
SUMMARY OF SELECTED VISION TOPICS

Working Paper 30

Patrick H. Winston

Massachusetts, Institute of Technology

Artificial Intelligence Laboratory

July 1972

ABSTRACT

This is an introduction to some of the MIT Al vision work of the last few

years. The topics discussed are 1) Waltz's work on line drawing semantics,

2) heterarchy, 3) the ancient learning business and 4) copying scenes. All

topics are discussed in more detail elsewhere in working papers ot theses.

Wrok reported herein was conducted at the Artificial Intelligence Laboratory,

a Massachusetts Institute of Technology research program supported in part by

the Advanced Research Projects Agency of the Department of Defense and monitored

by the Office of Naval Research under Contract Number N00014-70-A-0362-0003.

Working papers are informal papers intended for internal use.

C

Summary of Selected Vision Topics

VISIWO FLASH 30

by

Patrick I. Winston

Kassachusetts Institute of Technelo~:y

Artificial Intelligence Laboratory

Robotics Section

JULY 19572

Abstract

This is an introduction to some of the MIT AI
vision work of the last few years. The topics
discussed are 1) Waltz's work on line drawing
semantics 2) heterarchy 3) the ancient learning
business and 4) copying scenes. All topics are
discussed in more detail elsewhere in vision
flashes or theses.

Work reported.herein was conducted at the
Artificial Intelligence Laboratory, a
Massachusetts Institute of Technology research
program supported in part by the Advanced Research
Projects Agency of the Department of Defense and
monitored by the Office of Naval Research under
Contract Number NC00014-70-A-0362-0003.

Vision flashes are informal papers intended for
internal use.

This memo is located in TJ&-able form on file
VIS;VF30 >.

:AGIE 2

INTRODUCTIO1L

Research in machine vision is an important activity in

artificial intelligence laboratories for two major reasons:

First, understanding vision is a worthy subject for its own sake.

The point of view of artificial intelligence allows a fresh new

look at old questions and exposes a great deal about vision in

general, independent of whether man or machine is the seeinT:

agent. Second, the same problems found in understanding vision

are of central interest in the development of a broad theory of

intelligence. Making a machine see brings one to grips with

problems like that of knowledge interaction on many levels and cf

large system organization. In vision these key issues are

exibited with enough substance to be nontrivial and enough

simplicity to be tractable.

These objectives have led vision research at MIT to focus

on two particular goals: learning from examples and copying from

spare parts. Both goals are framed in terms of a world of

bricks, wedges, and other simple shapes like those found in

children's toy boxes.

Good purposeful description is often fundamental to

research in artificial intelligence, and learning how to do

description constitutes a major part of our effort in vision

research. This essay begins with a discussion of that part of

scene analysis known as body finding. The intention is to show

how our understanding has evolved away from blind fumbling toward

substantive theory.

The next section polarizes asround the organization.al

metaphors and the rules of good pro2gra-ring practice a•rop~.·itc

for thinkinL about large knowledge-oriented systems. Findi:;

groups of objects and using the groups to get at the --properies

of their members illustrates concretely how some of tI'e .i, s

about systems work out in detail.

The topic of learning follows. Discussing learnin.7 is

especially appropriate here not only because it is an ir.rortant

piece of artificial intelligence theory but also because it

illustrates a particular use for the elaborate enalysis mnachinery

dealt with in the previous sections.

Finally a scenerio exhibits the flavor of the system in a

situation where a simple structure is copied from spare parts.

EVOLUTIC-N 01- A SE••ALTIC THECRY

CuzM•an and the lody Problem

The body finding story begins with an a6- hoc but crJi."

syntactic theory and ends in a simple, appeeliiY theory witI

serious semantic roots. In this the history of the bothe "2iri-

problem seems paradigmatic of vision system pro[-ress in -enelral.

Aldolfo Guzman started the work in this area (C1z.3r

196E). I review his progran here in order to anchor tlhe

discussion and show how better rrorTams emerge throu-h the

interaction of observation, experiment, and theory.

The task is simply to partition the observed reoions of a

scene into distinct bodies. In figure 1, for example, a

reasonable program would report something like (A B C) and (D E)

as a plausible partitioning of the five regions into, in this

case, two bodies. Keep in mind that the program is after only

one good, believable answer. iýiany simple scenes have several

equally justifiable interpretions.

Guzm•an's program operates on scenes in two distinct

passes, both of which are quite straightforward. The first pass

gathers local evidence and the second weighs that evidence and

offers an opinion about how the regions should be grouped

together into bodies.

The local evidence rass uses the vertices to generate

little rieces of evidence indicating which of the surrounding

regions belong to the same body. "hese quanta of evidence ere

'I

- I·

Figure 1
The task of the body finding program Is to understand how the
regions of the scene form bodies.

11-G ·0

called links. Figure 2 lists each vertex type recogLized and

shows how each contributes to the set of links. The arrow linŽs

always argue that the shaft-bordering regions belong together,

the fork more ambitiously provides three such links, one for each

pair of surrounding regions, and so on. The resulting links for

the scene in figure 1 are displayed superimposed on the oririnal

drawing in figure 3a. Internally the links are represented in

list structure equivalent to the abstract diagram in figure 3b.

There the circles each represent the correspondingly lettered

region from figure 3a. The arcs joining the circles represent

links.

The job of pass two is to combine the link evidence into

a parsing hypothesis. Eow Guzman's pass two approached its final

form may be understood by imagining a little series of theories

about how to use the evidence to best advantage. Figure 3a is so

simple that almost any method will do. Consequently figure 4 and

figure 5 are used to further illustrate the experimental

observations behind the evolving sequence of theories.

The first theory to think about is very simple. It

argues that any two regions belong to the same body if there is

a link between them. The theory works fine on many scenes,

certainly on those in figure 3a and figure 4. It is easy,

however, to think of examples that fool this theory because it is

far too inclined toward enthusiastic region binding. Whenever a

coincidence produces an accidental link, as for example the links

YL

ARROW

FORK

T

PSI

X

PEAK

Figure 2
The Guzman links for various vertex types.

'

Ek:'
(b)

Figure 3
The links formed by the vertices of a simple cene.

(a)

.,,..

'I

/

- I.

Figure 4
Various linking algorithms cause this to be seen as two, three,
or four bodies.

____ ~__ ___...__.__

.·· ·'I

Figure 5
A coincidence causes placement of an Incorrect link.

i -· -

/f

PA.GE 11

placed by the spurious psi vertex in figure 5, an error occurs in

the direction of too much conglomeration.

The problem is corrected in theory two. Theory two

differs from theory one because it requires two links for binding

rather than just one. Ey insisting on more evidence, local

evidence anomalies are diluted in their potential to damage. t-e

end result. Such a method works fine for figure 5, but as C

general solution the two link scheme also falters, now on the

side of stinginess. In figure 4, partitioning by this second

theory yields (A B) (C) (D) (E F).

.This stinginess can also be fixed. The first step is to

r=;finq theory two into theory three by iterating the amalgamation

proced.uire The idea is to think of previously joined together

region groups as subject themselves to conglomeration in the same

way regions are joined. After one pass over the links of figure

4, we have A and B joined together. But the combination is

linked to C by two links, causing C to be sucked in on a second

run through the linking loop. Theory three then produces (A B C)

(D) (E F) as its opinion.

Theory four supplements three by adding a simple special-

case heuristic. If a region has only a single link to another

region, they are combined. This brings figure 4 around to (A B C

D) (E F) as the result, without re-introducing the generosity

problem that came up in figure 5 when using theory one. That

scene is.now also correctly separated into bodies.

Pt.GE' 12

Only one more refinement is necessary to cor.'plete this

sequence of imagined theories and bring us close to GuzEan's

final program. The required addition is motivated by the scenes

like that of figure 6. There we have again too much linking as a

result of the indicated fork vertex. Although not really wrong,

the one object answer seems less likely to humans than a report

of two objects. Guzman overcame this sort of problem toward the

end of his thesis work not by augmenting still further the

evidence weighing but rather by refining the way evidence is

originally generated. The basic change is that all placement of

links.is.subject to inhibition by contrary evidence from adjacent

vertices. In- Vtticular, no link is placed across a line if its

other end is the barb of an arrow, a leg of an L, or a part of

the aosabar of a T. This is enough to correctly handle the

problem 'of figure 6. Adding this link inhibition idea gives us.

Gua. programn in its final form. In the first pass the

progapagathers evidence through the vertex inspired links that

are not inhibited by adjacent vertices. In the second pass,

these links cause binding together whenever two regions or sets

of previously bound regions are connected by two or more links.

It is a somewhat complex but reasonably talented program which

usually returns the most likely partition of a scene into bodies.

But does this program of Guzman's constitute a theory?

If we use an informal definition which associates the idea of

useful theory with the idea of description, then certainly

13

'I

/

.7

4

Figure 6
The fork vertex causes the two bodies to be linked together
unless the offending links are inhibited by the adjacent arrows.

PAGE, 14

Guzman's work is a theory of the region parsing aspect of vision,

either as described here or manifested in Guzmani's actual m.achine

program. I must hasten to say, however, that it stands

incomplete on some of the dimensions along which the worth of a

theory can be measured. Guzman's program was insightful and

decisive to future developments, but as he left it, the theory

had little of the deep semantic roots that a good theory should

have.

Let us ask some questions to better understand why the

program works instead of just how it works. When does it do

well?, Why? When does it stumble? How can it be improved?

.Experiment with the program confirms that it works best

on scenes composed of objects lacking holes (Winston 1971) and

having tribkeral vertices. (A vertex is trihedral when exactly

three faces of the object meet in three-dimensional space at that

vertex.)

Why this should be the case? The answer is simply that

trihedral vertices most often project into a line drawing as L's,

which we ignore, and arrows and forks, which create links. The

program succeeds whenever the weak reverse implication that

arrows and forks come from trihedral vertices happens to be

correct. Using the psi vertex amounts to a corollary which is

necessary because we humans often stack things up and bury an

arrow-fork pair in the resulting alignment. From this. point of

view, the Guzman program becomes a one-heuristic theory in which

PAGE 15

a link is created whenever a picture vertex may have cor-e from ai

trihedral space vertex.

But when does the heuristic fail? Again experiments

provide something of an answer. The trihedral vertex Iheuristic

most often fails when alignment creates perjurous arrows.

Without some sort of link inhibition mechanism, it is easy to

construct examples littered with bad arrows. To combat poor

evidence., two possibilities must be explored. One is to derand

more evidence, and the other is to find better evidence.. T1he

complexity and much of the arbitrary quality of Guzman's work

results from electing to use more evidence. But using more

evidence was not enough. Guzman was still forced to improve the

evidence via the link inhibition heuristic.

The startling fact discovered by Eugene Freuder is that

link.inhibition is enough! With some slight extensions to the

Guzmans's inhibition heuristics .(Rattner 1970), complicated

evidence weighing is unnecessary. A program that binds with one

link does about as well as more involved ones. By going into the

semantic justification for the generation of links, we have a

better understanding of the body linking problem and we have a

better, more adequate program to replace the original one. This

was a serious step in the right direction.

Shadows

Continuing to trace the development of MIT's scene

understanding programs, the next topic is a sortie into the

PA.GE' 16

question of handling shadows. The first work at MIT on the

subject was done by Orban (Orban 1970). His purpose was to

eliminate or erase shadows from a drawing. The approach was

quite Guzman-like in flavor as Orban worked empirically with

vertices, trying to learn their language and discover heuristic

clues that would help establish shadow hypotheses. He found that

quite complex scenes could be handled through the following

simple facts: 1) a shadow boundary often displays two or more L

type vertices in a row 2) shadow boundaries tend to form psi

type vertices when they intersect a straight line and 3) shadows

may oftpe~ be found by way of the L's and followed through psi's.

Orban's-program is objectionable in the same way Guzman's

is. Namely, it is largely empirical and lacking in firm semantic

roots•w 2he ideas work in some complex scenes only to fail in

others. Particularly troublesome the common situation where

shorts aadow doumdaries inkvolve no L type vertices.

After Orban's program, the shadow problem remained at

posture for: some time. The issue was avoided by placing the

light source near the eye, thus eliminating the problem by

eliminating the shadows. Aside from being disgusting

aesthetically, this is a poor solution because shadows should be

a positive help rather than a hindrance to be erased out and

forgotten.

Interest in shadows was reawakened in conjunction with a

desire to use more knowledge of the three-dimensional world in

? t .'I 0.4. 17

scene analysis. Among the obvious facts are the followi.n:

1) The world of blocks and wedges has a jrrcn',3er.nc

of vertical lines. Given that a scene has a in-,

distant light source, these vertical lines dll cer.t

shadows at the same angle on the retira. :Ince 'en

one line is identified as a shadow, it rend(erL a0l±

other lines at the sar:e angle suspect.

2) Vertical lines cast vertical shadows on vertical

faces.

3) Horizontal lines cast shadows on horizontal faces

that are parallel to the shadow casting edges.

4) If a shadow line emerEes from a vertex, that vertex

almost certainly touches the shadow bearing surface.

With these facts, it is easy to think about a program

that would crawl through the scene cf figure 7, associating

shadow boundaries with their parent edges as shown. One could.

even implement something, through point four, that would allow

the system to know that the cube in figure 7 is lying on the

table rather than floating above it. Such a set of programs

would be on the same level as Freuder's refinement of Guzman 's

program with respect to semantic flavor. We were in fact on the

verge of implementing such a prograr when Waltz radicalized our

understanding of both the shadow, work and the old body-findin.

problem.

Waltz Pad Semantic interpretation

198

'II

FIgure 7
Simple heuristics allow shadow lines to be associated with the
edges causing them.

PLO i7 19

This section deals with the enormously successful work of

Waltz (ijaltz 1972a) (Waltz 1972Q). Readers familiar with either

the work of Huffman (Huffman 1971) or that of Clowes (CloweE

1971) will instantly recognize that their work is the

considerable foundation on which Waltz's theory rests.

A line in a drawing appears because of one or another of

several possibilities in the physical structure: The line ray I-E

a shadow, it may be a crack between two aligned objects, it may

be the seam between two surfaces we see, or it may be the

boundary between an object and whatever is in back of it.

'It is easy enough to label all the lines in a drawing

according to their particular cause in the physical world. The

drawing in figure 8, for example, shows the Huffman labels for a

cube lying flat on the table. The plus labels represent seams

where the observer sees both surfaces and stands on the convex

side of the surfaces with the inside of the object lying on the

concave. The minus labels indicate the observer is on the

concave side. And the arrowed lines indicate a boundary where

the observer sees only one of the surfaces that form the physical

edge.

A curious and amazing thing about such labeled line

drawings is that only a few of the combinatorially possible

arangements of labels around a vertex are physically possible.

We will never see a L type vertex with both wings labeled plus no

matter how many legal line drawings we examine. (It is presumed

_o

'I

Figure 8
Huffman lables for a cube. Plus implies a convex edge, minus
implies concave, and an arrow implies only one of the edge-
forming surfaces is visible.

Pl..a: 21

that the objects are built of trihedral vertices and that tie

viewpoint is such that certain types of coincidental align.:cnt in

the picture domain are lacking.) Indeed it is easy to prove th;at

an enumeration of all possibilities allowed by three-d.il.ension..l

constraints includes only six possible L vertex labelines ard

three each of the fork and arrow types. These are shown in

figure c.

Given the constraints the world places on the

arrangements of line labels around a vertex, one can ro the other

way. Instead of using knowledge of the real physical structure

to assign semantic labels, one can use the known constraints on

how a drawing can possibly be labeled to get at an understanding

of what the physical structure must be like.

The vertices of a line drawing are like the pieces of a

jigsaw puzzle in that both are limited as to how they can fit

together. Selections for adjacent vertex labelings simply cannot

require different labels for the line between them. Given this

fact a simple search scheme can work through a drawing, assigning

labels to vertices as it goes, taking care that no vertex

labeling is assigned that is incompatible with a previous

selection at an adjacent vertex. If the search fails without

finding a compatible set of labels, then the drawing cannot

represent a real structure. If it does find a set of labels,

then the successful set or sets of labels yield much information

about the structure.

K/f

Figure 9
Physically possible configurations of lines ftround vertices.

-I-

+

+

C

a

+

PPGF~ 23

Waltz generalized the basic ideas in two fundamental

ways. First he expanded the set of line labels such that cach

includes much more information about the physical situation.

Second, he devised a filtering procedure that converges on the

possible interpretations with lightning speed relative to a more

obvious depth-first search strategy.

Waltz's labels carry information both about the cause of

the line and about the illurination on the two adjacent regions.

Figure 10 gives Waltz's eleven allowed line interpretations. The

set includes shadows and cracks. The regions beside the line are

considered to be either illuminated, shadowed by facing away from

the light, or shadowed by another object. These possibillities

suggest that the set of legal labels would include 11 X 3 X 3 =

99 entries, but a few simple facts immediately eliminates about

half of these. A concave edge may not, for example, have one

constituent surface illuminated and the other shadowed.

With this set of labels, body finding is easy! The line

labels with arrows as part of their symbol (two, three, four,

five, nine, ten, and eleven) indicate places where one body

obscures another body or the table. Once Waltz's program finds a

compatible set of line labels for a drawing, each body is

surrounded by line labels from the arrow class.

To create his program, Waltz first worked out what vertex

configurations are possible with his set of line labels. Figure

11 gives the result. Happily the possible vertex labelings

+
' 1 / CONVEX EDGE

C- -0(

2,
3

4

5

6

OBSCURING EDGES -- OBSCURING BODY LIES TO

RIGHT OF ARROW'S DIRECTION

CRACKS -- OBSCURING BODY LIES TO RIGHT OF

ARROW'S DIRECTION

SHADOWS -- ARROWS POINT TO SHADOWED REGION
I

8 CONCAVE EDGE

I

10

SEPARABLE CONCAVE EDGES -- OBSCURING BODY

LIES TO RIGHT OF ARROW'S DIRECTION --

DOUBLE ARROW INDICATES THAT THREE BODIES

MEET ALONG THE LINE-I

Figure 10
Line interpretations recognized by Waltz's program.

t--~---

APPROXIMATE NUMBER

OF COMBINATORIALLY

/'POSSIBLE LABELINGS

2,500

125,000

125,000

125,000

6 x 106

6 x 106

6 x 106

6 x 1O6

6 x 106

3 x 108

APPROXIMATE NUMBER

OF PHYSICALLY.

POSSIBLE LABELINGS

80

70

500

500

10

300

100

100

100

30

Figure 11
Only a few of the combinatorially possible labelings arephysically possible.

- .1

VI

4>\

I-PrT 26PA OLE ro°

constitute only a tiny fraction of the ways labels can le arrayed

arround a vertex. The number of possible vertices is large but

not unmanageably so.

Increasing the number of legal vertex labelins does not

increase the number of interpretations of typical line drawings.

This is because a proper increase in descriptive detail strongly

constrains the way things may go together. Again the analogy

with jigsaw pluzles gives an idea of what is harpening: The

shape of pieces constrain how they may fit together, but the

colors give still more constraint by adding another dimension of

comparison.

Interestingly, the number of ways to label a fork is much

larger than the number for an arrow. A single arrow consequently

offeres more constraint and less ambiguity than does a fork.

This explains why experiments with Guzman's program showed arrows

to be more reliable than forks as sources of good links.

Figure 12 shows a fairly complex scene. But with little

effort, Waltz's program can sort out the shadow lines and find

the correct number of bodies.

What I have discussed of this theory so far is but an

hors d'oeurve. Waltz's forthcoming doctoral disertation has much

to say about handling coincidental alignment, finding the

approximate orientation of surfaces, and dealing, with higher

order object relations like support (Waltz 1972b). But without

getting into those exciting results, I can comment on how his

-N
/ N

*1

Figure 12
Waltz's program easily handles complicated scenes.

.• •-1---I----

8 - I

work fits together with previous ideas on body finding and cn

shadows.

First of all Waltz's program has a syntactic flavor. 1:-.

program has a table of possible vertices and on some level ca"n TO

thought to parse the scene. But it is essential to understand

that this is a program with substantive semantic roots. T5h

table is not an amalgam of the purely ad hoc and empirical. It

is derived directly from arguments about how real structure. can

project onto a two dimentional drawing. The resulting label set,

together with the program that uses it, can be thoutht of quite

well as a compiled form of those arguments whereby facts about

three-dimensional space become constraints on lines and vertices.

In retrospect, I see Waltz's work as the culmination of a

long effort beginning with Guzman and moving through the work of

Orban, Ratner, Winston, and Huffman and Clowes. Each step built

on the ideas and experiments with the previous one, either as a

refinement, a reaction, or an explanation. The net result is a

tradition moving toward more and better ability to describe and

toward more and better theoretical justification behind working

programs.

PAGE'29

SYSTEM ISSUES

Heterarcy

Waltz's work is part of understanding how line draw2-ns

convey information about scenes. This section discusses sor:e of

our newer ideas about how to get such understanding into a

working system.

At EIT the first success in copying a simple block

structure from spare parts involved using a pass-oriented

structure like that illustrated in figure 13. The solid lines

represent data flow and the dashed lines, control. The executive

in this.approach is a very simple sequence of subroutine calls,

mostly partitioned into one module. The calling up of the action

modules 'is fixed in advance and the order is indifferent to the

peculiarities of the scene. Each action module is charged with

augmenting the data it receives according to its labeled

specialty.

This kind of organization does not work well. We put it

together only to have quickly a vehicle for testing the modules

then available. It is often better to have one system working

before expending too much effort in arguing about which system is

best.

From this base we have moved toward another style of

organization which has come to be called heterarchical (Minsky

and Papert 1972). The concept lacks precise definition, but the

following are some of the characteristics that we aim for.

30

'I

-E
X

C
-rr -

Figure 13
The simple pass oriented system metaphor.

/
I

P-.GE ' 1

i. A complex system should be goal oriented.

Procedures at all levels should be short and zassociated

with some definite goal. Goals should normally be

satisfied by invoking a small number of subgoals for

other procedures or by directly calling a few

primitives. A corollary is that the system should be

top down. For the most part nothing should be done

unless necessary to accomplish something at a higher

level.

2. The executive control should be distributed

throughout the system. In a heterarchical system, the

modules interact not like a master and slaves but more

like a community of experts.

3. Programmers should make as few assumptions as

possible about the state the system will be in when a

procedure is called. The procedure itself should

contain the necessary machinery to set up whatever

conditions are required before it can do its job. This

is obviously of prime importance when many authors

contribute to the system, for they should be able to

add knowledge via new code without completely

understanding the rest of the system. In practice this

usually works out as a list of goals lying like a

PAGB' 32

preamble near the beginning of a routine. Ty-ically

these goals are satisfied by simple reference to the

data base, but if not, notes are left as to wlere hellJ

may be found, in the ILAN•ER (Hewitt 1972) or COi,1. IV:

style (McDermott and Sussrian 1972).

4. The system should contain some knowledge of itself.

It is not enough to think of executives and primitive,.

There should be modules that act as critics and

complain when something looks suspicious. Others must

know how and when the primitives are likely to fail.

Communication among these modules should be more

colorful than mere flow of data and command. It should

include what in human discourse would be called advice,

suggestions, remarks, complaints, criticism, questions,

answers, lies, and conjectures.

5. A system should have facilities for tentative

conclusions. The system will detect mistakes as it

goes. A conjectured configuration may be found to be

unstable or the hand may be led to grasp air. When

this happens, we need to know what facts in the data

base are most problematical, we need to know how to try

to fix things, and we need to know how far ranging the

consequences of a change are likely to go.

Graphically such a system Icoks more li'l:e a nctv,,ork o.

procedures rather than an orderly, immutable sequence. .ac'

procedure is connected to others via potential control tran•f• er

linrs. In practice which of these links are used de-:sen cr tc :

context in which the various procedures are use-, tlhe ccnte•.;t

being the joint product of the system and the proble laur.dero',i nL•

analysis.

Note particularly that this arrangement forces us tc

refine our concept of higher versus lower level routines. Low

programs normally thought to be low level may very .,ell employ

other programs considered high level. The terms no longer

indicate the order in which a routine occurs in analysis.

Instead a vision system procedure is high or low level accordin,:

to the sort of data it works with. Line finders that work with

intensity points are low level but may certainly on occasion call

a.stability tester that works with relatively high level object

models.

Finin and Environment Driven Analysis

Our earliest MIT vision system interacted only narrowly

and in a predetermined way with its environment. The pass

oriented structure prevents better interaction. But we are now

moving toward a different sort of vision system in which the

envirown:ent controls the analysis. (Th:is idea was prominent in

Ernzt's very early work (Ernst 1961).)

Readers who find this idea strange should see nar

exposition of the notion by Simon (Simon 1969). He 1ar~e:s -lat

much of what passes as intelligent behavior is in pcint of fc6. ,

happy cooperation between uniexpecteely simple al.ori.t•m an(

complex environments. Ie cites the case of an ant ianderin!

along a beach rift with ant sized obstacles. The sant's

curvacious path might seem to be an insanely complex ritual to

someone looking only at a history of it traced on •per. EPt iin

fact the humble ant is merely trying to circumvent tihe bleac!h 's

obstacles and go home.

Watching the locus of control of our current system as it

struggles with a complicated scene is like watching Simon's ant.

The up and down, the around and backing off, the use of this

method then another, all seem to be mysterious at first. But

like the ant's, the system's complex behavior is the product of

simple algorithms coupled together and driven by the demands of

the scene. The remainder of this section discusses some elegant

procedures implemented by Finin which illustrate two ways in

which the environment influences the MIT vision system (Finin

1972).

The vision system contains a, specialist whos task is to

determine what we call the skeleton of a brick. A skeleton

consists of a set of three lines, one lying along each of the

three axes (Finin 1S72). 3Each of the lines in s skeleton must be

comi-lnte and unobscured so the dimensions of the brick in

PACp. "5

question may be determined. Figure 14 shows some of the

skeletons found in various situations by this module.

The only problem with the program lies in the fpct t:hat

complete skeletons are moderately rare in practice because of

heavy obscuring. Even in the simple arch in figure 15a, one

object, the left side support, cannot be fully -nalyzed, lackin-"

as it does a completely exposed line in the depth dimen.ion. .ut

humans have no trouble circumventinE this difficulty. Indeed,

it generally does not even occur to us that there is a problei

because we so naturally assume that the right and left supports

have the same dimensions. At this point let us look at the

system's internal discourse when working on this scene to better

understand how a group - hypothesize - criticize cycle typically

works out:

Let me see, what are A's dimensions. First I must identify

a skeleton. Oops! We can only get a partial skeleton, two

complete lines are there, but only a partial line along the

third brick axis. This means I know two dimensions but I

have only a lower bound on the third. Let me see if A is

part of some group. Oh yes, A and B both support C so they

form a group of a sort. Let me therefore hypothesize that A

and B are the same and run through my check list to see if

there is any reason to doubt that.

Are A and B the same sort of objects?

/

Figure 14
Some skeletons found for bricks.

31

'I

I - I

e D

Figure 15
In one case, A's depth is extrapolated from B's. In the other no
hypothesis can be confirmed.

D

..

P1.GI? -.,Z

Yes, Both are bricks.

Are they both oriented the same way?

Yes, that checks out too.

Well, do the observable dimersions match?

Indeed.

Is there any reason to believe the unobservable

dimension of A is different from its analogue on

B?

Lo.

OK. Everything seems all right. I will

tentatively accept the hypothesis and proceed..

Through this internal dialogue, the machine succeeds in

finding all the necessary dimensions for the obscured support in

figure 15a. Figure 15b shows how the conflict search can fail at

the very last step.

Grouping amounts, of course, to using a great deal of

context in scene analysis. We have discussed how the system uses

groups to hypothesize properties for the group's members and we

should add that the formation of a group is in itself a matter

hypothesis followed by a search for evidence conflicting with the

hypothesis. The system now forms group hypotheses from the

following configurations, roughly in order of grouping strength:

1. Stacks or rows of objects connected by chains of

support or in-front-of relations.

2. Objects that serve the saime function such as the

sides of an arch or the legs of a table.

3. Objects that are close together.

4. Objects that are of the same type.

To test the validity of these hypotheses, the iaachine

makes tests of good membership on the individual elements. it

basically performs conformity tests, throwing out anything too

unusual. There is a preliminary theory of how this can be done

sensibly (Winston 1971). The basic feature of Winston's theory

is that it involves not only a measure of how distant a

particular element is from the norm, but also of how much

deviation from the norm is typical and thus acceptable.

Note that this hypothesis rooted theory is much different

from. Gestaltist notions of good groups emerging magically from.

the set of all possible groups. Critics of artificial

intelligence correctly point out the computational implausibility

of considering all possible groups but somehow fail to see the

alternative of using clues to hypothesize a limited number of

good candidate groups.

.Naturally all of these group - hypothesize - criticize

efforts are less likely to work out than are prograns which

operate through direct observation. It is therefore good to

leave data base notes relating facts both to their degree of

certainty and to the programs that found them. Thus an assertion

that says a particular brick has such and such a size may well

PtGiE 40-

have other assertions describing it as only probable, conjectur•sd

from the dimensions of a related brick, and owing the discovereC"

realtionship to a particular groupirn program. Usirng such

knowledge is as yet only planned, but in preparation we try to

refrain from using more than one method in a single progralm.

This makes it easy to describe how a particular asserticn was

made by simply noting the name of the program that made it.

ViSual observation of movement provides another way the

environment can influence and control what a vision system thinks

about. One of the first successful projects was executed at

Stanford .(Wickman 1967). The purpose was to align two bricks,

one atop the other. The method essentially required the complete

construction of a line drawing with subsequent determination of

relative position. The Japanese have used a similar approach in

placing a block inside a box.

The MIT entry into this area is a little different. We

do not require complete recomputation of a scene, as did the

Stanford system. The problem is to check the position of a just

placed object to be sure it lies within some tolerance of the

assigned place for it. (In our arm errors in placement may

occasionally be on the order of 1/2".)

Rather than recompute a line drawing of the scene to find

the object's coordinates, we use our model of where the object

should be to direct the eye to selected key regions. In brief,

what happens is as follows:

Pi.c.r ' 1

1. The three-dimensional coordinates for selected

vertices are determined for the object whose Tosition

is to be checked.

2. Then the supposed locations of those vertices on

the eye's retina are easily computed.

3. A vertex search using circular scans vrounrd each of

these supposed vertex positions hill climbs to a set of

actual coordinates for the vertices on the retina

(Winston and Lerman 1972). From these retinal

coordinates, revised three-dimensional coordinates can

be determined, given the altitude of the object.

4. Comparing the object's real and supposed

coordinates gives a correction which is then effected

by a gentle, wrist-dominated arm action.

The vertex locating program tries to avoid vertices that

form alignments with those of other objects already in place.

This considerably simplifies the work of the vertex finder. With

a bit more work, the program could be made to avoid vertices

obscured by the hand, thus allowing performance of the feedback

operation more dynamically, without withdrawing the hand.

PAGE 42

LE`AIING TO IDENTIFY TOY BLOCK STRUCTURES

Learning

This section describes a working: computer program w-iich

embodies a new theory of learning (Winston 1970). I believe it

is unlike previous theories because its basic idea is to

understand how concepts can be learned from a few judiciously

selected examples. The sequence in Figure 16, for examnle,

generates in the machine an idea of the arch sufficient to handle

correctly all the configurations in figure 17 in spite of severe

rotations, size changes, proportion changes and changes in

viewing angle.

Although no previous theory in the artificial

intelligence, psychology, or other literatures can completely

account for anything like this competence, the basic ideas are

quite simple:

1. If you want to teach a concept, you must first be

sure your student, man or machine, can build

descriptions adequate to represent that concept.

2. If you want to teach a concept, you should use

samples which are a kind of non-example.

The first point on description should be clear. At some

level we must have an adequate set of primitive concepts and

relations out of which we can assemble interesting concepts at

the next higher level which in turn become the primitives for

concepts at a still higher level. The operation of the learning

Figure 16
An arch training sequence.

4-3

Ir

ARCH NEAR MISS

MEAR MISS

• . ,-" ,00

ARCH

II

.1

Figure 17
Structures recognized as arches.

I

rt··

program depends completely on the power of the analysis prorraum

described in the previous sections.

But what is meant by the second claim that one rust shov

the machine not just examples of' concepts but something else?

First of all, something else means something which is close to

being an example but fails to be admissable by way of one or a

few. crucial deficiencies. I call these samples near-misses. iy

view is that they are more important to learning than examples

and they provide just the right information to teach the machine

directly, via a few samples, rather than laboriously and

uncertainly through many samples in some kind of reinforcement

mode.

The purpose of this learning process is to create in the

machine whatever is needed to identify instances of learned

concepts. This leads directly to the notion of a model. To be.

precise, I use the term as follows:

A model is a proper description augmented by

information about which elements of the description are

essential and by information about what, if anything,

must not be present in examples of the concept.

The description must be a proper description because the

descriptive language - the possible relations - must naturally

be appropriate to the definitions expected. For this reason one

cannot build a model on top of a data base that describes the

scene in terms of only vertex coordinates, for such a description

2pG:~ i6

is on too low a level. Nor can one build a model on tor of .a

higher level description that contains only color informaticn,

for example, because that information is usually irrelevant to

the concept in question.

The key part of the definition of model is the idea: that

some elements of the description must be underlined as

particularly important. Figure 18 shows a training sequence that

conveys the idea of the pedestal. The first step is to shcw the

machine a sample of the concept to be learned. From a line

drawing, the scene analysis routines produce a heirarchical

symbolic description which carries the same sort of information

about a scene that a human uses and understands. Blocks are

described as bricks or wedges, as standing or lying, and as

related to others by relations like in-front-of or supports.

This description resides in the data base in the form of

list structures, but I present it here as a network of nodes and

pointers, the nodes representing objects and the pointers

representing relations between them. See figure 19 where a

pedestal network is shown. In this case, there are relatively

few things in the net: just a node representing the scene as a

whole and two more for the objects. These are related to each

other by the supported-by pointer and to the general knowledge of

the net via pointers like is-a, denoting set membership, and has-

posture, which leads in one case to standing and in the other to

lying.

'I

PEDFi§T,

.NEAR MISS

NEAR MISS

NEAR MISS

NEAR MISS

Figure 18
A pedestal training sequence.

.3

Figure 19
A pedestal description.

Now in the pedestal, the support relation is essential -

there is no pedestal without it. Similarly the posture and

identity of the board and brick must be correct. Therefore, the

objective in a teaching sequence is to somehow convey to the

machine the essential, emphatic quality of those features.

(Later on we will see further examples where sore relations

become less essential and others are forbidden).

Returning to figure 18 note that the second sample is a

near-miss in which nothing has changed except that the board no

longer rests on the standing brick. This is reflected in the

description by the absence of a supported-by pointer. It is a

simple matter for a description comparison program to detect this

missing relation as the only difference between this description

and the original one which was an admissable instance. The

machine can only conclude, as we would, that the loss of this

relation explains why the near-miss fails to qualify as a

pedestal. This being the case, the proper action is clear. The

machine makes a note that the supported-by relation is essential

by replacing the original pointer with must-be-supported-by.

Again note that this point is conveyed directly by a single

drawing, not by a statistical inference from a boring hoard of

trials. Note further that this information is quite high level.

It will be discerned in scenes as long as the descriptive

routines have the power to analyze that scene. Thus we need not

be as concerned about the simple changes that gore older, lower

level learning ideas. Rotations, size dilations and the lile are

easily handled, given the descriptive power we rave in cperetin~

proLrams.

Continuing now with our example, the teacher proceeds to

basically strengthen the other relations according to whatever

prejudices he has. In this sequence the teacher has chcsen to

reinforce the pointers which determine that the support is

standing and the pointers which similarly determine that the

supported object is a lying board. Figure 20 shows the model

resulting.

Now that the basic idea is clear, the slightly rmore

complex arch sequence will bring out some further points. The

first sample, shown back in Figure 16 is an example, as always.

From it we generate an initial description as before. The next

step is similar to the one taken with the pedestal in that the

teacher presents a near-miss with the supported object now

removed and resting on the table. Lut this time not one, but two

differences are noticed in the corresponding description networks

as now there are two missing supported-by pointers.

This opens up the big question of what is to be done when

more than one relationship can explain why the near-miss misses.

What is needed, of course, is a theory of how to sort out

observed differences so that the most important and most likely

to be responsible difference can be hypcthesized and reacted to.

The theory itself is somewhat detailed, but it is the

Figure 20
A pedestal model.

5--••,: 2

exploration of this detail through writing and experimentinr with

programs that gives the overall theory a crisp substance.

Repeated cycles of refinement and testing of a theory, as

embodied in a program, is an important part of an er-erging

artificial intelligence methodology.

Now the results of this approach on the difference

ranking module itself include the following points:

First of all, if two differences are observed which are

of the same nature and description, then they are assumed to

contribute jointly to the failure of the near-miss and both are

acted on. This handles the arch case where two support relations

were observed to be absent in the near-miss. Since the

differences are both of the missing pointer type and since both

involve the same supported-by relation, it is deemed

heuristically sound to handle them both together as a unit.

Secondly, differences are ranked in order of their

distance from the origin of the net. Thus a difference observed

in the relationship of two objects is considered more important

than a change in the shape of an object's face, which in turn is

interpreted as more important than an obscured vertex.

Thirdly, differences at the same level are ranked

according to type. In the current implementation, differences of

the missing pointer type are ranked ahead of those where a

pointer is added in the near-miss. This is reasonable since

drop-ping a pointer to make a near-miss may well force the

PAGE '53

introduction of a new pointer. Indeed we have ignored the

introduction of a support pointer between the 1y;ing brick arnd th3!

table because the difference resulting from this new pointer is

inferior to the difference resulting from the missing pointer.

Finally, if two differences are found of the same type on the

same level, then some secondary heuristics are used to try to

sort them out. Support relations, for example, make more

important differences than one expects from touch or left-right

pointers.

Now these factors constitute only a theory of hypothesis

formation. The theory does make mistakes, especially if the

teacher is poor. I will return to this problem after completing

the tour through the arch example. Recall that the machine

learned the importance of the support relations. In the next

Sstep .it learns, somewhat indirectly, about the hole. This is

conveyed through the near-miss.with the two side supports

touching. Now the theory of most important differences reports

that two new touch pointers are present in the near-miss,

symmetrically indicating that the side supports have moved

together. Here surely the reasonable conclusion is that the new

pointers have fouled the concept. The model is therefore refined

to have must-not-touch pointers between the nodes of the side

supports. This dissuades identification programs, later

described, from ever reporting an arch if such a forbidden

relation is in fact present.

Importantly, it is now clear how information of a

negative sort is introduced into models. They can contain not

only information about what is essential but also inforration

about what sorts of characteristics prevent a sample frcom beinX

associated with the modeled concept.

So far I have shown examples of emphatic relations, botl

of the must-be and must-not-be type as introduced by near-miss

samples. The following is an example of the inductive

generalization introduced by the sample with the lying brick

replaced by a wedge. Whether to call this a kind of arch or

report it. as a near-miss depends on the taste of the machine's

instructor, of course. Let us explore the consequence of

introducing it as an example, rather than a near-miss.

In terms of the description network comparison, the

machine finds an is-a pointer moved over from brick to wedge.

There are, given this observation, a variety of things to do.

The simplest is to take the most conservative stance and form a

new class, that of the brick or wedge, a kind of superset.

To see what other options are available, look in figure

21 at the descriptions of brick and wedge and the portion of the

general knowledge net that relates them together. There various

sets are linked together by the a-kind-of relationship. From

this diagram we see that our first choice was a conservative

point on a spectrum whose other end sug:ests that we move the is-

a pointer over to object, object being the most distant

PA", T4

Figure 21
Relations between brick, wedge, and object.
kind-of pointers.

All pointers are a-

55

..

P AG' 56

intersection of a-kind-of relations. We choose a conservative

position and fix the is-a pointer to the closest observed

intersection, in this case right-prism.

Again a hypothesis has to be made, and the hypothesis may

well be wrong. In this case it is a question of difference

interpretation rather than the question of sorting cut the

correct difference from many, but the effect is the same. There

simply must be mechanisms for detecting errors and correcting

them.

Errors are detected when an example refutes a previously

made assumption. If the first scene of Figure 22 is reported as

an example of concept X while the second is given as a near-miss,

the natural interpretation is that an X must be standing. Eut an

alternate interpretation, considered secondary by the ranking

program, is that an X must not be lying. If a shrewd teacher

wishes to force the secondary interpretation, he need only give

the tilted brick as an example, for it has no standing pointer

and thus is a contradiction to the primary hypothesis. Under

these conditions, the system is prepared to back up to try an

alternative. As the alternative may also lead to trouble, the

process of backup may iterate as a pure depth first search. One

could do better by devising a little theory that would back up

more intelligently to the decision most likely to have caused the

error.

I mentioned just now the role of a shrewd teacher. I

.1
AN X

FIgure 22
A training sequence

NEAR MISS"

that leads to backup.

57

AN X

PGE '58

regard the dependence on a teacher as a feature of this t'hecry.

Too often in the past history of machine learniig theory the use

of a teacher was considered cheating and mechanisms were instea.

expected to self organize their way to understanding by way of

evolutionary trial and error, or reinforcement, or whatever.

This ignores the very real fact that humans as well as irachines

learn very little without good teaching. The first attempt

should be to understand the kind of learning that is at once the

most common and the most useful.

It is clear that the system assimilates new models from

the teacher and it is in fact dependent on good teaching, but it

depends fundamentally on its own good judgement and previously

learned ideas to understand and disentangle what the teacher has

in mind. It must itself deduce what are the salient ideas in the

training sequence and it must itself decide on an augmentation of

the model which captures those ideas. By carefully limiting the

teacher to the presentation of a sequence of samples, low level

rote learning questions are avoided while allowing study of the

issues which underly all sorts of meaningful learning, including

interesting forms of direct telling.

Identification

Having developed the theory of learning models, I shall

say a little about using them in identification. Since this

subject both is tangential to the main thrust and is documented

elsewhere (Winston 1970), I shall merely give the highlights

here.

To begin with, identification is done in a variety of

modes, our system already exhibiting the following three:

1. We may present a scene and ask the system to

identify it.

2. We may present a scene with several concepts

represented and ask the system to identify all of ther,.

3. We may ask if a given scene contains an instance of

something.

.Of course, the first mode of identifying a whole scene is

the easiest. We simply insist that 1) all models must-be-type

pointers are present in the scene's description and 2) all the

models must-not-be-type pointers must not be present. For

further refinement, we look at all other differences between the

model and scene of other than the emphatic variety and judge the

firmness of model identification according to their number and

type.

When a scene contains many identifiable rows, stacks, or

other groups, we must modify the identification program to allow

for the possibility that essential relations may be missing

because of obscuring objects. /'The properties of rows and stacks

tend to propagate from the most observable member unless there is

P AGE 60

contrary evidence.

The last task, that of searching a scene for a particular

concept is a wide open question. The method now is to simply

feed our network matching program both the model and the larg-er

network and hope for the best. If some objects are matched

against corresponding parts of the model, their pointers to other

extraneous objects are forgotten., and the identification routine

is applied. Much remains to be done along the lines of guiding

the match contextually to the right part of the scene.

PAGZ '61

COPYING TOY BLOCK STRUCTURES

I here give a brief description of the system's higher

level functions along with a scenario giving their interaction in

a very simple situation. The main purpose is to illustrate the

top down, goal oriented and environment dependent flavor of the

system. Code samples are available elsewhere (W1inston 1971)

Figure 23 shows the possible call paths between some of

the programs. Note in particular the network quality that

distinguishes the system from the earlier pass oriented metaphror.

Clarity requires that only a portion of the system he

described, In particular, the diagram and the discussion omits

the following:

1) A. large number of antecedant and erasing programs

which keep the blocks world model up to date.

2) A large network of programs which find skeletons

and locate lines with particular characteristics.

3) A large network of programs that uses the group -

hupothesize - criticize idea to find otherwize

inaccessible properties for hidden objects.

4) A network of programs that jiggles an object if the

arm errs to much when placing it.

The Functions

COPY

As Figure 23 shows, COPY simply activates programs that

handle the two phases of a copying problem; namely, it calls for

COPY

STORE-PARTS

rUnniArTn.. RFnvF FTND-STORAGEF

MAKE-COPY

MOVE FIND-PART CHOOSE-TO-P LACE

MANIPULATE FINE
MANIPULATE FINE

FI

LNESS-2

FIND-SUPPORTED

FIND-SUPPORTS

ADD-TO-SUPPORTS

FIND-SUPPORT-CANDIDATES

Figure 23
The vision system.

PA JV.E '63

the spare parts to be found and put away into the spare parts

warehouse area, and it initiates the replicationr of the new

scene.

STORE-PAFETS

To disassemble a scene and store it, STORE-PARTS. locps

through a series of operations. It calls appropriate rcutires

for selecting an object, finding a place for it, and for enacting

the movement to storage.

CHOOSE-1O-REMOVE

The first body examined by CH00SE-TO-REi.OVET comes

directly from a successful effort to amalgamate some reEions into

a body using FII'D-NFW-BODY. After some body is created, CHOOSE-

TO-REMOVE uses FIND-BELOW to make sure it is not underneath

something. Frequently, some of the regions surrounding a newly

found body are not yet connected to bodies, so FIND-BELOW has a

request link to BIND-REGION. (The bodies so found of course, are

placed in the data base and are later selected by CHOOSE-TO-

REMOVE without appeal to FIND-NF•-BODY.)

FIND-EEW-BODY

FIND-NEI,-BODY locates some unattached region and sets

BIND-REGION to work on it. BIND-REGION then calls collection of

programs by Eugene Freuder which do a local parse and make

assertions of the form:

(R17 IS-A-FACE-OF B2)

(B2 IS-A EODY)

w

(
,...,a

Figure 24
A source of spare parts and a scene to be copied.

,r!

P.GE, .64

These programs appeal to a complicated network of svbroivtines

that drive line finding and vertex finding primitives ?rounc thce

scene looking for complete.regions (Winston 1972).

FIND-BELOW

As mentioned, some regions ray need parsing before it

makes sense to ask if a given object is below something. After

assuring that an adjacent region is attached to a body, FI2L-

BELOW calls the FIND-ABOVE programs to do the work of deter]:m.inin.

if the body originally in question lies below tl'e object owning

that adjacent region.

FI•D-ABOVE-1 and FIND-ABOVE-2 and FIND-ABOVFP-3

The heuristics implemented in Winston's thesis (Winston

1970) 'ad many of those only proposed there are now working in

the FIND-ABOVE programs. They naturally have a collection of

subordinate programs and a link to EIND-REGION for use-.in the

event an unbodied region is encountered. The assertions made are

of the form:

(B3 IS-ABOVE B7)

MOVE

To move an object to its spare parts position, the

locations, and dimensions are gathered up. Then MAIMIPULATE

interfaces to the machine language programs driving the arm.

After MOVE succeeds, STORE-TARTS makes an assertion of the form:

(B12 IS-A SPA.EPART)

FINDI-TO0

PAGE'C5

The first task in making the location calculations is tc

identify line-drawing coordinates of a block's top. Then Fi 1D-

TAIMNESS and FIND-ALTITUDE supply other information needed to

properly supply the routine that transforms line-draiwing

coordinates to X Y Z coordinates. Eesultint assertions are:

(B1 HAS-DIENTSIONS (2.2 3.1 1.7))

(B1 IS-AT (47.0 -17.0 5.2 .3))

Where the number lists are of the form:

(< smaller x-y plane dimension >
< larger >
<tallness>)

(< x coordinate > <y> <z> <angle>)

The x y z coordinates are those of the center of the bottom of

the brick and the angle is that of the long x-y plane axis of the

brick with respect to the x axis. Two auxiliary programs make

assertions of the form:

(B12 HAS-POSTURF

(B7 IS-A

STANDING

LYING

CUBE

BRICK

STICK

BOARD

wherever appropriate.

FIED-DIMENSIOiiS

This program uses FIND-TOP to get the information

necessary to convert drawing coordinates to three-dimensionml

coordinates. If the top is totally obscured, then it appeals

instead to FIND-BOTTOM and FIND-TALLN-ESS-2.

SKELETOE1

SKELETON identifies connected sets of 3 lines :which

define the dimensions of a brick (Finin 1971) (linin 1972). It

and the programs under it are frequently called to find instances

of various types of lines.

FIND-TAIIEESS-1

Determining the tallness of a brick requires observation.

of a complete vertical line belonging to it. FIND-TAILLVESS-1

uses some of SKELETON's repertoire of subroutines to find a good.

vertical. To convert from two-dimensional to three-dimensional

coordinates, the altitude of the brick must also be known.

FIND-TALLNESS-2

Another program for tallness looks upward rather than

downward. It assumes the altitude of a block can be found but no

complete vertical line is present which would give the tallness.

It tries to find the altitude of a block above the one in

question by touching it with the hand. Subtracting gives the

desired tallness.

FIND-ALTITUDE

FIND-ALTITUDE determines the height of an object's base

primarily by finding its supporting object or objects. If

necessary, it will use the arm to try to touch the objects top

and then subtract its tallness.

FIND-SUPPORTS

This subroutine uses FIND-SUPPORT-CANDILATE . to collect

together those objects that may possibly be suprorts. IID-

SUPPORT-CANLIDATES decides that a candidate is in fpct a. suiport

if its top is known to be as high as that of any other suppcrt

candidate. If the height of a candidate's top is unknown but a

lower bound on that height equals the height of known supports,

then ADD-TO-SUPPORTS judges it also to be a valid support. At

the moment the system has no understanding of gravity.

FIND-STORAGE

Once an object is chosen for removal, FIND-STORAGE checks

the warehouse area for an appropriate place to put it.

MAKE-COPY

To make the copy, MAKE-COPY, CHOOSE-TO-PLACE, and FIND-

PART replace STORE-PARTS, CHOOSE-TO-REMOVE and FIND-STORAGE.

Assertions of the form:

(B12 IS-A SPAREPAET)

(B2 IS-A-PART-OF COPY)

(B2 IS-ABOVE El)

are kept up to date throughout by arprorriate routines.

CHOOSE-TO-TLACE

Objects are placed after it is insured that their

suprortE are already placed.

PGeF '8

FIND-PART

The part to be used from the warehouse is selected so as

to minimize the difference in dimensions of the matched objects.

A Scenerio

In what follows the scene in figure 24a provides the

spare parts which first must be put away in the warehouse. The

scene to be copied is that of Figure 24b.

COPY

COPY -begins the -aetivities.

STORE-PARTS

STORE-PARTS begins supervision of disassembly.

CHOOSE-TO-REMOVE
FIND-NEW-BODY
BIND-REGION

CHOOSE-TO-REMOVE parses a few regions together into a

bodyi BI, A great deal of work goes into finding these regions

by intelligent driving of low level line and vertex finding

primitives.

FIND-BELOW
BIND-REGION
FIND-ABOVE

A check is made to insure that the body is not below

anything. Note that B2 is parsed during this phase as-required

for the FIND-ABOVE routines. Unfortunately B1 is below B2 and

therefore CHOOSE-TO-REiv1OVE must select an alternative for

removal.

FIND-BELOW
FIND-ABOVE

B2 was found while checking out B1. CHOOSE-TO-EEMO?01 now

notices it in the data base and confirms that it is not below

anything.

FIND-STORAGE

FIND-STORAGE finds an empty spot in the warehouse.

MOVE

MOVE initiates the work of finding the location and

dimensions of B2.

FIND-TOP
FIND-ALTITUDE

FIND-SUPPORTS
FIND-SUPPORT-CA'DIDATES

FIND-TOP-HEIGET
FIND-ALTITULE

FIND-SUPPORTS
FIND-SUPPORT-CANDIDATES

FIND-TOP-HEIGHT
FIND-TALLNIESS-1

FIND-TALLNESS-1

FIND-BOTTOM proceeds to nail down location 1arameters for

B2. As indicated by the depth of call, this requires something

of a detour as one must first know L2's altitude, which in turn

requires some facts about B1. Rote that no calls are made to

FIND-ABOVE routines during this sequence as those programs

previously vere used on both BI and B12 in determining their

suitability for removal.

FIND-DIE SIONS (S

PAGIE 71

A call to FIND-DIMENSIONS succeeds immediately as the

necessary facts for finding dimensions were already found in the

course of finding location. Routines establish that B2 is a

lying brick.

MANIPULATE

MANIPULATE executes the necessary motion.

CHOOSE-TO-REMOVE
FIND-BELOW

FIND-STORAGE

B2 is established as appropriate for transfer to the

warehouse. A place is found for it there.

MOVE
* FIND-TGOP
FIND-DIMENSIONS
MANIPULATE

The iave goes off straightforwardly, as essential facts

.. are in the data base as side effects of previous calculations.

CHOOSE-TO-REMOVE
FIND-4EW.-BODY

No more objects are located in the scene. At this point

the scene to be. copied, figure 24, is placed in front of the eye

and analysis proceeds on it.

MAKr-COPY
CHOOSE-TO-PLACE

FIND-VEW-EODY
BIND-REGION

B3 is found.

FIND-EELOW
BIND-REGION
FIND-ABOVE

PAGEF '12

B3 is established as ready to be copied with a sprare

part.

FIND-PART
FIND-DIMENSIOFiS

FIND-TOP

Before a part can be found, B3's dimensions must be

found. The first program, FIND-TOP, fails.

FIND-BOTTOM
FIND-ALTITUDE

FIND-SUPPORTS
FIND-SUPPORT-CANDIDATFS

FIND-TOP-HEIGHT

FIND-DIMENSIONS tries an alternative for calculating

dimensiQns. It starts by finding the altitude of the bottom.

FIND-TALLNESS-2
FIND-SUPPORTED

FIND-BELOW
FIND-ABOVE

FIND-SUPPORTS
FIND-SUPPORT-CANDIDATES

FIND-TALLNESS-2 discovers B4 is above B3.

FIND-ALTITUDE
TOUCH-TOP
FIND-TALLNESS-1

FIND-ALTITUDE finds B4's altitude by using the hand to

touch its top subtracting its tallness. B3's height is found by

subtracting B3's altitude from that of B4.

MOVE
MANIPULATE

Moving in a spare part for E3 is now easy. B3's location

was found while dealing with its dimensions.

CHOOSE-TO-PLACE
FIND-EELOV (C

PAGE 73

FIND-PART
FIND-DIMFENSIO'JS

FIND-TOP
MOVE

MRANIPULATE

Placing a part for E4 is easy as the essential facts are

now already in the data base.

CHOOSE-TO-REMOVE
FIND-EEW-BODY

No other parts are found in the scene to be copied.

Success.

PAGE '74

CONCLUDING REMARKS

This essay legan with the claim that the study of vision

contributes both to artificial intelligence and to E theory of

vision. Working with a view toward these purposes has cccuyied

many years of study at MiIT and elsewhere on the toy world of

simple polyhedra. The progress in semantic rooted scene

analysis, learning', and copying have now brought us to a plateav

where we expect to spend some time deciding what the next

important problems are and where to look for solutions.

The complete system, which occupies on the order of

100,000.thirty-six bit words, is authored by direct contributions

in code from over a dozen people. This essay has not summarized,

but rather has only hinted at the difficulty and complexity of

the problems this group has faced. Many important issues have

not been touched on here at all. Line finding, for example, is a

task on which everything rests and has ly itself occupied more.

effort than all the other work described here (Roberts 1963)

(Herskovits and Binford 1970) (Griffith 1970) (Horn 1971) (Shirai

1972).

References

Clowes, M, "On Seeing Things," Artificial Intelligence, Vol. 2,
No 1, Spring, 1971.

Ernst, H., "MH-1, A Computer-Operated Mechanical Hand," D.Sc.
Dissertation, Department of Electrical Engineering,
M.I.T., December, 1961.

Finin, T., "Finding the Skeleton of a Brick," Vision Flash 19,
Artificial Intelligence Laboratory, M.I.T., August, 1971.

Finin, T., "A Vision Potpourri," Vision Flash 26, Artificial
Intelligence Laboratory, M.I.T., June, 1972.

Griffith, A., "Computer Recognition of Prismatic Solids," MAC
Technical Report 73, Project MAC, M.I.T., August, 1970.

Guzman, A., "Computer Recognition of Three-Dimensional Objects in
a Visual Scene," MAC Technical Report 59, Project MAC,
M.I.T., December, 1968.

Herskovi.ts, A. and Binford, T., "On Boundary Detection,".A.I.
Memo. 183, Artificial Intelligence Laboratory, M.I.T.,
Ju.ly, 1970.

Hewitt, C., "Description and Theoretical Analysis (Using Scemata)
of PLANNER: A Language for Proving Theorems and
Manipulating Models in a Robot," A.I. Technical Report
258, Artificial Intelligence Laboratory, M.I.T., April,
1972.

Horn, B. K. P., "The Binford-Horn Line Finder," Vision Flash 16,
Artificial Intelligence Laboratory, M.I.T., June, 1971.

Huffman, D., "Impossible Objects as Nonsense Sentences," Machine
Intelligence 6, pp. 295-323 (ad. Meltzer, B. & Michle,
D.), Edinburgh University Press, Edinburgh, 1971.

McDermott, D. and Sussman, G., "The CONNIVER Reference Manual,"
A. I. Memo. 259, Artificial Intelligence Laboratory,
M.I.T., tby, 1972.

Minsky, M. and Papert, S., "Progress Report," A. I. Memo. 252,
Artificial Intelligence Laboratory, M.I.T., January,
1972.

Orban, R., "Removing Shladows In a Scene," A.I. Memo. 192,
Artificial Intelligence Laboratory, M.I.T., August, 1970.

Shiral, Y.,."A Heterarchical Program for Recognition of
Polyhedra," A.I. Memo. 263, Artificial Intelligence
Laboratory, M.I.T., June, 1972.

Simon, H., The Sciences of the Artificial, M.I.T. Press, M.I.T.,
Cambridge, 1969.

Sussman, G., Winograd, T., and Charnlak, E., "MICRO-PLANNER
Reference Manuel," A.I. Memo. 203A, Artificial
Intelligence Laboratory, M.I.T., December, 1971.

Rattner, M., "Extending Guzman's SEE Program," A.I. Memo. 204,
Artificial Intelligence Laboratory, M.I.T., July, 1970.

Roberts, L., "Machine Perception of Three-Dimensional Solids,"
Technical Report 315, Lincoln Laboratory, M.I.T., May,
1963.

Waltz, D., "Shedding Light on Shadows," Vision Flash 29,
Artificial Intelligence Laboratory, M.I.T., July, 1972.

Waltz, D., Doctoral Dissertation and A.I. Technical Report in
preparation, Artificial Intelligence Laboratory, M.I.T.

Wichman, W., "Use of Optical Feedback in the Computer Control of
an Arm," A.I. Memo. 56, Stanford Artificial Intelligence
Project, Stanford University, August, 1967.

Winston, P. H., "Holes," A.I. Memo. 163, Artificial Intelligence
Laboratory, M.I.T., August, 1968.

Winston, P. H., "learning Structural Descriptions from Examples,"
A.I. Technical Report 231, Artificial Intelligence
Laboratory, M.I.T., September, 1970.

Winston, P. H., "Wandering About the Top of the Robot," Vision
Flash 15, Artificial Intelligence Laboratory, M.I.T.,
June, 1971.

Winston, P. H., "Wizard," Vision Flash 24, in preparation,
Artificial Intelligence Laboratory, M.I.T., 1972.

Winston, P. H. and Lerman, J, "Circular Scan," Vision Flash 23,
Artificial Intelligence Laboratory, M.I.T., March, 1972.

