
Massachusetts Institute of Technology

Artificial Intelligence Laboratory

GT48 Utilitu Proarams
and the

LISP Oisolau Slave

by

Michael Beeler, Joseph D. Cohen, John L. White

Abstract

This memo
debugger;
package.
slave, and

describes two GT40 programs: URUG, an octal micro-
and VT87, a Datapoint simulator and general display
There is also a description of the MITAI LISP display
how it uses VT87 as a remote graphics slave.

Work reported herein was conducted at the Artificial Intelligence
Laboratory, a Massachusetts Institute of Technology research program
supported in part by the Advanced Research Projects Agency of the
Department of Defense and monitored by the Office of Naval Research
under Contact number N88O14-78-A-8362-80085.

Working Papers are informal papers intended primarily for internal
use.



PAGE 2

Contents

Contents 2
Introduction 3
MICRORUG USER'S MANUAL 5
VT07 18
Datapoint 18
General Display Package 28
Error Codes 24
LISP Slave System 25
Discrepancies 38
Lies, All Lies 31
Appendix 1 -- LISP Display Slave Commands 32
Appendix 2 -- Relevant ITS Files 43
Appendix 3 -- Relevant Humans, Credits 44



PAGE 3

Introduction

This memo describes two general utility programs for

the GT48: URUG, Michael Beeler's micro-debugger, and

VT87, a two part program consisting of a datapoint

simulator, and a general graphics package, written by

Pitts Jarvis and Joe Cohen.

URUG is a small (188800 byte) octal debugger wi-th limited

breakpoint facility, useful for debugging programs in

PDPll's with little spare core.

VT87 is used to make the GT4B into an alphanumerics

terminal and a graphics display. VT87 was designed to

meet the needs of higher level languages like LISP. It

draws heavily on our experience with LOGO, where much

thought has been given to manipulation of displays

within a general high level language. This experience

led to the incorporation of advanced features, such as

display list subroutining. On the MIT AI system, the

GT40 is used graphically by the DRAW program and by

LISP.



PAGE 4

This memo discusses all the GT48 programs (URUG, ROM

Loader, VT87) in detail, and briefly outlines the use

of VT87 by LISP.



PAGE 5

MICRORUG USER'S MANUAL

M. Beeler, August 1973

Microrug is an octal debugger for the DEC GT-48 computer/display.

The user should be familiar with the PDP-11/85, which is the

minicomputer in the GT-48.

Microrug (URUG for short) occupies 1888 (octal) consecutive bytes of

memory, and uses the keyboard for input and the CRT display for output.

The information displayed is in four lines. New information appears

on the bottom line, and when that line is completed, the lines are

scrolled upwards the previous top line is lost, and the new bottom

line is blank. To help the user tell which line is which, a dot is

displayed at the left of the screen between the top and second lines.

URUG is used for three different functions: examining (and depositing

into) memory locations, setting breakpoints, and starting up programs.

There are two versions of URUG, one which uses the JMP instruction

for breakpoints and one which uses BPT. They are similar, so the JMP

version is described below, and then differences in the BPT version

are noted.



PAGE 6

To examine a location, type its address in octal, and a space. URUG

types the current contents of that location. To change the contents,

type the desired contents and a space. The new contents are deposited

in the location, and the display scrolled to present a fresh line for

more commands.

If no argument precedes the space, then nothing is deposited, and the

display is scrolled as usual. (This also applies to typing a space as

the first character on a fresh line; no action is taken except to

scroll the display.)

If a mistake is made in typing a numeric argument (such as an address

or new contents), typing rubout resets URUG as if none of the argument

were typed.

If a linefeed

but then also

last location

If you try to

a word), URUG

is typed instead of a space, URUG takes the same action

types the address and contents of the location after the

examined.

examine an odd-numbered location (i.e., the left byte of

acts as if you typed an address one less.

URUG's starting address, BEG, is the first location in URUG, often



PAGE 7

assembled to be 37880. When URUG is started, it saves general

registers RB through RS, and restores them when you ask it to start

up a program. Thus, while URUG is running, 1777800 through 177787

contain URUG's values and not those of the user's program. The user's

general registers are referenced by typing RO through RS as addresses.

Since the locations actually examined are inside URUG, linefeed acts

strangely. Specifically, user register contents are stored in every

other word, so two linefeeds after RO is the same as typing R1.

Examining non-existent locations (such as above 37776) causes a

timeout trap through location 4. To avoid losing URUG's copy of the

user general registers, restart URUG at RESUME instead of BEG (that is,

48 bytes later).

A breakpoint consists of the instruction, JMP BEG, where BEG is the

starting address of URUG. A breakpoint is set by typing B. If no

argument is given, the breakpoint Is placed at zero.

If a number precedes the B, that number is used as an address at which

to set the breakpoint. Evenness of the B argument is not checked, so

trying to set a breakpoint at an odd address causes an odd address

error trap through location 4 (again, restart URUG at BEG+48).

When URUG is started (or restarted, at BEG+48), it checks whether any



PAGE 8

breakpoint is set. If not, it merely scrolls the display and waits

for commands. If so, it restores the contents of the breakpoint

location (and following word), scrolls the display, and automatically

examines the breakpoint location to let you know it's just hit and

restored the breakpoint.

Typing B when the breakpoint (there is only one) is already set is the

same as restarting URUG at BEG+48; it restores the breakpoint contents,

etc.

Typing G, preceded by a number, restores the general registers to the

user's values, and transfers to the argument of the G. G with no

argument transfers to the location last G'ed. URUG's memory of what

this location is may be examined and modified as R7.

The G command, like B, does not check for evenness of its argument.

If you try to G to an odd address, the user values are already

restored to the machine's general registers, so it does not matter

whether you restart at BEG or BEG+48.

Two details of URUG are equivalent characters and typing too much.

Because of its simple type-in routines, carriage return and tab, as

well as various other control characters, have the same effect as



PAGE 9

space. Although R, B, and G are echoed as upper case, they must be

typed as lower case. Except for these characters, and the ten digits

8 - 9, all characters = rubout.

If more than 24 (decimal) characters are typed, by URUG and/or the

user, before a scrolling occurs, then display commands will be

overwritten and URUG will probably have to be reloaded to be useful.

To be exact, URUG could still be used to replace the clobbered display

instructions at the very top of itself (as long as the garbaged

commands aren't making the PDP-11 trap). 22 characters will cause the

next command line to possibly be run-on, but this is temporary and

easily ignored.

If the user wants to resume his own display program before starting

up his PDP-11 program, the following sequence is suggested:

R7 xxxxxx USRBEG (set G address)

172800 xxxxxx USRDPC (start user's display program)

G (start user's POP-11 program)

BPT VERSION -- DIFFERENCES FROM JMP VERSION

The location RESUME, at which to start after time-out

and odd address traps, is BEG+34 instead of BEG+40.



PAGE 18

A breakpoint in this version consists of the instruction, BPT.

It requires that:

(1) the user must have set up an appropriate BPT trap vector, namely:

14 contains BEG+162 (=HITBRK), URUG's breakpoint handler

16 contains 348, to set CPU priority to 7

(2) the user must have set up an appropriate stack pointer in R6,

such that the BPT can push its 2 more words without trapping

(3) RG must be so set up before any G command, since G'ing

is done by pushing PS, PC, and executing an RTI

It has the advantages that:

(1) the breakpoint occupies only one word

(2) the BPT trap vector automatically protects URUG from interrupts

(3) the N, Z, V and C condition codes are preserved

through a breakpoint-and-proceed sequence

(4) the user's processor status may be examined and modified

(5) URUG code saved allows automatic display restarting (see below)

In the BPT version, the saved PS may be examined and modified as R8.

While URUG is running, the user's PC and PS are popped off the stack

(into pseudo-R7 and R8), so examining R6 yields the user's RG before



PAGE 11

the BPT, and this may be modified without losing the PC or PS.

URUG does not use a stack, except for the breakpoint handler and

setting up the RTI for the G command. (The JMP version of URUG

never uses a stack.)

The BPT version's G command also restarts the display before it starts

the user's program. The address loaded into the Display Program

Counter may be examined and modified as R9. It is initially that of

URUG's own display program.

Some thought has been given to making URUG position-independent.

It seems unlikely. Instead, it is suggested that you re-assemble it

for whatever starting address you want. It has assemble-time teletype

input to specify JMP or BPT version, as well as starting address.

A starting address not ending in zero may cause it to use a few more

than 1888 bytes.

GT-40 BOOTSTRAP LOADER ("version S8S, release R81")

The main point of this discussion is explaining what core locations

the loader clobbers.

The loader operates in two modes. First, it echoes like a teletype,

sending each character from the keyboard to the PDP-18, and displaying



PAGE 12

each character from the POP-18 on the screen.

The loader (in both modes) starts its stack at 15778 and works down.

The echoing mode uses 2+2n stack words, where n is the number of

keyboard characters typed which have not yet been sent to the PDP-18.

Thus it uses at least 4 words, and if typing is not rapid, only 4.

This is fewer words than used in the loading mode, as discussed below.

The echoing mode also uses several locations in low core, mainly for

display words, but also for a power-fail vector. Each character from

the POP-18 is stored in a separate word with left byte = 8, starting

at location 32. Thus, after receiving c characters from the PDP-10,

the following locations in low core will be clobbered:

0 <- 16880000 ;:DISPLAY JUMP

2 <= 166756 ;TO "DISPRG" IN LOADER

24 <= 1668018 ;POWER FAIL PC = START+10

26 <= 0 ;POWER FAIL STATUS

38 <= 0 ;START OF DISPLAY LIST

32 <= charl ;FIRST CHARACTER

34 <= char2 ;SECOND CHARACTER

etc.



PAGE 13

38+2c <- char c ;c-th CHARACTER

32+2c <- 168888 ;DISPLAY JUMP

34+2c <- 8 ;TO 0

36+2c <= 160888 ;DISPLAY JUMP

48+2c <- 8 ;TO 8

42+2c and following are not clobbered

The loading mode uses 8 stack words. The stack pointer is initialized

to 15778 instead of 15778+2, so the first location on the stack, at

15778, is not clobbered. The next lower 8 locations, 15758 through

15766 inclusive, are clobbered during loading. Trying to load into

these locations will usually cause random data to be loaded, or else

transfer to random locations when a loader RTS PC pops loaded data

into the PC.

Both the echoing and the loading modes use three particular locations

as I/O character buffers:

15772 (P18IC) is clobbered by characters read

15774 is also clobbered by characters read

15776 (P1OC) is used for characters to be sent to the

PDP-1,. and will contain 0 after loading

When the loader switches from echoing to loading mode, it turns, off



PAGE 14

the display and no longer references low core locations (except to

load data into them). Thus, all the display words and the power-fail

vector can be overwritten by the loading mode. The difficulty is if

one wishes to merge-load two or more programs. If one of the programs

before the last one occupies these low core locations, then restarting

the bootstrap will clobber it. There are two simple alternatives;

both involve telling the PDP-18 all the programs you want merged,

before any are loaded. The POP-18 can then either:

(1) concatenate all the programs and not give the

"end of load" signal until all are loaded; or

(2) at the end of each program, give the "start up program" signal

with address 166520 ("LOAD"), which simply restarts the loading

mode. After the last program it can give the "end of load" signal.

(Note on a GT-48 (PDP-11/8S) quirk: 177788 through 177787 are RO

through R7 as far as the examine and deposit switches are concerned,

but MOV Rm,e#17770n

always acts like n -= (i.e., deposits in RO = 177788). The data

also shows up in 177718, apparently a CPU temporary register.]

n = 8/1 = word/byte

ee = offset, 8 - 77

ff = offset, 8 - 377



PAGE 15

8 HALT 100Off BPL

1 WAIT 1004ff BMI

2 RTI 1018ff BHI

3 BPT 1814ff BLOS

4 lOT 1028ff BVC

5 RESET 1024ff BVS

6 RTT 1030ff BCC - BHIS

7 - 77 UUO 1034ff BCS = BLO

1D0 JMP

20R RTS

218 - 227 UUO

23m SPL

240 - 277 CC's: 28 0/1 = cr/set

300 SWAB 10 N

4ff BR 4 Z

18ff BNE 2 V

14ff BEQ 1 C

28ff BGE

24ff BLT 104000

38ff BGT to EMT

34ff BLE 184377

4RDD JSR

nOSODD CLR(B) 1844880



PAGE 16

n51DO COM(B)

n85200 INC(B)

n853DD DEC(B)

n54DD NEG(B)

nO55DD ADC(B)

nG56DD SBC(B)

n5700D TST(B)

nOO6O ROR(B)

n861DD ROL(B)

n862DD ASR(B)

n063DD ASL(B)

64mm MARK

65SS MFPI

66DD MTPI

6700 SXT

7000 - 7777

nlSSDD MOV(B)

n2SSDD CMP(B)

n3SSDD BIT(B)

n4SSDD BIC(B)

nSSSDD BIS(B)

6SSDO ADDO

78RSS MUL

to

184777

TRAP

186488 - 186477 UUO

1865SS MFPD

1866DD MTPD

186788 - 187777 UUO

UUO

16SSDD SUB



71RSS DIV

72RSS ASH

73RSS ASHC

74ROD XOR

75088 - 76777 UUO

77Ree SOB

l7xxxx FPP's

PAGE 17



PAGE 18

VT87

VT87 can be thought of as two programs in one: a

Datapoint simulator and a general purpose display

package. The strange name "VT87" is derived from

DEC's alphanumeric display terminal, "VT85". (The

etymology of that name is unknown to us.) Our

Datapoint simulator and simple graphics package was

called VT86. The Datapoint simulator and complicated

graphics package is called VT87.

Datapoint

The Datapoint simulator works just like a Datapoint,

except:

the GT40 has both upper and lower case character

display and keyboard (the Al Lab's only such display);

screen size is 73. characters wide by 32. characters

high;

various bits of the console switch register add

different non-datapoint options when on:

bit 8 -- don't blink cursor;

bit 1 -- italicize all characters;



PAGE 19

bit 2 -- insert backspaces (18) into the

display list, instead of moving the cursor

back. This allows overstriking of characters,

When in this mode, VTB7 will space forward one

column (not character) when it gets a move

cursor forward character (30); a move cursor

back (31) moves back one character (not

column); and line feed and move cursor up

(32) move to the same character position (not

column) in the adjacent line.

VT87 does not need padding, (in fact it ignores rubout

(177) the normal Datapoint padding character);

and most important, ^P (28) is an escape character

indicating that the next character is to be interpreted

as a command by the graphics package.



PAGE 20

General Display Package

In this section, character means a teletype character;

word means a PDP-11 16. bit word; and bute means a

PDP-11 8. bit byte. Characters are transmitted as

characters. Words are transmitted as three characters:

low order 6 bits right justified; next 4 bits right

justified; and the high order 6 bits right justified.

Bytes are only transmitted as part of words.

The first character after the escape character (^P) is

a command to the graphics package. The length and

arguments to commands are determined by each command.

The only part of a command transmitted as a character

is the command itself. Everything else is words.

The commands are:

0 A command further decoded by the next character.

This command exists to make VT87 compatible

with existing display proram software. If the

next character is:

1 Load Item command identical with 1 below.



PAGE 21

2 Delete Item command with the following words

being: size of the command, item numbers to be

deleted, and a checksum.

1 Load Item. Followed by: a count of words from the

count word, to (but excluding) the checksum;

item number; words in the display item; and a

checksum. If there is already an item with the

same number, it will be deleted. VT87 expects

the first three words in your list to be: a

set graphics mode to set point; the x

coordinate; and the y coordinate. The item is

initially shown on the screen.

2 Delete Item. Followed by item number to be deleted.

Expunges the item from the GT40.

3 Reset. Restarts the GT40. The GT4B jumps to its

starting address, and sets everything up all

over again. It takes a finite amount of time

before the GT40 can accept another character

after this command, so wait a while (a

thirtieth of a second?) before sending more

goodies. To just wipe out all display items

in the GT4B, treat it like a Datapoint, and

send a home up (35), followed by a clear to end



PAGE 22

of file (37).

4 Turn On Item. Followed by the item number. Puts the

item on the screen.

5 Turn Off Item. Followed by item number. Takes the

item off the screen.

6 Copy Item. Followed by item number of original, item

number of the copy. Creates an identical copy

with the new item number.

7 Move Item. Followed by new x coordinate word, new y

coordinate word. This clobbers the x and y

coordinates into the second and third word of

your original list. The name of this command

implies that the whole item moves in response

to the command. Of course, this is only the

case if there are no set point commands in the

item (other than the expected initial three

words).

8 Change Mode of Item. Followed by item number, new

mode word. This puts the low order 11. bits of

the new mode word into the low order 11. bits

of the first word of the item (which is assumed

to be a set point command.) By disabling

intensity, light pen interrupts, blinking, and



PAGE 23

line type, everywhere in the item except the

first word, one can control these modes for the

entire item with this command.

9 Add to Item. Followed by: size of command (see Load

Item), item number, additions, checksum.

18. Subroutinize Item. Followed by: number of calling

item, number of subroutine item. The

subroutinized item will be inserted into the

calling item, in the manner of a LOGO snap (not

a LISP link). I.E., an item can be called as a

subroutine many times by one list and by more

than one list. This subroutining is limited

only by the size of the display pushdown stack

(currently about 10. deep). (This is done

through a simulated display pushdown

instruction in VT87.)

If the inferior has no set point display

commands (other than the expected first three

words), and has no modes enabled (see Change

Mode) the effect will be to add a copy of the

inferior to the end of the superior, with the

subroutine acquiring the intensity, blinking,

and other mode atributes of the superior.



PAGE 24

Whenever the inferior is changed, (by means of

the Add to Item command), it will change every

place it is called as a subroutine.

11. Unsubroutinize Item. Followed by calling item

number, subroutine item number. The first call

to the subroutine from the calling item is

deleted.

Error Codes

VT07 sends error messages back to the VT07 sends error

messages to indicate internal error conditions. The

error characters are:

0 -- Free storage full; and

34 -- other internal error.

VTB7 does no handshaking on these errors, and does not

abort a command in which they occurred, so the entire

command must be sent.



PAGE 2S

LISP Slave System In order to use the GT40 as a LISP

display slave, the initial DISINI, (which seizes the

slave,) ;should be given two arguments, the second of

which is the quoted ITS device of the GT40. For

instance,

(DISINI 0 'T34)

will try to grab the GT40 on T34. The GT40 has less

display space than the PDP6 or PDP18, and is probably

less efficient in size for most display lists. The

GT48 slave's advantage is that ITS time is not used to

maintain the display, and that it makes several

displays available.

The GT40 slave works exactly like the 6 and 18 slaves,

with exceptions noted in the next two sections:

"Discrepancies" describes real, permanent differences

in the slaves; "Lies, All Lies" describes temporary,

socialist realism type differences which will shortly

disappear.

The rest of this section is a description of some of

the internal workings and structure of the GT48 slave,

which can be ignored by anyone not interested in



PAGE 26

delving in its guts. In order to understand the rest

of the differences beetween 340 and GT48 pictures, it's

necessary to have some idea of how 348 and GT40 lists

are created, stored, and modified.

The LISP GT48 slave is the same program as the 10

slave. If the initial DISINI has a zero or no second

argument, the program tries to sieze and use the 348,

otherwise, it doesn't try to grab the 348, and instead

sends commands to the GT40 through the specified ITS

device. GT40 display lists are created and amended at

the same time and place as 340 display lists. Those

348 display lists sit around in core, but are never

displayed. This explains why DISGORGE works for the

GT48, (those 348 lists are already there); and why

DISGOBBLEs can't be displayed (the slave doesn't have

the opportunity to create GT40 lists corresponding to

the 340 lists being gobbled from disk).

VT07 does not do compacting garbage collects on its

display storage space. This means that large items

will cause display memory to become full, where many

smaller items of the same total size would not. VTB7



PAGE 27

uses a modification of Knuth's "first-fit method" with

doubly linked liberation with boundary tags. (Donald

E. Knuth, The Art of Computer Programming, Volume 1,

Fundamental Algorithms, (Reading, Mass., 1968).) Knuth

observes, (page 447), as a result of some experiments,

that if M is the total number of memory locations

available,

"The memory was able to become over 98% filled

when the block size was small compared to M,

but when the block sizes were allowed to exceed

1/3M (as well as taking on much smaller values)

the memory tended to become "full" when less

than 1/2M locations were in fact needed.

Empirical evidence strongly suggests that,

block sizes larger than 1/18M should not be

used y ith dunamic storaae allocation if

effective operation is expected."

(Currently, free storage starts at about 12888 and runs

to the top of core, making M-28608. Each item incurs

an overhead of 24 bytes in a block seperate from the

display list.)



PAGE 28

348 lists have point mode words scattered throughout.

When one does a DISLOCATE the slave actually grovels

through the entire display item, searches out point

mode words, and modifies them. Because of core

limitations, it was decided that VTB7 wouldn't have

this capability. Programs using VTB7 compensate by not

storing any point mode words in their display lists.

There's only one such word at the head of the list, and

everything else is relative to previous display

instructions. Thus when the GT40 does a (DISLOCATE)

it only zaps two words at the start of the display

item.

Intensity level information, however, is stored by LISP

throughout the list. This is so that different parts

of the same item can have different intensities. There

is no way that the intensity level of a list can be

changed without going through the entire item and

finding and changing each intensity word, which is why

DISCHANGE doesn't work. (It is suggested that other

programs which use VT07 store brightness information in

only the first word, thus enabling the intensity of an

entire item to be changed with the Change Mode



PAGE 29

command.)

The GT48 has no scaling hardware, so it doesn't try to

scale. It does however, have blinking hardware, and

blink information is stored at the head of each list,

and can be turned on and off by the Change Mode command

(LISP DISBLINK).

Features of the GT40 and VT07 that LISP does not

(presently) take advantage of are:

variable line types;

italicst

display list subroutining.



PAGE 38

Discrepancies

The GT48 screen is a window on the lower 3/4 of the 340

screen, i.e., the GT48 is 2088 points wide by 14088

points high.

The LISP GT40 slave cannot:

display the results of a DISGOBBLE, (but it can

DISGORGE);

scale characters or vectors. GT40 characters

are a bit bigger (it is impossible to be exact

about this because of bugs in the 348,) than

340 scale 1 characters. Also there is no

vertical character mode on the GT48.

wraparound;

DISCHANGE.



PAGE 31

Lies, All Lies

There aren't any.



PAGE 32

Appendix 1 -- LISP Display Slave Commands

IN ORDER TO USE THE SLAVE, IT'S BEST TO HAVE AVAILABLE

THE POPS. THERE IS A VERSION THAT WILL ALSO RUN ON THE PDP1B

UNDER ITS, AT SOME DEGRADATION IN PERFORMANCE (BOTH OF THE

SLAVE AND ITS). THE POPS SHOULD BE IN THE RUNNING STATE, AND IF

SIMPLY HITTING THE START SWITCH DOESN'T KEEP THE RUN LIGHT ON,

DEPOSIT ZEROS INTO LOCATIONS 40 AND 41 AND START UP AT 40

THE REMAINDER OF THIS DESCRIPTION OF LISP FUNCTIONS FOR THE

DISPLAY SLAVE USES THE FOLLOWING CONVENTIONS:

X, Y ARE ASSUMED TO BE INTEGER ARGUMENTS TO LINE DRAWING,

POINT INSERTING, AND OTHER SUCH FUNCTIONS

N IS A FIXED-POINT NUMERICAL ARGUMENT DESCRIBED

UNDER PARTICULAR FUNCTIONS

ITEM IS ASSUMED TO BE THE NUMERICAL INDEX OF SOME

DISPLAY SLAVE ITEM. IT IS A QUANTITY SUCH AS IS

RETURNED BY DISCREATE.

BRITE EACH ITEM HAS A BRIGHTNESS LEVEL ASSOCIATED WITH IT,

RANGING BETWEEN 1 AND 8. DEFAULT VALUE = 8.

SCALE EACH ITEM HAS A SCALE, OR MAGNIFICATION, FACTOR

ASSOCIATED WITH IT, RANGEING BETWEEN 1 AND 4.

DEFAULT, AND NORMAL, IS 1; 2 DOUBLES THE LENGTH OF

DRAWN LINES AND TEXT, 3 QUADRUPLES, AND 4 MULTIPLIES



PAGE 33

BY 8. TEXT LOOKS MUCH NICER IF IT IS DRAWN WITH A

LITTLE MAGNIFICATION; GENERALLY 2 IS APPROPRIATE.

FLAG IS AN INDICATOR TELLING WHETHER A GIVEN ACTION

IS TO BE DONE (ON NON-NIL) OR-UNDONE

BSL IS EITHER NIL, IN WHICH CASE THERE IS NO CHANGE, OR

IS A LIST LIKE (BRITE SCALE) INDICATING A SETTING OF

LEVELS FOR A GIVEN ACTION

121. A WELL-KNOWN INTEGER, EASILY RECOGNIZED TO BE THE

SQUARE OF THE FIFTH PRIME, BUT NOT SO EASILY SEEN

AS SUCH WHEN EXPRESSED IN OCTAL AS 171 - THUS WE USE

OCTAL NOTATION EXCEPT WHEN THE STRING OF DIGITS IS

FOLLOWED BY A .

EACH ITEM HAS ASSOCIATED WITH IT VARIABLES DETERMINING

THE BRIGHTNESS, SCALE, AND VISIBILITY OF POINT AND LINE INSERTION

REQUESTS; LIKE THE LOGO TURTLE, WE THINK OF THE ITEM AS HAVING A PEN

WHICH CAN BE "DOWN" SO THAT A LINE IS VISIBLE WHEN THE TURTLE IS

REQUESTED TO GO FROM ONE PLACE TO ANOTHER, OR "UP" SO THAT NO MARK

IS SEEN. FOR THE COMMANDS TO AFFECT BRIGHTNESS, SCALE, OR THE PENUP

STATUS, B GENERALLY MEANS NO CHANGE. COMMANDS WHICH TAKE AN

OPTIONAL BSL ARGUMENT - NAMELY DISAPOINT, DISCUSS, AND DISALINE -

WILL TREAT IT AS A TEMPORARY SETTING FOR THESE VALUES, AND UPON EXIT

WILL RESTORE THESE VARIABLES TO THEIR VALUES PRIOR TO THE CALL.

SIMILARLY, THE OPTIONAL PENUP ARGUMENT TO DISALINE IS TREATED



PAGE 34

AS TEMPORARY.

ARGUMENTS THAT ARE INTENDED TO SPECIFY LOCATIONS

ON THE 340 SCREEN FOR THE FUNCTIONS DISALINE, DISAPOINT, AND DISCUSS,

ARE INTERPRETED IN ONE OF FOUR WAYS DEPENDING ON THE SETTING OF

THE SLAVE VARIABLE "ASTATE":

8 RELATIVE MODE - THE POINT SPECIFIED IS IN RELATION TO

THE HOME OF THE ITEM ON WHICH THE COMMAND IS ACTING.

1 ABSOLUTE MODE - X AND Y ARE DIRECTLY INTERPRETED IN

THE CO-ORDINATES OF THE 340 SCREEN, MOD 1024., WITH

THE LOWER-LEFT CORNER BEING 10,01

2 INCREMENTAL MODE - THE POINT SPECIFIED IS IN RELATION

TO THE CURRENT POSITION OF THE PEN OF THE ITEM ON

WHICH THE COMMAND IS ACTING.

3 POLAR MODE - LIKE INCREMENTAL, BUT THE ARGUMENTS,

WHICH MUST BE FLOATING POINT, ARE CONSIDERED AS THE

RADIUS AND ANGLE FOR A POLAR COORDINATE SYSTEM

CENTERED ABOUT THE CURRENT PENPOSITION (WITH ZERO

DEGREES BEING HORIZONTAL TO THE RIGHT).

TO EMPHASIZE THE ASTATE MAPPING OF THESE ARGUMENTS, WE WILL WRITE

ASTATE[X,Y3 TO MEAN THE POINT SPECIFIED BY X AND Y.

N.B.: FUNCTIONS LIKE DISCREATE, DISLOCATE, AND DISMOTION, WHICH

PLACE FOR AN ITEM'S HOME IN SOME SPECIFIED LOCATION, ALWAYS INTERPRET

THE SPECIFICATION IN ABSOLUTE MODE.



TYPICAL CALLS FUNCTION TYPE EXPLANATION

(DISCREATE X Y)

(DISCREATE)

(DISINI)

(DISINI N)

(DISINI N DEVICE)

(DISPLAY ITEM FLAG)

LSUBR

LSUBR

SUBR

CREATE A DISPLAY ITEM WITH HOME AT

IX,Y] ON THE 348 SCREEN. DEFAULT

OPTION IS TO PLACE HOME AT [0,8]

IF X AND Y NOT GIVEN. RETURNS

ITEM NUMBER OF NEWLY CREATED ITEM.

SEIZE AND INITIALIZE SLAVE. IF USER

ALREADY HAS SLAVE, THEN REINITIALIZE,

AND SET ASTATE TO GIVEN ARGUMENT.

ALWAYS RETURNS PREVIOUS VALUE OF

ASTATE, BUT NO ARG GIVEN, OR ARG NOT

AMONG 8,1,2,3 MAKES NO CHANGE IN

ASTATE. INITIAL ASTATE - 8.

IF SEIZING SLAVE AND SECOND ARG GIVEN,

USE GT4B THROUGH ARG ITS DEVICE, EG,

(DISINI 8 'T34)

ITEM ON OR OFF DISPLAY - I.E. MAKE

VISIBLE ON SCREEN OR NOT. DISCREATE,

DISCOPY, AND DISGOBBLE PLACE THEIR

ITEMS ON DISPLAY, EVEN WHEN NULL.

PAGE 35



PAGE 36

WHEN OFF DISPLAY, THE ITEM IS STILL

REMEMBERED BY THE SLAVE UNTIL FLUSHED

(DISFLUSH)

(DISFLUSH ITEM1 . . .

(DISLOCATE ITEM X Y)

(OISBLINK ITEM FLAG)

(DISCOPY ITEM)

(DISMARK ITEM N)

(DISCRIBE ITEM)

LSUBR

ITEMN)

SUBR

SUBR

SUBR

SUBR

SUBR

NO ARG GIVEN MEANS FLUSH WHOLE SLAVE

OTHERWISE SIMPLY KILL ITEMS.

MOVE ITEM'S HOME TO LOCATION EX,Y]

SELF EXPLANATORY

MAKE A COPY OF ITEM, AS A NEW ITEM

WITH HOME AT SAME LOCATION. RETURN

NEW ITEM NUMBER.

IF N=8, REMOVE MARKER FROM ITEM.

IF N<8, INSERT STANDARD MARKER

IF N> , USE ITEM WITH #N AS MARKER

GET LIST OF (XHOME,YHOME,XPENPOS,

YPENPOS,BRITE,SCALE,PENUP,MARKER)

FROM ITEM

(DISCHANGE ITEM BRITE SCALE)



PAGE 37

SUBR BRITE AND SCALE ARE INCREMENTS TO

BE ADDED TO THE PARTS OF ITEM

(DISLINK ITEM1 ITEM2 FLAG)

(DISLIST)

(DISLIST ITEM)

(DISET I'TEM N BSL)

SUBR

LSUBR

SUBR

LINK OR UNLINK ITEM1 TO ITEM2

ITEM2 IS THE "INFERIOR" OF ITEM1,

AND WILL BE DISLOCATED, DCHANGED,

DISBLINKED, AND DISPLAYED AS A

SUBPART OF ITEM1 WHENEVER THESE

OPERATIONS ARE PERFORMED ON ITEM1.

RETURN LIST OF ALL ITEMS ON DISPLAY

RETURN LIST OF ALL INFERIORS OF ITEM

SETS THE DEFAULT VALUES FOR PENUP,

BRIGHTNESS, AND SCALE PARAMETERS FOR

THE ITEM. IF N IS -1, PUT PEN DOWN;

IF +1, LIFT UP PEN; IF 8, LEAVE PEN

ALONE. SET BRITE AND SCALE FROM BSL

[FOR MEANING OF BSL, SEE CONVENTIONS

DISCUSSED ABOVE] WHEN CREATED, THE

ITEM'S DEFAULTS ARE: PEN IS DOWN,

BRIGHTNESS IS 8., AND SCALE IS 1.



PAGE 38

(DISALINE ITEM X Y)

(DISALINE ITEM X Y N)

(DISALINE ITEM X Y BSL)

(DISALINE ITEM X Y BSL N)

LSUBR

(DISAPOINT ITEM X Y)

(DISAPOINT ITEM X Y BSL)

LSUBR

(DISCUSS ITEM X Y TEXT)

(DISCUSS ITEM X Y TEXT BSL)

LSUBR

SET PENUP AND BSL AS INDICATED BY

N AND BSL (SEE DISET ABOVE), THEN GO

FROM CURRENT PEN POSITION TO

ASTATE[X,YJ, LEAVING A VISIBLE LINE

ONLY IF THE PEN IS DOWN, AND THEN

RESTORE THE PENUP AND BSL PARAMETERS

DISPLAY A POINT AT ASTATE[X,Y]. DOES

AFFECT ITEM'S PENUP OR BSL PARAMETERS

THE CHARACTERS OF THE VALUE OF TEXT

ARE INSERTED, AS IF PRINC'ED, INTO

THE INTO ITEM BEGINNING AT POINT

ASTATE[X,YJ. NO CHANGE IN ITEM'S



PAGE 39

PENUP AND BSL PARAMETERS.

(DISMOTION ITEM X Y SPD)

SUBR CAUSES ITEM TO BE SLOWLY DISLOCATED

SO THAT ITS HOME IS AT [X,Y]. IF

EITHER X OR Y IS NEGATIVE THEN PLACES

ITEM UNDER CONTROL OF SPACE WAR

CONSOLE 1. THE BUTTON RETURNS

CONTROL TO THE TTY. SPD IS AN INVERSE

MEASURE OF THE SPEED AT WHICH THE

ITEM WILL MOVE. SPD -= IS MAXIMUM.

NOTE WELL: ALTHOUGH THE SPACE-WAR

CONSOLE CONTROL WILL WORK FOR ANY

DISPLAY ITEM, THE AUTOMATIC SLOW

MOTION WILL CURRENTLY WORK ONLY FOR

ITEMS CONSISTING SOLELY OF LINES

DRAWN BY DISALINE.

(DISGORGE ITEM) SUBR CREATES A (GENSYM'O) LISP ARRAY AND

FILLS IT WITH THE 348 CODE FROM ITEM.

(DISGOBBLE ARRAYNAM) SUBR TAKES THE ENTRIES OF THE LISP ARRAY

ARRAYNAM AND CREATES A DISPLAY SLAVE



PAGE 40

ITEM WITH THOSE ENTRIES.



PAGE 41

EXAMPLES

A SUBROUTINE TO DRAW A LIGHT BOX WITH A MEDIUM POINT INSIDE IT AT

THE CENTER OF THE SCREEN, RETURNING A DESCRIPTION OF THE SLAVE ITEM:

((LAMBDA (DASTATE B)

(DISALINE B -1088

(DISET B 8 (LIST

-198 1)

3 BOXSCL))

(DISALINE B 0 288)

(DISALINE B 208 8)

(DISALINE B 8 -280)

(DISALINE B -288 8)

(DISINI 8)

(DISAPOINT B 8 8 '(6 8))

;GO TO LOWER-LEFT CORNER

;GLOBAL VARIABLE FOR SCALE,

;NO CHANGE TO PENUP STATUS

;SEE HOW EASY IT IS IN

;INCREMENTAL MODE!

;BUT EASIER TO PUT

;IN RELATIVE MODE.

;SCALE IS NOT USED

IN POINT

NOTE THAT

HERE

(DISINI DASTATE)

(DISCRIBE B))

(DISINI 2) (DISCREATE 10880 1800))

;RESTORE ASTATE

;CREATES B, HOME AT CENTER

TO ADD SOME TEXT ON THE TOP OF THE BOX, ASSUMING ASTATE-0 AND THAT

B'S VALUE IS THE NUMBER OF THE ABOVE ITEM:



PAGE 42

(DISCUSS B -200 287 '(HERE IS THE BOX - SEE THE BOX) '(6 2))

TO MOVE THE BOX B RIGHT 100 UNITS:

(SETQ FOO (DISCRIBE B))

(SETQ FOO (LIST (CAR FOO) (CADR FO0)))

(DISLOCATE B (+ 188 (CAR FOO)) (CADR FOO))

TO PUT A CROSS WHERE THE PEN IS NOW, AND SOME TEXT WHERE IT USED TO

BE BEFORE THE MOVE:

(DISMARK B -1)

(DISCUSS B (CADDR FOO) (CADDDR FO0) '(TURTLE SLEPT HERE))

TO BRIGHTEN UP

WAS ALREADY IN

THE BOX AND POINT [BUT THE TEXT "(TURTLE SLEPT HERE)"

BRIGHTEST MODE, SO IT REMAINS UNCHANGED]:

(DISCHANGE B 2 0)

TO FLUSH THE BOX: (DISFLUSH B)

TO FLUSH ALL ITEMS ON THE LIST L: (APPLY 'DISFLUSH L)

TO GIVE UP THE SLAVE: (DISFLUSH)



PAGE 43

Appendix 2 -- Relevant ITS Files

JDC;VTMEM >

JDC;VTMEM (MEMO)

JDC;VTMEM XGPED

MB;URUG >

MB;UMEMO >

GT48;URUG BIN

GT48;VTB7 >

GT48;VTO7 BIN

GT48;VT87 CREF

PJ;DITS. >

SYSENG;LD1B >

JDC;FDITS >

SYS;ATSIGN 1BSLAV

.INFO.ILISP ARCHIV

TJ6 source for this memo

TJG output (for teletypes)

TJ6 output for xerographic printer

Microdebugger PALX source (BPT version)

Microdebugger documentation

Microdugger PALX assembled binary file

VT87 PALX source

VTB7 Binary

VTB7 cross-referenced PALX listing

DRAW SAIL source

MIDAS source for LISP display slave

file .INSRTed into above containing most GT40 code

LISP PDP18 display slave

All changes to LISP for past several years



PAGE 44

Appendix 3 -- Relevant Humans, Credits

Michael Beeler -- Wrote and maintains microdebugger.

Wrote microdebugger section of this memo.

Joseph D. Cohen -- Helped write VT07, adapted LISP

display slave for GT4B, wrote all but

microdebugger and Appendix 1 of this memo.

Pitts Jarvis -- Helped write VT87. Adapted DRAW for

VTB7

Jerome Lerman -- Wrote LISP display slave.

Guy Steele, John L. White -- Maintain ITS LISP and its

documentation.


