the

remaining epoxy was cast around them. The tube has inside diameter = 0.159 cm (1/16

in.) and serves as the pedestal drainage path. The epoxy was chosen to be machinable,

non conducting, resistant to chemicals, and adhesive to stainless steel as well as to

components of the transducers (the epoxy manufacturer's data sheets are attached as

Appendix A).

There were four transducers cast into the pedestal, three to measure the

concentration of the effluent, and one to measure the temperature of the effluent. The

three intended to measure the concentration of the effluent included a four-pin

conductivity probe (or two independent 2-pin probes), a pH probe, and a probe to



measure the oxidation-reduction potential (ORP) of the effluent. Reliable readings were

never obtained with the later two due to suspected problems with the reference electrode.

The temperature transducer is an Analog Devices AD 592C (the data sheets are

included in Appendix B), which has a linear output of 1 micro amp per degree Kelvin and

reads 298.2 gA at 298.2 OK (25 °C). The AD 592C has an operating range of-25°C to

105*C and is positioned to measure the temperature of the fluid in contact with the top

surface of the pedestal, thus representing the temperature of the effluent. The output from

the transducer is converted from micro-Amps to millivolts with the simple circuit shown in

Figure 2.7. The circuit also has a variable resistor to eliminate the calibration offset at

25 OC. The AD 592C is accurate to 0.5 OC, and linear to 0.15 °C when operated between

0 and 70 °C (Analog Devices, 1992). The output signal from the circuit has a resolution

of 0.1 mV (0.1 °C), and is stable to ± 0.2 mV (+0.20C).

The conductivity electrode was made by Microelectrodes, Inc. (Manchester, NH),

and consists of four parallel platinum wires (0.0508 cm or 20/1000 in. dia.) spaced 0.159

cm (1/16 in.) on center, and placed horizontally to span the drainage path in the pedestal,

as shown in Figure 2.6. The top wire is located 0.635 cm (1/4") below the top surface of

the pedestal. The wires are connected to the conductivity meter via banana plugs. The

conductivity electrode can either be used as a single four-pin electrode, or as two

independent two-pin electrodes. The two-pin mode was used during the evaluation tests

discussed in this thesis in order to provide redundant measurements of effluent

concentration. The operation of the two-pin conductivity probes, and the associated

circuits, will be discussed in the data acquisition section below. Four-pin conductivity was

discussed in Section 1.6.2.3.

There are two other conductivity probes, similar to the four-pin probe located in

the pedestal, built into the system. The first was placed in the influent line between the top

cap valve and cell base plate, and is used to measure the mass of the tracer solution

introduced. The second was placed in the effluent line down stream of the manifold



system, and provides redundancy to the pedestal measurements. A diagram indicating the

locations of all of the conductivity probes is provided in Figure 2.8. Sections of these

flow-through probes are shown in Figure 2.9. The probe housings were cast from the

same epoxy used for the pedestal, and have Swage-Lock fittings threaded into their ends

to facilitate in-line placement. These also can be used as either two-pin or four-pin

probes, and, again, the two-pin mode was used for the work presented in this thesis.

The pH electrode consists of a glass bulb protruding into the flow path as shown in

Figure 2.10. The oxidation-reduction electrode is a platinum wire spanning the drainage

path as shown in Figure 2.6 (identical to one of the conductivity pins). The pH and ORP

probes share the same reference, which is located in the effluent line leading from the

pedestal. Measurements with these electrodes, and the problems experienced, are

discussed in the section on data acquisition systems below. Information sheets from the

manufacturer can be found in Appendix B.

2.2 Data Acquisition

Data from the experiments were recorded using two separate systems, as discussed

above. Pressure, temperature, piston displacement, pH, ORP, and influent conductivity

data were ultimately recorded on the central data acquisition system used in the

geotechnical laboratory at MIT. The output signals from the pressure transducers and

DCDT, as well as the input voltage to these devices, were recorded directly. Data from

the influent conductivity probe, temperature transducer, pH probe, and ORP probe were

processed by intermediate circuits and meters, as discussed below, before being recorded

on the central data acquisition system. Data from the effluent conductivity probes were

obtained from an automated conductivity meter developed at MIT, which is discussed in

Section 2.2.2.2.



2.2.1 MIT Geotechnical Central Data Acquisition System

The central data acquisition system is an expanded-channel Hewlet-Packard

HP3497A data acquisition unit which works in conjunction with an IBM-compatible 486-

66 personal computer. The system was driven by EASYDAT software, written by Dr.

John T. Germaine of MIT, and Mr. R.S. Ladd of Woodward-Clyde Consultants (Sheahan,

1991). The system presently has 125 usable channels, of which 12 were used in this

project (#60 - #71).

2.2.2 Conductivity Measurement and Data Logging System

2.2.2.1 Conductivity of Influent

The conductivity of the influent was measured with one of the two in-line probes

discussed above. Due to a limited number of 2-pin meters, only two of the four pins were

used. Thus, there was a single 2-pin measurement of the influent conductivity. The probe

was connected to a YSI Model-35 2-pin conductivity meter. The Model 35 adjusts the

amplitude of the square-wave current until the time-averaged magnitude of the cell voltage

over each half-cycle is equal to a reference voltage. Given that current, together with the

voltage, the conductivity of the solution is calculated and displayed. The gain settings,

and the associated ranges, resolutions and accuracies are displayed in Table 2.1. The YSI

Model 35 displays the conductivity assuming a geometric cell constant of one. If the

constant differs from unity, the displayed/recorded value must be manually adjusted

accordingly.

There is a recorder output that was connected to the central data acquisition

system for data logging. The output range is 0 to 2.0 volts, and is proportional to the

display. With the gain set at 20 milliseimens, the recorded data must be multiplied by 10

to obtain units of milliseimens (uncalibrated data). With the central data acquisition

system, the output from the meter (set at 20 mS) is stable to ± 0.05 mV, which

corresponds to ± 1.7 x 10-3 milliseimens (calibrated).



2.2.2.2 Conductivity of Emuent

To enable continuous, monitoring of multiple 2-pin probes, an automated multi

channel conductivity meter (AMCCM) was constructed at MIT. The AMCCM has two

components, a single channel conductivity meter with DC analog output (SCCM), and a

computer-controlled digital relay box that allows automated selection of probes and

reference resistors. The design of the AMCCM is based on one used by the Cambridge

University Engineering Department, U.K., and was modified by Dr. John T. Germaine and

Mr. Samir Chauhan, a MIT doctoral student. To understand the operation of the SCCM,

refer to Figure 2.11. A constant AC. voltage (AC. minimizes polarization of the ions in

solution) is applied to the probe circuit, and the voltage across the 2 pins of the

conductivity probe is measured. With a reference resistor (Rr) placed in series with the

resistance of the solution (Rs), the ratio of the measured output voltage to the input

voltage is equal to the ratio of the (Rs) to (Rs + Rr). The equation can then be solved for

the resistance of the solution, the reciprocal of which is its conductivity. The reference

resistor can be selected from one of 5 resistors, ranging, in even orders of magnitude, from

100 Ohms to I MOhm. The values of the resistors are presented in Table 2.2. The

resistor is selected such that the measured Vout is as close to 0.5 Vin as possible (the best

results are obtained when the resistance across the solution matches the reference

resistance). The MIT AMCCM gives reliable conductivity readings ranging (in orders of

magnitude) from I microseimen to 10 milliseimens.

A diagram of the controls and terminals on the SCCM is given in Figure 2.12. A

diagram of the circuit is given in Appendix F . In manual operation of the SCCM (with

out the relay box), the Vin and Vout are measured, their ratio is calculated, and a different

resistor is selected if necessary. The process is iterated until VoutN/Vin is approximately

0.5, at which time the conductivity is computed. Note that since the circuit holds Vin

constant, measuring it once at the beginning of each test series should be sufficient.



A diagram of the relay box, which enables monitoring of four probes and

automated conductivity data logging, is provided in Figure 2.13. The relay box has its

own set of resistors, also controlled by relays. The actual resistances of these resistors

were measured and are provided in Table 2.3 The relays are operated by digital signal,

and thus require a computer with digital output capabilities to switch them on and off. A

program called Conduct.bas was written in Basic to control the relay box, take output

readings from the SCCM, calculate the conductivity, and record it to data files.

A listing of Conduct.bas is provided in Appendix D. The program begins by

having the user input the number of probes, name of the data input file, maximum number

of observations, time increment between readings, and the delay time before it takes the

first reading. For each reading, the program sends out a digital signal which activates the

appropriate probe, and connects the resistor used for the previous reading (stored in an

array). It then takes a reading, calculates the ratio of Vout to Vin, and changes the

resistor if needed, as described above. When the correct resistor has been selected, the

program calculates the conductivity and writes it to the data file. The process is repeated

for each probe at every reading interval. It takes approximately 6 seconds to select the

resistor, allow the probe to stabilize, and take a reading. Thus the minimum theoretical

increment for four probes is 24 seconds. However, if resistors must be changed during the

course of the experiment (due to significant changes in the effluent concentration), the

additional time must be considered in selecting a reading increment. For the test series

reported in this thesis, the delay and reading increment were set so that readings coincided

with data being recorded on the central data acquisition system.

The digital outputs are sent to the relay box using Strawberry Tree Incorporated's

"Analog Connection AO" card. The card has 8 digital I/O lines, as well as 4 analog

outputs. The input and output voltages to the probes are obtained and converted to

computer-readable digital signals by the Multichannel Analog-To-Digital Conversion



Board developed by Mr. Tom Sheahan at MIT, and described in Appendix B of his

doctoral thesis.

2.2.3 pH and Oxidation-Reduction Potential

pH and ORP measurements both require amplifiers with high input impedance to

record data in millivolts. "Nillivolt Adapters" were obtained from Micro-Electrodes Inc.

to produce signals that could be recorded by the central data acquisition system. Stable

readings were never obtained by either probe. The instabilities are suspected to have been

caused by the configuration of the reference electrode. The reference electrode works by

releasing small amounts of the reference solution (3 M KCl saturated with AgCl) into the

drainage line, which maintains contact between the Ag/AgCl electrode and the permeant.

At back-pressures of 4 ksc, the reverse of the intended flow would take place, thus

diluting the reference solution. Possible solutions to this problem are discussed in Chapter

4.

2.3 Experimental Procedures

2.3.1 Test Preparation for Sand Specimen

The following procedure was adopted for the preparation of sand specimens:

(1) The cell manifold tubes were cleaned by filling the salt-solution reservoir with warm

diluted Micro-Solution (2 ml per liter water), and connecting the salt line to the various

connections on the manifold to force the cleaning solution through the system. Each

Probe was then rinsed several times with warm distilled water. After thoroughly rinsing

the lines, the water was removed from them using compressed air.

(2) The diameter of sand mold, and thickness of the membrane were measured.

(3) Three O-rings were greased and placed on the O-ring stretcher.



(4) The side of the pedestal was greased, the bottom porous stone (Soiltest #T-300, k = 3

cm/s) positioned, and the thick membrane was sealed to the pedestal with two O-rings. A

prophylactic membrane was rolled over the first two O-rings (Figure 2.14), and a third 0-

ring was positioned between first two (Figure 2.14).

(5) The sand mold was assembled and a vacuum of 5.08 cm Hg (2 in.) was applied to

expand the mold.

(6) The height of the mold above the porous stone was measured in three locations.

(7) The initial mass of the container of sand, and the raining device were measured.

(8) The specimen was prepared using the raining method (which is discussed in MIT

Course # 1.37, taught by Dr. J.T. Germaine), the top of the sample was leveled with a

straight-edge, and the loose sand collected and returned to the container.

(9) The final mass of the sand container and raining device were measured for use in

determining the mass of the specimen.

(10) Four O-rings were greased and placed on the O-ring stretcher, which was then set

over the top-cap line. The top porous stone and top cap were then positioned, and the

thick membrane fixed to the top cap with two O-rings as described for the pedestal.

(11) Vacuum was removed from the mold, and applied to the specimen through the

pedestal drainage line.

(12) The mold was removed, and the thin membrane rolled up the specimen, over the two

O-rings, and fixed with the third O-ring as described above. If not used, the fourth O-ring

was released on the top cap line, so as not to disturb the specimen.

(13) The cell was assembled and partially filled with deaired distilled water.

(14) The cell-pressure transducer zero was measured when the cell fluid reached the mid-

point of the specimen, after which the cell was completely filled.

(15) The cell-pressure pot was connected, and a cell pressure of 0.35 ksc was applied.

(16) CO2 was connected to the pedestal drainage line and allowed to flow up through the

specimen for 15 minutes at approximately 0.05 ksc.



(17) The distilled water reservoir was connected to the pedestal drainage line and

approximately three pore volumes of deaired distilled water were allowed to flow up

through the specimen at a head of approximately 30 cm (I ft).

(18) The pedestal transducer zero was measured with the phreatic surface (of the water

influent reservoir) at the mid-point of the specimen.

(19) The drainage lines were reconnected to the configuration shown in Figure 2.2, and

the specimen was back-pressure saturated to 4 ksc, while maintaining the effective stress

at or below 0.35 ksc.

(20) The drainage lines were closed, and the B-value (Lambe et al., 1969) was measured

with a 0.25 ksc increment.

(21) The zeros of the water and salt solution top-cap transducers were calculated to

obtain the same pressure reading as the pedestal transducer under no flow conditions.

2.3.2 Test Preparation for Wetland Deposit Specimen

The following procerdure was adopted for the preparation of wetland deposit

specimens:

(1) The cell manifold tubes were cleaned by filling the salt-solution reservoir with warm

diluted Micro-Solution (2 ml per liter water), and connecting the salt line to the various

connections on the manifold to force the cleaning solution through the system. Each line

was then rinsed several times with warm distilled water. After thoroughly rinsing the

lines, they were drained and re-saturated with distilled, deaired water at ambient

temperature.

(2) The pedestal transducer zero was measured with the phreatic surface at the mid-point

of the specimen.

(3) The porous stones and nylon filter fabrics were placed in an ultrasonic bath to saturate

them.



(4) The pedestal was greased, the membrane protector positioned, and two prophylactic

membranes installed, using the same O-ring configuration as described for the sand

specimen.

(5) The membrane protector was installed on the greased top-cap, and four O-rings were

placed on the stretcher, which was then set over the pedestal.

(6) The specimen tube was cut to obtain a segment approximately 2.5 cm (1 in.) longer

than the desired specimen length, and the specimen location was noted.

(7) The specimen was extruded from the tube, and rough cut to approximately 5 cm (2

in.) diameter using a fabric cutting blade (25.4 cm (10 in.) Eastman Straight Knife #4704).

(8) The specimen was then placed in a two-step triaxial trimming jig and trimmed to a

3.56 cm (1.4 in.) diameter using a fabric cutting blade in the trimming blade-holder.

(9) The specimen was placed in a split cylindrical sleeve, and the ends trimmed, using the

fabric cutting blade and guide, to obtain the desired specimen height.

(10) The trimmings from steps 8 and 9 were used to obtain preliminary estimates of the

water content of the specimen.

(11) The initial dimensions and mass of the specimen were obtained.

(12) The porous stones and nylon filter fabrics were removed from the ultrasonic bath,

and placed in a dish of distilled water. The nylon filter fabric was placed on the bottom

stone under water, the stone placed on the pedestal, and the membrane protector folded

up.

(13) The specimen was placed on the pedestal, the top nylon filter fabric and stone were

installed, the top cap positioned, the top membrane protector folded down, and the

membranes rolled up and fixed to the top cap with O-rings as described for the sand

preparation. The extra O-ring was released on the base of the pedestal (if not used) and

the O-ring stretcher was lowered around the pedestal and left in place.

(14) The cell was assembled and partially filled with deaired distilled water.



(15) The cell-pressure transducer zero was measured when the cell fluid reached the mid-

point of the specimen, after which the cell was completely filled.

(16) The cell-pressure pot was connected to the cell, and a pressure of 0.05 ksc apptiec.

(17) The specimen was back-pressure saturated to 4 ksc, while maintaining an effective

stress below 0.05 ksc, at the rate of 0.5 ksc per hour.

(18) The drainage lines were closed, and the B-value was measured with a 0.25 ksc

increment.

(19) The zeros of the water and salt solution top-cap transducers were calculated to

obtain the same pressure reading as the pedestal transducer under no flow conditions.

2.3.3 Testing Procedures

The following procedure was adopted for testing:

(1) The specimen (sand or wetland deposit) was isotropically consolidated to the desired

effective stress while monitoring the corresponding change in the volume using the double

burette system.

(2) The porosity of the specimen was estimated using the preliminary water content, and

the accumulated volume change due to consolidation (caused both by applied stress

increments, and by stress changes due to induced gradients).

(3) The RPM of the flow control device required to obtain the desired seepage velocity

was calculated.

(3) The conductivity of a specimen of the salt solution (taken from the influent reservoir)

was measured using a pencil-type conductivity probe (with probe constant = 1) and the

YSI conductivity meter.

(4) The pore-pressure-transducer valve was set to the effluent line, and the flow-control

device SLOWLY moved up until the pressure in the line matched the pore pressure in the

specimen. The device was then stopped using the rheostat.



(5) The pore pressure valve was set to the effluent line, and the rheostat was adjusted to

attain the desired flow rate.

(6) The Double Burette and pore pressure at the pedestal were monitored until the pore

pressure reached a steady value.

(7) The central data acquisition system and conductivity program were set to begin at the

same time, and started.

(8) After two readings were taken by the data acquisition systems, the DCDT reading was

manually recorded, the air pressure to the salt solution pot was turned on, and the top cap

valve was switched to the salt solution for the required pulse duration.

(9) At the end of the pulse interval, the salt was turned off, the DCDT reading was

recorded, the air pressure to the salt reservoir was turned off, and the reservoir vented to

the atmosphere to release the pressure (minimizing the amount of air forced into solution).

(10) The specimen was flushed with three pore volumes of distilled water, or until the

conductivity readings returned to their pre-test values, whichever came last.

(11) Steps two through six were repeated to study the effects of different flow rates and

void ratios.

(12) While maintaining the final flow rate, the top-cap valve was switched to the salt

solution, and a continuous source experiment was conducted to determine the equilibrium

conductivity for each probe corresponding to the solution used for the previous

experiment.

(13) Upon completion of the experiment, the air pressure regulators were backed down to

their minimum pressures, while maintaining an approximately constant effective stress, and

then the drainage lines to the specimen were closed.

(14) The cell fluid was drained, and the cell and top-plate assembly were removed.

(15) The effluent and water influent lines were removed and the corresponding drainage

lines opened to prevent water from being drawn from the specimen during removal of the

O-rings.



(16) The specimen was removed and sectioned to obtain three water contents.

2.3.4 Data Reduction

At the end of each test, the data were reduced as follows:

(1) The data files were copied from the two data acquisition systems and entered into a

Lotus spreadsheet (Figure 2.15.a-i) which performed the following calculations:

a.) Calculated the average effective stress and gradient from the pressure

transducer data, Vin, the calibration factors, and transducer zeros.

b.) Calculated the average volumetric flow rate using the DCDT data from the

flow-control device, Vin, the calibration factor, and transducer zero.

c.) Calculated the hydraulic conductivity using Darcy's Law, Q = kia, where Q =

the average volumetric flow rate, i = the measured hydraulic gradient, a = the cross-

sectional area of the specimen, and k = the hydraulic conductivity of the soil.

d.) Converted the temperature data from Kelvin to Celsius.

e.) Adjusted the conductivity values, to reflect the temperature of the solution at

the time they were recorded, using the numerical function shown in Figure 2.16.

f.) Converted conductivity values to concentration values using the numerical

model shown in Figure 2.17.

g.) Normalized the concentration values from pulse type experiments to the

equilibrium concentrations recorded in continuous source experiments, and integrated the

areas under the curves.

h.) Normalized the volumetric flow by the pore volume of the specimen.

i.) Averaged the results of Probes 1 and 2 (in pedestal) for use in the CXTFIT

input file.

2) The normalized concentration was plotted against the number of pore volumes of flow

for each probe (0 pore volumes was the estimated time at which the center of mass of the

pulse reached the top of the specimen).



3) The integrated area under the normalized concentration curves were plotted against

pore volumes of flow for each probe to check for conservation of mass (effluent probes

should have the same integrated area as the influent probe).

4) The data were extracted from main reduction spreadsheet into a new spreadsheet for

formatting.

5) The data from the formatting spreadsheet were combined with the CXTFIT input-file

command set using the program MS Word.

6) The parameters in the input file were adjusted and the file format was checked using

the DOS editor.

7) The normalized concentration data were run in the CXTFIT model, and the fitted data

were plotted with the observed data for comparison.

2.3.5 CXTFIT Data Fitting Model: Settings Used for this Research

This section discusses the settings in the input file used to control the model. The

theoretical basis for the model was discussed in Section 1.6.3. A sample input file is

presented in Figure 2.18. Titles for the various settings have been added in bold typeface

for illustrative purposes, but were not part of the actual input files.

Settings:

a. NC = 1, each experiment was considered individually.

b. MODE = 4, Model 4, the two site, two region model was used.

c. NDATA = 1, data from previous experiment were not considered.

d. NREDU = 1, concentration was normalized, but time was not (to allow fitting of

the seepage velocity).

e. MIT = 30, the maximum number of iterations allowed for the program to converge

was arbitrarily set to thirty initially, and adjusted upward when necessary.



f. NOB = the number of data points being fitted. This varied among the experiments.

The maximum allowable number of data points was modified from 90 in the

original program, to 999 for this work.

g. NSKIP = 0, executed the program.

h. NPRINT = 0, suppressed writing of the input file to the output file.

i. ILIMIT = 1, allowed constrained fitting of the variables between user specified

limits. For unconstrained fitting of individual variables, the minimum and

maximum values were both set to 0.

j. NPULSE = 1, only one pulse per experiment.

k. CI = 0, the initial normalized concentration of the pore fluid.

1. CO = 1, the normalized concentration of the tracer solution at the inlet.

Variables:

a. Velocity; The velocity of the interstitial pore water. The initial value for this

variable was estimated based on the average flow rate measured during the

experiment, and the porosity of the specimen. The velocity was fit to the data,

unconstrained.

b. Dispersion Coefficient; The initial value was set at the theoretical lower limit, the

coefficient of molecular diffusion for NaCI. The dispersion coefficient was also fit

to the data, unconstrained.

c. Retardation Factor, NaCl is a theoretically conservative tracer, thus this variable

was held constant at one.

d. Pulse; The duration of the pulse. The initial value of Pulse was estimated as the

calculated number of pore volumes of tracer that were introduced to the specimen,

based on the average measured flow rate and the timed duration of the pulse.

Although the pulse duration was calculated based on experimental data, this



variable was fitted, unconstrained, to ensure that conservation of mass was

satisfied by the model.

e. Beta, the ratio of the mobile region porosity to the total porosity. The initial value

was set to 0.5, which assumed that the mobile region is one half of the total

porosity. This variable was fit, unconstrained, to the data.

f. Omega, a normalized coefficient describing the rate of contaminant transport

between the mobile and immobile regions. The initial value was set to one,

indicating that the transfer rate was assumed to be directly proportional to the ratio

of the liquid flux density in the specimen to the specimen length. This variable was

also fit, unconstrained to the data.



Accuracy (% Full Scale)
0- 15 OC

MAX 15 - 30 °C 30 - 45 C
DISPLAY RANGE READING RESOLUTION AMBIENT AMBIENT
0 - 20.00 micromho 19.99 0.01 micromho 0.25 0.6
0 - 200.0 micromho 199.9 0.1 micromho 0.25 0.6
0 - 2000 micromho 1999 1 micromho 0.25 0.6
0 - 20.00 millimho 19.99 0.01 millimho 0.25 0.6
0 - 200.0 millimho 199.9 0.1 millimho 0.25 0.6
0 - 2000 millimho 1999 1 millimho I 1.00 2.0

Table 2.1: Performance of YSI Model 35 Conductivity Meter (YSI Incorporated)

RESISTOR NUMBER RESISTANCE
1 100 OIHMS
2 1 KILO-OI-•M
3 10 KILO-OHMS
4 100 KILO-OHMS
5 1 MEGA-OHM

Table 2.2: MIT Conductivity Meter Resistors

RESISTOR NUMBER MEASURED RESISTANCE
1 100.32 OHMS
2 1.0008 KILO-OHMS
3 10.0047 KILO-OHMS
4 100.04 KILO-OHMS
5 1.00011 MEGA-OHMS

Table 2.3: Measured Resistance of Relay Box Resistors
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Diagram of the Manifold Control SystemFigure 2.2
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INPUT VOLTAGE

Vin = 1 " (Rr + s)

Vout = I R"-

Vout/dVin - Rs/(Rr + Rs)

Schematic of 2-Pin Probe OperationFigure 2. 11
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a(T)
a(i,) = + b(T - 18)

4

aN
TN
TbN=

N= 0

2. 117 98 18 x

- *-

-2

I= . 54-325O6 X LU

= -6. 26 3497 9 x 1 9

- 1 1
= 2. 27 94885 x 10

Figure 2.16 Numerical Function to Adjust Conductivity Values for Temperature
(Head, 1983)
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Figure 2.17 Numerical Function to Fit Conductivity Data to Concentration Values
(Head, 1983)
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IOATA MREDU
1 1

MIT NOB
30 141

NSKIP MPRINT
o0

V.....

0.0104 0.0
ILIMIT

1 0
0.0
0.0

CI
0.00000

OBSERVED

CONCENTRAT.
2.037E-05
1.986E-05
2.026E-05

1.972E-05
1.968E-05
1.973E-05
1.968E-05
1.544E-05
1 .862E-05

0.01064816
0.28506897
0.47934739
0.59474321
0.69255612

0. 7647797
0.81539897

0.85430321
0.88015735
0.8958871

0.87699915
0.70693946
0.50128577
0.36185506
0.25835399
0.17720681
0.1265945

0.04020803
0.02484564
0.01440385
0.00853661

0.00535836

0.00089611
0.0004684

0.00022858
0.00012586

0.00006098

0.00002849

D.....
1000002

1
0.0
0.0

CO
1.0

DIST FROn
SCURCE
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548

6.6548

6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548

6.6548
6.6548
6.6548
6.6548
6.6548

6.6548
6.6548
6.6548
6.6548
6.6548

Figure 2.18

R ..... PULSE.
1.0 600.0

0
0.0
0.0

MPULSE
1

BETA..
1.0

0 1
0.0 1.0
0.0 1.0

TIME
0

60
120
180
240
300
360
420
480
540
600
660
720
780
840
900
960

1020
1080
1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160

Sample CXTFIT Input File
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CHAPTER 3

EXPERIMENTAL RESULTS

3.1 TESTING PROGRAM

This testing program was conducted primarily to evaluate the equipment and

procedures discussed in Chapter 2. Throughout the testing process, modifications were

made to overcome problems as they were discovered. Section 3.3, below, will discuss

these problems, and their effects on the respective experiments. A series of experiments

was conducted on sand to provide a preliminary evaluation of the equipment, followed by

a series of experiments on wetland deposits obtained from the Wells G and H Superfund

site. The experiments are summarized in Table 3.1, and discussed individually in Section

3.1.2. This chapter presents and discusses the results of the experiments that were

conducted during this research program.

3.1.1 Materials Tested

3.1.1.1 Sand

The sand used for these experiments was the Type 90P silica sand obtained

commercially by Mr. Sangkaran Ratnam for use in his centrifuge experiments (MIT,

1996). Tests to determine the grain size distribution, specific gravity, maximum and

minimum void ratios, and hydraulic conductivity were completed by Mr. Ratnam. The

grain size distribution presented in Figure 3.1 (Ratnam, 1995), indicates that the sand is

relatively uniform with D5 0 = 0.17 mm. The sand has a specific gravity of 2.66, and void

ratios emin = 0.73, and emax = 0.97. At relative densities between 54.2 % and 79.2 %,

Mr. Ratnam obtained hydraulic conductivities between 7 x 10-3 and 1 x 10-2 cm/sec,

respectively (the average being 8 x 10-3 cm/sec).
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3.1.1.2 Wetland Deposits

The specimens used in this experiment were obtained by Mr. Jason Bialon (MIT,

1995) from the Wells G and H Superfund site. Specimen Peat 1 was obtained 20.3 cm (8

in.) from the bottom of a tube from which the label has fallen off, believed to be from

boring #3, while Peat 2 was obtained 21.6 cm (8.5 in.) from the top of tube #3 from

boring #1. The locations of the borings were indicated in Figure 1.6. The two specimens

(Peat 1 and Peat 2) were very similar in composition, and matched the characteristics

given by Bialon (1995) in his description of the Sedge Layer at the Aberjona site. The

material was highly decomposed, very dark brown in color, and contained small fragments

of wood as well as some greenish, stringy sedge leaves. This identification fits Bialon's

boring profile, which is reproduced in Figure 3.2. The specimen location for Peat 2 is

approximately 137 cm below the ground surface, which is near the bottom of the sedge

layer in that profile.

3.1.2 Testing Conditions

Each experiment consisted of a 10 minute pulse of 0.1 M NaC1, followed by

approximately three pore volumes of flushing. After the final pulse-type test was

completed on a given specimen, a continuous-source experiment was conducted to

determine the equilibrium conductivity readings for each probe. The plots from the

continuous-source experiments, and the selected equilibrium values, are provided in

Appendix D. The equilibrium readings were then used to normalize the data from the

pulse-type experiments.

Sand 1 was subject to two pulse-type experiments. Both were conducted under

similar conditions; with effective stresses of approximately 0.25 ksc, and with pore-fluid

velocities of approximately 0.01 cm/sec. These two experiments were intended to yield

similar results.
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Sand 2 was subject to three pulse-type experiments, all at approximately 0.25 ksc

effective stress. Each sequential experiment was conducted at an increased pore-fluid

velocity to study velocity effects on hydraulic parameters. Test I was conducted at 0.001

cm/sec, Test 2 at 0.003 cm/sec, and Test 3 at 0.007 cm/sec.

Peat 1 was subject to two pulse type experiments, at differing pore fluid velocities

and effective stresses. Test 1 was conducted at an effective stress of approximately 0.18

ksc, and a pore fluid velocity of approximately 9 x 10-6 cm/sec. Increasing the pore fluid

velocity to approximately 5 x 10- 5 cm/sec for the second experiment caused the effective

stress to increase to approximately 1.5 ksc (due to the increased gradient). Thus, effective

stresses and hydraulic gradients were not independently controlled.

Peat 2 was also subject to two pulse-type experiments. The pore fluid velocity for

the first test was 1 x 10- 5 cm/s, while the effective stress was approximately 0.13 ksc.

During the second test, the pore fluid velocity was approximately 4 x 10-5 , and the

resulting effective stress was approximately 0.7 ksc.

3.2 Testing Problems

The experiment names used to report the results are based sequentially on tests

from which useful breakthrough data were recorded. The first three sand experiments did

not provide reliable data due to fluctuating conductivity probe constants using the first

pedestal. Additionally, the first peat experiment failed when the specimen consolidated

such that it became practically impermeable and the fluid effluent line cavitated. Finally,

the second and fourth peat experiments were destroyed by rolling diaphragm failures.

Thus, Sand 1 and Sand 2 were actually the fourth and fifth sand specimens. Similarly,

Peat 1 and Peat 2 were actually the third and fifth specimens, respectively. Although some

of the data in the reported experiments were beset by equipment problems, there were

enough remaining data to provide breakthrough curves, and thus fitted results. The

problems encountered are described in more detail below.
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3.2.1 Pedestal 1

The first generation pedestal was similar to the pedestal described in Chapter 2,

except that it had only one conductivity probe which consisted of two platinum opposing

wires (see Figure 3.3). The first, and most serious problem with this pedestal, was the

failure of the casting epoxy to bond with the probes. This allowed solutions to flow along

the wires and corrode the solder joints, thus altering the resistance in the wires, and

therefore the conductivity readings. The epoxy also became "spongy" in some areas for

unknown reasons. In addition to conductivity instabilities caused by corroded wires, it

was also discovered that the platinum black coating rubbed off when touched. Thus,

cleaning procedures, which included blotting of the probes, resulted in removal of the

platinum black, thus further altering the probe constant. There were three sand specimens

tested with this pedestal. However, due to inconsistencies in conductivity readings,

reliable data were not obtained, and the results were not processed.

3.2.2 Pressure Transducers

Problems were encountered in measuring small pressure gradients across the

specimens. For the two sand specimens described in this thesis, the zeros of each

transducer were set such that the transducers were synchronized to produce equal

readings with a phreatic surface at the mid-height of the specimen. The tests, however,

were conducted at back pressures of 4 ksc, thus slight variations in linearity or calibration

factors caused errors in excess of the sensitivity of the transducers to the small gradients.

Therefore, the hydraulic conductivities of the two reported sand specimens could not be

reliably determined from the test data. Nonetheless, the values were included in Table 3.2,

to illustrate the extent of the problem. For the two peat specimens, the resolution problem

was corrected by taking the phreatic zero of the pore pressure transducer at the

mid-height of the specimen, and using no-flow readings at 4 ksc back pressure to calculate

zeros for the salt and back pressure transducers. Thus, the transducers were synchronized
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to produce equal readings for the three transducers under no-flow conditions at elevated

back pressures. This seemed to alleviate the problem, as the gradients and resulting

hydraulic conductivities, based on the separate transducer readings, were consistent for

the peat specimens. The gradients for the peat specimens were much larger than for the

sand, however, and were thus easier to measure. This is discussed further in Chapter 4.

3.2.3 Compressibility of Wetland Deposits

The first peat specimen was trimmed to the dimensions of a standard triaxial

specimen (8.13 cm, or 3.2 in., tall). At a seepage velocity of 10-5 cm/sec, the gradient

across the specimen increased the effective stress, causing the specimen to consolidate,

and its porosity to be reduced, which, in turn, decreased the hydraulic conductivity,

resulting in a higher gradient for the same flow, which increased the effective stress etc.,

etc. The first peat specimen continued to consolidate until the soil became practically

impermeable, and the effluent cavitated under the suction pressure of the flow-control

device. Thus, no reliable data were obtained from the first peat specimen. To reduce the

effects of the high compressibility, the specimen height was reduced from 8 cm to 2 cm.

This decreased the necessary pressure difference for any given flow by a factor of four,

and reduced the consolidation drainage height by the same factor, thus enabling reasonably

steady flows over the duration of the testing period. An alternative solution, based on

pushing the fluid through the specimen, rather than pulling it, will be discussed in Chapter

4.

3.2.4 Rolling Diaphragms

Neither the author, nor the person who instructed the author on how to replace

rolling diaphragms, was aware that there is a proper orientation that must be respected to

prevent failure of the rubberized diaphragm coating. Two diaphragms failed during the

test series on wetland deposits before the author learned that orientation of the diaphragm
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is critical. The second and fourth peat specimens were destroyed before complete data

sets could be recorded as a result.

3.2.5 Double Burette

During testing of the third peat specimen (Peat 1), it was discovered that the

double burette had a significant leak from the flow-direction valve. Thus, changes in the

porosity of the specimen during consolidation remain unknown, and the porosity reported

in Table 3.2 for Test I is the pre-consolidation value based on the initial water content of

the specimen.

3.3 Measured and Calculated Results

The data reported in this section include the water content, specific gravity,

porosity, effective stress, flow rate, gradient, and hydraulic conductivity for each

specimen. It should be noted that in all cases the effective stress, gradient, and hydraulic

conductivity are reported as the average of the two values obtained separately using the

influent pressure transducers in the salt solution and back pressure lines. Finally,

conservation of mass will be discussed for experiments on each material at the end of the

appropriate section.

3.3.1 Experiments on Sand

Table 3.2 presents the measured and calculated results of experiments using sand

specimens. The specific gravity of the sand was reported by Ratnam (1996), as discussed

above, to be 2.66. The initial water contents of all sand specimens were assumed to be

zero. Also, as discussed in Section 3.2.2, transducer problems prevented meaningful

calculations of the gradient and thus the hydraulic conductivity for the sand specimens,

however, the values are reported to illustrate the magnitude of the problem.
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Conservation of mass was measured by taking the difference between the average

area under the normalized concentration vs. time curves for Probes 1-4 (effluent) and the

area under the corresponding curve for probe 5 (influent). The locations of the

conductivity probes were shown in Figure 2.8. Probe 5 was moved from the effluent line

to the influent line after completion of the experiments on Sand 1, thus there are no data

available for that specimen. For Sand 2, the percentages recovered were 81%, 88%, and

96% for Tests 1, 2, and 3, respectively. A possible explanation for the trend is that at

higher flow rates, less time is available for the solute to diffuse into dead spaces within the

system. Alternatively, if the same mass of solute was lost in the system during each

experiment, higher recovery percentages would be observed in experiments conducted at

higher flow rates, because a greater mass of solute would be introduced into the system

(for constant pulse durations). To investigate this possibility, the normalized

concentrations from the experiments on Sand 2 were converted to absolute mass and

integrated over the duration of the respective experiments. The masses "lost" during Sand

2 Test 1, Test 2, and Test 3 were 0.027 g, 0.049 g, and 0.048 g, respectively. The

corresponding input masses were 0.144 g, 0.419 g, and 1.177 g, respectively. Thus, the

later explanation seems plausible, however additional experiments would have to be

performed in order to produce enough data to confirm this phenomenon. Plots of

integrated area vs. time for the three experiments are provided in Figures 3.4 through 3.6.

The curves on each plot are labeled by probe numbers. The integrated mass values seem

to be relatively consistent between the various probes.

.3.2 Experiments on Wetland Deposits

Table 3.3 presents the measured and calculated results of tests using peat

specimens. The target seepage velocities for the first and second experiments on each

specimen were lxl0- 5 cm/sec and 4 x 10-5 cm/s, respectively.
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The initial moisture content was determined according to ASTM D 4959. The

magnitude of the changes in specimen volume were not available for Peat 1 Test 1, as

discussed above, therefore, the reported moisture content and porosity were estimated

based on the initial moisture content, a virgin compression index of 3.23 (reported by

Bialon, 1995, for sedge materials), and the effective stress measured after steady state

flow was observed. The reported values for the second tests of both Peat 1 and Peat 2 are

based on the final water content of the specimens. For Peat 2 Test 1, the reported water

content is based on the initial value, and adjusted for measured volumetric changes,

assuming 100% saturation ("B" values of 0.99, as reported in Table 3.3, indicate that this

is a valid assumption).

Bialon (1995) reported that there was too much heterogeneity within the sediment

to warrant pycnometer testing for specific gravity. Therefore, the specific gravities of the

wetland solids were estimated based on the specimen weight, specimen volume, and

measured moisture content, assuming 100% saturation. The values 1.13 for Peat 1, and

1.32 for Peat 2 are in reasonable agreement with the specific gravity of 1.30, which Bialon

reported as average for the sedge peat layer in the Aberjona watershed.

The porosities were calculated from the moisture contents discussed above and

initial specimen volumes. The initial porosity for Peat 2 was 0.88, which corresponded to

an initial moisture content of 548%. The initial values for Peat 1, listed in Table 3.4, were

0.87 and 573%, respectively. These values fall within the range of undisturbed moisture

contents (480% to 870%) reported by Bialon.

As discussed above, the hydraulic conductivities changed with the flow rate due to

consolidation. For Peat 1, at an estimated initial porosity of 0.81 (as discussed above) the

hydraulic conductivity was 1.2 x 10- 7 cm/sec, at an average effective stress of 0.18 ksc.

For Peat 2, at a porosity of 0.82 the hydraulic conductivity was 2.6 x 10- 7 cm/sec with an

average effective stress of 0.14 ksc. The corresponding void ratios are 4.3 , and 4.6,

respectively. Bialon reported a hydraulic conductivity of 8 x 10-6 cm/sec for sedge at a
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void ratio of 6.48. Thus, at reduced void ratios these hydraulic conductivities do not

appear to be unreasonable. The hydraulic conductivities were 2.8 x 10-8 cm/sec at a

porosity of 0.77 and 5.8 x 10-8 cm/sec at a porosity of 0.80, for Peat I Test 2 and Peat 2

Test 2, respectively. Thus Peat 1 exhibited approximately half of the hydraulic

conductivity of Peat 2.

There is a clear trend of decreasing hydraulic conductivity with decreasing total

porosity, however, the rate of change (Ck = Ae/Alog k) is not consistent between the two

specimens. The data, as reported in Table 3.3, are plotted in Figure 3.7. The Ck values

are 1.5 for Peat 1, and 0.84 for Peat 2, based on these data. Bialon reported Ck values

ranging from 1.33 to 1.79 for sedge peat. Thus, the value for Peat 1 (based on the

estimated porosity for Test 1) falls within his range, while the value for Peat 2 falls below

it. If a regression is run through the data from both peat specimens (using the estimated

porosity value for Peat 1 Test 1), a value of Ck = 1.2 is obtained with an R2 of 0.97.

With only four data points, however, these Ck values would be heavily biased by any non-

representative results.

The conservation of mass for the peat deposits was determined as described for the

sand specimens. The plots of integrated mass versus reduced time (pore volumes of flow)

for the experiments using peat are provided in Figures 3.8 through 3.11. The percentages

recovered were 49%, 59%, 81%, and 53% for Peat 1 Tests 1 and 2, and for Peat 2 Tests

1 and 2, respectively. As the figures indicate, there was a lot of variation between the

various probes, however, with the exception of Peat 2 Test 1, Probes 1 and 2 (located in

the pedestal, which were used with the fitting model) produced similar values, and

indicated higher percentages of recovered mass than probes 3 and 4 (which are located in

the effluent line) indicated. The percentages recovered, as reported above, are based on

the average of the four effluent probes, and are clearly biased by Probes 3 and 4, which are

consistently below the other values. Computer problems encountered during the initial

portion of the first experiment on Peat 1 caused the test to be restarted, resulting in



approximately one additional week of flow prior to testing (the flow was not stopped in

order to maintain steady state flow). Thus some of the ions initially present in the

specimen were flushed out prior to testing. This was not the case for Peat 2, which may

be the reason for what appears to be an abnormally high recovery percentage.

The experimental breakthrough curves (the average of the curves for probes 1 and

2) for each test (sand and peat) are plotted with the fitted curves and presented in Figures

3.12 through 3.20. As discussed in Chapter 2, each conductivity value is corrected for

temperature, and then converted to concentration with the numerical functions shown in

Figures 2.16 and 2.17, respectively. As expected, the peat specimens did not exhibit ideal

chemical transport. More specifically, the breakthrough curves for peat had significant

tailing relative to the breakthrough curves for sand. Such tailing is characteristic of soils

with immobile regions, as discussed in Chapter 1.

3.4 Fitted Results

The two site, two region model (TRM), which is part of the CXTFIT code

discussed in Chapter 1 (Parker and van Genuchten, 1984), was used to fit hydraulic

parameters to the experimental breakthrough curves. As discussed above, the average of

the concentrations based on the data from Probes 1 and 2 (which are located immediately

below the bottom porous stone) were used with the fitting model. The seepage velocity,

dispersion coefficient, pulse duration, ratio of mobile porosity to total porosity, and the

first-order rate constant that governs chemical transport between the mobile and immobile

regions were all fitted to the experimental data. The time data were not normalized in

order that the seepage velocity could be fit, which allowed a better overall fit by the

model. NaCI is considered to be a conservative tracer, which theoretically will not adsorb

to the solid particles, thus the retardation factor was fixed constant at unity. The pulse

duration was allowed to be fit so that conservation of mass would be satisfied by the

model. The results are discussed below. Print-outs of the first page of the CXTFIT input
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files, and relevant pages of the output files for each experiment are included in Appendix

E. Additionally, a one region model (ORM), based on the advection-dispersion equation,

was fit to the data for comparison with the TRM. The ORM used for this thesis is

included in the CXTFIT code as Model 2, and contains variables to account for

production and decay. For the ORM analysis, the seepage velocity, dispersion coefficient,

and pulse duration were allowed to vary, and the retardation factor was fixed at unity, as

for the TRM. The production and decay coefficients, which can be fit to the data as well,

were held constant at zero because NaCI is a relatively conservative tracer, and no sources

or sinks within the specimen would be expected over the duration of the experiments

discussed in this thesis.

3.4.1 Experiments on Sand

The fitted breakthrough curves for experiments on the sand specimens are plotted

with the experimental breakthrough curves in Figures 3.12 through 3.16. The

corresponding fitted hydraulic parameters are presented in Table 3.4. In general the fits

for both the TRM (Table 3.4.a) and ORM (Table 3.4.b) were relatively good. For the

ORM, R2 ranged from 0.963 to 0.995, while for the TRM, R2 ranged from 0.996 to

0.999. Thus the TRM provided a slightly better fit to the data from experiments using

sand specimens. The close fit obtained from the ORM, however, would support an

assumption of equilibrium transport for these relatively uniform specimens, as discussed by

Li et al. (1994). The remainder of this section will focus on the parameters obtained using

the TRM.

The seepage velocities and pulse durations for Sand 1 closely matched the

calculated/measured values. For Sand 2, however the fitted seepage velocities were

slightly greater than the calculated values, and the pulse durations were shorter than the

observed durations. Higher seepage velocities are consistent with 03 values less than unity,

as there is less cross sectional area available for flow. Decreased pulse durations are
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consistent with less than 100% recovery of mass, which was the case for this series of

experiments.

The fraction of pore space taking part in the flow (0, the mobile porosity divided

by the total porosity) was relatively constant for the sand specimens, at approximately

0.74. The range was 0.72 to 0.77. As Figure 3.21 indicates, there did not appear to be a

correlation between 0 and the seepage velocity, which suggests that 0 is a parameter

characterizing the soil/system's structure. Although dead-end pore spaces are not

expected in a specimen of uniform sand, a value less than one was expected as the tracer is

initially introduced at a point in the center of the top porous stone, and could not

reasonably be expected to be uniformly distributed across the top of the specimen at time t

= 0. Thus, the outer area near the top of the specimen might account for a large part of

the immobile pore space.

Omega, a dimensionless first order mass transfer coefficient, varied between 1.8

and 3.1 for the sand specimens, with all but one value close to 2.0. The dimensional mass

transport coefficient (a = cq/L) was expected to vary as the velocity for specimens with

grain Peclet numbers greater than 1, and for specimens in which there is a low velocity

contrast between the mobile and immobile regions, as discussed in Chapter 1. For these

experiments, the grain Peclet numbers all exceeded one (Table 3.5), ranging from 1.7 to

12.1, and a. did seem to vary linearly with velocity (see Figure 3.21). The best fit

regression line had a slope of 0.24, and R2 of 0.91.

The dispersion coefficient for the sand specimens ranged from 2.1 x 10-4 cm2/sec

to 1.3 x 10-6 cm2/sec. These values seem reasonable when compared with the empirical

correlation for granular aquifers (Daniel, 1993), which suggests that the mechanical

dispersion coefficient can be approximated by multiplying the median grain size by the

seepage velocity (1.9 x 10 -4 cm2/sec for Sand 1). Both extreme values occurred for Sand

1. There did not appear to be any trend linking D with the seepage velocity values (see

Figure 3.21).
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For the case where there is a low velocity contrast between the mobile and

immobile regions, Li et al. (1994) suggested that ao should scale as Vs2/D, indicating that

the mass transfer process is predominantly affected by local flow variations. For these

experiments, D was expected to be velocity dependent (scale as Vs, implying that a

should also scale as Vs, which, as discussed above, it appears to), since the grain Peclet

number was greater than one. Since D was not observed to scale as Vs, a was plotted

against the dispersion coefficient (assumed to approximate DT) to investigate the effects

of inter-region diffusion (which would be expected to dominate for the case of significant

velocity contrast). No relationship was observed between D and a (Figure 3.22),

therefore, a was plotted against Vs2 in an attempt to confirm the influence of local flow

variations on the mass transfer process. The curve in Figure 3.23, however, does not

indicate a linear correlation, which, again, could be due to the influence of outlying data

points.

Additionally, Bear (1972) presented evidence that for grain Peclet numbers greater

than one, there should be a linear relationship between the hydrodynamic dispersion

coefficients (normalized by the coefficient of molecular diffusion) and the common log of

the grain Peclet numbers. Figure 3.24 indicates that this is not the case for these

experiments, however, as discussed above, with these few data points, trends could easily

be obscured by out-lying values.

3.4.2 Experiments on Wetland Deposits

The fitted breakthrough curves for the wetland deposits are plotted with the

experimental breakthrough curves in Figures 3.18 through 3.21. The fitted parameters are

presented in Table 3.5.a and 3.5.b for the TRM and ORM, respectively. In general the fits

were not as good as those for sand. As the Figures and R2 values indicate, the TRM

provided a better fit to the experimental data than the fit obtained from the ORM. This

indicates, as expected, that non-equilibrium transport is taking place in the wetland
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deposits. For the TRM, the fitted curves all had R2 values greater than 0.96, while for the

ORM, R2 ranged from 0.91 to 0.94. Thus, the following discussion is based on the fitted

parameters obtained using the TRM.

The fitted seepage velocities were greater than the calculated values (based on

total porosity), which is consistent with the assumption that there are immobile regions

within the pore spaces of the specimens. Also, the fitted pulse durations were shorter than

the measured values, which is consistent with the percentages of recovered mass being less

than 100%, as discussed above. The exception was Peat 2 Test 1, in which some leaching

of ions, initially present in the material, appears to have occurred, thus leading to a higher

fitted pulse duration then the measured value.

The fraction of pore space taking part in the flow varied from 0.09 for Peat 1 Test

1, to 0.42 for Peat 2 Test 1. The values for Peat I Test 2 and Peat 2 Test 2 were 0.37 and

0.31, respectively. Figure 3.25 indicates that there is no consistent trend between P and

seepage velocity, which, as for the sand, suggests that 0 is a parameter characterizing the

soil/system's structure. Additionally, 0 for Peat 1 Test 1 (0.09) is enough of a deviation

from the other values that it could be an anomaly.

As discussed in Chapter 1, although Bialon could find no correlation between total

void ratio and log of hydraulic conductivity, there was expected to be a correlation

between effective void ratio and hydraulic conductivity. As Figure 3.26 indicates, no

correlation was exhibited by the data of this research. In fact, the reverse of the logical

relationship between void ratio and hydraulic conductivity was indicated by the data from

Peat 1, which provides further evidence that the results of Peat 1 Test 1 may be

anomalous. In Figure 3.27 an average value of 0 (= 0.37) was assumed for Peat 1 Test 1,

and the effective void ratio was re-plotted against hydraulic conductivity. With the

assumed value of 3, there did appear to be a trend of increasing hydraulic conductivity

with increasing void ratio, however the trend was not observed to be consistent between
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Peat 1 and Peat 2. A regression through all of the data in Figure 3.27 resulted in an

effective Ck of 0.15, with R2 = 0.6.

Omega, varied between 9.4 for Peat 1 Test 1 and 2.1 for Peat 1 Test 2. For Peat

2, the values for Tests 1 and 2 were 5.4 and 3.6, respectively. As discussed in Chapter 1,

for the case of low velocity contrasts, at (Table 3.7), the dimensional form of co, was

expected to vary as vs2 /D. Calculated values of the grain Peclet number (based on a

median grain size of 0.025 mm) were less than unity (Table 3.7), thus, ac was expected to

vary as vs 2 . No such trend was observed for these experiments (see Figure 3.28),

however, again, a non-representative data point would significantly bias the results.

Additionally, Figure 3.26 indicates that there is no trend between a and vs, which would

be expected for grain Peclet numbers greater than one.

To investigate the possibility of significant velocity contrasts, ac was plotted against

the transverse diffusion coefficient, DT, (assumed to be approximated by the fitted

dispersion coefficient). As Figure 3.29 indicates, no trend between a. and DT was

observed, thus, significant velocity contrasts were not confirmed.

The dispersion coefficient for the peat specimens ranged from 1.0 x 10- 5 cm 2 /sec

to 8.7 x 10-6 cm 2 /sec. These values are similar in magnitude to the coefficient of

molecular diffusion for NaCI, which does not seem unreasonable, given the low seepage

velocities of these experiments. There did not appear to be any trend linking D to seepage

velocity values (see Figure 3.26), which is consistent with the grain Peclet numbers being

less than unity for the case of low velocity contrast. Additionally, as discussed above,

there did not appear to be any correlation between a. and D. Thus, based on these data,

the transport mechanisms could not be characterized for these wetland deposit specimens.
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Seepage Effective Pulse
Velocity Stress Duration

EXPERIMENT: (cm/sec) (ksc) (sec)
Sand 1 Test 1 0.011 0.25 600
Sand 1 Test 2 0.011 0.25 600

Sand 2 Test 1 0.001 0.23 600
Sand 2 Test 2 0.003 0.23 600
Sand 2 Test 3 0.007 0.24 600

Peat 1 Test 1 9E-06 0.18 600
Peat 1 Test 2 5E-05 1.47 I 600

Peat 2 Test 1 1E-OS 0.14 600
Peat 2 Test 2 4E-05 0.69 600

Table 3.1: Summary of Experimental Conditions
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SEEPAGE DISP. PULSE
VELOCITY COEF. DURATION BETA OMEGA R SQUARE

EXPERIMENT: (cmisec) (cmA^2sec) (sec)
Sand 1 Test 1 1.1E-02! 2.1E-041 6001 0.72 1.8E+00 0.998
Sand 1 Test 2 1.1E-021 1.3E-061 6041 0.721 1.8E+00 1 0.999

Sand 2 Test 1 1.5E-031 3.2E-05 i 467 0.771 2.1E+00 1 0.999
Sand 2 Test 2 4.0E-03 I 7.0E-05 5301 0.731 3.1E+00 1 0.997
Sand 2 Test 3 9.7E-031 1.OE-05 I 585 0.75 2.0E+00 1 0.996

Table 3.4.a: Fitted Results of Tests on Sand; TRM

SEEPAGE DISP. PULSE
VELOCITY COEF. DURATION R SQUARE

EXPERIMENT: (cmisec) (cmA^2sec) (sec)
Sand 1 Test 1 1.1E-021 3.1E-031 591; 0.9941
Sand 1 Test2 I 1.1E-021 2.8E-031 6331 0.9951

Sand 2 Test 1 1.6E-03 1 2.2E-04 450 0.9631
Sand 2 Test 2 4.1E-031 6.4E-041 523 1 0.9931
Sand 2 Test 3 9.9E-03 I 1.9E-03 5761 0.991 -

Table 3.4.b: Fitted Results of Tests on Sand; ORM

SEEPAGE DISP. PULSE
VELOCITY COEF. DURATION BETA OMEGA R SQUARE

EXPERIMENT: (cmisec) (cmA21sec) (sec)
Peat 1 Test 1 I 2.7E-05I 1.0E-051 3981 0.091 9.4E+00 0.9931
Peat 1 Test 2 1 7.9E-05 i 2.3E-05 I 4821 0.371 2.1E+00 1 0.970,

Peat 2 Test 1 1 2.4E-051 8.7E-06 . 786 1 0.421 5.4E+00 1 0.960 1
Peat 2 Test 2 7.7E-05 4.6E-06 I 4861 0.31 1 3.6E+00 1 0.984

Table 3.5.a Fitted Results of Tests on Peat; TRM

SEEPAGE DISP. PULSE
VELOCITY COEF. DURATION R SQUARE

EXPERIMENT: (cmisec) (cmA^2sec) (sec)
Peat 1 Test 1 2.OE-05 I 2.0E-051 411 I 0.911
Peat 1 Test 2 4.2E-051 1.0E-04 560 0.929

Peat 2 Test 1 2.0E-05 1.6E-051 8271 0.9291
Peat 2 Test 2 6.8E-05 3.8E-05 5021 0.943

Table 3.5.b Fitted Results of Tests on Peat; ORM
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COLUMN EFFECT. COLUMN GRAIN
LENGTH VOID alpha PECLET PECLET DIDmd

EXPERIMENT: (cm) RATIO (1sec) NUMBER NUMBER
Sand 1 Test 1 6.6551 0.501 2.8E-03 339 11.91 1.4E+011
Sand 1 Test 2 6.655 1 0.501 3.0E-03 555561 12.1 i 8.6E-02'

Sand 2 Test 1 6.655 0.481 4.6E-04 305 1.71 2.2E+00
Sand 2 Test 2 I 6.655 i 0.441 1.9E-031 3781 4.5F 4.7E+00
Sand 2 Test 3 I 6.655 0.461 3.0E-031 6207 11.0 6.9E-01

Table 3.6: Column Length,
for Sand

Table 3.7: Column Length, eeff, L
for Wetland Deposits

eeff, c, Column and Grain Peclet Numbers, and D/Dmd

Column and Grain Peclet Numbers, and D/Dmd

EQUATIONS

EFFECTIVE VOID RATIO = ne / 1-ne where ne = BETA *n

alpha = omega 'seepage velocity / column length

Pc = seepage velocity "column length / dispersion coef.

Pg = seepage velocity grainsize / fitted coefficient of molecular diffusion
where grain size = 0.017 cm for sand and 0.0025 cm for wetland deposits

(0.0025 cm was measured from SEM figures in Bialon, (1995))
Dmd = 1.5 x 10^-5 sq cm/sec for NaCI
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COLUMN EFFECT. COLUMN GRAIN
LENGTH VOID alpha PECLET PECLET DIDmd

EXPERIMENT: (cm) RATIO (llsec) NUMBER NUMBER
Peat 1 Test 1 I 2.1251 0.085i 1.2E-04 5.61 0.005 2.7E+07
Peat 1 Test 2 2.1251 0.3981 7.8E-05 i 7.5 i 0.0131 3.2E+07

Peat 2 Test 1 2.2081 0.5251 5.9E-05 6.21 0.0041 5.2E+07
Peat 2 Test 2 2.208 0.3301 1.3E-04 36.81 0.013 3.2E+071
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CHAPTER 4

SUMMARY AND RECOMMENDATIONS

4.1 Summary of Objectives

The Aberjona watershed had been an industrial center since the 1600's, consisting

primarily of leather producing operations. With time, wastes from industrial processes

made their way into the Aberjona River, and were subsequently drawn through the

wetland deposits during pumping of municipal water wells labeled G and H. The Wells G

and H site is now a federal Superfund site, and is being studied by a number of research

groups at MIT. Initial research at MIT (Bialon, 1995) did not indicate the classical trend

linking changes in hydraulic conductivity with changes in void ratio, which led to the

hypothesis that the hydraulic conductivity was changing with the effective porosity. The

objective of this research was to develop the equipment and procedures necessary to

determine the hydraulic characteristics that govern contaminant transport through the

Aberjona wetland deposits. More specifically, the goal was to be able to measure the

hydraulic conductivity and obtain breakthrough curves from pulses of conservative tracers,

while controlling the flow rate and effective stress acting on the specimen. The break-

through curves (concentration vs. time data) could then be analyzed with a curve fitting

package to obtain estimates of the hydrodynamic dispersion coefficient, effective porosity,

and the mass transfer coefficient that governs the transport of contaminants between the

mobile and immobile regions.

The scope of this research was to develop the equipment and methods required to

make these measurements, and then to perform a preliminary set of experiments to

evaluate the system. Two series of experiments were performed, one using a uniform

silica sand, and the other using wetland deposits (sedge peat) obtained from the Wells G

and H site,.
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4.2 Summary of Equipment, Procedures, and Model

A flexible wall column was selected to allow control of effective stresses, as well

as to reduce preferential flow paths along the sides of the specimen. Furthermore, by

monitoring the flow of fluid into and out of the cell via a double burette system, changes in

the volume, and thus the porosity, of the sample could be monitored.

The usual method of measuring hydraulic conductivity in the laboratory

(establishing a known gradient and measuring the flow) was abandoned in favor of a

system in which the flow was controlled, and the gradient was measured. A flow-

controlled system was selected over a gradient-controlled system to provide better flow

stability in a shorter period of time. The gradient was measured with pressure transducers,

as was the effective stresses applied to the specimens.

The flow system consisted of two influent reservoirs with air-water interfaces

connected to the same air-pressure regulator. Equal pressures in the influent lines were

designed to maintain a steady flow (and thus gradient and effective stress) while the pulse

of tracer solution was being introduced. The system maintained constant pressure and

supply of influent at the up-gradient end of the specimen, while the effluent was restrained

by a moving piston at the down gradient end, thus forcing a steady flow rate.

Measurement of the electrical conductivity of the effluent was selected as the

means to monitor variations in the concentration with time (i.e. to obtain breakthrough

curves). Additionally, there were probes placed in both the influent and effluent lines to

enable a conservation of mass analysis.

The data were recorded using two systems. The conductivity of the influent,

pressures, volumetric flow, and temperature were recorded using the MIT geotechnical

laboratory's central data acquisition system, while the conductivity of the effluent was

recorded on a IBM PC. An automated multi-channel conductivity meter was developed to

monitor up to four two-pin conductivity probes simultaneously. The conductivities were
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then converted to concentrations, and entered into the CXTFIT code (Parker and van

Genuchten, 1984) to obtain the fitted hydraulic properties of the sample.

4.3 Summary of Results

As discussed above, experiments were conducted on two different materials, a

silica sand, and a sedge-type peat obtained from the Wells G and H Superfund site. Each

experiment consisted of a 10 minute pulse of 0. 1 M NaCi, followed by approximately

three pore volumes of flushing. After the final pulse-type test was completed on a given

specimen, a continuous-source experiment was conducted to determine the equilibrium

conductivity reading from each probe. The results were separated into two sections; i)

measured and calculated results, which included phase relations (moisture content, specific

gravity, porosity and "B" value), testing conditions (seepage velocity, gradient, effective

stress), hydraulic conductivity, and conservation of mass, and (ii) fitted results, which

include the seepage velocities, hydrodynamic dispersion coefficients, pulse durations, 13

(the fraction of pore volume through which advective transport occurs), and (C (the

dimensionless first order mass transfer coefficient, which describes transport between

mobile and immobile regions). Sections i and ii were further separated by the type of

material being tested (i.e. sand and wetland deposits).

4.3.1 Measured and Calculated Results

4.3.1.1 Experiments on Sand

The specific gravity of the sand was reported by Ratnam (1996), to be 2.66. The

initial water contents of all sand specimens were assumed to be zero. Transducer

problems prevented meaningful calculations of the gradient and thus the hydraulic

conductivity for the sand specimens.

For Sand 2, the percentages of mass recovered ranged from 81%, to 96%. A

possible explanation for the trend is that the same mass of solute was lost in the system
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during each experiment, thus, for constant pulse durations, higher recoveries would be

observed in experiments conducted at higher flow rates. Probe 5 was moved from the

effluent line to the influent line after completion of the experiments on Sand 1, thus there

are no data available on the conservation of mass for experiments using that specimen.

4.3.1.2 Experiments on Wetland Deposits

The initial moisture contents were 573% and 548% for Peat 1 and Peat 2,

respectively. The corresponding specific gravities were estimated to be 1.13 and 1.32, and

the initial porosities were 0.87 and 0.88, for Peat 1 and Peat 2, respectively.

For Peat 1 Test 1, at an estimated total porosity of 0.81 (e = 4.3), the hydraulic

conductivity was 1.2 x 10-7 cm/sec. For Peat 2 Test 1, at a total porosity of 0.82 (e =

4.6), the hydraulic conductivity was 2.6 x 10-7 cm/sec. For the second experiments, the

hydraulic conductivities were 2.8 x 10-8 cm/sec at a total porosity of 0.77 (e = 3.3), and

5.8 x 10-8 cm/sec at a total porosity of 0.80 (e = 4), for Peat 1 and Peat 2, respectively.

Thus Peat 1 exhibited approximately half of the hydraulic conductivity of Peat 2.

A trend of decreasing hydraulic conductivity (k) with decreasing total porosity was

observed, however, the rate of change was not consistent between the two specimens.

The Ck (Ae / Alog k) values were 1.5 for Peat 1, and 0.84 for Peat 2, respectively. If a

regression is run through the data from both peat specimens, a value of Ck = 1.2 is

obtained. With only four data points, however, these Ck values would be heavily biased

by any non-representative results.

The conservation of mass analyses for the peat deposits indicated that the

percentages recovered were 49%, 59%, 81%, and 53% for Peat 1 Tests 1 and 2, and for

Peat 2 Tests 1 and 2, respectively. Peat I was subjected to approximately one additional

week of flow prior to testing (relative to Peat 2), thus some of ions initially present in the

specimen were flushed out prior to testing. This was not the case for Peat 2, which may
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be the reason for what appears to be an abnormally high recovery percentage observed for

Peat 2 Test 1.

4.3.2 Fitted Results

The two site, two region model (TRM, Model 4 of Parker and van Genuchten's

CXTFIT code) was used to fit hydraulic parameters to the experimental breakthrough

curves. Additionally, a one region model (ORM, Model 2 of Parker and van Genuchten's

CXTFIT code), based on the advection-dispersion equation, was fit to the data for

comparison with the TRM. In all cases, the TRM resulted in a better fit.

4.3.2.1 Experiments on Sand

In general the fits for both the TRM and ORM were relatively good. For the

ORM, R2 ranged from 0.963 to 0.995, while for the TRM, R2 ranged from 0.996 to

0.999. The close fit obtained from the ORM would support an assumption of equilibrium

transport for these relatively uniform specimens. The fitted parameters discussed below

were obtained using the TRM.

The fitted seepage velocities and pulse durations for Sand 1 closely matched the

calculated/measured values. For Sand 2, however, the fitted seepage velocities were

slightly greater than the calculated values, and the pulse durations were shorter than the

observed durations. 3, the fraction of pore volume participating in advective flow, was

relatively constant for the sand specimens at approximately 0.74. There did not appear to

be a correlation between 0 and the seepage velocity, which confirms that 0 is a parameter

characterizing the soil/system's structure. o, the dimensionless mass transfer coefficient,

varied between 1.8 and 3.1. The grain Peclet numbers exceeded one in all experiments,

ranging from 1.7 to 12.1, thus a (the dimensional mass transfer coefficient, = cuq/L) was

expected to vary linearly as the velocity, which it did to some degree. The best fit

regression line had R2 = 0.91.
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The dispersion coefficient for the sand specimens ranged from 2.1 x 10-4 cm 2/sec

to 1.3 x 10-6 cm2/sec. There did not appear to be any relationship between D and the

seepage velocity. For these experiments, D was expected to vary approximately linearly

with Vs, since the grain Peclet number was greater than one. However, no such

correlation was observed, suggesting that inter region diffusion might have been

dominating the mass transfer process, rather than local flow variations (additionally, there

was no observed correlation between cx and Vs2). This process was not confirmed either,

however, as no linear correlation was observed between ac and DT. The failure to observe

the expected trends was attributed an insufficient number of data points.

4.3.2.2 Experiments on Wetland Deposits

In general the fitted curves were not as good a match with the experimental data

for the wetland deposits as they were for the sand specimens. Additionally, the

breakthrough curves for peat had significant tailing relative to the breakthrough curves for

sand. Such tailing is characteristic of soils with immobile regions, and is thus indicative of

non-ideal chemical transport. The TRM provided consistently better fits to the

experimental data than the fits obtained from the ORM, which further indicated that non-

equilibrium transport was taking place in the wetland deposits. The following discussion is

based on the fitted parameters obtained using the TRM.

The fitted seepage velocities were greater than the calculated values (based on

total porosity), which is consistent with immobile regions within the pore spaces of the

specimens. Also, the fitted pulse durations were shorter than the measured values, which

is consistent with the percentages of recovered mass being less than 100%. The exception

was Peat 2 Test i, in which some leaching of ions initially present in the material appears

to have occurred, thus leading to a higher fitted pulse duration then the measured value.

p varied from 0.09, to 0.42, and no consistent trend between 0 and seepage

velocity, was observed, however 0.09 (03 for Peat 1 Test 1) is enough of a deviation from
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the other values (0.31 and 0.37) that it could be an anomaly. There was expected to be a

correlation between effective void ratio and log of hydraulic conductivity, however no

correlation was exhibited by the data of this research. This lack of correlation was also

attributed to outlying values among few data points.

Omega, varied between 9.4 and 2.1 for the wetland deposits. Calculated values of

the grain Peclet number were less than unity for the experiments using peat specimens,

thus, a( was expected to vary as vs2 for the case of low velocity contrasts between the two

regions. No trend was observed between cc and vs 2, nor between ca and vs for these

experiments, which suggests that there were significant velocity contrasts between the

mobile and immobile regions. However, if significant velocity contrasts existed, Co should

have scaled as DT, which was not exhibited by these data. Again, a non-representative

data point would have significantly biased the results.

The fitted hydrodynamic dispersion coefficients for the peat specimens ranged

from 1.0 x 10- 5 cm2/sec to 8.7 x 10-6 cm 2/sec. There did not appear to be any trend

linking D with seepage velocity values, which is consistent with the grain Peclet numbers

being less than unity.

4.4 Recommendations for Continued Research

The following recommendations are made with respect to future research involving

this equipment:

1) The flow control device could be placed at the influent end of the specimen rather

than at the effluent end. With this configuration, increases in the gradient will reduce

the effective stress rather than increase it, thus eliminating flow induced consolidation

and reducing the time to steady flow. It is recommended that the flow control device

be attached to a three way valve that will allow it to a) force distilled water into the
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sample at a steady rate, or, b) force distilled water into a bag within the tracer

reservoir, which will send the tracer through the sample at a steady rate.

2) A differential pressure transducer would eliminate the problems associated with

measuring small gradients at elevated back pressures. To avoid diffusion of solutes

into and out of the transducer (which could affect results) it would have to measure

the differential pressure between the line above the three-way valve to direct flow

from the flow control device (discussed above) and the effluent below the last

conductivity probe.

3) To improve the pH and Eh stability, a pressurized reference electrode could

replace the current reference. With the current electrode, the pressure in the effluent

line is greater than that in the reference barrel, which forces the effluent into the

barrel (the opposite of the intended flow direction), thus diluting reference solution.

For back pressures of 4 ksc, the pressure in the reference barrel should be greater

than 4 ksc.

4) The stability of the pH and Eh transducers might also be improved if the other

transducers are turned off while the pH and Eh readings are recorded. This would

eliminate the possibility of the alternating current from the conductivity transducers

interfering with the recorded values. To facilitate this, it is suggested that all of the

conductivity probes, the temperature probe, and the pH and Eh probes be recorded

using the Sheahan (MIT, 1991) card and the conductivity control program. This will

eliminate the need for coordinating reading times between the geotechnical central

data acquisition system and the conductivity data acquisition system.

158



5) A DCDT with a 21 cm (8 in.) linear range would eliminate the need to set the

barrel at the top of the linear range before each experiment

6) As previously stated, the primary focus of this thesis was the development of

equipment and procedures. There were not enough data to enable conformation of

the presence or absence of expected trends, from which the hydraulic behavior of the

Wells G and H sediments could be characterized. It is therefore recommended that

this research effort be continued as originally outlined in the proposal by Professor

Culligan-Hensley (1994).
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GRACE Specialty Polymers
Technical Data

STYCASJT 2651 MM Epoxy Encapsulant

REY FEAT' RETS:
* General purpose
* Excellent machinability
* Low viscosity
* A variety of hardeners

possible
* Dispensable

PRODUCT DESCRPTON:
STYCAST 2651 MM is a filled.

low viscosity. general our-ose.
epoxy encaosulant which can be
cured with a variety of hardeners.
It Contains a soft tiller zat makes it
a natural for automaac meter/max
dispensing equipment

When cured. STYCAST 2651
MM has excellent mnadilnabiiity
along wvth a good balance of
phytscal. Mermal and eleccal
propertles.

I•STRUCTIONs FOR SE:
General:

Thoroughty read Mhe informa-
don concerning health and safety
contained in this bulletn before
using. Observe all precautionary
statements that aooear on thme
produc !alael and/or contained in
individual Mamrial Safety Data
Shees (MSOS).

To ensure the long term
performance of the potted or
encansulated electrcalielectaonic
assembly. complete cleanrng of
comoonents and substrates should
be performed to remove contamin-
nation such/ as dust- moisture. salt.

and oils wnicn Can cause elec,'tcal|
failure. poor adhesion or corrmsion
in an embeoded part.
MlxineC

Some nller setlng 's common
durtng shlooln: or s•=rage. For
mis reason. It:s recommendea
that eacm c=moonent ne lor-
oughly mixec in its shipong
container -nor to usa. 0ower
mixing is preferrec ' ensure a
homogeneous product.

Accurately weign resln and
selected harcener into a dean
container n the recommended
rado. 'NWeinng aaratus having
an accuracy in proporton to the
amounts being weihed should

always be used.
Blend components ny hand.

using a kneadirng mooon 'or •.3
minutes. Scraoe the oottom and
sides of the mixing continer
requently to oroduce a uniform
mixture. If poss•ble. power mix for
an addit•onal ,-3 minutes. Avoid
high mixing seeds wnich could
entrap excessive amounts of air or
cause overheaong of the mixture
resulting in reduced working life.
Desiring

To ensure a void-free emoed-
ment , vacuum deainne should be
used to remove any e•trapped air
introduced during the mixing
ooeraton.
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Vacuum dealr mixture at 1 .5
mm mercury. The foam will nse
several times the liquid height and
then subside. Cononue vacuum
dear•ng unal most of the buoDling
has ceased. This usually reculres
3-10 minutes.

To faclitate dealnrig in dim-
Cult-to-deair matenals. add 1-3
drops of an air release agent such
as Antfoam 88. into 100 grams of
mixture. Gentle warming will also
help, but working life will be
shortened.
Applcation:

Pour mixture into cavity or
mold. Centle warming of the mold
or assembly reduces the viscosity
improving the flow of matenal into
unit having intricate shapes or
tightly packed coils or compo-
nent. Further vacuum ceairing in
the maid may be reuired for
ritical aoapications.

Cure using any one of the
recommended schedules. For
Optimum performance. the mntial
cure schedule should be followed
with a post cure. In general, a post
cure of 4. 16 hours at the highest
expected use temperature is
recommended. Alternate cure
schedules may also be possible.
Contact your Grace Specialty
Polymers Tec.ncal Representative
for furVier Informaton.

STORAAE & RANDLING:
For best results. store resins

and hardeners in onginal,. un-
opened containers. Storage in
Cool. clean and dry areas is
rcmmended. UMse sheif ife may

Rl~l 26S I MM 35 MPW 1.631 %4M
C11MV31: 1 9 2 LY
0 2SIC 15-24 Pw 24 -V
04SIC 4.~6 hT mr n
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0 100*C 2-4. Me
a 1:20C 1 0 60 -min

vary cep~endg on method o app•ca-
ton and straee nmoeraate.

Certain resmns and .ardeners
are prone to crystallizaoon. T
cyscallizaoon does occur. warm
the content of the shtoing
container * 50-65'C untal all
cysrats have dissolved. 3e sure
the shtiping container is loosely
covered dunng the warming stage
to prevent any pressure Puidup.
Allow contents to cool to room
temperature oefore continuing.

SPECZICATION WRuTERS:
The t•rthnical information

contained herein outlines the
typical prolertes of this material
and snould not be used in the
preparation of loecficatons as it is
intended for reference only.

For assistance in oreoanng
soeczficatoris. please contact our
Specifications Coordinator for
speofic recommencations.

SFY/TYMYGIENE.
This produc: iake most epoxy

compounds possesses the ability
to cause Skin and eye iimtaoon
upon contact Certain individuals

may also develco an allergic
reaction after exposure -skin
contact. :nnaaton of vapors. etc.m
which may manifest itsetf:n a
number of ways inoudirg skin
rasnes and an itcnng sensaton.
Handling -"is product at elevated
temperatures may also generate
vapors irritacntg o he respiratory
system.

Good inaustrial hygiene and
safety practices should be followed
when handling this product.
Proper eye protec=on and aoiro-
pnate chemical resistant clothirng
should be worn to minimize direct
contact. Consult tte Matenal
Safety Data Sheet (MSDS) for
detailed recommendations on the
use of engiineenng ontrtls and
personal protective equipment.

Th) inform.rcon is only a bn
sumoary of me amrcle safewt and
heaolwdor Thomrougly rewew Me
M~DS fore c• mpete fntrmya-
don Oefore usIng Ors product
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FEATURES
High Prcalibmratd Accuracy: 0.SrC max @ 2SC
Exellent Unerity: .1OSC max (0 to +70"CM
Wide Operating Temperature Range: -25FC to O1OC
Single Supply Operadon: +4V to +30V
Exellemnt Repeatability and Stability
High Level Output: tlA/K
Two Terminal Monolithic IC: Temperature In

Current Out
Minimal Self-Heating Errors

Low Cost, Precision IC
Temperature Transducer

A0592
CONNECTION DIAGRAM

PIN 2 PIN 2 PIN 1

(- t tNC (*)

*PIN 2 CAN BE EITHER ArTACHED OR UNCONNECTED

BOTTOM VIEW

PRODUCT DESCRIRTION
The AD592 a two termmal monoliduc integrated circuat em-
perature transducer that provides an output acurrent proportonal
to absolute temperature. For a wide range of supply voltages the
transducer acts as a high impedance temperature dependent
crrment source of ImAJK. Improved dsa and laser wafer
mmming of the IC's dun lm resistors allows the ADS92 to
achieve absolute accuracy levels and nonlincrnty errors previously
unattainable at a comparable price.

The ADS92 can be employed in applications between - ZSC
and -o 10MC where convenuonal temperature sensors (i.e., ther-
mistor, RTD, thermocouple, diode) are currently being used.
The inherent low cost of a monolithic mntegrated cutirt in a
plastic package, combined with a low total par count in any
given applicauon, make the ADS92 the most cost effecve tem-
perature transducer currentdy available. Expensive linarzannon
mrcmutry, precision voltage references, brdge components, ress-
tance measuring circutry and cold juncton compensaton are
not required with the ADS92.

Typical applicaton areas include; appliance temperature ns•ng,
automouve temperature measurement and control, •VAC (hear-
inglvenlatsnglas conditioning) system monitoring, industrmal
temperature conrol, thermocouple cold lunction compensation,
board-level dectronmcs temperature diagnostics, temperature
readout optons in instrumenanon, and temperature correction
crc•utry for precision electronics. Pariculanly useful in remote
cmsing applications, the ADS92 is immune to volage drops and

voltage nose over tong lins due to its high impedance current
output. ADS92s can easily be multiplexed; the signal current
can be swmtched by a CMOS multiplexer or the supply voltage
can be enabled with a m-state logc gate.

The ADS92 :s available ui three performance grades; the
ADS92AN, ADS92BN md ADS92C. All devices ae packaged
in a plastic TO-92 case rated from - 45"C to I12M'C. Performance
is specified from - 25'C o - I05'C. ADS92 chps are also
available, contact the factory for detads.

PRODUCT HIGHLIGHTS
1. With a single supply (4V to 30V) the ADS92 offers O.•C

tempertret measurement accuracy.
L. A wide operating temperature rane (- Z5C to -105C) and

highly linear output make the ADS92 an ideal subsimte for
older, more limited sensor technolopes (i.e., thermistors,
RTDs, diodes, thermocouples).

3. The ADS92 s electrcaly rlgged; supply irregularities and
variatons or •verse voltages up to 20V will not damage the
device.

4. Because the AD92 is a temperature dependent current source,
it is immune to voltage noise pickup and IR drops um the
signal leads when used remotely.

.The high output umpcdance of the AD92 provides greater
than O.?CV reecnon of supply voltage drift and ripple.

6. Las waer trimming and temperature testing ,nsures that
ADS92 units ar eaidy interchangeable.

7. Initial system accuracy will not degrade significantly over
time. The ADS92 has proven long term performance and
repeatability advantages inherent u integrated circuit design
and constructan.

fte•smed by Paes Ne. 4.123.69.
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AD592 -SPECIFICATIONS c .2,v,, .9 m a...- N.
M. u T M" Mi, T Mm Mi T Mn Us"

ACMURCY
CebbC1.3 2.5 0.7 1 oJ u *C

ITA O. 'C
Enwwm Tampoanume LI 3.0 0.1 1.J 0.4 0.1 C
Naurmmmnl 0.15 Os0 0.1 0.2I 0.05 .1s C

To& - -* 2 to . 105"C
Emwer Tonucmum 2.o 3.5 .9 .5 LI oC
Na~u nnSz 0.•2 0.5 0.2 0.4 .1 oJS C

OUTPUT CHARACIERSTICS
Noame Cumww O0u•u

@25C298.2K) 2951.2 29512 259.2 . A
TempaMnumewCaeinat I 1 1 A,,C
R•inabMdty' 0.1 0.1 0.1 'C
L TamTemSumyoi 0.1 0.1 0.1 T'J a

ABSOLITI•E.AXIMUM RA••NGS
OpwangTuparmrw -25 . 105 -5 .10 -25 + 10S 'C
PedckagTiomratuzre -45 .125 -45 *125 -45 +125 'C

ForwwdVmg-,( to -)44 44 44
RewmeVaoipe(- to ) 2 28 21 V
LmadTamparm

(Soidau•m10 o) 300 300 300o C

POWERSUPPLY
OpuMnan Voim RaW 30 4 30 4 30
Powr Suuppy Raeicou

.4V<Vs<. V . *.5 0.5 
1

+ V<V< (-15V 0. 0.2,I 0, v
* ISV<Vs< - 30V 0.1 .1 IL 'V

NOTES
'sase mcm" mmm c,, be u ed a ame the wr 029%.

am'mamgkuimuuma bnsmai m gmruawbaTfiC.
POnarim ,maU •puf=m m+ 10 awmuy. Comma

* 'Operane. 5"CWr m 'kum ins .ahf2

Siniw~nww t I af, womwevifinond do

emlme. wRinm.rc rm n*e amgwl aumnugtheden .A

im a• d o assnmo amg staom., awm ft ahe to
boldfmam d a= l pmducaft nom

METALZATION DIAGRAM

It .2 .rw *a2 s . 0.7.r
.C I -r *W LULL

I I I I , I I I I I f I

I~
"Q ADWM1 AV""L IN LAn I •.NII0 aOW .

.me

*• .ar r .ar .ao .*a1

TEMPERATURE SCALE CONVERSION EQUATIONS

C -(°F -32)
9

P* -9. 2U.C52

K ,*C +273.15

R a aF P*459.7

ORDERING GUIDE

Max Ca Max Erro Max Noainariray Package
Model Evero Q 25*C - 2•'C to - 10 S"0 - Z5'C to - 105'C Opuon*

ADS9ZCN O.'C l.0"C 0.35C TO-92
ADS92BN I.0C 2.o"C 0.4*C TO-92
ADS92AN 2.Y5C 3.5TC 0.5"C TO-92

For omatm aaemuano me Paca1w Imanmuon mlm.
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Typical Performance Curves-AD592 I
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Long-Term Stability @ 85"C and 85% Relative Humidity
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Long-Term Stability @ 125'C
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A0592
'TLEORY OF OPERATION -

The ADS92 ure a fundamnona property of aliam trammmas to
ralsm is teo peramsr proporional output. If two idenmda

aitor arem operatd at a constant rm of collec• r currm
d4mides, r, tha the diffrenauc in bam-enarmm vltager will be
(kT/qXln r). Since both k, Bolan's coamstant and q, the charge
of an deca are coasant, tbe resuldn voltage is directly
Proportional To Absolute Tmperanre-(PTA7 . In the ADS92
this differce voltage is converted o a PFTAT curant by low
emnperaum coefdcimt thin film rusto. This PTAT orrnt

is thes used to forc the otal output current to be proportional
to derees K i. The result is a currant aou with a output
qua to a scale factor imes the temperaue (K) of the saenor.

A typcal V-I plot of the ciuuim at ' Z•C and the tempermture
uerames is shown in Figure 1.

L U* T

Figure 1. V-1 Characternstics

Factory rimming of the scale facor to IA/K is accomplished
at the waftr lerv by adjusing the AD592's tcmperatur reading
so it corresponds to the actual tmperamr. During laser rimmin
the IC is at a temperaurr within a few degras of 25"C and is
powred by a SV supply. The dance is then packaged and
amoanicadlly temperaue tared to aspecaficanon. -

FACTORS AFFECTING ADS92 SYSTEM PRECISION
The accuracy linms piv, on the Speafcations page for the
AD592 makes it sy to apply in a wvriety of diverse appliations.
To alculate a total aeror budget in a gie s yam it is important
to cotec interpre the accurscy specfia , noalinarny
erms, the rspo•e of the drcuit to supply voltage vmuisdo
ad the effect of the surrounding thma envuam . As with
other dectrnc d~ins cmnai lcoponn selection will have a
major Eaect accuracy.

CAIURATION ERROR, ABSOLUTE ACCURACY AND
NONLUNEARITY SECSFICATIONS
Three pmary liman of amer are pmn for the ADS92 such that
the coset grade for say give appicano can adsily be chosen
for the overall levw of accucy required. They as the calibradon
accurcy at 2'C, and the aror ove tespermtue fam 0 to 70C
ad - SC to t 105C. Then spefications correspond to he
saul arm the usr would an if the curt output (o a ADS92
w converted to a vItage with a precan rmmtor. Noe that
thbe aaimum emer at m nom teopta , over the ommecial
IC tempuuae ran, or an estrnded ran u acding the boking
pu•n of mr, an be dirtaly nad fm the SpSi
Tal. All thrs error lms ae a ambaitaon of inimal ar ,

9-20 TEMPERATURE SENSORS

sale factor vaiso and nonlinarity dewanon from the ide
sA/IK orput. Figure 2 p•phcally depcts the guaranted

limim of uracy for a ADS92CN.

-• f5 .165

Figure 2. Error Specifications (AD592CN)

The ADS92 bhas a highly limar output in comparison to older
technolmoy armors (i.e., bharmuors, RTDs and thermocoupls),
thus a noolinanm y amr me)pac noon is separated fom the
aboleaccuracy giv over temperature. -As a maximum deviation
from a bs-fi gt line this pecificaon represema the only
error which canno be itiamed out. Figure 3 is a plot of typical
ADS92CN nonlinarity over the full ared tcperatm nge.

,

i

-Ia

To ' now.r

Figure 3. Nonlineerny Error (AOSS2CNJ

TRLMMING FOR HIUGIER ACCURACY
Calibation mr at25C an be ranovd with a single atepe re
uim. Figur 4 shows how to adjust the A0D92's scale factor in
the bc voltage output rcuit.

Figure 4. Basic Voltage Output (Single Temperature Trimi

REV. A
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AD592 I
To trim the circuit the tmpemmatr must be mmured by a
fe•rnce smme r and the value of R should be adjusted to the

output (Vtrr) carrsponds o ImV/K. Note that tei trim proce-
dareshould be imploumted as close as possible to the tempersur
high accuracmmy is dested for. In most appliamton if a ingle
ampemure trim its desed it an be implemented where the
ADS92 current-t-ouspt voltage converuon takes pao (e.g.,
output resistor, offset to an op amp). Figur 5 illustrats the
effect on total ror whn using this technique.

-'I

-t.6

amL
T1104MMM. -C

Figure 5. Effect of Scale Factor Tnm on Accuracy

If grater acuracy is desired, initial calibration and scale actor
mers can be removed by using the ADS92 in the circnt of

Figure 6.

AO14te

-LI

.& . N
-os Am -IZIrOUI o "€

. 10

FTgure 7. Typical Two Trm Accuracy

anuty of the output allows the use of lower cost unregultred
pplies and mans that a sres restnc of svcral hundred

ohms (c.g., CMOS multipviear, meter coil restance) will not
degrade the overall perormance.

The thermal envronment in whiuch the ADS92 as used dcrmns=m
two performnce trts: the efct of self-bhtang on accuracy
and the response ame of the sensor to rapid changes in cemperacure.
In the firt cae, a rise in the IC junction temperamre above the
mbient temperature is a funcaon of two varables; the power

mosumpun level of the drcui and the thrmma rmitance
between the chp and the ambient environment (y1A). Sedf-heain
aerrr in 'C an be derived by muluplymng the power dimpammn
by YAy. Because crmot of this type an vary widely for sirommndidnp
with different hat sinkg capacies it is nccessary to specify
91A under several condinans. Table I shows how the magnitde
of self-h.ang error varies risuve to the cnvimnment. In typical
free air applications at 2'C with a 5V supply the magnitude of
the error s 0.2"C or lss. A common clip-on heat smk will
reduce the error by 25% or morem crtncal hgh temperature,
large supply voltag s•tuations.

Figure 6. Two Temperature Trim Circuit

With the axamducer at 0 C adjustmen of RI for a OV output
nulls the initial calibration error and shifts the output from K to
r. Tweaking the gin of the rcuit at an elevated tenperatu

by adiusting R2 trims out sale factor error. The only ceror
mauining over the tempearae range bmag trimmed for is

amolineanty. A typical plot of twmo trm accuracy is gp in
Fiure 7.

SUPPLY VOLTAGE AND THERMAL ENVIRONMENT

The power supply rejecocharacsanr s of the AD592 minimi;, e
amns due to voltage irregularity, ripple and aoime. If a supply is
used other than SV (used in tory trmmmng), the power supply

ser can be removed with a tingle temperture um. The FTAT
nature of the ADS92 will rmamin unchaned. The general insen-

REV. A

Medium

SacllAir
Without Heat Sink
With Heat Sink

Moving A.r
Without Heat Sink
With Heat Sink

Fluonnert Liquid
Aluminum Block-

JA^ (C"Cwatt) (sec)*

a sm awamW fit rvae manea (99.3% o(f Gal valus). In a wham
in tma=l rum • am 20 mpeC ag p .mn fumncom. :be mual tbamal

mpea may be ber man daa•mi.
T"aeih .Tstual CLrm.

Table I. Thermal ChAMracrenrtic

TEMPERA TURE SENSORS 9-Zf
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A0592
Raponse of the ADS92 output to abrupt changes in ambiemt
tempuastue can be modeled by a mngre ame costant r c ponmtial
fimncon. Figure S dhow typcal response ame plots for sevranl
medi of inrat.

I t

0 a in ' 4 13 'a Ya 7 mm
"W- W

Figure 8. Thermal Response Curves

The time constant, -, is dependent on SA and the thermal
apeanes of the chip and the package.Table I lists the cffecnve
, (time to teach 63.2% of the final value) for several different
media. Copp= printed arcur botrd connecons wnare Sgilnted
in the analysis, however, they will smk or conduct heat dknedy
through the ADS92's solder dipped Kovar leads. When faster
response is requud a thrmally conducive grease or glue between
the ADS92 and the surface temperstur bang measured should
be used. In free air applications a cip-on hear ami wll decras
output stabilizanon ame by 10-20%.

MOUNTING CONSIDERATIONS
If the ADS92 is thermally attached and prperly protected, it
an be used in any temperature measurg sumaon where the
mmirmum range of temperatures encountered s beween -25•C
and - 105C. Because plastc IC packan technology is anployed,
excessivre mechanical stres must be safeguarded against when
fastening the device with a clamp or screw-n heat tab. Thermally
conducave epozy or glue s recommanded under typical mounting
conditions. In wet or corrosive envYronmenat any elece=cally
isolated meal or cranuc well can be used to shl•ld the ADS92.
Condensation t cold rtmperatures can cause leakage current
related arrors and should be avoided by seang the devce in
nonconoducve epoxy pamnt or dips.

AFLICATIONS
Connecting several ADS92 devices in paralle adds the currents
through them and produces a reading proporoonal to the average
temperature. Series AD592s wall indcarte the lowest temperature

f. A069

AOSIyISIM

manU

A0612

A0512

A0522

Figure 9. Average and Minimum Temperature
Connec'tons

because the coldest deice limits the sries curren flowg through
the sensors. Both of these anutsm amr depicted in Figare 9.

Th circuit of Figure 10 demonsares a mehod in which
a vdoltge ouqm can be dared in a difikawntial emperare
measurerent.

Wo

Figure 10. Differennal Measurements

R can be used to nm= out the inharent o te between the two
devices. By mmaeng the un resistor (10kfL) temperaure
measuranem a an be made wndr higher rsoluon. If the mag-
murude of V- and V- is not the -me the difference in power
onsumpo bet the two device an cause a differendal

et-heatng erar.

Cold jncon compensation (CC used in thrmoacoup sigpal
maditionmg an be implemnted iing an ADS92 in the circuit
mPfigsumton of Figure 11. Expensive sulated ice baths or
hard to trim, i•mccurs bdge a ims are no longer requed.

Figure 11. Thermocouple Cold Junction Compenseafon

The cutnit shown an be opudmied for any ambient temperature
range or thermocouple type by aimply t the crme
value for the scaling resismr - L The AD92 output (#A//K)
times R should apprssmates the line best fit to the thermocouple
curve (slope in V over the mot likely ambient rmperaturme
rngL Additionally, the output sensitivy an be chosen by
seectin the mesmr Ro 1 and R4a for the dusred monanver•ag

i. The offset adjusanent shown miply sreces the ADS92
to C. NoMo that the TCs of the frefetne and the resroi are
the prnmary coatbuton to crr. Temperatue reie~ of 40
to I an be ady achieved usan the above techmque.
Although the ADS92 offer a nose immune curaent output, it i
not compsmble with promm -onnulindusmal autmation current
loop standrds. Figur 12 is a ample of a tamperture to 4-
20mA tranaminer for use with 40V, lkil rayems.

In this c ircnk the lAKC output of the AD592 is amplified to
ImAMC and offaet a that 4mA is equivalent to 1C and 20mA
is equivalr to 33C. Rt is mmnmd for prope reding at -

9-22 TEMPERAIURE SENSORS
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A0592

Figure 12. Temperature to 4-20mA Current Transmiter

intermediake rference temperature. With a sutable choice of
ezarno, any tenperatuam range within the operaung limts of

the AD92 may be cbosen.

Reading temperannre with an AD92 in macroprcessor based
sysem can be implemented with the dircut shown in Figure 13.

Figure 14. Vanaole Temperature 7hermostar

Mulople remote temperatures can be measured using several
AD592s wrth a CMOS mulpipleer or a seres of 5V lopc ptes
beause of the devace's cur-ent-mode output and supply-voltage
compliance range. The on-rastance of a FET switch or output
impedance of a pte will not effect the accuracy, as long as 4V is
mainamed ross the transducer. MUXs and logm driving circuits
should be choen to minmm leakage current related anors.
Figure 15 illustrates a locally conrolled MUX switching the
sigsl current from several remote ADS92s. CMOS or TTL
gates can also be used to switch the ADS92 supply voltages,
with the multiplered sgnal being tranmitted over a single
wised pair to the load.

.*SV -IV

Figure 13. Temperature to Digital Output

By using a differendal input AID converter and choosm the
current to volag verin restor correctly any range of
temperamu s (up to the 130WC pan the ADS92 is rated for)
cenaeed at any point an be mnaured using a minimal number
a( compomia. In this configuradon the syrstan wll tolvre up
to I'C

A variable temperawure contlling thermo t can easily be built
using the ADS92 in the circuit of Figure 14.

R = and Rw deraPmin the limi of temperature controlled
by d pmm er Rar. The druit shown • perates over the
hll zmperare range (- 2?C to + 105C) the ADS9Z is raced
for. The refa•mnce mintains a constant set point volta and
isavra that apprommiatly 7V app•as oss the s mor. If it is
nmeury to guardband for enamous oise hysteras can be
added by tying a rsistor frm the output to the unm•ounded
ad of Rtaw.

nem '%

Figure 15. Remote Temperature Multiplexing

To ainimiz the number of MUX requared when a large number
of AD592s are beming used, the carcuit can be configured in a
matr. That s, a decoder an be used to swtch the supply
voltage to a column of AD592z while a MUX is used to control
which row of sensor are beng masured. The maxmum number
of ADS92Zs wich an be used is the product of the number of
channels of the decoder and MUX.

TEMPERATURE SENSORS 9-23
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A0592
An mcmple deuis a• •olling 80 AD592s is shown in Figur
16 A 7-bis digial word is all that is requirad to slec one of
the enrm . The asbie input of the muldpl turns all the
saors off for minimum dissipation while idling~

GruM

mamai

r- W7

To nwKrt the ADS92 oampur to C or Fa Winge inmpinsre
rfi anmd ap amp am be used shown in qre 17. Athough
this cidmit is "imila be w me o Ir trin circuit shown
in Figure 6, wo impe nt diffmenm ait. Fir, the ian
remmor is fd allvia the need for m demad tmeramuum
aim. Aaepmble =rac r be achieved by chooing a inca -
pinsive rsinar wiibh dew cmam lan. Second, the ADS92
aibratin armr can be rimied om as hown coanvenient
tmpaurm CL.., om rmposture) with a singe pot adisumaen.
This sps is indeand- of the gain salciom.

t.. . IIr.."c -ftna iamb
-&*An 1 ma

ream "

Figure 17. Celsius or Fahrenheit Thermometer

Figure 16. Matrix Multiplexer

9-24 TEMPERATURE SENSORS
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APPENDIX C: CONDUCT.BAS LISTING
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1 REM ,.********************CONDUCT.4.BAS***LAST EDITED 1-4-96 ******************
2 REM PROGRAM TO CONTROL CONDUCTIVITY BOX BUILT BY SAMIR
3 REM WRITTEN BY BRAD RAMSAY, 1995 (SOME CODE FROM S.TREE AND OTHERS @ MIT)
4 REM USES SECOND STRAWBERRY TREE CARD FOR DIGITAL OUTPUTS (ASSUMES 2nd CARD)
5 REM USES THE SHEAHAN DATA ACQ CARD
10 REM
14 REM Don't change the name AM1 used for calls, it's an external procedure.
17 REM **********************************************************************

20 CLS:LOCATE 10,10
30 REM
34 REM ********** MAIN PROGRAM ***********************************************
35 REM
40 GOSUB 40000 :REM SET UP SHEAHAN CARD
67 GOSUB 53000 :REM INITIALIZE RESISTOR ARRAYS
70 GOSUB 41000 :REM GET THE INPUT VOLTAGE
80 GOSUB 10000 :REM INPUT TEST SET UP INFORMATION
90 OPEN DATAFILES FOR OUTPUT AS #1 :REM OPEN DATA F:LE (ERASES OLD DATA)
93 PRINT#1, "TIME PROBE 1 PROBE 2 PROBE 3 PROBE 4"
94 NOB = 0 :REM INITIALIZE CURRENT OBSERVATION NUMBER
95 LASTTIME=0
96 PTIME = 0
97 TIMES-"00:00:00"
100 START!=TIMER :REM INITIALIZE TIMER
110 WHILE TIMER<START!+DELAY% :REM WAIT FOR THE SPECIFIED DELAY TIME
120 AS = INKEYS :REM CHECK FOR "QUIT" DURING DELAY
130 IF INKEYS ="Q" THEN GOTO 210
140 WEND
150 WHILE NOB<MAXNOB% :REM CHECK OBSERVATION NUMBER
155 GOSUB 1000 :REM CHECK TIMER FOR 24 HRS
160 WHILE (TIMER+PTIME) < (START! + NOB*TINC%) :REM WAIT FOR READING INCR.EME
NT
165 GOSUB 1000 :REM CHECK TIMER FOR 24 HRS
170 AS - INKEYS :REM CHECK FOR USER QUIT
180 IF AS - "Q" THEN GOTO 210
190 WEND
195 GOSUB 20000 :REM CALCULATE CONDUCTIVITIES & WRITE TO FILE
200 WEND
210 CLOSE #1 :R.EM CLOSE DATA FILE
220 OUT 6932,0 :R.EM TURN OFF ALL PROBES AND RESISTORS
250 END
300 REM **********************END OF MAIN PROGRAM*****************************
1000 REM
1001 REM ***SUBROUTINE TO CHECK TIMER
1002 REM
1010 IF (TIMER < LASTTIME) THEN (PTIME-PTIME-86400!)
1020 LASTTIME = TIMER
1030 RETURN
10000 REM
10001 REM ***SUBROUTINE TO ENTER TEST INFORMATION******************************
10002 REM
10010 CLS
10020 LOCATE 10,10
10030 INPUT "ENTER THE NUMBER OF PROBES";NUMPROBES%
10040 CLS:LOCATE 10,10
10050 INPUT "ENTER THE NAME OF THE DATA FILE";DATAFILES
10060 CLS:LOCATE 10,10
10070 INPUT "ENTER THE MAXIMUM NUMBER OF OBSERVATIONS";MAXNOB%
10080 CLs:LOCATE 10,10
10090 INPUT "ENTER THE TIME INCREMENT IN SECONDS";TINC%
10100 CLS:LOCATE 10,10
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10110 PRINT "ENTER THE DELAY, IN SECONDS, BETWEEN THE TIME YOU ACCEPT"
10120 LOCATE 11,10:INPUT "YOUR CHOICES, AND THE BEGINNING OF THE TEST";DELAY%
10140 CLS
10150 LOCATE 5,10:PRINT "NUMBER OF PROBES - ";NUMPROBES%
10160 LOCATE 7,10:PRINT "OUTPUT FILE NAME = ";DATAFILES
10170 LOCATE 9,10:PRINT "MAX # OF OBSERVATIONS m ":MAXNOB%
10180 LOCATE 11,10:PRINT "TIME INCREMENT = ";TINC%;" SECONDS"
10190 LOCATE 13,10:PRINT "DELAY TIME = ";DELAY%;" SECONDS"
10200 LOCATE 16,10:INPUT "ENTER Y TO ACCEPT";Q$
10210 IF Q$ - "Y" THEN GOTO 10220 ELSE GOTO 10010 :REM TO CHECK INPUT
10220 CLS:LOCATE 8,10
10230 PRINT "PRESS Q TO END TEST"
10231 LOCATE 10,9: PRINT "probe 1 = "
10232 LOCATE 12,9: PRINT "probe 2 - "
10233 LOCATE 14,9: PRINT "probe 3 -
10234 LOCATE 16,9: PRINT "probe 4 = "
10240 RETURN
20000 REM
20001 REM ***SUBROUTINE TO TAKE READINGS*************************************
20002 REM
20004 ETIM.E=(TIMER-i-PTIME) -START! :REM TO INITIALIZE TEST TIMER
20005 ETIME = INT(ETIME) :REM TRUNCATE TO AN INTEGER VALUE
20010 FOR X - 1 TO NUMPROBES%
20040 RESIST% = RARRAY(X) :REM GET CURRENT RESISTOR FOR PROBE X
20050 OUT 69124, ((256-(16*X))+(16-RESIST%)):REM TURN ON RESISTOR & PROBE
20051 GOSUB 1000
20052 PAUSE = (TIMER+PTIME)
20053 WHILE (TIMER+PTIME) < (PAUSE + 6)
20054 GOSUB 1000
20055 WEND
20060 GOSUB 42000 :REM TAKE READING
20070 IF (VOUT/VIN)>(5/6) AND RESIST%<5 THEN RESIST%=RESIST% + 1
20080 IF (VOUT/VIN)<(1/6) AND RESIST%>1 THEN RESIST%=RESIST% - 1
20090 IF RESIST% = RARRAY(X) THEN GOTO 20120
20100 RARRAY(X) - RESIST%
20110 GOTO 20050
20120 CONDUCTIVITY - (1/(OHMARRAY(RESIST%)/(VIN/VOUT-1)))*1000:REM mS
20130 PROBENUM(X)=CONDUCTIVITY :REM STORE VALUE UNTIL ALL PROBES ARE READ
20140 NEXT X
20150 PRINT#1, USING "###.####"; ETIME, PROBENUM(1), PROBENUM(2), PROBENUM(3), P
ROBENUM(4)
20155 LOCATE 10,20:PRINT USING "###.4###";PROBENUM(1)
20156 LOCATE 12,20:PRINT USING "###.####";PROBENUM(2)
20157 LOCATE 14,20:PRINT USING "###.####";PROBENUM(3)
20158 LOCATE 16,20:PRINT USING "###.####";PROBENUM(4)
20159 LOCATE 18,10:PRINT "nob - ";NOB," etime = ";ETIME
20160 NOB = NOB + 1
20170 OUT 6932, 0 :REM TURN OFF PROBES
21000 RETURN
40000 REM
40001 REM ***SUBROUTINE TO SET UP THE SHEAHAN CARD ~*'***• ******************.
40002 REM
40010 AD1170-768 :REM SETS THE ADDRESS OF THE SHEAHAN CARD
40015 MUX!-776 :REM SETS THE ADDRESS OF THE MULTIPLEXOR
40030 INTTIME = 21 :REM SETS THE INTIGRATION TIME
40040 INTBIT - 13 :REM SETS THE BIT RESOLUTION TO 20
40045 GRDCHANNEL = 15
40070 OUT AD01170+1, INTBIT :REM LOAD DATA FORMAT IN 2ND BIT SLOT
40090 OUT AD1170,48 :REM LOCK-IN RESOLUTION FORMAT
40100 WAIT AD1170, 1, 1 :REM WAIT FOR ABOVE TASK TO FINISH

182



40110 OUT AD1170,69 :REM SET CALIBRATION TIME TO 167 MS
40120 WAIT AD01170, 1, 1 :REM WAIT FOR ABOVE TASK TO FINISH
40150 RE"TURN
41000 REM
41001 REM ***SUBROUTINE TO READ THE INPUT VOLTAGE*************.*****************
41002 REM
41010 CLS
41020 LOCATE 10,10
41030 INPUT "SWITCH TO INPUT VOLTAGE AND PRESS ENTER TO CONTINUE";Q$
41040 GOSUB 43000 :REM TAKE READING
41050 V•IN-VOLT :REM "VOLT" IS RETURNED FROM SUBROUTINE
41080 CLS:LOCATE 10,10
41070 INPUT "SWITCH TO OUTPUT VOLTAGE AND PRESS ENTER TO CONTINUE" ;Q$
41080 RETURN
42000 REM
42001 REM *** SUBROUTINE TO GET OUTPUT VOLTAGE
42002 REM
42010 GOSUB 43000 :REM TAIM READING
42020 VOUT=VOLT :REM "VOLT" IS RETURNED F-ROM SUBROUTINE
42030 RETURM
43000 REM
43001 REM ***SUBROUT.NE TO TA2E READING ************************************
43002 REM
43010 OUT MUX!,0 :REM SETS THE MULTIPLEXOR TO CHANNEL 1
43020 OUT AD1170,INTTIM•E :REM STARTS CONVERSION USING CNV COMMAND
43030 WAIT AD1!70, 1, 1 :REM WAIT FOR ABOVE TASK TO FINISH
43035 OUT MUX , GNDCHANNEL
43040 LOBYTE= INP(AD1170+1) :REM READ THE LOWEST 8 BITS
43050 MIDBYTE=INP(AD1170+2) :REM READ THE MIDDLE 8 BITS
43060 HIBYTE -INP(AD1170+3) :REM READ THE HIGHEST 8 BITS
43070 COUNT=LOBYTE+MIDBYTE*2564+HIBYTE*65536' :REM COMPUTE BIT COUNT
43080 VOLT=(COUNT*10/2^(INTBIT+7)-5) :REM CONVERT TO VOLTS
43090 OUT AD1170,192:WAIT AD1170,1,1 :REM DO 1 BACKGROUND CALIBRATION
43100 RETURN
53000 REM ***SUBROUTINE TO INITIALIZE ARRAYS**********************************
53001 REM
53010 DIM RARRAY(4) :REM AN ARRAY TO STORE THE CURRENT RESISTOR #
53020 FOR X = 1 TO 4
53030 RARRAY(X)=1
53040 NEXT X
53050 DIM OHMARRAY(5) :REM TO STORE MEASURED VALUES OF RESISTORS
53060 OHMARRAY(1) - 100.32
53070 OHMARRAY(2) - 1000.8
53080 0HMARRAY(3) = 10004.7
53090 OHMARRAY(4) = 100040!
53100 OHMARRAY(5) - 10001104
53110 DIM PROBENTUM(4) :REM AN ARRAY TO STORE CONDUCTIVITY VALUES
53120 FOR X - 1 TO 4 :REM WHILE COMPUTER READS OTHER PROBES
53130 PROBENUM(X) =0
53140 NEXT X
53999 RETURN
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APPENDIX D: CONTINUOUS INPUT CURVES AND
ASSOCIATED EQUILIBRIUM READINGS
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APPENDLX E: INFORMATIONAL PAGES OF CXTFIT INPUT
AND OUTPUTFILES
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4 1 1 50 40 0 0

V..... D..... R..... PULSE. BETA.. OMEGA.
0.011 0.0000002 1.0 600.0 0.3 1.0
1 1 1 0 1 1 1

0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

0.00000 1.0 1
0.00069 6.65480 34
0.00079 6.65480 94
0.00079 6.65480 154
0.00074 6.65480 214
0.00074 6.65480 274
0.00074 6.65480 334
0.00013 6.65480 394
0.15376 6.65480 454
0.35300 6.65480 514
0.50294 6.65480 574
0.59702 6.65480 634
0.68510 6.65480 694
0.75436 6.65480 754
0.80801 6.65480 814
0.85797 6.65480 874
0.89427 6.65480 934
0.91865 6.65480 994
0.84389 6.65480 1054
0.64836 6.65480 1114
0.48908 6.65480 1174
0.36707 6.65480 1234
0.27418 6.65480 1294
0.20271 6.65480 1354
0.14485 6.65480 1414
0.08197 6.65480 1474
0.05595 6.65480 1534
0.03318 6.65480 1594
0.01821 6.65480 1654
0.00941 6.65480 1714
0.00317 6.65480 1774
0.00137 6.65480 1834
0.00044 6.65480 1894
0.00008 6.65480 1954
0.00000 6.65480 2014
0.00000 6.65480 2074
0.00003 6.65480 2134
0.00005 6.65480 2194
0.00007 6.65480 2254
0.00027 6.65480 2314
0.00051 6.65480 2374

SIT1.DAT
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ONE-DIMENSIONAL CONVECTION-DISPERSION EQ. SOLUTION
NON-LINEAR LEAST-SQUARES ANALYSIS

DETERMINISTIC TWO-SITE/TWO-REGION NONEQUILIBRIUM MODEL FOR
PULSE-TYPE INJECTION WITH NO PRODUCTION OR DECAY
SOLUTION FOR FLUX CONCENTRATIONS
REDUCED CONCENTRATION DATA

INITIAL VALUES OF COEFFICIENTS

NAME
V.........
0.........
R..........
PULSE.....
BETA......
OMEGA.....
CI ........
CO ........

ITERATION
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

INITIAL
.0110
.0000

1.0000
600.0000

.3000
1.0000
.0000

1.0000

SSQ
3.093490
3.093471
3.093469
3.093468
3.093467
3.093467
3.093467
3.093467
3.093467
1.369952
1.152426

.080150

.012683

.009343

.009307

.009307

.009307

VALUE

V.....
.01100
.01100
.01100
.01100
.01100
.01100
.01100
.01100
.01100
.01470
.01379
.01079
.01061
.01053
.01052
.01052
.01052

D..... PULSE.
.00000 600.00000
.00000 599.99995
.00000 599.99995
.00000 599.99995
.00000 599.99995
.00000 599.99995
.00000 599.99995
.00000 599.99995
.00000 599.99995
.00005 692.45775
.00011 690.30994
.00048 647.39814
.00035 601.08125
.00021 599.67016
.00021 599.62216
.00021 599.61464
.00021 599.61488

CORRELATION MATRIX

1
1.0000

.1391

.4330

.0392

2

1.0000
.0885
.8367

BETA..
.30000
.30000
.30000
.30000
.30000
.30000
.30000
.30000
.30000
.88382
.85316
.71820
.74472
.71555
.71598
.71596
.71595

3

1.0000
.0592 1.0000

SIT1.OUT



-.1846 -. 9164 1.0000

RSQUARE FOR REGRESSION = .99774614

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

VALUE
.105236E-01
.206703E-03
.599615E+03
.715955E+00
.1784429Ei+01

S. E.COEFF.
.571851E-04
.126371E-03
.397215E+01
.167350E-01
.206361E+00

T-VALUE
184.03

1.64
150.95
42.78
8.65

95% CONFIDENCE LIM
LOWER UP

.104075E-01 .106
-.498594E-04 .463
.591551E+03 .607
.681979E+00 .749
.136533E+01 .220

-----------------------ORDERED

DISTANCE
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000

TIME
34.0000000
94.0000000

154.0000000
214.0000000
274.0000000
334.0000000
394.0000000
454.0000000
514.0000000
574.0000000
634.0000000
694.0000000
754.0000000
814.0000000
874.0000000
934.0000000
994.0000000

*** * *****

* ** *** **** *

** *** ** ** **

* **** * *** * *

** ****** ** *

* ** ***** * **

* **** **** * *

*** * *****

** * ****** *

BY COMPUTER INPUT------------------------
CONCENTRATION RESI-

085OBS
.0006900
.0007900
.0007900
.0007400
.0007400
.0007400
.0001300
.1537600
.3530000
.5029400
.5970200
.6851000
.7543600
.8080100
.8579700
.8942700
.9186500
.8438900
.6483600
.4890800
.3670700
.2741800
.2027100
.1448500
.0819700
.0559500
.0331800
.0182100
.0094100
.0031700
.0013700
.0004400
.0000800
.0000000
.0000000
.0000300
.0000500
.0000700
.0002700

FITTED
.0000000
.0000000
.0000000
.0000000
.0000000
.0000112
.0093032
.1360413
.3366147
.4867403
.6080029
.7056971
.7822756
.8409651
.8851211
.9178192
.9321805
.8216477
.6336627
.4925472
.3776044
.2843565
.2108867
.1543572
.1116935
.0800089
.0567985
.0399964
.0279591
.0194145
.0133991
.0091956
.0062780
.0042655
.0028851
.0019O432
.0013037
.0008714
.0005804

DUAL
.0006900
.0007900
.0007900
.0007400
.0007400
.0007288
-.0091732
.0177187
.0163853
.0161997

-.01&9829
-.0205971
-.0279156
-.0329551
-.0271511
-.0235492
-.0135305
.0222423
.0146973

-.0034672
-.0105344
-.0101765
-.0081767
-.0095072
-.0297235
-.0240589
-.0236185
-.0217864
-.0185491
-.0162445
-.0120291
-.0087556
-.0061980
-.0042655
-.0028851
-.0019132
-.0012537
-.0008014
-.0003104

SITL OUT
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VARIABLE
1
2
3
4
5

NAME
V.....
0.....
PULSE.
BETA..
OMEGA.

NO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

5 12 -65



1 50 40

V.....
0.011

1 1
0.0
0.0

0.00000
0.00000
0.00001
0.00002
0.00004
0.00051
0.00057
0.00336
0.18623
0.33642
0.53426
0.62691
0.71560
0.78897
0.84438
0.89001
0.92811
0.94726
0.85195
0.63787
0.47502
0.35360
0.25996
0.18926
0.12518
0.07582
0.04854
0.02723
0.01354
0.00630
0.00165
0.00045
0.00007
0.00000
0.00003
0.00006
0.00027
0.00054
0.00054
0.00057
0.00061

D. . ...
0.0000002

1
0.0
0.0
1.0

6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480
6.65480

PULSE. BETA..
600.0 0.5

1
0.0
0.0

1
0.0
0.0

SIT2.DAT
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OMEGA.
1.0

1
0.0
0.0

1.0
0

0.0
0.0

1
35
95

155
215
275
335
395
455
515
575
635
695
755
815
875
935
995

1055
1115
1175
1235
1295
1355
1415
1475
1535
1595
1655
1715
1775
1835
1895
1955
2015
2075
2135
2195
2255
2315
2375

4 1 0 0



ONE-DIMENSIONAL CONVECTION-DISPERSION EQ. SOLUTION
NON-LINEAR LEAST-SQUARES ANALYSIS

DETERMINISTIC TWO-SITE/TWO-REGION NONEQUILIBRIUM MODEL FOR
PULSE-TYPE INJECTION WITH NO PRODUCTION OR DECAY
SOLUTION FOR FLUX CONCENTRATIONS
REDUCED CONCENTRATION DATA

INITIAL VALUES OF COEFFICIENTS

NAME
V.........
0..........
R.........
PULSE.....
BETA......
OMEGA.....
CI ........
CO ........

ITERATION
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

INITIAL VALUE
.0110
.0000

1.0000
600.0000

.5000
1.0000
.0000

1.0000

SSQ
1.668690
1.668668
1.668663
1.668660
1.668659
1.668659
1.668659
1.668659
1.668659
.199970
.094856
.054336
.026099
.009867
.007109
.006038
.005970
.005916
.005854
.005824
.005803
.005741
.005558
.005468
.005336
.005247
.005170

SIT2.OUT
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V. ..
.01100
.01100
.01100
.01100
.01100
.01100
.01100
.01100
.01100
.01142
.01139
.01089
.01106
.01086
.01078
.01079
.01078
.01078
.01078
.01077
.01077
.01076
.01075
.01075
.01074
.01074
.01073

D....0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00091
.00098
.00100
.00070
.00075
.00004
.00009
.00007
.00005
.00003
.00003
.00003
.00001
.00001
.00001
.00001
.00000
.00000

PULSE.
600.00000
599.99996
599.99995
599.99994
599.99994
599.99994
599.99994
599.99994
599.99994
587.60640
589.34355
601.04789
598.39490
602.75124
601.62301
604.36803
604.47693
604.55637
604.70617
604.89122
605.02881
605.22640
605.47545
605.47675
605.50894
605.26871
605.21179

BETA..
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.94500
.91064
.84477
.82271
.77791
.70076
.71000
.71183
.71182
.71194
.71215
.71233
.71424
.71570
.71728
.71837
.71946
.72016



.005098

.005035

.005008

.004946

.004932

.004922

.004921

.004921

.01072

.01072

.01072

.01071

.01071

.01071

.01071

.01071

.00000

.00000

.00000

.00000

.00000

.00000
.00000
.00000

CORRELATION MATRIX

1
1.0000

.8847
-. 6281
-.8824
.9021

1.0000
-. 8743
-.9986
.9883

1.0000
.8591

-.8348
1.0000
-. 9913

RSQUARE FOR REGRESSION = .99888151

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

VARIABLE NAME
1 V.....

VALUE
.107107E-01

2 D ..... .128298E-05
PULSE.
BETA..
OMEGA.

.604146E+03

.722681E+00

.183345E+01

S.E.COEFF.
.904457E-04
.367508E-04
.298708E+01
.313031E-01
.383257E+00

95% CONFIDENCE LIM
T-VALUE LOWER UP

118.42 .105271E-01 .108
.03 -. 733296E-04

202.25
23.09
4.78

.598082E+03

.659128E+00

.105535E-01

.758

.610

.786

.261

----------------------- ORDERED

TIME
35.0000000
95.0000000
155.0000000
215.0000000
275.0000000
335.0000000
395.0000000
455.0000000
515.0000000
575.0000000
635.0000000
695.0000000
755.0000000
815.0000000
875.0000000
935.0000000
995.0000000

BY COMPUTER INPUT ------------------------
CONCENTRATION RESI-

OBS
.0000000
.0000100
.0000200
.0000400
.0005100
.0005700
.0033600
.1862300
.3364200
.5342600
.6269100
.7156000
.7889700
.8443800
.8900100
.9281100
.9472600
.8519500
.6378700
.4750200
.3536000

FITTED
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000

.1756383

.3558817

.5092623

.6346511

.7331421

.8081983

.8640409

.9047820

.9340213

.9547137

.8469217

.6348804

.4864894

.3638185

DUAL
.0000000
.0000100
.0000200
.0000400
.0005100
.0005700
.0033600
.0105917

-.0194617
.0249977

-.0077411
-.0175421
-.0192283
-.0196609
-.0147720
-.0059113
-.0074537
.0050283
.0029896

-.0114694
-.0102185

SIT2.OUT
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604.97080
604.74098
604.67508
604.42263
604.12295
604.14291
604.14639
604.14638

.72142

.72160

.72180

.72275

.72268

.72269

.72268

.72268

5

1.0000

NO
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

DISTANCE
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000



4 1 1 50 250 0 0

V...... 0..... R..... PULSE. BETA.. OMEGA.
0.0010 0.0000002 1.0 600.0 0.5 1.0
1 1 1 0 1 1 1

0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

0.00000 1.0 1
0.00045 6.6548 51
0.00042 6.6548 111
0.00041 6.6548 171
0.00040 6.6548 231
0.00039 6.6548 291
0.00038 6.6548 351
0.00038 6.6548 411
0.00037 6.6548 471
0.00036 6.6548 531
0.00036 6.6548 591
0.00035 6.6548 651
0.00035 6.6548 711
0.00034 6.6548 771
0.00034 6.6548 831
0.00034 6.6548 891
0.00034 6.6548 951
0.00033 6.6548 1011
0.00033 6.6548 1071
0.00033 6.6548 1131
0.00033 6.6548 1191
0.00033 6.6548 1251
0.00034 6.6548 1311
0.00034 6.6548 1371
0.00033 6.6548 1431
0.00033 6.6548 1491
0.00033 6.6548 1551
0.00033 6.6548 1611
0.00033 6.6548 1671
0.00033 6.6548 1731
0.00033 6.6548 1791
0.00033 6.6548 1851
0.00033 6.6548 1911
0.00033 6.6548 1971
0.00033 6.6548 2031
0.00033 6.6548 2091
0.00033 6.6548 2151
0.00033 6.6548 2211
0.00033 6.6548 2271
0.00033 6.6548 2331
0.00033 6.6548 2391
0.00033 6.6548 2451
0.00033 6.6548 2511
0.00033 6.6548 2571
0.00033 6.6548 2631
0.00033 6.6548 2691
0.00033 6.6548 2751
0.00034 6.6548 2811
0.00043 6.6548 2871
0.00096 6.6548 2931
0.00289 6.6548 2991
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ONE-DIMENSIONAL CONVECTION-DISPERSION EQ. SOLUTION
NON-LINEAR LEAST-SQUARES ANALYSIS

DETERMINISTIC TWO-SITE/TWO-REGION NONEQUILIBRIUM MODEL FOR
PULSE-TYPE INJECTION WITH NO PRODUCTION OR DECAY
SOLUTION FOR FLUX CONCENTRATIONS
REDUCED CONCENTRATION DATA

INITIAL VALUES OF COEFFICIENTS

NAME
V ........
D........
R........
PULSE....
BETA.....
OMEGA ....
CI.......
CO.......

ITERATION

INITIAL
.0010
.0000

1.0000
600.0000

.5000
1.0000
.0000

1.0000

SSQ
.861382
.357896
.286733
.262395
.231171
.161826
.097513
.029561
.002151
.000579
.000545
.000545
.000545

VALUE

V.....
.00100
.00100
.00101
.00102
.00104
.00115
.00138
.00149
.00148
.00148
.00148
.00148
.00148

D....
.00000
.00000
.00000
.00000
.00000
.00001
.00001
.00001
.00002
.00003
.00003
.00003
.00003

PULSE.
600.00000
609.94018
624.78707
634.47311
635.62701
585.49912
486.26222
452.75759
464.20744
466.95380
466.75128
466.84239
466.84278

BETA..
.50000
.50125
.50522
.51397
.52663
.59780
.72950
.77836
.76500
.76812
.76806
.76825
.76825

CORRELATION MATRIX

1
1.0000
-. 1813
-. 4654
.1172
.4269

2

1.0000
.3255
.7673

-.7828

3

1.0000
-.0510
-. 3105

4

1.0000
-. 7937

5

1.0000

RSQUARE FOR REGRESSION = .99939804

S2TI.OUT
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NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

VALUE
.148266E-02
.323763E-04
.466843E+03
.768251E+00
.206239E+01

S.E.COEFF.
.107629E-05
.680527E-06
.879616E+00
.100631E-02
.223424E-01

95% CONFIDENCE LIM
T-VALUE LOWER UP
1377.57 .148054E-02 .148

47.58 .310358E-04 .337
530.73 .465110E+03 .468
763.44 .766269E+00 .770
92.31 .201838E+01 .210

------------------------ ORDER&ED

DISTANCE
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.GS4o000
6.6548000

TIME
51.0000000

111.0000000
171.0000000
231.0000000
291.0000000
351.0000000
411.0000000
471.0000000
531.0000000
591.0000000
651.0000000
711.0000000
771.0000000
831.0000000
891.0000000
951.0000000

t*** +* * **

NO
1
2
3
4
5
6
7
8
9
10
11 i
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

BY COMPUTER INPUT------------------------
CONCENTRATION RESI-

OBS
.0004500
.0004200
.0004100
.0004000
.0003900
.0003800
.0003800
.0003700
.0003600
.0003600
.0003500
.0003500
.0003400
.0003400
.0003400
.0003400
.0003300
.0003300
.0003300
.0003300
.0003300
.0003400
.0003400
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300

FITTED
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000002
.0000008
.0000033
.0000119
.0000378

DUAL
.0004500
.0004200
.0004100
.0004000
.0003900
.0003800
.0003800
.0003700
.0003600
.0003600
.0003500
.0003500
.0003400
.0003400
.0003400
.0003400
.0003300
.0003300
.0003300
.0003300
.0003300
.0003400
.0003400
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003298
.0003292
.0003267
.0003181
.0002922
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VARIABLE
1
2
3
4
5

NAME
V....
D.....
PULSE.
BETA..
OMEGA.

* ~~*~****** *
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V.....
0.0030

. 1
0.0
0.0

0.00000
0.00032
0.00032
0.00032
0.00033
0.00033
0.00033
0.00033
0.00033
0.00033
0.00033
0.00033
0.00033
0.00033
0.00034
0.00033
0.00033
0.00034
0.00033
0.00043
0.00634
0.05158
0.10672
0.19560
0.29350
0.36912
0.41440
0.46642
0.50789
0.54143
0.56860
0.57890
0.56242
0.51962
0.47371
0.42556
0.37730
0.33825
0.30084
0.26546
0.23605
0.20796
0.17984
0.15588
0.13514
0.11813
0.07979
0.04498
0.03698
0.02967
0.02363

D.....
0.0000002

1
0.0
0.0
1.0

6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548

PULSE.
600.0

1
0.0
0.0

BETA.. OMEGA.
0.5 1.0

1 1
0.0 0.0
0.0 0.0

S2T2.DAT
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1.0
0

0.0
0.0

1
18
78

138
198
258
318
378
438
498
558
618
678
738
798
858
918
978

1038
1098
1158
1218
1278
1338
1398
1458
1518
1578
1638
1698
1758
1818
1878
1938
1998
2058
2118
2178
2238
2298
2358
2418
2478
2538
2598
2658
2718
2778
2838
2898
2958



~********* ****~C~+ ~ ~C**+*~*~+~*******************************

ONE-DIMENSIONAL CONVECTION-DISPERSION EQ. SOLUTION
NON-LINEAR LEAST-SQUARES ANALYSIS

DETERMINISTIC TWO-SITE/TWO-REGION NONEQUILIBRIUM MODEL FOR
PULSE-TYPE INJECTION WITH NO PRODUCTION OR DECAY
SOLUTION FOR FLUX CONCENTRATIONS
REDUCED CONCENTRATION DATA

*

INITIAL VALUES OF COEFFICIENTS

NAME INITIAL VALUE
V .......... 0030
D .......... 0000
R......... 1.0000
PULSE ..... 600.0000
BETA ....... 5000
OMEGA ..... 1.0000
CI ......... 0000
CO ........ 1.0000

SSQ
1.571125
.392983
.365975
.291000
.190834
.115021
.046904
.018159
.009018
.008403
.008373
.008372
.008372

.00300

.00300

.00311

.00315

.00347

.00381

.00381
.00396
.00397
.00398
.00398
.00398
.00398

D.....
.00000
.00000
.00000
.00001
.00001
.00000
.00004
.00006
.00007
.00006
.00007
.00007
.00007

PULSE.
600.00000
649.50023
654.24607
647.77502
609.68839
590.60356
547.36930
534.04336
531.86851
529.22521
529.14307
529.09101
529.08742

BETA..
.50000
.59996
.60603
.63271
.70675
.76741
.77545
.77218
.74494
.72839
.72951
.72946
.72945

CORRELATION MATRIX

2

1.0000
.2753
.9547

-. 8878

3

1.0000
.2791

-. 3625

4

1.0000
-.9751

5

1.0000

RSQUARE FOR REGRESSION = .99731054

S2T2.OUT
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ITERATION
0
1
2
3
4
5
6
7
8
9
10
11
12

1
1.0000

.0096
-. 0512
-. 1497

.2960

. . ...



NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

VALUE
.398399E-02
.702304E-04
.529087E+03
.729448E+00
.314198E+01

S.E.COEFF.
.711133E-05
.248050E-04
.242619E+01
.157737E-01
.304084E+00

T-VALUE
560.23

2.83
218.07
46.24
10.33

95% CONFIDENCE LIM
LOWER UP

.396997E-02 .399

.213190E-04 .119

.524303E+03 .533

.698345E+00 .760

.254238E+01 .374

----------------------- ORDERED

TICM. 0
18.0000000
78.0000000

138.0000000
198.0000000
258.0000000
318.0000000
378.0000000
438.0000000
498.0000000
558.0000000
618.0000000
678.0000000
738.0000000
798.0000000
858.0000000
918.0000000
978.0000000

**** * *****

*** ** **** *

* ** **** ** **

** ***** * ** *

* *** *** *** *

BY COMPUTER INPUT---------------------------
CONCENTRATION RESI-

OBS
.0003200
.0003200
.0003200
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003400
.0003300
.0003300
.0003400
.0003300
.0004300
.0063400
.0515800
.1067200
.1956000
.2935000
.3691200
.4144000
.4664200
.5078900
.5414300
.5686000
.5789000
.5624200
.5196200
.4737100
.4255600
.3773000
.3382500
.3008400
.2654600
.2360500
.2079600
.1798400
.1558800

FITTED
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000001
.0000063
.0001493
.0015810
.0084548
.0290010
.0686252
.1250283
.1915824
.2627779
.3351943
.4066969
.4737245
.5301817
.5667094
.5786748
.5694191
.5456909
.5127592
.4740434
.4318160
.3883641
.3452893
.3038465
.2649083
.2290246
.1964875
.1673903
.1416800

DUAL
.0003200
.0003200
.0003200
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003300
.0003400
.0003299
.0003237
.0001907

-.0012510
-.0080248
-.0226610
-.0170452
-.0183083
.0040176
.0307221
.0339257
.0077031

-.0073045
-.0222917
-.0252794
-.0100748
.0094809
.0167291
.0068608

-.0003334
-.0062560
-.0110641
-.0070393
-.0030065
.0005517
.0070254
.0114725
.0124497
.0142000
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VARIABLE
1
2
3
4
5

NAME
V....
0.....
PULSE.
BETA..
OMEGA.

DISTANCE
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000



V..... D....
0.0073 0.0000002
1 1

0.0
0.0

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.01067
0.28509
0.47937
0.59476
0.69258
0.76450
0.81542
0.85432
0.88018
0.89591
0.87702
0.70696
0.50131
0.36188
0.25837
0.17723
0.12661
0.04023
0.02487
0.01442
0.00856
0.00538
0.00092
0.00049
0.00025
0.00015
0.00008
0.00005
0.00003
0.00002
0.00001
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

1
0.0
0.0
1.0

.6548

.6548

.6548

.6548

.6548

.6548

.6543

.6548

.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548

6548
6548
6548
6548
6548
6548
6548
6548
6548
6548
6548
6548
6548
6548
6548
6548
6548
6548
6548
6548
6548
6548
6548

.... PULSE.
1.0 600.0

0
0.0
0.0

1
18
78

138
198
258
318
378
438
498
558
618
678
738
798
858
918
978

1038
1098
1158
1218
1278
1338
1398
1458
1518
1578
1638
1698
1758
1818
1878
1938
1998
2058
2118
2178
2238
2298
2358
2418
2478
2538
2598
2658
2718
2778
2838
2898
2958

6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548
6.6548

1
0.0
0.0

S2T3.DAT
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BETA..
0.5
1

0.0
0.0

OMEGA.
1.0
1

0.0
0.0



* ONE-DIMENSIONAL CONVECTION-DISPERSION EQ. SOLUTION
* NON-LINEAR LEAST-SQUARES ANALYSIS
*

* DETERMINISTIC TWO-SITE/TWO-REGION NONEQUILIBRIUM MODEL FOR
* PULSE-TYPE INJECTION WITH NO PRODUCTION OR DECAY
* SOLUTION FOR FLUX CONCENTRATIONS
* REDUCED CONCENTRATION DATA

INITIAL VALUES OF COEFFICIENTS

NAME INITIAL VALUE
V ......... .0073
D ......... .0000
R......... 1.0000
PULSE..... 600.0000
BETA ...... .5000
OMEGA..... 1.0000
CI ........ .0000
CO ....... 1.0000

ITERATION SSQ V ..... D..... PULSE. BETA..
0 1.116645 .00730 .00000 600.00000 .50000
1 1.116634 .00730 .00000 599.99982 .50000
2 1.116634 .00730 .00000 599.99981 .50000
3 1.116634 .00730 .00000 599.99980 .50000
4 1.116634 .00730 .00000 599.99980 .50000
5 1.116634 .00730 .00000 599.99980 .50000
6 1.116634 .00730 .00000 599.99980 .50000
7 .484389 .00997 .00009 483.60416 .82297
8 .074715 .00952 .00026 551.45020 .72579
9 .026214 .00971 .00053 579.27715 .80771

10 .020977 .00968 .00000 582.79928 .74142
11 .019490 .00971 .00001 584.53615 .74281
12 .019192 .00971 .00001 584.72672 .74497
13 .019179 .00971 .00001 584.72330 .74556
14 .019178 .00971 .00001 584.70610 .74566
15 .019178 .00971 .00001 584.70609 .74566
16 .019178 .00971 .00001 584.70485 .74567
17 .019178 .00971 .00001 584.70355 .74567
18 .019178 .00971 .00001 584.70048 .74567
19 .019178 .00971 .00001 584.69961 .74568

CORRELATION MATRIX

1 2 3 4 5

1 1.0000

S2T3.OUT
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-. 4613
.6955

-. 3042
.4053

1.0000
-. 4896

.4842
-. 3742

1.0000
-. 6567

.3700
1.0000
-. 7216

RSQUARE FOR REGRESSION = .99598611

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

VALUE
970637E-02
.103853E-04
.584700E-%03
.745676E+00
.202258E+01

S.E.COEFF.
.622361E-04
.164667E-04
.545300E+01
.827903E-02
.145238E+00

T-VALUE
155.96

.63
107.23
90.07
13.93

95% CONFIDENCE LIM
LOWER

.958116E-02
-.227433E-04
.573729E+03
.729020E+00
.173039E+01

-----------------------ORDERED

DISTANCE
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000
6.6548000

TIME
18.0000000
78.0000000
138.0000000
198.0000000
258.0000000
318.0000000
378.0000000
438.0000000
498.0000000
558.0000000
618.0000000
678.0000000
738.0000000
798.0000000
858.0000000
918.0000000
978.0000000

** *** ** ** * *

* ** * **** ***

* *** ****** *

*** ***** *

****** ** *

BY COMPUTER INPUT------------------------
CONCENTRATION RESI-

OBS
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0106700
.2850900
.4793700
.5947600
.6925800
.7645000
.8154200
.8543200
.8801800
.8959100
.8770200
.7069600
.5013100
.3618800
.2583700
.1772300
.1266100
.0402300
.0248700
.0144200
.0085600
.0053800
.0009200
.0004900
.0002500
.0001500
.0000800
.0000500

F:TTED
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0105251
.2759300
.4444742
.5865008
.6996769
.7862823
.8505247
.8970071
.9299563
.9529118
.8786043
.6583311
.5030807
.3731759
.2702212
.1917842
.1338154
.0920048
.0624489
.0419075
.0278382
.0183236
.0119612
.0077490
.0049853
.0031869
.0020251
.0012798

DUAL
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0001449
.0091600
.0348958
.0082592

-. 0070969
-. 0217823
-. 0351047
-.0426871
-.0497763
-.0570018
-.0015843
.0486289

-. 0017707
-. 0112959
-.0118512
-.0145542
-.0072054
-.0517748
-.0375789
-.0274875
-.0192782
-.0129436
-. 0110412
-. 0072590
-. 0047353
-.0030369
-. 0019451
-.0012298
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1.0000

VARIABLE
1
2
3
4
5

NAME
V...
0.....
PULSE.
BETA..
OMEGA.

UP
.983
.435
.595
.762
.231

NO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36



602

PULSE. BETA..
600.0 0.1

1 1
0.0 0.0
0.0 0.0

PIT1.DAT
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OMEGA.
0.5
1

0.0
0.0

V. . ...
0.00001

1 1.
0.0
0.0

0.00000
0.00096
0.00098
0.00099
0.00105
0.00114
0.00121
0.00132
0.00141
0.00151
0.00160
0.00170
0.00180
0.00190
0.00197
0.00207
0.00215
0.00223
0.00234
0.00239
0.00245
0.00250
0.00259
0.00262
0.00265
0.00273
0.00276
0.00280
0.00283
0.00286
0.00289
0.00294
0.00300
0.00306
0.00310
0.00313
0.00314
0.00320
0.00320
0.00321
0.00327
0.00327
0.00328
0.00328
0.00331
0.00332
0.00335
0.00337
0.00334
0.00339
0.00339

0 .....
0.0000002

1
0.0
0.0
1.0

2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2 .125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472
2.125472

1.0
0

0.0
0.0

1
443

1043
1643
2243
2843
3443
4043
4643
5243
5843
6443
7043
7643
8243
8843
9443
10043
10643
11243
11843
12443
13043
13643
14243
14843
15443
16043
16643
17243
17843
18443
19043
19643
20243
20843
21443
22043
22643
23243
23843
24443
25043
25643
26243
26843
27443
28043
28643
29243
29843

... Q Q



* ONE-DIMENSIONAL CONVECTION-DISPERSION EQ. SOLUTION
* NON-LINEAR LEAST-SQUARES ANALYSIS

* DETERMINISTIC TWO-SITE/TWO-REGION NONEQUILIBRIUM MODEL FOR
* PULSE-TYPE INJECTION WITH NO PRODUCTION OR DECAY
* SOLUTION FOR FLUX CONCENTRATIONS
* REDUCED CONCENTRATION DATA

INITIAL VALUES OF COEFFICIENTS

NAME INITIAL VALUE
V......... . .0000
D.......... . .0000
R......... 1.0000
PULSE..... 600.0000
BETA ...... .1000
OMEGA ..... .5000
CI ........ .0000
CO........ 1.0000

ITERATION SSQ V..... D..... PULSE. BETA..
0 .018915 .00001 .00000 600.00000 .10000
1 .002956 .00001 .00000 602.39932 .10200
2 .000855 .00001 .00000 544.51909 .10455
3 .000546 .00001 .00000 454.42536 .13310
4 .000495 .00001 .00000 453.61548 .13593
5 .000479 .00001 .00000 463.17481 .13766
6 .000462 .00001 .00000 455.20268 .14249
7 .000384 .00001 .00000 465.67279 .16037
8 .000306 .00002 .00000 435.61076 .16200
9 .000180 .00002 .00000 410.53011 .17789

10 .000141 .00002 .00000 428.90340 .19385
11 .000054 .00003 .00000 388.84860 .25452
12 .000032 .00003 .00001 403.31375 .26754
13 .000019 .00003 .00001 384.38248 .26714
14 .000014 .00003 .00001 390.08206 .26357
15 .000013 .00003 .00001 398.60511 .26446
16 .000009 .00003 .00001 394.63220 .17948
17 .000008 .00003 .00001 395.41079 .16278
18 .000008 .00003 .00001 396.15040 .14934
19 .000008 .00003 .00001 396.55192 .13784
20 .000007 .00003 .00001 396.51905 .13007
21 .000007 .00003 .00001 396.75515 .12226
22 .000007 .00003 .00001 397.48225 .12056
23 .000007 .00003 .00001 397.16330 .11185
24 .000007 .00003 .00001 397.65271 .11180
25 .000007 .00003 .00001 397.46772 .10692
26 .000007 .00003 .00001 397.59825 .10224

PITL.OUT
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.000007

.000007

.000007

.000007

.000007

.000007

.000007

.00003

.00003

.00003

.00003

.00003

.00003

.00003

.00001

.00001

.00001

.00001

.00001

.00001

.00001

CORRELATION MATRIX

1
1.0000
-. 5937
-. 5921
-. 4073
-.4491

2

1.0000
.2660
.7490
.5892

3

1.0000
.1155
.0850

4

1.0000
.3273

RSQUARE FOR REGRESSION = .99278472

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

VALUE
.273074E-04
.102801E-04
.397794E+03
.905015E-01
.937041E+01

S.E.COEFF.
.118977E-06
.132056E-06
.135153E+01
.329051E-02
.107511E+00

T-VALUE
229.52
77.85
294.33
27.50
87.16

95% CONFIDENCE LIM
LOWER UP

.270737E-04 .275

.100208E-04 .105

.395140E+03 .400

.840390E-01 .969

.915926E+01 .958

----------------------- ORDERED

TIME
443.0000000

*** *** *** *

* *** **** * **

****** ** *

* **** *** ** *

* **** ***** *

** *** * **** *

**** ***** *

BY COMPUTER INPUT------------------------
CONCENTRATION RESI-

OBS
.0009600
.0009800
.0009900
.0010500
.0011400
.0012100
.0013200
.0014100
.0015100
.0016000
.0017000
.0018000
.0019000
.0019700
.0020700
.0021500
.0022300
.0023400
.0023900
.0024500
.0025000
.0025900

FITTED
.0000000
.0000473
.0007772
.0014913
.0017137
.0015894
.0014802
.0014453
.0014656
.0014978
.0015863
.0016544
.0017259
.0017993
.0018704
.0019422
.0020129
.0020825
.0021508
.0022178
.0022835
.0023478

DUAL
.0009600
.0009327
.0002128

-.0004413
-.0005737
-.0003794
-.0001602
-.0000353
.0000444
.0001022
.0001137
.0001456
.0001741
.0001707
.0001996
.0002078
.0002171
.0002575
.0002392
.0002322
.0002165
.0002422

P1TI.OUT

207

397.73658
397.80236
397.77580
397.78417
397.79042
397.79329
397.79397

.09798

.09414

.09131

.09079

.09061

.09052

.09050

5

1.0000

VARIABLE
1
2
3
4
5

NAME
V.....
D .....
PULSE.
BETA..
OMEGA.

DISTANCE
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720



4 1 1 40 116 0 0

V..... D..... R..... PULSE. BETA.. OMEGA.
0.000042 0.0000002 1.0 600.0 0.5 1.0
1 1 1 0 1 1 1

0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

0.00000 1.0 1
0.00010 2.125472 560
0.00002 2.125472 1160
0.00050 2.125472 1760
0.00331 2.125472 2360
0.00570 2.125472 2960
0.00883 2.125472 3560
0.01156 2.125472 4160
0.01556 2.125472 5260
0.01680 2.125472 5960
0.01810 2.125472 6560
0.01805 2.125472 7160
0.01815 2.125472 7760
0.01709 2.125472 8960
0.01687 2.125472 9560
0.01613 2.125472 10160
0.01547 2.125472 10760
0.01430 2.125472 11360
0.01379 2.125472 11960
0.01261 2.125472 12560
0.01237 2.125472 13160
0.01158 2.125472 13760
0.01125 2.125472 14360
0.01071 2.125472 14960
0.00987 2.125472 16160
0.00943 2.125472 16760
0.00972 2.125472 17360
0.00918 2.125472 17960
0.00931 2.125472 18560
0.00898 2.125472 19760
0.00922 2.125472 20360
0.00915 2.125472 20960
0.00895 2.125472 21560
0.00904 2.125472 22160
0.00893 2.125472 23360
0.00906 2.125472 23960
0.00899 2.125472 24560
0.00898 2.125472 25160
0.00894 2.125472 25760
0.00891 2.125472 26960
0.00862 2.125472 27560
0.00877 2.125472 28160
0.00857 2.125472 28760
0.00863 2.125472 29360
0.00840 2.125472 30560
0.00826 2.125472 31160
0.00816 2.125472 31760
0.00810 2.125472 32360
0.00782 2.125472 32960
0.00753 2.125472 34160
0.00747 2.125472 34760
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ONE-DIMENSIONAL CONVECTION-DISPERSION EQ. SOLUTION
NON-LINEAR LEAST-SQUARES ANALYSIS

DETERMINISTIC TWO-SITE/TWO-REGION NONEQUILIBRIUM MODEL FOR
PULSE-TYPE INJECTION WITH NO PRODUCTION OR DECAY
SOLUTION FOR FLUX CONCENTRATIONS
REDUCED CONCENTRATION DATA

INITIAL VALUES OF COEFFICIENTS

NAME
V.........
D .........
R.........
PULSE.....
BETA......
OMEGA.....
CI ........
CO ........

ITERATION
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

INITIAL
.0000
.0000

1.0000
600.0000

.5000
1.0000

.0000
1.0000

SSQ
.013336
.005322
.004744
.004631
.004312
.004094
.003467
.003190
.001680
.000763
.000290
.000131
.000097
.000091
.000089
.000089
.000089
.000089
.000089
.000089
.000089

VALUE

.00004

.00004

.00004

.00004

.00005

.00005

.00005

.00008

.00008

.00008

.00009

.00008

.00008

.00008

.00008

.00008

.00008

.00008

.00008

.00008

.00008

D....
.00000
.00000
.00000
.00000
.00000
.00000
.00001
.00000
.00001
.00001
.00002
.00003
.00003
.00003
.00002
.00002
.00002
.00002
.00002
.00002
.00002

PULSE.
600.00000
293.28544
289.89074
295.79385
288.33813
312.91577
343.72848
280.73788
353.90121
382.09726
445.70891
475.28672
485.64582
483.16110
482.38381
481.67156
481.77099
482.02324
482.10184
482.40414
482.40456

CORRELATION MATRIX
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BETA..
.50000
.50177
.50101
.48916
.54604
.50454
.58412
.58266
.26828
.16761
.24308
.38108
.38928
.39118
.37195
.36697
.36700
.36652
.36648
.36659
.36659

... '..



1.0000
-.3000
-.6988
.0152
.2963

1.0000
.1829
.5671

-.1035

1.0000
-.1458
-.0390

RSQUARE FOR REGRESSION = .96982559

NON-LINEAR LEAST SQUARES ANALYSIS,

1.0000
-.4764

FINAL RESULTS

VALUE
.789205E-04
.225073E-04
.482405E+03
.366589E+00
.209664E+01

S.E.COEFF.
.183977E-05
.853665E-06
.772048E+01
.724830E-02
.725300E-01

T-VALUE
42.90
26.37
62.48
50.58
28.91

95% CONFIDENCE LIM
LOWER

.752747E-04

.208156E-04

.467105E-03

.352225E+00

.195291E+01

-----------------------ORDERED

TIME
560.0000000

** * * **** *

* *** ** **** *

****** **** *

**** * ***** *

**** ** ****

* ***** ** * **

***** * ****

BY COMPUTER INPUT------------------------
CONCENTRATION RESI-

OBS
.0001000
.0000200
.0005000
.0033100
.0057000
.0088300
.0115600
.0155600
.0168000
.0181000
.0180500
.0181500
.0170900
.0168700
.0161300
.0154700
.0143000
.0137900
.0126100
.0123700
.0115800
.0112500
.0107100
.0098700
.0094300
.0097200
.0091800
.0093100
.0089800
.0092200
.0091500
.0089500
.0090400
.0089300
.0090600

FITTED
.0000000
.0000005
.0000967
.0011390
.0040906
.0082731
.0123021
.0167860
.0177292
.0179616
.0177398
.0172635
.0160460
.0154406
.0148786
.0143694
.0139137
.0135073
.0131442
.0128176
.0125213
.0122493
.0119968
.0115348
.0113192
.0111110
.0109084
.0107102
.0103235
.0101338
.0099460
.0095959
.0095991
.0092263
.0090430

DUAL
.0001000
.0000195
.0004033
.0021710
.0016094
.0005569

-. 0007421
-. 0012260
-. 0009292
.0001384
.0003102
.0008865
.0010440
.0014294
.0012514
.0011006
.0003863
.0002827

-. 0005342
-. 0004476
-. 0009413
-. 0009993
-. 0012868
-. 0016648
-. 0018892
-. 0013910
-.0017284
-.0014002
-.0013435
-.0009138
-.0007960
-. 0006459
-. 0005591
-. 0002963
.0000170
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1.0000

VARIABLE
1
2
3
4
5

NAME
V...
D... .
PULSE.
BETA..
OMEGA.

UP
.825
.241
.497
.380
.224

DISTANCE
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720
2.1254720

~PIDDII=~==~=-=~---PIP=-=I~==~=~--~IP~~~



419

V..... D.....
0.000011 0.0000002

1 1 1
0.0 0.0
0.0 0.0

0.00000 1.0
0.00142 2.208022
0.00149 2.208022
0.00140 2.208022
0.00150 2.208022
0.00141 2.208022
0.00143 2.208022
0.00145 2.208022
0.00155 2.208022
0.00150 2.208022
0.00143 2.208022
0.00141 2.208022
0.00138 2.208022
0.00153 2.208022
0.00143 2.208022
0.00158 2.208022
0.00158 2.208022
0.00161 2.208022
0.00163 2.208022
0.00171 2.208022
0.00176 2.208022
0.00184 2.208022
0.00198 2.208022
0.00197 2.208022
0.00228 2.208022
0.00247 2.208022
0.00262 2.208022
0.00256 2.208022
0.00268 2.208022
0.00286 2.208022
0.00346 2.208022
0.00365 2.208022
0.00370 2.208022
0.00407 2.208022
0.00427 2.208022
0.00443 2.208022
0.00459 2.208022
0.00472 2.208022
0.00485 2.208022
0.00487 2.208022
0.00463 2.208022
0.00502 2.208022
0.00523 2.208022
0.00533 2.208022
0.00498 2.208022
0.00573 2.208022
0.00575 2.208022
0.00579 2.208022
0.00566 2.208022
0.00573 2.208022
0.00544 2.208022

R.....
1.0

0
0.0
0.0

1
207
807

1407
2007
2607
3207
3807
4407
5007
5607
6207
6807
7407
8007
8607
9207
9807

10407
11007
11607
12207
12807
13407
14007
14607
15207
15807
16407
17007
17607
18207
18807
19407
20007
20607
21207
21807
22407
23007
23607
24207
24807
25407
26007
26607
27207
27807
28407
29007
29607

PULSE.
600.0

1
0.0
0.0

BETA.. OMEGA.
0.5

1
0.0
0.0

1.0
1

0.0
0.0
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ONE-DIMENSIONAL CONVECTION-DISPERSION EQ. SOLUTION
NON-LINEAR LEAST-SQUARES ANALYSIS

DETERMINISTIC TWO-SITE/TWO-REGION NONEQUILIBRIUM MODEL FOR
PULSE-TYPE INJECTION WITH NO PRODUCTION OR DECAY
SOLUTION FOR FLUX CONCENTRATIONS
REDUCED CONCENTRATION DATA

INITIAL VALUES OF COEFFICIENTS

NAME
V.........
D0.........
R.........
PULSE.....
BETA......
OMEGA.....
CI ........
CO ........

ITERATION
0
1
2
3
4
5
6
7
8
9

10
11

INITIAL
.0000
.0000

1.0000
600.0000

.1000
1.0000

.0000
1.0000

SSQ
.010438
.002111
.001546
.000185
.000126
.000112
.000106
.000104
.000102
.000101
.000099
.000092
.000090
.000090
.000090
.000090
.000090

VALUE

.00001
.00001
.00002
.00003
.00003
.00003
.00003
.00003
.00003
.00003
.00003
.00002
.00002
.00002
.00002
.00002
.00002

D.....
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00001
.00001
.00001
.00001
.00001
.00001

PULSE.
600.00000
1206.72716
608.84479
710.91825
747.57503
761.14426
765.01742
765.73953
766.50339
767.80339
768.95284
780.82109
783.00821
785.49633
785.47537
785.50514
785.50894

CORRELATION MATRIX

3

1.0000
.0687 1.0000
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BETA..
.10000
.09955
.15760
.25128
.25280
.26530
.27584
.28105
.28527
.29238
.31073
.42144
.42242
.42223
.42227
.42235
.42235

1
1.0000
-. 4058
-. 6534
-. 0547

2

1.0000
.3990
.2099

.....



5 -.0037

RSQUARE FOR REGRESSION = .96012642

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

VALUE
.242338E-04
.869556E-05
.785509E+03
.422354E+00
.538018E+01

S.E.COEFF.
.203687E-06
.166600E-06
.630894E+01
.138032E-02
.225323E-01

T-VALUE
118.98
52.19
124.51
305.98
238.78

95% CONFIDENCE LIM
LOWER UP

.238334E-04 .246

.836806E-05 .902

.773107E+03 .797

.419641E+00 .425

.533589E+01 .542

-----------------------ORDERED

DISTANCE
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220

TIME
207.0000000
807.0000000

*** ** *** *

* *** *** * ***

* ** ** *****

*** ** *** *

** ** * *** *

** ** *** ** **

*** ***** * *

****** ** *

39 2.2080220

BY COMPUTER INPUT------------------------
CONCENTRATION RESI-

OBS
.0014200
.0014900
.0014000
.0015000
.0014100
.0014300
.0014500
.0015500
.0015000
.0014300
.0014100
.0013800
.0015300
.0014300
.0015800
.0015800
.0016100
.0016300
.0017100
.0017600
.0018400
.0019800
.0019700
.0022800
.0024700
.0026200
.0025600
.0026800
.0028600
.0034600
.0036500
.0037000
.0040700
.0042700
.0044300
.0045900
.0047200
.0048500
.0048700

FITTED
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000003
.0000020
.0000093
.0000293
.0000711
.0001433
.0002507
.0003943
.0005712
.0007755
.0010003
.0012383
.0014828
.0014842
.0019157
.0021519
.0023806
.0026002
.0028100
.0030096
.0031990
.0033786
.0035488
.0037103
.0038636
.0040093
.0041481
.0042805
.0044069
.0045280
.0046440
.0047553
.0048623

DUAL
.0014200
.0014900
.0014000
.0015000
.0014100
.0014300
.0014497
.0015480
.0014907
.0014007
.0013389
.0012367
.0012793
.0010357
.0010088
.0008045
.0006097
.0003917
.0002272
.0002758

-.0000757
-.0001719
-.0004106
-.0003202
-.0003400
-. 0003896
-.0006390
-.0006986
-.0006888
-.0002503
-.0002136
-.0003093
-.0000781
-.0000105
.0000231
.0000620
.0000760
.0000947
.0000077
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VARIABLE
1
2
3
4
5

NAME
V.....
D.....
PULSE.
BETA..
OMEGA.

.0243 -. 0161 -. 4293 1.0000



4 40 69 0

V..... D..... R..... PULSE. BETA.. OMEGA.
0.000041 0.0000002 1.0 600.0 0.2 1.0

1 1 1 0 1 1 1
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

0.00000 1.0 1
0.00002 2.208022 585
0.00002 2.208022 1185
0.00001 2.208022 1785
0.00001 2.208022 2385
0.00001 2.208022 2985
0.00005 2.208022 3628
0.00028 2.208022 4228
0.00084 2.208022 4828
0.00192 2.208022 5429
0.00373 2.208022 6028
0.00559 2.208022 6628
0.00746 2.208022 7228
0.00841 2.208022 7828
0.00967 2.208022 8428
0.01091 2.208022 9028
0.01164 2.208022 9628
0.01288 2.208022 10228
0.01252 2.208022 10828
0.01291 2.208022 11428
0.01314 2.208022 12028
0.01314 2.208022 12628
0.01321 2.208022 13228
0.01324 2.208022 13828
0.01325 2.208022 14428
0.01310 2.208022 15028
0.01312 2.208022 15628
0.01301 2.208022 16228
0.01291 2.208022 16828
0.01280 2.208022 17428
0.01274 2.208022 18028
0.01260 2.208022 18628
0.01254 2.208022 19228
0.01252 2.208022 19828
0.01245 2.208022 20428
0.01244 2.208022 21028
0.01237 2.208022 21628
0.01239 2.208022 22228
0.01237 2.208022 22828
0.01235 2.208022 23428
0.01241 2.208022 24028
0.01230 2.208022 24628
0.01253 2.208022 25228
0.01243 2.208022 25828
0.01236 2.208022 26428
0.01235 2.208022 27028
0.01229 2.208022 27628
0.01218 2.208022 28228
0.01220 2.208022 28828
0.01203 2.208022 29428
0.01189 2.208022 30028
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ONE-DIMENSIONAL CONVECTION-DISPERSION EQ. SOLUTION
NON-LINEAR LEAST-SQUARES ANALYSIS

DETERMINISTIC TWO-SITE/TWO-REGION NONEQUILIBRIUM MODEL FOR
PULSE-TYPE INJECTION WITH NO PRODUCTION OR DECAY
SOLUTION FOR FLUX CONCENTRATIONS
REDUCED CONCENTRATION DATA

INITIAL VALUES OF COEFFICIENTS

NAME
V.........
D.........
R.........
PULSE.....
BETA......
OMEGA.....
CI ........
CO ........

ITERATION

INITIAL VALUE
.0000
.0000

1.0000
600.0000

.2000
1.0000
.0000

1.0000

SSQ
.026669
.005193
.003217
.001312
.001243
.000857
.000718
.000654
.000566
.000394
.000229
.000120
.000075
.000070
.000070
.000070
.000070

CORRELATION MATRIX
WWW-WWW-rmn--m---

1.0000
-. 1231
-. 5165

4 -. 1087

3

1.0000
.1247

P2T2.OUT
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V.....
.00004
.00004
.00006
.00006
.00007
.00007
.00007
.00007
.00008
.00007
.00007
.00008
.00008
.00008
.00008
.00008
.00008

D.0000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

PULSE.
600.00000
611.43288
463.93940
501.84238
468.90994
471.66703
452.31334
446.10763
437.64124
457.62289
471.23445
478.97927
484.90532
485.42215
485.81023
485.62706
485.63529

BETA..
.20000
.20693
.28279
.28822
.31644
.32093
.33773
.35138
.35354
.34312
.33708
.34150
.34047
.31719
.31668
.31399
.31398

2

1.0000
.2162
.9118 1.0000



-.1753 -.4954 1.0000

RSQUARE FOR REGRESSION = .98438985

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

VALUE
.77378'6E-04
.464459E-05
.485635E+03
.313978E+00
.361284E+01

S.E.COEFF.
.579930E-06
.913687E-06
.433956E+01
.138911E-01
.821851E-01

T-VALUE
133.43

5.08
111.91
22.60
43.96

95% CONFIDENCE LIM
LOWER UP

.762335E-04 .785

.284042E-05 .644

.477066E+03 .494

.286549E+00 .341

.345055E+-01 .377

-----------------------ORDERED

DISTANCE
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220
2.2080220

TIME
585.0000000

****** ** *

*** ** *** *

* *** * ** ** **

* ** ****** * *

** ****** * **

*** ***** *

********** *

* ** ** *** ** *

* **** **** * *

***********

********* * *

BY COMPUTER INPUT------------------------
CONCENTRATION RESI-

OBS
.0000200
.0000200
.0000100
.0000100
.0000100
.0000500
.0002800
.0008400
.0019200
.0037300
.0055900
.0074600
.0084100
.0096700
.0109100
.0116400
.0128800
.0125200
.0129100
.0131400
.0131400
.0132100
.0132400
.0132500
.0131000
.0131200
.0130100
.0129100
.0128000
.0127400
.0126000
.0125400
.0125200
.0124500
.0124400
.0123700
.0123900
.0123700
.0123500

FITTED
.0000000
.0000000
.0000000
.0000000
.0000002
.0000100
.0001168
.0005962
.0017634
.0036001
.0052015
.0074785
.0089561
.0099530
.0105850
.0110013
.0113182
.0116030
.0118836
.0121651
.0124418
.0127056
.0129740
.0131828
.0133807
.0135196
.0136506
.0137520
.0138246
.0138696
.0138882
.0138818
.0138517
.0137992
.0137259
.0136330
.0135218
.0133939
.0132503

DUAL
.0000200
.0000200
.0000100
.0000100
.0000098
.0000400
.0001632
.0002438
.0001566
.0001299
.0003885

-.0000185
-.0005461
-.0002830
.0003250
.0006387
.0015618
.0009170
.0010264
.0009749
.0006982
.0005044
.0002660
.0000672

-.0002807
-.0003996
-.0006406
-.0008420
-.0010246
-.0011296
-.0012882
-.0013418
-.0013317
-.0013492
-.0012859
-.0012630
-.0011318
-.0010239
-.0009003

P2T2 .OUT
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VARIABLE
1
2
3
4
5

NAME
V.....
0.....
PULSE.
BETA..
OMEGA.

NO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

5 .3396 -.2358



APPENDIX F: CIRCUIT DIAGRAM AND PARTS LIST FOR
MIT SINGLE CHANNEL ELECTRICAL CONDUCTIVITY
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Symbol Descriotion I Comments

UL ICL8038 Signal Made by Intersil Corporation.
Generator

U2 LF351 Op Amp AD797 from Analog is a better choice. It is pin
compatible if R6 is changed to 20 k Q.

L,3 W171DIP-21 Reed Double pole, Single throw. Made by Magnecraft.
Relay

1U4 AD 524 Instrumen- Made by Analog Devices.
ration Amplifier

US AD 637 RMS-to- Made by Analog Devices.
DC Convertor

RI 10 kQ Variable Sets frequency of sine wave.
Resistor

R2 10 kQ Variable Sets frequency of sine wave.
Resistor

R3 81 k2 Variable
Resistor

R4 1 MQ Fixed AC coupling resistor.
Resistor

R5 I kQ Fixed Resistor Feedback resistor for U2.

R6 10 kQ Variable Output offset trim for U2.
Resistor

R7 10 kQ Variable Output offset trim for U4.
Resistor

R8 22 kW Fixed Low pass post filter resistor.
Resistor

R9 500 kQ Fixed Offset trim network for US.
Resistor
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R10 10 kQ Variable Offset trim network for US.
Resistor

CI 0.1 p.F Ceramic Sets frequency of sine wave, f = 0.33/(RC 1)
Capacitor where R = RI = R2.

C2 0.1 pF Ceramic AC coupling capacitor. Sets cutoff frequency of
Caaacitor high pass filter, f= 1/(2tRC2) where R = R4.

C3 0.1 .F Ceramic Decoupling Capacitor for U2.
Canacitor

C4 0.1 dF Ceramic Decoupling Capacitor for U2.
Caoacitor

CS 0.1 LF Ceramic Decoupling Capacitor for U4.
Capacitor

C6 10 gF Tandium Decoupling Capacitor for U4.
Cavacitor

C7 0.1 L.F Ceramic Decoupling Capacitor for U4.
Cauacitor

CS 10 eLFTantlum Decoupling Capacitor for U4.
Capacitor

C9 0.1 LF Ceramic Decoupling Capacitor for US.
Caoacitor

CIO0 0.1 pF Ceramic Decoupling Capacitor for US.
Capacitor

C11i 0.1 p.F Ceramic Integrating Capacitor for US.
Capac: tor

C12 4.7 p.FTantlum Low pass post filter capacitor.
Capacitor

RSI 6 Position Rotary Sets shunt resistor in two wire mode.
Switch
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RS2 3 Position Rotary Scts gain of U4.
Switch

SI Double pole, Single Switches between 4 wire and 2 wire modes.
throw switch

S2 Double pole, Double Switches between input and output measurements.
throw switch

AD 949 60 mA. DC-DC steouo convertor


