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Abstract

Secret sharing schemes protect secrecy and integrity of information by dividing it
into shares and distributing these shares among different locations. In k + 1 out of n
threshold schemes, security is assured if throughout the entire life-time of the secret
the adversary compromises no more than k of the n locations. For long-lived and
sensitive secrets this protection may be insufficient. We propose a new type of secret
sharing scheme, called proactive, in which the share holders periodically (e.g. once a
day) rerandomize the distribution of the secret into shares in such a way that if the
adversary learns no more than k shares before the rerandomization, this information
is useless for attacking the secret afterwards. In other words, the adversary willing
to learn or destroy the secret has to break to at least k + 1 locations during the same
time period, i.e. between consecutive executions of the rerandomization protocol.

We extend proactive secret sharing schemes to function sharing, which allows for
various proactive public key cryptosystems. As example, we construct with n = 2k+ 1
servers a proactive Certification Authority, such that the adversary who wants to learn
or destroy its secret signature key has to break to more than k servers during a single
time period. We propose two efficient proactive secret sharing protocols. We define
the security notions of proactive secret sharing and we provide the proofs of security
of the two protocols we propose. Our solutions assume broadcast channel between
servers and the computational hardness of some cryptographic primitives.
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Chapter 1

Introduction

1.1 Motivation for Proactivity In Secret Sharing

Secret sharing schemes protect the secrecy and integrity of information by distributing
it over different locations. For sensitive data these schemes constitute a fundamental
protection tool, forcing the adversary to attack multiple locations in order to learn or
destroy the information. In particular, in a (k + 1, n)-threshold scheme, an adversary
needs to compromise more than k locations in order to learn the secret, and corrupt
at least n - k of its shares in order to render it unreconstructible. However, the
adversary has the entire life-time of the secret to mount these attacks. Gradual and
instantaneous break-ins into a subset of locations over a long period of time may be
feasible for the adversary. Therefore for long-lived and sensitive secrets the protection
provided by traditional secret sharing may be insufficient.

A natural defense is to periodically refresh the secrets; however, this is not always
possible. That is the case of inherently long-lived information, such as cryptographic
master keys (e.g., signature/certification keys), data files (e.g., medical records), legal
documents (e.g., a will or a contract), proprietary trade-secret information (e.g., Coca-
Cola's formula), and more.

To realize how unsatisfactory such refreshment of the secret is, imagine that one
wants to protect a legal document by encrypting it under some initial key and then
periodically change that key, decrypting the document with the old key and encrypt-
ing it with the new one every time the key changes. Such a solution does not protect
the integrity of the document at all, and it also exposes the secrecy to the adversary
that happens to attack the server at the moment when the key is changing and the
document is being decrypted.

Thus, what is actually required to protect secrecy and integrity of long-lived in-
formation is to be able to periodically renew the shares without changing the secret,
in such a way that any information learned by the adversary about individual shares
becomes obsolete after the shares are renewed. Similarly, to avoid gradual destruction
of the information by corruption of its shares, it is necessary to periodically recover



lost or corrupted shares without compromising their secrecy.

The above mechanisms, periodic renewal of shares and periodic recovery of cor-
rupted shares, constitute the core properties of proactive secret sharing as presented
here. In the proactive approach, the lifetime of the secret is divided into periods of
time (e.g., a day, one week, etc.). At the beginning of each time period the share
holders engage in an interactive update protocol, after which they hold completely
new shares of the same secret. Previous shares become obsolete and should be safely
erased. As a consequence, in the case of a (k + 1, n) proactive threshold scheme, the
adversary trying to learn the secret is required to compromise k + 1 locations during
a single time period, as opposed to incrementally compromising k + 1 locations over
the entire life-time of the secret. As an example, consider a secret that lives for five
years: A weekly refreshment of shares will reduce the time available for the adversary
to break the k + 1 necessary locations from five years to one week. Similarly, the
destruction of the secret requires the adversary to corrupt n - k shares in a single
time period. Note that proactivity is a characteristics of the storage phase of se-
cret sharing protocols. The traditional focus in secret sharing research has been on
designing protocols to distribute the shares of a secret and then to reconstruct the
secret from the shares. Our concern is what happens in between these two protocols:
We replace the passive storage of shares in traditional secret sharing schemes with
proactive secret sharing.

The proactive algorithm protects information from a mobile adversary, who does
not control a server forever, but can succeed in breaking-in for limited periods of time
and move on to attack other servers, possibly breaking into each secret sharing server
multiple times. This paradigm of a mobile yet detectable adversary is motivated
by two facts: On one hand secret sharing servers can be easily accessible through
the network for an adversary to attack (especially if they have to perform some
function with this secret, as in the case of the certification authority and other function
sharing applications). Furthermore, nothing in the world can be forever secure: If we
design an algorithm that can tolerate adversaries who break into servers and make
them behave in arbitrarily bad way, then such an algorithm is in particular secure
against hardware failures, electricity breakdowns, operating system crashes and all
other disasters that do happen in real life even without malicious adversaries. On
the other hand, intrusions in networks (such as software modification, viruses, etc.)
and any other malfunctioning of a secret sharing server can be eventually exposed
by available detection mechanisms like virus scanners, network monitoring etc. The
goal behind a proactive security solution is to neutralize the power given to the
adversary by the mobility property: To allow servers to regain the secret information
destroyed by the adversary during a break-in and to make the information gained by
the adversary during a break-in useless during future break-ins.

In this thesis we propose two proactive secret sharing schemes, which can both
support up to k = n/2 - 1 corrupted parties at any time period. Both these schemes
assume the existence of secure encryption and signature functions, as well as the
security of the verifiable secret sharing schemes (VSS) based on homomorphic func-



tions [Fel87, Ped91]. At the system level, we assume a broadcast channel, locally
unpredictable sources of perfect randomness and synchrony (as in VSS).

1.2 Proactive Function Sharing

Proactive secret sharing protocol offers a way of maintaining sensitive information
that provides a novel degree of protecting its secrecy and integrity. It can be used for
secure storage of any long-lived data whose secrecy and integrity are very important.
Moreover, proactive secret sharing provides secure storage of data without keeping
this data in isolation, and therefore, it is well suited to function sharing applications,
which usually require secrecy and integrity but also high availability of the information
on which the secret-shared function depends. A good example is a decryption key of
a secure database or archive, or a signature key of any network certification authority
(key certification, time stamping, ticket granting etc):

* Such a key must be kept with as high as possible secrecy, proportional to the
cost of damage that could be done by a dishonest person who learns this key. If
in the future, banks will be accessible through computer networks and will verify
identify of their customers with public keys signed by a network Certification
Authority (CA), then the compromise of secrecy of that key could potentially
cost all the assets of the bank.

* The integrity of that key is very valuable, because if it is lost, one has to rewrite
all past signatures (certificates, time stamps, tickets etc) and reinstall the new
public keys in the network, which is not only costly (it could involve issuing
new smart cards to every user), but it could also compromise the security of
the whole system.

* On the other hand, this key must be highly available in a network environment.
The certification authority has to process its jobs, and therefore it must be
connected to other computers with a communication network. In particular,
this precludes the possibility of storing the sensitive information in isolation.

We refer to the above scenarios, in which the secret is distributed with a proactive
secret sharing, and instead of being simply stored to be eventually reconstructed, it
is constantly used to perform some function, as a function sharing. In other words,
function sharing distributed the power of computing a function, instead of distributing
a static information. In section 8, we will show how proactive secret sharing can be
used as a building block in proactive function sharing.



1.3 Previous Work on Secret Sharing' and Mobile
Adversaries

Our work focuses on improving the storage of shares in secret sharing, which so
far has been a neglected part of secret sharing protocols. The reader can find an
extensive survey of secret sharing work in [Sim92] and a quick overview of the basic
ideas in [Riv90]. Also, among the papers we cite in the further parts of the thesis,
the introductions to [Rab88] and [Ped91] present a short history of important results
in the secret sharing research. Particularly relevant to our work are the basic secret
sharing scheme of Shamir [Sha79] and the verifiable secret sharing schemes of [Fel87]
and [Ped91].

The mobile adversary setting, was originally presented in the context of secure
function evaluation by Ostrovsky and Yung [OY91]. That solution allowed large
(polynomial) redundancy in the system (redundancy is the ratio of total servers n to
the threshold k of simultaneously faulty servers), and used the availability of huge
majority of honest servers to achieve the very general task of secure computation in
the information theoretic sense. The same mobile adversary model was then used in
a more practical setting by Canetti and Herzberg [CH94] who proactively maintained
a local pseudorandom number generators of n servers.

1.4 Organization of the Thesis

In chapter 2 we describe our computational model: the requirements we impose on
secret sharing servers and the network that connects them, the bounds on the adver-
sary against which our scheme is secure and the computational assumptions we make.
We present the cryptographic tools we use in our protocols and we sketch the notions
of security with which we characterize the protocols we propose. In chapter 3 we
state the theorems about the strength of secrecy and integrity protection offered by
the two versions of a proactive secret sharing protocol we propose in this paper. In
chapters 4, 5 and 6 we present our basic scheme: the proactive secret sharing pro-
tocol which uses Feldman's verifiable secret sharing scheme. In chapter 7 we present
the alternative scheme, replacing Feldman's with Pedersen's VSS. In chapter 8 we
present the function-sharing applications, namely, the proactively secure Certification
Authority, and the proactively secure database. In chapter 9 we present the proofs
of the claims about the security of our algorithms, which are stated in chapter 3.



Chapter 2

IP . .Preliminaries

2.1 Model and Assumptions

We describe the model and the environment where our proactive secret sharing algo-
rithm can be executed.

We assume a system of n servers A = {P 1, P2,... ,Pn} that will (proactively)
share a secret value x through a (k + 1, n)-threshold scheme (i.e., k shares provide
no information on the secret, while k + 1 suffice for the reconstruction of the secret).
We assume that the system is securely and properly initialized. The goal of the
scheme is to prevent the adversary from learning the secret x, or from destroying it
(In particular, any group of k + 1 non-faulty servers should be able to reconstruct the
secret whenever it is necessary).

SERVERS AND COMMUNICATION MODEL: Each server in A is connected to a com-
mon broadcast medium, called communication channel, with the property that every
message sent on this channel can be instantly read by all other parties connected to
this channel. We assume that the system is synchronized, i.e., the servers can access
a common global clock. We also assume that each server in A has a local source of
randomness.

TIME PERIODS AND UPDATE PHASES: Time is divided into time periods which are
determined by the common global clock (e.g., a day, a week, etc.). At the beginning
of each time period the servers engage in an interactive update protocol (also called
update phase). At the end of an update phase the servers hold new shares of the
secret x.

THE MOBILE ADVERSARY MODEL: The adversary can corrupt servers at any mo-
ment during a time period. If a server is corrupted during an update phase, we
consider the server as corrupted during both periods adjacent to that update phase.
We assume that the adversary corrupts no more than k out of n servers in each time
period, where k must be smaller than n/2 (this guarantees the existence of k + 1
honest servers at each time).



The reason behind this way of counting corrupted servers is that it is impossible or
at least very hard to analyze what happens if we differentiated between adversary who
moves from one server to another during the update phase and the adversary who just
stays in both servers throughout. It is also not a realistic concern in our setting, where
the update phase is negligibly short when compared to the length of a time period:
If the adversary could move so fast that she could jump between servers during an
update, if it continued to jump with the same speed during the time period, it could
visit all the servers and destroy the secret sharing system. Furthermore, notice that
even during a regular time period, we treat the adversary who jumps from one server
to another in the same way as if both of them are corrupted throughout this time
period.

Corrupting a server means any combination of learning the secret information in
the server, modifying its data, changing the intended behavior of the server, discon-
necting it, and so on. For the sake of simplicity, we do not differentiate between
malicious faults and "normal" server failures (e.g., crashes, power failures etc.).

We also assume that the adversary is always connected to the broadcast channel,
which means she can hear all the messages and inject her own. She cannot, however,
modify messages broadcasted by a server that she does not control, nor can she prevent
a non-corrupted server from receiving a broadcasted message. We also preclude the
possibility that the adversary will flood this communication channel with messages
and thus prevent servers A from communicating. Although this is an attack that
can happen in real life, there seem to be no cryptographic ways of preventing it.
Additionally, the adversary always knows the non-secret data and the algorithm that
each machine performs.

COMPUTATIONAL BOUNDS ON THE ADVERSARY: We assume the adversary to be
computationally bounded in the sense of being adequately modeled by a bounded
polynomial time probabilistic Turing machine (BPP). In particular, we assume
that such an adversary cannot break the following cryptographic primitives: First, it
cannot compute (with non-negligible probability) logarithms in a large prime field.
Second, it cannot break semantically secure encryptions. Third, it cannot break
existentially unforgeable signatures. The last two assumptions are equivalent to a
requirement that there exists a semantically secure encryption scheme and an exis-
tentially unforgeable signature scheme (For formal descriptions of these notions and
the discussions of cryptographic assumptions they rely on, see [GM84] and [GMR88]).

A NOTE ABOUT THE REMOVAL OF AN ADVERSARY FROM A SERVER: We assume

that the adversary intruding the servers A is "removable", through a reboot proce-
dure, when it is detected. The responsibility for triggering the reboot operation (or
other measures to guarantee the normal operation of a server) relies on the system
management which gets input from the servers in the network. To reboot a server,
the operator has to reinstall the code with the proactive secret sharing algorithm on
the server and trigger its execution (in section 6.2 we will add reinstallation of pri-
vate/public keys of a server). For most applications, standard booting procedure in
server's ROM can play a role of a trusted kernel which would guarantee the security



of the reboot operation as long as the operators are honest.

In addition to regular detection mechanisms (e.g., anti-virus scanners) available to
the system management, our protocols provide explicit mechanisms by which all un-
corrupted servers (which always constitute majority) detect and alert about a server
that misbehaves in the sense of sending out incorrect messages. We assume for sim-
plicity that the reboot operation is performed immediately when attacks or deviations
from the protocol are detected and that it takes a negligible amount of time compared
with the duration of a time period.

We remark that the initialization of servers and reboot operations require a min-
imal level of trust in the system management, restricted to installation of correct
programs and of public keys used for server-to-server communication. Specifically,
no secret information is exposed to the system management. This level of trust re-
garding integrity of installed information is unavoidable for the initialization of any
cryptographic system. It is also worth noticing that if the system management fails
to install the communication keys properly, it can threaten the integrity of the secret,
but not its secrecy.

ERASURE OF PAST INFORMATION: In our protocols we sometimes specify that
the servers erase some information. This operation (performed by honest servers) is
essential for proactive security. Not doing so would provide an adversary that attacks
a server at a given period with information from a previous period, and the later
could enable the adversary to break the system. In many computer systems, what
seems like a memory update to the programmer, can in fact result only in an update
of a cache, while the main memory or a copy swapped on a disk remains unchanged.
It is a formal requirement of our proactive solution that the secret sharing servers be
able to reliably erase their local data.

2.2 Cryptographic Tools

SHAMIR'S SECRET SHARING: Our secret sharing scheme is based on Shamir's scheme
[Sha79]. Let q be a prime number, x E Zq' be the secret to be shared, n the number of
participants (or share holding servers), and k +1 the reconstructibility threshold. The
dealer D of the secret chooses a random polynomial f of degree k over Zq subject to
the condition f(0) = x. Each share xi is computed by D as f(i) and then transmitted
secretly to participant Pi (The evaluation point i could be any publicly known value
vi which uniquely corresponds to Pi; we assume vi = i as the default value). The
reconstruction of the secret can be done by having k + 1 participants providing their
shares and using polynomial interpolation to compute x.

VERIFIABLE SECRET SHARING - VSS: In Shamir's scheme a misbehaving dealer
can deal inconsistent shares to the participants, from which they will not be able to

'In fact this can be done over any finite field.



reconstruct a secret. To prevent such malicious behavior of the dealer one needs to
implement a procedure or protocol through which a consistent dealing can be verified
by the recipients of shares. Such a scheme is called verifiable secret sharing (VSS)
[CGMA85]. Our work uses these schemes in an essential way. We implement our
solution using specific schemes due to Feldman [Fel87] and Pedersen [Ped91]. These
schemes are based on hard to invert homomorphic functions and, in particular, on
the hardness of computing discrete logarithms over Zp, for prime p.

In this paper we present two versions of a proactive secret sharing algorithm: one
working with Feldman's and the other with Pedersen's VSS mechanism. In sections 4,
5 and 6, we present the version with Feldman's scheme since it is somewhat simpler
and allows for better presentation of proactivity. In section 7 we show the whole
proactive secret sharing protocol modified to use Pedersen's VSS.

FELDMAN'S VSS: We briefly describe Feldman's scheme. Let p and q be two prime
numbers such that p = mq + 1, where m is a small integer (possibly 2 or 4). Let
g be an element of Zp, of order q, i.e. gq = 1 (modp). The basic idea behind
this mechanism is that for each share xi there is a public value yi = g"' (mod p)
which by the homomorphic properties of the exponentiation function (i.e., gagb = gab)

allows every share-holder to verify that its own share is consistent with the public
information.

The dealer chooses the polynomial f over Zq with coefficients fo, fl, ... , fk and
broadcasts the corresponding values gfo g9 ,A..., gfk. Then it secretly transmits the
value xi = f(i) (mod q) to Pi. Each server Pi verifies its own share by checking the
following equation:

gX ? (gO)(gf)i(g2)i2 ... (gf)ik\
gg (mod p) (2.1)

If this equation holds, Pi broadcasts a message saying that it accepts its share as
proper. If all servers find their shares correct then the dealing phase is completed
successfully. Indeed, by the homomorphic properties of the exponentiation function
the above equation holds for all i E {1...n} if and only if the shares were dealt
correctly.

Notice that besides allowing the verification of correct dealing of shares, the public
values gxi can be used at time of secret reconstruction to verify that the participating
shares are correct (see Section 6.1).

PEDERSEN'S VSS: Now we recount Pedersen's VSS scheme. Numbers p, q, g, x are
the same as above. Additionally, we assume that there is a publicly known num-
ber h E Zj, such that nobody knows d E Zq, where gd = h (mod p). To deal the
secret x, the dealer picks two random k-degree polynomials 5(.), '7(.) in Zq with co-
efficients { 6m}me{0...k} and {'Ym}me{0...k} respectively, broadcasts {em}mE{0...k} where
Em = g6mh-Ym (mod p) for all m E {0...k}. Then for every i E {1...n}, it secretly
sends to Pi its share {ui, wi}, where ui = 6(i) and wi = -y(i). The new local verifica-



tion equation through which every server Pi can check its share becomes:

? ý2kgu'hwi = (60)(fel)i(6 2  ... (*)) ik (mod p) (2.2)

The reason why this equation works is that

(geOh'0) (glhhl1)i . . (g6kh' y)k = g.O+61+---.+6kk h70±+i+...+Yik' = g(') V() (mod p)

The basic intuition behind this scheme is that even the computationally unbound
adversary seeing gxhz (mod p) can compute x + dz (mod q), but this still gives out
no information about x. In this way, Pedersen's VSS protocol does not allow the
adversary to compute gx. We describe this mechanism in more detail in section 9.2.

MODIFICATION OF ORIGINAL VSS SCHEMES: In both versions of our protocol, we
substitute private sending of shares in the above VSS mechanisms with broadcasting
them encrypted under public key of the share recipient. This allows us to implement
accusation protocols thanks to which the server who were dealt wrong shares can
prove it to the others. We discuss the reasons and consequences of this modification
in section 9.3.

PUBLIC-KEY ENCRYPTION AND SIGNATURES: As mentioned in the paragraph on
computational bounds on the adversary in section 2.1, our solution requires an exis-
tentially unforgeable signatures [GMR88], and an encryption scheme which is seman-
tically secure in the sense of non-uniform definition of semantic security [GM84]. We
do not specify or assume any particular implementation of these functions. For a pair
of sender S and receiver R, we denote by ENCR(data) the probabilistic encryption
of data under R's public key; and by SIGs(data) the signature of data under S's
private key.

2,3 Sketch of Security Definitions

We give the definition of robustness in proactive secret sharing and we sketch the
notions which we will use to describe the secrecy protections of our protocols.

Definition 2.3.1 We call a proactive secret sharing scheme robust if at every time,
the honest servers can reconstruct the correct secret x.

The definitions of the secrecy protection offered by our solutions follow the notion
of (non-uniform) semantic security introduced in [GM84]. We give here only a sketch
of these definitions; The formal versions (definitions 9.4.4 and 9.4.5) are presented
in section 9.4.2.

We model the adversary as a non-interactive BPP Turing machine which is fed
with all the information learned by the adversary during the lifetime of the proactive
protocol. This information consists of the information specified as public (like g, q, p



etc), the communication between servers, and the secret information of the servers
that the adversary corrupted in each time period period. Modeling the adversary
with an interactive BPP machine would capture the fact that the adversary can
dynamically adapt its future strategy based on her current (and past) view of the
computation. However, even if the security analysis in the case of adaptive adversary
was possible, it should be first carried out using the restricted model of mobile yet
non-adaptive adversary. The security analysis for the full case of adaptive adversaries,
should be one of the future directions for this work.

Definition 2.3.2 (sketch) Let , be a function applicable to the space of secrets x.
Let po) be the probability that the adversary correctly computes the value r(x) when
fed with the public information 0(x) = q which defines the range of the secret. Let p)
be the analogous probability but after the adversary is also fed with the information
gathered during the lifetime of the protocol. Function r(x) models some knowledge
about x, while the difference p - PO quantifies the incremental amount of that
knowledge "learned" by the adversary by watching the execution of the protocol and
actively intruding into the servers. We call a proactive secret sharing scheme seman-
tically secure if for any function r(.), the difference C = p, -p is negligible,
which means that IC as a function of q decreases faster than any inverse polynomial
of Iql (Iql is the bit length of the space in which the secret is randomly chosen).

The notion of semantic security relative to the knowledge of gX is defined
just like above, except that now the public information 0(x) includes not only the
space Zq of the secret, but also value gX (mod p), i.e. the image of x under the
one-way function of exponentiation in a finite field.



Chapter 3

Security Results of our Proactive
Secret Sharing Schemes

We state the security properties of our proactive secret sharing algorithm, relative to
the adversary described in paragraph "The Mobile Adversary Mode'l" of section 2.1,
namely, an adversary that corrupts at most k servers in each time period. The
computational bounds on the adversary are mentioned in the theorems explicitly.
The proofs of the theorems we state here are in section 9.

We present two different versions of the proactive secret sharing scheme because
neither of them is strictly better than the other. In comparison with the proactive
secret sharing algorithm using Feldman's VSS, the use of Pedersen's VSS scheme
weakens the protection of integrity of secret x: It makes the robustness of a proactive
secret sharing system subject to computational limits of the adversary, namely a
subject to the assumption that the adversary cannot compute logarithms in a large
prime field. However, in a trade-off for integrity, Pedersen's scheme strengthens the
protection of secrecy of x: It allows us to achieve a true semantic security, while using
Feldman's VSS gives only a semantic security relative to the knowledge of gx.

Theorem 3.1.0 The proactive secret sharing protocol with Feldman's VSS (as de-
scribed in sections ~4, 5 and 6) has the following properties:

Robustness: The correct reconstructibility of the secret x is guaranteed as long as the
adversary cannot break the signature scheme SIG(.).

Secrecy: If encryption ENC(.) is semantically secure, then this protocol is a proac-
tive secret sharing scheme semantically secure relatively to the knowledge of
gx (mod p).

Theorem 3.2.0 The proactive secret sharing protocol with Pedersen's VSS (as de-
scribed in section 7) has the following properties:



Robustness: The correct reconstructibility of the secret x is guaranteed as long as the
adversary cannot find logarithm d = loggh (where g and h are two random
numbers in Z*) and cannot break the signature scheme SIG(.).

Secrecy: If encryption ENC(.) is semantically secure, then this protocol is a seman-
tically secure proactive secret sharing scheme.

A NOTE ABOUT EXPOSING gx IN FELDMAN'S VSS: Feldman's VSS scheme makes
the value y = gX (mod p) public, where x = f(0) is the secret being shared. This
is the reason why the semantic security of the secrecy protection of the proactive
secret sharing protocol based using Feldman's VSS can be only stated relative to the
knowledge of gX (mod p) (as in theorem 3.1.0). Assuming the hardness of the discrete
logarithm operation, the entire value of x cannot be derived from y. However, there
is partial information on x that can be efficiently derived, and that, consequently,
is not protected by the scheme. Such unprotected information includes the value of
gx (mod p) itself, the least significant bit of x, etc.

However, to stress the usefulness of Feldman's VSS scheme (and the version of
our protocol that uses it) we outline here a methodology to apply it to a secret
without leaking the partial information: The real secret to be protected, say s, is first
encoded into a longer string x (an "envelope" for s) with the property that given x
it is easy to recover s, but given gx (mod p) it is hard to derive any information on
s (i.e., s represents the hard core information of x). In this way, the version of our
protocol using Feldman's VSS would give semantically secure secrecy of s, under the
assumption that the exponentiation function is hard to invert on random input.

For example, it is known ([LW88], see also [BM84]) that computing log(jx ) upper
bits of x from gX (mod p) is hard. Therefore, for a secret s of length log Iq , one
could construct the envelope x (of size q ) as a concatenation of s (as upper most
bits) and a random string r. A more practical scheme can be designed following the
techniques of [BR94], which allow for construction of practical hard core envelopes for
any one-way permutation (applicable, in particular, to the exponentiation function).

Throughout the paper we refer to x as the secret. Applications in which the expo-
sure of the secret's exponent is unacceptable should use the above envelope method,
or use the proactive secret sharing solution which uses Pedersen's VSS instead of
Feldman's. However, if we apply this secret sharing scheme to implement proactive
function sharing of public key cryptosystems, as in section 8, then, since in these
schemes exponent gx plays a role of a public key, it does not matter that the under-
lying proactive secret sharing exposes it to the adversary.



Chapter 4

Periodic Share Renewal Protocol

Here we present the fundamental component of our solution, namely, the protocol
for periodic renewal of shares which preserves the secret and at the same time makes
past knowledge obsolete for the adversary.

Beyond guaranteeing the secrecy of the shared secret, our scheme is robust in the
sense of guaranteeing integrity and availability of the secret in the presence of up to
k misbehaving servers.

4.1 Initial Setting: Black-box Public Key

Cryptographic solutions in a distributed environment typically require the ability
to maintain private and authenticated communication between the servers. This is
achieved by the servers having pairs of private and public keys corresponding to
public-key cryptosystems with encryption and signature capabilities (e.g., RSA, El-
Gamal, etc). However, an adversary that breaks into a server and learns its private
key can then imp ersonate that server for the whole life of
ing a break-in, the adversary could also modify the private or public keys stored on
that server, thus disabling it from communicating with others. Also, if the adversary
breaks into Pi and replaces Pj's public key (in Ps's storage of other servers' public
keys) with her own, she can later spook Pj to Pi. Therefore, to ensure proactive
security, it is necessary to maintain the system of private and public communication
keys proactively, namely, to renew them periodically.

We will show in section 6.2 how this can be done in our context (a more general
treatment of proactive authentication can be found in [CH95]). However, for clarity
of presentation, we start by making the strong assumption that servers are equipped
with a pair of private and public keys with a property that the private key cannot be
learned or modified by the adversary, even if this adversary manages to break into
the server (Similarly, we have to require that during a break-in, the attacker cannot
modify the server's view of other servers' public keys). While such an intruder will

that private k(



be able to generate legal signatures and decrypt messages using the private key (as
a "black-box"), it will not be able to learn the private key or modify any of the
keys. We will remove this assumption and deal with the proactive maintenance of
the private/public communication key pairs in section 6.2.

The security of this public key system is essential for our protocols, because all our
communication is implemented as an authenticated broadcast, i.e. every message m
sent by Pi will have a signature SIGi(m) attached to it. Whenever server Pi will need
to send m "privately" to Pj, it will broadcast m' = (i, j, ENCj (m)) (accompanied,
by a signature SIGj(m')).

4.2 Initialization of Secret Sharing

We assume an initial stage where a secret x E Zq (for prime q) is encoded into
n pieces x1 , ... ,xn E Zq using a k-threshold Shamir's secret sharing: Each Pi, i E
{1...n} holds its share xi, where xi = f(i) for some k-degree polynomial f(.) over
Zq s.t. x = f(0). We assume that this initialization has been carried out securely,
i.e. we assume that the initial shares have the security and recoverability properties
of traditional secret sharing. Both versions of our proactive secret sharing can be
securely initialized without the trusted center: for the description of these solutions
we refer the reader to [Fel87] and [Ped91]).

After the initialization, at the beginning of every time period, all honest servers
trigger an update phase in which the servers perform a share renewal protocol. The
shares computed in period t are denoted by using the superscript (t), i.e., {xt)} t=o, 1,..
The polynomial corresponding to these shares is denoted f(t) ()

NOTATION: We say that shares S = {Xim}mEf{1,...,k+1} C {Xi}A reconstruct (or inter-
polate or correspond) to secret x if mE{{1,...,k+1} aim xi,~m = x, where {aim }mc{1,...,k+1}
are the Lagrange interpolation coefficients for set S.

For any t and any S' C A, where S'| > k + 1, we will call shares {xt)} ics, correct if
for every k + 1 element subset of shares S = fXZ}m{.1,...,k+1} C {xt) ics,, shares in
S interpolate to secret x.

4.3 Share Renewal

To renew the shares at period t = 1, 2,..., we adapt a simplified version of the
update protocol presented by Ostrovsky and Yung in [OY91]. When the secret x is
(distributively) stored as a value f(t1) (0) = x of a k degree polynomial f(t-) (.) in
Zq, we can update this polynomial by adding it to a k degree random polynomial
6(.), where 6(0) = 0, so that f(t)(O) =- f(t-1) (0) + 6(0) =x +0 = x. We can renew the



shares x ) = f () (i) thanks to the linearity of the polynomial evaluation operation:

f(t)(.) f(t-1)(.) + 6(.) (mod q) e=- Vi f(t)(i) = f( t-1)(i) + 6(i) (mod q)

In our system we will have 6(.) = iE{1...n} Ji(') (mod q), where each polynomial 6i()
for i E {1... n} is of degree k and is picked independently and at random by the ith
server subject to the condition Ji(0) = 0. The share renewal protocol for each server
Pi, i E {1...n}, at the beginning of the time period t is as follows:

1. Pi picks k random numbers {6im}me{1...k} from Zq. These numbers define a
polynomial 6i(z) = ilz + 6i2z2 +... + ikZ k in Zq, whose free coefficient is zero
and hence, 6 (0) = 0.

2. For all other servers Pj , Pi secretly sends uij = 3i(j) (mod q) to Pj.

3. After decrypting uvi, Vj e {1... n}, Pi computes its new share x£t) +- x,(t - 1) +
(ul+ + u22  - U. + uni ) (mod q) and erases all the variables it used except of its
current secret key x.t).

This protocol solves the share renewal problem against a ("passive") adversary
that may learn the secret information available to corrupted servers but where all
servers follow the predetermined protocol. This is formulated in the theorem be-
low. (A solution against "active cheaters", i.e. in the presence of byzantine faults,
is presented in section 4.4). Notice that we assume in step 2 that the shares are
transmitted to the corresponding holders with perfect secrecy. Equivalently, we could
specify that every share uji is broadcasted to Pi on C in encrypted form (i.e. as
ENCi(uji)), where encryption operation ENC&(.) is a black-box encryption, giving
perfect secrecy to those that don't know the secret key of Pi. This allows us to prove
the information-theoretic secrecy of this scheme. In the next sections we use public
key encryption for the transmission of these shares and then the secrecy of the scheme
becomes a subject of the strength of the public key encryption scheme.

Theorem 4.3.1 If all servers follow the above share renewal protocol then:

Robustness: The new shares interpolate to the secret x.

Secrecy: An adversary who in any time period eavesdrops on no more than k servers
learns nothing about the secret.

4.4 Share Renewal Protocol in the Presence of
Active Attackers

In the above basic share renewal protocol an active adversary controlling a server
can cause the destruction of the secret by dealing inconsistent share updates or just



by choosing a polynomial 6i with 6i(0) :A 0. In order to assure the detection of
wrongly dealt shares we add to the above basic protocol a verifiability feature. Namely,
we adapt to our scenario Feldman's verifiable secret sharing scheme as described in
section 2.2. In traditional applications of verifiable secret sharing, the fact that all
the share-holders find their shares to be consistent is used as a proof for a correct
dealing of the secret. In our case, this is used as a proof for correct dealing of update
shares by the servers.

The verifiable share renewal protocol for each server Pi at period t is as follows:

1. Pi picks k random numbers {5im}mCj{1...k} from Zq to define the polynomial
6i(z) = 6~iZ 1 -+ 6i 2z2 +... + 6ikzk. It also computes values cim = g6im (mod p),
m {1...k}.

2. Pi computes uij = 6•(j) (mod q), j {1 ... n}, and eij = ENCj(uij), Vj i.

3. Pi broadcast the message VSSt)= (it, {eim}mt{1...k}, {eij}{1...n}\{i}), and the

signature SIGi(VSS.t))

4. For all messages broadcasted in the previous step by other servers, Pi decrypts
the shares intended for Pi (i.e., computes uji out of eji, Vj : i), and verifies the
correctness of shares using the equivalent of the verifiability equation 2.1 from
section 2.2, namely, for all j 74 i it verifies:

U ? .2 k9u (ej1)(Ej)i2 . . . (Ejk)'k (mod p). (4.1)

(Notice that this equation accounts for the condition 6j (O) = 0.)

5. If Pi finds all the messages sent in the previous step by other servers to be
correct (e.g., all have correct signatures, time period numbers, etc.), and all
the above equations to hold, then it broadcasts a signed acceptance message
announcing that all checks were successful.

6. If all servers sent acceptance messages then Pi proceeds to update its own share
by performing: x£t) - xjt - 1) + (uli + u2i +...- + uni ) (mod q) and erases all the
variables it used except for its current share x t)

7. If in the above step 5, Pi finds any irregularities in the behavior of other servers
during step 4 then it broadcasts a signed accusation against the misbehaving
server(s). When to send accusations, and how to resolve them is discussed in
the next subsection.

4.5 Resolving Accusations

In step 5 of the above protocol, each server checks the correct behavior and dealing
of other servers. If a misbehaving server is found then there are two kinds of actions



to take. One is not to use the polynomial 6 (.) dealt by this server in the renewal of
shares in step 6. The second is to alert the system management so that it could take
measures to rectify the misbehaving server (e.g., it may be required to reboot the
server in order to "expel" the adversary). However, an accusation against a server by
another server requires verification, since a misbehaving server could falsely accuse
others. For a consistent update of shares, the honest servers need to agree on who
the "bad" servers are. We explain below how each server Pi decides on its list Bl of
bad processors.

We say that a message from server Pi at period t is correct if it complies with the
specifications of the above protocol, including all the specified fields and information
(e.g., the correct time period number) as well as a correct signature.

We distinguish between three classes of irregularities in the protocol:

1. Formally incorrect messages: wrong time periods, numbers out of bounds etc.

2. Two or more correct yet different messages from the same server (i.e. containing
a valid signature), or no message at all from some server

3. A mismatch in equation 4.1.

Notice that irregularities of the first two types are discovered using public infor-
mation only, and therefore, all (honest) servers can always detect them and mark the
corresponding servers as "bad". The faults of the third kind cause a problem, since
they are discovered only locally by a server that receives a share causing a mismatch
in equation 4.1.

When server P2 finds that equation 4.1 corresponding to the information sent
by Pj does not hold, it has to broadcast an accusation against Pj. The servers
must then decide whether it is Pi or Pj who is cheating. A way to do this is by
having Pj publicly "defend" itself: If Pj sent a correct uji, namely, one that passes
equation 4.1, then it can expose this value and prove that it corresponds to the
publicly available encryption value eji which was broadcasted by Pj in step 3. To prove
this Pj may need to reveal additional information used to compute the encryption
(like the random vector used in probabilistic encryption). However, Pj does not need
to reveal any private information of itself. Then everybody can check whether the
uji and the additional information published by Pj encrypts under Pi's public key
to eji as broadcasted by Pj in step 3. Second, everybody can check whether this uji
matches equation 4.1. If Pj defends itself correctly then all servers mark Pi as bad,
otherwise Pj is marked as bad. Notice that in some encryption schemes (like RSA),
the information published by the accuser is sufficient for public verification, which
simplifies the above general protocol.

Once all accusations are resolved, every honest server Pi holds the same list of
bad servers Bi (i.e., for each pair (Pi, Pj) of non-faulty servers, Bi = Bj). Now the
computation of the new shares is done by replacing step 6 of the share renewal protocol



by x t) +--  - + uj (modq)z (- (rodz



Chapter 5

Share Recovery Protocol

In a proactive secret sharing system, participating servers must be able to make sure
whether shares of other participating servers have not been corrupted (or lost), and
restore the correct share if necessary. Otherwise, an adversary could cause the loss
of the secret by gradually destroying n - k shares. In this section we present the
necessary mechanisms for detection and recovery of corrupted shares.

A server can have an incorrect share at the beginning of some time period, be-
cause it was controlled by the adversary during the previous share renewal protocol
(and hence it was prevented to update its share correctly), or because the adversary
attacked the server after the update phase and modified the server's secret share.
A secret share can also be lost because a server was rebooted or replaced by a new
server.

Without share recovery, the proactive scheme would not be secure even against
adversaries who can change the local state of the servers they attacked, or in general,
in any way disable the attacked server from performing the right protocol (by, for
example, disconnecting it from the network). In particular, without this mechanism
the scheme is insecure in the presence of hardware failures, crashes of the operating
system etc. Also, in a practical system, every server whose misbehavior is detected
by others will be rebooted, and its share will be lost because of the reboot procedure.

5.1 Detection of Corrupted Shares

How are corrupted shares detected? In some cases it is easy to detect that a server
requires to recover its correct share. This is the case of servers that do not participate
in an update phase (e.g., due to a crash), or servers that misbehave during that phase.
However, if the share of some server is ("silently") modified by the adversary (e.g.,
after an update phase) then this modification may go undetected. Hence, in the spirit
of proactiveness, the system must periodically test the correctness of the local states
of the participating servers, detecting in this way lost or modified shares.



For clarification we note that in section 4.2 we define the notion of correct shares.
The maximal set of correct shares defines the current correct secret sharing polyno-
mial f(t) (.). The correct secret sharing polynomial is also inductively defined in the
proactive update algorithm: If f(t) (.) is a correct secret sharing polynomial in time
period t - 1 then f (t)(.) = f(t-1)(.) + 1igB(t) t) (.) is a correct secret sharing polyno-
mial in time period t, where BMt ) is the set of servers that during the update phase at
the beginning of time period t correctly created and distributed their partial update
polynomials 6t) (.).

To implement the distributed verifiability of shares, we add an invariant that
in each time period t, each server Pi stores a set {yIt) e{l...n} of exponents y t)

gXj (mod p) of current shares of all servers in A. This invariant will also provide

robustness in the secret reconstruction protocol (see section 6.1).

Now it is clear why we use Feldman's VSS scheme (and Pedersen's too) as our
building block. Not only because it is non-interactive and simple (our protocols would
be too costly with interactive VSS), but also because it provides a natural way to
change the public exponents yj = gxi consistently with changes to the secret values
xi. It is the homomorphism of one-way function of exponentiation in a prime field
that allows for verifiability of a local computation on secret shares with a public com-
putation on the images of these shares. This mechanism gives us the share recovery
described here and the robustness of the secret reconstruction described in section 5.

The above invariant is achieved as follows:

* First, we augment section 4.2 with the requisite that each server stores the
(0)(0values y) corresponding to the initial shares xo),j E {1...n} (this can be

achieved by performing Feldman's VSS at initialization).

* Second, using the homomorphism of the exponentiation function, we supple-
ment step 6 of the update protocol in section 4.4 so that each server Pi updates
its set {Yj}jE{1...n} by computing for every j:

yjt (t-1) gV .
y/t) +__. * (gl3 * g ,2 * glni) (mod p)

In the general case, the above product is computed using only update shares
corresponding to servers that did not misbehave in the update phase, i.e:

W (t-1)
y ) ý- y ) * fi gu-i (mod p)

aoBi

Also, notice that although the servers in protocol 4.4 do not know update shares
Uaj of other servers, they can compute their exponents by equation 4.1 from the
publicly broadcasted {eam}me{1...k}

gUa + H (E.am)m (mod p)
mEf{ 1... k}



LOST SHARE DETECTION PROTOCOL: We extend the update phase between time
periods to include a share recovery protocol executed before the share renewal pro-
tocol. Its first part is the lost share detection protocol which works as follows: Every
server checks whether its share xt) corresponds to the y') it stores, i.e. whether
gXi = yi (mod p). If not, it broadcasts a singed request saying that it needs a share re-

covery. Otherwise, if its xi and yi are consistent, Pi broadcasts the values {y(t)}jI... n}
it stores, together with a proper signature. After collecting these messages from all
servers and checking their signatures, each server decides by majority on the current
proper set {~ t)}jC{1 ...n} (correcting its own set if necessary). Now each server Pi can
decide on a set Bi of servers which presented an incorrect (i.e., different from ma-

jority) exponent of their own share. These are the servers that Pi believes to need
a share recovery, in addition to servers that broadcasted an explicit request to have
their shares recovered (In particular, it can be the case that for some i, Pi E Bi, which
means that server Pi decided that its own share is not correct). It is clear that every
pair of non-faulty servers (Pi, Pj) has the same view about who has an incorrect share,
i.e., Bi = Bj = B. From our assumptions about the adversary, there are no more
than k servers holding a wrong share at the end of each time period, i.e. IBI < k.

5.2 Basic Share Recovery Protocol

The share recovery algorithm is based on the fact that in Shamir's (k +1, n)-threshold
scheme, any group D C A of d shares (k + 1 < d < n - 1) can be thought of as a
(k + 1, d)-threshold secret sharing of any of the remaining shares xr, r ' D.

A straightforward way to reconstruct the shares xr = f(t)(r) for r E B, is to let
each server in D = A\B send its own share to Pr, which would allow Pr to recover the
whole polynomial f(t) (.) and f() (r) in particular. However, this would also expose
the secret x to Pr. Instead, for each r E B, the servers in D will collectively generate
a random secret sharing of Xr in a way analogous to that used to re-randomize the
secret sharing of the main secret x in the share renewal protocol: Every server Pi in
D deals a random k-degree polynomial 5(.), such that 3i(r) = 0 (mod q). By adding
6i(.)'s to f(t)(.), a new, random secret sharing {~i}iEv of Xr is obtained. The servers
can now send these new shares to Pr, to allow it to compute xr without letting Pr
learn anything about the original shares {xi}i•v. Also, any coalition of k or less
servers, not including Pr, will learn nothing about the value of xr.

We first present the share recovery protocol stripped of verifiability. It is secure
only against an adversary that eavesdrops into k or less servers, but can not change
the behavior of the servers. For each Pr that requires share recovery, the following
protocol is performed:

1. Each Pi, i E D, picks a random k-degree polynomial 6i(-) over Zq such that
6i(r) = 0, i.e. it picks random coefficients {Sij}Jf{1...k} C Zq and then computes
6 io = - 'jEf{1...k} 6 ij r j (mod q).



2. Each Pi, i E D, broadcasts (ENCj(6i(j))j•

3. Each Pi, i ( 19, creates its new share of xr,, xI = xi + EjZE- 6j(i) and sends it to
Pr by broadcasting ENCr (x).

4. Pr decrypts these shares and interpolates them to recover xr.

5.3 Full Share Recovery Protocol

In the general case, the adversary not only can eavesdrop into the servers but also
cause the corrupted servers to deviate from their intended protocol. To cope with
these cases, we add to the above protocol (section 5.2) the necessary "verifiability"

properties for the dealing of polynomials 6&() in step 2 and for reconstruction of xr
from xi's in step 3 and 4:

1. Each Pi, i e D picks a random k-degree polynomial 6i (-) in:Zq such that 6i(r) =
0. It does it by randomly picking { 6 ij}jjE{1...k} C Zq and computing 6i0 =

-E(je{1...k} 6 rj (mod q).

2. Each Pi verifiably secret-shares its polynomial 6&(') among the set D using the
same mechanism as in the share renewal protocol, i.e., by broadcasting

VSSi = (i, {g 6 im (mod p)}me{0...k}, {ENCj((j))}jE) , SIGi(VSSi)

3. For all servers Pi, Pj in D, Pj checks Pi by locally verifying whether 6i (r) =

0 (mod q):

II (g6im)r m  1 (mod p) (5.1)
mE{0...k}

and whether gi(j) is consistent with exponents of the coefficients of 6&():

g'6 i(J) 1 (g6im,)j' (mod p) (5.2)
meJ{0...k}

4. Depending on the above verification the servers broadcast acknowledgments (if
both equations agree) or start accusation protocols (if equation 5.2 does not
hold). By public resolution of the accusations, each server in D and the server
Pr decide on set 1' C 1 of servers that properly constructed and distributed
their re-randomization polynomials &i(.). As in the share-renewal protocol, all
honest servers (including the recovering server Pr) will arrive at the same set
V9.

5. Each server Pi, i E D' creates its new share of Xr, xi = xi + EjV, j (i) and
sends it encrypted and signed to Pr by broadcasting RECj = (i, ENCr (x'))
and SIGi(RECi) on the communication channel.



6. P, decrypts all the xi's and takes the exponents {gWm (mod p)}jeDV',mEJ{0...k} that
were broadcasted in step (2). Then, for all i E D', Pr takes the current valid
exponent yi of Pi's share (P, knows it from the lost share detection protocol)
and verifies whether:

-6* i = +' , 3(i) (mod p) (5.3)
jEV1

where for all j E )':

gJi) W. (g'm)(im) (mod p)
mE{0...k}

7. In this way Pr arrives at a set Y' C D' of servers that during step (5) broad-
casted correct new shares xi . Now Pr can interpolate these shares to recover
xr, because from our assumptions on the adversary, DV"/1 > k + 1

MULTI-SECRET SHARING: Theoretically, instead of recovering each lost share sepa-
rately by treating the set {Xi}iEi as a secret sharing of a single x, for each r E B,
we can treat it as a multi-secret sharing (introduced in [FY92]) of all {X1r}reB. The
servers D can recover shares {xI, }r1EB simultaneously, by adding random k-degree poly-
nomials 6i(.) such that 6i(r) = 0 for all r E B to their shares and then sending the
new shares to servers B to let them reconstruct their original shares. Even though
this "simultaneous" solution allows servers B to learn each other's shares {xr}rEB,
this scheme will be secure against the adversary we specified in section 2.1: Since we
do not distinguish between an adversary that destroys the share and the adversary
that learns it, if the servers B need a share recovery, we can assume their shares are
known to the adversary already.

However, in practice, such a solution obviously weakens the security of the system:
Even though we do not specify it formally, our proposed solution is secure if in every
time period an adversary manages to destroy the shares of k servers without learning
them (e.g. by crashing the servers) and simultaneously manages to learn k other
shares (e.g. by injecting memory-scanning viruses into the servers that store them).





Chapter 6

The Combined Protocol

In this section we present the remaining parts of our protocol. Then we show how
the protocols described here and in sections 4 and 5 combine to the proactive secret
sharing protocol using Feldman's VSS.

6.1 Reconstruction of the Secret

In sections 4 and 5 we have shown how to renew and recover shares so they stay
consistent with the secret, and in particular, so that at any time there are at least
k + 1 honest parties that could reconstruct the secret if desired. However, the se-
cret reconstruction protocol itself is possible only if the participants are able to
detect servers that provide incorrect shares to the reconstruction. This detection
is easily accomplished as follows: To reconstruct the secret in time period t, ev-
ery server broadcasts (signed) its share x~t) together with the set of public images
{y ~t)}i,{...n it holds. From lemma 9.2.1, majority of servers stores the same correct

set Y = msety t)i E {1...n}, so every server can locally verify every submitted share
xi against the yi that is included in the majority of the submitted sets Y. Then
each server can interpolate the correct shares to the secret x and broadcast it on the
communication channel. The outside observer recognizes the secret x as the value
broadcasted by the majority of the servers.

6.2 Dynamically Secure Private Keys

In the above presentation we have assumed for simplicity that the servers are equipped
with ideally protected private / public key pairs used for authentication and encryp-
tion of server-to-server communication (see section 4.1). We now show how to remove
this protected key assumption. We extend the update phase between time periods to
include a third component, the private key renewal protocol, which will be triggered
before share recovery and share renewal. As a result of the private key renewal, an



adversary that breaks into a server in period t, but which does not control the server
at period t + 1, cannot learn this server's new key.

The private key renewal protocol at the beginning of each update phase works
as follows: Each server Pi chooses a new pair of private and public keys ait), bit) and
broadcasts the new public key bt) authenticated by its signature using its previous
private key at ). The other servers can verify this signature, using b~t- l) from the
previous time period. Clearly, an adversary that controlled the server at time period
t - 1, or before, but not during the update phase between periods t - 1 and t, cannot
learn the new private key chosen by the server. However, if the adversary knows
a(t-1) then, even if she is not controlling Pi during the private key renewal protocol
of period t, she can choose her own private key and inject its public counterpart into
the broadcast channel, authenticated as if it originated from Pi. But since P1 is not
actively controlled by the adversary anymore, it will send its own authenticated public
key to the communication channel as well. This will result in two different messages
legally authenticated as coming from Pi, which will constitute a public proof of Pi's
compromise and must trigger a reboot procedure.

When a server is rebooted, it internally chooses its new private key, publishing
only the corresponding public key, which must be then installed on all servers in
A. At the same time, public keys {a}t)} of other servers must be installed on the
rebooted server. Notice that installing these public authentication keys requires the
same degree of trust in the system management as during the initialization of the
system.

6.3 The Combined Protocol

Combining all the above pieces we get our full protocol for proactive secret sharing:
At the beginning of every time period, secret sharing servers trigger an Update Phase,
which consists of the following stages:

1. Private Key Renewal

2. Share Recovery (including Lost Share Detection)

3. Share Renewal

Notice that the above protocol is in fact a protocol for proactive storage of the secret.
The secret-sharing initialization and the secret reconstruction protocols are discussed
in sections 4.2 and 6.1.



Chapter 7

Proactive Secret Sharing with
Pedersen's VSS

In sections 4, 5 and 6 we presented the proactive secret sharing protocol using Feld-
man's VSS scheme since Feldman's VSS is simpler than the one presented by Pedersen
in [Ped91], and hence makes the ideas behind our proactive protocols easier to un-
derstand. However, as we claim in section 3, Feldman's scheme reduces the secrecy
protection of our protocol to semantic security relative to the prior knowledge of
gX (mod p). In this section, we present the initialization, share renewal and share re-
covery parts of the alternative proactive secret sharing protocol which uses Pedersen's
instead of Feldman's VSS. The secret reconstruction protocol described in section 6.1
stays the same for the version with Pedersen's VSS (except that the meaning of the
public versions of the shares is slightly different). The private key renewal protocol
also stays the same as in section 6.2, because maintainance of communication keys is
orthogonal to the issue of whether we use Feldman's or Pedersen's VSS mechanism
for renewal and recovery of shares.

7.1 Initialization

We extend the initial requirements described in section 4.2 so that all servers in A
know a pair of numbers g, h in Z but even the (computationally bounded) adversary
controlling up to the minority of the servers does not know d - loggh. We can make
the servers agree on such a pair (g, h) in a following way: Every server broadcasts
a random pair (gi, hi) in Z , collects other servers' broadcasts and computes g =

IiEj{1...} gi (mod p) and h= --- j{...,} hi (mod p).

In addition to knowing g and h, every server Pi holds a share {x °) , z °) } consisting
of two numbers in Zq such that there exist two k degree polynomials f(.) and b(-) in
Zq where f(0) = x and for all i E {1...n}, f(i) = xi, b(i) = zi (Pedersen describes in
[Ped9l] how to initialize this setting securely). Also, every server Pi stores the set of



public versions {yYo) }i(1... n of the secret shares, but they have a different meaning
now:

yi = gX' hez (mod p)

7.2 Share Renewal

We present the new version of the share renewal protocol for each Pi at period t

1. Pi picks 2k random numbers {6im,7'Yim}mEJ{1...k} from Zq to define polynomials
6i(z) = 5il z 1 6i2 z2 +... + 6ikzk and y7i(z) = "ilz- + 7i2z2 + -... + ikZk in Zq.

2. Pi computes values cim = (g) 6im•(h)7im (mod p) for each m e {1...k} and values
uij = i(j) (mod q) and wj = yi(j) (mod q) for each j e {1... n}

3. Pi broadcasts message VSSt) = (i, t, {Eim}mEl{1...k}, {ENCj(uij, wij)}je{1... n}\{i})

and the signature SIGi(VSS(t )).

4. For all messages broadcasted in the previous step by other servers, Pi decrypts
its shares, i.e. {uji, wjii}jE{1... n}\{i}, and verifies their correctness by checking for
all j = i

guhwii = II (ejm) i •m (mod p) (7.1)
me{1...k}

5. If Pi finds all the messages VSS t), j = i to be correct, then it broadcasts a
signed acceptance message. Otherwise, just like in the protocol 4.4, if there is
something wrong with message VSS t), P2 either automatically marks Pj as bad
and/or starts an accusation protocol against it as described in section 4.5, with
the only difference that the subject of the accusation is a pair (uji, wji) instead
of a single value uji.

6. Let Bi be the set of servers that Pi marked as "bad" in the above process (If all
servers broadcasted acceptance messages then Bi is empty). Then Pi performs
the following updates: First it computes its own new share:

x +- • ý-i) + E uji (mod q) , z•t) z-1) + E wj (mod q)
jiti jot3

and then it updates its set {yj}ji{1...n} by assigning for all j

y ) y (-1) H f (Erm)m (mod p)
aoBi mE1 {...k}

(which is equal to yt-1) * II gUai hwai (mod p) )
aoBi



Finally, P erases all the variables it used in this protocol, except for its current
share (xt), zt)) and its new set {yIt)}E(1...n} -

7.3 Share Recovery

The lost share detection protocol from section 5.1 changes only minimally: Every
server Pi verifies whether its share is consistent with the value yi it stores, by checking
whether gi hzt yi (mod p). Depending on this outcome, Pi either broadcasts a
request for share recovery or broadcasts the set {Yj}jE{1...n}.

In the lost share detection protocol, every honest server will arrive at the same set
B of servers that need share recovery. Let D = A \ B. The new protocol for recovery
of the share of each server Pr, r E B is as follows:

1. Each Pi, i E D picks two random k-degree polynomials 6Ji(.), Yi(') E Zq[z] such
that 6i(r) = 7iy(r) = 0 by picking random coefficients {6Sij, ýij}jEl{1...k} in Zq and
computing Jio = - EiEJ{1...k} Jij r j (mod q) and yio = - EEj{1...k} 'yij r j (mod q).

2. Each Pi verifiably secret-shares 6i(.), -y(') among servers in D by broadcasting
VSSi = (i, {g6tmh•Vm (mod P)}m•E{0...k}, {ENCj(6i(j), Yi(j))}je~), together with
SIGi (VSS ).

3. Every server receives the above broadcasts and decrypts the parts that are
encrypted under its public key. Then for all pairs Pi, Pj of servers in 9, Pj
checks whether 63(r) = -yi(r) = 0 (mod q) by verifying

I (g6imh~im)(rm ) 2 1 (mod p) (7.2)
mEJ{0...k}

and whether (6i(j), y-(j)) is consistent with commitments broadcasted in VSSi

g9i(i)h7' (3) 2- I (g6imh7im)(i m) (mod p) (7.3)
mEJ{0...k}

4. Depending on the above verification the servers broadcast acknowledgments or
start accusation protocols just like in protocol 5.3. By public resolution of the
accusations, each server in V and the server Pr decide on set V9 C 'D of servers
that properly constructed and distributed their re-randomization polynomials
6i () and (yi().

5. Each server Pi, i E D' creates its new share of (Xr, Zr), x i = x' + >jE , Si(i),
z = zi + EJeD' -yj(i) and sends it encrypted and signed to Pr by broadcasting
RECi = (i, ENCr(x•, z')) and SIGi(RECi) on the communication channel.

-~*rrr~r*·--·--·--·--------I --



6. PFr decrypts these broadcasts, takes exponents {gi mh½rm (mod P)}jjEv',mc {0...k}
that were broadcasted in step 2 and verifies whether:

gX- y * J (i)hy(') (mod p) (74)9 •hz --yi, I g -4)
jEE)1

(which should be equal to gxi+EjC 'D j(i) hzi±+ZJ ,,(i) (mod p) )

where for all j D':

jj (')h- I (gjmhym)(im ) (mod p)
mE{0...k}

7. In this way Pr arrives at a set D9" C D' of servers that in step 5 broadcasted
correct new shares (x', zI). Now Pr can interpolate {x }ieD,, to recover Xr and

then interpolate {z4}ji,, to recover Zr.



Chapter 8

Applications: Proactive Public
Key Cryptosystems

Proactive secret sharing can be used to store any sensitive information. However, as
mentioned in the introduction (section 1.2), proactive secret sharing is most useful for
sharing of cryptographic functions. The functions that we know how to proactively
secret share are all ElGamal-like public key cryptosystems in which x e Zq is a secret
key, and y = gX (mod p) is its public counterpart. These functions were described by
ElGamal in [E1G85], while their distributed versions were first presented in [DF90].
It is a hard problem to proactivize RSA-based public key cryptosystems. So far we
have designed only an exponential-cost proactive RSA signature scheme [JJKY95].
Even though this solution has a communication and computation cost exponential in
the number of secret sharing servers, since the number of servers in function sharing
is usually small (like 3 to 5), this solution is not inefficient in practice.

PROACTIVE FUNCTION SHARING: The notion of function sharing is well formalized
in [DDFY94] (also, see [DF90]). We will sketch it here as follows. Let f(-) D --+ I
be the function we want to share. A (k + 1, n) threshold function sharing scheme
of .F(.) consists of algorithms Gen and Com. Gen takes iF(.) and creates n partial
functions •i(.) : D -+ Ii for i E {1... n}. Corn is a public algorithm such that for any
argument m E D and for any sequence of (k+ 1) elements {il,... ., ik+I} C {1,..., ,

Corn combines the results of the partial functions applied to m into the result of Y
on the same input: Com[Yi% (m), . 2 (m),...m ik+1 )]- r).

For example, we can share the exponentiation function Y : Zq -+ Zp, F(m) =
m' (mod p) as follows: Gen takes x and creates n shares {Xi}i~1...n} of x with (k+1, n)
Shamir's secret sharing with a k degree polynomial f(-) in Zq. Each function F. :
Zq -+ Zp is defined as Fi(m) - mT (mod p). Then Corn takes the results of (k + 1)
functions (let {i,..., ik+1} be their indexes) and computes

Com[ (), Mii), .. . i i )a2 i 2(m))i2.. ik+1 (i k+1

Smai x * .2 *2 m ai+Xk+l



_ matlxil- +a-2 xi 2±...aik+lXik+l= l Z1 Zs+G2 i2 Xi k+1 +

= mx (modp)

= Y(m)

where {ail, ai2 ,+... , a+ 1 } are Lagrange interpolation coefficients, i.e. ail xi + ai2xi 2 +

... aik+l x+ 1 = x (mod q).

Notice that in the example above, function F is defined by the secret element x,
and similarly the partial functions {.Fi}ie{...n) are defined by shares {xiiE{1 ...ni- In
this sense, function sharing is an extension of secret sharing. Now, if we maintained
shares {xi}iE {...n} of x proactively (renewing them every every time period), algorithm
Comn would still produce F(m) = xm (mod p) as long as majority of the shares

{xt)}iE{1...n} correspond to x for each time period t, and as long as there is a way of
telling apart a partial Fi(m) computed with the correct share xi from the result of
applying some incorrect partial function to m. We call such a combination of function
sharing and proactive maintainance of shares, a proactive function sharing.

We give two examples of public key cryptosystems in which the above mechanism
of sharing the exponentiation function is combined with proactive maintainance of
shares of the secret exponent. The first example is a proactively secure Key Cer-
tification Authority implemented with proactive sharing of the ElGamal signature
function. In the forthcoming paper [HJJ+95] we give more examples of proactive
signature sharing. The second example is a proactively secure database implemented
with proactive sharing of the ElGamal decryption function.

8.1 Proactively Secure Certification Authority

A particularly attractive application (presented in [HJJ+95]) of proactive function
sharing provides proactive digital signatures which achieve the benefits of threshold
signatures, with the additional property that the scheme is broken only if the ad-
versary corrupts more than a threshold of the servers in a single time-period. For
signature keys that live for long time and require very strong security, like keys of
network Certification Authority, this solution is particularly suitable.

8.1.1 Background on ElGamal signatures

There are many ElGamal-like signature schemes that can be performed in this setting
[NR94, HPM94], but we present the one used by Harn [Har94] and based on [AMV90],
because it allows for efficient distribution of the signature function. The party who
knows x can sign a message m E Zq by picking a random number k e Zq and
computing:

r = gk (modp)



s = x*m-k*r (modq)

The signature on m is the pair (r, s) which can be verified by equation

ym = rr * g ' (mod p)

because if the pair (s, r) is computed correctly from x and some k, then ym =
gXam (mod p) and rr * gs = gk*r * gx*m-k*r = gx*m (mod p) too.

8.1.2 Distributed Signature Operation

During every time period (t), the system of n servers that proactively secret share x
can process outside requests to issue the above signatures. When an outside party
submits a request to sign message m by broadcasting it on the communication channel,
this triggers each server Pi E A to verify with the local copy of the policy of this
Certification Authority whether m should be signed or not. If it should then every
server Pi performs the following protocol (which is only a slight revision of Harn's
protocol given in [Har94]):

1. If i E Vi, (i.e. if Pi thinks that it belongs to the set of k + 1 servers that should
be issuing partial signatures in this round), Pi issues the first part of its partial
signature by picking a random number ki E Zq, computing:

ri = gki (mod p) (8.1)

and broadcasting (i, ri, SIGi(i, ri)).

2. Every server Pi in A collects the broadcasted values rj and checks whether
the set E of servers that properly broadcasted their rj's is equal to Di. If
not, Pi goes back to the first step of the protocol, but with a new set )V +-
£ U NEW(A \ V•, k + 1 - 191), where NEW(A, x) is a public function which
returns x elements of set A.

3. Otherwise, if Pi sees that every server in Di properly broadcasted their rj, Pi
computes the first part of the final signature:

r= f rj (mod p) (8.2)

4. Every server Pi such that i E Di computes its partial signature key ai:

ai xi * H . . (mod q) (8.3)
jE(Th\{i}) I - '

And using that key, issues the second part of its partial signature by computing:

si = as * m - k *r (modq) (8.4)



and broadcasting (i, si, SIGi(i, si)).

5. Every server Pi in A collects these broadcasts and creates a new set £ of servers
in Di that properly broadcasted their sj's and for which the following verification
equation holds:

()HuE(Vi\) ~~ (mod q) _ gS * r (mod p) (8.5)

Notice that if D7 = D7 then (yg)HUE(vD\(j\ ) - (mod q) = (gm) a (mod p).

If 8 A Di then Pi recomputes its set Di: Di +-- U
and goes back to the first step of the protocol.

6. Otherwise, i.e. if all partial signatures are correct,
assembles the second part of the final signature:

s = s (mod q)
jE i

NEW(A \ Di, k + 1 - 1I1)

each Pi (for which i e Di)

(8.6)

and broadcasts (m, s, r).

The party that originated the request to sign m can take these signatures and verify
them with y.

VERIFICATION OF THE SIGNATURE: The (m, s, r) triple is a standard ElGamal sig-
nature and can be verified with the public key (p, g, y). Notice that if a set D of k + 1
servers in A broadcasted the same (s, r), then ViE-Di = D. Therefore (all equations
are modulo p):

= (1 rj)r * g(ZieVs)

= (i gki)r * gEE(a*m-k, *r)
jE-D

= g9 (E k),r* gm(EiEV aj)-r*(Zv ki )

(= g*j aj) * gr*(ZjEVk 3) * g-r*(jEV k)

= g •M*(Z.ji a3)

= g M*(ZjE-D(Xj*FIuE(v\{j}) uj))

(from eq. (2) and (6))

(from eqs. (1) and (4))

(just algebra...)

(rearranging terms...)

(from eqs. (3))

(from Lagrange interpolation formula)
(because y = gx)

rr * gS

Sym



8.2 Proactively Secure Database

Instead of direct proactive secret sharing, we can protect the array of sensitive data by
storing it encrypted with ElGamal-like public-key encryption on multiple servers, and
proactively secret sharing the ElGamal decryption key. This application prove useful
for storing not data files themselves, but an array of DES keys used for symmetric
encryption of the data files that one wants to store securely.

The ElGamal encryption works as follows; The encryption of m E Zq is a pair
(m yk, gk) (both modulo p), where k is an element of Zq picked at random and
y = gX (mod p) is the public key. To decrypt, the owner of the secret key x can
compute m = (myk) * (gk)( - x - m * gxk-xk (mod p). This decryption function
7(.) : Zp x Zp -+ Zp,, F'(cl,c2 ) cl * x2x can be shared in the same way as the
exponentiation function F(*) we used as an example above. Shares of xi can be also
maintained with proactive secret sharing using Feldman's VSS, and the two protocols
can be combined into proactive sharing of ElGamal decryption function.

To ensure integrity of the data, we have to add a data corruption detection protocol
to the update phase: The servers compare the hashes of their ciphertexts and decide
by majority on the correct version. Since the ciphertext itself is not secret, the servers
that have a correct version can broadcast it, so the servers that lost it can regain a
correct ciphertext. If this proactively secure archive is used to store DES keys for
encryption and decryption of data files, then to ensure the same level of integrity
protection of the encrypted files themselves, these files should also be replicated and
hashed, and their hashes should be periodically compared to provide detection of data
corruption.

This scheme, just like proactive signature sharing from the above section, achieves
the benefits of threshold function sharing with the additional property that the ad-
versary can read the secret data, or destroy the data and/or the decryption key, only
if she breaks to more than k servers during the same time period.





Chapter 9

Security Analysis

Organization

This section contains the proofs of theorems 3.1.0 and 3.2.0 which state the security
properties of the two proactive secret sharing schemes we propose. These proofs are
organized as follows:

We begin in section 9.1 by proving theorem 4.3.1 about the correctness and
the secrecy protection of the basic proactive share renewal algorithm presented in
section 4.3. This algorithm contains the core of the full share renewal scheme, stripped
of the verifiability mechanisms, and consequently secure only against a minority of
gossip faults (i.e. against the adversaries that only eavesdrop on the secret information
stored by the server, as opposed to byzantine faults that mean that the adversary who
compromises the server can cause it to follow an algorithm of the adversary's choice).
We present this theorem and its proof because they provide the intuition about the
correctness and the security characteristics of the full proactive protocol.

In section 9.2, we prove the robustness of both proactive secret sharing schemes,
i.e. the robustness parts of theorems 3.1.0 and 3.2.0.

In section 9.3 we justify why we use encrypted broadcast for server to server
communication during our protocols, in place of the private links assumption used in
the original VSS schemes by Feldman and Pedersen. We will refer to this section in
the section 9.4, in which we analyze the secrecy protection of the proactive protocol
with Pedersen's VSS, building to the proof of the secrecy part of theorem 3.2.0.

Although in the presentations of our algorithms (chapters 4 to 7) we presented
the version with Feldman's VSS first, in the proofs of secrecy, we will start with the
version with Pedersen's VSS, because it allows for better organization of the proofs:
In section 9.5, where we prove the secrecy part of theorem 3.1.0, i.e. the secrecy
characteristics of our scheme with Feldman's VSS, we will use the theorems proven
for the version with Pedersen's VSS in section 9.4.

Section 9.4 is itself divided into four major subsections: In subsection 9.4.1
we analyze a slightly modified version of the share renewal protocol (in the version



using Pedersen's VSS): To achieve information-theoretic secrecy in our protocol, we
introduce an additional requirement on the encryption scheme we use, namely a black-
box assumption. This section is designed to show that our scheme is essentially as
secure as the original Pedersen's VSS scheme it uses. Furthermore, we will need
these results in subsection 9.4.2, where we analyze the secrecy of the share renewal
protocol when this special assumption about black-box encryption scheme is removed.
In that section we will also formally define the notions of envelope, semantically secure
envelope, envelope semantically secure relative to knowledge of g' and semantically
secure secret sharing scheme. We will end the section by proving that the adversary's
view of the sequence of executions of the share renewal protocol is a semantically
secure envelope of the secret x. In subsection 9,4.3 we show that analogous proofs
can be carried out with regards to repetitive executions of the share recovery protocol.
Finally, in subsection 9.4.4, we show that the analogous proof goes through if the
adversary's view includes the execution of the whole proactive algorithm, consisting of
runs of proactive share renewal interleaved with runs of the proactive share recovery
protocol.

9.1 Basic Proactive Share Renewal

In this section we will prove theorem 4.3.1 about the correctness and the security char-
acteristics of the basic proactive share renewal algorithm as described in section 4.3.
In that scheme, we assumed that the adversary can only eavesdrop on the servers that
she compromised. We also assumed that the shares are transferred between servers
with perfect secrecy on the links. We claimed that the adversary that can compro-
mise no more then k servers during each time period, cannot learn anything about
the secret, and furthermore, that the servers always hold shares of the correct secret.

Proof of theorem 4.3.1: We proceed by an inductive argument where it is assumed
that at initialization the shares correspond to the secret x according to Shamir's
scheme. Furthermore, we assume that at each time period r = 1, 2, .., t - 1 the
theorem holds. In particular it means that after the update phase of time period
t - 1, the shares interpolate to the secret and that the adversary has learned nothing
about the secret. We prove that this condition is preserved during time period t.

CORRECTNESS: Let S be a set of k + 1 shares resulting from the t-th update phase.
For simplicity of notation, assume S = () ,x }. Let a,, a 2 , ... ak+1 be
the Lagrange interpolation coefficients for set S, i.e. iE{j1,...,k+1} aif(i) = f(O) for
any k-degree polynomial f(-). We have:

k+1 k+1 n
aix t) = xt - 1 ) + (i) (by step 3 of the protocol)

i=-1 i=1 j=1



k+1 n k+1

( Et-l) + Eai6j(i)
i=1 j=1 i=1

n

= x + E 6j(0) (by interpolation)
j=1

= x (because 6j(0) = 0 for all j)

SECRECY: Let A be an eavesdropping adversary. Let K, be the set of k, servers that
A eavesdropped into in period t - 1 but not in period t; let L be the set of 1 servers
that A eavesdropped into both in period t - 1 and in period t (we may assume that
A eavesdropped into these servers during the update phase); and, let K2 be the set
of k2 servers that A that eavesdropped into in period t but not in period t - 1. By
our assumption on the adversary, we have ki + 1 < k and 1 + k2 < k. We will assume
a clear worst case when k = k2= k - 1. Here is a picture that shows which faults
are counted as 1, k, and k2:

K1 L K

period (t) update phase period (t+ 1)

We now show that the availability of all this information about shares and updates
does not provide information about x.

Notice that since we assume that k shares from period t - 1 are known, fixing the
secret x determines the interpolation polynomial f(t-1) corresponding to period t - 1.
Similarly, from the k known shares of period t, fixing x determines the polynomial f(t).
By construction these polynomials are consistent with the available information from
the set of shares available to the adversary (i.e. {xt-1)}iEKiuL and {xst)}iEK 2UL).

On the other hand, the difference between these polynomials represent a k-degree
polynomial with free coefficient zero and its evaluation on the points corresponding
to the servers in L is consistent with the new shares available to the adversary.
(They are consistent also with the value of the partial shares corresponding to the
polynomials 6 (z) which are randomly chosen conditioned only to Ji(0) = 0).

Since the above argument holds for any value of x, then all possible values of x are
consistent with the available information. On the other hand, there is no degree of
freedom beyond x (i.e., x and the known shares determine all the additional shares),
and hence the distribution on x conditioned on the information available to A is
uniform. In other words, no information on x is revealed. 0



9,2 Protection of Integrity

In this section we prove the robustness part of theorem 3.1.0 and 3.2.0, i.e. we prove
the robustness properties of the two proactive secret sharing schemes we propose in
this thesis. For the sake of the proof of robustness of the scheme with Pedersen's
VSS, we state theorem 9.2.2 about the integrity protection of the original Pedersen's
VSS scheme. In both proofs we will use the following lemma:

Lemma 9.2.1 The servers that are not compromised by the adversary in time period
t, hold the correct sets Ycorrect = {y(t)}ieA of public versions of correct secret shares
{xt), z(t)}

,~~' i $t'iEA.

The same is true of Ycorrect in the version with Feldman's VSS.

Proof: We prove it by induction. It is true at the initialization of the system, and
we will show that if this is true at the beginning of one update phase, it will be true
at the beginning of the next one:

Let C C A and C' C A be the servers that are not compromised during the
time period t - 1 and t respectively. In the share recovery protocol, each server in
C broadcasts Yorrect and every server in C' receives it and since by assumption the
majority of broadcasted Y's are equal to Ycorrect, each server in C' adopts it as a
correct set Y. Later, in the share renewal protocol, each server in C U C' will arrive
at the same set Ycorrect of new public versions of correct secret shares, because each
honest server in the share renewal protocol has the same view of set A \ B of servers
whose update polynomials are correct (and constitute a correct update function for
both the secret shares and their public versions in Y). Therefore, servers in C' will
hold the correct new set Yjorrect until the end of the next update phase. 0

Proof of the robustness part of theorem 3.1.0: We omit this proof: Throughout
the description of the protocol (sections 4, 5 and 6) and in the proof of theorem 4.3.1
above, we already gave the argument why the mobile adversary cannot destroy more
than k shares of x in every time period: In spite of the adversary's actions, every
server that was not compromised in time period t, holds correct secret share xt) of
secret x. Furthermore, from lemma 9.2.1, every such server holds a correct set Ycorrect
of public images of all correct shares {x , ... , i E {1... n}}. This means that honest
servers can reconstruct the secret following the protocol described in section 6.1. m

INTEGRITY PROTECTION IN PEDERSEN'S VSS: Before we give the proof of the
robustness part of theorem 3.2.0, we recount the original theorem that Pedersen
proves about the integrity protection of his VSS scheme.

Theorem 9.2.2 In Pedersen's VSS scheme as presented in 2.2, the dealer can dis-
tribute inconsistent shares if and only if he can find loggh.1

1However, see section 9.3



We call shares {{ui, w,}}i{i1...n} inconsistent if there are no k-degree polynomials
6(.),'y(-) in Zq s.t. 6(i) = ui and -y(i) = wi for all i E {1...n}.

In other words, Pedersen's VSS scheme gives only computational protection of
integrity, i.e. the ability of the servers to verify whether the shares they receive are
consistent, is a subject to computational limits imposed on the dealer.

The following important fact is used to prove the above theorem:

Lemma 9.2.3 Being able to find two pairs (a, b), (a', b') in Zq such that gahb b

ga' hb' (mod p) is equivalent to finding loggh over Zp, because loggh = a-a' (mod q).b'-b

Proof of the robustness part of theorem 3.2.0: If we assume that the sig-
nature scheme SIG(.) is existentially unforgeable, then the adversary can render x
"unreconstructible" if the following happens:

1. The new shares {(xi, zi)}iOE{1...n} computed at the end of the share renewal pro-
tocol are not consistent, or they are consistent but xi's interpolate to some
X1 =,4X.

2. When the lost share detection protocol starts, an honest server Pi has a share
(xi, zi) which is inconsistent with other shares, but the honest servers decide
that Pi does not need share recovery.

3. In the share recovery protocol, the recovered share (xr, zr) of the honest P,
(who had lost its share in the previous time period) is not consistent with other
shares.

How can any of this happen?

Ad(1): The new shares can be inconsistent only if some of the partial update
polynomials are inconsistent and the honest servers fail to realize that. However, if
some server P2 manages to distribute inconsistent shares { (uij, wi)) 1E1...n} for which
the verification equation 7.1 holds for every j, then from theorem 9.2.2 it follows that
the adversary controlling Pi can find loggh.

Ad(2): In the lost share detection protocol, the only way a server cannot convince
others that it needs a share recovery is when it thinks that its share is correct, i.e.
if gxihzi = yi (mod p) where yi is held by the majority of the servers. From lemma
9.2.1, the majority of the broadcasted sets {yj}jEA at the beginning of the lost share
detection protocol is correct, and hence Pi arrives by voting at a correct public version
yi of its share (xi, zi). If the adversary had invaded Pi during the time period and had
changed its share to (xi, zi') s.t. gxý hz = Yi (mod p) but (x, zi') is inconsistent with
other shares, then (xý, z2) $ (xi, zi) while gx'hz - gxz~h = yi (mod p) which (from

lemma 9.2.3) means that the adversary can find loggh.

From the discussion of the consistency of the public versions yi of secret shares in
the separate paragraph below, it follows that the adversary cannot fool Pi to think
that its modified share (x', zi') is right by first fooling it to accept an incorrect y'.



Ad(3): In the share recovery protocol, Pr can reconstruct an inconsistent share
(xr, Yr) in the following three cases:

* First, if the re-randomization shares {6i(j), Yi(j)}i,jy, received by servers in
D' are consistent with some polynomials {0&(.), (-Y)}1E{1... }V' for which 3i(r) =
'i(r) = 0, but some server Pi, i e D' sends to Pr a pair (xs', z~') # (xi +

jEV, 6J(i), zi + jEV, 7Yj(i)) for which equation 7.4 holds. Again, from lemma
9.2.3 this means that Pi can find loggh.

* Second, if some server Pi in D' distributed inconsistent shares that passed the
verification equation 7.3. It follows from theorem 9.2.2 directly that Pi can
compute log9gh.

* Third, if the re-randomization shares {S0(j), yi(j)}ijEV, received by servers in
EY are consistent with some polynomials {6j('), (')},iEV, (i.e. if equation 7.3
holds for each i E '), but for some i e ', (6i(r), -y(r)) : (0, 0) even though
the equation 7.2 still holds for that i. But this would mean that g-(r)h (r ) =
g0 ho = 1 (mod p) and so, from lemma 9.2.3 it follows that Pi can find loggh =

S.(r) (mod q).

9.3 Private Communication Links vs. Broadcast
in VSS

Our protocols makes explicit the silent feature of VSS protocols which is not discussed
by either Pedersen or Feldman, but which considerably complicates the issue of secrecy
protection. It is the issue of private communication channels with which the shares are
transfered from the dealer to the shareholders in both Feldman's and Pedersen's VSS
schemes. In contrast, as we mentioned in section 2.2, in our solution we assume that
broadcast channel is the only medium of communication between the servers in A.
To achieve privacy and authentication given by secret server-to-server communication
links, we have to resort to public key encryption and signature system (as explained
at the end of section 4.1).

Modification of Pedersen's and Feldman's VSS

Notice that in our proactive protocols we use a slightly modified version of VSS
schemes as presented in section 2.2: We assume that the servers have a securely
initialized public key encryption system. Then, instead of sending Sharei privately
to Pi, the dealer publicly broadcasts ENCi(Sharei). If server Pi checks its share
with the verification equation and it does not agree with the publicly broadcasted



commitments on the secret sharing polynomial (or a pair of polynomials in the case
of Pedersen's VSS), Pi starts an accusation protocol, as described in section 4.5.

The reason why we modify the VSS schemes so that all communication is via
broadcast channel is that we claim that these schemes will not otherwise work (in the
sense that the claims of theorem 9.2.2 cannot be true) for the number of byzantine
faults k > !. If we want our proactive secret sharing system to work for n =3.
2k + 1, we have to modify the underlying VSS schemes as described above, and only
then the above theorems will apply. To make the VSS scheme more similar to our
proactive secret sharing setting, let's agree that the dealer belongs to the n share
holding servers A (and always leaves one share of the secret for itself). Assume that
k of the servers are dishonest, including the dealer. To see why sending shares on
private communication channels cannot work when k < 2, consider the following
scenario:

The dealer sends no message at all to n - 2k of the honest servers (let's call
these servers K), and consistent shares (consistent with the publicly broadcasted
commitments) to both the other k honest servers (let's call them W) and to the
remaining k - 1 dishonest servers (let's call them D). Just before the protocol ends,
servers D can always erase their shares. Consequently, W cannot accept this dealing
as correct, because at the end there could be only k consistent shares of x, and hence
x will be lost (if k was the reconstructibility threshold, the adversary could learn the
secret by compromising k servers). Since servers 7Wt do not see what, if anything, was
sent to servers K, the protocol must have the following two clauses:

* If a server does not receive a consistent share from the dealer, it broadcasts
a protest message. In particular, when the dealer does not send to this server
anything at all, this server does not have anything more than a protest message
to convince others that it was cheated.

* If a server receives at least n - 2k protest messages, it decides that the dealer
cheated.

However, such a protocol is insecure in the face of the following behavior of the
dishonest servers: Let D' be the set of k dishonest servers and let the dealer be
honest this time. Then after the distribution of shares, servers 1' will broadcast their
protest messages and, since there are k > n - 2k of them, the honest servers will
decide that the dealer is dishonest. In this way, the adversary can always prevent
successful sharing of the secret.

If k < 2 then the above protocol will work with reconstructibility threshold k +1:
If k < 1 then n - 2k > k, and hence, if a server receives n - 2k protest messages,3
some of them must be sent by honest servers, which means that the dealer cheated.
On the other hand, when a bad dealer sends n - 2k - 1 bad shares to the honest
servers K and both the dealer and the servers D erase their shares, servers W will
have enough shares to reconstruct x, because 17I = (n - k) - (n - 2k - 1) = k + 1.



For surveys of the bounds on the adversary and the computational assump-
tions they necessitate for VSS algorithms, we send the reader to [Rab88], [RB89]
and [BGW88].

Consequences for Secrecy Protection

Because we want our scheme to work for n = 2k + 1, we substitute sending shares
over private server-to-server links by sending them encrypted and authenticated (with
public key system) on a common broadcast channel. In this way, the recipient P of
a secret share s who is cheated by the dealer, can prove this to all the honest servers
connected to the communication channel, by following the accusation protocol we
describe in section 4.5. This protocol uses the dealer's broadcast of s encrypted
under the public key of P as its commitment to sending s privately to P.

This change, however, reduces the secrecy protection of both schemes, but most
notably Pedersen's, since in Feldman's scheme, go is revealed to the adversary anyway.
To prove that his VSS scheme gives information theoretic secrecy of x, Pedersen uses
the fact that the shares {ui, wi} are sent on private channels in an essential way: Let
B C A be the set of servers compromised by the adversary during the dealing of the
secret (IBI < k). Since the shares are sent with perfect privacy, the view View of the
adversary in theorem 9.4.3 contains only the set of shares {6(i), y(i)}iEB and the set
of broadcasted commitments {gmh'1m}mE{0...k} 2. If we extend this view by the set
of publicly visible encryptions of the remaining shares {ENCi(6(i), Y(i))}iEA\B, then
the claim of theorem 9.4.3 that for all Xo E Zq

Pr(x = Xo I0 View) = Pr(x = Xo)

is no longer true: Since every encrypted message decrypts to a specific share, only
one set of shares {6(i), y(i) }ibE{1...n}, and consequently, only one value x0 is consistent
with View.

Instead of information theoretic secrecy, the protection of the secrecy of x in
our modified VSS protocols, becomes a subject to the strength of the encryption
scheme ENC(.) we use (in addition to the information-hiding strength of the publicly
broadcasted commitment on the shares, which in Pedersen's VSS does not give out
any information on x, but in Feldman's VSS gives out go).

We should note that to achieve n = 2k + 1 bound, we could in principle also use
the VSS mechanism proposed by Tal Rabin in [Rab88]. We choose not to, because
this solution assumes broadcast and secret links between the servers and its commu-
nication costs are much bigger (as opposed to Feldman's and Pedersen's VSS, it is
an interactive scheme). However, since [Rab88] does not base her results on crypto-
graphic assumptions, it is possible that one would prefer it over VSS mechanisms we
use, and so one possible extension of this work would be to check whether her VSS

2To avoid redundancy, we will omit that these exponentiations are always computed (mod p)



algorithm can also be adopted to the proactive setting.

9.4 Protection of Secrecy in the version using
Pedersen's VSS

Organization

The proof of the semantic security of the proactive protocol with Pedersen's VSS (the
secrecy part of theorem 3.2.0) has to be broken down into smaller steps:

In section 9.3 we justify why our protocol achieves different secrecy protection (i.e.
semantic security) then Pedersen's VSS on which we built our scheme (i.e. information
theoretic secrecy). In section 9.4.1 we show that under special assumptions (which
were overlooked by Pedersen), our share renewal protocol also offers information
theoretic secrecy. In section 9.4.2 we remove the special assumptions introduced in
the section before, we define all the notions of semantic security which we will use,
and we give the formal proof of the semantic security of the share renewal protocol.

In sections 9.4.1 and 9.4.2, we discuss only the secrecy properties of the share
renewal protocol. Later, in section 9.4.3, we prove that this level of secrecy protection
is preserved during the share recovery. Finally, in section 9.4.4 we show that the
whole proactive algorithm, i.e. the repeated execution of both share renewal and
share recovery protocols, has the same security properties.

9.4.1 Share Renewal with Black-Box Encryption

From the discussion in the previous section, we conclude that our scheme differs from
the original VSS scheme of Pedersen by having:

* a different communication model: broadcast with explicit encryption instead of
private links

* a different model of the adversary: our scheme can support up to 1 byzantine
faults as opposed to up to 1byzantine faults or up to 1 gossip faults.

In this section we argue that if we modified our share renewal protocol to conform
to the original setting of Pedersen's VSS protocol, it would achieve the same level of
secrecy, i.e. information theoretical secrecy.

For the purpose of this section only, we conform our scheme to Pedersen's setting
by making a following abstract assumption: We assume that the encryption scheme
ENC(.) we use for broadcasting shares is a black box encryption scheme, i.e. the
ciphertext gives no (information theoretical) information about the cleartext to the
party that does not know the decryption key. We do not claim that there is a possible



efficient black-box encryption scheme that can be used in our proactive setting (in
particular, it can not be a public key scheme): we use it as an abstract construction
whose only purpose is to make the broadcasting of the encrypted shares in a single
run of the share renewal protocol look exactly like sending them on secure private
links:

* The adversary who does compromise one of the end parties can not learn any-
thing from the ciphertext.

* The ciphertext cannot be used as a commitment of the sender on the cleartext.

In section 9.4.2 this abstraction is removed and the proofs we give here are extended
for the more realistic case of ENC(.) being a semantically secure encryption scheme.

The share renewal protocol with black box encryption cannot use the accusation
mechanism to fight against up to Z byzantine faults. We have to modify the share
renewal algorithm in section 7.2 in step 5: Instead of accusations, the cheated servers
can broadcast only protest messages (just like in section 9.3) and servers decide on set
B of bad servers non-interactively: if P1 receives at least 1 protest messages against
P2, P1 marks P2 as bad.

Consequently, the share renewal and share recovery protocols (and the VSS pro-
tocol by itself too) using this encryption is secure either against k < 1 faults that are2
only gossip faults (in other words, the adversary cannot disable the attacked servers
from performing the correct protocol) or only k < 1 byzantine faults. Because our3
aim is to prove the secrecy of our scheme, we pick the first model of the adversary:
there are still k < of corrupted servers, but we agree that they cannot actively
cheat. In particular, in step 6, the set of servers that Pi believes to be faulty, is
always empty, i.e. Bi = {}.

With these assumptions, we prove that the periodical share renewal protocol pre-
serves information theoretic secrecy of the secret x. Notice that if we assume only
gossip faults, the share recovery algorithm is spurious and the periodical share renewal
protocol will constitute the whole proactive update protocol. We state it formally as
follows:

Theorem 9.4.1 If in the share renewal protocol we use Pedersen's commitment
scheme and we assume that the encryption scheme used in transfer of shares is a
black-box (i.e. information-theoretically secure) encryption, then an adversary who
compromises up to k < n servers in a time period does not learn anything about the2
secret x:

Pr(x = xo I {View(t)-}tE = Pr(x = xo)

for any xo in Zq and any integer to, where View(t) is adversary's view during the
update between time period t - 1 and t.



We will break the proof of the above into several steps. First we state a lemma
9.4.4 in which we reformulate Pedersen's claim of secrecy of his VSS scheme, to adapt
it to the way in which every server uses the VSS mechanism to distribute its partial
update polynomial. In lemma 9.4.5 we extend the claim of lemma 9.4.4 to the total
update polynomial, which is the sum of all the partial update polynomials. In lemma
9.4.6 we show that the public information {Yi}iEf{1...} about the shares of the secret
is equivalent to the public information about the coefficients of the secret sharing
polynomial as is available in the original Pedersen's scheme. We use these lemmas to
prove theorem 9.4.2, which says that a single execution of the share renewal protocol
(in a version using black box encryption) preserves information theoretic secrecy of
the secret x. Lastly, we extend the proof of theorem 9.4.2 to cover the case of multiple
executions of the share renewal protocol, in this way proving the full theorem 9.4.1.

Theorem 9.4.2 The view of the adversary during a single run of the share renewal
protocol between time period t - 1 and t, does not give her any information about the
secret x, i.e:

Pr(x = xo I View(t)) = Pr(x = xo)

for any xo in Zq.

In other words, View(t) does not bias the probability that x = xo to any value x0

in Zq.
We use the notation from section 9.1:

* K1 is the set of k, servers that are corrupted in period t - 1 but not in period t

* K2 is the set of k2 servers that are corrupted in in period t but not t - 1

* L is the set of 1 servers that are corrupted during the update phase between
period t - 1 and t, and can be counted as corrupted during both these periods

As in the proof of theorem 4.3.1, we assume a clear worst case when k = k2 = k -1 l
0. Without loss of generality, we assume that L = {1, . . ., l}, K1 = {l+1, ... , k}, K 2 -

{k+1,..., 2k - 1}. Since the encryption scheme ENC&(.) is a black-box, we will ignore
it: it carries no information to the adversary who does not know the secret decryption
key of party Pi. Therefore the adversary's view during this update can be summed
up as follows:

View(t) = (Shares(t-1 ), Shares(t), Ims(t-1), Ims(t), {Fulli}i2 eL, {Partiali}2iL) (9.1)

where:

Shares(t1) {t1) (t-1)iELUK
Shares Zi {i iLUK1

Shares( I) = {x e), ) }iELUK2



Ims(t-1) = (Yi)• ~}
Ims(t =- {y(t) }i
Full. = ), 3(.)

Partial1  = {6 1(j), i j)}jeL, {gmhim}me{1...k}

We picked the "Partiali, Fulli" notation to make a distinction between the update
polynomials distributed by servers Pi L about whom the adversary knows only a
partial information (i.e. the shares received by servers in L and the commitments
on the coefficients), and the update polynomials distributed by servers Pi E L about
whom the adversary knows everything (since the adversary controls servers in L).

The original theorem that Pedersen proves about the secrecy protection of his
VSS scheme in [Ped91] is as follows:

Theorem 9.4.3 If PedView is the view of the adversary who compromises no more
than k servers during an execution of the original Pedersen's VSS scheme as presented
in 2.2, then for any xo in Zq

Pr(x = x o I PedView) = Pr(x = xo)

In other words, Pedersen's VSS scheme gives perfect (information theoretical) secrecy
protection of x, because adversary's view PedView (up to k shares {ui, wi} and all
exponents {ei}ie{o0...k}) is consistent with x being equal to any value in Zq.

Unfortunately, we cannot apply this theorem directly to our scheme because we
use Pedersen's VSS scheme in a very peculiar way: Namely, every server Pi performs
the VSS protocol to secret share a publicly known value of zero. We cannot apply
theorem 9.4.3 directly to VSS schemes performed by servers Pi L because they
pick only k coefficients of polynomial yi(') at random (for all i, 7i0 = 0). Also, it
does not make sense to prove anything about secrecy protection of a number which
everybody knows to be equal to zero, since for all i, 65(0) = 0. Instead, we will prove
the following lemma, very similar to theorem 9.4.3, but useful for our scheme:

Lemma 9.4.4 Let V = {v3 }lEK 1 be a set of any k - 1 elements in Zq. Then:

Pr(VgEK6i(j) = v3 I Partiali) = Pr(VJEK1 i(j) = vj)

In other words, we claim that k - 1 values of every polynomial 6&(.), i V L are
hidden from the adversary with perfect, information theoretical secrecy.

Proof: This proof will be very similar to Pedersen's proof of theorem 9.4.3. All
equations are modulo q, unless otherwise noted.

We will show that there exists a pair of k-degree polynomials Polyv - (6j(.), Y('))
in Zq where 6*(0) = 0, y(0) = 0 and for every j E K1, 65*(j) = vj, such that Polyv is



consistent with View(t) in the following sense:

VjGL 6j(j) = 6i(j) (9.2)
ViEL -"(j) = (9.3)

VmE•{1...k} g,96mh = g=9 himh7im (mod p) (9.4)

where {irmi ,m}me{1...k} are coefficients of polynomials Polyv.

Notice that Pedersen's commitments {gfimh7-m}mE{1...k} uniquely define a k-degree
polynomial G&() in Zq whose coefficients {Gim}mE{1...k} are such that gGim gjimh-Yim

(mod p). Since Pi followed the protocol, we have that

Gi() = 6(.) + d4y(') (9.5)

where d = loggh (mod p).

Since * (.) is a k-degree polynomial with free coefficient zero, setting 6* (j) = 65(j)
for every j L (to satisfy equation 9.2) and assigning 6(j) = vj for every j E K1
defines 65{(.). Now we define 7'(') - (.)-6(.) From equation 9.5 it follows that
6*(.) + d-(') = 65(-) + d-y(.), and hence, -y7*(0) = 0 and also, for every m e {1...k},

*~m + dT*m = 6 im + dyim, from which equation 9.4 follows. Equation 9.3 is satisfied
too, because for every j EL:

7*(j) = G d(j) - 5(j) (from the definition of7y('))
d

= (bi(j) + d * ,(j)) - 5*(j) (from equation 9.5)
d

= (6(j) + d •()) - (j) (from the definition of 6*(.))
d

- 'yi(j)

This means that Polyv is consistent with View(t), and consequently it proves the
lemma. U

The next lemma follows immediately:

Lemma 9.4.5 For all well-formed sets {Fulli}tEL, {Partiali}jiL, and any set V =
{Vj}jeK 1 of elements in Zq

Pr(VMEK 1 (j) = I {Fulli}EL, {Partial,},¢L) = Pr(V6EK16(j) = vj)

where 6(-) = EZEA di()

In other words, every set of k - 1 values {6(j)}jEK, is equally possible given the
information contained in {Full2 }iEL, {Partiali}iL



Proof: Let i0 be some element in A \ L. From lemma 9.4.4, the values {jio(J)}jEK,
can be equal to any set V = {vj}jjEK, of elements in Zq. Even if every polynomial
5i(.),i 0 io is fully determined by {Full}ieL, {Partiali}i0 L (say, for i 0 io,j e Ki,
6i(j) = wij), the crucial values of the total update polynomial {(j))}jeK, can be equal
to any set V' = {V}j'EK,. Otherwise, if say, 6(jo) can't be equal to some v then it
follows that 6io (Jo) can't be equal to v - Eiwio wijo, which is a contradiction. 0

In the proof of theorem 9.4.2 we will need one more lemma:

Lemma 9.4.6 For any k-degree polynomials f(.), b(.) in Zq with free coefficient zero,
sets S, = {gfmhbm}mE{1...k} and S2 = {gf(i)hb(i)}iEA contain the same knowledge.

Proof: The claim of the lemma follows from standard interpolation properties of

polynomials: For all i, we have that gf(i)hb(i) = gmE({1...k}(fm)i~•m1 E 1 ...k (g m )im=

Im•{E1...k}(gfmh9m)im' which shows that from S, one can compute S2. To show that
the reverse is also true, note that the above equation is based on the linear re-
lation between values vf= {f(1),...,f(n)}, j 7r= {b(1),...,b(n)} and coefficients
cf= {fl,..--.,fk}, = {b,...,bk} by equations v+= A* c and v = A* c, where

1 [aiM~ 1... is a k-by-n matrix of numbers aim =imA = [aimjiE{i ... n}

For any k-element subset I = {i,..., ikj} C {1, . . ., n}, there is a k-by-k matrix
-4 

-4

A' = [aim] , 1 ...k} which relates v= {f (i)}jE{1...k} and v'= { b(i 3 )}je{,...k} to c-} andcr bIf equations..v -j an.v'= lband '-fA1'... .}A'
-+-4+-4

r by equations v'= A'* c and v'= A'*- . Since A' is a Vandermonde matrix, it is
-+f-4 r- + -+ -+

reversible, and Cf= (A')-'*i v' and r= (A')-'* v. If = {ai,... , ak} is the m-th row

of (A') - 1 then f m =a * vP, and since it is a linear relation, it can be carried over in
the exponent, i.e. gim = 1i{l... k(gf(ii))(aj) and similarly, hbm -=Ij6{...k}(h ())(a ).

It follows that
gfmhbm= . (gf(ii)hb(ii))(ai)

jE{1...k}

which shows that S, can be computed from S2 and completes the proof of the lemma.

0

Proof of theorem 9.4.2: We will show that for every value x = x0 in Zq, there
exists a family of k-degree polynomials: ••0 = f(t-1)(.), f(t)(.),r(t-1)(.),r(t)(.), where
f(t1) (0) = f() (0) = xo, such that .F o is consistent with View(t) in the sense that

1. f(t-1)(i) = x t- 1) , r(t-1)(i) = z(t-1) for all ie K UL(t1 , 2i foralli E K, u L

2. f( t )(i) = t) , r(t)(i) = z ) for all i E K2 U L

3. g(f (-)('))h(r( t - )(i)) - t-1) for all iEA

4. g(f(t )(i))h(r(t )(i)) = y t) for all i E•A



5. 6(-) = f(t)(-) - f(t-1)(-) and 7(') = r(t)(-) - r(t-1)(-) are consistent with infor-
mation given in {Fulli}i~eL, {Partialj}jiL.

From lemma 9.4.6, we get Pr(x = xo I {f()(i), r()(i)}iEK 2UL, m({=)hM)} l...k})

= Pr(x = xo IShares(s), Ims(t)). Therefore, from theorem 9.4.3, we have that
Pr(x = xo I Shares(t),Ims(t)) = Pr(x = x0). This means that there exist poly-
nomials f(t)(.), r(t)(.), where f(0) = x0 , that satisfy constraints 1. and 3. Similarly,
there exist polynomials f(t-1)(.),r(t-1)(.), where f(t-1)(0) = xo that are consistent
with Shares(t - 1), Ims(t-1) and xo, and which satisfy constraints 2. and 4.

We will show that constraint 5. is satisfied too. First we show that polynomial
6*() = EiEA 6i(.) (as constrained by information given in {Fulli}beL, {Partiali}iL)
can be equal to 6(.) = f(t)(.) _ f(t-1)(.): From correctness of the share renewal
algorithm, for j e L, 6*(j) = E a 6i(j) = x t )  (t-1) which, from definition of
f(t)(.) and f(t1)(.), is equal to f(t)(j)- f(t-1)(j) = 6(j). Lemma 9.4.5 means that

values {6 *(j)}jEK,1 can be any set of k - I elements in Zq. Hence, in particular we
can have 6*(j) = 6(j) for j E K2 . Since 6*(.), 6(.) are k-degree polynomials, with free
coefficient zero, if they have k common values, they must be equal.

Notice that 6*(.) and {Fulli}ieL, {Partial}~}iL define the second update polyno-
mial 7**(.) because there is only one k-degree polynomial -Y*(.) in Zq whose coefficients
{'IY}me{1...k} satisfy equation g6*hyn = 1[j-Ag6•'Yhj  g(ZE=c 6m)h(Zej A j m~) for

m E {1...k}. We will show that this -*(.) is equal to y(.) = r(t)(.) - r(t-1).

For every i e A we have:

gJ(i)h-(y') = gf())()-f(-l)(i)hr(t)(i)-r(t )(i) (from our definition of 6(.) and 7(.))
=(gf(t)(i)hr()(i)) ,(gf(t-1)(i)hr(t-1)(i))(-i)

= (yt)) (y(t-1))(-1) (from theorem 9.4.3)

= I ( II (g6 hmhm)i m ) (() from step 6 in section 7.2)
jEA mE{1...k}

i
m

= H Hg6jhm~j
mE1{1...k} (jEA im

= II (g4h nh7) m  (from our definition of 6*(.))
mE{1...k}

= g(EmEf{1...k} *)h(mE{...Z } im)

= gc* (i) h* (i)

In step (*) we use the fact that View(t) is a view of a correct execution of the
share renewal protocol, which means that values {yIt -1), y()}ieA in Ims(t- 1), Ims(t)
and values {gmh-Y iEA,m6{1...k} in {Full}ieL and {Partial1}2iL must be related by
equation in step 6 of the share renewal protocol (section 7.2).



From the above reasoning, and from the fact that function F: Zq -+4 Zp, F(x) =
gX (mod p) is one-to-one, it follows that for all i E A, 6(i) + dy(i) = 6*(i) + dy*(i).

Since we proved that 6(.) = 56*(.), it follows that for all i E A, -y(i) = y*(i). Since
these are polynomials of degree k, it follows that 7(.) =-y 7*(.). This shows that
polynomials Fx0 are consistent with View(t), and hence completes the proof of the
lemma. 0

Proof of theorem 9.4.1: We can extend the same argument as in the proof of
theorem 9.4.2 to the case of multiple runs of the share renewal protocol, i.e. when the
adversary's view is a set Views = {View()}tEJ{1,...,to} of single share renewal views, for
arbitrarily big integer to. Namely, we show that Views is consistent with any value
x0 e Zq of secret x. We slightly modify the notation:

Views = (Shares(o), Ims (o) , {View(t}tE{,...,to) (9.6)

where

View(t) = (Shares(t), Ims(t), {Partial(t) }igL( {Fullt }jEt))

Shares(t) f{xst), (t)E0 UKUL(+)

Ims(t) = {(t) }iEA

Partialt) = { (j), y(j)}JELo, {g°Vhn }me{1...k}

Fullb) = 6(t)() Y)(.)
where:

* L(t) is the set of servers compromised by the adversary during the update be-
tween time period t - 1 and t. For correctness of the above notation, L(to) = {}.

* K(t) is the set of servers compromised by the adversary in the tth time period,
but not during any of the adjoining two updates. In particular, K(t -1 ) n L() =

L(t) n K(t) ={}.

Similarly to a single update, the worst cases are when for all t, IL(t) I + IK(t)I +
L(t+'1 ) = k. If we set x to x0, then each pair Shares(t), Ims(t) defines a pair of

k-degree polynomials '(t) = (f(t)(-), r(t)(.)). The same proof as in the theorem 9.4.2
can be applied to show that for all t, a pair F(to 1, yt) is consistent with the update
information available to the adversary in {Partial t)iiL(t), {Full t )}iEL(). This ends
the proof of the theorem, because a family {Y }t{1....,to} which is consistent with
Views can be constructed for any xo in Zq. U

9.4.2 Share Renewal with Semantically Secure Encryption

As we discussed in section 9.4.1, the assumption of black-box encryption is unnatural:
We introduced it to show a general result that the proactive share renewal algorithm



protects secrecy and integrity of x just as well as the original Pedersen's VSS scheme.
We will use these results in the proofs that follow.

Definition of Semantically Secure Envelopes

In the proofs in this section we want to show that the information Info available
to the adversary is a semantically secure envelope of the values V that we do not
want the adversary to learn. We define this notion below, following the definition
of semantic security for encryption schemes given in [Gol89]. Using this notion we
can formalize the intuitive definition of what it means for a proactive secret sharing
protocol to be semantically secure, that we sketched in section 2.3. We will concern
ourselves only with a non-uniform notion of semantic security.

Both Info and V are some (sets of) entities that appear in our protocol (for

example the secret x, the encrypted message ENC3 (6to) (3) 7 2to)(3)), the sets of initial
shares ENC (o) ,0)o(i E {1...n}) etc). We treat Info and V as random variables:

their values range as specified in the protocol and their probability distributions are
taken over random choices also as specified by the protocol (in all protocols here we
assume the servers use random number generators).

Definition 9.4.1 Let Info and V be some (sets of) entities appearing in the protocol
P. For every value v of V, we define In fo(v) to be a random variable s.t.

Prob(In fo(v) = x) = Prob(In fo = x I V = v)

where probability is taken over random choices as specified by the protocol P.

We call Info(v) an envelope of v. We also refer to Info as to an envelope scheme
on V by denoting it as In f o(.).

The definition of semantic security below relates the hardness of learning any
knowledge about V from Info to the length of information Info in bits. In all our
proofs, the length of Info is linearly related to the length of the prime number q. We
denote the length of q as h, i.e. 2 h- 1 q < 2h . We call h the security parameter. To
make sure that the bit amount of data available to the adversary is a linear function of
h, we have to relate parameters k, n, p and the number to of time periods for which the
proactive secret sharing algorithm will execute. Number p is defined as the smallest
prime number s.t. p = mq + 1 fore some (even) integer m. Since q is picked so that
such p exists for small m = 2,4 or 6, the length of numbers in Zp will be at most
1og 26 * h. Parameter n is odd and we assume that n < 11(h) where l(.) is some linear
function with integer coefficients. k is an integer s.t. 2k + 1 = n. The maximal
lifetime of the algorithm (counted in number of time periods) to = 12 (h) where 12()

is also a linear function with integer coefficients.

Let Q be an infinite sequence of all valid values of q. Both Info and V are in fact
a family of random variables {Infoq}qEQ and {Vq}qEQ. Similarly, one can think of



our protocols as of a family of protocols: different protocol for every q e Q. We can
also think of the envelope scheme defined in 9.4.1 as of a family of envelope schemes
{In f oq(.) }qEQ.

Definition 9.4.2 Let In fo and V be some (sets of) entities appearing in protocol P.
Let Q be an infinite sequence of valid values of q. We call In fo a semantically secure
envelope of V in protocol P, if for every function A, every function 0 and every BPP
algorithm A, there exists a BPP algorithm A' such that

Vc3hoVq s.t.Jqj>hoProb[A(Inf oq(Vq), O(Vq), 11Ml) = A(Vq)] <

Prob[A'(0(Vq), 11l) = A(Vq)] + q-

where the probability is taken over random choices of algorithms A and A' and over
distribution of Vq (determined by random choices of algorithm P) and distribution of
Infoq(Vq) (also determined from definition 9.4.1 by random choices of P).

For simplicity of notation, we will ignore the 1171 input, assuming it is built into the
description of algorithms A and A' for every q. Even though 1 1ql factor does not
appear in the input and function 0(Vq) can be of sublinear size in IqI, by saying A
and A' are BPP we will always mean that they are turing machines making random
coin tosses (random choices) and it halts in at most poly(jq ) steps, where poly(.) is
some polynomial function.

We will also give the definition of envelope scheme secure in the sense of indistin-
guishability:

Definition 9.4.3 Let Info, V, Q, P be like above. We call Info an envelope of V
secure in the sense of indistinguishability in protocol P, if for every two sequences
{vq}qEQ, {vq}qeQ of values of V and every BPP algorithm A

Vc3hoVq s.t.lql>hojProb[A(vq, v', 1 1q1, Infoq(Vq)) = 1] -

Prob[A(vq, v, liql, Infoq(v,)) = 1]j <

where the probability is taken over random choices of algorithm A and over distribu-
tions of Infoq(vq) and Infoq(v') (determined from definition 9.4.1 by random choices

of algorithm P).

Since both these definitions of secrecy of envelopes (9.4.2 and 9.4.3) are analogous
to definitions of secrecy of encryption schemes, we will use without proof the theo-
rem proved in [Gol89] for secrecy of encryption schemes that semantic security and
probabilistic polynomial time indistinguishability are equivalent in the non-uniform
case.

Now we can give the formal definition of semantically secure secret sharing scheme:



Definition 9.4.4 Let P (or actually a family {Pq}qeQ) be a proactive secret sharing
scheme. Assume that the number of servers n and the number of time periods to for
which the protocol lasts are both linear functions of Iqi. Let In fo be all the information
about the computations of P observed by the mobile adversary (who is defined in
section 2.1) during the lifetime of the protocol. We call P a semantically secure secret
sharing scheme if Info is a semantically secure envelope scheme of secret x.

The notion of relative semantic security is defined analogously:

Definition 9.4.5 Let P and Info be as above. Let w be some function on x. We
call P a secret sharing scheme semantically secure relatively to w if for every function
A and 0 and every BPP algorithm A, there exists a BPP algorithm A' such that

Vc3hoVq s.t. lql>hoProb[A(Inf oq(Xq), O(Xq), 11ql) = A(Xq)] <
1

Prob[A'(w(Xq), O(Xq), lIIq ) = A(Xq)] + 1

where the probability is taken over random choices of algorithms A and A', over
distribution of Xq (we denote secret x as Xq because we treat it as a collection of
random variables for every q E Q. Xq (i.e. secret x) is always uniformly distributed
in Zq) and distribution of Infoq(Xq) (determined from definition 9.4.1 by random
choices of algorithm P).

Changes from the Black Box Encryption Model

In this section we return to a share renewal protocol that uses a semantically secure
public key encryption scheme ENC(.) for secret server-to-server communication on a
broadcast channel. We also return to the original adversary model described in section
2.1, i.e. we remove the constraints on the adversary that were imposed because of
the black-box encryption assumption in section 9.4.1, namely, that the adversary
causes only gossip and not byzantine faults. Consequently, it is no longer true that
all servers will correctly distribute their update polynomials: some servers among
those compromised by the adversary can try to cheat in the protocol. However, since
we have the (semantically secure) public-key encryption used to transfer the shares,
the accusation protocols will work, theorem 9.2.2 applies, and hence, the proof of
robustness in section 9.2 also applies. In particular, we know that the cheating servers
will be always identified by the honest ones, provided that the adversary does not
find d = loggh (in addition to the constrains described in section 2.1).

We will use the notation from section 9.4.1: Servers L are compromised during the
update, while K1 and K2 are compromised before and after the update but not during.
But now we have to add a new variable V to denote the set of servers that correctly
distribute well-formed update polynomials during an update phase. From the cor-
rectness of the share renewal algorithm, A \ V C L, i.e. only the servers compromised
by the adversary could have distributed their update polynomials incorrectly. From



section 4.5 we know that whatever the adversary does, every honest server agrees on
the set V. Hence, in the proofs that follow, we will treat V as a variable picked by
the adversary (just like L and K), with the constraint that A \ L C D C A: The
proofs must work for any such V.

A NOTE ABOUT NON-INTERACTIVE MODEL OF THE ADVERSARY: In our defini-
tions of security we formalize the adversary as a non-interactive BPP Turing machine.
As we mention in section 2.3, this is a restricted model of mobile yet non-adaptive ad-
versaries, because in reality, the adversary can decide what to do next (which servers
to compromise) as a function of her current view of the computation. Because we
will deal with only the restricted, non-adaptive model, we will always assume that
the strategy of the adversary (i.e. the choices of sets L), K(M) and D(t) for all time
periods t) is set before the execution of the proactive secret sharing algorithm begins.

A NOTE ABOUT USING ENCRYPTION ENC(.): In the discussion of proactive protocol
using Pedersen's VSS, we use encryption scheme ENC(.) to always encrypt a pair of
numbers in Zq. When we specify the strength of secrecy protection of our protocols
relative to the strength of encryption scheme ENC(.), we mean its strength on input
of size 21qJ.

Since we cannot ignore the publicly broadcasted encrypted shares, we extend the
adversary's view Partiali of the update polynomial distributed by Pi, i V L:

Partiali = {6 (j), 7i(j)}jEL, {g1inhirn}ME{1...k}, {ENCj(6i(j), yi(j))}jjL (9.7)

Lemma 9.4.7 Partiali is a semantically secure envelope of values V = {1i(j)})EjK1.

Proof: We will prove the lemma by contradiction. We assume that Partiali, treated
as an envelope scheme of V, is not secure in the sense of indistinguishability. Then, us-
ing a hybrid method (introduced in [GM84]) we show that encryption scheme ENC(.)
is not secure in the sense of indistinguishability, which would mean that it is not a
semantically secure encryption scheme.

Assume that there is a constant c such that for every h, E Z, there exists a prime
q of length h > ho, a BPP machine A and two sets Vi = {v}}K, and V2 = {v2}jEK
of values in Zq such that:

1

jProb[A(Vi, V2, Partial2 (V1 )) = 1] - Prob[A(V1 , V2, Partial2 (V2 )) = 1]1 > h (9.8)

where the probability is taken over the random choices made by Partial&(.).

We define an envelope PartialS(.) of values V = {6i(j)}jEK,, which looks just like
Partiali in Pv, except that instead of encryptions of shares {ENCj(6i(j), yi (j))}J3 L,
Partial'(.) has random encryptions of zeroes: {ENCj(O, 0)}3L. In other words

Partial'(V) = {16i(j), Yi(j)} 3 EL, {g'imh7i}mE{1...k}, {ENCJ(O, 0)}L



where 6i('), /i(') are uniformly picked polynomials which agree with values in V.
Notice that Partial (V) contains exactly the same amount of information about
6i(*), *(') as set Partiali from lemma 9.4.5: k - 1 random encryptions of two ze-
roes clearly does not carry any additional information. Consequently, machine A
cannot distinguish between random envelopes Partial(Vi) and PartialS(V2), because
from lemma 9.4.5, Partial(.) is an informational theoretic secure envelope scheme,
and therefore Partial(Vi) and PartialE(V2) have the same probability distribution.
Let's denote the following probabilities:

pl = Prob[A(Vi, V2, Partial,(Vi)) = 1]
p' = Prob[A(Vi, V2, Partial'(Vi)) = 1]
p = Prob[A(V1, V2, Partial'(V2)) = 1]

P2 = Prob[A(VI, V2, Partiali(V2)) = 1]

where probabilities are taken over the coin tosses made by Partial4(.) and PartialS(.).

From the discussion above we know that p' = p. From equation 9.8, Jpi-P21 > -!-
From triangle inequality, IPl - PI + IPl - P21 = IPl - PI + 1P2 - P21I - IPi - P21, which
means that either IPl - p'I or P2 - p~i is bigger than . We can assume that
1p, - p'i > ; if the second case is true, the proof will be analogous.

We use the hybrid technique again to show that A can be used as a distin-
guisher of encryption scheme ENC(.). We define a sequence of n - 1 + 1 random
variables {P(s)}sE{O,...,n_•q which will fill the gap between the probability distribu-
tion of Partials(V1) and Partial(V1 ): Each P(s) is created by uniformly picking
some Si(.), yi(.) which are consistent with VI and creating a valid view Partial2

with these polynomials, except that instead of last s encryptions of valid shares
{6i (j), (Ji)}IjE{n- 8 +1,...,n}, it contains a random encryptions of a pair of two zeroes.

P(O)(Vi) = Common, {ENCj(6i (j), 7i(j))}jE{1+1,...,n},

P(1)(Vi) = Common, {ENCj(6i(j), /i(j))}je{1+1,...,n-l}, ENCn(O, 0)

P(2)(V) = Common, {ENCj(6i(j), 'yj(j))}je{1+1,...,n-2}, {ENCj(0, 0)} jEfn-1,n}

P(n- -1)(V1) = Common, ENC+1 (6iQ(l + 1), yi(1 + 1)), {ENC~ (0, O)}je{1+2,...,n}

P(n-)(V-) = Common, {ENCj(0, 0)}J El+1,...,n)

where
Common = {6i(j), AYi(j))}L, {gi• h7im }m{ ...k}

The probability distribution of P(') (VI) for each s is given by the fact that P(") (Vi)
depends on n-1 random encryptions ENC(.) and on k+l random numbers { 6 i(j)}aEL
and {bi(J)}jELUK, which are picked uniformly from Zq. We can assign probabilities
to these variables by the following equation for every s E {0, ... , n - 1}:

pS) = Prob[A(V1 , V2, P(s)(V1)) = 1]



Clearly, Pl = pO) and p' - p~n-0. From the triangle inequality

E IA I' - AI > "-In PI I=I Pu -Pl > 2h-
sE{0,...,n-1-1}

which means that there is so E {0,... , n - l - 1} s.t. jpO + 1) - so) > 1I SA.In Pi 2(n-I)hc "

We want to show that there must exist a pair v* such that if schemes P(so)(Vi) and
P(so+l) (Vi) are restricted to picking polynomials for which (6i(n- so), 'i(n - so)) = v*,
then IProb[A(V1, V2,P(s80+)(VI)) = 1] - Prob[A(V1, V2 , P(8o)(Vi)) = 1] > 2(n-1)h"

Consider random variables E(v), E'(v), for every v E Zq, which are defined just like
p(so) (V1), p(so+1)(V 1) respectively, except that they take only these values of p(so)(V 1)
and P(•so+l)(V 1) for which (6i(n-so), yi(n-so)) = v. For every v E Zq x Zq, set l(' ) of
possible values of variable E(v) is a subset of the set D of possible values of P(so)(V1).
Probability distribution of E(v) inside D(v) is determined by k + 1 - 2 random choices
of coefficients of 6&(.) and -yi(.) in Zq and n - l random encryptions ENC(.). Notice
that

S)(0,0) u )(0,1) U ... U )(q-1,q-1)

Moreover, because random variable P(so)(V 1) depends on polynomials 6i() and Yi()
selected with uniform distribution (subject to constraint that VjEKi (j) = vj where
{vj}jEKl = V1), the probability that (6i(n - so), -y(n - so)) = v is the same for every
v e Zq x Zq, and hence the probability Prob[P(so)(Vu) EV(")] is the same for every
v E Zq x Zq, i.e. equal to 1. Therefore

p(so) = Prob[A(VI, V2,P(sO)(Vi)) = 1]

- E Prob[P(8o)(VI) e )(v)] * Prob[A(V1, V2, E(v)) = 1]
vEZqXZq
11 q * E Prob[A(Vi, V2, E(v)) = 1]

q vEZqXZq

Similar argument can be carried out valid for E'(v), and hence

(pso+1) _- 1
P- + = * Prob[A(Vi, V2, E'(v)) = 1]

vqEZqXZq

We know that Ipno + 1) I- pso) > 2(n-.h Assume for a moment that pso+l) > po)
Combining the two results above, we have

E (Prob[A(Vi, V2, E'(v)) = 1] - Prob[A(VI, V2, E(v)) = 1]) =
vEZqxZq

- Z Prob[A(V1, V2, E'(v)) = 1] - Prob[A(Vu, V2 , E(v)) = 1] =
vEZq XZq VEZq XZq

2 p(SO+1)) _-q2, pso) >



1> q2
2(n-1)hc

This means that there must be some value v* in Zq such that Prob[A(Vi, V2, E'(v*)) =
1] - Prob[A(Vi, V2, E(v*)) = 1] > 2( )h If there is no such v* then the sum

SProb[A(VI, V2, E'(v)) = 1] - Prob[A(Vi, V2, E(v)) = 1]
vEZqxZq

could never be bigger than q2 *2(n -)h. If we assumed that p8O+1) <pso) we would
find an element v* such that Prob[A(Vi, V2, E(v*)) = 1] - Prob[A(Vi, V2, E'(v*)) =
1] > 2(n l)hc. In any case, there is an element v* in Zq for which

1
IProb[A(Vi, V2, E(v*)) = 1] - Prob[A(Vi, V2, E'(v*)) = 1]1 > 2(n - l)h (9.9)2 (n - 1) h

Now we can use A to build a BBP machine A* which distinguishes between random
encryptions ENCn-_o(0, 0) of a pair of zeroes and random encryptions ENC~o- (v*)
of v*. It takes as input a number e which is a result of a random encryption
ENCn-.o(.) of either (0,0) or v*. It acts as follows: It finds two k-degree poly-
nomials Ji(.), y(.) in Zq such that (b5(n - So),if(n - so)) = v* and bi(j) = vj for all
j E K1, where {vj}jEgK, = VI. This involves picking k + 1 - 2 random numbers in Zq.
With these polynomials, A* creates P(so + 1) (Vi ), except that it substitutes e for a
new random ENCn_,o(0, 0). In other words, it creates

P = {i(j), i(j)}jEL, {g 6imh im}mE{1...k},
{ENC3 (i (j), 7i(J)) }je{1+1,...,n-so-1}, e, {ENCJ (0, 0) }jEj{n-so+1,n}

Then it runs A(Vi, V2, P) and whatever A computes, it gives out as an output. Notice
that so formed P has the probability distribution of E'(v*) if e is a random encryption
of (0, 0) and the probability distribution of E(v*) if e is a random encryption of v*.
Consequently, from equation 9.9 we have

IProb[A*(ENCn•-,o(0, 0))= 1]- Prob[A*(ENCn-0o(v*))= 1]1 =
1

= IProb[A(V, V2, E'(v*)) = 1] - Prob[A(Vi, V2, E(v*)) = 1]1 > 2(n - 1)hc

which means that A* is a BPP machine breaking the encryption scheme ENCn-So(')
on inputs (0, 0) and v*. This could be true only if ENCn_8 o(.) is not a semantically
secure encryption scheme. By contradiction, we conclude that no BPP distinguisher
A of the envelope scheme Partiali(.) can exist. In other words Partiali from equation
9.7 is a semantically secure envelope of values V = {i(j)}jeK,, which ends the proof
of the lemma. M

It is easy to prove the following lemma, an equivalent of lemma 9.4.5 from the previous
section:



Lemma 9.4.8 Set {Partiali}bED\L, {Fulli}ieDnL (where Partiali is defined by equa-
tion 9.7) is a semantically secure envelope of values V = { ieD 3 i(j)}jeK1 .

Proof: We use the original definition of semantic security (not the security in the
sense of indistinguishability like in the proof of lemma 9.4.7). Even if for all i e
D \ L but one i0o E D \ L, all encrypted information in Partiali were open, the
adversary would learn {i(.), 7i(')}iED\{io} and in particular values vj = EiED\{io} 6(j)
for all j e K1. Since VjEK1 ZiED i(j) = v7 + io(j), it follows that if we assumed
that the adversary seeing {Fulli}ieoD\{io}, Partialio could compute something about V
(something that could not be computed without it), then it could compute something
about {6io( (ijKI)} = = {ieD (j) - v K}jEK with Partialio as an input (and again, the
adversary would compute something which cannot be computed without Partialio).
This contradicts lemma 9.4.7, and consequently ends this proof.

Here is the formalization of the above argument:

Let's denote {Partial}iiED\L, {Fulli}ioEDnL as an envelope scheme Polys(.) on V.
Assume that Polys(.) is not a semantically secure envelope, i.e. assume that there is
a BPP machine A and functions A and 0, such that for every BPP algorithm A'

B•cVhoeq s.t. Iql>hoProb[A(Polys(V),O(V)) = A(V)] > Prob[A'(0(V)) = A(V)] + Iq

(9.10)
where the probability is taken over the random choices made by A, A', Polys(.) and
over the distribution of V.

Let io be some element in D \ L. We will show that there must exist a set
V* = {v }yEL, E Z, (k- 1) such that if Polys(V) is restricted to families of polynomials
for which ie&D,i~io i(j) = vj for j E K1 then equation 9.10 still holds. We made an
analogous argument in the proof of lemma 9.4.7, so we will omit it here, but the result
is as follows: Let Polysv. (V) be a random variable just like Polys(V) except that it
restricts the choice of the family of polynomials {6i(.), 7Yi(')}iED by a constraint that
EiED\{io} 3(j) = vf for all j e K 1. Resuming, V* is picked (for every q E Q) in such
a way so that for every BPP machine A'

3cVho3q s.t. ql>hoProb[A(Polysv*.(V), O(V)) = A(V)] > Prob[A'(0(V)) = A(V)] +

(9.11)
Now we construct a BPP machine C which (for every q) takes as input an enve-
lope Partialio(V2) where V2 = {bio(J)}AEK, is uniformly distributed in Z k - 0), and
a knowledge function 02(V2 ) where 02(.) is defined (for every q) on Z(qk- 1) by equa-
tion •2({XJ}j}EK) = O({xJ + v}jEKi). C uniformly picks a set {6I(), Y(')}ieD\{io}
with constraint that EiED\{io} J (j) = v* for all j e K1. From these polynomi-
als it forms {Partial}JiED\(LU{Jio}), {full}iEDnL and then adds Partialio(V2) to form
Polys = {Partial2 }iED\L, {Full}iEDnL, runs B(Polys, 02 (V2 )) and returns its output.

Notice that so formed variable Polys is a uniformly distributed envelope Polysvy.(V')
of V' constructed as a function of V2 by equation V' = {xj + vj}jEK 1 where V2 =



{Xj}jeK,. Consequently, if we define (for every q) A2(.) as a knowledge function on
Zqk - ) by'A2({xj}jeKKi) = A({xj + V•}JEK 1 ), then we have that 92 (V2 ) = O(V') and
A2(V2) = A(V').

Since V2 is uniformly distributed in Z k- 1) then so is V', and therefore, V' has
the same distribution as V and Polys has the same distribution as Polysv.(V).
Consequently (for every q E Q)

Prob[C(Partialio(V2 ), 02 (V2 )) = A2 (V2)] = Prob[A(Polysv.(V), 9(V)) = A(V)]
(9.12)

From equations 9.11 and 9.12 it follows that for every BPP machine A'

3cVho3q s.t.Iql hoProb[C(Partialio(V2), 92 (V2)) = A2 (V2)] >
1

Prob[A'(92(V2)) = A2 (V2 )] + q1

which contradicts the fact that Partialio (-) is a semantically secure scheme, as proven
in 9.4.7. This ends the proof of the lemma.

Now we prove a semantically secure equivalent of theorem 9.4.2:

Theorem 9.4.9 The view View(t) of the adversary during the update between time
period t - 1 and t, is a semantically secure envelope of the secret x for every t.

The information View(t) available to the adversary is equal to

View(t) - (Shares(t - 1), Shares(t), Ims(t- 1), Ims(t), {Full}ijEDnL, {Partial}iED\L)
(9.13)

where:

Shares ) = { ,zi iELUK1

Shares(t) = {(xt ) , z it) }iELUK2
Ims(t-1) = I (t-1)}i

Ims(t) (t)}iiE A

Full 6 = i (, 7i(0
Partiali = { 6 i(A),i(j)}jEL, {g6imh7m }mE{1... k}, {ENCj(Ji(j), Yi(j))}jCL

PROOF IDEA: In the case of black-box encryption, the proof of theorem 9.4.2 fol-

lowed from lemma 9.4.5. Unfortunately, in the case of semantically secure encryption,
reduction of theorem 9.4.9 to lemma 9.4.8 does not work. Ideally, we would like to
show that the assumption that View(t) (.) (View(t) treated as an envelope scheme on
x) is not a semantically secure envelope scheme contradicts lemma 9.4.8. However,
the two standard reduction methods used in such proofs failed here:

* We cannot build a BPP machine B that would distinguish between random
envelopes Polys(.) (defined like in lemma 9.4.8) of some two sets Vi and V2 ,



using a BPP machine A that distinguishes between random envelopes View(t)(.)
of some two elements x, and x2 . It is because from inputs V1, V2 and P to
machine B (P = Polys(V1) or P = Polys(V2)) we cannot build a V such that
V = View(t)(x 1) if P = Polys(V1) and V = View(t)(x 2) if P = Polys(V2).
Similarly if instead of Polys(.) we use some more restricted scheme that, say,
produces envelops with known values {6 (i)}:EL, or, say, envelops only one value
v = 6(k) instead of the set V = {5(i)}iiEK 1.

* For the same reason, we cannot find a BPP machine B that would compute
A2 (V) from some 92(V) and a random Polys(V) with non-negligibly higher
probability that any machine B' having 02 (V) as the only input, if we are to
use a machine A that computes A(x) from View(t)(x) and some 0(x) with non-
negligibly higher probability than any BPP machine A' having 9(x) as the
only input. Again, from inputs of machine B we cannot build a valid envelope
View(x) for any x.

Instead, our proof below uses theorem 9.4.2 and a hybrid method of cascading
random variables, to show that if View(t)(.) is polynomially indistinguishable, then
so is the encryption scheme ENC(.).

Proof of theorem 9.4.9: In theorem 9.4.2 we show View(t) () defined by equation
9.1 is an information theoretic secure envelope of scheme. Notice that the difference
between the two definitions of View is not only the addition of encrypted shares of
partial update polynomials but also the fact that the partial information about update
polynomial is now available for i e D \ L instead of i V L and the full information for
i E D n L instead of i E L. However, the same proof as in 9.4.2 goes through even if
the adversary has a partial information about only polynomial 5io (.), 'yiO(.) for some
io E DnfL, and a full information {Fulli}ieD\{io} about all the other polynomials (we
used this idea to prove lemmas 9.4.5 and 9.4.8). Therefore, the envelope scheme

View2 (.) = Shares(t-1), Shares(t), Ims(t-1), Ims(t), {Fulli}iED\{i0o}),

{Yio (), "Yio (J)}IEL, {g 6itom hYio°mIE{1...k}

is also an information theoretic secure envelope scheme. Consequently scheme

View3 (.) = Shares(t' ), Shares(t), Ims(t-1) , Ims(t), {Fulli}ieD\{io},

{6io(j), Yio()}jEL, {g i9 6i omhYom}n•{1...k)}, {ENCj(O, 0)}1nL

is information theoretic secure (we used the same idea in the proof of lemma 9.4.7).
Now, if we assume that scheme View(t) (.) as defined in equation 9.13 (let us call it
View1 (.)) is not semantically secure, then the following scheme

View4 (.) = Shares(t-1), Shares(t ), Ims(t- ), Ims(t), {Full}ieDo\{io},

{5io(j), Ytio(J)}jEL, {g 6iomhviomI }mE{1...lk}, {ENCj(6Q(j), Yi(j))}j L

cannot be semantically secure either, because for every x, one can compute View1 (x)



from View4 (x), i.e. View4 (x) contains strictly more information than Viewl (x).

Let A be a BPP distinguisher of View 4(.), i.e.

1
3cVho3q>2ho0Prob[A(xl,x 2, Yiew 4(xl)) = 1] - Prob[A(xi, x2 , View4(x 2)) = >

where the probability is taken over the random choices made by View4 (.).

Following the reasoning used in proof of lemma 9.4.7 we notice that variables
View3 (xl) and View3 (x 2) have the same probability distributions, and hence we
deduce that for either for xo = x, or for x0 = x2 the following must be true

1
JProb[A(xi,X2, View4 (xo)) = 1] - Prob[A(xi,x2 ,View3 (xo)) = 1]1 > 2h1 (9.14)

Now, just like in the proof of lemma 9.4.7 we can use the hybrid method to cre-
ate a sequence of n - 1 + 1 envelopes of xo, {V(s)(xo)}sE{o,...,n-I} and corresponding
probabilities {p(S) }se{o,...,n-l}:

V(8)(xo) = Shares(t -1 ), Shares(t), Ims(t-1), Ims(t), {Fulli}ieD\{i0o},

{6io (j), i ()}jiEL, {g 96 omhYiom}me{1...k},

{fENCj (J6 (j), Y(J))1}E{1+1y..., n-s7, {ENC (0, 0)•}Jen-s+1,...,n)
p(s) = Prob[A(xi, X2, V(s)(xo)) = 1]

We follow the,proof exactly like in the proof of lemma 9.4.7: From triangle inequality
there must be an element so for which Ip(8o+l) -p(so) I > 2(n)h. Next we show that
there must be a pair v* such that IProb[A(x, X2, E1) = 1] - Prob[A(xl, X2 ,E 2 )=ii 1

1]1 > 2(n -1)h, where E1 and E2 are random variables that have distributions of the

envelope schemes V(80)(.) and V(so+l)(.) respectively, where these envelope schemes
are restricted to picking polynomials io ('), -yio (.) for which (6,i (n - so), Yio (n - so)) =

v*. Finally, we build a BPP machine A* which distinguishes between random en-
cryptions ENCn-so (0,0) of pair of zeroes and random encryptions ENCn-so(v*)
of v*: It takes as input a number e which is a result of a random encryption
ENCn-so(') of either (0, 0) or v*, finds 2 IDI + 4 random k-degree polynomials
f(t)(.), f(t+1)(.), r(t)(.), r(t+1)(.), {6,(.), Yi(')}ieD in Zq such that (6,o(n - so), 7io(n -
so)) = v*, 6,(0) = y7(0) = 0 for all i, f(t)(0) -= f(t+1)(0) - xo, f(t+1)(.) _ f(t)(.)

EieD 6i(-) and g(t+1)( .) g(t). = Ei(•D-y). Then A* creates P = P(so)(xo) us-
ing these polynomials but substitutes e for a random encryption ENCn-so(0 6io(n-
so), 7yio(n - so)), runs A(x, x2, P) and returns the output. It follows that

1
IProb[A*(ENCn-_o(0, 0))= 1]- Prob[A*(ENCn-so(v*)) = 1] > 2( - 1)hC2(n - l)h c

which means that A* breaks encryption scheme ENC(.), which is a contradiction.
Consequently, the claim of our theorem follows. 0



Now we present the semantic security equivalent of theorem 9.4.1

Theorem 9.4.10 The view {View(t)}tE{o,...,to} of consecutive runs of the share re-
newal protocol (View(t) is described in equation 9.13) is a semantically secure envelope
of the secret x.

Proof: This proof will be very similar to the proof above and so we will only outline
its steps here. We adopt the notation from the proofs of theorems 9.4.1 and 9.4.9. Let
us denote the full history available to the adversary as an envelope scheme View1 (.)
on secret x, i.e.

Views,(.) = Shares(O), Ims (o), {View(t)}to{o,...,to}

View(t) - Shares(t), Ims(t), {Fullt) }iED()nL() , f {Partial)LEDM\L(),
Partial t) = { {}{ t)(k), Nt). - ())-- ) I7ý)(U)}IjELM 7, g9"h "m -E{...k}, ENCj(J5t)(J), Yý')(J)}j L(t)

Let Views 2(.) be an envelope scheme defined like in equation 9.6, except that, just
like in the proof above, in every update phase t the adversary has a full information
about update polynomials except of one update polynomial 5) (-), -it (-) about which
only partial information is available:

Views 2 (.) = Shares(O), Ims(o), {View(t)}tE{o,...,to}

View(t) = Shares(t), Ims(t), {Fullt)}ieDI)\{iE},
{t)(j),(t). {g6 )h '}m}E{1...k}

The same proof as in theorem 9.4.1 goes through for the above envelope, and hence
it is information theoretically secure. Similarly to the proof of theorem 9.4.9, scheme
View3 (.) which is just like View2 (.) except that we add (n - l(t)) encryptions of
a pair of zeroes to each View(t), is also information theoretically secure. We then
build Views 4 (.) which is just like Views'(.) except that every View(t) has a partial
information only about 6 i(.), 7t (.) and full information about all the other update
polynomials. Just like in the proof of theorem 9.4.9, if we assume that View1 (.)
is not a semantically secure envelope scheme, then neither is View 4(.). By triangle
inequality we show that there is a BPP machine A such that

1
3cVho3q s.t. 1q1 >ho3xoEZq IProb[A(Views4(xo)) = 1]-Prob[A(Views3 (xo)) = 1] > 2q

(9.15)ql
By the hybrid method we create a sequence of variables {V,(t)}SE{o,...,n(t)},tE{o,...,to}
and corresponding probabilities {p(t)sE{o,...,n-l1 ),tE{o,...,to} pst) = Prob[A(V()) = 1]

where V00 ) has the same distribution as View4 (xo), V (to) has the same distribution
as View3 (xo) and the other random variables VK(t) fill the spectrum between these two
distributions:

V,() .= {,Shares(t), Imst}o,...,to}



PartialZero(t)

PartialHal f(t)

PartialFull(t)

(t){Full }iLeD(t)\{it},te{1,...,to}

{ PartialZero(t) }tE{1,...,r-1},

PartialHal f('),
{PartialFull(t)It T{r + l , .. .,to}

- {6)(),I-t '()}jEL(t), {g itmh itm}mE{ 1 ...k}7

{ENCj(O, 0)}jE{L(t),...,n

- { ), ()}jet) {g hVi(tt}) E{1...k},

{E N Cj (61t)(j) , ) ) i p e .,n ,it E -•)( Yz•:) (A )) } j•{(t)+ l,...,n-8} ,
{ENCj(0, 0)}J {lEn-s+1,...,n}

S{6 (U)I, T (j)JLt))L , {gI'tnhn}mE.{1...k},

{ ENC (6 ')(j), 7') ()) }iEfIM+1,...,nl

In other words, for every t, V1(t) looks just like V,(t) except that it has one more
random encryption of a pair of zeroes instead of a share of the update polynomial6!0(.) W!).

There are 1 + ZtE{1,...,to}(n- 1(t)) of these variables. In the worst case, I)= - 0 for

all t and hence, there would be ton + 1 of variables V(t). Using the same arguments
as before we argue that there must be a pair s*, t* such that jp*+1 - pI >

(it could be also that s* = n 1(t*) and pot *+l) pSt*) > 2ntoqc Just like in the
proofs of theorem 9.4.9 and lemmas 9.4.7 and lm-ss2, we argue that there must be

a particular pair v* such that if envelopes V(,t *) () and V,+)(x 0o) are restricted by

equation (6t*)(n - s*), 7 t*(n - s*)) = v* then A distinguishes these envelopes with
probability greater than 1. Now we create A* which takes as input a number e2ntolqlc'
which can be equal to ENC- ~, (0, 0) or ENC_, ,(v*), creates an envelope E equal
to V(t) (xo) except that it substitutes e for a random encryption ENC,,-*(0,0),
runs A(E) and returns its output. It follows that A* breaks the encryption scheme
ENCn-s.(-) and so the theorem is proven.

Optimality of the Reductions

In a single run of the share renewal protocol (theorem 9.4.9), our result that the
strength of the secrecy protection of our scheme is 2(n - 1) times weaker than the
strength of encryption, seems only a factor of 2 worse than an optimal result: The
adversary knows a sequence of n-I encrypted shares sharei where knowledge of any of
them implies knowledge of the secret x. If for every shares, encryption ENC(sharei)
gives out- amount of knowledge about sharei and if sharei gives out all knowledge
about x then it seems intuitive that sequence {ENC(share)}ie{•+1,...,n} can give out

1 amount of knowledge about x.
(n-1)lqjl



Similarly, in the case of a sequence of share renewals (theorem 9.4.10), the adver-
sary knows EtE{1,...,to} (n-1()) encrypted shares, where knowledge about any of them
implies knowledge of the secret x. It makes sense then that the strength of secrecy
protection of our scheme is tE{1,...,to} (n - I(t)) times weaker than the strength of the
encryption scheme itself. In the worse case, 1(t) = 0 for all t and then the above sums
up to to * n. Our result is factor of 2 weaker than this intuitively optimal bound.

However, these bounds might not be optimal at all. In the above argument, we
assume for simplicity that all polynomials in D except of one are fully revealed to
the adversary, and hence, knowledge of every share of the total update polynomial
6(.), -y7(.) depends on the knowledge of only one encrypted share of a partial update
polynomial 6io(.), yio(-) (other partial update polynomials are fully known to the ad-
versary). This is not really the case: the total update polynomial depends on n - 1
polynomials {16(.), Yi(*)}ie{+1,...,n) about which the adversary knows only partial in-
formation. Therefore, for every sharej, the adversary does not know ENC(sharei)
but a sequence E = {ENC(sharesj)}jE{1l ,...,n} where share1 = ZEJE{t+,...,,n} share2 j +
FjEDnL shareij (mod q). In our proofs, we assumed that since ENC(shareij) gives
out at most 1 information about shareij then set E cannot give out more informa-
tion about share1 than . This, however, is only a higher bound. There could in
principle exist an encryption scheme ENC(.) such that the set of encryptions of ele-
ments that sum up to share1 would gives out much less knowledge about share1 than
a single encryption ENC(share1 ): If ENC(a) gives out 1 amount of informationjqjc
about a E Zq and Enc(b) gives out - amount of information about b e Zq, then

jqjc

ENC(a), ENC(b) can give out only - *1 = 2 amount of information about
a + b (mod q). Consequently, E would give outq(,c amount of knowledge about
share1 , and if there was a public key encryption function for which the above was
true, our scheme would give out only ( I _1Tc amount of information about the
secret x.

The Average Case Strength of the Secrecy Protection

Theorems 9.4.9 and 9.4.10 deal with the worst case scenarios when the adversary
compromises the maximum number of servers our scheme allows. If we take not the
worst case, the strength of the secrecy protection that our scheme offers varies with the
number of servers that are compromised. For example, in the case of a single execution
of the share renewal protocol between time period t and t+ 1, if IK1 ULUK 2 1 < k then
even if the adversary breaks n2 encryptions {ENCI(Jj(i), 'j(i))}i,jE{1... n) (a subset of
(n - ILI)k encryptions {ENCQ(bj(i), j(i))}iEs,jL, ISI = k, would give the same
knowledge) and learn the total update polynomial 6(.), 7('), the secret x would be
hidden from the adversary with actually an information theoretical secrecy: The
adversary could compute {xi, zi}iEKULUK2 for both time period t and t +1, but these
shares will be consistent with any value of x.



9.4.3 Secrecy Protection in the Share Recovery Protocol

The secrecy protection results for the share renewal protocol (theorem 9.4.9 and
9.4.10) can be extended to the share recovery protocol. Steps 1 to 4 of the share
recovery protocol (as described in section 5.3 with Feldman's VSS or in section 7.3
with Pedersen's VSS) essentially copy the share renewal protocol: the servers re-
randomize the secret sharing polynomial f(-) (or the pair of polynomials f(.), b(.) in
the case of Pedersen's VSS). The difference is that in the share renewal protocol they
re-randomize it with a constraint that (f'(0),b'(0)) = (f(0),b(0), and in the share
recovery protocol they re-randomize it with a constraint that (f'(r), b(r)) = (f(r)
where r is the index of the server whose share is to be recovered.

The more important difference between the two protocols, however, is the worst-
case number of shares contained in the adversary's view RecView($), where Pr is the
server whose share is being recovered and

* B is the set of all servers who need share recovery: B2, are those that are
compromised during the update phase (i.e. the adversary moved back to them
just after they were rebooted) and B1 , are those who were compromised only in
the time period proper and are not compromised during the update.

* K, IKI = k1, is the set of servers compromised during the time period preceding
the update, but not during the update. Clearly, B1 C K1.

* L, I LI = 1- kI, is the set of servers compromised by the adversary during share
recovery (and also, we can assume, throughout the preceding time period).
Clearly, B2 CL and KCI nL = {}.

* D', is the set of servers whose rerandomization polynomials are well formed
and distributed, and hence included in the total rerandomization polynomial.
Clearly, D' nB = {} and (A \ L) C D'.

Clearly worst case is when B1 = K. For simplicity let K = B1 = {1,...,k1},
B2 = {k 1 ,...,1'}, L = {k 1,...,1}. The view of the adversary during the share
recovery protocol is as follows:

RecView(B) = (Shares, Ims, Shares', {Fulli}iev'nL, {Partiali}iE9\L) (9.16)

where:

Shares = {xi, zi}ii{1,...,I}

Ims = {yIi}:e{1...n}

Shares' = {aX, z }Z{,,'+l,...,l} if Pr E B1

Shares' = {xI, z }{iE{... n if Pr E B2

Fulls = 6i(-), 7(')

Partial4 = {6i(j), 'y(j))}j{l'+1,...,l},{gimh'Yim}mE{...k},



{ ENCj(6i(j), Yi(j)) }j{i+i,...,n}

We state the following theorem:

Theorem 9.4.11 The view RecView (B) of the adversary during a single execution
of the share recovery protocol for server Pr, r E B, is a semantically secure envelope
of the secret x.

Proof: We will only sketch the proof of this theorem, because it is very similar to
the proofs of the secrecy protection of the share renewal protocol.

Just like in the share renewal protocols, we argue that the view of the adversary
can be treated as an envelope scheme RecView B)(.) of the secret x. Notice that
adversary has the most information when I = k, 1' = 1 and Pr e B2, which means
that K = B1 = {} and B= B 2 ={1}.

Since 1 < l' < 1, set {6i(j), i(Ji)}IjE{1'+,1...,}, {g6 himh'}mE{1...k} looks like a subset
of a view of the adversary during Pedersen's VSS. This means that if there were
no encryptions of shares in Partiali then Partiali would be an information theo-
retical secure envelope of 6i(0). Similarly to lemma 9.4.5 we show that in this case,
{Fullj}iELnD,, {Partial}4~,v\L would be an information theoretical secure envelope of
6(0) where 6(.) = E, 5i(.). For every x0 E Zq, setting f(0) = xo sets f(.), b(.). Since
f'(-), b'(.) is known to the adversary from Shares', this fixes J(.), 'Y(-) and hence 6(0).
Similarly to the proof of theorem 9.4.2 we show that for every x0, so formed polyno-
mials 6(-), y7() are consistent with the information in {Fulli}ieLnl,, {Partialg}jE'\L.
This shows that if Partiali had no encryptions {ENCj(Ji(j), Yi(j))}JE {tl1,...,n} for ev-
ery i, then RecView$') (.) would be an information theoretically secure envelope of
X.

When we put back encryptions to RecView(B), we can prove that RecView(B) (.) is
a semantically secure envelope of x. The proof is analogous to the proof of the theorem
9.4.9: by a hybrid method we reduce the semantic security of RecView(B) (.) to the
semantic security of the encryption scheme ENC(.): In the worst case, RecView() )(.)
protects the secrecy of x with at most 2(n-k) times weaker strength then the strength
of the secrecy protection offered by the encryption scheme ENC(.) (learning any
6(i), y(i), i E {l + 1,..., n} implies learning the secret x). 0

Just like we can extend theorem 9.4.9 about a single execution of the share renewal
protocol into theorem 9.4.10 concerned with a sequence of its executions, we extend
the above theorem:

Theorem 9.4.12 The view of the adversary of a series of executions of the share
recovery protocol {RecView(B)}rEB is a semantically secure envelope of the secret x.

Proof: We will only sketch this proof. Analogously to the proof of theorem 9.4.10, we
need an extension of the information theoretical version of theorem 9.4.11 for the case



of multiple executions of the share recovery protocol. If we take away the encrypted
shares from each RecViewAB), setting x0 sets f(.), g(.). Since every execution of share
recovery gives to adversary different sets Shares', {Full}iELnv, and {Partial}Ev'\L

(let's denote them as Shares(r ) , {Fullr)}iELnlv,, {Partialr)}sEV,\L for each Pr e B),
each Shares(r ) together with f(.), g(.) defines ((r)(.) y(r)(.) which are consistent with
the information in {Fullr)}iELnv,, {Partialr)}iEV\L-.

Then we prove that putting the encrypted shares back reduces the secrecy pro-
tection to semantic security. The adversary's view is clearly best if 1 = k and
B, = K = {}. For every Pr, r E B2 so the view of the adversary includes all
values {x4' Z}i {i...n} for that rerandomized polynomial f(r)(.),b(r) (). This means
that to learn the secret the adversary needs to know one additional value among
{j(r) (r)(j)}jE{1+1,...,n}. This reduction gives us the following lower bound of the
strength of the secrecy of the recovery protocol: The secrecy protection of the mul-
tiple executions of the share recovery protocol is at most 21'(n - k) worse then the
secrecy protection of the encryption scheme. In the worst case l' = 1 = k and the
secrecy protection is at most 2k(n - k) worse then ENC(.). M

9.4.4 Secrecy Protection during the Lifetime of the Proac-
tive Algorithm

We can now connect theorem 9.4.10 in section 9.4.2 (i.e. the secrecy protection of
repeated execution of the share renewal protocol) and theorem 9.4.12 in section 9.4.3
(i.e. the secrecy protection of repeated execution of the share recovery protocol) to
prove the secrecy characteristics of the whole proactive algorithm using Pedersen's
VSS, i.e. to prove the secrecy part of theorem 3.2.0. We use the same notation as in
the previous section.

Proof of the secrecy part of theorem 3.2.0: The maximal view Info of the
computation that the adversary can have during the lifetime of the proactive secret
sharing algorithm is as follows:

Info = (Shares(o), Ims ( ) , { View(t), {RecView('("')I}reB, }tE{1,...,to}) (9.17)

where View(t) is described in equation 9.13 and RecView( (t )) is described in equation
9.16. To make this formula clear, note that in each update phase there are IB(t)I
executions of the share recovery protocol followed by a single execution of the share
renewal protocol.

We will only sketch this proof because it is similar to the proofs we wrote for
theorems 9.4.10 and 9.4.12. As in those proofs, we first strip Info of encryptions of
shares of update polynomials in each View (t ) or rerandomization polynomials in each
View(1(t)). We show that this stripped view is an information theoretically secure
envelope of x: Let x = xo E Zq for any xO. For each time period t separately,
x0 together with Shares(t) defines f(t) (.), g() (.). For each of these polynomials we



can make the same argument as in the proof of theorem 9.4.12 to show that they
are consistent with {RecView(}B())}reBt). Also, for each pair f(t-1)(.), g(t-1)(.) and
f(t)(.),g(t)(.) we can make the same argument as in the proof of theorem 9.4.10 to
show that they are consistent with View(t).

Now we put the encryptions back and we use the hybrid method to show that
if we assume that Info(.) is not a semantically secure envelope scheme then neither
is ENC(.). The exact worst case coefficient of this reduction does not follow from
the worst case coefficients of reductions we made in the proofs of theorems 9.4.10
and 9.4.12. It is because the worst case in theorem 9.4.10 is when the adversary
is maximally mobile, i.e. when the sets of servers compromised during each update
phase L(t) are all empty and the sets of servers compromised only during each proper
time period K(t) are maximally big, i.e. IK(t) I = k and K(t-1) n K(W) = {}, for all t.
In contrast, the worst case in theorem 9.4.12 is when the adversary does not move at
all and stays in one set of servers throughout the lifetime of the algorithm, i.e. when
for all t, K() = {} and L(t) = L where ILI = k.

However, instead of the detailed analysis we argue that the information contained
in Info(.) cannot be worse then if during each time period and phase update there
occurred the worst case from both the perspective of the secrecy of share renewal
protocol and the secrecy of share recovery protocol. In other words, the secrecy of
our scheme is no worse then if the adversary sees tok(n - k) (from executions of share
recovery) plus ton (from executions of share renewal) encrypted values such that if
she decrypts any of them she learns the secret. This makes the strength of the secrecy
protection of Info(.) at most 2to(nk+n-k 2 ) less secure then the strength of ENC(.).

M

9.5 Protection of Secrecy in the version with Feld-
man's VSS

In this section we will prove the secrecy characteristics of our scheme with Feldman's
VSS, i.e. we will prove the secrecy part of theorem 3.1.0. We will first present
the proof technique we will use by proving an equivalent of theorem 9.4.9 (semantic
security of a single execution of the share renewal protocol using Pedersen's VSS)
for the proactive share renewal protocol using Feldman's VSS (theorem 9.5.1 below).
The proof of the secrecy part of the main theorem 3.1.0 will be very similar.

Theorem 9.5.1 The view FelView(t ) of the adversary of a single update phase be-
tween time period t - 1 and t in the share renewal algorithm using Feldman's VSS is
an envelope of secret x semantically secure relative to the knowledge of gX (mod q).

Proof: We will prove that if envelope FelView(t) (x) is not semantically secure rela-
tive to knowledge of gX (mod p) then the envelope View(t) (x) (the view of the adver-



sary of a single run of the share renewal using Pedersen's VSS, as in theorem 9.4.9)
is not semantically secure.

Notation K1 , K2, L and D is just like in the proof of theorem 9.4.9. We have:

FelView(t) = (Shares(t-l), Shares(t), Ims(t- 1), Ims(t), {6(.)}ieDnL, {Partial2 iED\L)

where:

Shares(t-1 ) = {Xt-1)}iELUK1

Shares( = {Xt) }iiELUK 2

Ims(t-1 ) = gxýt}iA)

Ims() = {gx t) iEA

Partiali = {6i(j)}EL, {gJim},mE{1...k}, {ENCj(6i(j))}jCL

Assume that FelView(t )(x) (Fel(x) for short) is not a semantically secure enve-
lope relative to the knowledge of gx '. Let io be some element in D \ L. (we
used this technique in lemmas 9.4.5, 9.4.8 and theorem 9.4.9). Let Felo(x) be an
envelope just like Fel(x), except that the only partial update polynomial about
whom there is no full information is 6io(.). In other words, while Fel(x) contains
{6i(')}ieDnL, {PartialiJED\L), Felo (x) has {62(.)}ieD\{io}, Partialio. Then Felo(x)
also cannot be a semantically secure relatively to g'. And hence, there is a BPP
machine A and functions A and 0, such that for every BPP algorithm A'

3cVho3q s.t. ql>hoProb[A(Felo(x), 9(x)) = A(x)] > Prob[A'(gx, 9(x)) = A(V)] +

(9.18)
where the probability is taken over the random choices made by A, A', Fel(x) and
over the distribution of x.

From the proof of theorem 9.4.9, envelope View(O)(x) (View(x) for short) is se-
mantically secure even if it contains {Full}ieD\{io}, Partialio instead of {Fulli}bEDnL,
{Partiali}iED\L). Let's call such modified envelope Viewo(x).

As mentioned in section 9.4.2, in the discussion of the proactive algorithm using
Pedersen's VSS we used notation ENCi(6j(i), /j (i)) for encrypted transmission of
shares of the partial update polynomials {62('),7&i()}iED. This way it was easier
to talk about accusation protocol and about reducing the secrecy of our algorithm
to that of encryption ENC(.). However, the same proofs go through if we replace
ENCi (6j(i), j(i)), with ENC (6Jj(i)), Enc (-7 (i)). The only difference would be that
because we now use ENC(.) as acting on input of size JqJ and not 21ql, the coefficients
that express the relative strength of secrecy protection of our scheme compared to

3We will write gZ and g0i for short when we really mean g' (mod p), gXt (mod p) etc.



that of ENC(.) would be bigger by a factor of two. Therefore, we will denote:

Viewo = (Shares(t-1 ), Shares(t), Ims(t-1), Ims(t), {6i(.), 7i()}iED\{io} , Partialio)

where:

Shares 21 ) = {x e1) t1) }iELUKI

Shares(t) - {x 1t) (t)}iLUK
((1-1) (t-1)

Ims(t-1) {gX hz }iEA

Ims(t) = {gx) hz) }ieA

Partial 1 = {6i(j), 7 (j)}jEL, {g 8mh•fm}miEl...k}, {ENCj(b5(j)), ENCj(7i(j))},¢L

We construct a BPP machine C that takes as input gx, Viewo(x) and 0(x) (with prob-
ability distribution as in the share renewal algorithm using Feldman's VSS) and does
the following: It computes g9Et-}eLUK from Shares(t- 1) and {g(t)9ieLUK2 from

Shares(t). Together with g' - g( f - )(o) - gf(1)(o), C has k+1 values {gf(-l)(i)}iE{0,...,k}

and k +1values {gfM(i)(}iE{0,...,1}U{k+1,...,2k-l}. Using the same technique as in the proof
of lemma 9.4.6, C interpolates these values for both f(t1)(.) and f(t)(.) to get the re-

maining values {g~l) }iE{k+1,...,n} and {gxt) }iej1+1,...,k}U{2k-1+1,...,n}. Then C computes
for every i e {1... n}

g6io(i) = gX() I 9z - ) )g iiW) (mod p)
jED\{io}

and interpolates any k of these values (again as in the proof of lemma 9.4.6) to get
{g1m }mEl{1... k}. C puts these values together and constructs

V = { 4 -1) }iELUKl{X t) }iELUK2)

g9" ie{1...n}, {gx' }iE{1... n},

{6i() }iED\{io}i

{6 io(i)}ELL, {g19om }mE{1... k}, {ENCj(6 0o(j))}jOL

Then C runs A(V, O(x)) and returns its output. Notice that V has the same proba-
bility distribution as Felo(x). Therefore,

Prob[C(g', Viewo(x), O(x)) = A(x)] = Prob[A(Felo(x), O(x)) = A(x)]

and consequently, from equation 9.18, for every BPP machine A'

3,Vho~lqljhoProb[C(gx, Viewo(x), O(x)) = A(x)] > Prob[A'(gx, 9(x)) = A(V)] +
101c



We define a new knowledge function 0'(x) = (0(x), gx). It follows that for every BPP
machine A'

1
3cVho3JqJýhoProb[C(Viewo(x), O'(x)) = A(x)] > Prob[A'(O'(x)) = A(V)] + +q

where probability is computed over probability distributions of Viewo(x), x and ran-
dom choices of C and A'. This contradicts the fact that Viewo(x) is a semantically
secure envelope scheme and concludes the proof of the theorem.

Proof of the secrecy part of theorem 3.1.0: This proof is analogous to the one
above. We proceed as follows: We denote the maximal adversarial view of the history
of proactive algorithm using Pedersen's VSS (as in the proof of the secrecy part of the-
orem 9.4.9 in section 9.4.4) as an envelope scheme Ped(x). We define the analogous
view for Feldman's VSS and call it Fel(x). We claim that Fel(x) is not semantically
secure relatively to the knowledge of g'. Let O(x) be the a priori information and
A(x) be the knowledge that one can learn non-negligibly better with Fel(x) then with
having only 0(x) and gx. We define an envelope Felo(x) to be just like Fel(x) except
that whenever there is a collection of update or recovery polynomials (polynomials
Ji(.)) about whom Fel(x) has only partial information, we make Felo(x) so that it

has full information about all of them except of one (for every collection of partial in-
formation about re-randomization polynomials {Partiali(')}1 ED\L in Fel(x), we pick
some i0o E D \ L and we replace this collection with {Full(.)}iED\(LU{io), Partialio.
Since Fel(x) is polynomial-time computable from Felo(x), if Fel(x) is not semanti-
cally secure relative to gx, then neither is Felo(x). Analogously, we define Pedo(x)
as a variation of Ped(x) and we argue that even though Pedo(x) has more informa-
tion then Ped(x) (i.e. Ped(x) is polynomial-time computable from Pedo(x)), all the
proofs of security from section 9.4, and the proof of the secrecy part of theorem 9.4.9
in section 9.4.4 in particular, go through for Pedo(x) just like for the original envelope
Ped(x). Consequently, Pedo(x) is a semantically secure envelope of x. Now, we use
the technique from the proof above to show that with the additional knowledge of

g9X, one can construct Felo(x) from Pedo(x) in polynomial-time. We conclude that
if we define 0'(x) = (0(x), gx), then a BPP machine C that takes 0'(x) and Pedo(x)
can construct Felo(x) and learn A(x) with non-negligibly better probability then any
BRP' machine that takes only 0'(x) as an input. This is a contradiction and hence,
Fel(x) must be a semantically secure envelope of x, relative to the knowledge of gX,
which concludes the proof of the theorem. 0
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