SUMMARY OF SELECTED VISION TOPICS
Working Paper 30

Patrick H. Winston

Massachusetts, Institute of Technology

Artificial Intelligence Laboratory

July 1972

ABSTRACT

This is an introduction to some of the MIT Al vision work of the last few
years. The topics discussed are 1) Waltz's work on line drawing semantics,
2) heterarchy, 3) the ancient learning business and 4) copying scenes. All

topics are discussed in more detail elsewhere in working papers ot theses.

Wrok reported herein was conducted at the Artificial Intelligence Laboratory,

a Massachusetts Institute of Technology research program supported in part by
the Advanced Research Projects Agency of the Department of Defense and monitored
by the Office of Naval Research under Contract Number NOOO14-70-A-0362-0003.

Working papers are informal papers intended for internal use.






Summary of Selected Vision Torics

VISICE FLASH 20
by

Patrick H. Winston

Kassachusetts Institute of Technclogy
Artificial Intelligence Leboratory
Robotids.Section

JULY 1972

Abstract

' This is an introduction to some of the MIT AI

" vision work of the last few years. The torics

discussed are 1) Waltz’s work on line drawing
semantics 2) heterarchy 3) the ancient learning
business and 4) copying scenes. All topics are
discussed in more detail elsewhere in vision
flashes or theses.

Work reported herein was conducted at the
Artificial Intelligence Laboratory, a
Massachusetts Institute of Technology research
Brogram surported in part ty the Advanced Research
rojects Agency of the Department of Defense and
monitored ty the Office of Naval Research under
Contract Number NOCO14~70-2-0362-0003.

Vision flashes are informal parers intended for
internal use.

This nemo is lccated in TJé~able form on file
VIS;VE30 >.



TAGE 2

IHNTRODUCTIOK

Research in machine vision is an important activity in
artificial intelligence laboratories for two msjor reascns:
First, understanding vision is a worthy subject for its own sake.
The point of view of artificial intelligence allows a fresh new
lock at old questions and exposes a great deal about vision in
general, independent of whether man or machine is the seeing

agent. Second, the same problems found in understanding vision
| are of central iﬁterest in the development of a broad theory bf
intelligence. Making a machine see brings one to grips with
problems like that of knowledge interaction on nmany levels and cf
lgrgg system-organization. In vision these key issues are
exibited'with enough substance to be nontrivial and enough
“simplicity to be tractable.

These objectives have led vision research at MIT to focus
on two particular goals: learning from examples and copying from
spare parts. Both goals are framed in terms of a world of
bricks, wedges, and other simple shapes like those found in
children’s toy boxes.

Good purposeful description is often fundamental to
research in artificial intelligence, and learning how to do
descriptidn constitutes a major part of our effort in vision
research. This essay begins with a discussion of that part of
scene analysis known as body finding. The intention is to show

how our understanding has evolved away from blind fumbling toward
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substantive theory.
The next section polarizes srourd the organizational
netaphors and the rules of good programming practice arrroryiate

for thinking about large knowledge-criented systems.
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groups of otjects and using the groups to get at the nropert
of their members illustrates concretely hov some of the iders
about systems work out in detail.

The topic of learning follows. Discussing learrins is
especially a@proniate here not only because it is en importaﬁt
riece of artificial inteliigence theory but alsc recause it
illustrates a particular use for the elaborate znalysis machinsry
dealt with in the previous sections.

Finally a scenerio exhikits the flavor of the systen in a

situation where a simple structure is copied from srare parts.



EVOLUTICH Or A CEMAKTIC THECRY
Guzran end the Lody Probtlem

The body finding story begins with 2n a¢ hoc wut crisy

syntactic theory and ends in a sinpie, appeslins theory witl

serious sementic roots. In this the history of the bolir Jirdins

Il

L

protlen seems paradigmatic of vision system progresc in ~enersl

Aldolfo Guzman started the work in this area (Juzuar
196&). I review his program here in order to anchor the
.discussion and shdw how better rrograns emerse throu~h the
interaction of observation, experiment, and theory.

The task is simply to partition the observed regions of a
scene into distinct bodies. In figure 1, for example, &
reasonable program would revort something like (A B C) znd (D E)
as a plausilble partitioning of the five regions into, in this
case, two bodies. Keep in mind that the prograr is after only
one good, believable answer. iHeny simple scenes have severel
equally justifiable interpretions.

Guzman’s program operates on scenes in two distinct
passes, both of which are quite straightforward. The first pass
gathers local evidence and the second weighs that evidence and
offers sn orinion atout how the rezions should be grouped
together into bodies.

The local evidence rass uses the vertices tc ~7enerate
little vieces of evidence indicating.which of tre surrounding

rerions belons to the some Lody. These quanta cof eviderce ere



Figure 1
The task of the body finding program
regions of the scene form bodles.
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called links. TFigure 2 lists each vertex type recognized ard
shovws how each contributes to the set of links. The arrow linvs
always argue that the shaft-bordering regions belong together,
the fork more ambitiously provides three such links, one for =sach
pair of surrounding regions, and so on. The resulting links for
the scene in figure 1 are displayed superimposed on the original
drawing in figure 3a. Internally the links are represerted in
list structure equivalent to the abstract diagrsm in figure 3b.

There the circles each represent the corresrondingly lettered’

region from figure Za. The arcs joining the circles rerresent
links.

-

The job of pass two is to combine the link evidence into

a parsing hypothesis. Kow Guzman’s pass two aprroached its final

- form may be understood ty imagining a little series of theories
‘about how to use the evidencé to best advantage. TFigure 3a is so
simple that almost any method will do. Consequently figure 4 and
figure 5 are used tc further illustrate the experimental
observations behind the evolving sequence of theories.

The first theory to think about is very simple. It
argues that any two regions belong to the same body if there is
a link between them. Tke theory works fine on many scenes,
certainly on those in figure 3a and figure 4. It is easy,
however, to think of examples that fool this theory because it is
far too inclined toward enthusiastié region binding. VWhenever 2

coincidence produces an accidental link, as for example the links

L~



Flgure 2
The Guzman links for varlous vertex types.
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" Figure 3
The links formed by the vertices of a simple <ene.




Figure &4 %,
Various linking algorithms cause this to be seen as two, three,

or four bodles.




Figure 5
A colnclidence causes placement of an Incorrect 1ink,
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placed by fhe spurious psi vertex in figure 5, an error occirs in
the direction of too much conglomeration.

The problem is corrected in theory two. Theory two
differs from theory one because it requires two links for binding
rather than just one. Ey insisting on more evidence, lccal
evidence anomalies are diluted in their potentiezl tc damage the
end result. Such a method works fine for figure 5, but as ¢
~general solution the two link scheme also falters, now on the .
side of stinginess. In figure 4, partitioning by this.second'
theory yields (A B) (C) (D) (E F). |

.This stinginess éan also be fixed. The first step is to
refine theory two into theofy three by iterating the amslgamation
procedure, The idea is to think of previously joined together
.fegicnugrpups éslsubject themselves to conglomeratibn in the same
. way rééibns are joined. After one rass over the links of figure
4, ve have A anﬁkB joined together. But the combination is
_iihkad_to C by two links, causing C to be sucked in on a second
Tun fhroﬁgh the linking loop. Theory three then produces (A B C)
(D) (E F) as its opinion.

Theory four supplements three by adding a simple special-
case heuristic. If a region has only a single link to another
region, thej are combined. This brings figure 4 around to (A B C
D) (E F) as the result, without re-introducing the generosity
problem that came up in figure 5 when using theory one. That

scene 1is now also correctly separated into bodies.
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Oniy one more refinement is necessary to corplete thris
sequence of imagined theories and bring us close to Guzran’s
final program. The required addition is motivated by tke scenes
like that of figure 6. There we have again too much linking as a
result of_the indicated fork vertex. Although not'really vrong,
the one object answer seems less likely to humans than a report
of two objects. Guzman overcame this sort of problem toward the
~end of his thesis work not by augménting still further the
evidence weighing but rather by refining the way evidence is
originally generated. The basic change is.that all placement of
links is subject to inhibition by contrary evidence from adjacent
vertices. In particular, no link is placed across a line if its -
other end is the barb of an arrow, a leg of an I, or a part of
'thenggpssbar;of é,T. This is enough to correctly handle the
'prObiéj';’éf figure 6. Adding this link inhibition idea gives us.
ngmapfg_piog;am in its final form. In the first pass the |
gﬁfbémag.gathers evidence through the vertex inspired links that
are not ‘inhibited by adjacent vertices. In the second pass,
these links cause binding together whenever two regions. or sets
of previously bound regions are connected by two or more links.
It is a somewhat COﬁplex but reasonably talented program which
usually refurns the most likely partition of é scene into bodies.

But does this program of Guzman's constitute a theory?

If we use an informal definition which associates the idea of

useful theory with the idea of description, then certainly



Flgure 6 '
The fork vertex causes the two bodles to be linked together
unless the-offendlng‘llnks are inhibited by the adjacent arrows.
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Guzman ‘s wbrk is a theory of the region parsing aspect of vision,
either as described here or manifested in Guzman’s actusl mechine
program. I must hasten to say, however, that it stends
incomplete on some of the dimensions along which the worth cf a
theory can bte measured. Guzman’s program was insightful anc
decisivé to futu}e developments, but as he left it, the theory
had little of the deep semantic roots that a good theory should
have. '
| - Let us ask sone questions to better understand why the
program wvorks instead of just how it works. When does it do
well? Why? When does it stumble? How can it be improved? -
_ Experiment with the program confirms that it works best
on scenes composed of objects.lacking holes (Winston 1971) and
“having trihg§ra; vertices. (A vertex is trihedral when exactly
fhreélthceﬁ of the object meet in three-dimensional space at that
" vertex.) . | \ ,
N | Why this should be the case? The answer is simply that
trihedral vertices most often project into a line drawing as L’s,
which we ignore, and arrows and forks, which create links. The
ﬁrogram succeeds whenever the weak reverse implication that
arrows and forks coﬁe from trihedral vertices happens to be
correct. 'Using the psi vertex amounts to a dorollary which is
necessary because we humans often stack things ﬁp and bury an
arrow-fork pair in the resulting alignment. From this point of

view, the Guzman program becomes a one-heuristic theory in which
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a link is created whenever 2 picture vertex may have core from a
trihedral épace vertex.

But when does the heuristic fail? Again experinents
provide something of an answer. The trihedral vertex heuristic
most often fails when alignment creates perjurous arrows.
Without some sort of link inhibition mechanism, it is easy to
construct exémples littéred with bad arrows. To combat poor
evidence, two-possibilities must be explored. OCne is to demand_
'more'evidence, and the other is to find better evidence. The
complexity and much of the arbitrary quality of Guzman’s work
results from electing to use more evidence. But using more
ev;depce was not enough. Guzman was still forced to improve the
evmez;_gé via the link irhibition heuristic. |

The star?iing fact discovered by Eugene Freuder is that
. link inhibition is enough! With some slight extensions to the
Guzman’s inhibition heuristics (Rattner 1970), complicated
evﬁdencé wéighing is umnecessary. A program that binds with one
'link does about as well as more involved ones. By going into the
semantic justification for the generation of links, we have a
better understanding of the body linking problem and we have a
better, more adequate program to replace the original one. This
was a serious step in the right direction.

Shadows
Continuing to trace the deveiopment of MIT’s scene

understanding programs, the next torpic is a sortie intb the
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question of hendling shadovs. The first work at MIT on the
subject was done by Orban (Orban 1970). His purpose was to
eliminate or erase shadows from a drawing. The approach was
quite Guzman-like in flavor as Crban worked empirically with
vertices, trying to learn their language and discover heuristic
clues that would help establish shadow hypotheses. He founé that
quite complex scenes could be handled through the following
simple facts: 1) a shadow boundary often displays two or more L
| type véftices in & row 2) shadow boundaries tend to form pei
type vertices when they intersect a straight line and 3) shadows
may often be fbund by way of the L’s and followed throuthPSi’s.

L p-Orbanfswprogram;is'objectionable in the same way Guzman’s.
is. Namely, it is largely empirical and lackihg in firm semantic
‘rootsullihe idéaé'work in some complex scenes only'to fail in
,: otherl» Particularly troublesome the common situatlon where

1 short shadow boumdarles inkvolve no L type vertlces._"

AfterfOrban s program, the shadow problem remained at
pasture for some time. The issue was avoided by p1801ng the
light Sonrcé near the eye, thus eliminating the problem by
eliminating the shadows. Aside from being disgusting.'
aesthetically, this-is a poor solution because shadows.should be
a pcsitive'help rather than a hindrance to be‘erased out and
forgotten. |
Interest in shadows wés reavakened in conjunction with a

desire to use more knowledgé of the three~dimensional world_in
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scene analysis. Among the obvious facts are the followin-:
1) The world of blocks and wedges has a jrz-cndernnce
of vertical lines. Given that a scene hog 2 sin~in
distant light source, these vertical iines nlli cort
shadows at the same angle on the retira. -ance uien
orne line is identified as a shadow, it rendsrs =21l
other lines at the sare angle susrect.
2) Vertical lines cast vertical chadows on vertical
faces. |
3) Horizontal lines cast shadows cn herizontal facss
~ that aré rarallel to the shadcw casting edses.
4) If a shadow line emerges from a vertex, that vertex .
~almost certainly touches the shadow bearing svrfacé.
With these facts, it is easy to think about a progranm
that would crawl through the scene cf figure 7, asscciating
shadow boundaries with their parent edges as shown. One could.
even inplement something, through point four, that would allow
the system to know that the cube in figure 7 is lying on the
table rather than floating above it. Such a2 set of prograzs
would be on the same level as Freuder’s refinement of Guzman’s
program with respect to sementic flavor. We were in fact or the
verge of imrlementing such a prograr when Yaltz radicalized our
understanding of both the shadow work and tke old body-findin-~
protlen. |

Waltz ard Semantic Interpretation



Flgure 7
Simple heuristics allow shadow llnes to be assoclated with the
-edges causing them.
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This section deals with the enormously successful werk of
Waltz (Wialtz 1972a) (Waltz 1972t). Readers familiar with either
the work of Huffman (Huffmen 1971) or that of Clowes (Clowes
1971) will instantly recognize that their work is the
considerable foundation on which Waltz’s theory rests.

A line in a drawing appears beczuse of one or another of
several possibilities in the physical structure: Tre line may te
~a shadow, it may be a crack between two aligned objects, it may
be the_seam-betweén two surfaces ve see, or it may te the |
boundary between an object and whatever is in beck of it.

It is easy enough to label all the lines in a drawing
agborging.to their particular cause in the physical world. The
drawving in figure 8, for example, shows the Huffman labels for a
'éube‘lying flat on the table. The plus labels represent seans
where the observer sees both surfaces and stands on the convex
side of the surfaces with the inside of the object lying on the
ééncawe, The minus labels indicate the observer is on the
concave side. And the arrowed lines indicate a boundary where
the observer sees bnly one of the surfaces that form the physical
edge. |

A curious and amazing thing about such labeled line
drawings is that only a few of the combinatorially possible
arangements of labels around a vertex are physically possible.

We will never see a L type vertex wiih both wings labeled plus no

matter how many legel line drawings we examine. (It is presumed



Figure 8

Huffman lables for a cube. Plus Implies a convex edge, minus
Iimplies concave, and an arrow Iimplies only one of the edge-
forming surfaces Is visible.

20
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that the objects are built of trihedral vertices and that tle
viewpoint is such that certain types of coincidental alienment in
the picture domain are lacking.) Indeed it is essy to rrove trat
an enumeration of all possibilities allowed by three-dirensionsi
constraints includes only six possible L vertex labelings ard
three each of the fork and arrow types. These sre shown in
figure C.

Given the constraints the world places on the
arrangerents of line latels around a vertex, one can =zo the other
way. Instead of using knowledge of the real physicel structure
to assign semantic labels, one can use the known constraints on
how a drawing can possibly be labeled to get at an understanding
of what the physical structure must be like.

The vertices of a line drawing are like the pieces of a
Jjigsaw puzzle in that both are limited as to how they can fit
together. OSelections for adjacent vertex lebelings simply cannot
féquire different labels for the line between them. Given this
fact a simple search scheme can work through a drawing, assigning
labels to vertices as it goes, taking care that no vertex
labeling is assigned.that is incompatible with a previous
selection at an adjacent vertex. If the search fails without
finding a éompatible set of labels, then the drawing cannot
represent a real structure. £ it dqes find a set of lsbels,
then the successful set or sets of labels yield much information

about the structure.
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Figure 9
Physlically possible configurations
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of lines

‘qround vertices.



Waltz generalized the basic ideas in twoc fundamental
ways. First he exranded the set of line labels such that cach
includes much more information about the physical situation.
Second, he devised a filtering procedure that converces on the
possible interpretations with lightring speed relative to a more
obvious depth~first search strategy.
Waltz’s labels carry information both akout the cause of
the line and about the illurination on the two adjacent regions.
| Figure 10 gives Waltz’s eleven allowed line interpretations. 'The

set includes shadows and cracks. The regions beside the line are

considered to be either illuminated, shadowed by facing away from

the light, or shadowed by another okject. These possibillities
_suggé§t that the set of legal labels would include 11 X3 X 3 =
99 entries,‘but a fewv simple facts immediately eliminates about
. half of these. A concave edge may not, for example, have one
constituent surface illuminated and the other shadowed.
- With this set of labels, body finding is easy! The line
labels with arrows as part of their symbol (two, three, four,
five, nine, ten, and eleven) indicate places where one body
obscures another body or the table. Once Waltz’s program finds a
compatitle set of line labels for a drawing, each body is
surrounded'by line labels from the arrow class.

To create his program, Waltz first worked out what vertex

configurations are possible with hié set of line labels. Figure

11 gives the result. Happily the possible vertex labelings‘



Figure 10

and

2+ CONVEX EDGE

OBSCURING EDGES -- OBSCURING BODY LIES TO
RIGHT OF ARROW'S DIRECTION

«
CRACKS -- OBSCURING BODY LIES TO RIGHT OF
ARROW'S DIRECTION

SHADOWS -- ARROWS POINT TO SHADOWED REGION

CONCAVE EDGE

SEPARABLE CONCAVE EDGES -- OBSCURING BODY
LIES TO RIGHT OF ARROW'S DIRECTION --
DOUBLE ARROW INDICATES THAT THREE BODIES
MEET ALONG THE LINE

Line Interpretations recognized by Waltz's program,

2y



APPROXIMATE NUMBER APPROXIMATE NUMBER

OF COMBINATORIALLY | OF PHYSICALLY

.~ POSSIBLE LABELINGS POSSTBLE LABELINGS

; N 2,500 | 80
1 | «

l "% 125,000 70
_'  : -< 125,000 - 500
v \( ' 125,000 - ) 500
W 6x10® o 10

- >k 6 x 10° 00  —
A4 6 x 10° 100
X 6 x 10° | - 100
><‘ 4 6 x 106 - | 100
AZ | 3 x 108 | | N 30

Figure 11

Only a few of the combinatorially possibl b
physically possible. yp e labelings are
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constitute:only a tiny fraction of the ways labels can ts arrayed
arround a vertex. The number of possible vertices is larse but
not unmanageably so.

Increasing the number of' legal vertex labelings does not
increase the number of interpretations cf typical line drawines.
This is because a proper increase in descrirtive detail strongly
constrains the way things may go together. Again the analosy

with jigsaw pluzles gives an idea of what is haypening: The
| shaye of pieces cbnstrain how they may fit together, but the
colors give still more constraint by adding another dimensicn of
comparison.

o Interestingly, the number of ways to label z fork is much
larger than the number for an arrow. A single arrow consequently
offeres more constraint and less ambiguity than does a fork.

This explains why experiments with Guzman’s program showed arrovs
to be more reliable than forks as sources of good links.

. Figure 12 shows a fairly complex scene. But with little
effort, Waltz’s program can sort out the shadow lines and find
the correct number of bodies.

What I have discussed of this theory so far is but an
hors d‘oceurve. Waltz’s forthcoming doctoral disertation has much
to say about handling coincidental alignment, finding the
approximate orientation of surfaces, and dealing with higher
order obtject relations like support (Waltz 1272b). But without

getting into those exciting results, I can comment on hcw his
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work fits together with previous ideas on body finding snd cn
shadows.

First of all Waltz’s program has a syntectic flavor. its
program has a table of possible vertices and on some level can i2
thought to parse the scene. But it is essential to understend
that this is a program with substantive semantic rocts. The
table is not an amalgam of the purely ad hoc and empirical. It
.is derived directly from arguments'about how reel structures can
'project onto a twé dimentional drawing. The resulting label set,
together with the program that uses it, can be thought of quite
well as a compiled form of those arguments whereby facts abcut
threefdimensional space become constraints on lines and vertices.

_ In retrospect, I see Waltz’s work as the culmination of a
long effort begimning with Guzman and moving through the work of
- Orbaen, Ratner, Vinston, and Huffman and Clowes. Each step built
on the ideas and experiments with the previous one, either as a
féfinement, a reaction, or an explanation. The net result is a
tradition moving toward more and better ability to describe and
toward more and better theoretical justification behind working

programs.
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SYSTEM ISSUES
Heterarcy

Waltz’s work is part of understanding how line crawinsg
convey information about scenes. This section discusses sore of
our never ideas about how to get such umderstanding intoc a
working systen.

At KIT the first success in copying a simple block
structure from spare parts involved using a pass—oriented
'structure like thét illustrated in figure 13. The soli¢ lires
represent data flow and the dashed lines, control. The executive
in this approach is a very simple sequence of subroutine calls,
mqstly.partitioned into one module. The calling up of the action
modules is fixed in advance and the order is indifferent to the
‘peculiarities of the scene. Each action module is charged with
augmenting the data it receives according to its labeled
specialty.
- This kind of organization does not work well. Ve put it
together only to have quickly a vehicle for testing the modules
then available. It is often better to have one system working
before expending too much effort in arguing about which system is
best.

From this base we have moved toward another style of
organization which has come to be called heterarchical (Minsky
and Papert 1972). The concept lacks'precise definition, but the

following are some of thke characteristics that we ainm for.
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Figure 13
The simple pass orlented system metaphor,
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j. A complex system should be goal oriented.
Procedures at all levels should be short end associated
with some definite goal. Goals shoulcC normally he
satisfied by invoking a small number of subgozls for
other procedures or by directly calling a fevw
primitives. A corollary is that the system should be
tdp down. For the most part nothing shouid be done
unless necessary to accomplish something 2t a higher .
level.

2. The executive control should be distributed
throughout the system. In a heterarchical system, the
~modules interact not like a master and slaves but more

like a community of experts.

3. Programmers should make as few assumptions as
possible about the state the system will be in when a
procedure is called. The procedure itself should
contain the necessary machinéry-to set up whatever
conditions are required before it can do its job. Ihis
is obviousiy of prime importance when many authors
contribute to the system, for they should be able to
add knowledge via new code without completely
understanding the rést of fhe system. In practice this

usually works out as a list of goals lying like a



preamble near the begimning of a routine. Tyrically
these goals are satisfied by simple reference to thz
data tase, but if not, notes are left as to wrere helr
may be found, in the FLANKEER (Hewitt 1972) or COWIVTY
style (McDermott and Sussman 1972).

4. The system should contain some knowledge of itself.
It is not enough to think of executives and primitives.
There should be modules that act =2s critics and
complain when something looks suSpicious. Others must
~ know how and when the primitives are likely to fail.

Communication among tkrese modules should be more

t .colorful than mere flow of data and commard. It should

include what in human discourse would be called advice,
suggestions, remarks, comrlaints, criticism, questions,

answers, lies, and conjectures.

5. A system should have facilities for tentative
conclusions. The system will detect mistakes as it
goes. A conjectured configuration may be found to be
unstable of the hand may te led to grasp air. VWhen
this happens, we need to know what facts in the data
base are most problematiczal, we need to know how to try
to fix things, and we need'to know how far ranging the

consequences of a change zre likely to go.



Gré;hically such a system lcoks more lile 2 actvori of
rrocedures rather than an orderly, inmutable secuence. ach
procedure is connected to others vie potential control trancier
links. In practice which of these links are used densxunds cor ire
context in vhich the various prccedures are usec, the ceoatart
being tke joint product of the system and the rroblenm wriersoing

analysis.

| Note particularly that this arrangerent forces us tc
refine our concept of higher versus lower level routines. low
programs normally thought to be low level mey very well euploy
other programs-considéred high level. Ihe terms no longer
indicéte the order in which a routine occurs in analysis;
Instead a vision system procedurs is high or low level eccording
to the sort of data it works with. Line finders that work with
intensity points are low level but may certainly on occasion call
afstability tester that works with relatively high level object
models.

Finin and Environment Driven Anslysis

Our earliest MIT vision system interacted only narrowly
and in 2 predetermined way with its environment. The pass
oriented structure trevents better interaction. But we are now
noving toward a different sort of vision system in which the
environrent controls the analysis. (This idea was prominent in

Frnet’s very early wvork (Frnst 1661).)



TEpT A
LSFL o

Readers who find this idea strange should ses ar
exposition cf the notion by Simon (Simon 1969). He sr-vas thai
nuck: of what passes as intelligent behavior is in pcint of faci =
hapry ccoperation between unexpectedly simple algoriting and
conplex environments. Ie cites the case of an ent venderins
along a beach rift with ant sized obtstacles. The ant’s
curvacious rath might seem to be an insesnely complex rituval to

€ i

someone looking only at a history of it traced on perer. ¥Put in

fact the humble ant is merely trying to circumvent the leack’s

obstacles and go hone.

‘Watching the locus of control of our current system as it
struggles with a complicated scene is like watching Simen’s ant.
The up and down, the around and backing off, the use of this
method then another, all seem to be mysterious at first. DLut
like the ant’s, the system’s complex behavior is the product of
simple algorithms coupled togetker snd driven by the demandsvof
the scene. The remainder of this section discusses some elegant
procedures implemented by Finin which illustrate two ways in
which the environment influences the MIT vision system (Finin
1972).

The vision system contains & specialist whos task is to
determine what we call the skeleton of 2 brick. A skeleton
consists of a set of three lines, one lying along each of the
three axes (Finin 1€72). XTach of thé lines in = skeleton must be

conyplete and unobscured so the dimensions of the brick in
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quesfion may be determined. Figure 14 shous sore of the
skeletons found in various situstions by this nodule.

The only problem with the program lies in the fsct that
compiéte skeletons are moderately rare in practice kecauvse éf
heavy obscuring. Even in the simple arch in figure 15a, one
object, the left side support, cannot be fully enalyzed, lackinge
as it does a completely.exposed line in the depth dimencion. Fut

humens have no trouble circumventing this difficulty. Indeed,
.it generally does.not even occur to us that there is a rroblen
becahse we so naturally assume that the right and left sUpporté
have the same dimensions. At this point let us look at the
systepfs internal discourse when working on this scene to better
understand how a group - hypothesize - criticize cycle typically

works out:

Let me see, what are A’s dimensions. TFirst I must identify
a skeleton. Oops! WUWe can only get a partial skeleton, two
complete lines are there, tut only a partial line along the
third brick axis. This means I know two dimensions but I
have only a lower bound on the third. Let me see if A is
part of some group. Oh yes, A and B both support C so they
form 2 group of a sort. Let me therefore hypothesize that A
and B ere the same and run through my check list tc see if
there is any reason to doubt thét.

Are A and B the same sort of objects?



Figure 14
Some skeletons found for bricks.
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Figure 15
In one case, A's depth is extrapolated from B's.
hypothesls can be confirmed.

Rt

In the other no
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Yes, Both are bricks.
Are they both oriented tre same way?
Yes, that checks out too.
liell, do the observable dimensions metch?
Indeed.
Is there any reason to believe the unobservalle
dimension of A is different from its analogue on
B? |
| Lioe
CK. Everything seems all right. I will

tentatively accert the hypothesis and proceed.

- Through this internal dialogue, the machine succeeds in
finding all the necessary dimensions for the obscured support in
figure 15a. Figure 15b shows how the conflict search cen fail at
the very last step.

‘ Grouping amounts, of course, to using a great'deal of
.context in scene analysis. We have discussed how the system uses
groups to hypothesize properties for the group’s members and we
shbuld add that the formation of a group is in itself a matter
hypothesis followed by a search for evidence conflicting with the
hypothesisQ The system now forms group hypotheses from the
following configurations, roughly in order of grouping strength:

1. Stacks or rows of objeéts connected by chains of

support or in-front—-of relations.
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2. Objects that serve the same function such as the
sides of an arch or the legs of a table.

3. Objects that are close together.

4. Objects that are of the same type.

To test the validity of these hypotheses, the zachine
makes.tests of good membership on the individual elements. It
basically performs conformity tests, throwing out anything too
unusual. There is a preliminary theory of how this can be done
.sensibly (Winston-1971). The basic feature of Vinston’s theory
is that it involves not only a measure of how distant a
particular element is from the norm, but also of how much
deviation from the norm is typical and thus acceptable.

~ Note that this hypothesis rooted theory is much different
from Gestaltist notions of good groups emerging magically from -
the set of all possible groups. Critics of artificial _
intelligence correctly point out the computational implausibility
of considering all possible groups but somehow fail to see the
alternative of using clues to hypothesize a limited number of
good candidate groups.

_Naturally all of these group - hypothesize — criticize
efforts are less 1ikély to work out than are programs which
operate thfough direct observation. It is therefore good to
leave deta base notes relating facts both to their degree of
certainty and to the programs that fbund them. Thus an asserticn

that says a particular trick has such and such a size may well
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have other:assertions describing it as only probable, conjectured
fror the dirmensions of a related brick, and owing tke discovarec
realtionship to a particular grouping program. Usinr such
knowledge is as yet only planned, but in preparation we try to
refrain from using more than one method in a single prograi.
This makes it easy to describe how a particular asserticn ves
made by simply noting the name of the program that made it.

Visual observation of movement, rrovides another way the
environment can influence and contrcl what a vision system thinks
about. One of the first successful projects was executed at
Stanford (Wickman 1967). The purpose was to align two bricks,
one atop the other. The method essentially required the complete
construction of a line drawing with subsequent determinstion of
relative position. The Japanese have used a sirilar approach in
placing a block inside a box.

The MIT entry into this area is a little different. We
_db not require complete recomputation of a scene, as did the
Stanford system. The froblem is to check the position of a just
placed objeét to be sure it lies within some tolerance of the
assigned place for it. (In our arm errcrs in placement may
occasionally be on the order of 1/2%.) |

Rafher than recompute a line drawing of the scene to find
the object’s coordinates, we use our model of where the object
should e to direct the eye to seleéted key regions. In brief,

what harpens is as follcws:
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1. The three~dimensicnal coordinates for selectec
Qertices are determined for the otject whose rosition
is to be checked. |
2. Then the supposed locations of those vertices.on
the eye’s retina are easily computed.

3« A vertex search using circular scsns eround ezch of
these supposed vertex positions hill climbs to a set of
actual coordinates for the vertices on the retina
(Winstoﬁ and Lerman 1€72). From these retinal |
coordinates, revised three—dimenéional coordinates can

. . be determined, given the altitude of the objectf

4. Comparing the object’s real and supposed
-coordinates gives a correction which is then effecied
by a gentle, wrist—-dominated arm action.

;The vertex locating program tries to avoid vertices that
form alignments with those of other objects already in place.
_Tﬁis.considerably simplifies the work of the vertex finder. With
a bit more work, the program could be made to avoid vertices
obscured by the hand, thus allowing performance of the feedback
operétidn more dynamically, without withdrawing the hand.
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LEAENING TO IDEKTIFY TOY BLOCK STRUCTURES
Learning

This section describes a working computer prorrsm which
embodies a new theory of learning (Winston 1970). I believe it
is unlike previous theories because its basic icea is tc
- understand how concepts can be learned from a few judiciousiy
selected examples. The sequence in Figure 16, for exantle,
generates in the machlne an idea of the arch sufficient to kanaWe
.correctly all the conflguratlons in figure 17 in spite of severe
rotations, size changes, proportion changes and changes in
viewing angle.

. . .Although no previous theory in the artificial
intelligence, psychology, or other literatures can completely
account for anything like this competence, the basic ideas afe
quite simple: |

1« If you want to teach a concept, you must first be
sure your student, man or machine, can build
descriptions adequate to represent that concert.

2. If you want to teach a concept, you should use
samples which are a kind of non-example.

The first point on description should be clear. At some
level we must have an adequate set of primitive concepts and
relations out of which we can assemble interesting concepts at
the next higher level which in turn Eecome the primitives for

concepts at a still higher level. The operation of the learhing
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program depends completely on the power of the snalysis prograns
described in the previous sections.

But what is meant by the second claim that one rust shov
the machine not just examples of concepts but something else?
First of all, something else means something which is close to
being an example but fails to be admissable by way of one or a
few crucial deficiencies. I call these samples near-nisses. Ly
view is that they_are more importaht to learning then examples
‘and they provide just the right information to teach the machine
directly, via a few samplés, rather than léboriously and
uncertainly through many samples in some kind of reinforcement
mode. |

The purpose of this learning process is to create in the
machine whatever is needed to identify instances of learned
concepts. This leads directly to the notion of a model. To be
precise, I use the term as follows:

- A model is a proper description augmented by
information about which elements of the description are
essential and by information about what, if anything,
must not be present in exam;ﬂés of the concept.

The description must be a proper description because the
deécriptivé language — the possible relations — nust naturally
be eppropriate to the definitions expected. For this reason one
cannot build a model on top of a data base that describes the

- scene in terms of only vertex ccordinates, for such a description
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is on too iow a level. Nor can one build a model orn tor of a
higher level description that contains only colcr inforraticn,
for example, because that information is usually irrelevant to
the concept in question.

The key part of the definition of model is the iden that
sone elements of the description must be underlined as
particularly important. TFigure 18 shows a trairning sequence that
conveys the idea of the pedestal. The first step is to shecw the
mackine a sample of the concept to be learned. TFrom a line
drawing, the scene analysis routines prodube a heirarchical
symbolic description which carries the same sort of information
about a scene that a human uses and understands. Elocks are
described as bricks or wedges, as standing or lying, and as
‘related to others by relations like in-front—of or supports.

This description resides in the data base in the form of
list structures, but I present it here as a network of nodes and
| pbinters, the nodes representing objects and the pointers
representing relations between them. See figure 19 vhere a
pedestal network is shown. In this case, there are relatively
few things in the net: just a node representing the scene as a
whole and two more for the objects. These are related to each
other by the supported-by pointer and to the general knowledge of
the net via pointers like is—-a, denoting set membership, and has—
posture, which leads in one case to'standing and in the'other to

lying.
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Figure 18
A pedestal training sequence.
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Now in the pedestal, the surport relation is essential —
there is no pedestal without it. Similarly the posture and
identity of the board and brick must be correct. Therefore, the
objective in a teaching sequence is to somehow convey tc the
machine the essential, emphatic quality of those festures.
(Iater on we will see further examples where sore relations
become less essentizl and others are forbidden).

Returning to figure 18 note that the second sanple is a
'near-miss in which nothing has changed excert that the koard nq.
longér rests on the standing brick. This is reflected in the
description by the absence of a supported—by pointer. It is a
simple matter for a description comrarison rrogram to detect this
missiég.relation as the only difference between this description
and the originél one which was an admissable instance. The
machine can only conclude, as we would, that the loss of this
relation explains why the near-miss fails to qualify as a
pedestal. This being the case, the proper action is clear. The
machine makes a note that the supported-by relation is essential
by replacing the original pointer with must~be-supported-by.
Again note that this point is conveyed directly by a single
draving, not by a statistical inference from a boring hoard of
trisls. Note further that this information is quite high level.
It will be discerned in scenes as long as the descriptive |
routines have the power to analyze that scene. Thus we need not

be as concerned about the simple changes that gore older, loﬁer



level learning ideas. FKotations, size dilations and the lile ars
easily handled, given the descriptive power we rave in cpérating
Proframs.

Continuing now with our example, the teacher nroceecs tc
basically strengthen the other relations according to whatever
prejudices he has. In this sequence the teacher has chcsen to
reinforce the pointers which determine that the suprort is
standing and the pointers which similarly determine that the
" supported object is a lying board. Figure 20 shows the model -
resulting.

Now that the basic idea is clear, the slightly more
complex.arch sequence will bring out some further points. The
first sample, shown back in Figure 16 is an example, as always.
From it we generate an initial description as before. The next
step is similar to the cne taken with the pedestal in that the
teacher presents a near-miss with the supported object now
removed and resting on the table. Tut this time not one, but two
differences are noticed in the corresponding description networks
as now there are two missing supported-by pointers.

This opens up the big question of what is to be done when
nore thén one relationship can explain why the near-miss misses.
What is needed, of course, is a theory of how to sort out
observed differences so that the most important and most likely
to be responsible difference can be hyncthesized and reacted to.

The thecry itself is somewhet detailed, but it is the
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Figure 20
A pedestal model.
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exploration of this detail through writing and experimenting with
prograns tﬁat gives the overall theory a crisp substance.
Repeated cycles of refinement and testing of = theory, es
embodied in a program, is an importent part of en erergsing
artificial intelligence methodology.

Now the results of this approach on the difference
ranking module itself include the following points:

First of all, if two differences are observed which are
of the same'naturé and description, then they are assumed to
contribute jointly to the failure of the near-miss and both are
acted on. This handles the arch case where two support relationé
were qbserved to be absent in the near-miss. Since the.
diffe;encgs are both of the missing pointer type and since toth
‘involve the same supported-by relation, it is deemed
heuristically sound to handle them both together as a unit.

Secondly, differences are ranked in order of their
distance from the origin of the net. Thus a difference observed
in the relationship of two objects is considered more important
than a change in the shape of an object’s face, which in turn is
interpreted as more important than an obscured vertex.

Thirdly, differences at the same level are ranked
according to type. In the current implementaticn, differences of
the missing pointer type are ranked ahead of those where a
pointer is added in the near-misse. This is reasonable since

drorping a pointer to meke a near-miss may well force the
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introduction of a new pointer. Indeed we heve ignored the
introduction of a support pointer between the lying brick and th=
table because the difference resulting from this newv pointer is
inferior to the difference resulting from the missing pointer.
Finally, if two differences are found of the same type on the
same level, then some secondary heuristics are used to try to
sort them out. Support relations, for example, make more
important differences than one expects from touch or left—rightl
-pointers. |

| Now these factors constitute only a theory of hypothesis
formation. The theory does make mistakes, especially if the
tggchgrﬁis poor. I will return to this problem after completing
the tour ;hrough the arch example. Recall that the machine |
learned the importance of the support relations. In the next
step it learns, somewhat indirectly, about the hole. This is
conveyed through the near-miss with the two side supports
tduching. Now the theory of most important differences reports
that tQO'new touch pointers are present in the near-miss,
symmetrically indicating that the side supports have moved
together. EKere surely the reasonable conclusion is that the new
pointers have fbuled'the concept. The model is therefore refined
to have must-not—touch pointers between the nodes of the side
supports. This dissuvades identification programs, later
‘described, from ever rerorting an aréh if such a forbidden

relation is in fact present.
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Importantly, it is now clear how information of a
negative sort is introduced into models. They can contzin rot
only information about what is essential but also inforraticn
about what sorts of characteristics prevent a sample frem bein~
associated with the modeled concept.

So far I have shown examples of emphatic relations, both
of the must-~be and must-not-be type as introduced by near-miss
‘samples. The following is an example of the inductive
generalization infroduced by the sample with the lying brick
replaced by a wedge. VWhether to call this a kind of arch or
report it as a near-miss depends on the taste of the machine’s
instrgctor, of course. Let us explore the consequence of
introducing it as an example, rather than a near-miss.

In terms of the description network comparison, the
machine finds an is-a pointer moved over from brick to wedge.
There are, given this observation, a variety of things to do.
The simplest is to take the most conservative stance and form a
nev class, that of the trick or wedge, a kind of superset;

To see what other options are available, look in figure
21 at the descriptions of brick and wedge and the portion of the
general knowledge net that relates them together. There various
sets are linked together by the a-kind-cf relationship. From
this diagram we see that our first choice was a conservative
point on a spectrum whose other end éuggests that we move the is-

a pointer over to object, object being the nmost distant
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Figure 21 :
Relatlions between brick, wedge, and object. All pointers are a-
kind-of polinters. '

55



intersectibn of a~kind-of relations. Ue choose a conserviative
position and fix the is-a pointer to the closest observed
intersection, in this case right-prisn.

Again a hypothesis has to be made, znd the hypothesis mey
well be wrong. In this case it is a question of difference
interpretation rather than the question of sorting cut the
correct difference from many, but the effect is the same. There

sinply must be mechanisms for detecting errors and correcting
| them. |

Errors are detected when an example refutes a previously
made assumption. If the first scene of Figure 22 is reported as
an ex?mple of concept X while the second is given as a near-miss,
the ngtu;al interpretation is that an X must be standing. Eut.an-
‘alternate interpretation, considered secondery bty the ranking
program,.is that an X must not be lying. If a shrewd teacher
wishes'to force the secondary interrretation, he need only give
the tilted brick as an example, for it has no standing pointer
and thus is a contradiction to the primary hypothesis. Under
these conditions, the system is prepared to back up to try an
alternative. As the alternative may also lead to trouble, the
process of backup méy iterate as a pure depth first search. One
could do better by devising a little theory that would back up

more intelligently to the decision most likely to have caused the

error.

I mentioned just now the role of a shrewd teacher. I
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Figure 22
A training sequence that leads to backup.
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regard the dependence on a teacher &s a feature of this thecry.
Too often in the past history of machine learning theory the use
of a teacher was considered cheating and mechanisms were insteac
expected to self organize their way to uvnderstanding by way of
evolutionary trial and error, or reinforcement, or vhatever.
This ignpres the very real fact that humans as well as rachines
learn very little without good teaching. The first attempt
should be to understand the kind of learning thet is at once the
‘most common and tﬁe most useful.

It is clear that the system assimilates new models fron
the teacher and it is in fact dependent on good teaching, but it
depen@s_fundamentally on its own good judgement and previously
1earne§ i@eas to understand and disentangle whai the teacher has
in mind. It must itself deduce what are the salient ideas in the
. training sequence and it must itself decide on an augmentation of
the model which captures those ideas. By carefully limiting the
teacher to the presentation of a sequence of samples, low .level
rote learning questions are avoided while allowing study of the
issves which underly all sorts of meaningful learning, including
interesting forms of direct telling.

Identification |

Having developed the theory of learning models, I shall
say a little about using them in identification. Since this
subject both is tangential to the maih thrust and is documented

elsewhere (Winston 1970), I shall merely give the highlights
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here.

To begin with, identification is done in a variety cf
modes, our system already exhibiting the following three:

1. We may present a scene and ask the systenm to
identify it.

2. Ve may present a scene with several concerts
represented and ask the System to identify all of then.
3. We may ask if a given scene contains an ihstance'of
something.

Of course, the first mode of identifying a whole scene is
the easiest. We simply insist that 1) all models must-be-type
pointers are present in the scene’s description and 2) all the
models must-not-be-type pointers must not be present. For
fUrther.refinement, we look at all other differences between the
model and scene of other than the emphatic variety.and Judge the
firmness of model identification according to their number and
type. |

When a scene contains many 1dent1f1ab1e rows, stacks, or
other groups, we must modify the identification program to allow
for the posplblllty that essential relatlons may be missing
' because of obscuring obﬂects. #The properties of rows and stacks

o taniddnadimsin = s e

tend to proragate from the nost observable member umless there is
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contrary eﬁidence.

The last task, that of searching a scene for a particular
concept is a wide open question. The method now is to simpiy |
feed our network matching program both the model and the larmer
netwvork and hope for the best. If some objects are matched
against corresponding parts of the model, their pointers to other
extraneous objects are forgotten, and the identification rouvtine
~is applied. Much remains to be done alcong the lines of guicding

the match contextually to the right part of the scene.

o~
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COPYING TOY BLOCK STRUCTURES
I here give a brief description of the system’s hisher
level functions along with a2 scenario giving their interaction in
a very simple situation. The ma2in purpose is to illustrate the
top down, goal oriented and environrent dependent flavor of the
system. Code samples are available elsewhere (kinston 1971)
Figure 25 shows the possible call paths between some of
the progranms. No#e in particular the network quality that _
distinguishes the system from the earlier pass oriented'metaphbr.
Clarity requires that only a portisn of the system te
described. In particular, the diagram and the discussion omits
the following:
1) A large number of antecedant and erasing progrsms
which keep the blocks world model up to date.
2) A large network of programs which find skeletons
and locate lines with particular characteristics.
3) A large network of programs that uses the group -
hupothesize — criticize idea to find otherwize
inaccessible properties for hidden objects.
4) A network of programs that jiggles an object if the
arm errs ts nuch when placing it.
The Functions
COPY
As Tigure 235 shows, COPY simbly activates programs that
handle the two thases of a copying problem; namely, it callslfor



. _ COPY

: STORE-PARTS “ | > MAKE-COPY
CHOOSE-TO-REMOVE ' FINDﬁSTORAGE _ MOVE v FIND-PART CHOOSE-TO-PLACE
' | \ ‘(,//,/’/’\L"’:j:::::?\\hJ l,

MANIPULATE FIND-TOP & "'_'< FIND-DIMENSIONS ?FIND-POS'IlJRE

FIND-BOTTON <\ \ —FIND-TYPE
A

R FIND-TALLNESS~1 FIND-TALLNESS-2

FIN-ALTITUE & =
v 4

.l, ' —>TOUCH-TOP FIND-SUPPORTED

FIND-SUPPORTS FIND-TOP-HEIGHT .
5’ é\j»

FIND-NEW-BODY

BIND-REGION -
ADD-TO-SUPPORTS

FIND-SUPPORT-CANDIDATES

K‘ ' FIND-BELOW

FIND-ABOVE

Figure 23
The vision system.
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the spare perts to be found and put away into the spare parts
warehouse érea,.and it initiates the replication of the new
scene.
STORE~-PAETS

To disassemble a scene and store it, STCRE~-FARTE locovs
through a series of operations. It calls approrriate rcutires
for selecting an object, finding a rlace for it, ané for enactire
the movement to storage.
| _ | CHOOSE-T0-REHOVE

The first body examined by CHOOSE-TO-RENOVE comes
directly from a successful effort to amalgamate some regions into
a_bodX using FIND-NFW-BCDY. After some body is created, CHCOSE-
TO-REMOVE uses IZND—BELOW to make sure it is not underneath
something.-'Frequently, some of the regions surrounding a newly
. found body are not yet comnected to bodies, so FIND-BELOW has a
request link to BIND-REGION. (The bodies so found of course, are
placed in the data base and are later selected by CHOOSE-TO-
REMOVE without appeal to FIND-NFW~BCDY.)

' FIND-KEW-EODY

FIND-NEW-BODY locates some unattached region and sets
BIND-REGION to work 6n it. BIND~REGION then calls collection of
programns by Bugene Ireuder which do a local pérse and make
assertions of the form:

(R17 IS-A-FACB-OF B2)
(B2  IS-A FODY)



Figure 24
A source of spare pa

rts and a scene to be copled.
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These programs appeal to a complicated network of svbrovtines
that drive line finding and vertex finding primitives =round the
scene looking for complete regions (¥Winston 1972).
FIND-BELOW

As mentioned, some regions ray need parsing befcre it
makes sense to ask if a given otject is belcw scmethine. After
assuring that an adjacent region is attachec to a body, »IiL-
BELOW calls the FIND-ABOVE programs to do the work of deterrinins
"if the body originally in question lies below tre okbject ownine
that'adjacent region.

FIND-ABOVE-1 and FIND-ABOVI~2 and FIND-ABOVE-3 ‘

'The heuristics implemented in Winston’s thesis (Winstohf'
'197C) 'and meny of those only proposed there are now working-in'
the EiND-ABOVE programs. They naturally have a collection of |
subcrdinate programs and a link to EIND-REGION for use in the
event an unbodied region is encountered. The assertions madé are
‘of the form: |

- (B3 IS-ABOVE ET7)
| MOVE

To move an object to its spare parts position, the
locations, and dimensions are gathered up. Then MANIPULATE
interfaces to the machine language yprograms driving the arm.
After HOVE succeeds; STORE~-FARTS makes an assertion of the form:

(B12 1IS-A SPAEEPART)
FIND~-TOF



The first task in making the location calculations is tc
identify line—drawing coordinates of a block’s top. Then FLiD-
TALINESE and FIND~-ALTITUDE supply other information needed to
proyperly surply the routine that transforms line-drawing
coordinates to X Y Z coordinates. EFesulting assertions are:

(B1 HAS-DIKENSIONS (2.2 3.1 1.7))
(B1 IS-AT (47.0 =17.0 5.2 .3))
Where the number lists are of the form:
| (< smaller x-y plane dimension >
< larger >
<tallness>)
(< x coordinate > <y> <z> <angled)
The x_y z coordinates are those of the center of the bottom of
the brick and the angle is that of the long x-y plane axis of the
‘brick with respect to the x axis. Two auxiliary programs make |
assertions of the form: |
STANDING
(B12 HAS-POSTURE LYING )

CUBE
BRICK
(B7 IS-A STICK )
BOARD
wherever aprropriate.

FIID-DIMENSIONE
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This program uses FIND-TOP to get the information
necessary to convert drawing coordinates to three-dimensional
coordinates. If the top is totally obscured, then it appesls f
instead to FIND-BOTIOM end FIND-TALINESS-2.

SKELEIOI

SKEIETON identifies commected sets of 3 lines which
define the dimensioﬁs of a brick (Finin 1971) (Finin 12972). It
and the programs under it are frequently called to find instances
.of various types 6f lines.

| FIND-TALLNESS-1

Determining the tallness of a brick requires.observationn
of a complete vertical line belonging to it. FIND-TALLNESS-1
uses some of SKELETON’s repertoire of subroutines to find a godd
vertical. To convert from two-dimensional to three—dimenéiona;
coordinates, the altitude of the brick must also be known.

FIND-TALLINESS-2 _

Another program for tallness looks upward rather than
downvard. It assumes the altitude of a block can be found but no
complete vertical line is present which would give the tallness.
It tries to find the altitude of a tlock above the one in
question by touching’it with the hand. Subtracting gives the
desired tallness.

FIND~-ALTITUDE

FIND-ALTITUDE determines the'height of an object’s tase

primarily by firding its supporting object or objects. If



necessary,;it will use the arm to try to touch the objects top
and then subtract its tallness.
FIND-SUPPCRTS
This subroutine uses FIED-SUPPOET-CANDILATES to coliect
together those objects that may possibly be suprorte. iIiD-
SUPFORT-CANTIDATES decides that a candidate is in fect & surport
if its top is known to be as high as that of any other suppcrt
~candidate. If the height of a candidate’s top is unknovn but =
lower bound on thét height equals the height of known supports,
then ADD-TO-SUPPORTS judges it also to be a valid support. At
the moment the system has no understanding of gravity.
FIND-STORAGE
Once an object is chosen for removal, FIND-STORAGE checks -
‘'the warehouse area for am approrriate place to rut it.
MAKE-COFY _
To make the copy, MAKE-COPY, CHOOSE-TO~PLACE, and FIND-
_PART replace STORE-PARTS, CEOOSE~TO-REMOVE and FIND-STORAGE.
Assertions of the form:
~ (B12 IS-A SPAREPAFT)
(B2 IS-A-PART-OF COPY)
(B2 IS-ABOVE E1)
are kept up to date throughout ty arprorriate routines.
CHOOSE~TO~TLACE
Objects are placed after it is insured that their

supports are already placed.



FIND-PART
The part to be used from the warehouse is selected so as

to minimize the difference in dimensions of the matched objects.

A Scenerio _
In vhat follows the scene in figure 24a provides the .
.spare perts which first must be put away in the warehouse. The
scené to be copied is that of Figure 24b. |
COPY
. _COFY -begins the activities.
‘STORE-PARTS
STORE~PARTS begins supervision of disassembly.
~ CHOOSE~TO-REMOVE
FIND-NEW-EODY
- " BIND-REGION
o CHOOSE-TO-REMOVE parses a few regions together into a
body, Bl. A great deal of work goes into finding these regions
by intelligent driving of low level line and vertex finding
pfimitivés. '
FIND-BELOW
BIND-REGION
FIND-ABOVE
A check is made to insure that the body is not below
anything. Note that B2 is pérsed dﬁring this rhase as required
for the FIND-ABOVE routines. Unfortunately Bl is below B2 and



BLGT (0

therefore CHOOSF-TO~-REMOVE must select an alternative for

removal.

FIND-EELOW
FIND-ABOVE

B2 was found while checking out Bl. CHOOSE-TO-FEMOVY ncw
notices it in the data tase and confirms that it is not below
anything.

FIND-STORAGE

FIND-STORAGE finds an empty spot in the warehouse.
MOVE |

MOVE initiates the work of finding the location and
dimensions of B2.
FIND-TOP
FIND-ALTITUDE
FIND-SUPPORTS
FIND-SUPPORT-CAIDIDATES
FIND-TOP-EEIGET
FIND-ALTITULE
FIND-SUPPORTS
FIND-SUFPORT=CANDIDATES
FIND-TOP-HEIGHT

FIND-TALLNESS-1
FIND-TALLNESS-1

_ FIND-BOTTOM proceeds to nail down location parameters for
B2. As indicated by the depth of call, this requires something
of a detour as one must first knov E2’s altitude, which in turn
requires some facts about Bl. Kote that no calls are made to
FINI~ABOVE routines during this sequence as those progranms
previously were used on both B1 and B2 in determining threir
suitability for removal.

FIND-DIHELSIORS
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A call to FIND-DIMENSIONS succeeds immediately as the
necessary facts for finding dimensions were already found in the
course of finding location. Routines establish that B2 is &
lying brick. |

MANIPULATE
MANIPULATE executes the necessary motion.

CHOOSE~TO-REMOVE
FIND-BELOW

FIND-STORAGE

' B2 is established as appropriate for transfer to the
warehouse. A place is found for it there.
7 MOVE |

S PTIND=TOP
FIND~-DIMENSIONS
MANIPULATE

The nove goes off straightforwardly, as essential facts
-~ are in the data base as side effects of prev1ous calculations.

CHOOSE-TO-REMOVE
- FIND=-NEW=-BODY

- No more objects are located in the scene. At this point
the scene to be copied, figure 24, is placed in front of the eye
and analysis proceeds on it.
| MAKE~COPY

CHOOSE-TO~-PLACE
-~ FIND-NEW-EODY
BIND-REGION
B3 is found.
FIND-EELOV

BIND~REGION
FIND-ABOVE
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B3 is established as ready to be copied with a spare

part.

FIND-PART
FIND-DIMENSIONS
FIND-TOF

Before a part can be found, B3“s dinensions must be
found. The first program, FIND-TOP, fails.
FIND-BOTTOM
FIND~-ALTITUDE
FIND-SUFPPORTS

FIND-SUPPORT-CANDIDATES
FIND-TOR-HEIGHT

FIND-DIMENSIONS tries an alternative for calculating
dimensions. It starts by finding the altitude of the bottom.
FIND-TALLNESS-2
FIND-SUPPORTED
FIND-BELOW
FIND-ABOVE
FIND-SUPPORTS
FIND-SUPPORT-CANDIDATES
FIND-TALLNESS~2 discovers B4 is above B3.
FIND-ALTITUDE
TOUCH-TOP
| FIND-TALLNESS-1
FIND-ALTITUDE finds B4°s altitude by using the hand to
touch its top subtracting its tallness. B3“s height is found by
subtracting B3’s altitude from that of E4.

. MOVE
MANTPULATE

Moving in a spare part for E3 is now easy. B3“s location
was found while dealing with its dimensions.

CHOCSE~-TO-PLACE
FIND-EELOW



- FIND-PART
* FIND-DIMENSIOLS
FIND-TOP
MOVE
MANTPULATE
Placing a part for B4 is easy as the essential facte are
now'already in the data base.

CHOOSE~T0-REMOVE
FIND~-NEW-BODY

No other parts are found in the scene tc be copied.

- Successe.



PAGE 7L

CONCLUDING REMARKS
This essay tegan with the claim that the study cof vision

contributes both to artificial intelligence and to & theory of
vision. Vorking with a view toward these purposes has cccuried
many years of study at KIT and elsewhere on the toy world of
simple polyhedra. The progress in semantic rooted scene
analysis, learning, and copying have now brought us to z plateav
where we exypect tq spend some time deciding what the next
important problems are and where to look for solutions.:

| The complete system, which occuries on the order of
100,000  thirty-six bit words, is authored by direct contributions
in co@e.from over a dozen people. This essay has not summarized,
but rather has only hinted at the difficulty and complexity of
‘the problems this group has faced. Many important issues'haye
not been touched on here at all. Line finding, for example, is a
task on which everything rests and has by itself occupied more
effort than ali.the other work described here (Roberts 1963)
(Herskovits and Binford 1970) (Griffith 1970) (Horn 1971) (Shirai
1972).
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