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ABSTRACT

The shape of an object can be determined from the shading in a single image by
solving a first-order, non-linear partial differential equation. The method of characteristics
can be used to do this, but it suffers from a number of theoretical difficulties and
implementation problems. This thesis presents an iterative relaxation algorithm for solving
this equation on a grid of points. Here, repeated local computations eventually lead to a
global solution.

The algorithm solves for the surface orientation at each point by employing an
iterative relaxation scheme. The constraint of surface smoothness is achieved while
simultaneously satisfying the constraints imposed by the equation of image illumination.
The algorithm has the distinct advantage of being capable of handling any reflectance
function, whether analytically or empirically specified.

Included are brief overviews of some of the more important shape-from-shading
algorithms in existence and a list of potential applications of this iterative approach to
several image domains including scanning electron microscopy, remote sensing of topography
and industrial inspection.
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1. INTRODUCTION

Making machines more useful is a major goal of artificial intelligence. One

obvious way of making machines more useful is to enable them to deal directly with their

environment. Making machines "see" is one way to do this. How to make machines see is

not so obvious.

Simply put, the goal of machine vision is to develop systems which take an image,

whether it be a photograph, an X-ray or a painting, and have it produce a symbolic

description of the object(s) within the image. The design of such a system is a matter of

great debate, as is the form of the description itself.

In this thesis, we are concerned with one small part of this difficult transformation

from image to description -- that of computing the shape of a smooth surface from an image

of that surface.

1.1 What is Image Analysis?

The purpose of machine vision is to define and describe the components of a scehe

given an image of that scene. Historically, this process has been divided into two parts.

The purpose of image analysis is to extract features from a raw image and to convert those

features into a convenient symbolic representation. The purpose of scene analysis is to

interpret the symbolic features produced by image analysis according to some externally

defined goal.

Early artificial intelligence research in machine vision concentrated on images of

scenes containing plane-faced polyhedra. Initially, the distinction between image analysis



and scene analysis seemed quite clear. The purpose of image analysis was to generate a two-

dimensional line drawing of the scene [Horn, 19731. The purpose of scene analysis was to

interpret a two-dimensional line drawing in terms of the three-dimensional objects which

gave rise to it [Roberts, 1965; Guzman, 1968; Huffman, 1971; Clowes, 1971; Turner, 1971;

Mackworth, 1973; Waltz, 1975; Winston, 1975). As the field matured, the actual distinction

between image analysis and scene analysis became less clear. More recent work [Winston,

1973; Shirai, 1975; and Freuder, 19761 made use of a richer form of interaction between image

analysis and scene analysis. Nevertheless, a conceptual distinction between the two still

exists.

The shape-from-shading problem lies within the realm of image analysis. It deals

directly with an image as input to determine a representation of shape suitable for

subsequent scene analysis.

1.2 The Difficulties with Image Analysis

Despite strong motivation and years of concerted effort, researchers have failed to

come up with a "universal" shape-from-shading method. To be sure, inroads have been

made in many specialized areas but each approach involves many assumptions about the

imaging situation and is applicable only in limited circumstances. What is it that makes the

analysis of images so elusive?

The purpose of this section is to point out some of the difficulties associated with

the interpretation of image intensities. Knowledge of these difficulties is necessary to predict

when and why certain image analysis techniques will work and when and why they will fail.



1.2.1 The Data in an Image

A great deal of information is contained in the intensity values recorded in an

image, and this massive quantity of data has proven to be a stumbling block to image

analysis. Image analysts often rely on data compression and forget about actual image

intensities as soon as possible. One method of image analysis is to extract features of

intensity which are important and to throw away everything else, but those features one can

extract easily are those which can be conveniently defined in terms of properties of images.

Properties of images, however, do not usually correspond directly with properties of the

objects which gave rise to them.

Practical vision systems exist for domains in which there is a direct correlation

between properties of images of the domain and interesting properties of objects in the

domain. Domains which are inherently two-dimensional generally provide such a good

correlation. Optical character recognition [IBFI, 1969), blood cell analysis [Young, 1969), and

automatic fingerprint identification (Grasselli, 1969], are three such examples.

The research in this thesis attempts to exploit all the data in an image rather than

to compress the data into a more manageable, reduced size. The transformation from object

space to an image space is a functional mapping from an object point (x, y, z) to an image

point (u, v) and a corresponding intensity value I. Roughly speaking then, the

dimensionalities of the two domains match. Difficulties arise from the fact that the image

generating transformation is many-to-one. Therefore the inverse transformation (the

solution of the shape-from-shading problem) is not uniquely determined without further



assumptions. The physical interpretation is that any number of surfaces can give rise to the

same image, so shape-from-shading can only be achieved by imposing constraints in the

form of prior expectations about the imaged surface.

1.2.2 Image Illumination

The image depends on more than just the shape of the surface and the location

from which it is viewed. As we all know, object surfaces appear differently at different times

of day. In fact, a single surface can have an infinite number of images depending upon the

distribution of incident illumination. Changes in illumination can cause a surface to appear

quite differently even when viewed from the same direction.

1.2.3 Surface Photometry

A third factor confounding the shape-from-shading problem is the fact that

different surfaces reflect light in different ways. The composition of the surface of an object

determines how much light is reflected and in what directions. As a result, identically

shaped surfaces under identical lighting conditions can give rise to different images. Even

objects of the same material appear differently depending upon whether they are wet, dry,

clean or dirty. The conclusion is that objects of the same shape under identical lighting

conditions can give rise to different images.



1.2.4 Human Performance

Humans are remarkably successful at interpreting image intensities despite the

problems caused by projection, illumination and surface photometry. The fact that humans

are capable of interpreting single images of arbitrarily shaped, unfamiliar objects rules out

any need for high-level information and any need for more than one image. It seems that

the determination of shape from the shading information in an image must be possible since

the human visual system can achieve it.

The numerical approach that is presented in this paper for solving the shape-

from-shading problem is not intended to reflect the way the human (or any other animal's)

visual system works. The desire is the less ambitious, yet useful, goal of designing a

mechanical system capable of determining shape from a single image.

1.3 The Problem

As we have seen, a generally applicable shape-from-shading machine must deal

with a wide variety of difficult problems. The differences among present algorithms can be

viewed in terms of which complications are actually solved and which are avoided entirely

(by simplifying assumptions). For example, occluding contours pose a problem to some

shape-from-shading techniques whereas restricting the domain to images of smooth surfaces

containing no occluding contours is a way to avoid this problem.

This thesis presents a practical shape-from-shading algorithm which sidesteps some

of these complications to be sure, but also overcomes some previously insurmountable ones.

The method which will be described is capable of ascertaining surface shape from the



shading information in a single image. The only information required beside the image

itself is the reflectance function of the surface and some suitable set of initial conditions,

provided the surface is smooth at all points in the region to be analyzed.

Heretofore, only the analytic approach due to Horn [19751, of solving a first-order,

non-linear, partial differential equation was capable of determining surface shape from a

single image. However, Horn's method is practical only when the reflectance can be

described as a simple analytic function of the surface gradients, since it requires the

derivatives of the reflectance map. The algorithm of this thesis is capable of determining

surface shape for nearly any reflectance function. In fact, the reflectance need not be known

analytically; an empirically defined reflectance function works just as well. Both algorithms

are restricted to image regions of smooth surfaces with known photometric properties.

The algorithm is posed as an iterative relaxation scheme. It seeks to

simultaneously satisfy the constraints of the equations of image formation and surface

smoothness at all points in the image. Global constraint is achieved by propagating pseudo-

local smoothness operators throughout the image. The goal is convergence to the unique

surface shape that gave rise to the image.

It is important to point out that the riumerical shape-from-shading algorithm is not

intended to be a stand-aidne system. Rather, it performs one small part of the

transfortmation from iniage to high level description. It is up to other methods to isolate

regions of smooth isotropic surfaces. Then this algorithm can be utilized to determine the

shape within those regions.



1.4 Applications for Shape-From-Shading

The ultimate shape-from-shading algorithm would be capable of determining the

shapes of all visible surfaces in an arbitrary scene. However, as we have seen, many

assumptions about a domain must be made to keep things tractable. Several domains which

possess properties that can be exploited for image analysis are described in this section.

Planetary Mapping:
Images returned from satellites provide one worthwhile domain for image
analysis. Images of the moon from the Apollo missions, of Mars from the
Viking spacecraft, and of the earth from LANDSAT are examples of likely
candidates. In theory, a shape-from-shading machine could determine the
surface topography of a portion of a planet from a single satellite photo. The
absence of complicating features such as cities, clouds, and variations in
surface vegetation in images of the moon, Mars and Mercury provide a major
simplification that renders them suitable for analysis.

The Bin of Parts Problem:
Automation of assembly lines in factories often requires knowledge of the
spatial position and orientation of a part. This knowledge is especially
difficult to acquire when the parts lie in a pile or in various orientations on a
conveyor belt. Machine vision can bridge the gap. Properties of the
intensities recorded in an image of a part can be directly related to the
position and orientation of the part. Identification of a particular object in an
image of many different objects is also possible.

The Scanning Electron Microscope:
The scanning electron microscope (SEM) produces images which are
particularly easy to interpret because the intensity recorded is a function of the
orientation of the object at that point and thus gives rise to a form of shading.
This differs from the situation in optical and transmission electron
microscopes where intensities depend instead on the thickness and optical or
electron density at each point. The geometry of the scanning electron
microscope allows several simplifications in the algorithm for determining
shape from shading. Additionally, it should be easy to combine the SEM with
a minicomputer to obtain three-dimensional information because of the
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random access capability of the microscope beam [Horn, 19751 A shape-from-
shading algorithm for SEM images would be especially useful because, at the
magnifications used, no other way exists to accurately determine the three-
dimensional shape.

Automatic Visual Inspection:
Many tasks of inspection involve the routine search for particular features in
an image of an object. The repetitive nature of these tasks makes it desirable
to accomplish this automatically. The fact that all images to be analyzed may
be of the same object under similar lighting conditions allows one to ignore
the effects of lighting and utilize the properties of the object to be imaged.
Inspection of defects in metal castings [Woodham, 1978a] and military
surveillance are two leading examples.



2. THE TOOLS

In the course of previous research, several mathematical and theoretical formalisms

have been developed for use in image analysis. For the uninitiated, this chapter describes

those tools which facilitate discussion of the concepts presented in the thesis.

2.1 Definitions

To prevent confusion between terminology used here and that from other

disciplines, this section defines many of the relevant terms which may otherwise be somewhat

ambiguous.

For our purposes, an image is any function of two variables which could have been

generated by the procedures described in the remainder of this chapter. That is, an image is

nothing more than our intuitive notion of a shaded picture. Digital computers sometimes

require a digitized image, which is simply a set of intensity values corresponding to a finite

number of image points usually selected to lie on a square grid. A synthetic image is actually

a digitized image that has been produced mathematically by a digital computer in a way

that models the normal imaging process. A square grid is often superimposed upon a real

image to select an image point (u, v) at each vertex. The neighbors of image point (u, v) are

those image points which are closest to (u, v). The size of a neighborhood depends on the

context in which the term is used.

For reasons discussed later, each image point has an associated surface point on the

object which gave rise to that image. Every surface point has a unique local surface



orientation which is the orientation of a plane tangent to the surface at that point. The

solution of the shape-from-shading problem will be in the form of the local surface

orientation at the surface point associated with every image point. Often we will speak of

the "orientation at an image point" which is to be taken as an abbreviation for the local

surface orientation of the surface point associated with that image point. The shape or

topography of a surface will be represented by the local surface orientation at a set of surface

points. One may recover explicit depth values by integrating the local surface gradients

Qve.r the entire region, so information in this representation is essentially equivalent to

explicit knowledge of depth values of surface points to within a constant of integration. A

surface with continuous first partial derivatives is called smooth.

Several quantities associated with illumination and the reflection of light need to

be defined as well. Irradiance is the density of the incident flux while radiance is the flux

emitted per unit surface area per unit projected solid angle [Nicodemus, Richmond and Hisa,

19771. Image irradiance is often referred to as image intensity. Grey-levels are quantized

measurements of image irradiance. Objects which have the same photometric properties at

all surface points are referred to as isotropic.

2.2 Image Generation

To understand the formation of an image, one must consider two separate

processes. One deals with the geometry of projection while the other deals with the intensity

of light recorded in an image. Thus the generation of a synthetic image consists of

determining where in an image to place a surface point and what to record at that image



point [Strat, 1978].

2.2.1 The Transformation from Object Space to Image Space.

In order to calculate the image point (u, v) which corresponds to a particular

surface point (x, y, z), we can consider the projection of that surface point onto the image

plane as shown in Figure 1. (To avoid inverting the image, it is convenient to think of the

image plane as in front of the lens rather than behind it.) For simplicity, the lens (the

viewpoint) is positioned at the origin and the image plane is perpendicular to the Z axis. In

Figure 1, f is the focal length (the distance between the viewpoint and the image plane). As

can be seen, a straight line connects the viewpoint, the image point and the surface point.

By the proportionality of similar triangles,

u/f = x/z and v/f - y/z (2.1)

so

u =x and v= y (2.2)z zY

These equations, which determine an image point (u, v) corresponding to object point (x, y,

z), define the standard perspective projection. If the size of the objects in view is small

compared to the viewing distance, then for all surface points (x, y, z), z is nearly constant and

Equations (2.2) become (after scaling the image by the constant z/f):

u = x and v - y (2.3)

which define the standard orthographic projection. The projection of images obtained using

a telephoto lens is approximately orthographic. With the assumption of orthographic

projection, all rays from the surface to the image plane are parallel, so the use of separate
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(a) Perspective Projection

(b) Orthographic Projection

Figure I Geometry of Image Projection
The geometry of perspective projection is given in (a). A straight line connects the
viewpoint, the image point and the surface point. The focal length, f, is the distance
between the viewpoint and the image plane. When the viewpoint is far compared to the
object's size, the lines connecting image points to object points become parallel. This
projection is orthographic as shown in (b).

z



image coordinates is redundant, and image coordinates (x, y) and object coordinates (x, y)

can be referred to interchangeably.

A word of caution is in order here. Because the projection (orthographic or

perspective) is from three dimensions to two dimensions, some Information is lost. It is

possible that more than one object point be projected into the same image point. Because

our visual world usually consists of opaque objects, only the point that is nearest the viewer

will generally be visible. That is, of all the object points (xi, yi, zi) that project into image

point (u,v), only the one with the smallest zi will appear at (u, v) in the image. All others

will not appear in the image. The implication for the inverse projection is as follows.

Assume. image point (u, v) has been found to correspond to object point (xo, Yo, zo). Then

no object points occur along the line connecting image point and object point for which

Z<zo.

A corollary of this hidden surface phenomenon is the presence of occluding

contours. Two points which are adjacen in the image do not necessarily correspond to two

points which are adjacent on the object, even if the object has a smooth surface. One part

of an object can obscure another.

In the work that follows, orthographic projections and images of smooth surfaces

without occluding bounds are generally assumed. Occasionally, a method will be applicable

to perspective projection as well and this will be pointed out.



2.2.2 The Determination of Grey-Levels in an Image

The. last section described where a point on the surface of an object will appear in

an image of that object, given a particular imaging geometry. This section deals with what

grey-level gets recorded at that point given the imaging geometry and the photometric

properties of the object.

2.2.2.1 Imaging Geometry

When a ray of light strikes the surface of an opaque object, it may be absorbed or

reflected. The intensity at a point in an image of that object will depend only on the

amount of light that is radiated (reflected) toward the viewer.

The amount of light radiated in a particular direction by a surface element

depends on the orientation of the surface and the distribution of light sources around it, as

well as on the nature of the surface material. The effect of the nature of the surface is

described by its photometric properties and depends on the surface microstructure of the

object material. Naturally, what constitutes microstructure depends on one's point of view.

For our purposes, surface structures not resolved in a particular imaging situation will be

considered microstructure. For most surfaces, there is a unique value of radiance for a given

surface orientation no matter how complex the distribution of light sources.

The simplest case is that of a single point source where the geometry of reflection is

governed by the three angles shown in Figure 2. The incident angle between the local

normal and the incident ray is called i, while e is the view angle between the local normal

and the emitted ray and g is the angle between the incident and emitted rays and is termed



the phase angle. The fraction of incident illumination at a given surface point that is

reflected in the direction of the viewer is given by the reflectance function 0(1, e, g). Cases

with a more complicated distribution of light sources can be modeled simply by the

superposition of single point sources.

\A/ Normal

Viewer

Figure 2. Geometry of Reflection This figure shows the relationship
between the various angles at a particular surface element. Angles i, e
and g are called the incident, emittant and phase angles respectively.

2.2.2.2 Gradient Space

It is necessary to have a convenient way to represent surface orientation explicitly.

Gradient space, as popularized by Huffman [19711 and Mackworth [19731, and the "slant/tilt"

formalism (Stevens, 1979] are two useful representations for reasoning about surface

orientation. Because it simplifies the equations of the numerical shape-from-shading

algorithm, gradient space is the only one we will pursue here.

If the equation of a smooth surface is given as z - f(x, y), then the surface normal

toward the viewer at the point (x, y) is



a f(x, y), a f(x, y) , .1
ax ay

it is convenient to define

p - 8 f(x, y) and q = a f(x, y) (24)
ax ay

so that the surface normal becomes (p, q, -1). The quantity (p, q) will be called the gradient

and gradient space is defined to be the two-dimensional space of all such points (p, q).

We should look at some examples in order to gain a feel for gradient space.' Given

our viewer-centered representation, the direction to the viewer maps into the. origin in

gradient space. The distance from the origin in gradient space corresponds to the

inclination of a plane with respect to the view vector. We find that the distance from the

origin equals the slope of the surface with respect to the direction toward the viewer, i.e.

tan(e). Additionally, the angular position of a point in gradient space corresponds to the

direction of steepest descent on the object surface.

2.2.2.3 The Reflectance Map

For a given type of surface and a given distribution of light sources, there is a

fixed value of radiance for every orientation of the surface normal and hence for every point

(p, q) in gradient space. Thus image intensity is a single-valued function of p and q.

We need to define the relationship between the angles i, e and g and gradient

point (p, q). It is convenient to work with the cosines of the angles,

Iwcos(i); E-cos(e);' G=cos(g)

since these can be obtained easily from dot products of the three unit vectors. Suppose for



now that we have a single distant light source and that its direction is given by a vector (p,,

q,, -1). From Figure lb it can be seen that the direction toward the viewer from any surface

point is (0, 0, -1) for an orthographic projection, and the surface normal is (p, q, -1). So

G 1 (2.5)

l+ps,2s2

E 1 (2.6)

\/l~2q2l-pq

l+psp+qsq (2'7)
l)p,2,2 As2  l~p2q 2

It is now apparent that G is constant given our assumption of orthogonal projection and

distant light source. We can then derive the reflectance map R(p, q) from an arbitrary

photometric function 0(1I, E, C) by solving the above equations for p and q in terms of I, E

and G. The details are tedious and are omitted here, but the results can be found in [Horn,

1977a].

2.3 Determination of Reflectance Maps

In this section we focus on the issues of what the reflectance map might look like

and how it is obtained. See [Horn, 1977a] for further details on reflectance maps.



2.3.1 Analytic Reflectance Functions

A particularly simple case is that of a lambertian or matte surface. This type of

surface looks equally bright from all directions and the radiance depends only on the cosine

of the incident angle.

If we consider a point source at (p., qs, -I) not near the viewer, the reflectance map

becomes

(Pj, qs, -1) * (p, q, -1) I*psp*qs qR(p, q) - cos(i) - - (2.8)
IKp,, q., -1)i I(Kp, q, -1)11 lp2+q8 2 l

Setting R constant gives us a second-order polynomial in p and q showing that loci of

constant reflectance are conic sections. The line separating lighted from self-shadowed

regions, the terminator, is a straight line satisfying l+psp+qsq=0. Similarly, the locus of R(p,

q)-l, the maximum value, is the single point (Ps, qs). Contours of constant R(p, q) are

plotted in Figure 3 for the case ps=0.7 and qs=0.3.

White paint consists of small transparent pigment particles such as SiO 2 or TiO 2

of high refractive index and small size suspended in a transparent medium of low refractive

index. This arrangemnent ideally reflects light equally in all directions and is an example of

a real material closely approximating the ideal lambertian surface. Other examples are fresh

snow, crushed glass and many flat paints.

The reflectance maps of some other surfaces have been approximated analytically

[Horn, 19717a. These include surfaces with both a matte and specular component of

reflection, the material in the maria of the moon when viewed from great distances, and

some substances when imaged by a scanning electron microscope.



Figure 3 The Lambertian Reflectance Map
This is the reflectance map for matte surfaces when the light source is not near the viewer.
Contours of constant reflectance are shown.

R(p, q)- cos(i) - I pp~qq

l+p,2q82 l+p2•q2

The direction to the single light source is (p,, q,) - (0.7, 0.3).
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2.3.2 Empirical Reflectance Functions

For most surfaces, it is not possible to determine the reflectance function in closed

form. One might hope to predict reflectance functions on a theoretical basis starting with'

some assumed microstructure of the surface. For example, many paints can be analyzed in

this manner. However, little hope exists for modeling real surfaces well enough and still

being able to solve the resulting set of equations, so one must resort to experimental

techniques.

One way to measure the reflectance function is to use a photo-goniometer. This

simple instrument can position a small flat sample in any orientation. By recording the

radiance for a given surface orientation (p, q) one can obtain the value of reflectance for one

point on the reflectance map. Repeating the process for all orientations (p, q) determines the

entire reflectance map. These measurements are extremely time-consuming when 'made

manually and difficult to make with any degree of precision. An effort has been made to

instrument the goniometer so that reflectance measurements can be gathered automatically by

a computer lAmmar, 1978].

To avoid the need to physically move the sample into all possible orientations, one

can instead use a test object which presents all possible orientations. The simplest object to

use is a sphere. One can then obtain an image with fixed source and viewer (i.e. fixed

phase angle g). The local surface orientation at a point in the image can be determined by

simple trigonometry and paired with the recorded intensity values at that point in the image.

Obtaining all orientation-intensity pairs is equivalent to specifying the reflectance map for

f
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the given source and view vectors.

Regardless of how the reflectance map is obtained it is important to remember that

it gives scene radiance as a function of local surface orientation (p, q) in a viewer-centered

coordinate system.



3. CURRENT METHODS

Before giving the details of the numerical algorithm, we outline several related

approaches. They provide a foundation for constructing the numerical scheme as well as a

means for comparison.

3.1 The Analytic Approach

Perhaps the most important work in shape-from-shading is due to Horn. His

approach attempts to recover the surface shape from a single image by explicitly solving the

differential equations of image illumination [Horn, 19701 and [Horn, 19751

3.1.1 The Set-up

First define the following quantities:

Let the object irradiance at the surface point (x, y, z) be denoted by a(x, y,
z). For physical systems, a(x, y, z) is constant or obeys some inverse-
square law with respect to distance from the source.

Let t be the ratio of image irradiance to scene radiance. This is a
constant which depends on the imaging system.

Let A(x, y, z) = t - a(x, y, z).

Let r = (x, y, z) be a visible point on the object and r' = (x', y', f) be the
corresponding point in the image, according to the geometry of projection
(not necessarily orthographic).

Let b(x', y') be the image irradiance measured at the image point (x', y').

Since scene radiance is proportional to image irradiance, we have

A(r) (I1, E, G) = b(r') (3.1)



To show that this equation is a first-order partial differential equation we note that it

contains terms involving only x, y, z and the first partial derivatives p and q. This will

become apparent in the following:

When finding a solution it is assumed that the object irradiance a(r) and the

reflectance function 0(I, E, G) are known and the image irradiance b(r') is obtained from the

image. From the perspective projection outlined in Section 2.2.1, we have

z

So r' is a function of x, y, and z only. Previously we defined n - (p, q, -1) as the normal to

the surface at the point r - (x, y, z). Let the light source be at rs . (xs, ys, zs). The incident

ray can then be defined as r i = r - rs and the emergent ray as re - r because the viewer is at

the origin. Then we have

I-A' f E - ft G -fi * fe

where the circumflex denotes the unit vector. Inspection reveals that I, E, and G involve

only the variables x, y, z, p, q. The general illumination equation can thus be rewritten as

A(r) I(1, E, G) - b(r') - F(x, y, z, p, q) - 0 (3.2)

namely, a first-order, non-linear, partial differential equation.

3.1.2 Solution

As Horn points out [Horn, 1975, p.1231 the usual method of dealing with a first-

order, non-linear, partial differential equation is to solve an equivalent set of five ordinary

differential equations:



x-Fp y Fq . p Fp q Fq
(3.3)

p -- Fx - p F q-Fy-q F

Here the dot denotes differentiation with respect to a parameter s and the subscripts denote

partial differentiation. These equations can be solved by the method of characteristic strips

[Garabedian, 1967]. The set of equations (3.3) can be understood more fully by making use

of the surface Hessian matrix H [Woodham, 1978a]. Letting z=f(x, y) we define

H-
ax ax ay

a2f(x, y) a2f(x, y)
(3.4)

as the surface Hessian matrix in two dimensions.

The three assumptions of distant viewer, orthographic projection and constant

object irradiance allow the basic equation of image formation (3.1) to be simplified and

rewritten as

R(p, q) - I(x, y) (3.5)

Partially. differentiating Equation (3.5) with respect to x and y results in two new

equations:

Ix PxRp+ qx Rq
(3.6)

ly Py Rp + qy Rq

For a smooth surface, py - qx, so there are two equations relating the three unknowns Px. qy,

and Py=9x where



a2z a2z a2z
Px --; Py "x "- y "

ax2  axay ay2

Equations (3.6) can be rewritten as the matrix equation

rx px x R p
I qyx Iq (3.7)
I Py qy q

Noting that the matrix in the equation above is actually the Hessian matrix, Equation (3.7)

can be rewritten

([I I , H R p Rq]T (3.8)

We can relate small movements in the image to the corresponding small

movements in gradient space by considering infinitessimal displacements:

dp - p dx + py dy
(3.9)

dq - qx dx + qy dy

Again, two equations can be rewritten as the single matrix equation

[dp dqjT , H [dx dyjT (3.10)

because the Hessian matrix is symmetric.

Note that while Equation (3.8) is exact at any image point and its corresponding

gradient point, Equation (3.10) is only approximate if the steps are of finite size. The

Hessian matrix H varies with x and y. It is assumed that for a smooth surface z-f(x, y),

third and higher order derivatives are small and can be ignored locally. Then, it is assumed.

that [dx dy] can be chosen small enough so that H can be considered constant over the

interval from (x, y) to (x+dx, y.dy).

Horn proceeds to find the solution to Equations (3.3) when the projection is



orthographic as follows. Suppose image point (x, y) is known to correspond to a point (p, q)

in gradient space. Then, the change in z=f(x, y) corresponding to a small movement [dx dy)

in the image is given by the following approximation valid for small movements:

dz - pdx q dy (3.11)

The new gradient point (p + dp, q + dq) corresponding to the image point (x + dx, y + dy) is

obtained by updating the current gradient (p, q) according to Equation (3.10) If H were

known, the solution could be obtained by iterating this process. This would trace out a path

in the image for which the corresponding gradients could be determined. The shape could

then be recovered by integrating the gradients along these paths. Unfortunately, there is not

enough information to determine the Hessian matrix H.

However, H is constrained to satisfy Equation (3.8) The solution is continued by

exploiting the fact that matrix multiplication is a linear operation. If [dx dy] is chosen to be

in the direction of [Rp Rq] then linearity is sufficient to guarantee that [dp dq] will be in the

direction of I I y]. In mathematical terms, if [dx dyl = [Rp Rq ds, then [dp dq] - [IB Iy] ds

using Equations (3.8 and 3.10). Thus by starting at some known point and iterating these

two operations, a path in the image is traced out along which the corresponding gradients,

and hence the corresponding relief profile of the object's surface can be determined. The

catch is that the direction for [dx dy] cannot be chosen arbitrarily. It must be in the

direction (Rp Rq]. The curves traced out on the surface in this fashion are called

characteristics and their projection in the image plane are called base characteristics.

This result has a curious geometric interpretation. Choosing [dx dy] to be in the

direction of [Rp Rq] means that a base characteristic is traced out that is always



perpendicular to the reflectance map contour for the current (p, q). Similarly, the fact that

the resulting [dp dq] is in the direction of [I y I means that the corresponding path traced

out in gradient space is always perpendicular to the contour of constant image intensity for

the current image point (x, y). Unfortunately, the path traced out by the base characteristic

depends on the surface being imaged and in general cannot be predetermined or chosen

arbitrarily. This is undesirable because characteristics spreading out from an initial curve

tend to separate and leave large portions of the surface unexplored. Similarly, they may

converge on each other. One obtains only a very uneven sampling of the surface of the

object.

3.1.3 Initial Conditions

There are two types of initial conditions necessary and they should not be

confused. The first is an initial curve of surface gradients. This value is needed to tie

together the solutions obtained along each characteristic. How the initial' curve is

determined is arbitrary, but it must be known for this procedure to apply. Instead of"

specifying an initial curve, we can perform a second shape-from-shading calculation using a

second image taken with a different source position. Then we can combine the two solutions

to determine both components of the local surface normal at most points in the image.

An initial curve of gradients along which the base characteristics can be tied

together must be known for any reflectance map and any image. Some reflectance maps

provide assistance here. For example, the lambertian reflectance map has a global maximum

of one located in the direction of the source (ps' qs). Thus the local surface normal is



determined uniquely at the brightest image point (provided there is some surface element

oriented in the direction of the source). For specular surfaces, the maximum image intensity

corresponds to a surface element with an orientation that is half the inclination of the

direction to the source. For the reflectance map associated with the scanning electron

microscope, the minimum intensity value (the darkest point) corresponds to a point with

gradient (0, 0). Whenever such a singular point is available, it can be used to start the

solution.

The initial curve of surface normals is the first type of initial conditions needed.

The second is a result of our representation of surface shape. We have recovered the

surface gradient at all surface points but their distance relative to the viewer is as yet

undetermined. Recalling that the surface is expressed as z=f(x, y), we find that the values of

z can be recovered by integrating the local surface gradients. The constant of integration

needed is the actual depth of one particular surface point since all surface points are

specified relative to each other. Again this value must be known from other sources. In

many instances however, the actual position of every surface point is not needed - only the

orientation (given by the surface gradient) is required.

3.2 Binocular Stereo

Binocular stereo is an entirely different approach to computing shape from images

[Marr & Poggio, 1976; Marr & Poggio, 19771. This method requires two images of the same

scene. obtained from slightly different viewpoints. By identifying corresponding surface

points in each image, one can determine the disparity (the apparent difference in position of



a surface point from one image to the next) of each pair of points. Surface shape can be

recovered by triangulation using simple trigonometry. Binocular stereo thus has no need for

knowledge of the reflectance map and works well for discontinuous and non-isotropic

surfaces. These two points make it applicable in cases where the reflectance map methods

are not useful.

There are several problems with this method: Disparity values are available only

at surface points which can be precisely identified in both images. This means that one can

determine the "shape" only at selected surface points. The best method of interpolating' the

surface among the known points is an open question. Of course, another drawback to

binocular stereo is that it requires acquisition and analysis of two images.

3.3 Photometric Stereo

The technique of determining local surface orientation from several images. with

the same view angle but different distributions of light sources has been termed photomeiric

stereo [Woodham, 1978b; Horn, Woodham and Silver, 19781 Briefly, the photometric stereo

technique is as follows.

Suppose an image I(x, y) has been obtained under a given imaging geometry and

assume that image intensity has been normalized with respect to the reflectance' map so that

Il(x, y) - RI(p, q) (3,12)

Choose a particular image point (xo' Yo) with corresponding image intensity Il(x o, yo) - a1.

Then equation (3.12) restricts the range of possible points (Po, qo) in gradient space that

could possibly correspond to image point (xo, yo) to lie on the contour RI(p, q) - a.l



Now imagine a second image I2(x, y) obtained under the same object-viewer

geometry but with a different light source distribution so that image point (xo , yo ) in the

second image corresponds to the same object point as (xo, yo) in the first image. Assume

that

12(x, y) = R2 (p, q) (3.13)

Again the corresponding image intensity 12 (xo, yo) - a 2 specifies a contour in gradient space

R2 (P, q) - a 2 upon which the actual gradient (Po, qo) of surface point (xo, yo) must lie.

Taking both constraints together, the gradient (po, qo) must lie at the intersection of these

two contours in gradient space. Typically, the intersection is a finite set of one, two or more

points. To resolve the possible ambiguity one may use a third image obtained with a third

source position. The actual gradient (po, qo) must the be at the intersection of all three

contours as in Figure 4. Repeating this process for every image point yields the local surface

orientation for every corresponding surface point. In practice, it may be necessary to use

four sources to guarantee that every gradient point lies in the non-shadowed region of at

least three sources. Otherwise, ambiguities could not be resolved.

Photometric stereo has the distinct advantage of being a fast, local computation.

One can imagine implementing the technique using table lookup. Under this scheme, every

possible triple (or n-tuple) of image intensities (ac, 0C2, a 3) would have associated with it the

unique gradient point (p, q) associated with that triple. Of course, many intensity triples

would be impossible in practice and would correspond to blanks in the table.

Some limitations on photometric stereo exist. The vectors from the object point to

the source must be non-coplanar. Otherwise, the contours of constant intensity
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corresponding to each of the three or more image points may intersect in more than one

gradient space point, leaving the ambiguity unresolved. This is no problem in an industrial

application (for example) where the experimenter can position the light sources at will.

,However, one cannot control the position of the light source for the purpose of obtaining

satellite photos, because the sun appears to travel nearly in a plane with respect to a point on

the surface of a planet.
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Figure 4 Photometric Stereo
Three reflectance map contours are superimposed. Each contour corresponds to the intensity,
value at (u, v) obtained from three separate images taken under the same imaging geometry
but with different light source positions. The local surface orientation of (u, v) is at the
intersection of all three contours. Here 11(u, v) - 0.942; 12(u, v) - 0.723 and 13(u, v) - 0.505.
The surface is assumed to be lambertian and the light sources at (0.7, 0.3), (-0.610, 0.456) and
(-0.90, -0.756) respectively. Reprinted from [Woodham, 1978b, p. 18].



4. THE RELAXATION METHOD

We are now ready to give the details of a relatively simple algorithm for

performing the shape-from-shading calculation. As noted in the last chapter, all shape-from-

shading algorithms possess a number of shortcomings or critical restrictions. The method

we pursue here slightly reduces the number of restrictions necessary. It is similar to the

cooperative algorithm of Barrow and Tenenbaum [19791, but is not restricted to quadratic

surfaces. In the course of the development, the following four requirements are satisfied:

The shape-from-shading algorithm is to determine surface shape from a
single image.

The image may be of any smooth surface with constant photometric
properties.

The algorithm must be applicable for any well-behaved reflectance map.

The surface orientation must be determined at all points in the image.

4.1 Constraints

Many complex systems can be analyzed by isolating their inherent constraints.

Image analysis is no exception. One constraint on the image irradiance is provided by the

reflectance properties of the surfaces. Restricting attention to smooth surfaces provides

another constraint. Together, these two constraints provide enough information to recover

surface shape from a single image.



4.1.1 Image Intensity

Recall Horn's basic equation of image formation:

A(r) 0(i, e, g) = b(r') (4.1)

Let us restrict attention to those situations in which

(1) the light source is distant;

(2) the projection is orthographic mapping object point (x, y, z) into
image point (x, y); and

(3) each surface point receives the same incident illumination (irradiance).

The last restriction implies that A(r) is constant. Orthographic projection allows one to

write

b(r') = I(x, y) (4.2)

where i(x, y) is the intensity value recorded in an image and is not to be confused with i, the

cosine of the incident angle. Finally, 0(I, E, G) can be rewritten as R(p, q) since

restriction (1) implies that G is constant. If the reflectance map is normalized with respect to

the intensities recorded in the image, then the image forming equation becomes

R(p, q) - I(x, y) (4.3)

In other words, scene radiance must equal image irradiance. As in photometric stereo, an

intensity value a, recorded at image point (x, y) restricts the possible range of values of the

local surface normal at the object point corresponding to (x, y) to lie on the one-parameter

contour of the reflectance map which satisfies R(p, q) - al in gradient space.



4.1.2 Surface Smoothness

The constraint supplied by the intensities recorded in an image enabled us to

restrict the range of possible gradients at a given point to within one degree of freedom. We

have apparently used all the information contained in the image intensities, so from where

does the restriction on the other degree of freedom come?

We have chosen to represent the surface shape by the value of the gradient at each

image point. The gradients are partial derivatives of the surface z=f(x, y) so they must

integrate to a unique surface if the surface they represent is real. Thus an arbitrary

assignment of gradients at image points may not necessarily represent a realizable smooth

surface even when the gradients lie on the appropriate contours of the reflectance map. The

last degree of freedom can be eliminated by presupposing that the surface is smooth.

Theorem For any smooth surface z=f(x, y),

a2 z 82 z

ax ay ay ax

Or equivalently

(4.4)
ay ax

Equation (4.4) provides the additional dimension of constraint. Another way of expressing

this constraint of surface smoothness is

n * ds -0 (4.5)

where n - (p, q) the gradient at a given point and ds - (dx, dy) is an infinitessimal line

element on the surface. Expanding the dot product yields

jp dx + qdy -0 (4.6)



which is finally in a form that can be utilized.

4.2 Implementation of the Constraints

Two constraints have been delineated. The first, I(x, y) - R(p, q) is strictly local.

For any given image point, the range of possible gradients is restricted to a contour of

gradient space. On the other hand, the smoothness constraint is not local. The feasibility of

a gradient (p, q) at point (x, y) is dependent upon the gradients of the neighbors of (x, y).

What we seek is an iterated local computation which enforces these constraints at all image

points. If all works as planned, the computation will be "pseudo-local" and ultimately

converge to a global solution.

To study this approach, we define an error function e which measures the

"distance". that a given assignment of surface orientations is from the solution. This error

function will be separated into two parts, one corresponding to each constraint. Letting es

be a measure of the departure from surface smoothness and er be a measure of the

departure from the basic equation of image formation, the following equation is proposed.

E es e P er (4.7)

Here, p is a scale factor to bring the arbitrary units of the error functions es and er in line.

It will now be shown how these error functions are determined.

4.2.1 Image Intensity

The factor er is to be a measure of the departure of the present estimate of the

solution from the image according to the image forming equation. For the current



assignment of gradient (p, q) at an image point, a value R(p, q) can be calculated using the

reflectance map. This value represents the intensity that would be recorded in an image if

the assignment of (p, q) were correct at the corresponding object point.' The "distance" of the

actual image intensity from the predicted intensity is the quantity

I(x, y) - R(p, q)

Therefore, the equation

er = [(x, y) - R(p, q) 2  (4.8)

which restricts the error measure to non-negative values, appears to be a reasonable choice.

This equation has two desirable properties. First, when a proposed gradient (p, q) lies on

the particular reflectance map contour as determined by the image, the error er - 0. The

second property is that any other value of (p, q)-results in a positive value of er and the

further the value of R(p, q) from the image intensity I(x, y), the more positive the value of

er. Therefore, the constraint imposed by the imaging process can be enforced by

minimizing Equation (4.8) at every image point.

4.2.2 Surface Smoothness

The factor es is to be a measure of departure from surface smoothness. Note that

we will not be seeking the smoothest surface that could have given rise to a particular image

but any surface that possesses second partial derivatives everywhere subject to the

constraints of the imaging equation. In this section, two representations for es are derived.

The first represents a simple-minded approach whereas the second embodies a more

complicated and more desirable technique. Both take advantage of several heuristics.



4.2.2.1 The Simple Way

The simple way implements Equation (4.4) directly. A first-order approximation

for ap/lay at point (u, v) can be expressed as

aplay - Pu(v.) - Puv (4.9)

Here, the abbreviation Pu,, is taken to mean the value of p at the surface point

corresponding to image point (u, v). Similarly,

a q / ax - qcu.,l, - q,, (4.10)

Substituting (4.9) and (4.10) into Equation (4.4) yields

Pu(v.l) - Puvw q(u.l)v " q

Therefore, if z=f(x, y) is a smooth surface, it must be the case that

Pu(v.I) - Pw - q(u.)v* qv 0 (4.11)

Thus, a good measure of departure from surface smoothness at point (u, v) is

s M [Pu(,,.I) pu - q(u. Ihv q*u 2  (4.12)

Note however, that this estimate of departure from smoothness takes into

consideration only points that are above or to the right of point (u, v). For symmetry,

estimates can be made for all four quadrants around point (u, v) as illustrated in Figure 5.

The equations are abbreviated to show their dependence on p, and q, in order to facilitate

the partial differentiations which will eventually be performed.

We are now in a position to construct an expression for es. All four error

expressions EA, CE, EC and Co are to be minimized, so summing them seems to be an

appropriate thing to do.



(u, v1)

(u, V) (u,v)

quv " q(u-i)v " Pu(v.l) - Puv
quv - q(u-,)v " Pu(v.) + Pu = 0
Let D = q(u-,) - Pu(v.l

D +Puv q  = 0

ED = (D+p,+q,) 2

(u-I, v) (u, V)

(u, V-l)

quv- q(u-t)v Puv "- Pu(v-i)
uv "- q(u-I)v - Pw * Pu(v-) = 0

Let C - Pu(v-I) - q(u- )v
C-uv+quv 0

,c = (C-pu,*quv)2

q(u#l)v 4-uy Pu(vl) - Puv
q(u)v - qu - pu(v,) + puv - 0

Let A - q(u,)v - Pu(vI)
A + puv-qu, = 0

eA - (A+pw-qU,) 2

(u,v) (u.I, v)

(u, V-l)

q(u I)v " quv " Pwu Pu(v- 1)
q(ul)v " qu"- Puv Pu(v-I) - 0

Let B - qu.,I - Pu(v-I)
B - -q - 0

ae - (Bp,-q,)2

Figure 5 The Simple Measure of Surface Smoothness.
This figure shows the calculation of the error functions eA, Eg, Ec and eo in each of the four
quadrants. Together they enforce the assumption of local surface smoothness at image point
(u, v).

(u-l, v) (u.l, v)

(u, v.1)



Ces = 'A + EB + fC + ED

- (Ap-q)2 + (B-p-q)2 + (C-p+q)2 + (D+p+q) 2  (4.13)

where the subscripts have been eliminated from p, and q, for convenience.

It will now be shown that this formalization of the smoothness constraint is

perhaps not appropriate. At what gradient point is es minimized? Partial differentiation

followed by evaluation at zero will answer this question.

a es ap , = 2(A+p-q) - 2(B-p-q) - 2(C-p~q) + 2(D+p+q) - 0

8 es aq, - -2(A+p-q) - 2(B-p-q) + 2(C-p*q) + 2(D+p.q) - 0

So

2A-2B-2C+2D+8p - 0

-2A-2B+2C+2D+8q = 0

Therefore

p = (-A+B+C-D)

(4.14)
q = 4(A+B-C-D)

Restoring the abbreviations and subscripts gives

P " (Pu(vl) + Pu(v-1))
(4.15)

qu, - + (qu. q(u-* ) )

Therefore, Puv is seen to depend only on p values directly above and below the image point

(u, v). Similarly, qu, depends only on values of q directly to the right and left. This

decoupling of p and q implies that adjacent columns of p values, like adjacent rows of q



values, are independent. Somehow, the notion of surface smoothness as implied by Equation

(4.4) seems not to have been captured. It ought to be the case that a gradient (p, q) at point

(u, v) should be affected by the gradients of all its immediate neighbors. This formalism,

which updates by averaging within a single row or column, apparently permits such

undesirable conditions. Experimentation has shown that implementation of the numerical

shape-from-shading algorithm using Equations (4.15) does not produce convergence in

general.

We must do better.

4.2.2.2 A More Complicated Technique

The development in this section parallels the development of the last section

exactly. The insight gained there will help keep things straight as they start to get. lengthy

here. The theory is not difficult -- it has not changed since the last section. The equations

grow long but it is important to understand what they imply. Abbreviations will again be

used where applicable.

This technique utilizes the smoothness constraint as expressed in Equation (4.6)

n ds = pdx + qdy - 0 (4.16)

The line integral is to be evaluated around a "loop" as shown in Figure 6. Here the loop

takes the form of a square with sides of length equal to one grid point in the image.

Evaluating Equation (4.16) along each side of the square gives

n ds - Pxv dx + q(wIu)y dy + Px(v.ldxi + q, dy
fUVf.I . f !



f " ds =

(u.1, vl)

fI qy dy

2 q(ul),, + P(ulXv

(u+I, v)

fu Pxv dx

I [p. + P(•.I)v 1

'2 im (lv

p,V dx + q(u.1)y dy + Pu+ v) dx + q dy

" [Pu, * P(u+l)v * q(l)v+ q(uw .l) - P(u.l)(vl) Pu(v.l) - qu(vol) - quv

es  [Puy P(u.)v + q(uI)v + q(ut)(v,) - P(u.X(v.I) Pu(vl) - qu(vl) - q 2

Figure 6 Enforcinz Surface Smoothness Around a Loop
This figure shows the derivation of the approximation used to estimate the local departure
from surface smoothness at image point (u, v). The equation is exact for quadratic surfaces
and will be taken as a good approximation for non-quadratic surfaces.
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If the surface is assumed to be piecewise quadratic, then the following integral is exact.

fuI p y dx - (p.u P(u.,)v) (4.17)

For non-quadratic surfaces, it will be taken to be a close approximation: Being careful

with minus signs we obtain the approximation

fn , ds = j [Pu * P(u.1)v * (u.)v q(<u.x)(vI) - P(u.x)(v.i) - Pu(v.1) - qu(v.I) - qV (418)

Thus the departure from surface smoothness can be expressed as

es P(uv (u u P(uu.)v+ lq(u.)v q(u+,)(v,) -PI)(ve.) - Pu(v.l)- qu(vIl) qUV32

As in the last section, this expression involves only p and q values that lie above and to the

right of point (u, v). For symmetry, all four quadrants must again be considered. Figure 7

shows the resulting forms. The letters A, B, C and D have again been used as

abbreviations but they are different from the A, B, C and D of the last section. The

remainder of this thesis deals only with the A, B, C and D expressions from this section as

shown in Figure 7.

Finally, we arrive at an expression for es as in the last section.

es  EA + eB *+ e + ED

- (A+p-q) 2 + (B-p-q) 2 + (C-p+q) 2 + (Dep+q) 2  (4.19)

Again, the gradient (p, q) which minimizes the departure from surface smoothness E, can be

found by differentiating and evaluating at zero. Noting that this equation is identical to

Equation (4.13) except for the abbreviations A, B, C and D, allows one to write the answer

immediately-from Equation (4.14).

p - (-A+B+C-D)
(4.20)

q -= (A+B-C-D)



(u-I, v.l)

(u-I, v) (U, V) (U, V) (uli, v)

[P(u-I)v + Puv quy * u(v.ll

Pu(vl) - P(u-I)(v. q(u-l)(vl) - q (u-))v] . 0
Let D = P(u-1)v + qu(v.) - Pu(v.z)

- P(u-l)(v*l) - q(u-L)(v,l) - q(u-)v
Then D + Puv *+ q, - 0

ED = (D*Puv+quv) 2

(u-I, v)

(u-I, v-1)

(u, V)

[Puv * P(u.l)v* q(u *l)v q(ul)

SP(u,)(v.) - Pu(v+,) - qu(v,) - q,] 0
Let A - P(urw)v (ul)v + q(uxl)(vl)

- P(u.l)(v.l) - Pu(v.l) - qu(v+l)
Then A +p, - qu, - 0

eA - (Ap-,-q~,) 2

(u, V)

(u, v-l)

[P(u-I)(v-l) + Pu(v-I) + qu(v-l) * qug
- Puv - P(u-)v "- q(u-l)v - q(u-)(v-)] - 0
Let C = P(u-I)(v-1) + Pu(v-)* qu(v-1)

- P(u-l)v - q(u-)v - q(u-l)(v-l)
Then C - Puv qu, - 0

1C = (C-Puv+quv) 2

(u, v-l)

(u+l, v)

(u+l, v-1)

([Pu(v-l) + P(u.X)(v-l) q(uv-l) + ) (u*(,

"P(UI, "- p, - qu - qu(v-l - 0
Let B - pu(,-I, P(uIl)(v-1) ' q(ul)(v-I)

+ q(u+)v - - qu(v-)
Then B - puv- qu =- 0

eB - (B-pu,-qu,) 2

Figure 7 The Four Loops Measure of Surface Smoothness
This figure shows the calculation of the. estimate of departure from local surface smoothness
at image point (u, v). The approximation is made from all four quadrants for symmetry.

(U, v+l) (u, V+1) (u+l, v+l)



Equation (4.20) was found to be inadequate with the old definitions of A, B, C and D. Is it

now satisfactory?

By writing Equations (4.20) out in full and rearranging terms, Equations (4.21) are

found.

Puyv 4 P(u-I)(v-I) + (v-) P(u.I)(vrl) + P(u-1)(vI0)
+ 2 Pu(v-,I) * Pu(v.I) - P(u-,)v " P(u.l)v]

+ (u-q)(v+l) + (ul)(v-I) - 9(u-I)(v-1) - q(ui)(v+) I
(4.21)

quv 4= [qu-1)(v-) + (ul)(v-l) q(ul)(vI) q(-.l)(v4)+

2tqu(v-1) + qu(vl) 9-(u-)v - q(u+1)j3
+ [P(u-l)(v.I) + Pu)(v-) - P(u-1)(v-1) - P(u*l)(v+l) 3

Fortunately, these equations can be understood by looking at the templates of Figure 8.

These templates are first centered over point (u, v), then the template values are multiplied

by the corresponding p or q values, and finally, these products are summed. These

equations show that p and q depend on all sixteen neighboring values as hoped.

Again we should check if these expressions make sense. Suppose the gradient at

image point (u, v).is known to be (p*, q*). Now define

r = z a= s= 2 z = =p. ?a t= az
ax2  ax axay ay ax ay2  ay

Assume that z=f(x, y) can be approximated by a piecewise quadratic surface. For quadratic

surfaces, the derivatives higher than second order are zero. Therefore, the following values

can be written.



ItI
I:Jv

=I 4 {[P(u-I)(v-1) * P(u)(v-I) * P(u,)(v.I) + P(u-l)(v.l

+ 2 (v-1) +* (vl) P(u-I)v P(u.l)v]

qu-)(v1) * q(lu.)(v-,) - q(u-,)(Xv--i) - a•l(u v.I)J }

I.'*

= {[qu-)v-,) *+ qul,)(v-1)* q , ,l) + q*[u-X)(v )3
S2[ (v- 1) *+ q (vI,) - q,)v -q(u.l)

SP(u-l)(v.I) + P(ul.)(v-l)- P~u-U)(v-1) - PIu+)(vulI

Figure 8 Templates of Local Smoothness Operators
The top pair illustrates the computation for updating Pu and the lower pair illustrates the
computation that updates q,. The left templates are postioned over the current p-values
while the right ones act on q-values. New gradient values are computed by summing
corresponding p and q values according to the templates. Each sum is divided by four to
obtain the optimal gradient at point (u, v) given the gradients of the neighbors.

·-



P(u-l)(v-I) - p + A(-r-s) q(u--Iv-) -=  + A(-s-t)
P(u-,)(vI) = P + A(-r+s) q(u-,)(.l)i- q* + A(-s+t)

P(u.I)xv.) p* p * (+r.s) q(u)(X,,l) q* + A(+S+t)
P(u.1)(v-l) p* + A(+r-s) q(u,.I)(-1) q* + A(+s-t)

Pu(v-) =ý + A(-s) qu(v-1) q* + A(-t)
Pu(v.I) - p + A(+s) qu(v.) - q* + A(+t)
P(u-.)v p * A(-r) q(u-, - q* + A(-s)

P(u.v - P* + A(+r) q(u.)v, q* + A(+s)

where A is the distance between adjacent grid points. Using these expressions we find that

4[P(u-l)(v-) + P(u*•)(v-) ' P(u.l(v.l) * P(W-)(l.,] - 4p* - p

Y[Pu(v-)+ * Pu(v.) - P(-,)v - P(u.l)] ' 0

4q(u-l)(vol) + q(ul,)(v-I) - q(u-l)(v-I) - q(u.l)(v.) - 0

and (4.22)

4(qu-l)(,v-) q(u,)(v-1) + q(u-)(••,) 4q(u-I)(vl l t 4q* - q*

[qu(v,, ) qu(vl+ ) - q(u-)v - q((u.I)v] 0

4[P(u-lX)(v,) P(uD)(v-) - P(U-)(v-) - P(u'I)(V,) - 0

So for a piecewise quadratic surface, we see that our estimate for p,, is the actual value p*

and the estimate for quv is q* as expected. Hence it is shown that these equations do satisfy

the smoothness constraint and are exact for surfaces that are piecewise quadratic. In

addition, it seems desirable that the gradient at point (u, v) depends on both values of all

eight immediate neighbors as it does here. For non-quadratic surfaces, Equations (4.21) are a

good approximation for minimizing es.

Equation (4.19) has been chosen to be the equation used for specifying a measure of

departure from surface smoothness.



4.3 Relaxation

An expression for departure from the true shape of an imaged surface is now in

hand.

E = Es * p Er

- (A+p-q) 2 + (B-p-q)2 + (C-pq)2 + (D+pq)2 + p [I(x, y) - R(p, q))2  (4.23)

It has been postulated that the shape of the imaged surface can be recovered if Equation

(4.7) can be minimized at all image points simultaneously. That is, we actually have to find

a set of values for p and q which minimizes the error

U V

S (Au (v,-qu,) 2 + (Bu-puv-qv)2 + (Cuv-pu,+qu) 2 + (D,+pu+qu,,)2 + p [I(u, v)-R(po, q,,)]2
U V

(4.24)

An iterative relaxation scheme is employed to accomplish this. Loosely, this scheme

works at two levels. At the lower level, local operators at each image point attempt to locally

enforce smoothness on the proposed solution surface while simultaneously satisfying the

general illumination equation. In other words, each local operator attempts to minimize

Equation (4.7) at its own image point. At the higher ,level, the interaction of the local

operators due to their overlapping with their immediate neighbors propagates some

information to those neighbors. By iterating the entire process, a form of global

commu-nication is established. The intention is that this propagation of information allows

each local operator to gradually determine a value of its local surface orientation such that

all local operators simultaneously reach a universal minimum. Before getting into the



mathematics, let's examine these ideas more closely.

4.3.1 The Local Operators

Imagine the local operator as a little machine attached to a particular image point.

Its job is to determine values of p and q which simultaneously minimize es and er according

to Equation (4.7). Choosing any gradient (p, q) that lies on the contour R(p, q) = I(x, y) of

the reflectance map minimizes er; in fact, it makes er equal to zero. es is minimized at each

point (u, v) by Equations (4.21). The question is how to satisfy both constraints

simultaneously.

When the reflectance map is a very simple analytic function of p and q, the local

operator's job is easy. By differentiating Equation (4.23) and evaluating at zero, a value of

the gradient can be found which minimizes Equation (4.7) and hence satisfies both

constraints simultaneously.

In most cases of interest, however, the reflectance function is not a simple analytic

function -- it may not be analytic at all -- and we must resort to more sophisticated

techniques of minimization. The details of three such methods are described in Section 4.4.

4.3.2 Achieving Global Constraint

We now face up to the issue of finding the global minimum of E, given that the

local operators are capable of finding a local minimum of E at each image point. To do this,

an iterative relaxation scheme is employed. There is a substantial literature on relaxation

methods [Allen, 1954; Wilde, 1966], but all are concerned with determining a single function.



We wish to determine two functions (the components of the gradient at each point) where

each value depends on both values of its neighbors and on an additional, strictly local,

constraint (the intensity value in the image). The relaxation scheme used is similar in

principle to the single-function relaxation scheme, but much more difficult to analyze. Here's

how it works.

Consider an arbitrary, initial determination of gradients at each image point. Now

every local operator looks at its corresponding intensity value in the image and at the

gradients of its neighbors and determines a new gradient that minimizes its own e. At this

point, the collection of all new gradients so determined defines a new estimate of shape and

the old one is forgotten. Again, each local operator determines a new gradient, different

from the last gradient it determined because the gradients of its neighbors have changed.

Repeating this process indefinitely, we find that the current assessment of surface shape

typically converges to a stable assessment. If the total error E of this assessment is near zero,

then it must be a smooth object surface that could have given rise to the image, thus solving

the shape-from-shading problem.

The explanation of the success of this scheme is not so simple. The neighboring

gradients can be thought of as exerting a "force" to turn the local solution in one direction or

another. In the massed effect of all eight neighbors of a given point, erroneous forces tend

to cancel out while valid forces are in the same direction and compound.

Viewed from a different perspective, one can consider the error function e at a

point as a surface in gradient space. Minimizing E corresponds to sliding down this surface

to a new gradient point with a lower value of e. When the neighbor's gradients change, the



error surface undulates somewhat, but hopefully has not raised us to a much higher value of

4. Then by continually sliding a lot and rising a little, we gradually work our way down to

the actual minimum of e.

A proof of the convergence to a globally smooth surface can be found in Section

5.3. For now, the iteration can be viewed as having one local operator for each image point

and all operators update their current gradient estimates simultaneously. The overlap of the

local operators allows the local constraint to propagate about in the image, thereby achieving

global constraint and convergence to the solution to the shape-from-shading problem.

4.4 The Form of the Local Operators

We now return attention to the issue of how to minimize both error functions

simultaneously. A search of the literature reveals a number of methods for finding an

extremum of a function of several values. Methods using the gradient of the error function

(not our surface gradient) include the classical method of steepest descents [Curry, 1944;

Householder, 19531, some variations of steepest descents [Levenberg, 1944; Booth, 1957), the

"PARTAN" method [Shah, Buehler and Kempthorne, 1961], a more recent method due to

Powell [1962], an improvement based on that method [Fletcher and Powell, 1963], and a

method based on parameter variation [Deist and Sefor, 19671 A summary of minimization

methods can be found in [Pun, 1969] or [Szego, 1972).

Three alternatives for solution are presented here. As will be seen, the last is the

least restrictive. The first two require that the reflectance map be known analytically. The

first method, that of Lagrange Multipliers, further requires that the reflectance function be



expressible in a sufficiently simple form.

The mathematics become more complicated here. Fortunately, insightful geometric

interpretations are often available.

4.4.1 Lagrange Multipliers

The method of Lagrange Multipliers allows one to find a minimum of the error

function e immediately, without iteration. The price to be paid for this will be seen to be

that the reflectance map must be explicitly differentiable and the derivatives must be

in,vertible. The method of Lagrange Multipliers as it applies to the error function at hand

is as follows.

4.4.1.1 Mathematical Details

First recast Equation (4.23) into two parts. The problem is then to minimize

es = (A-p-q)2  (B-p-q) + (C-pq)2 + (Dp+q)2  (4.25)

subject to the condition

R(p, q)- I(x, y) - 0 (4.26)

Note that satisfying the constraint of Equation (4.26) is equivalent to forcing er=0.

Therefore minimizing (4.25) subject to the condition of Equation (4.26) will be approximately

equivalent to minimizing

e es * P Er (4.7)

Now form a new equation

F =es MR(p, q) - I(x, y) (4.27)



where X is a constant (the Lagrange multiplier). The necessary conditions for F to have

stationary points (extrema) are

UF 8f a
- = --s + - [R(p, q) - I(x, y)] = 0
ap ap ap

and (4.28)
HF ae a
- = s - . - [R(p, q) -I(x, y)] - 0
aq aq aq

Before proceeding further, note that we can recast cs as

es = 4(p-po)2 + 4(qqo0)2 + Eo (4.29)

where E0 does not depend on p or q and Po and qo are the p and q of Equation (4.14).

Po (-A + B + C- D)
(4.30)

qo 4 (A + B-C-D)

Now solving Equations (4.28) and including Equation (4.26) yields the following set of three

equations in the three unknowns p, q and X.

8(p-po) + XRp = 0

8(q-q,) + XRq = 0 (4.31)

R(p, q) = I(x, y)

Eliminating the Lagrange multiplier X yields

(p-Po) Rq , (q-qo)Rp (4.32)

R(p, q) = I(x, y) (4.33)

The solution of these equations for p and q yields the desired gradient point that minimizes

es while satisfying the constraint R(p, q) = I(x, y). Whether or not they can be explicitly

solved for p and q depends on the form of R(p, q) and its partial derivatives Rp and Rq.



4.4.1.2 Geometric Interpretation

Recall that the method of Lagrange Multipliers seeks to minimize a function

subject to a constraint. The function to be minimized is the departure from surface

smoothness

as = (A.p-q) 2  (B-p-q) 2 + (C-p+q) 2 + (D~p+q)2

= 4(p-p) 2 + 4(q-qo) 2 +

If we were to plot contours of constant es in gradient space we would obtain a set of

concentric circles centered about the point (po, qo) as in Figure 9a. Note that these contours

are not the reflectance map R(p, q) but a separate concept entirely. Now if we superimpose

the contour of the reflectance map R(p, q)=I(x, y) we obtain Figure 9b. It is evident that the.

point sought in gradient space is the point (p, q) nearest to (Po, qo) and on the contour

R(p, q)=I(x, y). Therefore, the line from (pa, qo) to the optimal (p, q) must be perpendicular

to the contour if (p, q) is to be the nearest such point. Note that the vector [R Rq] is

perpendicular to the contour. Therefore, the vector [(p-po) (q-4qo) must be parallel.to

[Rp Rq]. Mathematically speaking

[(p-Po) (q-q0)] x [Rp Rq] = 0. (4.34)

or equivalently

(p-p0)R - (q-qo) Rq = 0

Thus

(p-p)Rp = (q-q0 ) Rq (4.35)

which accounts for Equation (4.32).



R(pq) lI(u.v)

Figure 9 Lagrange Multipliers
Contours of constant es are plotted in (a). The reflectance map contour satisfying the
constraint R(p, q) = I(x, y) is superimposed in (b). The desired gradient point (p, q) is that
point on the reflectance map contour which has the lowest value of es. This must occur

where the reflectance map contour is tangent to a contour of constant es.



4.4.2 Steepest Descent

Presented here is a rapidly convergent method for minimizing Equation (4.23)

based on the algorithm of Fletcher and Powell [1963]. Their method is similar in theory to

most other minimization routines but possesses two valuable properties.

It is fast compared to most. other methods.

It submits to analysis of its stability and rate of convergence.

4.4.2.1 Geometric Interpretation

Before getting into the details of one particular method of minimization, it is

enlightening to visualize the process. All conventional minimization methods use some sort

of "hill sliding" strategy which incrementally approaches the absolute minimum.

The error function e at a given image point and at a given stage in the

computation is a single-valued function of p and q which can be plotted in gradient space.

Figure 10 shows contours of constant error of a typical error function e. The common

method of steepest descent modifies the current assessment of the surface gradient as shown

in the figure. Each step in gradient space is perpendicular to a contour of constant error.

By iterating this procedure, one continually approaches the minimum. This simple method

of steepest descent suffers from slow convergence rates for some functions. All the other

minimization algorithms are principally the same but attempt to speed the convergence in

various ways. The method of Fletcher and Powell is one example which is highly efficient

and computationally simple.
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Figure 10 Minimization by Steepest Descent
Contours of constant error are shown. Suppose the current gradient point is (pOqO). The
next gradient is obtained by minimizing the function along the line through (pO,qO)
perpendicular to the contour at that point. The minimum is approached by iterating this
process. Each step is always perpendicular to the last and the process can be very slowly
convergent.



4.4.2.2 The Method of Fletcher and Powell

This method makes use of the gradient with respect to p and q of our error

function e. Accordingly, it is applicable only in those cases where this gradient is defined.

So if the reflectance map is not known analytically, this method cannot be used.

First some notation. e(p, q) is of course the error function to be minimized. Define

the vector w=[p q] to be its arguments and g-~[4ap ae•aq] to be its gradient. If for the

moment e is assumed to be locally quadratic, then

e(w) - e. + aiwi + Hijwiw1
i i j

or

= o + aw + WTHw (4.36)

in matrix notation where eo and a are constants and H is the Hessian matrix of the error

function. Then

g - a+ Hx (4.37)

We can approximate the displacement between the point w and the actual minimum wo as

wo -w = -H-'g (4.38)

In Fletcher and Powell's method, the matrix H-1 is not evaluated directly; instead a matrix

G is used which may initially be chosen to be any positive definite symmetric matrix. This

matrix is modified after the ith iteration using the information gained by moving down the

direction s' = -G'g' in accordance with Equation (4.38). The modification is such that o', the

step toward the minimum down the line wi+ =.W
i + •si is an eigenvector of the matrix

G''H. This ensures that as the procedure converges, G tends to H- i evaluated at the



minimum wo. It is convenient to use the identity matrix initially for G so that the first

direction taken is down the line of steepest descent.

Let the current point be w' with gradient g' and matrix G'. The iteration can then

be stated as follows.

Set s' = -G'g i  (4.39)

Obtain d such that g(w'+ds') is a minimum with respect to A along the
line wi+'s' and ai>O. a i can always be chosen to be positive.

Set o' = a's' (4.40)
Set Wil 

- wi gi  (4.41)

Evaluate E(wi'') and g'I'. Note that gi' is orthogonal to o'. In other
words, the line of steepest descent is perpendicular to the direction last
moved so

dTgi . = 0 (4.42)

Set hi g i, _ i (4.43)
Set Gi ' - G' + A' + B' (4.44)
where

A
dThi

Bi . GihihiTGi

hiTGihi

Set i=i+l and repeat.

The method of obtaining the minimum along a line is not crucial to the algorithm.

Fletcher and Powell suggest a procedure which uses cubic interpolation [Fletcher and Powell,

19631. There are a great number of methods available for minimizing a function along a

line and the reader is free to choose his favorite [Davidon, 19591



4.4.3 The Gauss-Seidel Method

The next method to be explored starts out in a more direct way than either of the

earlier two. The desire is to differentiate the error function e (Equation 4.23) and solve for

the gradient which simultaneously sets both derivatives to zero.

The partial derivatives of Equation (4.23) are easily found to be

aelap - 2(A-B-C+D) + 8p + 2plR(p, q) - I(x, y)]Rp = 0
(4.45)

adeaq = 2(-A-B+C+D) + 8q + 2p[R(p, q) - I(x, y)]Rq 0

To solve these for p and q explicitly would require the reflectance map R(p, q) and its

derivatives to be known analytically. Furthermore the solution would be available explicitly

only for certain simple reflectance functions.

Recall that after each iteration of relaxation, we will have p and q only

approximately, because the parameters A, B, C and D are not really constants but change

slightly after each iteration. Thus it is not important to be able to solve Equations (4.45)

exactly. An approximation will do because the currently correct gradient will be different

during the next iteration. The approximation is motivated as follows. Equations (4.45) can

be rearranged as

p = -A.B+C-D) - oaR(p, q) - I(x, y)Rp (4.46)(4.46)
q - (AB-C-D) - a[R(p, q) - I(x, y)]Rq

where a=p/4.

The method of Gauss-Seidel [Froberg, 1969; Hamming, 1973) finds a solution to a

system of equations by expressing them in the form

x', f(xi, ,...



such that a new value of xi can be calculated from the old values of xi for all i. It is easy to

see that Equations (4.46) are in this form.

pi 4 -A'+Bi'+C-D') - o[R(p, q) - I(x, y)]Rpbpiqi

(4.47)
qi = 4ýAi+Bi-C'-D') - R(p', q')- I(x, y)]Rqlpiq

In words, these equations state that the new value of p is obtained from the old values of p

and q and the old values of A, B, C and D which are functions of the old values of the

neighboring p's and q's. By iterating this process at a particular image point, we can find

the gradient which minimizes E. Because we have to iterate all calculations for the relaxation

scheme anyway, we need only perform one iteration of Equation (4.47) during each step of

relaxation. The idea is that we can save time by having the local and global iterations

converge simultaneously.

Three methods of finding the minimum of e have been described. Other

approximations, which might yield faster convergence rates are left to the reader's discretion

and taste. The particular algorithm used to minimize the error function is not central to the

theory of the numerical shape-from-shading algorithm. The best one is dependent upon the

form of the function to be minimized, so the reflectance map partially determines the best

method. The Gauss-Seidel Method (Equations 4.47) has been used most in the work reprted

here because of its simplicity. In practice, the method to be used must be matched to the

resources and application at hand.

An important restriction is eliminated by the Gauss-Seidel Method. All the other

methods, including the analytic approach, require exact knowledge of Rp and Rq. Because
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of the form of Equations (4.47), the Gauss-Seidel Method does not need these values exactly.

They may be obtained approximately by interpolation of an empirical reflectance map and

the algorithm will still converge to the exact solution. For the other methods, an error in

determination of Rp or Rq may result in a corresponding error in determination of the

gradient.



5. ANALYSIS OF THE ALGORITHM

The previous chapter described the numerical algorithm proposed for shape-from-

shading. It would be very nice to be able to summarize its performance by, say, a single •

number but, as the reader may suspect, this is not possible. When comparing two shape-

from-shading algorithms, there are many features, both quantitative and qualitative, that

must be considered: What types of objects can be used? What kind and how many light

sources? How many views? What initial conditions are needed? How accurate is the

solution? How sensitive is the solution to noise in the image? To noise in the reflectance

map? To the position of the light source? The purpose' of this chapter is twofold: First it

serves to clarify the functioning of the algorithm. Second, it answers some of the above

questions. It is presented as a series of topics, each one analyzing a different aspect of the

algorithm.

5.1 Examples

We give here a sampling of the performance of the algorithm. Two surfaces with

different shapes and different photometric properties are presented and analyzed. Besides

illustrating the concepts of the last chapter, they are offered as partial, preliminary evidence

that the numerical algorithm does work as proposed.



5.1.1 The Lambertian Sphere

Some shape-from-shading algorithms have been applied to determining the shape.

pf a sphere with a lambertian surface. For purposes of comparison, a lambertian sphere is

analyzed here.

The image to be used as input appears in Figure 11. The image has been produced

synthetically, assuming a lambertian surface with a single distant point source I6cated at (0.7

0.3) in gradient space. An orthographic projection has been used.

A convenient form [Horn, 1977a; Marr, 1977; Stevens, 1979] for depicting the shape

of a surface is what I shall call the needle diagram. It consists of line segments or needles

positioned at various points in the image. The lengths of the needles represent the degree of

slant at the various points on the object's surface; the orientations of the needles represent

the directions of tilt (the directions of steepest descent). More specifically, the length of each

needle is )pV7q2 and the orientation is the projection of the local surface normal onto the

plane of the image -- thus the needle diagram is a viewer-centered description of surface

curvature. A needle diagram for the sphere of Figure 11 is given in Figure 12. We fihd this

a convenient representation because it is exactly the representation found by the numerical

shape-from-shading algorithm. We can use the needle diagram to summarize the current

assessment of shape as determined by the algorithm after each stage of computation.

Therefore, applying the algorithm to the image in Figure 11 should yield the needle diagram

of Figure 12 exactly if it is correct.

For purposes of simplicity in implementing the algorithm, attention is restricted to

a square inscribed in the circular projection of the sphere. Thus we will not attempt to



Figure 11 Synthetic Image of a Lambertian Sphere
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Figure 12 Needle Diagram of a Sphere
Each needle points in the direction of steepest descent on the surface.
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determine the shape of the entire surface of the sphere but only a portion of the spherical

surface instead. This subimage is selected to contain no self-shadowed portions of the

sphere. It should be emphasized that the shape of the subimage in no way affects the

operation of the algorithm, because approximately the same solution will be found regardless

of the shape of the selected subimage in consideration. This property is essential to any

shape-from-shading algorithm.

Initial values at every image point are chosen to be gradient (0, 0). More about

initial values appears in Section 5.5. The gradients of the image points at the edge of the

subimage are held fixed at the correct value throughout the computation. Therefore, Figure

13(a) is the needle diagram of the algorithm's initial guess at surface curvature. Subsequent

diagrams show the convergence of the algorithm to the solution. Careful study of these

diagrams demonstrates how a particular gradient is forced to a new value by its neighbors,

The asymmetry exhibited is a by-product of the order of application of the local operators.

For reasons discussed in Section 5.2, the operators are applied in a clockwise, square spiral

toward the center. We have chosen to find the gradients at 100 points selected by a 10xl0

square mesh superimposed on the image. Defining the average error in local surface

orientation as the average over the 100 points of the angular difference between the assessed

gradient and the true gradient, we find that the average error of the initial guess (Figure

13(a)) is nearly 300. The first few iterations show how some gradients are quickly found

correctly, others are temporarily opposite their final actual value, and some have not

changed at all. By thirty iterations, (Figure 13(i)), nearly all gradients have been found

accurately and the average error in local surface orientation has dropped to 3.1 degrees.
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After fifty iterations, the algorithm is still converging and the average error is below two

degrees. A plot of the average error in local surface orientation against the number of

iterations (Figure 13(1)) shows the exponential character of the convergence. This plot is

typical for the convergence for all surface shapes and reflectance maps.

5.1.2 A Lunar Waffle

In the last section, we analyzed an image of a surface with only one convexity. We

will now study the performance of the algorithm on an image of a surface with many

convexities and concavities. The image is shown in Figure 14. The equation of the surface

z=f(x, y) is

z - sin(O.9x) + sin(l.ly) (5.1)

The shape of this surface is similar to a rectangular "waffle". For purposes of generating the

synthetic image, the reflectance map R(p, q) was chosen to be the same as the reflectance map

of the material in the maria of the moon.

R(p, q) - I * 0.3p + 0.7q (5.2)

The shape of a portion of the waffle is depicted in the needle diagram of Figure 15. We

again start with initial values of (p, q)=(O, 0) at all image points so that the initial estimate of

surface shape is as shown in Figure 16(a). The remaining frames illustrate the convergence

toward the true shape. As can be seen, the general shape of the surface has been determined

within only five iterations. After fifty iterations, the average error in local surface

orientation has dropped under 1.10 and continues to gradually decrease as predicted by the

graph of Figure 16(1).



Figure 14 Synrithetic Image of a Liinar Waffle
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Figure 16 Convergence of the Algorithm for the Lunar Waffle
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5.1.3 Terrain

When analyzing satellite photos, one is concerned with determining the shape of

some complicated landform, not a simple mathematical function as in the preceding

examples. Because the approximation of Equation (4.17) becomes more accurate as the grid

resolution increases, a better estimate of shape is attained when the sampling resolution is

great.

Synthetic images have been produced using Digital Terrain Models (DTM's), and

analyzed by the algorithm. Experimentation has shown that the estimate of shape always

converges toward the true topography, however it tends not to be found exactly. The

relatively coarse resolution of DTM's prohibits Equation (4.17) from being exact, and the

result is. convergence to a somewhat inaccurate shape. For the DTM's studied, the

topography was always correctly determined within 70 average error in local surface

orientation and sometimes closer than 30 average error. It is enlightening to note that the

error is spread throughout the surface points and is not the result of inaccurate

determination of several critical points. When analyzing satellite photos, the resolution is

determined by the resolution of the image which may be much better than the resolution of

the available DTM's. Therefore much more accurate determination of surface topography

may be expected, provided all other assumptions are valid, of course.



5.2 Stability

As mentioned earlier, there are two iterations converging simultaneously so the

analysis of the stability of the numerical shape-from-shading algorithm is split into two

parts. First, it will be shown that the minimization of the error term 6 at each image point

is stable, assuming the coefficients are constant. Second, the relaxation scheme is examined

and shown to be stable when the minimization of e is stable.

5.2.1 Stability of the Minimization Methods

In Section 4.4, three methods for solving Equation (4.23) were proposed. In the

Lagrange-Multiplier Method, stability is not a question because the minimum is isolated in

one analytic step. The other two methods are iterative and must be shown to be stable. The

method of Fletcher and Powell, while considerably more complex than the Gauss-Seidel

Method, allows analytic analysis whereas Gauss-Seidel does not. For this reason a proof of

the stability of the Fletcher-Powell method only is given. Empirical evidence is the only

support offered for the stability of the Gauss-Seidel Method.

It is usual for descent methods to be stable because one ensures that the function to

be minimized is decreased by each iteration. It will now be shown that the direction of

search s' defined in Equation (4.39) is downhill, so that a' can always be chosen to be

positive. Because g' is the direction of steepest descent, the direction s' will be downhill if

and only if

-sig i giTGi (5.3)

is positive. We want the direction of search s' to be downhill for all possible g' so we must



prove that G' is positive definite for all i.

Assume G' is positive definite and consequently that ? is positive. It must be

shown that for any vector x, xTGi'Ix>0. Because the square root of a positive definite

matrix exists, we may define A= x and v= hi'. From Equation (4.44) and the fact that

C' is symmetric, we have

xTG'''X xTGix + xToidTx xTGCihihiTG'x

diThi hiTGCh i

VTV YdThi

> (XTd) (5.4)

dThi

by making use of Schwartz's inequality.

Now
odThi = dT i1 - dTg from (4.43)

-= -d ' from (4.42)
= -s ig' from (4.40)

SaigiTG'g' from (4.39)
> 0 (5.5)

By induction then, xTGi'lx>O for all non-trivial vectors x and hence G I'* is positive definite.

As stated in the beginning of the proof, the direction of search will always be

downhill if GC' is positive definite for a!ll i. Therefore, each iteration of the search reduces the

error and the process is stable for each image point (u, v) (Fletcher and Powell, 19631



5.2.2 Stability of the Relaxation Scheme

It has just been shown that the Fletcher-Powell Method of minimizing the error e

at each image point (u, v) is stable. We now turn attention to the analysis of the stability of

the entire relaxation scheme. To this end we apply the von Neumann criterion for the

stability of finite difference approximations [Richtmeyer and Morton, 1967).

Definition: Examine all solutions to determine whether any of them
increase without limit even when their initial values are bounded. If any
of them do, the scheme is said to be unstable. Otherwise, it is stable.

Since the relaxation scheme is the top-level of the shape-from-shading algorithm, the

algorithm will be stable if each iteration of the relaxation is stable.

Consider allowing the algorithm to run for i complete iterations and then abruptly

halting it. At every image point (u, v) there exists a current assessment of the gradient (jp

qj,). We will now single out the gradient at a generic image point (u, v) and note how its

value affects the values of its neighbors. Consider the following trick. Take the frozen

computation and update the value of the gradient at point (u, v) only. That is, apply the

local operator only to image point (u, v) to obtain pýl and qa'. Using the circumflex to

denote values of p and q obtained after iteration i in the modyfied problem we define

PV " p' and q •' (5.6)

Further define

ir - and 6 - q q (5.7)

That is, 7r is the amount by which !p: is changed to obtain P' and 0 is the amount by

which q', is changed to obtain Q. We will now press the restart button and continue to



use the circumflex to denote values of p and q obtained in this modified problem.

The template in Figure 8 can help us visualize the computation. First consider the

template centered over the point (ul, v+l). We see from Equation (4.21) that the value of

(ul 1)(v.1) is found to be

÷x1v1 0 Plxv.l) + r/4 - /4 (5.8)

Similarly

i+4 l xv) + $4 - r/4 (5.9)
q(u÷I)(v÷ ) = .u )(v.* !) 4 (59

By centering the templates over the other neighbors of (u, v) we find

u# -) -Pix,,-t) q+ r/4 + /4 '+,-t) (4U4 ,-1) + /4 +7r/4(U*D - 0/,, -U4 1)(V- )+'/0
(-1) -Pu- I)(v-I) q I)(v-I) 04 -7r4

(uii+)(V Ri 1•I)(÷,)(v.1) + 14+ 7 /4 +/-I(.I) q(1u-l)(v+ +) +04+ lr/4
4i. I i I "i i +1

u(v•) = P(vl) + '12 i i. 0/2
1)-) = v-) -2u(v1) (v- 1) + 0/2

p(U OV - PRt -i)2v -2 ,, - 0/82
p 1, - /2 (u-I , •-Iv 0/2

Now consider image point (u, v). We have

.I i2 1 42 (5.10)

Furthermore, all other image points (that is, points further than one grid point away from

(u, v)) are unchanged:

Pjk Pik and jk = qj

Vj {u-l, u, u+1) Vk A {v-1, v, v.l}

We now see that the change in p or q at any image point X due to the change at another

image point Y is smaller in magnitude than the increase at Y that caused it, after one

iteration. Furthermore, Equation (5.10) guarantees the stability of point Y, because the local



operators have been shown to be stable. Therefore, an increase in p or q at Y produces

bounded increases in p or q at all other image points. Since the increase at every image

point is stable and the effect of each increase is bounded, each iteration is stable according to

the von Neumann criterion. By induction then, the entire relaxation scheme is stable

because each iteration is stable. The algorithm can only be unstable when the local

operators are unstable.

5.3 Convergence

It is desirable to have the algorithm converge as rapidly as possible. It is clear by

now that there are actually two iterations happening at the same time. The determination of,

the gradient (p, q) which minimizes the error function e is approximated by successive

iterations using one of the minimization schemes presented in Section 4.4. Additionally, the

propagation of constraints afforded by the local smoothing operator in the relaxation scheme

represents an approximation by successive iterations. It is intuitive then (although not

proven) that optimization of the overall convergence rate is attained by separate

optimizations of the convergence rates of both of the iterative components.

First we note that whenever the algorithm converges, it converges to the correct

solution. Proofs of the convergence of the minimization schemes are not included here. The

Lagrange Multiplier Method is a one-step analytic solution and requires no proof. The

proof of the Fletcher-Powell Method is given in [Fletcher and Powell, 1963). We can

conclude that the error function e can be minimized. Whenever the shape-from-shading

problem is "well-formed", it will be possible to minimize E to be arbitrarily close to zero.



Recalling Equation (4.7)

we see that both es and er must approach zero as well. Restricting e, to zero implies that

the derived surface is a real, smooth surface. Further restricting Er to zero implies that the

derived realizable surface will generate the same image as the one used to determine the

shape. This means that whenever the mapping from image to surface is unique, the

algorithm will determine that surface after some number of iterations given, that all its

assumptions are valid. Therefore, the algorithm converges to the correct solution whenever

that solution exists.

The number of iterations required to reach the correct- solution within. a given

tolerance depends on the convergence rate of the minimization method used. Thus,, an

optimal minimization method will be optimal as a local operator for the numerical shape

from shading algorithm. The actual convergence rate realized will be slower than the

convergence rate of the minimization method because of the hysteresis of the telaxatidn

scheme. Since one application of the local operator is used n2 times in one iteration on an n

x n image, it is highly desirable to select a minimization method which is simple to compute

as well as rapidly convergent.

5.4 Boundary Values

The regions for which we wish to perform shape-from-shading are bounded by the

size of the image or some subsection of the image that is of interest. The local operators that

we have described are not applicable to image points which do not have all eight neighbors



present. The easy solution is to surround the region with the actual values of the gradients.

at each of the border points. Then the local operators will never extend off the image to an

undefined point. The examples shown in this thesis have all focused on a square region

surrounded by a square of actual gradients as was shown in Figure 13.

An alternative solution is based on the definition of the error function 6, which

depends on the gradients of all eight neighbors. Given the square tessellation that we use

for our grid, there are four possible types of image points.

(1) Interior points: These points have all eight neighbors defined and the
method of Equation (4.19) can be used as always.

(2) Edge points: These points lie on an edge of the region. We can
construct an expression for e, based on two loops instead of the usual
four. For the case of a point on the left side of the image we get

es = (A-p-q) 2 ÷ (B-p-q) 2

Minimizing this equation with respect to p and q results in the templates
of Figure 17 which gives a new value for the gradient based on the
gradients of the five defined neighbors of the edge point (u, v). A
similar result can be derived for each of the other three possible sides of
a region.

(3) Corner points: These are points which lie in a convex corner of the
region. In this case, only one loop is available for computation of es. For
the lower-left corner we find

es = (A-p-q) 2

The templates for the optimal p and q of a corner point are given in
Figure 18 and are found to depend on the three defined neighbors of the
corner point.

(4) Concave corner points: These points occur only if there are
concavities in the region of interest. They permit three loops to be used
for calculating es. The development is completely analogous to the
previous cases and is omitted here. An expression can be found based on
the gradients of its seven defined neighbors using three loops.
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Figure 17 Templates for Edge Points
Templates of the local smoothness operators are shown here for image points on the left
edge of the region. Templates for the other three edges are similar in form.
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Figure 18 Templates for Corner Points
Templates of the local smoothness operators are shown here for the iniage point in the lower
left-hand corner of the region. Templates for the other three corners are similar in form.



The numerical shape-from-shading algorithm is an implementation of a solution to

the differential equation (3.1) due to Horn. There we found the necessity of an initial curve

which intersects all the characteristics. We still need that initial curve in the numerical

approach. It can be manifested implicitly in the boundary values or given as a curve of

points within the region. The use of a square boundary of actual gradients actually

overdetermines the system. This is not a problem because the relaxation scheme is

inherently prepared to resolve such conflicts. If the overdetermination is grossly incorrect,

then spurious results will be obtained. An underdetermined system (due to lack of an initial

curve or appropriate boundary values) will prevent convergence to the true solution.

5.5 Initial Values

At any given point in the computation, the algorithm has a current assessment of

surface shape. Future assessments of shape are calculated from the image, the reflectance

map, and the current assessment. In order to begin the computation, there must be an initial

assessment of the gradient at every image point. We call these initial values and they are

simply some assignment of shape from which to begin the calculation.

In theory, the choice of the initial values should be arbitrary. One would hope

that the algorithm would determine the same surface shape regardless of the choice of initial

values. In practice, this is found to be true. For the sake of uniformity, the initial value of

(0, 0) has generally been assigned as the gradient for each image point. This assignment

corresponds to a flat plane perpendicular to the viewing direction.

While the choice of initial values doesn't affect the solution, it can affect the time



required to reach that solution. Of course, one would like to start as close to the true shape

as possible. A flat planar surface, being some kind of average of all possible surfaces, is

likely to produce a short convergence time. For this reason,.it has usually been used as the

initial value of surface shape in the course of this research.

5.6 Errors in Boundary Values

What happens if the boundary values specified are not correct? In practice, one

would not expect to be able to determine the boundary values exactly. Furthermore, there is

the chance that some of the values will be specified incorrectly. The hope is that the

algorithm will not fail completely if this is the case. However, the nature of the algorithm

might permit errors to be propagated throughout the region, thereby nullifying its

usefulness.

We return to the image of the lunar waffle to approach this problem. To study

the effect of an incorrect boundary value, the boundary value at image point (0, 5) was set to

gradient (0, 0). This represented a deviation of 530 from its true orientation of (0.900, 0.983).

After fifty iterations, the surface shape represented by the needle diagram of Figure 19 was

reached. We see that the shape was calculated fairly accurately for most points. We can see

the effect of the incorrect boundary value more clearly. by studying the difference between

the shape of Figure 19 and the real shape as was shown in Figure 15. If one actually subtracts

the needles of Figure 19 from the true needles using simple vector subtraction, the diagram

of Figure 20 is obtained. From it, it is easily seen that the error is only propagated about

three image points from the incorrect value. This result is found to be true in general and is
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Figure 19 An Incorrect Boundary Value
The gradient of the boundary point (0, 5) was incorrectly specified as (0, 0) before running
the algorithm. This needle diagram shows the surface shape determined by the algorithm
after fifty iterations. Compare this diagram with the true shape in Figure 15.
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a desirable property to have. When one considers images of 500x500 points or larger, an

incorrect boundary value.is seen to have very little effect indeed.

One may. be concerned over the combined effects of many boundary errors. The

algorithm is surprisingly resistant to combined errors and will be pretty close unless there are

so many errors systematically in the same direction, that the required initial conditions are

not well specified. It would be meaningless to calculate the precise amount of error

propagation because it will depend on a particular boundary error, surface shape, reflectance

map and resolution. A rule of thumb is that the maximum propagation of a single error is

limited to a radius of three grid points.

5.7 Noise in the Image

The examples shown in this thesis have been computed from synthetic images.

For a practical application, one must face up to the deficiencies of the real world. Here we

focus on the issue of incorrect intensity values I(x, y) recorded in an image.

If I(x, y) is not what it is supposed to be as predicted by our model of image

formation, the algorithm will be fooled and an incorrect assessment of shape will be

obtained. In fact, this is precisely the reason why facial cosmetics are used [Horn, 19701 By

skillfully applying make-up to the face, a person can deceive an observer into perceiving the

shape of the face as different from its actual shape. In our terms, the application of makeup

corresponds to changing the photometric properties in certain regions. Thus our assumption

of constant reflectance map at all image points has been violated and the algorithm will be

fooled as the human was. Other causes for an image intensity to be ,different from our



model's prediction are an aberration in the film, noise and quantization error in the digitized

image.

To study the consequences of an incorrect intensity value, the intensity value at

image point (8, 7) in the image of the waffle was purposely changed from 0.95 to 0.0, a 50f.

change in the total range of intensities in the image. Figure 21 shows the solution obtained

after fifty iterations. At first glance, the modification of intensity at point (4, 5) appears to

have had limited effect on the solution. Again, the needle diagram of the difference

provides some insight. Figure 22 is obtained by subtracting Figure 21 from the true shape

of Figure 15. Again we find that very little error is propagated more than three grid points

from the modified value.

This implies that for real applications, a few bad intensity values won't destroy the

solution. If this were not true, the algorithm would be useless. In large images, the

algorithm will be fooled by defects or cosmetics locally, but the effect will not propagate to

other portions of the image.

Another deficiency of the real-world is created by our representation of images.

When an image is digitized, an intensity value is represented as one of a finite number of

grey-levels. Thus the intensity is not known exactly, but only within some degree of

precision. Experimentation has shown that surface shape can be reliably recovered using

images with as few as sixteen grey-levels. The exact precision required is dependent upon

the reflectance map and the true shape of the surface. When working with digitized images,

one finds that the average error in local surface orientation does not converge to zero but

levels off somewhere between zero and eight degrees depending upon the number of grey-
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Figure 21 An Incorrect Intensity Value
This diagram was obtained after running the algorithm for 50 iterations on an image which

had one incorrect intensity value (at point (8, 7)).
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levels.

Besides large individual errors, we might expect all the image intensities to be off

slightly. This may be due to flaws in the imaging process or noise in the image. Again, it is

impossible to predict the effects precisely, but as another rule of thumb, the algorithm can

withstand errors of up to 10% of the total magnitude of intensity in the image at all image

intensities at once.

5.8 Inaccurate Determination of the Reflectance Map

Yet another real-world source of potentially dangerous error is the accuracy of the

determination of the reflectance map. All the empirical methods discussed in Section 23.2

are subject to measurement error. Furthermore, the analytic functions are only

approximations to the physical reality. Thus in general, it is impossible to determine the

reflectance map exactly. Again we must ask what implications this has for the numerical

shape-from-shading algorithm.

Experimentation has shown that satisfactory results are obtained even when the

reflectance map is not accurate. The exact tolerance of the algorithm is difficult to measure

because of the complexity of comparing two reflectance maps, but a general trend is evident.

In all cases, small errors in the reflectance map produce small errors in the resultant estimate

of shape. The form of this error is manifested in the failure of the algorithm to converge to

the exact shape. Instead, a plateau is reached in which the average error in determination

of the local surface normal no longer decreases. Furthermore, there exists a threshold of

error in the assumed reflectance map, beyond which the "solution" bears little resemblance to



the actual shape. Exactly where this threshold lies is difficult to ascertain. To be a little

more quantitative, several experiments were performed in which the light source for the

assumed reflectance map was "moved" from the true light source position used in computing

the image, thus changing the reflectance map. The actual relationship between the

magnitude of the light source's movement and the ultimate convergence level is highly

dependent upon the reflectance function used and to a lesser degree on several other factors.

In the example of a square region of a spherical lambertian surface, the light source was

"moved" 6.40 from its position when the image was calculated. Even so, the algorithm was

able to determine local surface orientations to within 50 of the truth. Apparently the lunar

reflectance map is more forgiving, allowing determination to within 20 for the same

movement of light source. The thresholds of maximum movement are not sharply defined,

but spread out between 20 and 200 for most reflectance functions.

5.9 Dependence of the Convergence Rate

We are naturally concerned with the number of iterations required to achieve a

given accuracy in the assessment of surface shape. Experimentation has shown that this

number (call it the convergence rate) is highly dependent on many factors. The sampling

resolution, the shape of the surface, the initial estimate of that surface, the value of p in our

error function, and the form of the reflectance map all come into play. Furthermore, they are

not independent factors but have mutually dependent effects on the convergence rate.

The sampling resolution is determined by the number of grid points that we select

from an image and not its absolute size. Thus we can speak of an n x n image where we



wish to determine the gradients at n x n points. It might be feared that the convergence

rate increases with n2 , the number of points to be determined. Fortunately, the relaxation

scheme propagates information in all directions simultaneously and the convergence rate is

found to increase only with n. Experimentation has borne this out while a mathematical

proof is given by [Garabedian, 19671].

The number of iterations required to reach a given accuracy in assessment of

surface shape. depends on the initial assessment. The closer one starts, the better the

convergence rate. If one starts with a flat planar surface, then one would expect the

convergence rate to depend only on the difference between these surfaces, given all other

factors held constant. In general, this is not true. The actual convergence rate depends on

the actual shape of the surface in some as of yet inexplicable way.

Recalling Equation (4.7), we wonder if the choice of p affects the convergence rate.

The answer is a definite yes. Given all other factors held constant, there exists a finite

positive value of p which is optimal. Values smaller than this generally produce slower

convergence rates and values "near" zero do not produce convergence at all. Values of p

much greater than the optimal value either do not converge or produce unstable results.

The shape of the reflectance map is also a factor in the convergence rate. For

example, lambertian surfaces generally converge slower than "lunar" surfaces of the same

shape. The quality of a reflectance map that determines its effect on the convergence rate is

unknown. For a surface with given photometric properties, the position of the light source

affects the convergence rate as well. We can specify the position of a distant light source as

(0, 8), where 0 is the inclination of the source above the horizon (the elevation) and 0 is its



rotation from North (the azimuth). It has been found that smaller source elevations produce

faster convergence rates. This fact cannot be exploited, however, because smaller source

elevations generally produce larger shadow areas. One would not expect the azimuth of the

source to play much of a role, but in fact, it does. Even images of surfaces which are

circularly symmetric show convergence rates which depend on the azimuth because of the

sequential application of the local operators. The shape of the reflectance map is a very

important and complicated factor in determining the convergence rate.

One surprising factor is the order of application of the local operators. In fact, if

the local operators are applied in parallel, the sequence may not converge at all. To see this,

think of the simplified case of determining a single-valued function by averaging the values

of the four nearest neighbors at each iteration. Applying these operators in parallel

produces what I call the checkerboard effect. After some number of iterations, all red squares

have one value and all black squares have another. Each subsequent iteration finds all red

squares taking on the values of the black squares and black squares taking on the last red

square values. The current assessment is seen to flip back and forth in this manner

unendingly. The checkerboard effect is exhibited by our complex local operators but in a

more subtle form. The flipping can be eliminated by scanning serially, as one reads a book.

This type of scanning requires n iterations for information to propagate from the bottom to

the top of an n x n image. The time can be cut in half by scanning in a "square spiral".

The corresponding reduction in the convergence rate using the spiral scan is small -- about

10% fewer iterations than required by the linear, book scan.



5.10 Varying Reflectance Maps

Throughout this thesis, the surface has been assumed to be isotropic. It will now

be shown that this restriction can be relaxed slightly.

First consider the horrendous situation where every object point has different

photometric properties. The reflectance map would be a function of the position of a surface

point as well as its orientation. The simple image forming equation becomes

I(x, y) = R(x, y, p, q) (5.11)

If the reflectance map were somehow known for every point in the image, then the algorithm

can simply substitute each reflectance map into Equation (5.11) when analyzing the

corresponding image point and the correct description of surface shape will be found. This

is a result of the fact that reflectance is a strictly local property (when the effects of shadows

and mutual illumination have been ignored). Unfortunately, one would not expect to be

able to determine the reflectance map R(p, q) for every point in the image in practice. One

example of when this approach might be reasonable concerns Landsat images [Short et. al.,

1976]. If one knows the surface cover beforehand and is attempting to determine the surface

topography, then the reflectance function for a wheat field can be used where a wheat field

is known to exist; the reflectance function for Kentucky blue grass can be used in a field of

Kentucky blue grass; etc. Note that determining which image points correspond to what

types of surface cover may be a difficult and time-consuming task. Additionally, one would

expect the reflectance function of a growing field to change with the seasons. Thus

determining the reflectance function for an area of known surface cover would not be so

simple.



As a second case, suppose the reflectance function at each image point is an

unknown multiplicative factor of the reflectance function of every other point. That is,

R(x, y, p. q) = p(x, y) R(p, q) (5.12)

where p(x, y) represents the surface albedo. This situation might arise when one considers

an objected covered with varying colors of the same type of paint. It might also be an

approximation to the reflectance map of objects composed of several different materials.

Without knowing the albedo p(x, y) at each image point, no shape-from-shading algorithm

could determine the surface shape. More information is necessary to counterbalance the

additional degree of freedom afforded by p(x, y).

A second image of the same scene obtained from the same view angle but different

light source position can supply the needed information [Horn, Woodham & Silver, 197831

With two images we have

Il(x, y) = p(x, y) RI(p, q)
(5.13)

12(x, y) P- (x, y) R2(p, q)

There is no problem registering these two images because they were obtained with the same

viewer object geometry. The unknown albedo at each image point can be eliminated by

forming the quotient of the two images, obtaining

Il(x, y) p(x, y) RI(p, q) R1(P, q)
(5.14)

12 (x, y) p(x, y) R2 (p, q) R2(p, q)

Defining I12 (x, y) = Il(x, y)112(x, y) and RI2(p, q) - RI(p, q)/R 2 (P, q) we have

112 (x, y) = R12 (p, q) (5.15)

which is now in a form for applying the numerical shape-from-shading algorithm using the



derived function R12(p, q) as the reflectance map.

One can go one step further to recover the surface albedo p(x, y) at each point as

well. Construct a synthetic image using RI(p, q) as reflectance map and with the same

viewer-object geometry as 11(x, y), based on the determination of surface shape obtained from

the shape-from-shading algorithm. Call this synthetic image Sl(x, y). Then it is immediately

apparent from Equation (5.13) that

p(x, y) y  (5.16)
Sl(x, Y)

Therefore, if the change in surface reflectance can be modeled as a multiplicative

factor of the reflectance map at each object point (i.e. the only thing that varies is the

albedo), then two images are sufficient to recover both surface topography and surface

albedo at each point in the images.

As an aside, it is interesting to study the shape of the derived "reflectance map"

R 12 (p, q). When R 1 and R2 are lambertian, we find that contours of RI2 (p, q) are a family

of straight lines all intersecting at a single point -- the intersection of the terminators

(shadow lines) of each reflectance map. (See Figure 23.) Curiously enough, the quotient of

two images is unrecognizable to the human eye, but the numerical shape-from-shading

algorithm can recover the surface shape precisely using the strange "reflectance map" R 12 (p,

q) (which, incidentally, is physically impossible for any real surface).

A point source near the object provides a third interesting case. Now the phase

angle G is no longer constant even when the viewer is distant, so the reflectance map R(p, q)

varies over the image. Nevertheless, a solution is possible if the reflectance function is



known analytically as 0ii, e, g). Here 0(i, e, g) can be expressed as R(p, q, g) using

Equations (2.5 - 2.7). Then the reflectance map will be known at all image points simply by

calculating g at each point. In an implementation, each local operator will be a different, but

defined, function, and the shape can be computed.

O

Figure 23 Contours of the Quotient of Two Lambertian Reflectance Maps
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6. CONCLUDING REMARKS

6.1 What Remains To Be Done

While the numerical shape-from-shading algorithm (SFS) is not the universal

shape-from-shading algorithm, it is a very capable method of performing shape-from-

shading in a variety of applications. One can foresee more powerful methods in the future

based to a greater or lesser extent on some of the notions exploited by SFS, but for the

present, we may look at ways of improving the performance and applicability of this

algorithm. The sections that follow outline some major renovations to SFS that would

actually make it more powerful and which are not merely special purpose tricks.

6.1.1 Accelerating the Convergence Rate

It has been shown how the convergence rate can be improved by optimizing each

component separately. This optimization is not straightforward. Many algorithms have

been proposed for minimizing a function during the past century and the issue has still not

been settled. Optimization of the relaxation scheme has not enjoyed as much attention. One

may look to the methods of computer science to improve the convergence rate of the

relaxation scheme. Some possibilities include various predictor-corrector methods of

iteration and the use of larger templates to provide for faster propagation of information

throughout the image. Perhaps an hierarchy of local operators would be useful. The

optimal value of p is seen to change with each iteration. Sequential adjustment of p might



improve the convergence rate as well.

6.1.2 Effects of Shadows

It is well-known that shadows are of two varieties, namely cast shadows and self-

shadows. For our purposes, a shadow is a region in an image with intensity equal td zero.

Thus, no information about the shape of the surface within that region is available.

Currently, SFS will try to force the gradients of points in the shadowed region to lie on the

contour of R(p, q)=O. This is not valid and needs to be dealt with. One would hope that the

presence of a shadow would not prevent SFS from determining topography from non-

shadowed areas. It should be possible to work around shadowed areas by marking them

and using the boundary operators of Section 5.4 on their edges.

Additionally, shadows do provide information about the shape of other parts of

the surface and SFS is not prepared to deal with this. One may incorporate knowledge from

these clues in novel ways to create a more applicable algorithm. Stevens [1979] provides

some details about how shadows might be used to determine shape.

6.1.3 Effects of Mutual Illumination

When light is reflected from one part of a surface onto others, the reflectance map

is altered at those points. Without knowledge of this, SFS will be fooled into identifying an

incorrect surface shape. An impractical way to handle this is to specify the correct

reflectance map in areas of mutual illumination. In this way, the knowledge of mutual

illumination can be utilized by the algorithm.



An alternate method is based on the fact that the shape and photometric properties

of an object completely determine the location and extent of all mutual illumination. Since

SFS is designed to calculate shape, it ought to be capable of using its knowledge of shape to

refine its knowledge of the reflectance map in areas of mutual illumination. One can

envision a third layer of iterative approximation added to SFS to deal with this. As the

surface shape is determined in one part of the image, the location and extent of mutual

illumination in other parts of the image is also determined. This can be used to more

accurately approximate the shape in those regions of mutual illumination. Hopefully, as the

computation converges, the equation of image formation becomes satisfied, the assessment of

topography becomes more continuous and the estimate of mutual illumination comes closer

and closer to the actual mutual illumination.

6.1.4 Coping with Discontinuities

The numerical shape-from-shading algorithm possesses no capability of handling

surface discontinuities. Such discontinuities must be predetermined and the algorithm must

be applied in regions not containing any discontinuities. In practice, this becomes a large

drawback. Machine parts typically contain many discontinuities and mountains obscure

other mountains at low view angles. It might be possible to equip SFS with some sort of

discontinuity detector because SFS is designed to determine shape. Once a discontinuity is

located, the boundary operators of Section 5.4 can once again be used to protect information

from crossing the discontinuity. Further use of discontinuity clues and occluding bounds is

available in several recent works [Marr, 1976a; Stevens, 19791



6.2 Relation to Other Work

6.2.1 Biological Systems

The numerical shape-from-shading algorithm was developed from a foundation of

understanding the imaging process. We have studied how the physical world constrains the

transformation from object space to image space, and this enabled us to theorize ways to

invert the process. At no point in the research did knowledge or hypotheses about visual

systems of animals affect the development of the algorithm or the underlying theory. For

this reason, we would expect any resemblance between the numerical shape-from-shading

algorithm and existing biological visual systems to be extremely unlikely. In retrospect, we

find that any resemblance is indeed minimal. For example, the algorithm has been shown to

require more time for increased resolution or increased accuracy. No analogous result has

been demonstrated in animals.

6.2.2 Computer Systems

The numerical shape-from-shading algorithm was motivated by two concepts. The

first was the partial differential equations for determining shape from a single image. The

second was the constraint imposed by the imaging equation as in the photometric stereo

approach. The result was the development of an iterative relaxation scheme which solves

the partial differential equations numerically.

Aside from an analytic solution to those differential equations, the relaxation



scheme is the only available method to determine shape from a single image. Because

analytic solutions are not normally available, the relaxation scheme becomes more important.

Its simplicity and robustness make it a very practical scheme for real-world application. One

can conceive of a hardware implementation which performs the relaxation using analcg

signals [Horn, 1974]. The speed available by such a device could offset the large number of

iterations sometimes required.

It is interesting to note that the method of this paper and the binocular stereo

approach can be integrated into a single system for performing image analysis. It turns out

that the two methods are complementary -- one succeeds where the other stumbles. For

example binocular stereo works best on images of scenes with many discontinuities while the

numerical algorithm can (must) determine shape in regions containing no discontinuities.

Similarly binocular stereo thrives on images of nonisotropic surfaces while the numerical

algorithm succeeds on (requires) images of surfaces with constant photometric properties.

As noted in the introduction, image analysis can be divided into many

subproblems of which the shape-from-shading problem is one. A discussion of how a shape-

from-shading scheme might be incorporated into a comprehensive image analysis system is

given by [Barrow & Tenenbaum, 1979].
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