
WORKING PAPf 6 6

AN APPLICATION OF LINE-LABELING AND
OTHER SCENE-ANALYSIS TECHNIQUES

TO THE PROBLEM OF HIDDEN-LINE REMOVAL

Mark A. Lavin

Massachusetts Institute of Technology

Artificial Intelligence Laboratory

Vision Group

March, 1974

ABSTRACT

The problem of producing hidden-line drawings of scenes composed of
opaque polyhedra is considered. The use of Huffman labeling is
suggested as a method of simplifying the task and increasing its
intuitive appeal. The relation between the hidden-line problem and
scene recognition is considered. Finally, an extension to the hidden-
line processor, allowing dynamic viewing of changing scenes, is
suggested. That process can be made far more efficient through the use
of Change-Driven Processing, where computations on unchanging inputs are
not repeated.

Work reported herein was conducted at the Artificial Intelligence
Laboratory, a Massachusetts Institute of Technology research program
supported in part by the Advanced Research Projects Agency of the
Department of Defense and monitored by the Office of Naval Research
under Contract Number N08814-70-A-8362-8803.

Working Papers are informal papers intended for internal use.

PAGE 2

8.8 BACKGROUND OF THIS WORK

The work described in this paper is the outgrowth of a minor

digression in a proposed project for doctoral research.

Briefly, that project involves the recognition of visual scenes

under multiple views. For example, we might be interested in looking at

a scene while its component parts move, or as our viewing point moves.

One goal of such a project is to minimize redundant computation through

the use of Change-Driven Processing <Lavin, in progress>.

Initially, the following scenario for this project came to mind:

the system would "watch" a dynamically changing scene, updating its

description of the scene as "significant changes" occurred in the input

image. As a simple starting point, something like a "line-drawing

movie" seemed appropriate. Unfortunately, the relative sloth of current

line-finding programs argued against attacking the problem with "real"

scenes. However, by choosing a suitable restricted domain (such as the

"Blocks World") it should be possible to produce simulated "movies"

using a hidden-line processor.

This practical application was the immediate impetus for

designing a hidden-line processor. As the work progressed, however, two

points became apparent:

(1) Given the restricted domain, certain techniques of scene-

analysis, particularly Huffman Labeling, could be used to greatly

simplify the hidden-line problem; at the same time, their use

PAGE 3

greatly enhances the intuitive appeal of the program, by

introducing a "Semantic of hidden-line drawings."

(2) Techniques suggested (but not yet implemented) for a possible

dynamic hidden-line processor might have ramifications for the

dynamic recognition process described above. In particular, it was

recognized that producing hidden-line drawings (i.e., mapping 3-0

descriptions into 2-D images) is in some sense the inverse of the

recognition. Certain techniques developed for the hidden-line

processor might, therefore, carry over to the recognition program.

PAGE 4

1.0 THEORY OF THE HIDDEN-LINE PROCESSOR

The top-level goal of a hidden-line processor (HLP) is to

transform a description of a scene, in terms of 3-dimensional

coordinates., into a set of two-dimensional coordinates for lines that

would be seen from some arbitrary viewing point, under the assumption

that the scene is composed of opaque objects. For example:

e 7,U i: .idden- Line Removol

Considerable simplification of the "Hidden Line Problem" results

from imposing some constraints on the possible scene descriptions. In

the current case, the scene is assumed to be composed of simple, closed,

non-intersecting polyhedra, which are in turn composed of faces which

are simple ("hole-less") closed polygons. Some examples of "legal" and

"illegal" objects or scenes are shown in Figure 2.

The algorithm described in this paper is largely attributable to

PAGE 6

Loutrel <Loutrel, 1970>. The significant contribution of the current

work is the recognition of the duality of the hidden-line problem and

scene-description problem, as discussed by Guzman, Huffman, and Waltz.

FR•2)0: L egL Ob jects . Sc enes

Fk•s b): rtelObjte & Scones

PAGE 6

1.1. THE NOTION OF CHANGE-DRIVEN PROCESSING

Four aspects contribute to the final nature of a hidden-line

drawing:

(1) Shape of individual objects in the scene.

(2) Location of individual objects.

(3) Relative location of different objects in the scene.

(4) Location of "viewing point" and "picture plane".

The general notion of change-driven processing <Lavin, in

progress> dictates that processing on invariant inputs should not be

duplicated. In the current context, this means that data inferred from

description of individual objects (shape and location) are not re-

-derived as the viewing point changes. A more ambitious application of

change-driven processing to dynamic hidden-line drawings is discussecd

in section 3.

1.2 OVERVIEW OF THE HIOOEN-LINE PROCESS

The first step, given a scene description in terms of 3-0 vertex

coordinates and surface descriptions (lists of bounding vertex names) is

to produce a 3-0 description of the lines in the scene. This is

essentially a list of entries, one for each edge in the scene, of the

form:

(V1 V2 S1 S2 type)

PAGE 7

meaning, the edge running from vertex V1 to vertex V2 , with surface S 1

on its "left" (viewed from outside the object) and surface S2 on its

right, is of "type" type E"+" means a convex edge, "-" a concave edge,

"8" a "flat" edge). Figure 3 shows an example of an object labeled with

z-n linn-÷lln i

$u

F;3 3: 3-D Line LabelS

The next stage, given the particular viewing point, is to

describe each "potentially visible edge" by a 2-0 line description of

the form:

(V1 V2 S1 S2 type)

where V1, V2, S1, and S2 are as above, and a new type ">" ("obscures")

is introduced. These labelings are analogous to the Huffman +, -, and >

labelings (the only difference is that the "real" surface of a >-type

line lies on the left, looking in the direction of the arrow). After

this stage, the above drawing would be labeled as in Figure 4.

PAGE 8

I

Fi4: 2D-0 Line Lobels

Notice that at this stage, a number of invisible edges have already

disappeared (in fact, for scenes that are composed of a single, convex

polyhedron, these "potentially visible edges" are exactly the final line

drawing).

At this point, the effects of inter- and intra-object

obscuration must be taken into account. To do this, we define (after

Loutrel) for every point on a potentially visible edge, an obscuration

number [OBSCUR], a non-negative integer representing the number of

visible surfaces hiding that point from the viewing point. The last

part of the process entails starting at some vertex, and obtaining its

OBSCUR. From there, we "crawl" along all potentially visible edges

(PVE's). Each time an edge crosses (in 2-0 projection) a >-type line,

we check whether OBSCUR changes. All segments between "real" vertices

and >-crossings are noted, and those which have OBSCUR's equal to zero

are non-hidden, and thus appended to the final display list. In case

PAGE 9

not all PVE's form a connected set, a new starting point is chosen and

the proces repeated until all PVE's have been accounted for. The output

of this stage is a list of all visible segments, each of the form:

((Xil Yil Zil) (Xi2 Yi2 Zi2)

where Xij and Yij are 2-0 display coordinates and Zij is the "depth"--

distance in front or behind the picture plane. At this point, the final

drawing can be output [note that the Z coordinates might be used to

modulate intensity].

The stages of processing are described in more detail in

subsequent sections.

PAGE 18

1.2 DETAILED DESCRIPTION OF HLP STAGES

1.2.8 3-0 Scene Description

The data relating to a particular scene all reside on the

property list of some atom which effectively names the scene. As

processing continues, new properties (to be described below in

appropriate sections) are added to the property list. Initially, the

scene descriptions consist of two properties:

(1) VERTICES-30: A list of elements of the form:

(VNAME X Y Z)

which indicates that vertex "VNAME" (a non-negative integer, for

historic reasons) has absolute 3-0 coordinates X, Y, and Z.

(2) SURFACES: A list of elements of the form:

(SNAME V1 V2 ... Vn)

indicating that surface "SNAME" (which has the form S<n>, where n is a

positive integer) has vertices named V1, V2 , *..., Vn Note that the

order is such as to circulate counterclockwise around the surface when

seen from the "outside" of the object (which is unambiguous if the

object is closed); see Figure 5 for an example.

PAGE 11

(54 1 5 8 3 M)

F ig 5: Srce N.mi Convention

1.2.1 SETUP-OBJ

This procedure performs view-point-independent calculations on

the scene. This entails two stages:

1.2.1.1 Surface Orientation

For each surface in the scene, an outward-pointing normal vector

(as shown in Figure 6.) is calculated and stored as an entry in the list

associated with the ORIENTATION property.

Fi. 6 O utwarviPoint. 2 JNOrra IS

PAGE 12

Each entry is of the form: (SNAME (X Y Z)), specifying that surface

"SNAME"'s outward-pointing normal vector has components X, Y, and Z.

1.2.1.2 3-D Line-Typing

With surface orientations determined, we next assign a type

[+, -, or to each edge in the scene. First, all edges are collected

by tracing around surfaces. Each line is then represented by a form:

(V1 V2 S1 S2)

which states that the edge from vertex V1 to vertex V2 "sees from

outside" surface S1 on its left and surface S2 on its right, as shown in

Figure 7.

dPI

F;. 7: Line/Surface Convntin or

The TYPE V"+" for convex edges, "-" for concave edges, and "8" for

"flat" edges] is then calculated and an entry of the form

(V1 V2 S1 S2 TYPE)

is stored under the property LINE-TYPES.

PAGE 13

1.2.2 30-->2D Projection

Next, the effects of selecting a particular viewing point and

direction are calculated.

1.2.2.1 Projection

For each 3-0 vertex specification of the form (VNAME X Y Z), a

new form (VNAME X' Y' Z') is calculated (using the projection algorithm

described in Appendix A). X' and Y' represent the 2-0 coordinates of

the point on the picture plane, and Z' its "depth" with respect to the

picture plane. These entries are stored under the property

"VERTICES-20."

1.2.2.2 Visible Surfaces

Next, we determine which surfaces are "visible" (i.e., which we

view from the outside). This is done by taking the dot product of the

orientation vector and a vector from any vertex on the surface to the

viewing point (>8 implies visible, <0 invisible). The surface names are

divided into two bins and stored under the properties "VIS-SURF" and

"INVIS-SURF."

PAGE 14

1.2.3 Potentially Visible Edges (PVE's)

Next, we determine the 2-0 line-types ["+" for convex, "-" for

concave, "8" for "flat", and ">" for "obscures"] of all edges, using the

following table:

3-D LINE-TYPE

+

+

+

Surfaces Visible

both

one

neither

both

one

neither

both

neither

2-0 Line-type

+

not visible

not visible

not visible

not visible
not visible

A list of all resulting "potentially visible" line entries of

the form (V1 V2 S1 S2 20-type) are stored under the "VIS-LINES"

property.

Let us explore the above table in relation to Huffman labeling:

Suppose we acknowledge the existence of 3 labelings for an edge in a 2-D

scene: +, -, and >. What kind of transformations are possible for the

labeling of a particular line as the viewing point shifts? Note that

the type will change only when the viewing point passes through the

plane of one of the surfaces bounding the edge. In the current context,

PAGE 15

this means that one of the surfaces goes from VISIBLE to INVISIBLE or

vice-versa. Then the following label transformations are all that are

possible:

i LEFT LCFT .614 T

FR 8: Label T!corS1ttvOAS

POF A denotes that the line has "disappeared" (is no longer

potentially visible).

Potential visibility is a local property of edges and their

bounding surfaces. It is a necessary but not sufficient condition for

"ultimate visibility" (presence of all or part of the edge in the

hidden-line drawing). In particular, note that potential visibility is

a function of the shape and location of single objects, that is, the

relative positions of multiple objects have no effect on it.

1.2.4 Testing for Non-local Obscuration

At this point, the "VIS-LINES" property is a list of all

potentially visible lines. Now, we must account for the effects of

self-obscuration (Figure Sa) and inter-object obscuration (Figure 9b).

PAGE 16

FS. 9(a): Self-Obscoarortion

f49 (b): Inter-Object Obscmartio

The algorithm which does this can be described at several levels

(increasing in obscurity Cha, ha] and effective computability):

LEVEL 0:. Display all segments of all PVE's which are visible (a rather

gratuitous starting point).

LEVEL 1: Display all segments of all PVE's which do not lie "behind"

visible surfaces [note that we've already cut down the amount of

processing by considering obscuration from visible surfaces only].

LEVEL 2: Starting at some vertex, crawl along an edge, noting each time

the edge enters into or emerges from the obscuring "shadow" of a visible

PAGE 17

surface. Record all segments which were traversed with no surfaces

obscuring them.

At this point, let me re-introduce the notion of obscuration

number (OBSCUR) due to Loutrel. For any point on a Potentially Visible

Edge, OBSCUR is the number of visible surfaces lying between that point

and the viewing point. Further, let me introduce DELTA-OBSCUR,

indicating the change in OBSCUR which occurs as we move along a line and

cross the boundary of a visible surface. DELTA-OBSCUR is 8 if the line

lies in front of the surface, -1 if it lies behind and we are "emerging

from the surface's shadow, and +1 if it lies behind and we are "entering

the surface's shadow."

LEVEL 3 : Start at a vertex and compute OBSCUR. Now, crawl along an

edge, noting each DELTA-OBSCUR and updating OBSCUR by adding DELTA-

OBSCUR to it. Record all segments traversed when OBSCUR - 8 as being

visible.

- Two more interesting facts can be used to reduce still further

the amount of processing:

(1) Only >-type lines can result in a non-zero DELTA-OBSCUR. For +, -,

and 8 edges, the surfaces on both sides of the edge are visible: thus,

crossing behind such edges does not change the obscuration number.

PAGE 18

(2) OBSCUR's are "conserved;" that is, given the OBSCUR of vertex i, we

can calculate the OBSCUR of vertex j by adding to OBSCUR(i) all DELTA-

OBSCUR's observed in crawling along edge i,j. In some sense, OBSCUR is

propogated through the network of potentially visible edges irn a fashion

like constraints are propogated through a hidden-line drawing in Waltz'

analysis process.

LEVEL 4: Consider the following "flow-chart":

(1) Compile a list of all PVE's that haven't been traversed. Select

from these the closest vertex and compute OBSCUR. Place this at the

head of an "open vertex list" (OVL). If no PVE's remain, we're done!!!!

(2) Select a vertex from the head of the OVL (deleting it therefrom).

Call this the open vertex. If the OVL is empty [which would result from

non-connected sets of PVE's), go back to step 1.

(3) Select a line containing the open vertex from the list of remaining

PVE's, deleting it therefrom (if there are no such lines, go back to

step 2). Crawl along that line, noting all DELTA-OBSCUR's (see Appendix

B for the method) and visible segments (where OBSCUR = 8). Add the end-

point of the line and the incrementally computed OBSCUR to the end of

the OVL. Repeat step 3.

PAGE 19

At this point, we have a list of all "really visible segments"

in the form:

((Xi Y1 Z1) (X2 Y2 Z2))

which are the 2-0 coordinates of the endpoints. We can now pass this

list to a suitable display routine.

PAGE 28

2. BUGS IN THE CURRENT SYSTEM

At this point, I examine some embarrassing inadequacies in the

present system described above (let he who hath not resistance cast the

first Rheostat).

2.1 The Accidental Alignment Problem

Profound hassles arise when a vertex of a PVE ties on another

PVE (in 2-D projection). [The reader is advised to read Appendix B, on

the calculation of DELTA-OBSCUR, before proceding.)

as

V4

Fi . i: A Pseudco- Psz Vertex

Suppose we have the situation shown above. Further, suppose we

are crawling along from V1 to V2 . At point VB, we record two line-

crossings: V1-->V2 crosses VA-->VB and VB-->VC. Thus, we record a

DELTA-OBSCUR of +2 rather that the appropriate +1. Some patch, such as

checking for duplications like this (which constitute pseudo-PSI

vertices) could alleviate the problem. Note that the situation shown in

Figure 11 is right since the resulting DELTA-OBSCUR is correctly 8.

V2

PAGE 21

VA

F~L.i: %Pse.&do-K \Jere-K

IVC

f 5 . I2: Pseudo- X *Jer+ex

Vastly more profound lossage occurs when we are following an

edge which a line-crossing at one of its endpoints (yes, the inverse of

the above problem). In that case (see Figure 12), the conservation of

OBSCUR may not apply, and we must recalculate an appropriate OBSCUR for

each edge radiating from the terminal vertex. Note the that accidental

alignment problem is particularly aggravated by the petty predilection

of foolish robots to stack blocks in neat piles. Perhaps the answer

lies not in "correcting" the HLP, but improving the inherent creativity

V -

I\li

Vis

PAGE 22

of the robots ("Foolish consistency is the Hob-Gobblin of little minds'"-

-Ralph Waldo Emerson).

Accidental alignment arises from several sources: First, non-

contacting vertices and edges may align because of a particular choice

of viewing point. In schemes like Huffman labeling, such coincidences

are precluded by demanding that scenes be viewed in "general position."

A second case occurs when vertices and edges (or vertices and vertices)

actuallu touch in the 3-0 scene. In this case, a labeling scheme with

"crack" line-types must be introduced (which is also beyond the scope of

the original Huffman labeling). Thus, the problem of accidental

alignment in the hidden-line problem has a real precedent in the scene-

labeling process.

2.2 Limitations on the Hidden Line Processor

In this section, I consider the result of the constraints on the

type of scenes allowed by the current Hidden Line Processor, and suggest

some possible fixes.

2.2.1 The Hole-less Surface Restriction

This restriction would rule out the closed polyhedron shown in

Figure 13.

PAGE 23

V3

VS

F j. 13: A S'r ace ;OL 14ole
The problem is that S1 is effectively bounded by two polygons,

V4-->Vg-V->V and Vl-->V3-->V2. I believe that this could be fixed

rather easily by allowing surface vertex lists to be segmented in the

following format:

(SNAME (VLIST1) (VLIST2) . . . (VLISTn))

where VLIST1 is a list of vertices bounding the outside of the surface

and VLIST i, i>1, is a list of vertices bounding an interior hole (note

that in these lists, an entry (...V i, Vj ...) is appropriate iff the

"stuff" of the surface is on the left of the line Vi-->V j when viewing

the surface from "outside").

This would result in the production of extra LINE-TYPE and VIS-

LINE entries in a manner consistent with the present system. The only

other difference would be in the calculation of OBSCUR, where we would

have to check whether a point hidden by the outside edge of a simple

surface nonetheless peeks through a hole in that surface.

PAGE 24

2.2.2 The Closed-Surface Restriction:

The requirement that all objects in the scene be closed

polyhedra rules out the following object:

F g.•I : A Non-closed Object
Since much of the economy of the current system is predicated on the

notion of visible vs. invisible surfaces (normal vector pointing toward

or away from the viewing point), accomodation of this class would

require profound restructuring of the entire system. Of course, the

scene-analysis programs of Guzman, Huffman, and Waltz can't handle this

situation, either. Note that a sleazy solution to the above scene

(provided that surfaces with holes are allowed) would be:

F1 s15: Sleoy. Solution

PAGE 25

3. EXTENSIONS: THE DYNAMIC HIDDEN LINE PROCESSOR

The problem to be considered here is: given a scene

description, we wish to produce a series of hidden-line drawings which

would result from movement of the viewing point (or the scene or any of

its component objects) along some specified trajectory; in short, a

hidden-line "movie." Given the existence of a HLP, the brute-force

solution is obvious: construct a series of hidden-line drqwings ab

initio for each successive frame [!]. This is clearly abhorrent to the

notion of change-driven processing, and in this section I consider some

ideas for an alternative solution.

3.1 A Fundamental Conjecture

Consider two hidden-line views of the same scene from slightly

different viewing points:

.g 1 Wo Views o4f Scen.e

I will state that these two views are topolocical ly equivalent but not

geometrically equivalent. Geometric equivalence (GE) implies complete

PAGE 26

identity of the 2-0 display lists. Topological equivalence (TE) implies

an isomorphic relation such that all points and segments connecting them

in one drawing are present in the other. However, the 2-0 coordinates

of related elements may not be equal. 2-0 images related by

translation, rotation or scaling are thus TE. The following conjecture

is at the heart of the proposed dynamic hidden line processor (DHLP):

As the viewing point of a scene changes, the resulting
hidden-line views always change geometrically, but, with high
probability, are topologically equivalent.

An efficient DHLP, one in which the topology of a scene can

effectively be "decoupled" from its geometry (as described below), will

exploit the ramifications of this conjecture.

3.2 "Logical" Display Lists

Suppose we have the following two "scene fragments":

V$ *4'

F=q 17: Two Scene FrogmemtS

I

'c c

PAGE 27

The two fragments are not geometrically equivalent, but they are

topologically equivalent. Both can be described by the following

"logical display list" (LDL):

VERTICES - (V1 V2 VA VB (VX V1 V2 VA VB) (Vy V1 V2 VB VC))

SEGMENTS - ((VA Vg) (VB VC) (V2 VX) (Vy V1))

Note the additional specification of the "virtual vertices" VX and Vy in

terms of the endpoints of the lines which intersect to form them. When

it comes time to actually display this fragment, we merely "instantiate

the geometry;" that is, for real vertices, substitute their 2-0

projections, and for virtual vertices, the calculated 2-0 locations.

Thus, we have effectively "decoupled the topology from the geometry."

3.3 Changes and Demons

In general, the original logical display list [LDLO must be

built up "from scratch" using the logic of the present Hidden Line

Processor [for an interesting alternative, see section 3.63. The nub of

the argument is that the rather expensive step of redefining the LDL

need only be executed infrequently, when the topology of the 2-0 scene

changes. The "geometric instantiation" should be a relatively low-cost

operation.

The crux of the problem is: when do we update the logical

display lists? The answer "when the 2-D scene changes" will lead to

PAGE 28

nothing but circularity and remorse. Ultimately, what we'd like is some

set of "demons" embedded in the DHLP which watch for certain kinds of

changes; when these occur, recalculation of the LDL is executed.

Although this is highly tentative, let's consider two examples of such

demons:

(1) Surface Demon: Associated with each surface in the scene is a

"surface demon" which "interrupts" when that surface changes from

visible to invisible or vice-versa. The possible ramifications of such

an interrupt are as follows: Visibility changes-->potential visibility

of all bounding edges changes-->positive deletion or "tentative

addition" of these edges (and sub-segments) from or to the LDL. The

demon itself is implemented by checking for change of sign of the dot

product of the surface's normal vector and a vector from one of its

vertices to the viewing point (quite a simple computation).

(2) 2-0 Vertex Demon: This demon, associated with every vertex,

interrupts each time that that vertex crosses from one side to the other

of a line-segment in the 2-0 projection. This. is a method of handling

changes in inter- and intra-object obscuration. It could be implemented

by checking the cross product of the edge-vector and a vector from one

of the edge's end-points to the vertex in question. Generally, the

effect of such an occurrence is to add or delete virtual vertices,

affecting all line segments containing them in the LOL.

PAGE 29

3.4 Singularities and Demon Priming

As noted above, singularities due to accidental alignment in the

current HLP lead to great lossage. In the proposed DHLP, this bug could

be feature-ified by exploiting such singularities as "priming

mechanisms" for the demons. Consider the proposed vertex demon.

Clearly, any movement which results in a vertex aligning with some in a

2-D scene will immediately be followed by movement of that vertex across

that edge, thus causing an interrupt. Since these singularities can be

caught rather easily (perhaps even by the existing interrupt hardware

like "divide fault"), the complexity of the demons may be reduced.

3.5 Localization of Changes

A second tenet, of change-driven processing states that if

possible, when inputs to a process change, compute only the difference

in the output. This is predicated on the assumption that the mapping

performed by the process from input to output is to some extent

decomposable. In terms of the current proposal for a Dynamic Hidden

Line Processor, this has the following ramification: When a demon

interrupts, it should be capable of specifying not only a potential

locus of change in the LDL, but also some sort of "fence" past which the

changes cannot propogate. In the optimal case, this would mean that

interrupts would (1) occur rather infrequently, and (2) have only

limited ramifications which are thus easily calculated.

PAGE 38

3.6 Appearances, Disapperances, and Initialization

There is some question as to what extent the above suggestions

for a Dynamic Hidden Line Processor are based on an assumption that the

scene changes smoothly and continuously. It may be the case that more

radical interrupts are necessary when a discontinuous change, such as

the appearance or disappearance of an object, occurs. On the other

hand, the "fence" idea suggested above may come into play to limit the

extent to which such an occurence affects the scene.

Berthold Horn has suggested an interesting consequence of being

able to handle appearance and disappearence. As mentioned above, it

would seem necessary to begin a dynamic hidden-line drawing with a

relatively "brute force" pass with an Hidden Line Processor. Perhaps

the initial Logical Display List could also be built by actuallly

"constructing" (in a Robotic sense) the scene. For example, the

component objects could "appear" in the distance, and then be moved into

their appropriate locations in the scene. As they are moved, the

Change-Driven discipline could be used to update the scene, resulting

finally in the appropriate initial configuration.

PAGE 31

4. CONCLUDING REMARK

The purpose of this paper is to show the relation between the

hidden-line problem and a technique used in scene analysis--line-

labeling. As such, i make no pretentions about the relative merit of

the current program for practical applications. The reader is advised

to consult the excellent survey by Sutherland, et. al.

(<Sutherland, 1974>), for a comparison of various hidden-line programs.

Among these is the program by Loutrel, which bears strong resemblance

(and, perhaps, performance) to the current work.

PAGE 32

APPENDIX A: THE PERSPECTIVE PROJECTION ALGORITHM

A critical step in the hidden-line processing is the mapping of

3-0 coordinates specifying scene elements into their corresponding 2-0

"picture coordinates." To do this, the user must specify three

entities:

(1) Vey e (X Y Z): The 3-0 coordinates of the "eye,"

(2) Vgaze (X' Y' Z'): The 3-0 coordinates of the origin of the
picture plane [i.e., the point Vgaze is mapped into 2-0 coordinates
(8.8 0.8 8.8)].

(3) SCALE: An arbitrary scalar magnification factor for the 2-0
image.

The basic strategy is illustrated as follows:

t:o 1- I: 3-0o
:o 2-D Tens4 cM

V is the point to be mapped into 2-0. Vp is the point of

intersection of the picture plane (with origin at Vg) and the raygaze

from Vey e to Vx. Thus, Vp represents the 2-0 "image" of Vx. The 2-0

coordinates in the picture plane (multiplied by SCALE) are the X and Y

PAGE 33

values produced by the mapping' An additional Z coordinate,

corresponding to the "depth" of Vx with respect to the picture plane,

can be found by projecting the ray from Veye to Vx on the ray from Veye

to Vgaze'

Note that there is some ambiguity: the picture plane's origin

is specified, but it could rotate around the ray from Vey e to Vgaze. To

resolve this, we make an assumption that the viewer's "eyes" are

"horizontal," that is, the X-axis of the picture plane is parallel to

the X,Y plane in 3-D.

The projection algorithm produces a perspective transformation,

which may result in an undesirable degree of fore-shortening. To avoid

this, the Veye point may be moved back "far" from the scene, and SCALE

increased to compensate for size change.

PAGE 34

APPENDIX B: EDGE-CRAWLING AND CALCULATION OF DELTA-OBSCUR

In this section, I consider how the DELTA-OBSCUR factor (change

in obscuration number) is calculated as we move along a potentially

visible edge [PVE] in the scene. As mentioned above we need only

consider the cases where the edge in question crosses "behind" a >-type

edge.

As we crawl along a PVE, we test for a possible crrossing with

every >-type edge (some economies could result by partitioning the scene

into "buckets", although I haven't attempted this). Suppose we are

crawling along a PVE from V1 to V2, and testing for a possible DELTA-

OBSCUR due to >-type PVE from VA to VB. Two tests are involved:

(1) 2-0 Intersection: Does the projection in the picture plane of

the edge from V1 to V2 (call it E12) intersect the projection of

the edge from VA to VB (call it EAB)? If it doesn't, we don't have

to consider this case further.

(2) Relative Depth: If they do cross, does EAB lie in front of E

12 at the point of intersection? [Note how the inclusion of a Z

coordinate in the perspective transformation facilitates this

test.] If EAB lies in front, then E12 is moving into or emerging

from the "shadow" of a surface bounded by EAB.

PAGE 35

If a crossing has been detected, we must decide whether we are

entering the shadow (DELTA-OBSCUR = +1) or leaving it

(DELTA-OBSCUR = -1). The method of doing this is suggested by the

fol lowir

DE LT

= +:

2.

'~iJ

Fi 3 . 19: Colculatkii DELTA-OSCUL)b

Note that the test is easily performed by taking the cross-product of

EAB and E12 (the resulting sign determines the sign of DELTA-OBSCUR).

Note that the process described above may seem relatively

arduous. In fact, several shortcuts can be applied. These generally

applying stronger "sufficiency" tests to check for possible >-crossing.

For example, we might check to see whether both Vl0 and V2 lie in front

of VA and VB (if so, the test need proceed no futher). As mentioned

above, considerably more savings could be realized if we could partition

the edges into disjoint buckets (perhaps on the basis of projected X and

Y coordinates) so that checking for DELTA-OBSCUR would only involve

checking for crossings of >-type lines in a given bucket.

--· li.

PAGE 36

BIBLIOGRAPHY

Loutrel, Phillipe P., A Solution to the Hidden-Line Problem fcr
Computer-Drawn Polyhedra, IEEE Transactions on Computers, Vol. C-i9,
No. 3, March 1970, pp. 285-213.

Sutherland, I. E., and R. F. Sproul and R. A. Schumacker, A
Characterization of Ten Hidden-Surface Algorithms, Computing Surveys,
Vol. 6, No. 1, March 1974, pp. 1-55.

