
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2008-018 April 8, 2008

ZigZag Decoding: Combating Hidden
Terminals in Wireless Networks
Shyamnath Gollakota and Dina Katabi

ZigZag Decoding: Combating Hidden Terminals in
Wireless Networks

Shyamnath Gollakota Dina Katabi
gshyam@mit.edu dk@mit.edu

ABSTRACT

This paper presents ZigZag, an 802.11 receiver that com-
bats hidden terminals. ZigZag exploits 802.11 retransmis-
sions which, in the case of hidden terminals, cause succes-
sive collisions. Due to asynchrony, these collisions have dif-
ferent interference-free stretches at their start, which ZigZag
uses to bootstrap its decoding.

ZigZag makes no changes to the 802.11 MAC and intro-
duces no overhead when there are no collisions. But, when
senders collide, ZigZag attains the same throughput as if the
colliding packets were a priori scheduled in separate time
slots. We build a prototype of ZigZag in GNU Radio. In
a testbed of 14 USRP nodes, ZigZag reduces the average
packet loss rate at hidden terminals from 82.3% to about
0.7%.

1 INTRODUCTION

Collisions and hidden terminals are known problem in
802.11 networks [9, 22, 19, 2, 23, 26, 37]. Measurements
from a production WLAN show that 10% of the sender-
receiver pairs experience severe packet loss due to colli-
sions [9]. Current 802.11 WLANs rely on carrier sense
(CSMA) to limit collisions–i.e., senders sense the medium
and abstain from transmission when the medium is busy.
This approach is successful in many scenarios, but when it
fails, as in the case of hidden terminals, the impact on the
interfering senders is drastic; the senders either repeatedly
collide and their throughputs plummet, or one sender cap-
tures the medium preventing the other from getting pack-
ets through [22, 19, 37]. The 802.11 standard proposes the
use of RTS-CTS to counter collisions, but experimental re-
sults show that enabling RTS-CTS significantly reduces the
overall throughput [19, 37, 40, 2], and hence WLAN deploy-
ments and access point (AP) manufacturers disable RTS-
CTS by default [1, 29]. Ideally, one would like to address
this problem without changing the 802.11 MAC or affecting
senders that do not suffer from hidden terminals.

This paper introduces ZigZag, a new 802.11 receiver that
increases WLAN resilience to collisions. ZigZag requires no
changes to the 802.11 MAC and introduces no overheard in
the case of no collision. In fact, in the absence of collisions,
ZigZag acts like a typical 802.11 receiver. But, when senders
collide, ZigZag achieves the same performance as if the col-
liding packets were a priori scheduled in separate time slots.

ZigZag exploits a subtle opportunity for resolving colli-
sions, an opportunity that arises from two basic characteris-
tics of 802.11:

1. An 802.11 sender retransmits a packet until it is acked or
timed out, and hence when two senders collide they tend
to collide again on the same packets.

2. 802.11 senders jitter every transmission by a short random
interval,1 and hence collisions start with a random stretch
of interference free bits.

To see how ZigZag works, consider the hidden terminal
scenario in Fig. 1, where Alice and Bob, unable to sense each
other, transmit simultaneously to the AP, causing collisions.
When Alice’s packet collides with Bob’s, both senders re-
transmit their packets causing a second collision, as shownin
Fig. 2. Further, because of 802.11 random jitters, the two col-
lisions are likely to have different offsets, i.e.,∆1 6= ∆2. Say
that the AP can compute these offsets (as explained in§5.1),
the AP can then find a chunk of bits that experience interfer-
ence in one collision but is interference-free in the other,such
as chunk 1 in Fig. 2. A ZigZag AP uses this chunk to boot-
strap its decoder. In particular, since chunk 1 is interference-
free in the first collision, the AP can decode it using a stan-
dard decoder. The AP then subtracts chunk 1 from the second
collision to decode chunk 2. Now, it can go back to the first
collision, subtract chunk 2, decode chunk 3, and proceed un-
til both packets are fully decoded.

ZigZag is a novel approach to decoding collisions, dif-
ferent from prior work on interference cancellation [34, 17]
and joint decoding [32]. Basic results on the capacity of the
multi-user channel show that if the two hidden terminals
transmit at the rate supported by the medium in the absence
of interference, i.e., rateR in Fig. 3, the aggregate informa-
tion rate in a collision, being as high as 2R, exceeds capac-
ity, precluding any decoding [32, 12]. Thus, interference can-
cellation and joint decoding, designed for cellular networks
with non-bursty traffic and known users [34, 5], have a fun-
damental limitation when applied in 802.11 networks: they
require a sender to change the way it modulates and codes
a packet according to whether the packet will collide or not.
This leaves 802.11 senders with the following tradeoff: either
they tune to a suboptimal rate that works in the presence of
collision, though not every packet will collide, or they send
1Each transmission picks a random slot between 0 andCW [38].

1

Alice BobAP

Figure 1—A Hidden Terminals Scenario.

at the best rate in the absence of collision, but accept that
the network cannot use these methods to resolve collisions.
In contrast, with ZigZag, the senders need not make such a
tradeoff. ZigZag allows the senders to transmit at the best
rate supported by the medium in the absence of collisions,R.
However, if collisions occur, ZigZag decodes pairs of colli-
sions that contain the same packets. The average information
rate in such a collision pair is 2R/2 = R. This rate is both de-
codable and as efficient as if the two packets were scheduled
in separate time slots.

ZigZag has the following key features.

• It works with various modulations:When its a chunk’s
turn to be decoded, the chunk has already been rid of in-
terference. Thus, ZigZag can employ a standard 802.11
decoder as a black-box to decode the chunks, which al-
lows it to work with collisions independent of their un-
derlying modulation scheme (i.e., bit rate).

• It is backward compatible:A ZigZag receiver can operate
with unmodified 802.11 senders and requires no changes
to the 802.11 protocol (see§7 for how to send acks).

• It generalizes to more than a pair of colliding pack-
ets, as explained in§8 and experimentally demonstrated
in §10.6.

• It has a lower bit error rate than if the packets were sent
in separate time slots. This might sound surprising, but
this is possible because every bit is received twice, once
in every collision, and thus has twice as much chance to
be decoded correctly. ZigZag applies the decoding algo-
rithm both in the forward and backward directions and
combines the results to reduce decoding errors.

We have implemented a ZigZag prototype in GNU Ra-
dio, and evaluated it in a 14-node testbed, where 12% of
the sender-receiver pairs are hidden terminals, 8% sense each
other partially, and 80% sense each other perfectly. Our re-
sults reveal the following findings.

• The loss rate averaged over scenarios with partial or per-
fect hidden terminals decreases from 82.3% to less than
0.7%, with some severe cases where the loss rate goes
down from 100% to zero.

• Averaging over all sender-receiver pairs, including those
that do not suffer from hidden terminals, we find that
ZigZag improves the average throughput by 31% when
compared to current 802.11.

• At all SNRs, ZigZag’s bit error rate (BER) is lower than
if the colliding packets were scheduled in separate time
slots. The average reduction in bit error in comparison to
scheduling packets separately is 1.4x.

∆1 ∆2

1 1

22

3 3

44

Pa

Pb

Pa

Pb

Figure 2—ZigZag Decoding.ZigZag decodes first chunk 1 in the first col-
lision, which is interference free. It then subtracts chunk1 from the second
collision and decodes chunk 2, which it can then subtracts from the first
collision and decodes chunk 3, etc.

RAlice’s Avg. Rate

B
ob

’s
 A

vg
. R

at
e

(R,R)
R

Rmax

Rmax

Figure 3—Interference Cancellation and Joint Decoding Require Ineffi-
cient Rates.The figure shows the classic illustration of the capacity region
of the multi-user channel. Points outside the shaded area areundecodable
because the combined rate of the two senders exceeds the capacity. If Al-
ice and Bob transmit close to the best rate supported by the medium in the
absence of interference,R, their combined rates will be(R, R), which is
outside the capacity region, and hence cannot be decoded.

2 RELATED WORK

Related work falls in the following two areas.

(a) Collisions in WLAN and Mesh Networks. The clos-
est to our work is by Halperin et al. [16] who articulate the
benefits of decoding 802.11 collisions. ZigZag however is
significantly different from the approach in [16]. Halperinet
al. use joint decoding, which, as explained in§1, requires the
senders to transmit a priori at the low rate required for decod-
ing in the presence of collisions, though not every packet will
collide. Additionally, the system works by modeling the col-
lision signal. The complexity of such a model increases sig-
nificantly at high modulation schemes, and is also exponen-
tial in the number of colliding packets. In contrast, ZigZag
does not require the senders to send differently depending on
whether a packet will collide, can work with various 802.11
modulations, and is linearly extendable to more than a pair
of colliding packets.

Our work is also related to analog network coding
(ANC) [21]. ANC, however, does not deal with general col-
lisions or hidden terminals. An ANC receiver can decode
collisions only if it already knows one of the two colliding
packets. In principle, one can combine ANC and ZigZag to
create a system that addresses hidden terminals, and collects
network coding gains.

Additionally, prior works have studied wireless interfer-
ence [30, 15, 9, 22, 19, 2, 23, 26, 37], and proposed MAC
modifications to increase resilience to collisions [41, 11,20,
6, 4, 28]. In comparison, this paper presents mechanisms
that decode collisions rather than avoiding them, and works
within the 802.11 MAC rather than proposing a new MAC.

2

(b) Communication and Information Theory: The idea of
decoding interfering users has received much interest in in-
formation and communications theories [32, 34, 8, 33, 36,
35]. The main feature that distinguishes ZigZag from prior
works in those areas is that ZigZag resolves 802.11 colli-
sions without requiring any scheduling, power control, syn-
chronization assumptions, or new codes.

Among the deployed systems, CDMA receivers decode
a user by treating all other users as noise [8]. A CDMA solu-
tion for hidden terminals in WLANs, however, would require
major changes to 802.11 including the use of power control
and special codes [5, 8]. Furthermore, CDMA is known to
be highly suboptimal in high SNR regimes (e.g., worse than
TDMA [32]), which are typical in WLANs [14].

Finally, interference cancellation is a known approach for
decoding interfering users in CDMA cellular networks [5].
Interference cancellation applies only under specific con-
straints. As stated in§1, the senders’ information rates must
stay below capacity. Additionally, practical systems require
either that the interfering senders have significantly different
powers [34], or they have different levels of coding [17, 32].
ZigZag includes interference cancellation as a special case,
and uses it only when the senders’ powers and rates permit.
ZigZag, however, does not rely on interference cancellation
as the main means of decoding and thus works when inter-
ference cancellation does not apply.

3 SCOPE

ZigZag is a new 802.11 receiver that can decode col-
lisions. Its design is focused on addressing hidden termi-
nals in WLANs. ZigZag’s benefits extend to mesh networks,
where having receivers that can decode collisions could en-
able more concurrent transmissions and hence higher spatial
reuse. Exploring mesh benefits is, however, beyond the scope
of this paper.

ZigZag adopts a best effort design; in the absence of col-
lisions it acts like current 802.11 receivers, but when colli-
sions occur it tries to decode them. Of course there are sce-
narios where collision decoding may fail, but since ZigZag
does not introduce any overhead for the case of no collision,
its presence can only increase the throughput of the WLAN.
In §7, we explain how one can deploy ZigZag in a WLAN by
changing only the access points and without modifying the
clients.

ZigZag resolves a variety of collision patterns. The main
idea underlying its decoding algorithm is to find a collision
free chunk, which it exploits to bootstrap the decoding pro-
cess. Once the decoder is bootstrapped the process is iter-
ative and at each stage it produces a new interference-free
chunk, decodable using standard decoders. For example, as
explained in§1, ZigZag can decode the pattern in Fig. 2 by
decoding first chunk 1 in the first collision, and subtracting
it from the second collision, obtaining chunk 2, which it de-
codes and subtracts from the first collision, etc. Using the
same principle, ZigZag can decode other patterns like those
in Fig. 4. In particular, it can decode patterns where the col-

∆1

Pa

Pb

Pa

Pb

∆2

1 1

22

(a) Overlapped Collisions

∆1

Pa

Pb

2

1

Pa

Pb

∆2

1

2

(b) Flipped Order

∆1

Pa

Pb

Pa

Pb∆2

1 1

22

(c) Different Sizes

Pa1

Pb1

Pa2

Pb13 3

1 2

(d) Alice’s Packets Enjoy the Capture Effect

Pa

Pb

1

2

(e) Single Decodable Collision; Inefficient Bit Rates

Figure 4—ZigZag applies to various collision patterns.The figure shows
a variety of collision patterns that ZigZag resolves. The top three patterns
are decoded chunk-by-chunk. The forth pattern refers to a capture effect
which occurs because Alice’s power at the AP is significantlyhigher than
Bob’s. The last pattern occurs when Alice’s power is significantly higher
than Bob’s, but Bob’s power is also significantly higher thannecessary for
his bit rate.

lisions overlap as in Fig. 4a, and patterns in which colliding
packets change order as in Fig. 4b, or even patterns where
the packets have different sizes, as in Fig. 4c.

ZigZag exploits collision patterns that arise from cap-
ture effects. Say that Alice’s power at the AP is significantly
higher than Bob’s, and hence her packets enjoy the capture
effect [37]. Currently such a scenario translates into signifi-
cant unfairness to Bob whose packets do not get through [22,
19, 37]. Like current APs, a ZigZag AP decodes every packet
from Alice, the high power sender. Unlike current APs how-
ever, ZigZag subtracts Alice’s packet from the collision sig-
nal and try to decode Bob’s packet. However, if Alice’s
power is excessively high, even a small imperfection in sub-
tracting her signal would contribute a significant noise to
Bob’s, preventing correct decoding of his packets. In this
case, the next collision will involve a new packet from Al-
ice and Bob’s retransmission of the same packet, as shown
in Fig. 4d. ZigZag decodes Alice’s new packet and subtracts
it to obtain a second version of Bob’s packet, which may also
contain errors. ZigZag however combines the two faulty ver-
sions of Bob’s packet to correct the errors. This is done using
Maximal Ratio Combining (MRC) [7], a classic method for
combining information from two receptions to correct for bit
errors.2

2To get a feel for how MRC works, consider the case where the senders use
the BPSK modulation, which maps a “0” bit to -1 and a “1” bit to +1.If
the AP receives two versions of theith bit. The first version is -0.2 and the
second is +0.5, then assuming the channel has not changed between the two
receptions, MRC estimates the bit as the average of these two receptions

3

Finally, whenever the powers permit, ZigZag decodes
patterns that involve a single collision like those in Fig. 4e.
This occurs when Alice’s power is significantly higher than
Bob’s, and both senders happen to transmit at a bit rate lower
than the best rate supported by the channel. In this case,
ZigZag can apply interference cancellation [34], i.e., ZigZag
decodesPa and subtracts it from the received signal to de-
codePb, decoding both packets using a single collision.

ZigZag can also decode collisions that involve more than
a pair of packets, which we discuss in§8.

4 A COMMUNICATION PRIMER

A wireless signal is typically represented as a stream of
discrete complex numbers [27]. To transmit a packet over the
wireless channel, the transmitter maps the bits into complex
symbols, in a process called modulation. For example, the
BPSK modulation (used in 802.11 at low rates) maps a “0”
bit to ejπ = −1 and a “1” bit toej0 = 1. The transmitter
generates a complex symbol everyT seconds. In this paper,
we use the termx[n] to denote the complex number that rep-
resents thenth transmitted symbol.

The received signal is also represented as a stream of
complex symbols spaced by the sampling intervalT. These
symbols differ, however, from the transmitted symbols, both
in amplitude and phase. In particular, if the transmitted sym-
bol is x[n] the received symbol can be approximated as:

y[n] = Hx[n] + w[n], (1)

whereH = heγ is also a complex number, whose magnitude
h refers to channel attenuation and its angleγ is a phase shift
that depends on the distance between the transmitter and the
receiver, andw[n] is a random complex noise.3

If Alice and Bob transmit concurrently their signals add
up, and the received signal can be expressed as:

y[n] = yA[n] + yB[n] + w[n],

whereyA[n] = HAx[n] and yB[n] = HBxB[n] refer to Al-
ice’s and Bob’s signals after traversing their corresponding
channels to the AP. Note that the above does not mean that
we assume thenth symbol from Alice combines with thenth

symbol from Bob. The notation is only to keep the exposition
clear.

4.1 Practical Issues

A few practical issues complicates the process of esti-
mating the transmitted symbols from the received symbols:
frequency offset, sampling offset, and inter-symbol interfer-
ence. Typically, a decoder has built-in mechanisms to deal
with these issues [27].

(a) Frequency Offset and Phase Tracking:It is virtually
impossible to manufacture two radios centered at the same

i.e.,(0.5− 0.2)/2 = 0.1 > 0, and hence it decodes the bit as a “1” bit. For
further information about MRC and symbol combining methods, we refer
the reader to [7, 39].
3This models flat-fading quasi-static channels.

exact frequency. Hence, there is always a small frequency
difference,δf , between transmitter and receiver. The fre-
quency offset causes a linear displacement in the phase of
the received signal that increases over time, i.e.,

y[n] = Hx[n]ej2πnδfT + w[n].

Typically, the receiver estimatesδf and compensates for it.

(b) Sampling Offset: The transmitted signal is a sequence
of complex samples separated by a periodT. However, when
transmitted on the wireless medium, these discrete values
have to be interpolated into a continuous signal. The contin-
uous signal is equal to the original discrete samples, only if
sampled at the exact same positions where the discrete values
were. Due to lack of synchronization, a receiver cannot sam-
ple the received signal exactly at the right positions. There is
always a sampling offset,µ. Further, the drift in the transmit-
ter’s and receiver’s clocks results in a drift in the sampling
offset. Hence, decoders have algorithms to estimateµ and
track it over the duration of a packet.

(c) Inter-Symbol Interference (ISI) While Eq. 1 makes it
look as if a received symboly[n] depends only on the cor-
responding transmitted symbolx[n], in practice, neighboring
symbols affect each other to some extent. Practical receivers
apply linear equalizers [24] to mitigate the effect of ISI.

5 ZIG ZAG DECODING

We explain ZigZag decoding using the hidden terminal
scenario in Fig. 6, where Alice and Bob, not able to sense
each other, transmit simultaneously to the AP, creating re-
peated collisions. Later in§8, we extend our approach to a
larger number of colliding senders.

Like current 802.11, when a ZigZag receiver detects a
packet it tries to decode it, assuming no collision, and us-
ing a typical decoder. If decoding fails (e.g., the decoder
loses synchronization or the decoded packet does not satisfy
the checksum), the ZigZag receiver will check whether the
packet has suffered a collision, and proceed to apply ZigZag
decoding.

5.1 Is It a Collision?

To detect a collision, the AP exploits that every 802.11
packet starts with a known preamble [38]. The AP detects
a collision by correlating the known preamble with the re-
ceived signal. Correlation is a popular technique in wireless
receivers for detecting known signal patterns [8]. Say that
the known preamble isL samples. The AP aligns theseL
samples with the firstL received samples, computes the cor-
relation, shifts the alignment by one sample and re-computes
the correlation. The AP repeats this process until the end of
the packet. The preamble is a pseudo-random sequence that
is independent of shifted versions of itself, as well as Alice’s
and Bob’s data. Hence the correlation is near zero except
when the preamble is perfectly aligned with the beginning of
a packet. Fig. 5 shows the correlation as a function of the po-
sition in the received signal. The measurements are collected

4

using GNURadios (see§10). Note that when the correlation
spikes in the middle of a reception, it indicates a collision.
Further, the position of the spike corresponds to the begin-
ning of the second packet, and hence shows∆, the offset
between the colliding packets.

The above argument is only partially correct because the
frequency offset can destroy the correlation, unless the AP
compensates for it. Assume that Alice’s packet starts first
and Bob’s packet collides with it starting at position∆. To
detect Bob’s colliding packet, the AP has to compensate for
the frequency offset between Bob and itself. The frequency
offset does not change over long periods, and thus the AP can
maintain coarse estimates of the frequency offsets of active
clients as obtained at the time of association. The AP uses
these estimates in the computation.

Mathematically, the correlation is computed as follows.
Let y be the received signal, which is the sum of the sig-
nal from Alice, yA, the signal from Bob,yB, and the noise
termw. Let the sampless[k], 1 ≤ k ≤ L, refer to the known
preamble, ands∗[k] be the complex conjugate. The correla-
tion, Γ, at position∆ is:

Γ(∆) =
L∑

k=1

s∗[k]y[k + ∆]

=
L∑

k=1

s∗[k](yA[k + ∆] + yB[k] + w[k])

The preamble, however, is independent of Alice’s data and
the noise, and thus the correlation between the preamble and
these terms is about zero. Since Bob’s firstL samples are the
same as the preamble, we obtain:

Γ(∆) =
L∑

k=1

s∗[k]yB[k]

=
L∑

k=1

s∗[k]HBs[k]ej2πkδfBT

= HB

L∑

k=1

|s[k]|2ej2πkδfBT

Since a frequency offset exists between Bob and the AP, i.e.,
δfB 6= 0, the terms inside the sum have different angles and
may cancel each other. Thus, the AP should compute the
value of the correlation after compensating for the frequency
offset, which we callΓ′. At position∆ this value becomes:

Γ′(∆) = HB

L∑

k=1

|s[k]|2ej2πkδfBT × e−j2πkδfBT

= HB

L∑

k=1

|s[k]|2.

The magnitude ofΓ′(∆) is the sum of energy in the pream-
ble, and thus it is significantly large, i.e., after compensat-
ing for the frequency offset, the magnitude of the correlation

Pa
Pb

∆
Moving correlation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1000 2000 3000 4000 5000 6000

C
or

re
la

tio
n

Position in Received Signal

Figure 5—Detecting Collisions by Correlation with the Known Pream-
ble. The correlation spikes when the correlated preamble sequence aligns
with the preamble in Bob’s packet. This allows the AP to detectthe occur-
rence of a collision and where exactly it starts.

spikes when the preamble aligns with the beginning of Bob’s
packet, as shown in Fig. 5. Imposing a threshold enables us to
detect whether the AP received a collision signal and where
exactly the second packet starts.

5.2 Did the AP Receive Two Matching Collisions?

Now that it is clear that the received signal is the re-
sult of collision, the AP searches for a matching collision,
i.e., a collision of the same two packets. The AP stores re-
cent unmatched collisions (i.e., stores the received complex
samples). It is sufficient to store the few most recent colli-
sions because, in 802.11, colliding sources try to retransmit
a failed transmission as soon as the medium is available [38].

We use the same correlation trick to match the current
collision against prior collisions. Assume the AP is tryingto
match two collisions(P1,P2), and(P′1,P′2). Without loss of
generalization, let us focus on checking whetherP2 is the
same asP′2. The AP already knows the offset in each col-
lision, i.e.,∆ and∆′. The AP aligns the two collisions at
the positions whereP2 andP′2 start. If the two packets are
the same, the samples aligned in such a way are highly de-
pendent (they are the same except for noise and the retrans-
mission flag in the 802.11 header), and thus the correlation
spikes. IfP2 andP′2 are different, their data is not correlated
and the correlation does not spike at that alignment.

5.3 How Does the AP Decode Matching Collisions?

Say that the AP found a pair of matching collisions like
those in Fig. 6. Note that Fig. 6 is the same as Fig. 2 in the in-
troduction except that we distinguish between two images of
the same chunk that occur in different collisions, e.g., chunk
1 and chunk 1’. By now the AP knows the offsets∆1 and
∆2, and hence it can identify all interference-free symbols
and decode them using the standard method.

Next, the AP performs ZigZag decoding, which requires
identifying abootstrapping chunk, i.e., a sequence of sym-
bols marred by interference in one collision and interference-
free in the other. Say that the first collision has the larger off-

5

∆1 ∆2

1 1’
22’

3 3’
44’

Pa

Pb

Pa

Pb

Figure 6—ZigZag decodes then re-encodes a chunk.Before subtracting
a decoded chunk, like chunk 1, ZigZag needs to re-encode the bits to create
an image of chunk 1’, as received in the second collision.

set, i.e.,∆1 > ∆2, the bootstrapping chunk then is located
in the first collision starting at position∆2 and has a length
of ∆1 − ∆2 samples. This is chunk 1 in Fig. 6.

The rest of the decoding works iteratively chunk-by-
chunk. In each iteration, the AP decodes a chunk, re-encodes
the decoded symbols and subtract them from the other colli-
sion. For example, in Fig. 6, the AP decodes chunk 1 from
the first collision, re-encodes the symbols in chunk 1 to cre-
ate an image of chunk 1’, which it subtracts from the second
collision to obtain chunk 2. The AP iterates on the rest of
the chunks as it did on chunk 1, until it is done decoding all
chunks in the colliding packets.

(a) The Decoder.ZigZag can use any standard decoder as a
black box. Specifically, the decoder operates on a chunk after
it has been rid from interference, and hence can use standard
techniques. This characteristic allows ZigZag to directlyap-
ply to any modulation scheme as it can use any standard de-
coder for that modulation as a black box. Further, the two
colliding packets may use different modulation (differentbit
rates) without requiring any special treatment.

(b) Re-Encoding a Chunk.Now that the AP knows the
symbols that Alice sent in chunk 1, it uses this knowledge
to create an estimate of how these symbols would look after
traversing Alice’s channel to the AP, i.e., to create an image
of chunk 1’, which it can subtract from the second collision.

In §5.4 we explain how the AP computes channel param-
eters, but for now, let us assume that the AP knows Alice’s
channel, i.e.,HA, δfA, andµA. Denote the symbols in chunk
1 byxA[n] . . . xA[n+ K]. A symbol that Alice sends,xA[n], is
transformed by the channel toyA[n] where:

yA[n] = HAxA[n]ej2πδfAT. (2)

The AP would have receivedyA[n] had it sampled the
signal exactly at the same locations as Alice. Because of
sampling offset, the AP samples the received signalµA sec-
onds away from Alice’s samples. Thus, given the samples
yA[n] . . . yA[n+ K], the AP has to interpolate to find the sam-
ples atyA[n + µA] . . . yA[n + K + µA].

To do so, we leverage the fact that we have a band-limited
signal sampled according to the Nyquist criterion. Nyquist
says that under these conditions, one can interpolate the sig-
nal at any discrete position, e.g.,n + µA, with complete ac-
curacy, using the following equation [27]:

yA[n + µA] =

∞∑

i=−∞

yA[i]sinc(π(n + µA − i)),

wheresinc is the sinc function. In practice, the above equa-
tion is approximated by taking the summation over few sym-
bols (about 8 symbols) in the neighborhood ofn.

Now that the AP has an image of chunk 1’ as received, it
subtracts it from the second collision to obtain chunk 2, and
proceeds to repeat the same process on this latter chunk.

5.4 Estimating and Tracking the System Parameters

The receiver has to estimate the system’s parameters for
both Alice and Bob using the preamble. Without loss of gen-
erality, we focus our discussion on Bob, i.e., we focus on the
sender that starts second. This is the harder case since the
preamble in Bob’s packet, typically used for channel estima-
tion, is immersed in noise. We need to learnHB, µB, andδfB.

(a) Channel. Again we play our correlation trick, i.e., we
correlate the received samples with the known preamble. Re-
call that the correlation at the peak is:

Γ′(∆) = HB

L∑

k=1

|s[k]|2.

The AP knows the magnitude of the transmitted preamble
i.e., it knows|s[k]|2. Hence, once it finds the maximum value
of the correlation over the collision, it substitutes in theabove
equation to computeHB.

(b) Frequency Offset.The frequency offset does not change
significantly over a long period. Since decoders already es-
timate the frequency offset, an initial coarse estimate canbe
computed using any prior interference free packet from the
client (e.g., the association packet).

However, this coarse estimate is not sufficient since any
residual errors in estimatingδf translate into linear displace-
ment in the phase that accumulates over the duration of a
packet. Any typical decoder tracks the signal phase and cor-
rects for the residual errors in the frequency offset. Since
ZigZag uses a typical decoder as a black box, it need not
worry about tracking the phase while decoding. Addition-
ally, as it reconstructs an image of a received chunk, ZigZag
tracks the phase in the reconstructed image of a chunk. Con-
sider as an example, reconstructing an image of chunk 1’.
First we reconstruct the image using the current estimate of
the frequency offset, as explained in§5.3(b). Next we sub-
tract that image from the second collisions to get chunk 2.
Now, we reconstruct chunk 2 and subtracted from the second
collision, creating an estimate of chunk 1’, which we term
chunk 1”. We compare the phases in chunk 1’ and chunk 1”.
The difference in the phase is caused by the residual error in
our estimate of the frequency offset. We update our estimate
of the frequency offset as follows:

δf = δf + αδφ/δt,

whereα is just a small multiplier,δφ is the phase error which
accumulated over a periodδt.

(c) Sampling Offset. The procedure used to update and
track the sampling offset is fairly similar to that used to up-
date and track the frequency offset. Namely, the black-box

6

- 60o

yB

y yA

+1-1

yB

Figure 7—Errors Die Exponentially Fast. The error causes the AP to sum
yA instead of subtracting it. Hence, the error propagates fromyA to the esti-
mateŷB, i.e., from one chunk to the next, only when the angle betweenthe
two vectors is smaller than 60o, which occurs with probability13 .

decoder naturally tracks sampling offset when decoding a
chunk. When reconstructing the image of a chunk, like chunk
1’, we use the differences between chunk 1’ and 1” to esti-
mate the residual error in the sampling offset and track it.4

(d) Inter-Symbol Interference. When we reconstruct a
chunk to subtract it from the received signal, we need to cre-
ate as close an image of the received version of that chunk
as possible. This includes any distortion that the chunk ex-
perienced because of multipath effects, hardware distortion,
filters, etc. To do so, we need to invert the linear filter (i.e.,
the equalizer) that a typical decoder uses to remove these
effects. The filter takes as input the decoded symbols before
removing ISI, and produces their ISI-free version, as follows:

x[i] =

L∑

l=−L

hl xISI[i + l],

where thehl ’s are known as the filter taps. For our pur-
pose, we can take the filter from the decoder and invert it. We
apply the inverse filter to the symbolsx[n] before using them
in Eq. 2 to ensure that our reconstructed image of a chunk
incorporates these distortions.

6 DEALING WITH ERRORS

Up to now, we have described the system assuming cor-
rect decoding. But what happens if the AP makes a mistake
in decoding a symbol? For example, in Fig. 6, say the AP
mistakenly decodes the first bit in chunk 1 as a “0” bit, when
it is actually a ”1” bit. Since chunk 1 is subtracted from the
second collision to obtain chunk 2, the error will affect the
first symbol in chunk 2. This in turn will affect the first sym-
bol in chunk 3, and so on. Does that mean that a decoding
error in one chunk propagates to subsequent chunks?

In the rest of this section, we will show the following:

• If a symbol error occurs while decoding, it may affect
later chunks, but this propagation does not persist but
rather decays exponentially fast.

• If the receiver applies ZigZag decoding on both the for-
ward and backward directions and combines the results,
the decoding error is less than if the two packets were
sent in separate time slots.

4The error in the sampling offset is computed using the Muller-and-Muller
algorithm [27].

A
C

K

S
IF

S
A

C
K

Pa2

P
ad

di
ng

D
IF

S
 +

 C
W

A

Pb2

DIFS + CWB

∆1

Pa1

Pb1

Pa1

Pb1

∆2

S
IF

S

Timet1 t2
Figure 8—ACKing. The figure shows how ZigZag can send 802.11 syn-
chronous acks.

(a) Errors Die Exponentially Fast. Assume the AP makes
a mistake in decoding some symbolyA, and tries to use the
erroneous symbol to decodeyB by subtracting the decoded
vector from the received signaly = yA + yB.5 Say that the
senders use the BPSK modulation and recall that BPSK maps
a “0” bit to -1 and a “1” bit to +1. Let us see how such error
affects BPSK.

In the worst case, and as shown in Fig. 7, the error causes
the AP to add the vector instead of subtracting it, and hence
will estimateŷB asy+ yA = yB +2yA. In BPSK, the AP will
decodeyB to the wrong bit only if the estimatêyB has the
opposite sign as the original vector. This will happen only
if the angle between the two vectorsyB andyA is less than
−60o. Since the vectorsyB andyA are independent, they can
have any angle with respect to each other. Thus, the error
occurs with probability less than60

180 = 1
3. Thus, in BPSK,

errors die exponentially fast at a rate2
3.

Similarly, we can show exponential error decay for other
modulations (4-QAM, 16-QAM, etc.).

(b) Forward and Backward Decoding.The ZigZag algo-
rithm described so far decodes forward. In Fig. 2, it starts
with chunk 1 in the first collision and proceeds until both
packets are decoded. However, clearly the figure is symmet-
ric. The AP could wait until it received all samples, and start
decoding backward. If the AP does so, it will have two es-
timates for each symbol. It combines these estimates to re-
duce errors using MRC [7, 39], a classic method for diver-
sity combining. In practice, we do not decode all the way
forward and then all the way backward. We do it on a chunk-
by-chunk basis, using the most recently decoded chunk as a
bootstrapping chunk for backward decoding.

Our experimental results in§10.3 show that the combina-
tion of forward and backward decoding produces less errors
than if the two colliding packets were sent in their separate
slots. This may sound surprising at first. However, since ev-
ery symbol gets sent twice (in the first and the second col-
lisions), it has a better chance to be decoded correctly. The
forward and backward decoding, exploits this by obtaining
two copies of every symbol, one in the forward pass and the
other in the backward. Combining these two copies, allows
us to be more resilient to decoding errors than if the two
packets are sent in separate time slots.

5We ignore the noise termw since it has a random effect on the error and
can equally emphasize it or correct it.

7

7 BACKWARD COMPATIBILITY

It would be beneficial if ZigZag decoding requires no
changes to senders. In this case, one can improve resilience
to interference in a WLAN by purely changing the APs,
and without requiring any modifications to the clients (e.g.,
laptops, PCs, PDAs). Compatibility with unmodified 802.11
senders requires a ZigZag receiver to ack the colliding
senders once it decoded their packets; otherwise the senders
will retransmit again unnecessarily. Recall that an 802.11
sender expects the ack to follow the packet, separated only
by a short interval called SIFS [38]; Can a ZigZag receiver
satisfy such requirement?

The short answer is “yes, with a high probability.” To
see how, consider again the example where Alice and Bob
are hidden terminals, and say that the AP uses ZigZag to
decode two of their packets,Pa1 andPb1, as shown in Fig. 8.
The AP acks the packets according to the scheme outlined
in Fig. 8. Specifically, by timet1, the AP has fully decoded
both Pa1 andPb1. Even more, byt1 the AP has performed
both forward-decoding and backward decoding for all bits
transmitted so far, i.e., all bits except the few bits at the end
of Pb1.6 Thus, att1 the AP declares both packets decoded. It
waits for a SIFS and acks packetPa1. Though the ack collides
with the tail of packetPb1, the ack will be received correctly
because Alice cannot hear Bob’s transmission. Bob too will
not be disturbed by the AP’s ack to Alice because practical
transmitters cannot receive and transmit at the same time.
The AP then transmits some random signal to prevent Alice
from transmitting her next packet,Pa2, before Bob’s packet
is acked. The AP knows how long this padding signal should
be since it already has a decoded version of Bob’s packet and
knows its length. After Bob finishes his transmission the AP
acks him as well.

One question remains, however, would the offset be-
tween the two colliding packets suffice to send an ack?
Said differently, in Fig. 8, how likely is it thatt2 − t1 >
SIFS+ ACK. If this is unlikely, the AP cannot send both
acks synchronously. One can show that, given 802.11 stan-
dard timing, the likelihood that the time offset between the
two packets is sufficient to send an ack is quite high. We can
easily compute this likelihood for the different versions of
802.11. For the common deployment of backward compati-
ble 802.11g, we prove in the appendix the following.

LEMMA 7.1. In 802.11g, the probability that the time off-
set between two colliding packets is sufficient for sending an
ACK is higher than 93.7%.

Thus, a ZigZag receiver can resolve most collisions without
any modification on the sender side. If the senders can be
modified, ZigZag uses this to reduce the above probability
to zero. Specifically, a ZigZag AP identifies ZigZag-aware
senders during association. The AP always tries to send syn-
chronous acks but if that fails and the sender is ZigZag-
aware, the AP sends the ack asynchronously.

6 This assumes that the receiver tries in parallel to use standard decoding

1

2

3

1

2

3

1

2

3

P1 P1P1

P2 P2 P2

P3 P3P3

(a) Three Collisions

1

2

3

1

2

3

1

2

3

P1 P1P1

P2 P2P2

P3 P3 P3

(b) Irregular Three Collisions

Figure 9—Applying ZigZag to Three Collisions.

8 BEYOND TWO I NTERFERERS

Our description, so far, has been limited to a pair of col-
liding packets. ZigZag, however, can resolve a larger num-
ber of colliding senders. We start by showing via an example
how to extend ZigZag to deal with three colliding senders.
We then generalize the approach to many senders.

Consider the scenario in Fig. 9a, where we have three
collisions from three different senders. We refer to the col-
liding packets byP1, P2 andP3, and collision signals byC1,
C2 andC3. The figure shows a possible decoding order. We
can start by decoding chunk 1 in the first collision,C1, and
subtract it fromC2 andC3. As a result, chunk 2 inC2 be-
comes interference-free and thus decodable. Next, we sub-
tract chunk 2 from bothC1 andC3. Now, chunk 3 inC3 be-
comes interference-free; so we decode it and subtract it from
bothC1 andC2. One can use a similar approach to the three
collisions in Fig. 9b. The idea is to find a decoding order such
that, at each point, at least one of the three collisions has an
interference-free chunk ready for decoding.

But, can we always find a decoding order that works? It
turns out that, as long as the collisions satisfies the following
conditions, there will be a chunk decoding order that works.

• There is a chunk in one of the collisions that is interfer-
ence free.

• If Pi denotes the packet from theith transmitter, then for
any k-subset of the packets{P1, · · · ,Pn}, there existsk
collisions,{C1,C2, · · · ,Ck} such that the packets have
combined differently (in terms of offsets) in thesek col-
lisions.

This is analogous to a linear system ofn equations andn
unknowns. The collisions are the linear equations, whereas
the packets are then unknowns. The system is solvable if
the equations are linearly independent, i.e., one cannot derive
one collision by linearly combining the other collisions.

The greedy algorithm below finds a chunk decoding or-
der for any number of collisions that satisfy the above con-
ditions.

• Step 1: For each of the collisions, decode all the over-
hanging chunks that are interference-free.

• Step 2:Subtract the known chunks wherever they appear
in all collisions.

and ZigZag, and takes whichever succeed and passing the checksum.

8

Figure 10—Testbed Topology.The dots refer to GNURadio nodes.

• Step 3:Decode all the new chunks that become interfer-
ence free as a result of Step 2.

• Repeat the last two steps until all the chunks from all the
packets are decoded.

We can prove the following lemma.

LEMMA 8.1. As long as the above conditions are satis-
fied and there are undecoded chunks left out,Step 3always
find a new interference free chunk.

We omit the proof of the above lemma for space limita-
tions. In practice, imperfections in the implementation limit
the maximum number of colliding senders that can be cor-
rectly decoded. In 10.6, we show experimental results for
scenarios with three interfering senders.

9 COMPLEXITY

ZigZag is linear in the number of colliding senders. In
comparison to current decoders, ZigZag requires only two
parallel decoding lines so that it can decode two chunks in
the same time that it would take a current decoder to de-
code one chunk. Furthermore, most of the components that
ZigZag uses are typical to wireless receivers. ZigZag uses
the decoders and the encoders as black-boxes. Correlation,
tracking, and channel estimation are all typical functionali-
ties in a wireless receiver [27, 8].

10 EXPERIMENTAL ENVIRONMENT

We evaluate ZigZag in a 14-node GNURadio testbed.
The topology is shown in Fig. 10. Each node is a commod-
ity PC connected to a USRP GNU radio [18]. Software ra-
dios implement all of the wireless communication system in
software (modulation, coding, etc.), thus providing a suitable
platform for evaluating new receiver designs.
(a) Hardware and Software Environment.We use the Uni-
versal Software Radio Peripheral (USRP) [18] for our RF
frontend. USRP is a generic RF frontend developed specifi-
cally for the GNU Radio SDR. We use the RFX2400 daugh-
terboards which operate in the 2.4GHz range. The software
for the signal processing blocks is from the open source
GNURadio project [10].
(b) Modulation. ZigZag uses a modulation/demodulation
module as a black-box and hence can work with a variety
of modulation schemes. Our implementation, however, uses
Binary Phase Shift Keying,BPSK, which is the modulation
scheme that 802.11 uses at low rates.

(c) Configuration Parameters.We use the default GNURa-
dio configuration, i.e., on the transmitter side DAC Rate is
128e6 samples/s, Interpolation Rate is 128, number of sam-
ples per symbol is 2. On the receiver side, the ADC rate is
64e6 samples/s and the Decimation Rate is 64. Given the
above parameters and a BPSK modulation, the resulting bit
rate is 500kb/s. Each packet consists of a 32-bit preamble, a
1500-byte payload, and 32-bit CRC.
(d) Implementation Flow Control. On the sending side,
the network interface pushes the packets to the GNU soft-
ware blocks with no modifications. All the action is at the
receiver. First, the packet is detected using standard methods
built in the GNURadio software package. Second, we try to
decode the packet using the standard approach (i.e., using the
BPSK decoder in the GNURadio software). If standard de-
coding fails, we use the algorithm in§5.1 to detect whether
the packet has experienced a collision, and where exactly the
colliding packet starts. If a collision is detected, the receiver
matches the packet against any recent reception, as explained
in §5.2. If no match is found, the packet is stored in case it
helps decoding a future collision. If a match is found, the re-
ceiver performs chunk-by-chunk decoding on the two colli-
sions, as explained in§5.3. Note that even when the standard
decoding succeeds we still check whether we can decode a
second packet with lower power (i.e., a capture scenario).
(e) Compared Schemes.We compare the following:

• ZigZag: This is a ZigZag receiver as described in§5 aug-
mented with the backward-decoding described in§6.

• Current 802.11: This approach uses the same under-
lying decoder as ZigZag but operates over individual
packet.

• Collision-Free Scheduler:This approach also uses the
same basic decoder but prevents interference altogether
by scheduling each sender in a different time slot.

(f) Metrics. We employ the following metrics:

• Bit Error Rate (BER):The percentage of incorrect bits
averaged over every 100 packets.

• Packet Loss Rate (PER):This is the percentage of in-
correctly received packets. We consider a packet to be
correctly received if the BER in that packet is less than
10−3. This is in accordance with typical wireless design,
which targets a maximum BER of 10−3 before coding
(and 10−5 after coding) [3, 31].7

• Throughput:This is the number of delivered packets nor-
malized by the GNU Radio transmission rate. Again a
packet is considered delivered if the uncoded BER is less
than 10−3. In comparison to packet loss rate, the through-
put is more resilient to hidden terminals in scenarios that
exhibit capture effects. This is because the terminal that
captures the medium transmits at full rate and gets its

7For example, 802.11a target packet error rate (PER) is 0.1 fora packet
size of 8000 bits. Given a maximum uncoded BER of 10−3, practical chan-
nel codes like BCH Code(127,99) and BCH Code(15,5) achieve the desired
PER.

9

packets through, causing unfairness to the other sender,
but little impact on the overall throughput.

10.1 Setup

Since ZigZag acts exactly like current 802.11 receivers
except when a collision occurs, our evaluation focuses on
scenarios with hidden terminals, except in§10.5 where we
experiment with various nodes in the testbed irrespective of
whether they are hidden terminals. In every run, two or more
senders transmit 500 packets to an access point. The AP (i.e.,
the receiver) logs the received signal and the logs are pro-
cessed offline with the evaluated receiver designs.

Software radios are incapable of accurately timing their
carrier sense activity (CSMA) because they perform all sig-
nal processing functionalities in user mode on the PC. To
approximate CSMA, we take the following measures. First,
we setup an 802.11a node next to each of our USRP nodes.
The objective is to create an 802.11a testbed that matches
the topology in our USRP testbed but uses standard 802.11a
cards, and copy the results of carrier sense from it to our
USRP testbed.

For each USRP experiment, we check whether the corre-
sponding 802.11a nodes can carrier sense each other. Specif-
ically, we make each pair of the 802.11 nodes transmit at full
speed to a third node considered as an AP, log the packets,
and measure the percentage of packets each of them delivers
to the AP. Next, we try to recreate the same behavior us-
ing the corresponding USRP nodes, where each packet that
was delivered in the 802.11 experiments results in a packet
delivery in the USRP experiments between the correspond-
ing sender-receiver USRP pairs. Lost 802.11 packets are di-
vided into two categories: collisions and errors. Specifically,
a lost 802.11 packet that we can match with a loss from
the concurrent sender is considered as a collision loss. Other
losses are considered as medium errors and ignored. We try
to make each USRP experiment match the collisions that
occurred in the corresponding 802.11a experiment by trig-
gering as many collisions as observed in the 802.11a traces.
The USRP experiments are run without CSMA. Each run
matches an 802.11 run between the corresponding 802.11
nodes. Each sender first transmits the same number of pack-
ets that the corresponding 802.11 correctly delivered in the
matching 802.11 run. Then both senders transmit together as
many packets as there were collision packets in the matching
802.11 run.

Software radios also cannot time 802.11 synchronous
acks. Given the 802.11a traces, we know when a collision
will occur, and that the sender should retry the packet, in
which case the sender transmits each packet twice. However,
if the ZigZag AP manages to decode using a single collision,
we ignore the retransmission and do not count it against the
throughput.

10.2 Micro-Evaluation

We examine the role of various components of ZigZag.

 0

 1

 0 2000 4000 6000 8000 10000 12000

E
rr

or
?

Bit #

(a) Error Distribution due to Residualδf .

1 1 1 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 1 0

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 6 11 16

S
of

t v
al

ue

Bit #
(b) ISI Prone Symbols

Figure 11—Effects of Residual Frequency Offset and ISI.

Table 1—Micro-Evaluation of ZigZag’s components

Correlation
False Positives 3.1%
False Negatives 1.9%

Frequency Pkt size(Bytes) 800 1500
& Success With 99.6% 98.2%
Phase Tracking Success Without 89% 0%

ISI Filter
SNR 10dB 20dB
Success With 99.6% 100%
Success Without 47% 96%

(a) Correlation as a Collision Detector:We estimate the
effectiveness of the correlation-based algorithm (§5.1) in de-
tecting the occurrence of collisions. Our implementation sets
the threshold toΓ′(Delta) > β×L×SNR, whereβ is a con-
stant,L is the length of the preamble andSNRis a coarse
estimate of the SNR of the colliding sender, which could
be obtained from any previously decoded packets or from
one of the sender’s interference free chunks. For our testbed,
β = 0.6-0.7 balances false positives with false negatives.
Higher values eliminate false positives but make ZigZag
miss some collisions, whereas lower values trigger collision-
detection on clean packets. Note that neither false positives
nor false negatives produce end-to-end errors. The harm of
false positive is limited to computational resources, because
in ZigZag marking a packet as a collision does not prevent
correct decoding of that packet. The algorithm behaves as if
the packet suffered capture effect and hence is decodable de-
spite being marred by collision. False negatives, on the other
hand, make ZigZag miss opportunities for decoding colli-
sions but do not produce incorrect decoding. Our evaluation
setsβ = 0.65.

For SNRs in[6-20]dB, we run the collision detector on
sets of 500 non-collision packets and 500 collisions, and re-
port the results in Table 1. The average false positive rate
(packets mistaken as collisions) is 3.1% and the average false
negative rate (missing collisions) is 1.9%. Thus, the collision
detector is pretty accurate for our purpose.

10

(b) Frequency and Phase Tracking:We evaluate the need
for the frequency and phase tracking described in§5.4b.
We disable our tracking algorithm (but leave the decoder
unchanged) and provide the encoder with an initially ac-
curate estimate of the frequency offset (as estimated by
the decoder). We run ZigZag with and without tracking on
500 collision-pairs of 1500B packets. We find that without
tracking none of the colliding packets is decodable (BER
> 10−3), whereas with tracking enabled, 98.2% of the col-
liding packets are decodable.

Fig. 11(a) explains this behavior. It plots the error as
a function of the bit index in one of the colliding packets
(black shades refer to errors). It shows that the first 6000
bits are decoded correctly, but as we go further the bits start
getting flipped, and eventually most of the bits are in error.
This is expected since even a small residual error in the fre-
quency offset causes a phase rotation that increases linearly
with time. Hence after some time the phase becomes com-
pletely wrong causing high decoding error rates. This effect
is particularly bad for long packets since the errors accumu-
late over time. Table 1 shows that while ZigZag can decode
89% of the 800Byte packets without phase tracking, none
of the 1500Byte packets is successfully decoded unless we
enable phase tracking.

(c) Effect of ISI: Fig. 11(b), shows a snapshot of the ISI-
affected received bits in our testbed. Recall that BPSK rep-
resents a “0” bit with -1 and a “1” bit with +1. The figure
shows that the value of a received bit depends on the value
of its neighboring bits. For example, a “1” bit tend to take a
higher positive value if it is preceded by another “1”, then if
the preceding bit is a “0” bit.

We evaluate the importance of compensating for these
distortions using the inverse filter described in§5.4d. We try
to decode 500 collision pairs at different SNRs, with the filter
on and off. Table 1 shows that while the filter is not important
at relatively high SNRs, i.e., 20dB, it is necessary in low SNR
regimes. This is expected as at low SNRs, the decoder has to
combat both higher noise and ISI distortions.

10.3 Does ZigZag Decoding Work?

We start our evaluation with the basic hidden terminal
scenario in Fig. 1, where Alice and Bob cannot sense each
other and hence transmit simultaneously to the AP. We would
like to check whether ZigZag decoding could make it look as
if there were no interference and the two senders have been
a priori allocated separate time slots. To do so, we look at
the bit error rate (BER) as a function of SNR. This is a typ-
ical metric in designing wireless receivers [31, 3, 32]. Met-
rics like throughput or packet loss rate cannot distinguishbe-
tween a completely erroneous packet and a packet that was
discarded because of a single incorrect bit that could have
been cheaply corrected with coding, whereas the BER pro-
vides a more detailed picture of the received data.

Fig. 12 plots the BER as a function of SNR. The scenario
in our experiment is symmetric, i.e., Alice and Bob have the

 1e-05

 1e-04

 0.001

 0.01

 5 6 7 8 9 10 11 12

B
it

E
rr

or
 R

at
e

Signal to Noise Ratio (dB)

Collision-Free Scheduler
One Pass ZigZag

ZigZag

Figure 12—Comparison of Bit Error Rate (BER) . ZigZag delivers pack-
ets that are as correct as if they were sent in separate time slots. Further,
if both backward and forward decoding are used, the BER is lower than if
collisions did not occur.

same SNR. The plots are only for ZigZag and the Collision-
Free Scheduler because 802.11 in this scenario performed
extremely poorly with BER close to 0.5. The figure reveals
two basic results.

• At all SNRs, ZigZag decoding allows the receiver to de-
code collisions keeping the bit error close to the BER
when the two packets are sent in separate time slots.

• With forward and backward decoding, the BER averaged
over the explored SNRs is 1.4x lower than if we had no
interference at all. Thus, two collisions are more resilient
to bit errors than two packets sent in separate time slots.

10.4 Scenarios with Capture Effect

In contrast to the previous experiment where Alice and
Bob have the same SNR at the AP, we now consider scenar-
ios where one of the senders has a higher SNR, and thus can
fully or partially capture the medium [25, 19]. Again we con-
sider a scenario where Alice and Bob concurrently transmit
to the same AP. We start from a setting where both senders
are equal distance from the AP, i.e.SNRA = SNRB and hence,
SINR= SNRA−SNRB = 0. Gradually, we move Alice closer
to the AP. As Alice moves closer, her SNR at the AP in-
creases with respect to Bob’s, making it easier for the AP to
capture Alice’s signal. We plot the result of this experiment
in Fig. 13, for the case when the nodes use a Collision-Free
Scheduler, current 802.11, and ZigZag.

Fig. 13 shows that ZigZag improves both throughput and
fairness. In 802.11, when Alice and Bob are equal distance
from the AP, their signals collide, and neither can be re-
ceived. As Alice moves closer, her signal improves with re-
spect to Bob’s. When Alice’s signal is 4-6 dB higher than
Bob’s, the capture effect starts, and we see a slight increase
in Alice’s throughput. As Alice gets even closer, Bob’s sig-
nal becomes irrelevant. Note, however, that at all times Bob
is never received at the AP with 802.11. In contrast, with
the Collision-Free Scheduler, both Alice and Bob get a fair
chance at accessing the AP. But the scheduler cannot exploit
that as Alice gets closer, the capacity increases [32], making
it possible to decode both Alice and Bob.

ZigZag outperforms both current 802.11 and the
Collision-Free Scheduler. When Alice and Bob are equal dis-

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

A
lic

e’
s

T
hr

ou
gh

pu
t

Signal to Interference Ratio (SNR a - SNR b) (dB)

ZigZag
802.11

Collision-Free Scheduler

(a) Alice’s Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

B
ob

’s
 T

hr
ou

gh
pu

t

Signal to Interference Ratio (SNR a - SNR b) (dB)

ZigZag
802.11

Collision-Free Scheduler

(b) Bob’s Throughput

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16

T
ot

al
 T

hr
ou

gh
pu

t

Signal to Interference Ratio (SNR a - SNR b) (dB)

ZigZag
802.11

Collision-Free Scheduler

(c) Total Throughput

Figure 13—Normalized Throughput in Scenarios with Capture Effects.
The figure plots the throughput of the hidden terminals Alice and Bob, as
Alice moves closer to the AP, i.e., asSINR≈ SNRA − SNRB increases.
It shows that ZigZag achieves higher throughput than both 802.11 and the
Collision-Free Scheduler. ZigZag is also fairer than current 802.11 where
Bob cannot get any packets through.

tance from the AP, it ensures that they are both received, as
if they were allocated different time slots. As Alice moves
closer to the AP, the capture effect starts kicking off. As a
result, the AP can decode Alice’s signal without the need
for a second collision. The AP then subtracts Alice’s signal
from the collision and decode Bob’s packet, and thus the total
throughput becomes twice as much as the radio transmission
rate. As Alice gets even closer, her signal completely covers
Bob’s signal making it impossible to decode Bob’s packet.
This experiment reveals the following:

• In scenarios with capture effects, ZigZag outperforms
both 802.11 and the Collision-Free Scheduler.

• Neither 802.11 nor the Collision-Free Scheduler can ben-
efit from scenarios where the network capacity is higher
than the sum of the rates of the two senders. In contrast,
ZigZag can exploit such scenarios to double the through-
put of the network, decoding both hidden terminals using
a single collision. Furthermore, ZigZag does not need to
be explicitly informed of the capacity of the network to
exploit it. It naturally transitions to exploit the increased
capacity as the SNR increases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
um

ul
at

iv
e

F
ra

ct
io

n

Throughput

ZigZag
802.11

Figure 14—Normalized Throughput for the Whole Testbed.The figure
shows a CDF of the throughputs in our testbed for pairs of competing flows,
for both hidden and non-hidden terminal scenarios. ZigZag improves the
average throughout in our testbed by 31%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

F
ra

ct
io

n

Loss Rate

ZigZag
802.11

Figure 15—Loss Rate for the Whole Testbed.The figure shows a CDF
of the packet loss rate in our testbed for pairs of competing flows, for both
hidden and non-hidden terminal scenarios. ZigZag improves the average
loss rate in our testbed from 18.9% to 0.2%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Z
ig

Z
ag

802.11

Maximum density

Figure 16—Scatter Plot of Flow Throughputs. The figure shows a scatter
plot of ZigZag and 802.11 throughputs for each sampled sender-receiver
pairs. ZigZag helps when there is a hidden terminal scenario but never hurts.

10.5 Testbed Throughput and Loss Rate

In this section, we measure how much ZigZag improves
the performance in our indoor GNURadio testbed, shown in
Fig. 10. The testbed has 14 nodes that form a variety of line-
of-sight and none-line-of-sight topologies. While up to now
we have focused only on scenarios with hidden terminals,
in this section, we experiment with various testbed nodes
irrespective of whether they are hidden terminals. Specifi-
cally, we pick two senders randomly. We pick an AP ran-
domly from the nodes reachable by both senders. We mimic
CSMA as explained in§10.1 and make each sender transmit

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

F
ra

ct
io

n

Loss Rate

ZigZag
802.11

Figure 17—CDF of Loss Rate at Hidden Terminals. The figure zooms on
scenarios with full or partial hidden terminals. ZigZag reduces the average
loss rate for hidden terminals in our testbed from 82.3% to about 0.7%.

100 packets to the AP. We repeat the experiment with ran-
dom set of sender pairs and different choice of APs. Among
the sender pairs that we sampled 12% are perfect hidden ter-
minals, 8% can sense each other partially, and 80% can sense
each other perfectly.

First, we compare the throughput and loss rate under
current 802.11 and ZigZag, for the whole network. Fig. 14
plots a CDF of the aggregate throughput, i.e., the sum of
the throughput of each pair of concurrent senders. The fig-
ure shows that in our testbed, ZigZag increases the av-
erage throughput by 31%. This improvement arises from
two factors. For all cases where the normalized aggregate
throughput is less than 1, the improvement comes purely
from ZigZag’ s ability to resolve successive collisions. For
cases where the aggregate throughput is higher than 1, the
improvement is caused by a combination of being able to
resolve a single collision whenever possible, and successive
collisions otherwise. Note that interference cancellation ap-
plies only to cases whose throughputs are between 1.5 and
2, which are very few. Fig. 15 plots a CDF of the loss rates
of individual sender-receiver pairs, i.e., the flows we exper-
imented with. The figure shows that in our testbed, ZigZag
reduces the average packet loss rate from 18.9% to 0.2%.

Next, we check that a ZigZag AP is always a conserva-
tive choice and does not hurt any flow. Fig. 16 shows a scatter
plot of the throughout of every sender-receiver pair in our ex-
periments, both under 802.11 and ZigZag. The figure shows
that ZigZag consistently improves the throughput and does
not hurt any sender-receiver pair.

Next, we zoom on the hidden terminals in our testbed,
which we define as sender pairs that fail to sense each other
fully or partially. Fig. 17 shows a CDF of the packet loss rate
in transfers that suffered such hidden terminal scenarios.The
figure shows that ZigZag improves the average loss rate for
hidden terminals in our testbed from 82.3% to 0.7%. Further-
more, for some severe cases, the packet loss rate goes down
from 99-100% to about zero.

10.6 Many Hidden Terminals

In §8 we generalized ZigZag to deal with more than a
pair of colliding sources. Here, we evaluate how ZigZag per-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C
um

ul
at

iv
e

F
ra

ct
io

n

Throughput

Alice
Bob

Calvin

Figure 18—ZigZag’s Performance with Three Hidden Terminals. Cu-
mulative distribution of the throughput of three hidden terminals.

forms on three collisions. In this experiment, we have three
hidden terminals that transmit concurrently to a random AP.
Fig. 18 shows the CDF of the throughput under ZigZag. The
figure shows that all three senders see a fair throughput that
is around one third of the medium throughput. Thus, even
with more than a pair of colliding senders, ZigZag performs
almost as if each of the colliding senders transmitted in a
separate time slot.

11 CONCLUSION

The paper presents ZigZag, a new receiver design that de-
codes 802.11 collisions. It shows that ZigZag addresses the
hidden terminal problem in WLANs, significantly improving
the throughput and loss rate. We believe ZigZag can provide
benefits in scenarios other than those explored in the paper.
For example, it motivates a more aggressive MAC design
that exploits concurrent transmissions in order to increase
spatial reuse and network throughput. Also, recent work on
analog network coding allows a receiver to decode collisions
when it already knows one of the colliding packets. It seems
plausible that ZigZag can be combined with analog network
coding to improve concurrency, address hidden terminals,
and collect network coding gains.

12 ACKNOWLEDGMENTS

We thank Mythili Vutukuru, Chris Ng, Hari Balakrish-
nan, Szymon Chachulski and Ashish Khisti for their insight-
ful comments.

REFERENCES

[1] Broadcom Wireless LAN Adapter User Guide.
[2] Experimental Study of Hidden-node Problem in IEEE 802.11

Wireless Networks.
[3] ISL3873: Wireless LAN Integrated Medium Access

Controller with Baseband Processor, 2000.
[4] N. Ahmed, V. Shrivastava, A. Mishra, S. Banerjee, S. Keshav,

and K. Papagiannaki. Interference Mitigation in Wireless
LANs using Speculative Scheduling (extended abstract). In
ACM Mobicom, 2007.

[5] J. Andrews. Interference cancellation for cellular systems: A
contemporary overview.IEEE Wireless Communications,
2005.

13

[6] V. Bharghavan, A. J. Demers, S. Shenker, and L. Zhang.
MACAW: A Media Access Protocol for Wireless LAN’s. In
ACM SIGCOMM 1994.

[7] D. G. Brennan. On the Maximal Signal-to-Noise Ratio
Realizable from Several Noisy Signals.Proc. IRE, 43:1530,
October 1955.

[8] P. Castoldi.Multiuser Detection in CDMA Mobile Terminals.
Artech house Publishers, 2002.

[9] Y.-C. Cheng, J. Bellardo, P. Benk, A. C. Snoeren, G. M.
Voelker, and S. Savage. Jigsaw: solving the puzzle of
enterprise 802.11 analysis. InSIGCOMM, 2006.

[10] G. FSF. Gnu radio - gnu fsf project.
http://www.gnu.org/software/gnuradio.

[11] C. L. Fullmer and J. J. Garcia-Luna-Aceves. Solutions to
Hidden Terminal Problems in Wireless Networks. In
SIGCOMM, pages 39–49, 1997.

[12] R. G. Gallager. A Perspective on Multiaccess Channels.
IEEE Transactions on Information Theory, IT-31(2), 1985.

[13] M. Gast.802.11 Wireless Networks. O’Reilly, 2005.
[14] J. Geier. Snr cutoff recommendations, 2005.

http://www.wi-fiplanet.com/tutorials/article.php/3468771.
[15] R. Gummadi, D. Wetherall, B. Greenstein, and S. Seshan.

Understanding and Mitigating the Impact of RF Interference
on 802.11 Networks. InSIGCOMM, 2007.

[16] D. Halperin, J. Ammer, T. Anderson, and D. Wetherall.
Interference Cancellation: Better Receivers for a New
Wireless MAC. InHotnets, 2007.

[17] J. Hou, J. Smee, H. D. Pfister, and S. Tomasin. Implementing
Interference Cancellation to Increase the EV-DO Rev A
Reverse Link Capacity.IEEE Communication Magazine,
2006.

[18] E. Inc. Universal software radio peripheral. http://ettus.com.
[19] G. Judd and P. Steenkiste. Using Emulation to Understand

and Improve Wireless Networks and Applications. InNSDI,
2005.

[20] P. Karn. MACA–A New Channel Access Method for packet
Radio.9th Computer Networking Conf., 1990.

[21] S. Katti, S. Gollakota, and D. Katabi. Embracing Wireless
Interference: Analog Network Coding. InACM SIGCOMM
2007.

[22] S. Khurana, A. Kahol, and A. P. Jayasumana. Effect of
Hidden Terminals on the Performance of IEEE 802.11 MAC
Protocol, 1998.

[23] A. Kochut, A. Vasan, A. Shankar, and A. Agrawala. Sniffing
out the correct Physical Layer Capture model in 802.11b,
2004.

[24] E. A. Lee and D. G. Messerschmitt.Digital
Communications. Boston: Kluwer Academic, 1988.

[25] J. Lee, W. Kim, S.-J. Lee, D. Jo, J. Ryu, T. Kwon, and
Y. Choi. An Experimental Study on the Capture Effect in
802.11a Networks, 2007.

[26] Y. Li, L. Qiu, Y. Zhang, R. Mahajan, Z. Zhong,
G. Deshpande, and E. Rozner. Effects of Interference on
Wireless Mesh Networks: Pathologies and a Preliminary
Solution. InHotNets, 2007.

[27] H. Meyr, M. Moeneclaey, and S. A. Fechtel.Digital
Communication Receivers: Synchronization, Channel
Estimation, and Signal Processing. John Wiley & Sons,
1998.

[28] A. Muqattash and M. Krunz. CDMA-Based MAC Protocol
for Wireless Ad Hoc Networks. InACM MOBIHOC, 2003.

[29] Netgear. Reference Manual for the NETGEAR ProSafe
802.11g Wireless Access point WG102.

[30] C. Reis, R. Mahajan, M. Rodrig, D. Wetherall, and
J. Zahorjan. Measurement-Based Models of Delivery and
Interference. InSIGCOMM, 2006.

[31] J. K. Tan. An Adaptive Orthogonal Frequency Division
Multiplexing Baseband Modem for Wideband Wireless
Channels. Master’s thesis, MIT, 2006.

[32] D. Tse and P. Vishwanath.Fundamentals of Wireless
Communications. Cambridge University Press, 2005.

[33] D. Tse, P. Viswanath, and L. Zheng. Diversity-Multiplexing
Tradeoff in Multiple Access Channels.IEEE Transaction on
Information Theory, pages 1859–74, 2004.

[34] S. Verdu.Multiuser Detection. Cambridge University Press,
1998.

[35] S. Verdu and S.Shamai. Spectral Efficiency of CDMA with
Random Spreading.IEEE Transaction on Information
Theory, pages 622–40, 1999.

[36] A. J. Viterbi. Very Low Rate Convolutional Codes for
Maximum Theoretical Performance of Spread-Spectrum
Multiple-Access Channels.IEEE Journal on Selected Areas
in Communications (JSAC), 8:641–649, May 1990.

[37] C. Ware, J. Judge, J. Chicharo, and E. Dutkiewicz. pages
159–163 vol.1.

[38] I. . WG. Wireless lan medium access control (mac) and
physical layer (phy) specifications.Standard
Specification,IEEE, 1999.

[39] G. Woo, P. Kheradpour, and D. Katabi. Beyond the Bits:
Cooperative Packet Recovery Using PHY Information. In
ACM MobiCom, 2007.

[40] K. Xu, M. Gerla, , and S. Bae. Effectiveness of RTS/CTS
Handshake in IEEE 802.11 Based Ad Hoc Networks.In Ad
Hoc Network Journal, 2003.

[41] J. Zhu, X. Guo, S. Roy, and K. Papagiannaki. CSMA
Self-Adaptation based on Interference Differentiation. In
IEEE Globecom, 2007.

APPENDIX
A. Proof of Lemma 7.1Let us denote the duration of the slot

time by S, ACK duration byACK, SIFS duration bySIFS, and
the initial congestion window byCW. We need the offset between
the two colliding packets in the second collision to be greater than
SIFS+ACK. Since in the second collision, Alice and Bob randomly
pick a slot in the congestion window of size 2CW, the probability
that Alice picks a slot close enough to Bob to have an offset of less
than SIFS+ACK is upper bounded bySIFS+ACK

CW.S . Thus the proba-
bility that the offset between the packets suffices to send an ACK
is lower bounded by 1− SIFS+ACK

CW.S . For the backward-compatible
802.11g networks, the parameters areS = 20µs, ACK = 30µs,
SIFS= 10µs [13]. Substituting in the above equations, we find that
the success probability is at least 0.9375.

14

