
HTTP-based Protocol for
Internet Calendaring and Scheduling

by
Wingkong (Oliver) Yip

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Electrical Engineering and Computer Science
Master of Engineering in Electrical Engineering and Computer Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1996 ..:0 :~.

© Wingkong Yip 1996. All Rights Reserved. OCT 2 0 1997

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part, and to grant

others the right to do so.

Author...................................... -........

Department of Electrical Engineering and Computer Science
August 26, 1996

Certified by....

Certified by..

Dr. Jim Miller
Research Scientist, MIT Laboratory for Computer Science,

World Wide Web Consortium
Thesis Supervisor

. •••.. •............. eoeoe....

Vinod Seraphin
trin4ipial Engineei.Lotus Deelopment Corporation

Thesis Supervisor

Accepted by.....

-...'

P • a . o o o o a a • • • • • . o . o

rick R. Morgenthaler
n Graduate Students

u e"e i ",.,-

HTTP-based Protocol for
Internet Calendaring and Scheduling

by
Wingkong (Oliver) Yip

Submitted to the Department of Electrical Engineering and Computer Science
on August 26, 1996

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical Engineering and Computer Science
Master of Engineering in Electrical Engineering and Computer Science

Abstract

An HTTP-based internet calendaring and scheduling (C&S) protocol, which can be used
with standard Web browsers and Web servers, is designed and implemented. A C&S
system with a Lotus Organizer backend has been implemented to verify the viability of
such a protocol. HTML response templates and C&S ActiveX controls have been used to
keep the protocol simple and efficient. A session manager has been developed to keep the
state of C&S activities in the HTTP-based protocol. It is demonstrated that with the help
from these components, problems encountered in designing such a protocol, such as
heavy network traffic, lack of session support and limitations in user interface
developments, can be solved.

Thesis Supervisor: Dr. Jim Miller
Title: Research Scientist, MIT Laboratory for Computer Science,

World Wide Web Consortium

Thesis Supervisor: Vinod Seraphin
Title: Principal Engineer, Lotus Development Corporation

Acknowledgements

First of all, I would like to dedicate this thesis to my parents and my brother,

Angus. Their support has been unceasing during my four years at MIT. Though they may

not understand the technical content in this thesis, this dedication is to show my

appreciation for their love and concern while we are miles away.

I am truly indebted to my thesis supervisor at Lotus, Vinod Seraphin. Without his

vision and support, this thesis project cannot be made possible. He has also spent much

time on figuring out the thesis topic, guiding me through the project, and reviewing the

drafts of this thesis report. I would also like to thank my MIT thesis supervisor, Dr. Jim

Miller, for his time, insights and guidance which all helped me to learn and to conduct the

research.

Next, I would like to extend my gratitude to Candy Sidner and Professor John

Guttag in the VI-A program, and Arvind Goyal in Organizer Group. Candy and Arvind

helped me a lot in arranging the financial support for this thesis, and John has given me

valuable advice on looking for a thesis and a faculty thesis supervisor.

The folks at Organizer Group were always helpful during my research there.

Thanks Bruce, Jennifer, Vlad, Gary, Leo, Tom and Elie for their time and help while I got

stuck and frustrated in debugging my prototype.

My sincere thanks also go to those who have been experiencing, learning, and

sharing life with me at MIT. Thanks Felix, Andy, Patrick, Anita, Leo, Albert, Jenny,

Vinci and Chris for their encouragement and support while we were taking classes

together, working as lab partners and enjoying our lives outside classrooms. I would also

like to thank Ernie, Khon, Jacky, Winnie, Ada, Kpang, June and Kelly for their concern

and company during the days when I was working on this thesis project, and for having

dinner with me and making me laugh after work.

Last but not least, thanks Lord Jesus Christ for His unfailing support and guidance

through the thesis project and my years at MIT.

Contents

1 Introduction..8

1.1 Background.......... .. 8

1.2 Goals of Thesis.. 10

1.3 O verview 12

2 The Base Framework... 15

2.1 O verview 15

2.2 System Architecture.. 16

2.3 Client Side......... ... 18

2.4 Server Side......... .. 21

3 Basic Protocol Design... 23

3.1 Design Goals......... ... 23

3.2 Basic Design..26

3.3 Response Template...31

4 Protocol Design for Scheduling....................................... 39

4.1 Scheduling System Overview.......................................39

4.2 Scheduling Protocol Design.. 43

5 Protocol Definition... 49

5.1 Param eters.......... .. 49

5.2 Requests......... .. 52

5.3 Responses......... ... 64

5.4 Exam ples.......... ... 65

6 Session Management..69

6.1 Introduction......... .. 69

6.2 Design Details...72

6.3 Implementation Details..83

7 User Interface Enhancement... 85

7.1 Introduction...85

7.2 Design Considerations.. 87

7.3 Implem entation..97

8 Conclusion and Future Work..109

8.1 Summary and Conclusion... 109

8.2 Future W ork.. 111

A User Interface in the OrgWeb System..................................105

B Embedded Commands in Response Templates.......................... 121

C Specification of Group Scheduling in the OrgWeb System.................123

References

List of Figures

2.1 The Overview of the OrgWeb System.................................. 17

2.2 Flow the Web pages for the calendar views in the OrgWeb system 20

5.1 The login form in HTML.. 54

6.1 Comparison between systems with and without a separate session
management process..74

6.2 Flow chart to determine whether to start session management process in
CGI process......... .. 82

7.1 ActiveX control "Wrapper" for Windows control 95

7.2 The Free Time Viewer control....................................... 101

7.3 The Attendee List Box control....................................... 105

7.4 The Date Tracker control..105

7.5 Use of scripts in the "Edit Meeting Page"...............................106

List of Tables

5.1 List of Response Templates... 52

6.1 List of requests, and the corresponding request parameters required and responses
expected between the communication between the CGI process and the session
management process...77

Chapter 1 Introduction

1.1 Background

People use Personal Information Managers (PIMs) to store personal and group

information, and to schedule meetings with each other. Traditionally users access PIM

information stored on local machines or on file servers from their own workstations. This

presently requires PIM users to always carry their PIM applications with them on their

machines.

As the internet and the World Wide Web (WWW) technologies gain in

popularity', the internet provides a new and open environment for storing and sharing

calendaring and scheduling (C&S) information. With its intuitive and consistent

interface, flexibility and linking capabilities, the Web provides an ideal application

interface for C&S activities. The following benefits can be perceived in an internet C&S

system:

* C&S information may be accessed through the Web, with any Web browsers

running on any workstation and platform, from anywhere in the world.

* It's not necessary to always carry around a special C&S application to view

personal calendar information or to set up group meetings. C&S functions can be

1 The latest internet statistics survey [1] shows that the total number of internet hosts has reached 9.5 million by
January 1996, nearly doubling the number in January 1995 when there were 4.9 million hosts. It is projected the
number will reach 100 million in 1999. It is estimated that 30 to 40 million people have internet access now.

centralized on a Web server, instead of requiring individual users to have the C&S

application installed on their workstations.

* Facilitate the publication of certain Organizer information to other people outside a

LAN or WAN for more convenient information exchange. For example, the free

time information, which indicates when an individual is free and busy, can be

published on the Web and people from other corporations can access them easily.

* Make public scheduling possible, which allows the public to request the booking of

available time slots of a professional across the internet [2]. For example, doctors or

lawyers may be requested by their patients or clients to schedule a time with them

over the Web. People could also directly book the times for resources across the net

without any mediators. For example, the scheduling of using a tennis court or a

conference room can be done with this idea.

Obviously internet calendaring and scheduling is a very useful internet application

in real life, and it is desirable to many people.

1.2 Goals of Thesis

This thesis explores the various ideas and issues on how calendaring and

scheduling can be done on the internet. A protocol for calendaring and group scheduling

will be designed and implemented. This protocol will be based on the HyperText Transfer

Protocol (HTTP), which is the native protocol of the Web.

In designing such a protocol, the following three problems can be perceived:

1. C&S applications require frequent interaction with calendar databases. As access of

databases on the internet through the network is slow, the performance of internet

calendaring and scheduling may be poor. How can an efficient HTTP-based

protocol be designed, which is specialized for calendaring and scheduling, to

minimize the traffic between the client and the server, such that reasonable speed

and performance of the protocol can be ensured?

2. HTTP is known to be a "stateless" protocol [3]. The connection between the client

and the server is terminated right after each response from the server. Information

such as user name and password are not kept from one Web page to another, and

general interactivity with a Web site involved in calendaring and scheduling can be

difficult to achieve because of this "lack of state" property in HTTP. How can the

HTTP-based protocol be designed to support "session-like" activities for

calendaring and scheduling?

3. Traditionally C&S applications have very rich user interfaces, which exploit the

native graphical operating systems such as Microsoft Windows. On the other hand,

Web pages in internet applications are written in HTML, which is pretty limited in

giving interactive and graphical intensive interfaces to the Web pages. This HTML

limitation can greatly affect how the HTTP-based C&S protocol can be used, and

can complicate the protocol implementation. How can we enhance the C&S user

interface in HTML pages, so that the protocol can be kept simple and efficient to

use?

In this thesis, solutions will be sought to solve these problems as the HTTP-based

C&S protocol is developed. We can generalize the solutions and apply the ideas to other

internet applications which have similar problems, i.e. internet applications that require

frequent connections with Web sites for information retrieval, that need to keep state on

the Web site while using the stateless HTTP, and that involve intensive graphical

interaction with users.

1.3 Overview

The overall design of the internet calendaring and scheduling system built and

used in this thesis is presented in Chapter 2. A big picture of the system architecture, the

client-side user interface as well as the server processes are described there.

The design goals and design details of the HTTP-based C&S protocol are

discussed in Chapter 3. Design details such as the use of response templates are

explained. Chapter 4 explores the various issues in the protocol design for internet

scheduling in more detail. Different aspects of an internet scheduling service and how to

design a protocol to accommodate them are discussed. Chapter 5 defines the HTTP-based

C&S protocol and talks about the protocol implementation details. Examples of how to

use the C&S protocol are also included.

The use of the session manager process on a HTTP server to solve the problems

caused by the "stateless" properties of HTTP is discussed in Chapter 6. The design and

implementation details, such as the communication scheme between the session manager

and the server CGI process, are presented.

Finally, the development and use of various ActiveX components in HTML in the

internet C&S system to enhance the UI elements in HTML are shown in Chapter 7.

Choices of technologies in the marketplace to develop the components, choices of

methods in building the components, and how to use the components in the internet C&S

applications are fully discussed in this chapter.

Chapter 2 The Base Framework

2.1 Overview

As part of designing a protocol for internet calendaring and scheduling, a

prototype that uses this protocol was implemented. This was done to verify the viability

of such a protocol, evaluate its performance and explore potential implementation issues.

This prototype of an internet C&S system will be based on the design and features of

Lotus Organizer, an award-winning C&S application in today's market. This base

framework for the protocol is a "Web version of the Organizer application", and shall be

referred to as the OrgWeb system hereafter.

A subset of the calendaring and scheduling features in Organizer are implemented

in the OrgWeb system. The backend databases used to store C&S information are

Organizer 3.0 files (.OR3 files) or Lotus Notes mail files (.NSF files). Moreover, the

actual interactions with these databases are made through an Organizer API layer, in

which database readings and writings can be made by means of API calls.

What needs to be constructed now is an interface between a Web client and the

Organizer API layer on a Web server. This involves one or more processes on the Web

server that can understand the OrgWeb C&S protocol, take requests from the Web clients

who utilize the C&S protocol, access the Organizer databases through the Organizer API

layer, and finally serves out calendaring and scheduling information to the clients.

Section 2.2 will show the big picture of the base framework and how different

components are connected in the system. Section 2.3 and 2.4 will describe the design and

components on the client side and the server side respectively.

2.2 System Architecture

The architecture of the OrgWeb system is illustrated in Figure 2.1.

The system starts with the Web browsers on the right hand side of the figure. End

users, who desire to access C&S functionality, access the OrgWeb system through

standard Web browsers which communicate with Web sites over the internet (or intranet)

via HTTP. In the OrgWeb system the clients need to talk to a Web site that has installed

the OrgWeb components which can access the users' Organizer database and serve C&S

information to the clients. Thanks to the dynamics of the Web, OrgWeb clients may be

anywhere in the world, using any kind of platform and operating system, to access the

OrgWeb Web server.

In the current implementation of the OrgWeb system, a Netscape Communication

Server on a Windows NT 3.51 workstation and an Internet Information Server on a

Windows NT 4.0 (Beta 2) server were used as the Web servers. Since the base protocol is

still HTTP, the standard protocol spoken by all Web browsers and servers, no additional

software is required on the Web client side2. On the Web server side, a CGI program was

written to communicate with Web clients using the HTTP-based C&S protocol. In

addition, a separate process was implemented on the server to support session

2 When the user interface of the OrgWeb system is enhanced (See Chapter 7) Organizer-specific ActiveX controls and
Organizer DLLs required to execute the ActiveX controls should be downloaded from the server side and installed on
the client side.

management for the C&S CGI program. This process accesses the Organizer databases

through the Organizer API layer. These two processes communicate with each other by

means of named pipes in Windows NT, which will be discussed in more details in

Section 6.3.2.

D0
Remote

Organizer
users /w Web

browsers
Organizer

API

I -d
Organizer Users

w/ Organizer App
on LAN

Figure 2.1: The Overview of the OrgWeb System

Whenever a Web client makes a request in the OrgWeb HTTP-based C&S

protocol, the CGI program at the server is invoked. This CGI process then talks to the

session manager process, which keeps the information for different C&S sessions,

authenticates the client requests, accesses the Organizer databases through the Organizer

API layer, and finally returns the C&S information requested back to the CGI process.

The CGI process then passes the results back to the Web client in the form of standard

HTML responses, which can be readily displayed by the Web browsers on the client side.

Organizer
Database
accessible
by Web
Server

Web Server

f

In the Organizer API layer, a number of C procedures are provided to access the

information in Organizer database files. All Organizer files that are accessible by the Web

server through the API layer comprise the backend databases for the OrgWeb system.

2.3 Client Side

2.3.1 User Interface

The user interface of the OrgWeb system is in the form of HTML pages within a

Web browser. When a user wants to use the C&S service, he or she first goes to a logon

page at an OrgWeb Web server (See Appendix A. 1). Then the user fills in the logon form

with all the login information required, and submits it to login a C&S session.

After logging in, the week view (See Appendix A.2) of appointments for the

current week is displayed by default. There are links to go to a month view of the

appointments in the current month (See Appendix A.3), and to a day view (See Appendix

A.4) of today's appointments. On every date of the appointment view, there is a link to a

"Create Appointment" page (See Appendix A.5) which allows the user to create a new

appointment on the date associated with that link. The appointment attributes may be set

in a form on that page and submitted to create an appointment in the database. For

creating a group meeting, a user can follow a link on this "Create Appointment" page to a

"Create Meeting" page. (See Appendix A.9) There the user can set the meeting attributes

and the attendees information on another form, and submit it to create a new meeting.

After submission of these forms a possibly updated calendar view will be displayed.

On every appointment or meeting entry in the calendar view, there is a link to an

"Edit Appointment" (See Appendix A.6) or "Edit Meeting" page for that appointment or

meeting. The form element values are preset with the current attributes of that

appointment or meeting. The user may change the values in these form elements to

change the attributes. The user can submit the form to update the appointment or meeting.

There is also a link on the "Edit Appointment" and "Edit Meeting" page which facilitates

deleting the appointment or meeting from the database. After updating or deleting the

appointment or meeting, the user will return to the preceding calendar view.

For group scheduling in the OrgWeb system, different users make meeting

invitations and replies by means of exchanging meeting notices through Notes Mail or

cc:Mail. These meeting notices are stored in a "mailbox" in the users' databases. To view

the meeting notices in the mailbox, a user can follow a link on any calendar view to a

"Meeting Notice" page (See Appendix A.7). A short description is displayed for every

meeting notice on this page. On this short description there is another link, which leads to

the "Meeting Notice Details" page (See Appendix A.8) for that particular meeting notice.

The users can view all the important attributes and attendee status for that meeting on this

page, and additional links are also displayed there for the user to process the meeting

notice. When the user follows one of these links the meeting notice will be processed,

hence possibly making changes in the user's database and sending out more meeting

notices. The user returns to the "Meeting Notice" page afterwards, where the user can

view and process other meeting notices, or simply go back to the calendar view.

When a user is done using the C&S service, the user may logout. Links to logout

a C&S session appear on all Web pages throughout the C&S session.

Examples of the Web pages seen in a C&S session can be found in Appendix A.

2.3.2 Calendar View Navigation

The ability to easily navigate and read calendar information in different views and

on different dates is very important in a C&S application.The user interface is designed to

have three kinds of calendar views for appointments: day view, week view and month

view. On every page of a particular calendar view in the system, there are links to go to

the other two calendar views for the current date.

Moreover, for a page in a particular calendar view, there are links to go to the

pages for the previous and next day, week or month, depending on which calendar view

the user is currently in.

Figure 2.2 illustrates the flow of the Web pages to view the appointment

information in different calendar views.

Figure 2.2: Flow the Web pages for the calendar views in the OrgWeb system

2.4 Server Side

2.4.1 The CGI Process

The CGI process on an OrgWeb server receives requests from the Web clients

with the C&S protocol. There is a request parser in the CGI process, which takes the

OrgWeb requests from the environment variables (via an HTTP "GET" request) and from

the standard input of the CGI process (via an HTTP "POST" request) [4][5]. It creates a

request object, in which the parameters and the environment variables of the request are

stored.

The request object is then passed to a command parser, which parses the request

strings into a list of command objects. In each command object a request command and

the associated arguments can be found. This command object is then stored in the request

object as well.

Finally the request object is passed to a command processor. The command

processor takes the list of command objects from the request object, and executes the

commands in the list sequentially. After all the commands in the list have been executed,

the results are passed to the standard output of the CGI process as an HTML document,

which will be displayed in the Web browser on the client side.

2.4.2 The Session Manager

The session manager acts as a mediator between the CGI process and the

Organizer API layer. It is always running on the C&S Web server. When a CGI process is

started by a C&S request, it will talk to the session manager for request authentication

and session information retrievals. The session manager will actually perform the C&S

operations by accessing the Organizer databases through the Organizer API layer. After

successful database operations, the responses will be transmitted to the CGI process,

which will pass the responses to the Web clients.

The design and implementation details of the session manager will be fully

discussed in Chapter 6.

Chapter 3 Basic Protocol Design

In the internet calendaring and scheduling base framework, a Web client talks to a

Web server to ask for C&S information. The way in which the two parties communicate

is the internet C&S protocol. The basic design of this protocol will be discussed in this

chapter.

3.1 Design Goals

In designing the internet C&S protocol, there are a number of design goals and

requirements.

3.1.1 Ready and Easy to Use in Existing Environment

The first requirement for the protocol is that it can be readily used in the existing

environment. This can reduce the costs of using the protocol, as few changes need to be

made for the end-users and the information providers.

The World Wide Web is presently the most popular way of accessing information

on the internet [4]. The Web's open and flexible way of accessing and publishing

information has led to its explosive growth [1]. Having identified the Web as the

prevalent way to use the internet, a key design goal is to make the C&S protocol ready

and easy to use with the Web. Ideally, end-users should be able to use the protocol to

access C&S information with their Web browsers, and the information providers should

be able to use the protocol to provide the information on a standard Web server. A very

important design goal shall be minimizing the changes that need to be made in the

existing environment.

3.1.2 Minimize Traffic between the Client and the Server

C&S applications usually require frequent interactions with calendar databases.

When the users "turn pages" in their calendar view and read their appointment records, a

lot of appointment records need to be read from the databases. If only a single

appointment record or a day of appointment records can be accessed in each request, a lot

of separate requests have to be made when the user tries to read his appointments for a

particular month.

An inefficient way to access a large amount of appointment information in the

protocol can greatly affect the performance of the internet C&S system. As a result, the

protocol must provide a flexible way for the client to get calendar information, so the

client can access a day, a week, or even a month of appointment information with a single

request. This minimizes the overhead required in making requests in the protocol.

3.1.3 Support Consistent Behaviors between Requests

In accessing calendar databases, users typically need to identify themselves (e.g.

with a username and a password) before they can gain access to the information within

the databases. If they are not listed within the access control list (ACL) of a database with

the proper level of access, their requests will be rejected.

In C&S activities, users are likely to access the same databases from one request

to another. For example, when a user reads his calendar information, he is making

different requests from page to page on the same database. It is inefficient to supply a

password to identify himself when he makes a request every time before he can actually

access the database. As a result, the protocol should support consistent behavior between

different requests. In other word, the protocol should support the concept of a "session",

in which a user identifies himself at the beginning of the session, and doesn't need to

identify himself again throughout the session.

3.1.4 Flexibility and Scalability

Last but not least, flexibility and scalability are required in the protocol. Making

changes to the existing set of commands in the protocol should be easy. Also it should be

possible to add and delete commands in the protocol without much difficulty. This helps

maintain the C&S system in the long run.

The issue of the ready and easy use of the protocol in existing environments leads

to the idea of developing this new protocol based on the HTTP protocol. The issues of

minimizing network traffic, and promoting protocol flexibility and scalability will be

reviewed while the design of the protocol is discussed in this chapter. The use of HTTP

as the underlying protocol and the requirement of consistent behavior leads to the

development of the session ID parameter in the protocol, and also the development of the

session management process, which will be discussed in Section 6.

3.2 Basic Design

3.2.1 HTTP-based

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for

distributed, collaborative, hypermedia information systems [6]. It is a generic, stateless

and object-oriented protocol which can be used for many tasks. It has been in use as the

native protocol for the Web since 1990. All standard Web browsers and Web servers can

understand and talk in HTTP.

As pointed out in Section 3.1.1, it is important to design the C&S protocol so that

it can be readily used by end-users and information providers without making many

changes to the existing environment. As the Web is currently the prevalent way to access

internet information, and since HTTP is the protocol used in the Web, the C&S protocol

shall be built on top of HTTP. By doing this, all Web users can immediately use the new

protocol as no new client software3 is needed to support this protocol.

On the other hand, the C&S information suppliers do not need a special server,

which can talk in a completely new protocol, to serve C&S information. They can keep

using the standard Web servers they are using now, since HTTP is still being used in the

protocol and all standard Web servers can understand HTTP. Only some software is

needed on the Web server to provide the C&S functionalities. As a result, building the

C&S protocol upon HTTP can greatly increase the ease of using the protocol and reduce

the costs involved.

3 Same as footnote I in Chapter 2.

Furthermore, HTTP is light-weight and fast [6]. By using HTTP as the base

protocol, the C&S protocol can take these advantages which are certainly desirable in

C&S applications.

3.2.2 Requests

Due to the generic nature of HTTP, it is possible to make application-specific

requests in HTTP. HTTP may be used to perform specific tasks through the extension of

its request methods. Web clients can pass additional information to Web servers through

the Universal Resource Location (URL) of the request, or through HTML forms via the

stdin of an executable on the Web server.

The HTTP-based C&S protocol shall keep using the standard HTTP "GET" and

"POST" methods in protocol requests. This is because these methods are defined as the

common methods for HTTP/1.0 [6], and it can be assumed that all Web servers that

support HTTP can understand these methods. The difference between the two methods

lies in the way that the server passes the request information to the server program that

processes the request. In the "GET" method, request data is passed via the environment

variables. In the "POST" method, the request data is delivered to the server program

using the standard input or stdin [5].

Both "GET" and "POST" methods are used in protocol requests, because there are

two different ways to supply commands and parameters to the Web servers on the client

side. In the first way, Web clients specify the commands and arguments in the URL. The

"GET" method is used in this case, and the commands and arguments are passed to the

server request processing program via the environment variables. In the current

implementation, only the environment variable QUERY_STRING is used to store the

commands and arguments in the requests. QUERY_STRING includes everything

following the "?" character in an URL [4]. This allows clients to make C&S requests by

simply typing in the URL with the request commands and arguments. As the requests are

in the form of a URL, it will later be shown that request URLs may be embedded within a

C&S response to allow users to generate further requests from that response.

The other way to supply C&S commands and arguments to server CGI program is

by means of the program stdin with the "POST" method. This mechanism is typically

used when a form is submitted in the request (e.g. form to create a new appointment or

form to edit an existing appointment).

It is possible to pass the form data with either the "GET" or the "POST" method,

so why isn't the form data also passed with a "GET" method just like the requests made

in direct URL? This is because when the "GET" method is used, the form data must then

be passed to the server program via the environment variable QUERYSTRING.

However, the user can also specify a separate request in the URL at the "action"

parameter within the <FORM> tag, which is also passed to the server via the

QUERY_STRING environment variable. In this case, it turns out that the form data

overwrites the commands passed in the "action" URL. As a result, using the "GET"

method in passing form data restricts requests so they cannot be specified in the form

"action" URL. Moreover, by submitting form data via the "GET" method, the data in

QUERY_STRING is encoded in a standard format, in which data is put in a stream of

name and value pairs separated by the character '&' [4]. For example, suppose a form has

input names "usemrname" and "password" and corresponding values as "John" and

"12345678". The data are passed to the server program in QUERY_STRING as

"username=John&password=12345678"

This is a standard encoding scheme for passing form data to CGI programs. As a result,

unless those requests made in direct URLs also follow this format, the request data passed

in the QUERY_STRING environment variable can have two different formats -- one used

in requests in direct URL (with application specific format), and the other used in

requests with form data (with standard encoded form data format). This non-uniform

formatting of input data in QUERYSTRING may confuse the server program, and the

server program must be intelligent enough to interpret request data in both formats.

To avoid these problems, both "GET" and "POST" methods are supported in the

C&S requests. Yet it is required that "GET" is only used in requests made in direct

URLs, and "POST" is only used in requests made with forms. By this, the server

processor can differentiate the two different types of requests easily. The two types of

requests can be in different formats without bringing confusion to the server process,

since they come into the process through different channels (one from the

QUERY_STRING; the other from the stdin). Also with the "POST" method, data can be

passed in the form "action" URL at the same time now, since the form data will not

overwrite the QUERY_STRING environment variable.

3.2.3 Responses

The responses of the C&S protocol are in the form of standard HTTP responses,

since the protocol is HTTP-based. Different MIME types may be returned to the clients

as responses, but in the first stage the standard "text/html" content type shall be utilized,

as most standard Web browsers can parse and display this type of responses without any

helper applications4. This is a big advantage of using HTML pages as responses in the

C&S protocol.

However, HTML responses have a lot of limitations. They do not support those

rich user interface elements that are normally seen in a C&S application. Thus it is

difficult to map the rich UI elements of the existing C&S applications to the limited UI

elements in HTML, such as HTML pages, hyperlinks, HTML forms, tables and image

maps. Also users must learn how to interact with the new UI. This is a big disadvantage

of using HTML pages as responses.

Later in this thesis project, the idea of defining HTML responses with C&S

application specific objects inserted will be explored. These objects may be C&S

components that are understood and executed by certain Web browsers to implement

much richer UI elements for C&S activities. This will be discussed in more details in

Chapter 7.

Another noteworthy feature of responses in the C&S protocol is that within the

HTML responses, hyperlinks with URLs for making further C&S requests may be

included. Following these hyperlinks users can make additional C&S requests via a

4 It is possible to define new MIME responses sepecific to the C&S system. In this case, special softwares (e.g.
Navigator plug-ins) should be installed on the client side to view them. This will be further discussed in Chapter 7.

simple mouse click, rather than typing the crytic request commands. This is the beauty of

using URLs to pass the requests in the protocol, and this makes the navigation in the

calendar views much easier and much more convenient.

3.3 Response Template

The response template is an important component in the HTTP-based C&S

protocol. It helps to achieve the design goal of minimizing network connections in the

protocol, and provides the users a flexible way to define and control the appearance of the

user interface.

3.3.1 The Idea

Suppose a user of the C&S service wants to get the times and descriptions of all

the appointments in August 1996. A protocol could be designed which can only return a

day of appointment information in a single request. In the example, 31 requests are

needed to get the appointment information in the 31 days of August 1996. Nevertheless,

this can be done in a more efficient way. The protocol can be extended to perform more

tasks and return more information in a single request. Since most C&S products support

displaying a month's worth of appointment information on the same page, it makes sense

to add a new "month view" command into the protocol. This command takes in a date as

the argument and the response will return all the appointments in the month of the date,

the username of the current C&S session, as well as the request strings for getting

appointment information in adjacent months of the date. This "month view" command

can be perceived as a package of requests, where the requests are related and always

come together at the same time.

We can look at response templates in the C&S protocol in the same way.

Response templates are just templates of the HTML documents to be returned in the

response, within which application specific command tags can be found. Using the same

example above, we can just tell the server to use the response template "month view" in

the response, and within the "month view" template there are command tags to list the

appointments in a month on the HTML document. Other useful information can also be

displayed at the same time. For example, the username of the current C&S session and

the request links to access the appointments in previous and next months can also be

displayed. Notice that now a single request in the protocol informs the server which

response template to use, and that can result in a package of commands to be executed

and multiple tasks to be performed.

The idea of response template and packing multiple requests into one not only

reduces the number of requests we need to make in the C&S protocol, but also reduces

the number of commands the client needs to know and remember. This also minimizes

the number of network connections the client needs to make with the server, and makes

the protocol simpler and more efficient. Later the importance of response templates in

providing user interface flexibility will also be discussed.

Note that the idea of the response template is partly driven by the constraints in

using the HTTP and simple Web browsers as the clients. The Web browser receives and

displays a response immediately after it has made a request. It cannot store responses

from multiple requests and display them altogther at a later time. As a result, only a

single request may be made from the Web browser in each C&S activity. This request

must perform all the desired tasks, and get a well formatted response to display within the

browser. Response templates are a very good way to make this work.

3.3.2 Design Details

A response template is simply an ASCII text file that includes standard HTML

tags and special command tags specific to the HTTP-based C&S protocol. These

templates are used to generate real HTML documents which are the responses in the

protocol. All the command tags begin with "<!--ORG-" and end with "-->". For example,

the command tag "icon" appears as "<!--ORG-icon-->" in the response templates. Note

that in HTML the tags "<!--" and" -->" allow comments to be included between them

[4], so the C&S command tags in the templates are just comments to Web browsers. Even

if the server CGI process cannot parse a particular command tag on a template and leaves

it in the HTML response, the tag is just recognized as a comment and is ignored by the

browsers.

For those components in the HTML responses that are the same for all users and

all possible cases of a request, they simply appear as HTML tags and contents in the

templates, e.g. the title of the HTML page, the image sources for the icons, and some of

the form elements in a form to create a new appointment. Contents that are variable from

one response to another will be generated on the fly when the server processes a request.

These contents are generated by the special command tags in the templates. The positions

of the command tags in the templates specify where the variable contents should be

displayed within the HTML documents.

All the command tags are registered in the CGI process on the server. When the

client makes a request, the CGI process will fetch the associated response template and

process the template. Those standard HTML tags and non-variable contents are simply

passed to the standard output to form the HTML document for response. When special

command tags are encountered they are looked up in a command tag table in the CGI

process, and the corresponding commands will be executed. These commands may

involve the access of calendar information from a calendar database, manipulations on the

parameters to form request anchors in the response, or fetching some session and

configuration information. The results will be formatted in standard HTML tags and

contents, and will be passed to the standard output. After the whole template has been

processed, all the command tags within it are parsed and executed, and the resulting

HTML document is generated and sent to the standard output (stdout) for response.

Table 5.1 in Section 5.1.4 contains a list of response templates, their

corresponding uses and embedded commands.

3.3.3 Features

Packing Multiple Commands

As pointed out earlier, response templates pack multiple commands into one

protocol request and allow clients to perform multiple tasks in that single request. This

reduces the number of requests the clients need to make in the C&S activities, and

reduces the number of request commands the clients need to know. Hence the

performance of the C&S protocol is improved and the command set of the protocol is

simplified.

Flexible User Interface Modification

Besides allowing the C&S protocol to pack multiple commands into a single

request, the response template also provides a flexible way to manage and modify the

user interface in the C&S system. As the templates are simply ASCII text files with

standard HTML tags and contents plus the special C&S command tags, these text files

can be modified easily to change the appearance of the responses, without any changes to

the source code of the server CGI process.

This feature makes the life of the UI designers of the C&S system much easier, as

they can just edit the template text files to modify the UI design, without writing or

changing any source code. Moreover, when new HTML elements come up in the future,

the UI designers can simply integrate these new elements in the response templates by

editing the template text files, again without any changes to the source code. This gives

more flexibility for UI designers to control and maintain the appearance of the user

interface.

Furthermore, with the response templates, people who are using the C&S system

can customize the user interfaces according to their preferences. For example, users in

different corporations can customize the appearance of the responses on their own. They

may add logos of their companies in the responses, add new links to Web sites related to

their business, or broadcast company-wide announcements in the responses so that their

employees can receive the messages while they do their C&S activities. All they need to

do to make such customizations is to simply modify the response templates on the Web

server where the OrgWeb system is installed.

3.3.4 Further Developments

Further developments can even make the response templates a more flexible tool

to use. Some of the ideas are presented in this section.

Arguments in Command Tags and Flexibility in Appointment Listings

In the current design of the response templates, arguments may not be specified

for the commands in the command tags. The commands use the arguments passed in the

protocol requests to generate the information the users desire. This restricts the way

appointment listings in the calendar view may be generated. For example in a weekly

calendar view, one command tag "wvlistappt" is used to generate all the appointments in

the current week in a predefined HTML table format. Users cannot alter the format of the

appointment listings as they have been hardwired within the source code of the server

CGI process. Alternatively, the "wvlistappt" command can be broken down into seven

simpler commands "monlistappt", "tuelistappt", "wedlistappt" and so on, which allow

defining the format of the weekly appointment listings as well as positioning the listings

in the HTML responses by editing the templates. However, the large number of new

commands needed prevent the current implementation of the OrgWeb system from doing

SO.

Nevertheless, enabling arguments to be specified within the command tags would

solve the problem of too many new commands. Instead of using different commands to

list the appointments on different days of the week, the same command with different

arguments could be used. For the above weekly calendar view example, we could have

"wvlistappt=-'mon'", wvlistappt=' tue'", "wvlistappt-'wed"' and so on. By using this new

scheme, the UI designers would have even more flexibility and control over the response

appearance within the response templates.

Personalization and Themes in Responses

Individual users are allowed to have their own sets of response templates so that

personalized C&S responses can be provided based on individual users' preferences. This

involves modifying the template fetching process in the server CGI program. Instead of

fetching the templates from a standard set, the process can fetch the templates from a set

which is devoted to a particular user.

Alternatively, the users may choose from a number of pre-defined response sets to

be the C&S responses. Different "themes" of responses can be selected according to the

user's preference. This idea parallels the desktop themes in Microsoft Windows 95 and

NT 4.0, and this can easily be implemented by providing users with groups of templates

with the same UI themes and color schemes.

Chapter 4 Protocol Design for Scheduling

In the HTTP-based C&S protocol, users can set up group meetings among

themselves over the internet. This involves choosing the right attendees for a meeting,

selecting a convenient time for all the attendees, and sophisticated time negotiations

among the attendees. These processes are much more complicated than simple viewing

and editing of personal appointment entries over the internet, so the protocol design for

internet scheduling is discussed in more details in this chapter. As a source of background

information, the architecture of the scheduling system used in the C&S protocol is first

presented in Section 4.1. Various design issues in the protocol for internet scheduling will

be discussed in Section 4.2.

4.1 Scheduling System Overview

4.1.1 Basic Model

The scheduling processes and architecture used in the C&S protocol are modeled

after the group scheduling features in Lotus Organizer 2.1 [7]. In this architecture,

scheduling users set up meetings by trading meeting notices. These meeting notices are

messages carrying meeting information, such as the meeting time and place, the person

scheduling the meeting (the "chairperson"), and the attendees in the meeting. By

exchanging meeting notices, users of the C&S protocol can communicate with each other,

inviting others for meetings and negotiating on meeting time. With an Organizer

backend, these meeting notices are transmitted through Notes mail or cc:Mail, and are

deposited in Notes mail files or Organizer files. Upon response to the meeting notices,

meeting entries are possibly inserted or updated in the scheduling users' calendar

databases.

The best way to understand how the processes work is to see a typical scheduling

example. Suppose a manager would like to schedule a meeting with his group. He first

accesses the OrgWeb system and creates a new meeting in which he chooses the meeting

time and the attendees. When the meeting is created, two things happen. First, a meeting

entry is inserted in the manager's calendar database. Second, invitation meeting notices,

carrying information about the meeting, are sent to all the attendees chosen in the meeting

creation. These notices are deposited in the "mailboxes" of the attendees' calendar

databases.

A few moments later, one of the group members accesses the OrgWeb system. He

notices that there are new meeting notices in his "mailbox", so he opens the "mailbox"

and reads the invitation meeting notice about the new meeting. Here he can see the

chairperson, the time and the attendee information of the meeting. If he decides that he

will join the meeting and accept the invitation, a meeting entry is inserted in his calendar

database, based on the meeting time and other information carried by the meeting notice.

At the same time, an invitation acceptance meeting notice is sent back to the manager,

who is the chairperson of the meeting. Alternatively the invitee can decline the meeting

invitation. In this case, an invitation decline meeting notice is returned to the manager,

but no changes are made in the invitee's calendar database. When the manager checks his

"mailbox" later, he will find and process these invitation acceptance or invitation decline

notices. The attendee status of the meeting entry in his calendar database will be updated

from "invited" to "accepted" or "rejected". By this the manager is able to see who is able

to attend the meeting and who is not.

In the scheduling architecture, only the chairperson can edit an existing meeting.

Once the manager has created the meeting entry, he can change the meeting time, change

the attendee list by adding more attendees or removing some attendees, or even delete the

meeting. When the manager decides to change the meeting time, the meeting entry in his

database will be updated, and reschedule meeting notices are sent to all attendees. The

attendees can accept or decline the meeting reschedule, and the associated meeting entry

in the attendee's database is either updated or deleted respectively. Appropriate meeting

notices are also sent back. If the manager adds new attendees or removes some of the

existing attendees, those attendees who are affected will receive appropriate meeting

notices (invitation notice for those added, and cancellation notice for those removed).

On the attendee side, an attendee cannot alter the attendee list of a meeting, but he

can propose a change in the meeting time. In this case, he has accepted the meeting but

would like to change the meeting time. A reschedule proposal meeting notice is sent to

the chairperson. When the chairperson receives the reschedule proposal, he can decide to

accept it and make an actual meeting reschedule, or simply decline that proposal.

This gives a rough idea of the group scheduling features in the OrgWeb system. A

more detailed specification of the scheduling features can be found in Appendix C.

4.1.2 Scheduling Services

To facilitate more efficient group scheduling, two supporting services are

provided in the scheduling system: the free time search service and the attendee directory

service.

Free Time Search Service

When setting up a meeting, a chairperson needs to know other people's available

times, so that he or she can determine the best time for the meeting. This can avoid a

series of reschedule proposals and meeting reschedules after invitations for a new

meeting are sent out, minimizing the flow of meeting notices and the time needed to

reach a suitable meeting time for all the attendees.

With this service, when the chairperson chooses a person as the attendee of a

meeting, the OrgWeb client will make a request to the OrgWeb server for a free time

search for that person. The server will access the invitee's calendar database, and check

for all the busy time periods for that invitee within a time period around a tentative

meeting time. Note that the chairperson is only able to see whether that person is free or

busy, without knowing what the person is actually doing. This protects the security of the

invitee while giving the chairperson the information needed to schedule a meeting. The

server returns these busy time periods back to the client side, and the busy periods are

displayed in the Web browser. With the free time information for all the invitees, the

chairperson can select a meeting time that can minimize time conflicts among the

invitees' schedules.

Attendee Directory Service

For group scheduling in the OrgWeb system, the scheduling users are identified

by their names used in Notes mail or cc:Mail. If the meeting chairperson types in a name

for an invitee incorrectly when he chooses the invitees, meeting notices will not be

delivered to the desired invitee, and all other invitees will get the wrong attendee

information in the meeting notices.

In view of this problem, the scheduling system should provide the chairperson a

list of names, from which the chairperson can choose to invite to a meeting. This cannot

only tell the chairperson whom he or she can invite to a meeting, but also prevent the

chairperson from misspelling the invitees' names. This is the attendee directory service in

group scheduling. The OrgWeb server can obtain this attendee directory from the Notes

Name & Address Book of the chairperson, and the list basically includes all the OrgWeb

users whose databases can be accessed by the OrgWeb server. The list is passed to the

Web client when the OrgWeb user wants to create a new meeting.

4.2 Scheduling Protocol Design

4.2.1 Design Goals

Specific to group scheduling processes and services in the OrgWeb system, there

are some design goals to keep in mind:

Keeping Protocol Simple and Scaleable

As pointed out in Section 4.1, the group scheduling processes are pretty

sophisticated. Although manipulating a meeting entry is very similar to manipulating a

personal appointment entry, working on meeting notices can be a complicated task. There

are many different types of meeting notices (there are 11 different types of notices in

Organizer 2.1). Even worse, for each notice type users can respond to it differently. For

example, in Organizer 2.1 a user can respond to a meeting invitation by accepting it,

rejecting it, proposing a reschedule or delegating the invitation to another user. The

sophistication of the meeting notices and the responses provide much flexibility in

scheduling, but it can also make the internet C&S protocol too complicated to use. As a

result, in designing the scheduling extension of the C&S protocol, keeping the protocol

simple is one of the top priorities.

Moreover, as group scheduling involves lots of different user actions and

responses, the scheduling protocol should be flexible enough that new meeting notices

and user responses may be added easily. Making the protocol scaleable saves time and

efforts in the future maintenance of the protocol.

Efficient Free Time Search

As seen in Section 4.1.2, free time search service keeps the group scheduling

process efficient. However, this service may lead to very frequent interactions between

the client and the server. For every attendee added in a meeting, the OrgWeb client needs

to make a request to the server to ask for a free time search on that attendee.

Updating the free/ busy time information when the user changes the date and time

of a meeting is worse. In every request for a free time search, all the busy periods in a

user's entire calendar schedule are not returned, because this would be too much

information to be returned in a single request. Instead, a time range is specified on the

request so that the server needs only search for the busy time periods within that range.

Usually this time range starts a small time period before a tentative meeting time, and

ends a small time period after that meeting time. Thus a scheduling user can view the free

time information for all the attendees around that tentative meeting time. If there are time

conflicts and the user moves the meeting time to a time outside the time range used in the

previous free time search request, a new free time search request is required for every

attendee who has been chosen, with a time range around the new tentative meeting time.

This process goes on until the user finds a suitable meeting time for all the attendees. As

transactions over the network can be slow, making free time search requests so frequently

in this process certainly affects the performance of the free time search service.

Therefore, the scheduling protocol needs to be designed so that the free time

search service is as efficient as possible, minimizing the number of requests required in

scheduling a meeting.

How to design the scheduling protocol to achieve these design goals will be

discussed in the next section. How to use the protocol to make the free time search

service efficient will be discussed in Section 7.3.2.

4.2.2 Design Details

Meeting Entry Creation, Editing and Deleting

Creating, editing and deleting a meeting is very similar to creating, editing and

deleting a personal appointment, except that the user needs to work on the attendee

information, and uses the free time search and attendee directory services in working on

meetings. A number of user interface enhancements (See Chapter 7) can make the editing

of the attendee information and the use of the services intuitive and simple to a user, and

these enhancements also keep the protocol simple. Adding the functionality of meeting

entry manipulations to the protocol is simply adding request commands analogous to

those request commands for appointment entry manipulations.

Meeting Notices Viewing and Processing

Meeting notices are created when a scheduling user creates a new meeting or

responds to an existing meeting notice. Viewing the details in a meeting notice can be

made similar to reading an appointment record or a meeting record5.

To process a meeting notice, instead of having a separate protocol request

command for each type of meeting notice and each possible notice response, the C&S

protocol defines one request command to process all types of notices with all kinds of

responses. In this request command, the record ID for the meeting notice to process and

the user response to the notice are supplied as the command arguments. With the record

ID, the OrgWeb server can retrieve the meeting notice from the database, and checks

which type the meeting notice is. Once the notice type is returned, the user response

argument is used by the server to determine how to process the meeting notice. Under this

scheme, the scheduling protocol can stay simple. This is also a scaleable solution to

accommodate the meeting notice processing feature, because the addition of new user

actions and responses only adds the possible notice types for the notice records and the

possible choices used in the user response argument of the notice processing command.

No new request command will be required.

5 In Organizer databases, meeting notices, appointment entries and meeting entries are all "record" entities. The type of
that record is detemined by the section in which the record is located and some of the field values in the record.

Free Time Search

Since the scheduling users choose the attendees to invite after they have requested

for a form for creating a meeting, in order to request and display the free time for the

attendees, an extra connection to the server cannot be avoided when each attendee is

added to the attendee list. Yet we can make the free time search more efficient by

allowing the protocol to search free time periods for multiple users within the same time

range. With the capability to search free time for multiple users in the protocol, the Web

client only needs to make a single request to update the free time display for all the

attendees chosen. This definitely saves a lot of server connections in the case of changing

the tentative meeting time when the scheduling user tries to choose a good final meeting

time. As the free time request can handle multiple users, only one request is needed to

fetch the free time for all the attendees in the attendee list.

Chapter 5 Protocol Definition

5.1 Parameters

5.1.1 Commands

Commands are the central components in C&S requests in the protocol. They tell

the server what operations to perform and with what information to respond.

Request commands are used by a client in making a C&S request in the protocol.

They can be specified in the URLs after the "?" character, or in an HTML form.

Commands in the URLs are submitted to the server CGI process through the

QUERYSTRING environment variable, and this can happen when either "GET" or

"POST" method is used'. Commands in an HTML form are submitted to the server CGI

process through the stdin, and this can only happen when the "POST" method is used.

Clients can specify arguments in request commands.

There are also commands in the command tags embedded within the response

templates, and they are executed by the CGI process when the response templates are

parsed to form a response. These commands take no arguments, but use the arguments

that are passed in the request commands when protocol requests are made. Note that the

clients do not normally see these template embedded commands.

A URL with a request can be specified in the "action" parameter of the <FORM> tag when an HTML form is
submitted with the "POST" method.

5.1.2 Session ID

A session ID identifies the C&S session for a particular user. It is a 36-character

string that is transformed from a Universally Unique Identifier (UUID), defined by the

Open Software Foundation (OSF) as part of their Distributed Computing Environment

(DCE) [8]. It is a string consisting of 8 hexadecimal digits, followed by a hyphen, then

three groups of 4 hexadecimal digits each followed by a hyphen, then 12 hexadecimal

digits. It virtually guarantees that a computer-generated UUID and hence the session ID is

unique in the world across time and space.

e.g. "6B29FC40-CA47-1067-B31D-00DD 010662DA"

5.1.3 Date

The date parameter tells the server the date that the current C&S command

request should work on. It is an 8-character string, with the following format:

Character 0 1 2 3 4 5 6 7
Meaning Year Month Day

e.g. "19960826" stands for August 26, 1996.

5.1.4 Datetime

The datetime parameter is used in the free/ busy time searching in group scheduling. It

tells the server in what time range it should search for the busy time periods for a user. It

is a 12-character string, with the following format:

Character 0 1 2 3 4 5 6 7 8] 9 10 11
Meaning Year Month Day Hour Minute

e.g. "199608261715" stands for 17:15 on August 26, 1996.

5.1.5 Response Template

The idea and design of the response template has been discussed in Section 3.3.

Table 5.1 below lists the response templates in the current implementation of the

protocol. The meanings of the embedded commands within the templates are listed in

Appendix B.

Name Uses Commands embedded within Template

logon Logon page for the user to icon, script, today, login
login

dview Calendar Day View name, script, icon, dprev, dfwd, sessionid, date,
dvlistappt, pendingnotice

wview Calendar Week View name, script, icon, wprev, wfwd, sessionid, date,
wvlistappt, pendingnotice

mview Calendar Month View name, script, icon, mprev, mfwd, sessionid, date,
mvlistappt, pendingnotice

newappt Page for creating new script, icon, back, sessionid, date, daystr, createappt,
appointment categorynames

editappt Page for editing or deleting an script, icon, back, sessionid, curruid, date, daystr,
existing appointment updateappt, editapptform

newmtg Page for creating new meeting scripts, icon, date, sessionid, createmtg,
categorynames, name, dtrackdate

editmtg Page for editing or deleting an script, icon, date, back, sessionid, updatemtg,
existing meeting editmtgform

notice List of the meeting notices in name, script, icon, back, date, sessionid, listnotices
mailbox

mtgmsg Page for viewing the details of script, icon, back, date, sessionid, msgdetails
a meeting notice I

Table 5.1: List of Response Templates

5.1.6 Record ID

A record ID identifies an appointment record, a meeting record or a meeting

notice record in an Organizer file. The record ID is in the form of a pair of numbers

separated by the character "-". The pair of numbers are used to form a unique ID for a

record in an Organizer file. For requests dealing with a particular appointment, meeting

or meeting notice in the protocol, the record involved is identified by the record ID.

5.2 Requests

In the C&S protocol, requests can be made with either the "GET" method or the

"POST" method in the underlying HTTP requests.

5.2.1 With "GET" Method

The request string is passed in the URL. The URL can be decomposed as follows:

protocol://host/seript?request string

protocol Protocol used between the server and the client. In the C&S protocol it is
always "http" or "https".

host The host machine where the Web server sits, and where the C&S server
CGI process is located. e.g. "torch.lotus.com"

script The filespec for the C&S server CGI executable on the host machine.
e.g. "orgweb/test/orgweb.exe"

request Contains the request command and associated arguments.

string

The format used in the request string is defined as follows:

request string::= command='argument, ... '

In the request string, command is the request command that the client desires to

perform, and argument, ... are the arguments associated with the request command. The

number of arguments depends on the command. Multiple arguments for any command

are delimited by the character ','. For example, in request string "fool='barl,bar2,'",

"fool" is the command in the request. It has three arguments in this case: "barl", "bar2",

and "" (empty string). The request string in the URL will be passed to the server CGI

process via the QUERY_STRING environment variable.

5.2.2 With "POST" Method

With the "POST" method, the C&S requests can be made in two ways

simultaneously. First, a request can be made through a HTML form, and the request

string will be passed to the server CGI process via the standard input (stdin). Second, the

request can be made through the URL in the "action" parameter of the FORM tag, just in

the same way as it is in the "GET" method. The request string will be passed to the server

CGI through the QUERYSTRING variable.

Within a form, the first hidden input is the request command. The names and

values of the form input elements following the request command are the associated

arguments. The values in the form input elements shall be set to whatever values the user

enters within the HTML form. It is required in the C&S protocol that the request

command must have the hidden input name "cmd", and the command itself as the

corresponding hidden input value. This helps the server CGI process to differentiate the

command inputs from the argument inputs. Also in a request from a form, all arguments

have an argument name, while in a request through the URL arguments have no names

and only argument values are passed.

An HTML form which allows a user to login is shown in Figure 5.1. Within the

form the command "login" can be found, which appears in the first hidden input within

the form. Note that in the hidden input the input name is "cmd", and the input value is

"login". The form input elements following this are command arguments associated with

the command "login".

<FORM method=post action="/orgweb/testlorgweb.exe?wview=',19960826'">
<input type="hidden" name="cmd" value="login">
<TABLE border=-0>
<TR><TD>User Name: </TD><TD><input type="text" name="username" value=""
maxlength=126></TD></TR>
<TR><TD>Password: </TD><TD><input type="password" name="passwd"
maxlength=10></TD></TR>
<TR><TD>Organizer File: </TD><TD><input type="text" name="orgfile" value=""
maxlength= 126></TD></TR>
<TR><TD>Organizer Password: </TD><TD><input type="password" name="orgfilepasswd" value=""
maxlength=126></TD></TR>
</TABLE>
<input type="submit" value=" OK "><p>
</FORM>

Figure 5.1 The login form in HTML

After the form is submitted, the server CGI executable "orgweb.exe" will get the

request string

"cmd=login&username=Oliver&orgflle=c: lorg3lworklorganizeloyip.or3&orgfilepasswd

=password"

through the stdin. This encoding is done by the Web server before passing the data to the

CGI process. The formats that different fields are delimited by '&' and field names and

values are separated by '=' are defined in the HTTP protocol specification [4].

In the example above there is one command "login" in the form. There are four

arguments, with argument names "usemrname", "passwd", "orgfile" and "orgfilepasswd",

and with values "Oliver", "password", "c:\org3\work\organize\oyip.or3", "password"

respectively.

Why do the argument names need to be specified in requests with forms, but not

in requests through URLs? This is because in some of the forms in the C&S requests, it is

possible to specify multiple values in the same input. For example, a user may select

multiple categories within the "Categories" SELECT input element when creating a new

appointment. Selecting multiple entries in the SELECT box will result in more than one

field in the encoded request string having the same field name. For example, if items

"Calls", "Expenses" and "Meetings" are picked in a SELECT element named "category",

the encoded request string will appear as

"...&category=Calls&category=Expenses&category=Meetings&....". That means in the

request some arguments can occur more than once in the request string, and the number

of times they occur may be variable. In order to recognize the arguments correctly, the

rule that each argument must have a name in a request submitted through an HTML form

is required.

5.2.3 Specification of Request Commands

The specification of the request commands in the C&S protocol are shown in this

section.

logon

Request Channel: URL
Synopsis: logon

Returned value: An HTML response with a form for the user to login to a new C&S
session.

login

Request Channel: HTML Form

Argument
username
passwd
orgfile
orgfilepasswd

Value
Organizer usemrname
Password for the Organizer user specified in username
Organizer file to open
Password for the Organizer file specified in orgf i le

The login command starts a new session in the C&S protocol.
Returned value: A session ID that identify the new C&S session.

logout
Request Channel: URL
Synopsis: logout= ' SessionID'

Argument Value
SessionID Session ID for the C&S session to logout

The logout command terminates an existing session in the C&S protocol.

dview
Request Channel: URL
Synopsis: dview= ' SessionID, Date'

Argument Value
SessionID Session ID to identify the C&S session
Date Date of calendar information to view

Returned value: An HTML response with the view of the appointment information on the
day specified by Date.

wview
Request Channel: URL
Synopsis: wview= ' SessionlD, Date'

Argument
SessionlD
Date

Value
Session ID to identify the C&S session
Date of calendar information to view

Returned value: An HTML response with the view of the appointment information in the
week containing Date.

mview
Request Channel: URL
Synopsis: mview= ' SessionlD, Date'

Argument
SessionlD
Date

Value
Session ID to identify the C&S session
Date of calendar information to view

Returned value: An HTML response with the view of the appointment information in the
month containing Date.

newappt
Request Channel: URL
Synopsis: newappt= ' SessionlD, Date, ReturnCalendarView'

Argument
SessionID
Date
ReturnCalendarView

Value
Session ID to identify the C&S session
Date on which the new appointment will be inserted

SCalendar view from which the newappt command is
called. It can be dview, wview and mview. When the
create appointment activity is done or canceled, the
system will return to this calendar view.

Returned Value: An HTML response with a form for the user to create a new
appointment on the date specified by Date.

newmtq
Request Channel: URL
Synopsis: newmtg= ' SessionlD, Date, ReturnCalendarView'

Argument
SessionlD
Date
ReturnCalendarView

Value
Session ID to identify the C&S session
Date on which the new meeting will be inserted
Calendar view from which the newmtg command is
called. It can be dview, wview and mview. When the
create meeting activity is done or canceled, the system
will return to this calendar view.

Returned Value: An HTML response with a form for the user to create a new meeting on
the date specified by Date. The date can be changed by the date control
on the form to create a new meeting on a date other than Date.

createappt
Request Channel: HTML Form

Argument Value
sessionid Session ID to identify the C&S session
date Date on which the new appointment will be inserted
starthr The hour of the starting time of the new appointment. Range from

0- 23
startmin The minute of the starting time of the new appointment. Range

from 0 - 55
durhr The hour of the duration of the new appointment. Range from 0 -

23
durmin The minute of the duration of the new appointment. Range from 0

-55
description Non-empty string that describes the appointment
category Categories that the new appointment belong to. Can be absent or

occur more than once.
conflict Flag to indicate whether to warn the user if there is a conflict in the

schedule. Has value equal to 'C' (checked) if the flag is set.
Argument is absent if the flag is not set.

pencil in Flag to indicate whether to pencil in the new appointment. Has
value equal to 'C' (checked) if the flag is set. Argument is absent
if the flag is not set.

confidential Flag to indicate whether the new appointment is confidential. Has
value equal to 'C' (checked) if the flag is set. Argument is absent
if the flag is not set.

The createappt command creates a new appointment in the date specified by Date,
with attributes specified by the arguments in the command.

createmtq
Request Channel: HTML Form

Argument Value
sessionid Session ID to identify the C&S session
attendeeinfo Attendee Information for the meeting. Information for each

attendee is delimited by the ':' character. For each attendee, the
attendee information is in the form:
AttendeeName,AttendeeStatus,AttendeeRequired
where AttendeeName is the name of the attendee,
AttendeeStatus is the status of the attendee in the meeting
and AttendeeRequired specifies whether the attendee is a
required attendee in the meeting.
AttendeeStatus can be 1, 2, 3, ... 10, meaning:
1 - Invited
2- Rejected
3 - Accepted
4- Delegated
5 - Penciledin
6 - Invited Delegation
7 - Accepted Delegation
8 - Rejected Delegation
9- Chairman
10 - Room
AttendeeRequired can be either 1 or 0 to indicate the
attendee is required in the meeting or not respectively.

date Date on which the new meeting will be inserted
starthr The hour of the starting time of the new meeting. Range from 0 -

23
startmin The minute of the starting time of the new meeting. Range from 0

-55
durhr The hour of the duration of the new meeting. Range from 0 -23
durmin The minute of the duration of the new meeting. Range from 0 - 55
description Non-empty string that describes the meeting
category Categories that the new meeting belong to. Can be absent or occur

more than once.
conflict Flag to indicate whether to warn the user if there is a conflict in the

schedule. Has value equal to 'C' (checked) if the flag is set.
Argument is absent if the flag is not set.

pencilin Flag to indicate whether to pencil in the new meeting. Has value

equal to 'C' (checked) if the flag is set. Argument is absent if the
flag is not set.

confidential Flag to indicate whether the new meeting is confidential. Has
value equal to 'C' (checked) if the flag is set. Argument is absent
if the flag is not set.

The createmtg command creates a new meeting in the date specified by Date, with
attributes specified by the arguments in the command.

editappt
Request Channel: URL
Synopsis: editappt= ' SessionID, Date, id, ReturnCalendarView'

Argument
SessionlD
Date

ReturnCalendarView

Value
Session ID to identify the C&S session
Date on which the appointment to edit is found
Appointment ID for the appointment record to edit
Calendar view from which the editappt command is
called. It can be dview, wview and mview. When the edit
appointment activity is done or canceled, the system will
return to this calendar view.

Returned Value: An HTML response with a form for the user to edit an existing
appointment on the date specified by Date.

editmtq
Request Channel: URL
Synopsis: editmtg= ' SessionID, Date, id, ReturnCalendarView'

Argument
SessionlD
Date

ReturnCalendarView

Value
Session ID to identify the C&S session
Date on which the meeting to edit is found
An meeting ID for the meeting record to edit
Calendar view from which the editmtg command is
called. It can be dview, wview and mview. When the edit
meeting activity is done or canceled, the system will
return to this calendar view.

Returned Value: An HTML response with a form for the user to edit an existing meeting
on the date specified by Date.

updateappt
Request Channel: HTML Form

Argument Value
sessionid Session ID to identify the C&S session
date Date on which the appointment to update is found
id An appointment ID for the appointment record to update
starthr The hour of the starting time of the appointment. Range from 0 -

23
startmin The minute of the starting time of the appointment. Range from 0 -

55
durhr The hour of the duration of the appointment. Range from 0 -23
durmin The minute of the duration of the appointment. Range from 0 - 55
description Non-empty string that describes the appointment
category Categories that the appointment belong to. Can be absent or occur

more than once.
Conflict Flag to indicate whether to warn the user if there is a conflict in the

schedule. Has value equal to 'C' (checked) if the flag is set.
Argument is absent if the flag is not set.

Pencilin Flag to indicate whether to "pencil in" the appointment. Has value
equal to 'C' (checked) if the flag is set. Argument is absent if the
flag is not set.

Confidential Flag to indicate whether the appointment is confidential. Has value
equal to 'C' (checked) if the flag is set. Argument is absent if the
flag is not set.

The updateappt command update an existing appointment identified by the
appointment ID id, with attributes specified by the arguments in the command.

delappt
Request Channel: URL
Synopsis: delappt= ' SessionID, Date, id, ReturnCalendarView '

Argument Value
SessionID Session ID to identify the C&S session
Date Date on which the appointment to delete is found. It also

sepecify the date of calendar view to show after the
appointment deletion

idi An appointment ID for the appointment record to delete
ReturnCalendarView Calendar view to show after the appointment deletion. It

can be dview, wview and mview.

The delappt command delete an existing appointment identified by the appointment
ID id, and return to the calendar view specified by ReturnCalendarView.

Returned Value: An HTML response with the calendar view specified by
ReturnCalendarView for the date specified by Date.

notice
Request Channel: URL
Synopsis: notice=' SessionID, Date, ReturnCalendarView'

Argument
SessionlD
Date

ReturnCalendarView

Value
Session ID to identify the C&S session
Current Date. When the meeting notice viewing is done,
the system will return to a calendar view (specified by
ReturnCalendarView) on this date.
Calendar view from which the notice command is
called. It can be dview, wview and mview. When the
meeting notice viewing is done, the system will return to
this calendar view.

Returned Value: An HTML response showing a list of meeting notices in the user's
mailbox. The senders, the types and the subjects of the meeting notices
are displayed.

mtgmsq
Request Channel: URL
Synopsis: mtgmsg= ' SessionID, Date, id, ReturnCalendarView'

Argument
SessionID
Date

Value
Session ID to identify the C&S session
Current Date. When the meeting notice viewing is done,
the system will return to a calendar view (specified by
ReturnCalendarView) on this date.

id A meeting notice ID for the meeting notice record to
view

ReturnCalendarView Calendar view from which the mtgmsg command is
called. It can be dview, wview and mview. When the
meeting notice viewing or processing is done, the system
will return to this calendar view.

Returned Value: An HTML response displaying the details of the meeting notice.

noticeproc
Request Channel: URL
Synopsis: noticeproc= ' SessionID, Date, id, NoticeResponse,

ReturnCalendarView'

Argument
SessionID
Date

id

NoticeResponse

ReturnCalendarView

Value
Session ID to identify the C&S session
Current Date. When the meeting notice processing and
viewing is done, the system will return to a calendar view
(specified by ReturnCalendarview) on this date.
A meeting notice ID for the meeting notice record to
process
The user response to the meeting notice. It can be acc
(accept) or decl (decline).
Current calendar view. It can be dview, wview and
mview. When the meeting notice viewing and processing
is done, the system will return to this calendar view.

The not iceproc command processes a meeting notice identified by the notice IDs id,
with the user response specified by NoticeResponse.

busytime
Request Channel: POST method in WinInet API Calls

Argument Value
SessionID Session ID to identify the C&S session
Startdt Starting Datetime of the datetime range to serach for the

busy periods
Enddt Ending Datetime of the datetime range to search for the

busy periods
User The user from whose calendar schedule to search for the

busy periods. Can occur more than once to search for
busy periods for multiple users.

Returned Value: An HTML response displaying the busy time periods for the users
specified by User, within the datetime range specified by Startdt
and Enddt. The response is in the format:
userbusyinfo_l #userbusyinfo_2# #userbusyinfo_n##
where
userbusyinfoi =

username:busyperiod 1*busyperiod_2*... *busyperiodn
where username is the name of user to search the busy periods for, and

busyperiodi ::=periodstartdt_i-periodenddti

where periodstartdt i and periodenddti are the starting datetime and
ending datetime of the busy period i respectively.
e.g. A possible response for the request

"cmd=busytime&startdt=199608260000&enddt=199608262359&

user=Alpha Tune&user=Beta Tune&user=Theta Tune"
can be:

Alpha Tune:
199608260900-199608261000*
199608261500-199608261630*

Beta Tune:
199608261100-199608261230*
199608260200-199608260215*
199608261900-199608262200*

Theta Tune:
199608261500-199608261630*

5.3 Responses

The responses in the C&S protocol are standard HTML responses, with content

type "text/html". These responses are generated from a number of response templates on

the server side (See Section 3.3). In the response templates, there are command tags that

are parsed and executed by the server CGI process to generate the actual response. A

summary of these command tags can be found in Appendix B.

5.4. Examples

5.4.1 Example on Accessing Personal Appointment Data

In this section, an example of how to make requests in the C&S protocol within a

session is presented. The expected responses for the requests are also shown.

the OrgWeb logon page
http://torch.lotus.com/orgweb/test/orgweb.exe?logon ("GET" method)
The logon page with the login form is returned.

* Submitting the login form to login
Request: action = "/orgweb/test/orgweb.exe?wview=',19960826'" ("POST"

method)
Logon form has hidden command "login", which will be passed to the
server through the stdin, with other arguments set by the input elements in
the form.

Response: User login a C&S session. The calendar week view for 8/26/1996 is shown
after successful login.

Note in the logon form the current date is used in the command wvi ew by default.

* See calendar information of previous week
http://torch.lotus.com/orgweb/test/orgweb.exe?wview='6B29FC40-CA47-
1067-B31D-OODD010662DA, 19960819' ("GET" method)
The calendar week view for 8/19/1996 is shown.

Similar requests can be made by specifying diferent combinations of calendar view
command and date argument to view calendar information of a particular day in a
particular view.

* Create
Request:

Response:

a new appointment on 8/20/1996
http://torch.lotus.com/orgweb/test/orgweb.exe?newappt='6B29FC40-
CA47-1067-B31D-00DD010662DA, 19960820,wview' ("GET" method)
The create appointment page and form is returned.

* Go to
Request:
Response:

Request:

Response:

* Submitting the create appointment form
Request: action="/orgweb/test/orgweb.exe?wview='6B29FC40-CA47-1067-B31D-

OODD010662DA,19960820'" ("POST" method)
Form has hidden command "createappt", which will be passed to the
server through the stdin, with other arguments set by the input elements in
the form.

Response: Create a new appointment in current date. Return to Week View for
8/20/1996.

* View appointment details/ edit an appointment on 8/20/1996
Request: http://torch.lotus.com/orgweb/test/orgweb.exe?editappt='6B29FC40-

CA47-1067-B31D-00DD010662DA, 19960820,618-10644986,wview'
("GET" method)

Response: The edit appointment page and form is shown, with current appointment
attributes preset in the form.

* Delete the appointment
Request: http://torch.lotus.com/orgweb/test/orgweb.exe?delappt='6B29FC40-

CA47-1067-B31D-00DD 010662DA, 19960820,618-10644986,wview'
("GET" method)

Response: Appointment deleted. Return to Week View for 8/20/1996

* Submitting the edit appointment form
Request: action="/orgweb/test/orgweb.exe?wview='6B29FC40-CA47-1067-B3 1 D-

00DD010662DA, 19960820'" ("POST" method)
Form has hidden command "updateappt", which will be passed to the
server through the stdin with other arguments set by the input elements in
the form.

Response: Update the current appointment with the attributes set in the form. Return
to calendar week view for 8/20/1996.

* Logout the C&S session
Request: http://torch.lotus.com/orgweb/test/orgweb.exe?logout='6B29FC40-CA47-

1067-B31D-00DD010662DA' ("GET" method)
Response: Logout the current C&S session.

5.4.2 Example on Group Scheduling

In this section, an example of how to make group scheduling requests in the C&S

protocol is presented. In this example, there are three scheduling example, and their

names are "Alpha Tune", "Beta Tune" and "Theta Tune". "Alpha Tune" wants to

schedule a new meeting with other two people, and he is the chairperson of the meeting.

* Create a new meeting on 8/20/1996
Requests: http://torch.lotus.com/orgweb/testlorgweb.exe?newmtg='61F4D460-

EFB4-11CF-9FC9-00805FC24DFE,19960820,wview' ("GET" method)
Response: The create meeting page and form is returned.

* Submitting the create meeting form
Request: action="/orgweb/test/orgweb.exe?wview='61F4D460-EFB4-11CF-9FC9-

00805FC24DFE,19960820'" ("POST" method)
Form has hidden command "createmtg", which will be passed to the
server through the stdin, with other arguments set by the input elements in
the form.

Response: Create a new meeting on current date. Invitation meeting notices sent to
"Beta Tune" and "Theta Tune". Return to Week View for 8/20/1996.

* View meeting details/ edit meeting on 8/20/1996
Request: http://torch.lotus.com/orgweb/testlorgweb.exe?editmtg='61F4D460-

EFB4-11CF-9FC9-00805FC24DFE, 19960820,618-10644986,wview'
("GET" method)

Response: The edit meeting page and form is shown, with current meeting
attributes preset in the form.

After a while "Beta Tune" logs in an OrgWeb C&S session. He notices that there

are new meeting notices in the "mailbox" of his database.

* View meeting notices in mailbox
Request: http://torch.lotus.com/orgweb/test/orgweb.exe?notice='7AADDE50-

EFB7-11CF-9FC9-00805FC24DFE,19960820,wview' ("GET" method)
Response: The meeting notice page is shown. Short descriptions and sender

information of all the meeting notices in the calendar mailbox are
displayed on the page. In this example, an invitation meeting notice from
"Alpha Tune" can be found.

* View the details of a meeting invitation
Request: http://torch.lotus.com/orgweb/test/orgweb.exe?mtgmsg=' 7AADDE50-

EFB7-11CF-9FC9-00805FC24DFE,19960820,9206-17739540, wview'
("GET" method)

Response: The details of the invitation meeting notice is displayed. Information such
as the chairperson of the meeting, meeting time, and people in the meeting
are shown.

* Accepting the meeting invitation
Request: http://torch.lotus.com/orgweb/test/orgweb.exe?noticeproc=' 7AADDE50-

EFB7-11CF-9FC9-00805FC24DFE, 19960820,9206-17739540,acc,
wview' ("GET" method)

Response: A meeting entry is inserted in the calendar database. Meanwhile an
invitation acceptance meeting notice is sent to the chairperson of the
meeting.

* View meeting details as an attendee
Request: http://torch.lotus.com/orgweb/test/orgweb.exe?editmtg='61F4D460-

EFB4-11CF-9FC9-00805FC24DFE, 19960820,681-92621105,wview'
("GET" method)

Response: The edit meeting page and form is shown, with current meeting
attributes preset in the form.

At the same time, "Theta Tune" also logs in an OrgWeb session, and also finds

the meeting invitation from "Alpha Tune". After reading the details of the meeting notice,

he decides not to attend the meeting.

* Declining the meeting invitation
Request: http://torch.lotus.com/orgweb/test/orgweb.exe?noticeproc='901DCE32-

7BEF- 11CF-9FC9-00805FC24DFE, 19960820,9206-17739540,decl,
wview' ("GET" method)

Response: An invitation decline meeting notice is sent to the chairperson of the
meeting. No meeting entry is inserted in the calendar database.

Some time later "Alpha Tune" logs in again, and finds out that "Beta" has sent

him an invitation acceptance notice, while "Theta" has sent him an invitation decline

notice.

* Processing an invitation acceptance
Request: http://torch.lotus.com/orgweb/test/orgweb.exe?noticeproc=' 178756EC-

BA65-11CF-9FC9-00805FC24DFE, 19960820,9206-31714C9E,acc,
wview' ("GET" method)

Response: The invitation acceptance notice is processed and the status of the attendee
who sent the notice is updated in the meeting entry in the chairperson's
database.

Similarly the chairperson can process the invitation decline meeting notice.

Chapter 6 Session Management

I. Introduction

Session management is another important component in the HTTP-based C&S

protocol. Without session management, the protocol cannot really work. In this chapter

the problems of the protocol without session management will be identified, and then the

design and the implementation of session management for the C&S system will be

discussed.

6.1.1 Background for Organizer API

The need for session management is partly driven by the way in which the

Organizer API is used to access the Organizer backend. Through the Organizer API calls,

a user may read and write information in Organizer (.OR3) files or Lotus Notes mail files.

However, before the records in the Organizer files can actually be accessed, the user

needs to initialize an API session with the user's username in his or her mail account and

the associated password [9]. After the initialization an Organizer API handle will be

returned for further interactions within the API session. Moreover, the user also needs to

open the Organizer file to work on, with its filespec and the password to get a file handle

to access the database. After the user has finished accessing the information in the file, he

or she needs to close that file and terminate the API session.

6.1.2 The Need for Session Management

HTTP is known as a "stateless" protocol, because the connection between the

client and the server is terminated after each response from the server [3]. The server

cannot keep state to support consistent behaviors between different connections. As the

protocol is HTTP-based, the user will have problems in using the Organizer API layer to

access the databases due to this "stateless" nature of HTTP. Since information such as the

API handle and Organizer file handle are not kept from one connection to another, in

each connection the user needs to initialize a new API session and open the database file.

When the user finishes accessing the database file, he or she also needs to close the file

and the API session before terminating the HTTP connection.

Two problems arise if the user uses a new API session, opening and closing the

database file in every single request in the C&S protocol. First, since the user's usemrname

and password in the mail account are required in initializing an API session, and since the

Organizer files' filespecs and access passwords are required in opening the database files,

the user needs to supply these parameters in every request in the protocol. This is a very

inefficient way to make requests, and passing the usernames and passwords in every

request is poor from a security point of view.

One way to solve this problem is to form a session handle from the usemrnames and

passwords. An encoding system can be designed to encode all the parameters for the API

initialization and file open into a magic code. This magic code can be decoded to those

parameters on the server side. When the client first makes a request in the protocol and

supplies the usemrnames, passwords and other parameters, these parameters will be

encoded to form the magic code, which is returned to the client. In subsequent requests,

the client can supply the magic code in the requests, and the server can decode it to get

back the usernames, passwords and parameters to make API initializations and file opens.

Though the server is not really keeping any state, this scheme essentially provides

session-like behaviour. However, a magic code in this scheme is insecure because

crackers may be able to decode the magic code to get back the usernames and passwords.

The second problem in using a new API session and opening the database files in

every request is that the performance of the C&S protocol will be severely affected. It is

time-consuming and inefficient to open a new API session and open the database file

again in every request, while a user is likely to access the same database file from one

request to another.

Due to the above problems, a good and secure way to support session

management is certainly needed in the C&S protocol.

6.1.3 Design Goals

Based on the problems pointed out in the previous section, there are several goals

when the session management system is designed for the C&S protocol.

Minimizing API Session and File Operations

Minimizing the number of API session initializations and Organizer file opens

can reduce the overhead involved in accessing the database information, and hence make

the protocol perform better. This requires the protocol to keep state on the server side

between different protocol requests, such as the usernames, passwords and filenames to

open the API session and the Organizer files. Ideally for every protocol session, a user

only needs to initialize one API session and open a particular database file once.

Security

A secure method should be designed to compose the session ID to identify a

particular session in the protocol. Crackers should not be able to "decode" the session ID

back to information such as the usernames and passwords. The authentication of the user

should be dependent on the location of the session login, so that it is impossible to steal a

session ID and use it to access a database file from a client machine other than the one

from which the original session was established.

Multiple sessions and requests simultaneously

Multiple sessions should be allowed in the protocol, so that the same server can

serve multiple clients at the same time. Moreover, for a busy Web server, it is possible

that more than one C&S client will make requests to the server at exactly the same time.

The session management system should be designed so that it can handle multiple

requests simultaneously. By achieving this, the clients have a lower chance of having

their requests refused by the server because the server is busy serving other clients.

6.2 Design Details

6.2.1 Separate Process from CGI Process

As pointed out in the previous section, to meet the design goal of minimizing API

sessions and file operations, state needs to be kept on the server side in the protocol to

store information for the API session and database file. However, in the current

implementation of CGI program at Web servers, a new CGI process is started every time

when the Web client makes an HTTP request, and the process terminates when the HTTP

connection terminates [4]. As a result, if only a CGI process is used to serve the C&S

requests in the protocol, state cannot be kept between different requests in the CGI

process. A separate process on the Web server is necessary, which is always running on

the Web server to keep the state across different C&S requests. Different CGI processes

will communicate with this new separate process for session management and database

access.

Request 2Request With a separate session management process

Figure 6.1: Comparison between systems with and without a separate session management process.
With the separate process, only a single API session and single file open and close are
required for a particular Web client. Information about the API session and database
file is kept in the session management process. Different requests and CGI processes
can use this information in the session management process to access the database.

The difference between a C&S system with and without the new separate session

management process is illustrated in Figure 6.1. Without the separate process, every Web

request starts a new instance of the CGI process, and each instance initializes a new

Request 2Request Without separate session management process

DUu'fmv I Single File

Organizer API session and opens the database file on their own, and closes the API

session and database file after the request has been served. With the separate process,

each instance of the CGI process talks to the new process, where the API session and

database file information is kept. The separate process can use this information to actually

access the database and return the desired database information to each instance of the

CGI process. The API session is only initialized once and the file is only opened once to

get the API session and database file information. In this way, the system with the

separate session management process is more efficient.

Note that there is a client/ server relationship between the session management

process and the CGI process. Each instance of the CGI process acts like a client, who

asks for information about the Organizer database from the session management process,

which acts like a server in this case.

6.2.2 Communication with the CGI Process

As two different processes are now involved in the C&S protocol on the server

side, a communication method between the two processes has to be designed. There are

several mechanisms for interprocess communication (IPC) in Windows NT system [10],

which can be used to develop the communication channel between the CGI process and

the session management process. The implementation details of the IPC on a Windows

NT system will be discussed in the Section 6.3.2.

The design and the formats of the requests and responses between the two

processes are discussed here. Suppose the communication channel has been established

between them, how should the CGI process tell the session management process the

Organizer file operations it wants? And how should the session management process pass

the CGI process the database information requested? For the requests, there are different

types of session management and Organizer file operations the CGI process may want to

perform. They include logging on and logging off a C&S session; create, update and

delete a particular appointment record; generate a list of calendar appointments within a

date range; and generate an edit appointment form with fields preset with the attributes of

an existing appointment. These different requests can have different parameters passed to

the session management process, which actually performs the session or database

operations. Instead of having different ways to make a request in all these cases, the

request method can be simplified by using a standardized and universal request object in

all request cases. The parameters in this standard request object can be categorized into

the following five groups:

* Common parameters: The session ID, remote host of the C&S request (for

authentication) and the request type. Required in all types of requests.

* Login parameters: Username and password for mail account, and filespec and access

password for Organizer database file. Required in a request for session login.

* Appointment/ meeting/ meeting notice unique ID: Required in editing, deleting and

updating a particular appointment/ meeting record in the database file. Also required

in viewing and processing a particular meeting notice record.

* Date Range parameters: Required in generating a calendar view of appointment lists

(e.g. daily view, weekly view and monthly view of appointment listings).

* Appointment parameters: Buffers to store the parameters of an appointment/ meeting

record. Used in creating a new appointment or in updating an existing appointment/

meeting.

* Attendees Information: Buffers to store the attendee names, status, states and optional

information in a meeting. Used in creating or updating an exisitng meeting.

* Notice Processing parameters: Include the meeting notice type as well as the response

to the notice. Used in processing a particular meeting notice.

Not all the parameters in the request object are set in a request. Only some of the

parameters are filled in a particular request, and other parameters can be left blank. This

request object is passed to the session management process in a request through the

communication channel, and the session management process can expect the same

standard object to receive every time. This simplifies the communication between the two

parties.

After the session management process has performed the session or

database operations, a response will be passed to the CGI process. Again, in order to

simplify the communication, the response is standardized. At the beginning of every

response, there is a success/ error code. It is simply a number indicating whether the

operation is successful or not. If it is unsuccessful, the number also indicates what the

error is. For many request cases, the response just consists of this success/ error code. For

requests of a calendar view with an appointment listing or requests of an edit appointment

form with fields preset with attributes of an existing appointment, a stream of strings for

an HTML document section will follow that success/ error code in the response, if the

Type of Request
session logon

session logout
create appointment

Parameters Required
session ID, remote host, login
parameters
session ID, remote host
session ID, remote host,
appointment parameters

Response Expected
success/ error code

success/ error code
success/ error code

create group session ID, remote host, success/ error code
meeting appointment parameters, attendee

information
delete appointment session ID, remote host, success/ error code

appointment ID
update appointment session ID, remote host, success/ error code

appointment ID
list calendar session ID, remote host, date success/ error code + stream
appointments range information of strings for an HTML

section to show appointment
lists

generate edit session ID, remote host, success/ error code + stream
appointment form appointment ID of strings for an HTML

section to show an edit
appointment form

generate edit group session ID, remote host, meeting success/ error code + stream
meeting form ID of strings for an HTML

section to show an edit
meeting form (w/ VBScripts
for the controls in the form)

list meeting notices session ID, remote host success/ error code + stream
in mailbox of strings for an HTML

section to show a list of
unprocessed meeting notices
in the mailbox

list the details of a session ID, remote host, meeting success/ error code + stream
meeting notice notice ID of strings for an HTML

section to show the details of
the meeting notice and the
links to process it

process a meeting session ID, remote host, meeting success/ error code
notice notice ID, notice processing

parameters
Table 6.1 List of requests, and the corresponding request parameters required and responses

expected between the communication between the CGI process and the session
management process

code indicates the operation is successful. So in all responses, the CGI process expects

that there must be a success/ error code at the beginning of a response. Depending on the

request type, there may be a stream of strings following this code. The CGI process can

recognize the end of the stream of strings has been reached if it gets an end-of-response

string or an error string.

Table 6.1 shows a list of different requests, the request parameters required in

them and the type of responses expected.

6.2.3 Session Management and Request Authentication

The session management process keeps a session table. It keeps the session

information for different users on the client side. A number of fields can be found in this

session table:

* Session ID: For session authentication.

* Remote host of the client at login time: For session authentication. Avoid a cracker

from stealing a session ID and use it from a different client machine to access the

same Organizer database.

* User name of the session: For display in responses.

* Organizer API handle: For accessing the Organizer databases through the Organizer

API layer.

* Organizer database handle: For accessing a particular Organizer database file.

* Last active time of the session: For removing inactive session after a certain time-out

period.

In a request for session login, a new session entry will be created in the session

table, except when the maximum number of session entries of the table has been reached.

In subsequent requests, all the fields in the session entry will stay constant, except that the

last active time of the session is updated in every request. Moreover, a last active time for

all the sessions in the table is also kept to facilitate automatic shutdown of the session

manager. This is updated whenever there is an operation performed in a session or

whenever a session entry is removed from the table.

With the Organizer API handle and Organizer database handle kept in the session

table, the user only needs to obtain the handles once in a C&S session at login time, and

he or she can use these handles to access the database throughout the C&S session. This

helps to achieve the design goal of the session management system to minimize the slow

API session and file operations.

Moreover, the session ID and the remote host name of the client machine at login

time can promote security in the protocol. As described in Chapter 3, the session ID used

in the protocol is a computer-generated Universal Unique ID (UUID) in the Windows NT

system, which is independent of the usernames and passwords the user supplies. In every

C&S request (except at login times), the client must supply the session ID, which is

matched against the session IDs in the session entries in this session table. If the session

ID does not exist in the table, session authentication will fail. After this session ID

checking, the remote host name of the requests will also be checked against the remote

host name of the client machine when he or she first logged in to the current session. This

makes sure that the client is making requests from the same client machine throughout

the C&S session, avoiding a cracker from stealing a session ID and using it to access a

database from another client machine.

It is common that a C&S client forget to logout a session after he or she has

finished using the C&S service. This leads to the session entry being kept in the session

table forever. Thus the last active time for a session entry is kept in the session table, and

the session management process checks these times at regular intervals. If the process

finds out that a session has been inactive for a period longer than a certain "time-out"

period, it can delete that session entry from the session table, and close the associated API

and file handles. This avoids the session table being filled with inactive sessions.

Moreover, this protects the privacy of the user's calendar information even when the user

forgets to login out a C&S session.

6.2.4 Startup and Shutdown of Session Management Process

The session management process can be manually started up and shut down on

the Web server, but this task can be performed more intelligently and efficiently. The

session management process can be designed to establish communication channels with

the CGI process right after the process is started (This can be achieved by the named

pipes mechanism in Windows NT system. See Section 6.3.2 for more details). The

session management process will listen to these channels and wait for CGI processes to

connect.

The startup of the session management process may be done by the CGI process.

When a client tries to login a C&S session, the CGI process first tries to look for a

communication channel to connect. If there is no channel available, it means that the

session management process has not been started. Therefore, the CGI process will start

the session manager, wait for the communication channels to be established and connect

to it to create a session. If a communication channel is available when the CGI process

tries to connect one, that means that the session management process has been started, so

the CGI process can simply connect to one of the communication channels and continue

the session or database operations. For non-login requests, the session manager is

supposed to be running (since it should have been started in the login request) and the

above checking procedure is not necessary. If communication channels are not available

in non-login cases, either all the channels have been occupied or there is an error in the

session management process. The flow chart in Figure 6.2 shows how the CGI process

determines when to start the session management process.

The session manager also checks whether there is no active session in the session

table at regular intervals. If it finds out that there is no active session in the table, and the

amount of time from the last active time of the session table has exceeded a certain "time-

out" period, the session management process will automatically shut down itself. Note

that the last active time of the session table is actually the time when the last session entry

is removed from the session table. That means if the session manager finds out that there

are no clients logging in to a C&S session for a certain amount of time, it could shut itself

down. When a client logs in to a session later after the shutdown, the session manager

will be started up once again as described above.

Figure 6.2: Flow chart to determine whether to start session management process in CGI
process

This intelligent startup and shutdown of the session manager saves the Web server

administrator some efforts in managing the session manager process, as the administrator

does not need to check when the session manager should be started and when it should be

shut down. All the operations are done automatically.

6.3 Implementation Details

The session manager is multi-threaded [11][12], so more than one instance of the

CGI process can be served at any time. As a result, even when there are several clients

making requests simultaneously, and several instances of the CGI process have been

invoked to talk to the session manager, the session manager can still serve the different

instances of the CGI process independently through different threads. In the current

implementation, there is an instance of the communication channel between the CGI

process and the session manager within each thread. When the session manager is started,

a number of threads will be started at once, and thus the same number of communication

channels are established. These channels will wait for the CGI process instances to

connect to them all the time.Once a CGI process instance has connected to a channel,

communication between the two processes starts.

Next the communication channels between the CGI process and the session

manager need to be constructed. There are three popular mechanisms for interprocess

communication in Windows NT: mailslot, memory mapped files and named pipes

[10][12]. Mailslots are used in communication among several processes, which are not

suitable in our case. In a memory mapped file, a file of a specified name can map itself

into a process's address space, and it is possible for multiple processes to access the same

mapped file by name, and in that way share data with one another [10]. It is also possible

to share memory, without using an actual file on the hard drive, by using the system's

paging file. The communication channel can be implemented with a memory mapped file,

with the requests and responses made on the shared memory of the mapped file. As the

session management process has been multithreaded, the address space of the mapped file

has to be divided into a number of sections. Each section of the memory is allocated to

one of the process threads for communication between the process thread and the CGI

process.

Another scheme is to use a named pipe [12]. A process can set up a named pipe

and listen for connections to it. Multiple instances of the same named pipe can be created

to allow different processes to connect to the named pipe independently. Therefore, the

communication channel can be implemented by simply setting up different named pipe

instances in each of the session management process threads. Different instances of the

CGI process can then connect to different instances of the named pipe for communication

with the session manager.

The advantage of using the memory mapped file is that it is faster than named

pipes [10]. No actual connections are made between the processes, and operations are

simply made on shared memory space. The disadvantage is that the size of the memory

space assigned for a session manger process thread is limited. It is possible that there is

not enough memory in the assigned area to accommodate a huge response, unless some

manipulations on the shared memory have been made to allow passing a response in

several pieces. On the other hand, a named pipe has no limitations on the size of the

requests and responses. Once a connection has been set up between the processes,

requests and responses can be made within that connection in a very straightforward

manner. As a result, the named pipes scheme is used to implement the communication

channel between the session management process and the CGI process.

Chapter 7 User Interface Enhancement

7.1 Introduction

7.1.1 User Interface Problems in HTML

Traditionally, C&S applications have very rich and interactive user interface

elements, allowing users to access the C&S functionality easily and efficiently.

Nevertheless, moving these rich UI elements to Web pages can be a difficult task.

Standard HTML only supports simple input controls, and Web pages created in HTML

are usually pretty dull and static. In HTML 2.0, only the IMG tag is defined for inserting

image media into HTML documents, but there is no support for other richer media [13].

The mappings of typical Windows UI elements such as tabs, list boxes and sliders are

often impossible in HTML. This limitation in HTML severely affects the uses of a C&S

application on the internet.

Specific to the C&S model used in the OrgWeb system, several features are

particularly difficult to implement in simple HTML with reasonably good performance.

One of them is the free time display for attendees in scheduling a group meeting. As seen

in Section 4.2, accessing the free time information for an attendee when the attendee is

inserted into the attendee list requires an extra request to the server. The server responds

to the client with the free time information, and the client side should display the

information in the browser. With static HTML, the request and response means a new

Web page created by the server and loaded into the browser, with the free time

information display updated but all other HTML content and input values on the previous

page staying the same. When the scheduling user adds another user into the attendee list,

or moves the tentative meeting time to a time beyond the range of the current free time

display, this process repeats.

Two inefficiency problems arise in this kind of free time display process with

static HTML. First, in every update of the free time display, a new HTML response needs

to be generated by the OrgWeb server. Yet this new response is only different from the

previous response in terms of the free time display, and there are no changes in other

HTML contents or form input values. This is fairly inefficient, and the frequent

generations of the HTML responses substantially adds to the workload of the server.

Secondly, since there are no changes in the form input values from the previous response

to the new one, the client needs to pass all the form input values from the previous page

to the server when the free time display is updated, so that the server can preserve and

display these values in the new response. This complicates the protocol definition as

information unrelated to the free time search needs to be supplied in the request

commands.

Apart from the problems in free time display, the lack of interactivity among the

input controls in HTML also makes the UI design difficult for internet C&S applications.

Form input controls in an HTML page are isolated from each other. Complicated user

actions such as editing the attendee list may be hard to implement on a static HTML

form. Imagine how difficult it is to provide functionality such as adding and removing

attendees in the attendee list, or setting and viewing the attendee attributes (e.g. Status

and Optional/ Required information), with just the standard HTML input controls such as

text edit boxes, SELECT controls or RADIO controls. With standard HTML controls,

such user actions will require more protocol requests to continously update the browser

view, making the protocol more complicated and reducing the performance of the C&S

system2.

Unless the user interface of the C&S responses are enhanced and made more

interactive, the HTTP-based C&S protocol definition cannot be kept simple, and the

protocol cannot be used efficiently.

7.1.2 Solution: Objects and Scripting in HTML

In view of the problems caused by the static properties of HTML, developers have

been experimenting with ideas to activate Web pages. The most common solutions are

inserting objects and inline scripting in HTML pages.

Objects are usually pre-compiled executables that can be run within an HTML

page inside the browsers. These objects are distinct from HTML, and are downloaded

from the server when an HTML page is downloaded. Special browsers or software may

be required on the client side to run these executables in the browsers [15][16][17].

By inserting objects in HTML small applications can be run inside the browsers,

and they can perform functionality that is beyond the limits of HTML. For example, we

can develop a free time viewer object that can be placed in an HTML page, in which the

object is capable of accepting names of attendees, making OrgWeb requests to fetch

2 The demo of the Web Edition of Cambell Services' ONTIME uses simple HTML pages and forms to do internet

scheduling [14]. When tested in a meeting creation with two attendees, more than 10 separate HTTP requests are made
in the demo.

the free time information for the attendees and displaying them to the Web clients.

Common object architectures in the marketplace now includes Netscape's Navigator

plug-ins, Sun Microsystem's Java applets and Microsoft's ActiveX controls. The World

Wide Web Consortium is also proposing a new HTML tag "OBJECT" to extend HTML

to support object insertions [13].

Inline scripting allows internet application developers to embed scripts directly in

an HTML page, using the scripts to automate and manipulate the various objects and

controls on the page [18][19]. These embedded scripts can also recognize and respond to

user events such as mouse clicks and keyboard inputs, and can read and set the values or

properties of the objects or controls on the page. Note that these scripts are interpreted by

runtime engines of the browsers on the client side after they are downloaded with the

HTML page, and they are usually platform independent and portable. With these inline

scripts, the objects and the form input controls in HTML pages can now respond to user

actions by running scripts. Communications and interactions among different objects and

input controls are also now possible.

Currently the most popular scripting languages for internet application

development are Sun Microsystem's JavaScript and Microsoft's Visual Basic Script

(VBScript).

7.2 Design Considerations

7.2.1 Object Type

Although object insertion in HTML pages can solve the UI problems in HTML,

on the internet there is currently no standard architecture for building and using objects in

HTML. A type of object may be supported in a certain Web browser, but may not be

supported in another one. That means that a Web page carrying an object may not be

universally usable for all Web clients. Also different object types have different building

processes, properties and procedures in using them. As a result, when objects are

developed for the OrgWeb C&S system, a number of issues should be considered.

Browser Support

As pointed out in Section 3.1, one of the design goals in the C&S protocol is to

make the protocol ready and easy to use in the existing environment. According to

various statistics on Web browser usage, currently more than 90% of internet users are

using Netscape's Navigator or Microsoft's Internet Explorer [20][21]. Thus the internet

C&S objects should be at least supported by these two browsers to meet the design goal.

Those most popular object types all seem to satisfy this requirement. Internet

Explorer 3.0 supports Java applets, Navigator plug-ins and ActiveX controls. Navigator

2.0 supports Java applets and Navigator plug-ins directly, and supports ActiveX controls

indirectly with a plug-in3 which can view ActiveX controls.

3 ActiveX plugin developed by NCompass Laboratory

Platform Support

In a client/ server application such as the internet C&S system, ideally there

should be no constraints on which platform to use on both the client side and the server

side in the system.

None of the most popular object types satisfy this requirement. Currently Java

applets are the best in this area, and it is supported by Netscape's Navigator on a number

of major platforms4. Navigator plug-ins are specific to the platform it has been developed

for. Different versions of plug-in should be installed on different platforms, and the user

on the client side must specify the perform he/ she is using before the plug-in is installed.

Since an ActiveX control is based on the former OLE control technologies, it is only

supported on Windows-based platforms.

Development Difficulty

Another consideration is the difficulty involved in developing an object.

For Java applets, they are small applications coded in a new language, Java, and

their development requires new tools [16]. As a result, considerable amount of time and

effort may be needed in building applets for C&S applications, since software reuse is

hardly possible as most of the UI elements in existing C&S system were not developed in

Java.

Navigator plug-ins can be general application modules (in the format of .DLL

files) written in C or C++ [17], and ActiveX controls are similar to OLE controls which

can be built in C++ [15]. Both types of objects can be developed using existing

4 Java applets are supported on Sun Solaris, Sun OS, SGI IRIX, OSF/I, HP-UX, Macintosh, Unix (IBM AIX, BSDI),
Windows 3.1, Windows NT and Windows 95 in Navigator 3.0 (Beta 6) [22].

development tools, making it easier to leverage existing code. Code that has already been

written for the user interface of existing non-internet C&S systems may be reused to

build plug-ins and ActiveX controls in the OrgWeb system, saving lots of time and

development effort.

Plug-ins are installed on a client's machine to display objects with application

specific MIME types [17]. Different objects may require different plug-ins. For example,

in the C&S system if the free time viewer and the attendee list box are desired, two

different plug-ins and two different MIME-type objects need to be developed. When

more different types of UI elements are wanted, more plug-ins need to be built and

installed. Otherwise we may need to build a single plug-in that is powerful enough to

handle all C&S-related MIME-types, but that may be a difficult task. On the other hand,

all ActiveX controls have a common standard - they are all based on the former OLE

control technologies, and they are all .OCX files. Different UI elements can be made into

different types of OCX's, with the common ActiveX architecture and interfaces to be

used in a browser.

Ease of Use

The ease of using the C&S objects in browsers is also an important factor in

deciding which type of objects should be built for the OrgWeb system.

Using a Java applet involves a special HTML tag to reference the applet. When a

Java-enabled browser loads a Web page with that applet, the browser downloads the

applet from the Web server and executes it on the client's local system [16]. No special

installation procedure is required for the applets, but the applets are downloaded every

time when the Web page is loaded and the applets are not saved on the client machine s.

Navigator plug-ins work by installing a dynamic link library (DLL) into a

directory on the client machine, which can display and handle application specific MIME

objects (e.g. in the internet C&S system, an object with a new MIME type, which can be

displayed by a new plug-in, can be developed for viewing free time information) [17].

When an object whose MIME type is not familiar is encountered by the browser, special

Web pages will be returned, on which there is information and links to install the plug-in

to handle that MIME object (in "assisted installation" in Netscape Navigator 2.0). Once

the plug-in gets installed, all Web pages containing objects with that new MIME types

can be displayed without further downloads of the plug-in. Note that the end-users are

required to do the plug-in installation explicitly, and in the current implementation of

Netscape Navigator, after the installation the users need to quit and restart the browser to

use the plug-in.

Installation is also needed for ActiveX controls, but from a user's perspective, the

process is fairly transparent. When a page with an ActiveX control is loaded, the browser

(or the plug-in to run the ActiveX control) first checks the client's local system to see if

the control is already available. If so, the control will be fetched from the local system

and displayed within the Web page. If not, the control will be downloaded from the Web

server, and will be automatically installed on the client's machine [15]. Since the

s Major Web browsers usually cache HTML page elements. In that case, Java applets are not necessarily downloaded
from the server whenever it is used, if the applets are in the cache and have not been flushed from the cache. However
this is more "volatile" when compared to plug-ins and ActiveX controls which are installed permanently on the local
machine unless the user uninstalls them explicitly.

installation is automatic, end-users need do nothing more than just download the Web

page. Moreover, as the ActiveX controls are saved on the client machine after the first

download, subsequent uses of the controls need no further component downloads and is

faster.

Conclusion

Considering all the above issues, ActiveX controls seem to be the most suitable

type of objects to develop for the OrgWeb C&S system. Java applets require development

of the objects from scratch in a new language, and downloading the applets every time

when Web pages are loaded affects the overall performance. Navigator's plug-ins involve

an explicit installation process on the client side, which may interrupt the C&S service for

first-time users. Moreover, though software reuse is possible in developing plug-ins, new

MIME-type objects need to be designed for existing UI elements. For ActiveX controls,

the restriction that they can only be developed and used on Windows-based platforms is a

major problem from a client/ server design's point of view. However, the possibility of

leveraging existing code for UI elements and its one-time automatic installation process

are attractive to object development and usage. Later it will be shown that converting a

UI element in an existing C&S system into an ActiveX control may be easier than

creating a new MIME object for the element and the plug-in to display it (Section 7.2.2).

7.2.2 Building the Components

In building objects for UI elements in the OrgWeb C&S system, ActiveX controls

which can perform functionality similar to the UI elements in Lotus Organizer are

developed. Like many other Windows-based applications, the UI elements in Organizer

are implemented as Windows controls, and now they need to be converted into ActiveX

controls.

There are two approaches to do the conversion. The first approach is to build a

completely new ActiveX control, and then move all the functionality in the existing

Windows control to the new control. Yet this is very time-consuming, especially when

the UI elements in Organizer are fairly complex.

The other approach is to reuse the existing Windows control in Organizer, and an

ActiveX control "wrapper" is added to the Windows control. Important parameters in the

Windows control are exposed as OLE "properties" in the control. Moreover, Windows

user messages (WM_COMMANDs) sent to the Windows control for different operations

on the control are mapped to different "methods" of the ActiveX control. Furthermore,

the notification messages sent from the Windows control to its parent window are

mapped as "events" of the ActiveX control. By adding this ActiveX control "wrapper",

existing code of the Windows controls in Organizer can be easily leveraged, and the

Windows controls can be converted into ActiveX controls. This "wrapper" approach is

illustrated in Figure 7.1, and the details of its implementation will be presented in Section

7.3.1.

Figure 7.1: ActiveX Control "Wrapper" for Windows control. The "wrapper" appears as a
Windows parent to the Windows control, but to outsiders it is an OLE control.

Since the ActiveX controls created in the "wrapper" approach are using the

existing Windows controls in Organizer, those DLLs which define the Windows control

classes and their functionality need to be present when the ActiveX controls are used in a

browser on the client machine. Thus those DLLs should be downloaded at the same time

when the ActiveX components are downloaded [23].

7.2.3 Use of Scripts

As mentioned in Section 7.1.2, scripts in HTML pages can make the Web pages

in the C&S system more interactive. Also scripts are required to manipulate the ActiveX

controls inserted in the HTML pages, so that the OLE methods of the OCX can be used,

and the browser can receive and respond to the OLE events from the controls.

The scripts are usually platform independent, and are embedded within HTML

pages. The scripts are interpreted by the browsers after they are downloaded with the

HTML documents [18][19]. As a result, the scripts can be generated on the fly by the

Web server, which can perform functions specific to a particular request.

OLE control wrapper: Parent winodw to
Windows control, OLE control to outsiders

Windows Control Notificatiom
as a child window

S of the wrapper ne -ss -
- - - Windows

- econtrol to
S*v•ndows messages to Parent

Windows contrl Window

OCX Events0)
O-

OCX Methods ("

O-

In the OrgWeb system, the scripts are used in three main areas:

1. Initializing ActiveX Controls: Before a user can use the free time display and the

attendee list edit ActiveX controls to create or edit a group meeting, the controls need

to be initialized with the chairperson and the attendee list information. This

information varies from one request to another (in each different OrgWeb session the

chairperson is different, and in each different meeting the attendee list is different),

so this data must be generated within the HTML page on the fly when the server is

responding to the client. In the current proposed implementation of the OBJECT tag

which can be used to insert ActiveX controls in HTML, the tag parameters (the

PARAM attribute) can only initialize the exposed properties of the controls [13]. This

may force the control developers to expose some internal parameters of the controls

in order to initialize them with the OBJECT tag. However, with the use of scripts the

Web server can generate initialization scripts on the fly to initialize the ActiveX

controls by accessing the controls' OLE methods. This can avoid undesirable

exposures of some of the internal parameters in the controls.

2. Providing interactivity among controls: The scripts can respond to user actions, and

events generated from the ActiveX controls or the form input controls. These events

can trigger routines in the scripts which can perform operations on other controls [24].

As a result, the controls on the HTML page can communicate with each other, giving

a more interactive user interface to the HTML page.

3. Collecting information from ActiveX controls for making requests: When an HTML

form is submitted to make an OrgWeb request, the scripts can call the methods of the

ActiveX controls to access the current states of the control, and format this state

information into form input values. In this manner, the data which is set within the

ActiveX controls by the user can be passed to the server to make C&S requests.

As for which scripting language to use, both JavaScripts and VBScripts can be

used to manipulate ActiveX controls, and both can perform the above functions required

in the OrgWeb system. In the current implementation of the OrgWeb system, VBScript

has been used.

7.3 Implementation

7.3.1 Building the ActiveX Components

As seen in Section 7.2.2, we can quickly convert an existing Windows control of

an Organizer UI element into an ActiveX control that can be used in HTML pages, by

wrapping the Windows control with an ActiveX "wrapper" layer. In this section the

procedures on how to wrap the Windows controls are discussed.

Creating the Wrapper Layer

The wrapper layer is actually an ActiveX control. In Microsoft Foundation Class

(MFC), an ActiveX control object belongs to the class COleControlP, which is a subclass

of CWnd, the base class for window classes [25]. That means that an ActiveX control is

also a window by itself.

To include an existing Windows control in the "wrapper" ActiveX control, a new

windows class is derived from the windows class of the Windows control. A window

6 ActiveX control is formerly named OLE control.

object is created with this new windows class, and the object is a child window of the

wrapper ActiveX control. Also the child window is made to be a protected member of the

wrapper control so that the wrapper can access its functions. Suppose the wrapper

ActiveX control class is CWrapper, and the new windows class is CNewAppWindow, this

can be done as follows:

class CWrapper : public COleControl

{
protected:

CNewAppWindow* ChildWindow;}

In the CNewApp Window class, there should be a function to create a window

object of the window class, and make the new object be a child window of the window

calling the function. Here is an example:

class CNewAppWindow : public CWnd

{
public:

void CNewWndCreate(CWnd* Parent, UINT uiID, CRect r)

{
Create("NewWindow", "New Window Control",

WS_CHILDI WS_VISIBLE, r, Parent, uiID);

}

NewWindow is the windows class of the old Windows control. The wrapper

control can then call this function to create a child window for itself:

void CWrapper: :OnCreate (LPCREATESTRUCT lpCreateStruct){
CRect r;

ChildWindow->CNewWndCreate(this, CW_ ID, r)

where CWID is the ID for the child window.

In this way, a wrapper layer can by created around the old Windows control, using

the control as a child window control. To outsiders, the wrapper layer is an ActiveX

control which can be inserted in HTML pages. To the old Windows control the wrapper

layer is its parent window, which can accept the notification messages it sends.

Mapping the Methods

An ActiveX control container uses the methods provided by the control to operate

on the control and change its states. In wrapping a Windows control into an OCX, each

method in the ActiveX wrapper layer is mapped to a message sent to the wrapped child

Windows control. Continuing with the above example, suppose there is a method call

reset, which resets the state within the wrapped Windows control:

void CWrapper: :Reset ()
{

return(ChildWindow->SendMessage(CWMRESET,
(WPARAM) 0, (LPARAM) 0);

CWMRESET is the message that is sent to the wrapped Windows control to tell

the control to reset its states. Other methods can be mapped in a similar manner to

provide access to operate on the Windows control.

Mapping the Events

ActiveX controls use events to notify a container that something has happened to

a control. Commonly an event is caused by some user interaction, such as mouse input

within the control's client area. When such an action occurs, the control alerts the

container by firing an event [25]. Using the ActiveX control in a browser, the event is

received by the browser, which is the container of the OCX in this case.

Windows controls have analogous behaviors. They can notify their parent

Windows that something has happened to the control by sending a "notification"

Windows message to their parent Windows. In the wrapper ActiveX layer, these

"notification" Windows messages are mapped to OCX events. Suppose in the wrapped

Windows control there is a notification message called StateChanged, which notifies the

parent that a state change has occurred within the control. In the message map of the

wrapper ActiveX layer, there should be a mapping for the notification windows message

to an OCX event:

BEGINMESSAGEMAP(CWrapper, COleControl)

ONCONTROL(CWN STATECHANGED, CW ID, FireStateChanged)

END MESSAGE MAP ()

where CWNSTATECHANGED is the ID for the notification message sent to the

wrapper layer, and FireStateChanged is the function to fire off the corresponding OCX

event.

By following the above procedures to create an ActiveX wrapper for an existing

Windows control, the Windows control can be turned into an ActiveX control that can be

used in internet scheduling.

7.3.2 Applications in Internet Scheduling

In the OrgWeb C&S system, three different ActiveX controls have been created to

facilitate more efficient internet scheduling user interface, and to experiment with the idea

100

of using ActiveX controls for internet scheduling. They are the free time viewer control,

the attendee list box control and the date tracker control.

Free Time Viewer Control

The free time viewer control allows the scheduling user to see the free time of

other attendees, and to choose a free time slot that is convenient for everyone. As a

meeting chairperson adds a new invitee into the attendee list of a meeting, the name of

the attendee is displayed in a vertical time bar in the viewer. The information about the

attendee's status and free/ busy time is also shown in the time bar. Status is represented

by various bitmap images, and busy time periods are displayed graphically in rectangular

blocks. A time scale is shown beside the vertical time columns, and on the time scale

there is a time tracker to allow users to set the tentative meeting start time and duration.

Attendee status

Attendee time
bars with frel
busy time
display

Figure 7.2: The Free Time Viewer control

L

There is a conflict indicator between the time bars and the time scale. Along the

indicator there is a meeting time bar, which represents the meeting duration in the

indicator. This meeting time bar changes in position and in length as the scheduling user

changes the meeting time and duration. The meeting time bar indicates whether or not

there is a conflict between the tentative meeting time and the schedules of the attendees,

by means of showing different colors in the time bar. Thus the scheduling user can easily

avoid schedule conflicts and choose the best time for all attendees. Figure 7.2 shows the

free time viewer control.

In accessing the free time information for the attendees as they are inserted in the

free time viewer, requests have to be made to the OrgWeb server which gets the

information from the attendees' databases. To avoid loading a new Web page with all

things being the same as the previous page but the updated free time display, the free time

viewer OCX is designed to be able to make OrgWeb free time search requests within the

OCX. When attendees are inserted into the control and the free time viewer needs to get

updated, the OCX will make an internet connection to the OrgWeb server, making HTTP

requests for free time search for the attendees, getting the HTTP responses and parsing

the responses into busy time blocks in the free time viewer. The internet connections and

HTTP calls are made through the Internet Extension of Windows API (WinInet API),

which allows Windows applications to make transparent internet access without a

browser middleman [26]. With this function, no additional HTML pages need to be

downloaded when the free time viewer gets updated, making the process of choosing a

meeting time more efficient.

102

Through WinInet API calls, the free time OCX makes an OrgWeb request 7 to the

OrgWeb server, asking for the busy time periods for one or more users within a period of

time. On the server side, the request is no difference from a normal OrgWeb request made

from a Web browser, and the server returns the free/ busy time information in an HTML

document. The OCX then parses the HTML response into busy time period data, which

are inserted in the free time viewer. Note that before the internet connection between the

OCX and the OrgWeb server can be established, the OCX needs to know the URL of the

server, and possibly also proxy server it should talk to first. Thus the OCX should be

initialized with this information before it is used. This can be done by the inline scripts

embedded in the HTML response. If the client side is using a proxy server to access the

internet, the client should get the name of the proxy server from the registry, and specify

it in the OCX through an OCX property before the OCX is actually used.

To further improve the performance of the free time search service, the way in

which the OrgWeb free time search requests in the OCX are made is carefully designed.

There are two time ranges involved in making the free time search: the "search" range

and the "safe" range. The "search" range starts at 96 hours before the tentative meeting

start time, and ends at 96 hours after the tentative meeting end time. The "safe" range

starts at 72 hours before the tentative start time, and ends 72 hours after the end time.

When a scheduling user has set a tentative meeting time and starts adding people into the

attendee list, free time information will be searched within the "search" range. Then the

user can start looking for a meeting time that is good for everyone with the free time

103

7 The "busytime" command

information. If, unfortunately, the user cannot find a good time within the "safe" range,

and moves the tentative meeting time to a time outside the "safe" range, a new free time

search will be performed within the "search" range of the new tentative time8. As the

scheduling user is likely to find a convenient time for all attendees within a period not too

far away (in this case within 72 hours) from the originally tentative time, usually a single

free time search at the beginning gives sufficient free time information to the user in

scheduling the meeting. By this scheme, the number of OrgWeb requests is minimized,

promoting the performance and efficiency of the free time search service.

Attendee List Box Control

The attendee list box control is used to show an updated list of attendees in a

meeting when the scheduling user is in the process of editing the attendee list. The

underlying Windows control is just a simple list box with string entries.

When the scheduling user changes the attendee selection in the list box, an event

is fired off from the OCX to the OCX container. The OLE container in turn can use a

method in the OCX to get the updated selected attendee in the control. When the control

is used in a browser, this enables the browser to update the display of the attendee

attributes for the selected attendee by means of inline HTML scripts. Details on how to

achieve this is discussed in Section 7.3.3.

An example of an attendee list box is shown in Figure 7.3.

* The "search" range is wider than the "safe" range because the scheduling user would like to view the free time in
periods before and after the tentative meeting time.

104

Figure 7.3: The Attendee List Box control

Date Tracker Control

The date tracker control is a "wrapper" type ActiveX control derived from the

date tracker Windows control in Lotus Organizer. It allows a scheduling user to choose a

date for a meeting easily by mouse-clicking a date from a monthly calendar control,

which is a drop down from a combo box. Alternatively the user can type in the date in the

text box of the combo box. The date tracker control will make sure the date typed in is in

correct format and is a valid date. If the date typed in is not valid, the date of the control

will be reset to the date before the new date is entered.

Figure 7.4 shows the date tracker control.

17. 29196 17129196
4 July 1996
Su Mo Tu We Th Fr Sa
30 1 2 3 4 5 6
7 8 9 10 11 12 13

14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 30 31 1 2 3

Figure 7.4: The Date Tracker control, with the monthly calendar
hidden (Left) and shown (Right)

105

Alpha TuneIOrganizer
Beta Tune/Organizer

Tht Tu n- Sganize-

drop down

II

Ir

I --I

I

I

7.3.3 HTML Scripts and Using the Components

The C&S ActiveX controls in the HTML pages do not work by themselves.

Scripts embedded in the HTML documents are required to manipulate the controls to

perform useful functionality. Figure 7.5 shows a snap shot of an "Edit meeting" page in

the OrgWeb system, which summarizes how the scripts are used in manipulating the

C&S ActiveX controls, and how the controls interact with each other.

Oi~~tb- 61Wctirg Mumut iritmctExpuii OE3
Fle Ecit 'view Qo FevoAites Help

Back Fonrwd Stop Refrath Ho-nq Searc, Favorkec PRirt Font

{Mrim.*R Ihtip //pyn In hj rnm/S rip dnigmb hPFI/nrtvr h Fu"ilrrtgi ='h7i9Rflff-e9R--11rf-ciiri-nunlfrLrf:19viw7?5 1 j sk

box and controls to show attendee
attributes and to addf remove
attendees

tInteractivity between date
r~xtmen~vi~itr

I

Juuawanon SCipIs
initialize the attendee list
box, the free time viewer
and the date tracker

ie;

rartlime:

T-: • Interactivity bet
nation: form meetmn iniio33a - inputs and time

a tracker in free tii

;t for A'v ni

legories: Ienis

Warn ff oo-flict
Fcacilih
cOX6ide6i.1

J::)date

I
V

Form submission scripts
collect attendee
information and submit
them in HTML fo rm

Figure 7.5: Use of scripts in the "Edit Meeting Page"

106

een
e

-·-···, ~, ·· , ····· _
I

r

First of all, the scripts are responsible for initializing the attendee list, attendee list

box and the free time viewer. They also set the meeting date in the date tracker.

The scripts also facilitate interactivity among the various controls in the HTML

page. Changes made in the form date and time input controls are updated in the free time

viewer and its time tracker, and changes made in the free time viewer are also reflected in

the form date time input controls. The attendee list box interacts with the attendee

attributes controls, the attendee text box as well as the attendee "Add" and "Remove"

buttons. For example, in adding an attendee into the list box by clicking the "Add"

button, the scripts look like this:

" AttAddBtn is the id for the "Add" button
% Attedit is the id for the attendee edit text box
' AttList is the id for the attendee list box
' freetime is the id for the free time viewer
Sub AttAddBtn _OnClick()

' Check attendee edit text box is not empty
If Len(AttEdit.Value) > 0 then

' Adding the attendee into the attendee list box
If AttList.AddItem(AttEdit.Value) <> -1 then

' Adding person in free time viewer and set the status
freetime.AddPerson Att (NumAtt, 0), AttEdit.Value
freetime.SetStatus Att(NumAtt, 0), 1

End If
End If

End Sub

When the "Add" button is clicked, the subroutine AttAddBtn_OnClick in the scripts is

invoked, adding the attendee into the attendee list box and the free time viewer. Similar

routines can be embedded in the HTML documents to make the controls on the page

interactive.

Finally, the scripts are responsible for collecting data in the ActiveX controls,

formatting them and placing them in the form, so the data in the controls can be

107

submitted to the OrgWeb server through the form submission. For example, there is an

input control mtgdate in the "Edit Meeting" form, which takes the date set in the date

tracker as the meeting date. The scripts to perform the fetching of data from date tracker

and submitting them in a form can be found in the subroutine SubmitBtn _OnClick:

Sub SubmitBtn _OnClick()
Dim DateStr
Dim DelimPosl
Dim DelimPos2
Dim Yr
Dim Mn
Dim Dy

' Getting the date text from the date tracker
DateStr = form.datetrack.GetText
I Extracting the Year, month and day of the date string
DelimPosl = InStr(DateStr, "/")
Mn = Left(DateStr, DelimPosl - 1)
DelimPos2 = InStr(DelimPosl + 1, DateStr, "/")
Dy = Mid(DateStr, DelimPosl + 1, DelimPos2 - DelimPosl - 1)
Yr = "19" & Right(DateStr, Len(DateStr) - DelimPos2)
' Setting the date value in the form
form.mtgdate.Value = Yr & Mn & Dy

End Sub

SubmitBtnOnClick is initiated by clicking the "Submit" button in the form. It takes the
date string from the date tracker, formats it into a date parameter in the OrgWeb protocol,
and puts it in the form input mtgdate. After the subroutine is executed, the "Edit Meeting"
form will be submitted to the OrgWeb server. The attendee information can also be
submitted in the form in a similar manner.

108

Chapter 8 Conclusion and Future Work

8.1 Summary and Conclusion

Before the conclusion of this thesis report, here is a summary of the ideas that

have been explored and discussed.

In order to make the internet C&S protocol work readily and easily in the existing

computing environment, the protocol is built on top of HTTP, which is the native

protocol used widely in the internet community nowadays. Protocol requests are made in

URL and in HTML forms on Web pages. HTML Web pages are used as the protocol

responses. All this can make the protocol and the C&S system immediately workable in

standard Web browsers and major Web servers. Moreover, the protocol can inherit the

lightweight and fast nature from HTTP.

The introduction of response templates allow the packing of several C&S

commands into a single protocol request command. This enables a protocol user to

perform multiple but related tasks by executing a single request command, with a single

HTTP request and response. This makes the protocol efficient and request command set

simple. The use of response templates also facilitates flexibility in the user interface

design in the C&S system.

To solve the problems caused by the "stateless" nature in HTTP, the session

management process is designed and established to keep state in the C&S service. With a

session manager process on the server side, session information can be kept across

109

different HTTP requests within a C&S session. This promotes a more secure and efficient

C&S protocol.

To eliminate a number of inefficiencies in internet scheduling services due to the

user interface limitations in HTML, ActiveX objects are designed, implemented and

inserted in HTML pages of the C&S system. The ActiveX objects, along with the inline

scripts embedded in HTML pages that manipulate these objects, keep the protocol simple

and efficient. Moreover, rich UI elements in C&S applications which are formerly

difficult to implement in simple HTML can now be used on Web pages in the C&S

system.

In this thesis project, the C&S protocol and a prototype of the OrgWeb system

have been implemented, and the ideas discussed in this report have been tested with this

prototype. In the system, a user can view calendar information, create, edit and delete

personal appointments, create group meetings and respond to scheduling notices. The

protocol and the system are evaluated in a number of areas:

SEfficiency and simplicity of protocol usage: The protocol is kept fairly efficient in the

OrgWeb system. Viewing a day, a week or a month's worth of appointments can be

achieved in one request. Creating, editing or deleting a particular appointment can be

done in a couple of requests (one to get the HTML input form, and the other to make

the actual request). Viewing a meeting notice in the mailbox and processing a meeting

notice also takes one request each. Also the protocol definition is simple. For all the

C&S features mentioned above, there are less than 20 published request commands in

the command set.

110

* Keeping state in HTTP: The prototype proves that the session manager process is able

to keep state in an HTTP-based application. Session management, including request

authentication, has been made possible in the system.

* Interactivity in user interface: By inserting the C&S ActiveX controls and inline

VBScript in HTML pages of the OrgWeb responses, the HTML pages are made much

more interactive. Some of the interactive user actions which cannot be seen in static

HTML pages have been described in Chapter 7. Very complicated UI elements from

an existing C&S system (e.g. the free time viewer and the date tracker in Lotus

Organizer) can be displayed in the HTML pages, giving the users a more interesting

and intuitive user interface. Furthermore, with the ActiveX controls the scheduling

services, such as the free time search service, can be implemented and used in the

protocol in a straightforward and efficient way.

In conclusion, with the introduction of the session management process, and with

the help from C&S ActiveX controls and HTML inline scripts, an efficient internet C&S

protocol can be built on top of HTTP.

8.2 Future Work

In the thesis prototype, the HTTP-based C&S protocol can only support simple

viewing and editing of calendar appointments, and simple group scheduling features.

There are many other important features found in existing C&S applications that are

worth adding to extend the protocol. Sections other than the calendar, such as to-do list,

address book, call tracker and event planner which can be found in typical C&S

111

applications can be integrated into the OrgWeb system to provide a more complete set of

C&S functionality. To accommodate more and more different sections and types of

information in the protocol, the protocol can make use of the PATH_INFO CGI

environment variable when requests are made, in order to provide more hierarchical and

organized data retrievals and keep the protocol simple. Other features like audio

reminders (e.g. alarms for appointment) and "show through" of information across

different sections (e.g. showing items on to-do list on the calendar views) can be

interesting extensions added to the protocol, and may require some thoughts and design

before they can be supported by the protocol.

Currently in the OrgWeb system, the CGI process is responsible for parsing the

response templates to create the HTML document for responses. If session or database

information is required in making a response, the CGI process will talk to the session

manager process through named pipes to access the data (See Chapter 6). However, when

more than one piece of information is required to get from the session manager to make a

response, the CGI process needs to communicate with the server process more than once.

To make the system more efficient, the job of parsing response templates and forming the

HTML responses can be moved to the session manager. The CGI process is now only

responsible for passing the request parameters from the Web server to the session

manager, and also passing the HTML responses from the session manager to the Web

server. In this way, only one connection between the CGI process and the session

manager is required in every protocol request, no matter how many pieces of session or

database data are desired. As a result, we can make use of the session table in the session

manager to further simplify the protocol commands. Information such as calendar view

112

and current date can be kept in the session table. There is no need to specify them in the

request commands, and the session manager can fetch them from the session table

directly in forming the responses.

As pointed out in Chapter 7, the C&S ActiveX controls used to enhance the UI of

the OrgWeb system can only be supported on Windows-based platforms. To make the

system a truly platform-independent client/ server application, a platform-independent

object insertable in HTML is needed. Java applets offers a solution to this problem, but

the difficulties involved in leveraging existing code means a very long development time

and extensive code rewrite. Further research on new object types to solve the problem is

certainly desirable in the development of the internet C&S system, and also other internet

applications.

113

Appendix A
User Interface in the OrgWeb System

Figures showing the Web pages seen in an OrgWeb session are displayed in this

appendix.

rj -iieoa onoh I Ineet II-ex

Elle Fdit Yiew fao .F~vontes JHelp

Stop Refresh Home Search Favorites Print Font

Address Ihttp://torch.lotus.com/orgweb/test/orgweb.exe?logon Ž Links

OrgWeb Demo Page on Torch

(Organizer
User Name:

PassworlE

Organdzer File:

Organizer Password:

Ccc:AilPO Box:

jAlpha Tune/Organizer

c:\test\demo.or3

OK Butinton ilogin a session

This is a demo page for OrgWeb, the UWeb version of Lotus Organizer.

A.1: Logon page with the login form

115

Back

........... -~"""'I""~'~

file Edit View Go Favorites Help

Back FoR)•a Stop Refresh Home Search Favorites

Address http://pyro.lotus.com/Scripts/orgweb/test/orgweb. exe?wview='84c8d6b0-eee2-11cf-9fc8-00805fc24dfe,19960724'

LTJ\

re LioweILek M nmpreviows weelk andm m e mik M iwLgoutbuttonk
uInextweek MAeelizg notiesootbto

ind mwibox

A.2: Calendar week view page

Link to month view Link to Dayview

File Edit View Go Favorites Help

aLai
Back K awrd Stop Refresh Home Search Favorites Print Font

SAddress http://pyro.lotus.com/Scripts/orgweb/test/orgweb.exe?mview='84c8d6bO0-eee2-11cf-9fc8-00805fc24dfe.19960724' Links

J -----1996

KIm&N j ThEEDTHU

09 is

1o j - ,17
9,00-10:00 Tetstguo 110 00-11:00 Anothert t- 9:00-10:00 Demo for

for had Y Milr

-in 12M 00-.1330 Testfor
Vinod

9:00-10.00 test
11:00.12:30 Another

Test

FRI sAiT/SUN
05 06

19
11.00-12:00 •' : -

13

14
11:00-1230 e

9.00-10:00 test i
12:00-1330 Lmdch
14:00-15:00 jn

21

A.3: Calendar month view page

116

PrintPrint Font

Links

- i

.......................................-t

Calendar To Do arry Address

I

F ý as F-iganner I NutePad I

: i-' ----;-- -------'-- --- ------

.o--"

Back F .jv Stop Refresh Home Search Favorites Print Font
Address http://pyro.lotus.com/Scripts/orgweb/test/orgweb.exe?dview='84c8d6b0-eee2-1 1 c-9fc8-00805lc24dfe,19960720' Links

Organizer for Alpha Tune/Organizer

10 m3 ott:Lutch

14:00-00-:0

A.4: Calendar day view page

Back Fo, vd Stop Refresh Home Search Favorites Print Font

SAddress jhttp://pyro.lotus.com/Scripts/orgweb/test/orgweb.exe?newappt='84c8d6bO.eee2-11 cf-gfc8-00805fc24dfe,19960720,dview' " Links

Srease Jieiv "q:pouauuens .

Cancel and go back
to calendarview

........-......... ---...... .
Link 6t create a new
group meeting

Create Button to umit the formCaand create the appointment

A.5: Create new appointment page

117

.I.~..l.i;.. :

Back F.jFr Stop Refresh Home Search Favorites Print Font

SAddress http://pyro. lotus. com/Scripts/orgweb/test/orgweb. exe?ediappt='84c8d6b0-eee2-11cf-9fc8-00805tc24dfe,19960720,9346-0,dview Links

out

Cancel anda o ba•ck
to callendarview

Button to delete the appointment

Saturday, July 20,1996

Stfime:114 :00[[DureU:101 h 00
Descripion:

Tennis with Henry. Meet at McGregor
lobby

SWarn of conflicts
Categories: Clients Fr- Pencilin

F Confidential

Button to submit the form
Update ana update the appointment

A.6: Edit appointment page

Back Fo Stop Refresh Home Search Favorites Print Font

Address http ://pyro.lotus.com/Scripts/orgweb/test/orgweb.exe?notice='b7062cb0'eeea-11cf-9fc8-0805fc24dfe,19960805,wview' Links

Meeting Notices for Beta Tune/Organizer

Co back ti caasrriew &Soo

* ITvitation from Alpha TuineOrganizer Weekly teem meetin'
* Invitation from Alpha Tu =eOranizer: Movie: ID4 Links to view detail- of meeting n otices

A.7: Meeting notices page

118

II ; -

Back F, .,, Stop Refresh Home Search Favorites Print Font

Address jhttp//p/yro.lotus.com/S cripts/orgweb/test/orgweb.exe?mtgmsg='b7062cb0-eeea-11 cf-9fc8-00805kc24dfe.19960805 ,92 02 -0,wvie w' Links

Co back to meeting notices paqe
without processing the notice

Invitation from Alpha Tune/Organizer

* On Sunday, July 21, 1996 12:00
* For Ihour30 minutes
* With:

* Alpha TuneOrganizer (Chairman)
* Beta TuneOrganizer (Invited)
* Theta TuneiOrganizer (Invited)

Weekly team meeting

Accept Decline
I I

Bi process tMemeetf notice

A.8: Meeting notice details page

Back F Stop Refresh Home Search Favorites Print Font

Addiresshttp://pyro.lotus com/Scripts/orgweb/test/orgweb exenewmtg='84c8d6b0-eee2-11cf-9fc8-00805fc24dfe,19960721,wview Links•

S... .Free time viewer.

Feti me v i eweri '•i• i•,:• ! ii••!"i/!'

Buttons to addlremove
attendees in attendee list

01 M Ch

CL
m

utton to create a

Date:: : :

j7121/96

Startunime:

Duration:_

Description:
Weekly team meeting

Categories: Clients
Follow up

SWarn of conflicts
F Pecilmin
F Confklential

_Create

A.9: Creating new meeting page

119

A es
Theta Tune/ rgani r

Add Remove
lAlpha Tune/Organizer
IBeta Tune/Org anizer

Attendance:
SReqiired optional

Invited

Bu

Attendee{
List

Attr-autes
for

current
attendeeL

r

9 - -

-- I- :

I

Appendix B
Embedded Commands in

Response Templates

A commands embedded within a response template appears between the OrgWeb-

specific tags "<!--ORG-" and "-->". It is parsed by the server side CGI process to perform

a particular task, and the command may be replaced by some HTML contents in the

template afterwards. A list of these embedded commands is presented in this appendix.

Command Meaning
Name

back Output the calendar view the user should go back if the current
operation is canceled.

categorynames Output the category names the user can choose.
curruid Output the unique ID of the current appointment/ meeting/ meeting

notice
date Output the current date in form of the date parameter in the protocol

(See Section 5.1.3)
daystr Output the current date in a user readable format, with week day

information. e.g. "Saturday, July 20, 1996"
dfwd Output the date one day after the current date
dprev Output the date one day before the current date
dtrackdate Output the current date in the format used in a date tracker:

MM/DD/YY e.g. 7/20/1996
dvlistappt List all the appointments on the current date in a table form
editapptform Output an "Edit Appointment form" in the HTML document
editmtgform Output an "Edit Meeting form" in the HTML document
icon Output the path for the icons
listnotices List the descriptions for all the meeting notices in the user's mailbox
msgdetails List the details of the current meeting notice
mfwd Output the date one month after the current date
mprev Output the date one month before the current date
mvlistappt List all the appointments in the current month in a table form
name Output the name of the current user
pendingnotice Check whether there are unprocessed meeting notices in the user's

mailbox. If so, output the name of the icon which shows animated
"hand-shaking" images. If not, output the name of the icon which
shows static "hand-shaking" image.

script Output the initialization scripts for a "Create Meeting Form" or an
"Edit Meeting Form"

sessionid Output the session ID for the current OrgWeb session
today Output today's date from the operating system
wfwd Output the date one week after the current date
wprev Output the date one week before the current date
wvlistappt List all the appointments in the current week in a table form

122

Appendix C
Specification of Group Scheduling

in the OrgWeb System

C.1 Scheduling Actions on Meeting Entries

(a) Create New Meeting (by Chairperson)

(b) Edit Existing Meeting as Chairperson *-

123

INVITATION to all invitees

CANCELLATION to attendees
removed

INVITATION to new attendees

added

RESCHEDULE to all attendees
if date or time changes

[C A NNCELLATION to allI.M attendees
S I I

STAT US U'PDATE to all
attendees if no changes

CANCELLATION to attendees
removed

INVITATION to new attendees
added

SRESCHEDULE to all attendees
ifeated or time chnno teI -- --- I . I

(c) Edit Existing Meeting as Attendee

C.2 Processing Meeting Notices

(a) Invitation (from chairperson)

(b) Invitation Acceptance/ Invitation Decline (from attendee)

NI I U It oLall

124

RESCHEDULE PROPOSAL to
.00.lE chairpersonI

INVITATION DECLINE to
chairperson

INVITATION ACCEPTANCE
to chairpersonS INVITATION

DECLINE INVITATION DECLINE to
chairperson

RESCHEDULE PROPOSAL to
chairperson

RESCHEDULE

I

m | •

- -

11- 1 ACC
PNMMMNN-d

--
___a

m I m

- -

- I

TQ T TDT-1 A 'PT7

(c) Cancellation (from chairperson)

E- NfELCANCELLATION

(d) Status Update (from chairperson)

(e) Reschedule Proposal (from attendee)

(f) Reschedule (from chairperson)

- IACCEI[
RESCHEDULE

1 INVITATION ACCEPTANCE
to chairpersonK-

- INVITATION DECLINE to
chairperson

RESCHEDULE PROPOSAL to
I chairperson

RESCHEDULE

(g) Reschedule Proposal Decline (from chairperson)

125

IDECLINE

I

I

--

I

I L- -k

I

References

[1] "Internet Trends", General Magic, Inc. Available online at
http://www.genmagic. conm/internet/trends/

[2] David Belind, "Phillippe Kahn: The Comeback Kid", 1996, PCWeek, January 8,
1996. Available online at http://www.pcweek.conm/archive/960108/pcw0070.htm

[3] Steve Jackson, "The Internet Control Pack", 1996, Microsoft Interactive Developer
Magazine, Volume 1, No.1, Spring 1996.

[4] John December and Mark Ginsburg, "HTML & CGI Unleashed", 1995, Sams.net
Publishing

[5] "The Common Gateway Interface" at "NCSA HTTPd Home Page". Available
online at http://hoohoo.ncsa.uiuc.edu/cgi/.

[6] T. Bemrners-Lee, R. Fielding, H. Frystyk, "Hypertext Transfer Protocol - HTTP/1.0",
1996, Internet Informational RFC 1945. Available online at
http://ds.internic.net/rfc/rfc1945.txt

[7] John Ellsworth, "A Technical Look at Lotus Organizer 2.0", 1995, The View -

Technical Journal for Lotus Notes Software, Volume 1, Issue 2, May/ June 1995.

[8] Kraig Brockschmidt, "Inside OLE", 1995, Microsoft Press.

[9] "Lotus Organizer API Reference", 1995, Lotus Development Corporation.

[10] Jeffrey Richter, "Advanced Windows, Developers' Guide to Windows NT 3.5 and
Windows 95", 1995, Microsoft Press.

[11] Marshall Brain, "Win32 System Services, The Heart of Windows 95 and Windows
NT", 1996, Prentice Hall, Inc.

[12] Brian Myers and Eric Hamer, "Mastering Windows NT Programming", 1993,
Sybex, Inc.

[13] C. Kindel, L. Montulli, E. Sink, W. Gramlich, J. Hirschman, T. Berners-Lee, D.
Connolly, "Inserting Objects into HTML", 1996, W3C working draft, WD-object-
960422, Available online at http://www.w3.org/WWW/TR/WD-object.html

[14] "Preview the OnTime Web Edition v4.0", Cambell Services, Inc., 1996, Available
online at http://mars.ontime.com/

[15] Paul DiLascia and Victor Stone, "Sweeper", 1996, Microsoft Interactive Developer
Magazine, Volume 1, No.1, Spring 1996.

[16] Laura Lemay and Charles Perkins, "Teach Yourself Java in 21 Days", 1996,
Sams.net Publishing.

[17] "Plug-in Guide", Netscape Communications Corporation, 1996, Avaliable online at
http://home.netscape. com/eng/mozilla/3. O/handbook/plugins/pguide. htm

[18] "Microsoft Visual Basic Scripting Edition", Microsoft Corporation, 1996, Available
online at http://www.microsoft.com/vbscript/

[19] "JavaScript Authoring Guide", Netscape Communications Corporation, 1996,
Available online at
http://home.netscape.com/eng/mozilla/Gold/handbook/javascript/index.htm

[20] "Web Trends", Interse Corporation, 1996, Available online at
http://www. interse. com/webtrends/

[21] "Browser Scorecard", Dataquest Interactive, 1996, Available online at
http://www.dataquest. com/insight/in-iO1. html

[22] "Java Applets", Netscape Communications Corporation, 1996, Available online at
http://home.netscape.com/comprod/products/navigator/version_2.0/java applets/in
dex.htm

[23] "Internet Component Download", Microsoft Corporation, 1996, Available online at
http://www.microsoft.com/intdev/signcode/codedwldhtm

[24] "Scripting Object Model", Microsoft Corporation, 1996, Available online at
http://198.105.232.30/intdev/sdk/docs/scriptom/index.htm

[25] "Programming with MFC: Encyclopedia", 1995, Microsoft Visual C++ 4.1,
Microsoft Corporation.

[26] Matthew Powell and Leon Braginski, "WinInet", 1996, Microsoft Interactive
Developer Magazine, Volume 1, No.1, Spring 1996.

