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Introduction

A formalism for semantics is usually developed and presented in some context which
provides motivation. It might be designed for the purpose of being the formal definition
of a specific language as a guide to programmers and implementors. The formalism might
be used as the means for describing properties of a particular program, or as a basis for a
set of proof rules for verifying properties of programs. The motivation for this paper is
development of a semantic base not for some particular programming language, but rather
for a kind of computation.* The systems of interest are those which involve parallelism,
side-effects, and synchronization. The concepts which must be available to express
properties of these systems will be presented and examples given. However, no particular
programming language will be used.

Our approach to the semantics will be centered on the concept of in actor. An actor
is simply an object which can send or receive messages. All elements of a system can be
viewed as. actors. The only activity possible is transmission of one actor to another actor.
The energy for computation comes from an activator which can follow the script of an
actor. All programs an-d systems will be referred to as actors. The existence of more than
one activator indicates parallelism.

Continuations

Once an actor, m, is transmitted to another actor, t, the activator proceeds by
following the script of t using information from m. For this to be of any use as a model of
computation, it must be possible for m to have some structure. In many cases m will simply
contain a message. It will often also contain a continuation part. Then m may *be
represented as

(apply: message (then-to: continuation)).

If a message is sent without a continuation then all further instructions for computation
must be determined by the target. Sending a continuation makes it possible to indicate
another actor to which control can eventually be passed (i.e., an actor whose script the
activator may follow).

The reason that it is useful to be able to talk .about continuations in a semantic:
formalism is that otherwise much of the control structure has to remain implicit in
something like an evaluator or a compiler. Control structure is a pattern of passing
messages in a computation. Ideally it should be possible to distinguish between, say,
recursive and iterative computations as being two different patterns of message. passing
behavior which can be precisely characterized.

" Actor semantics was not developed to explain or define PLANNER-73. PLANNER-7'3 is a
language dedicated to the direct realization of this semantic base.



An ordinary functional call to a function f can be implemented by passing to f a
transmission with an explicit continuation. The continuation represents the actor to which
the value of f should be sent. In addition, other kinds of control structures can be
expressed, such as jumps (in which no continuation is present) and co-routines [see
Appendix].

Distribution of Information

Information can be represented in various ways in an actor system. Often it is
desirable to represent knowledge redundantly with different uses of the same knowledge
appearing in different guises in several places. How one might choose to distribute it
depends on one's purposes and the various uses to which the knowledge can be put.
Concentrating on use as the key to representation of data structures contrasts with the
approach of concentrating on the notion of type [van Wijngaarden, 1969].

For example, in defining lists and the usual operations on lists, there is flexibility in
how the information about the structure of lists may be distributed among these operations
and the data objects themselves. One possibility is that the function call denoted by
(length L) can directly produce the length of the list, L. That is, the operation, length, could
be defined in such a way that it knows enough about how lists are constructed (and about
how they can be decomposed) to be able to operate on the list directly and to compute its
length. For example, the operator length could repeatedly ask the list L for its next element
and keep a count of the number of times it succeeds.

Alternatively, the operator length might know nothing about lists and when sent one
would have to depend on the list itself to understand its own structure (and to understand it
in terms of the concept "length" among others). What happens in this case is that
(length L) turns around and sends a message to L asking for its "length." This makes sense
for fixed length lists since for such lists the information never changes and need only be
computed once. This message-passing style of definition is particularly useful for
"polymorphic" operators in an interactive system where new kinds.of objects which share
some of the properties of lists can be defined at any time. It is desirable for (length L) to
continue working and to extend correctly to new data types that are continually being
defined. When information can be put wherever it seems natural, polymorphic operators
can be defined without details of type checking. Instead the operator can be applied to any
type of data and it is up to the data to determine whether it is a reasonable operator and if
so how to perform its operation. Depending on circumstances, either style can lead to a
more efficient implementation, but both should be representable.

Behavior of an Actor

Actors are defined by their behaviors. A behavior is an irreflexive partial order of
the set of events which represent transmissions. The behavior involving only a single



activator (process)" is a totally ordered sequence of events. A description of the behavior of
an actor has at least two uses. First, it defines the actor. Secondly, it specifies the properties.
of the actor which can be relied on in a. proof about properties of another system in which
it is contained.

The event oriented approach to semantics is well suited to the-expression of meanings
of programs with side-effects and parallelism. Rather than attempting to record the current
state of the world in something like a state vector' McCarthy, 1964], changes in state are
reflected in changes over time in the behaviors of the actors. The event oriented approach
is particularly useful when there is parallelism as well as change in state. Recording of all
possible global states (including control information) for all the parallel processes can
involve a combinatorial explosion of states. In order to describe the effect of a change in a
single cell using global states, one would have to make the corresponding changes in the
state information for each of the processes which could be active.

Level of Detail in Describing Computations

Another degree of flexibility available in actor semantics involves. the amount of
detail to be included in specifications. That is, an actor can be specified (or its set of
possible behaviors can be specified) in as much or as little detail as is desired. In
describing an existing actor system this level of detail is fixed by the choice of a set of
distinguished actors contained in the actor system. Only events involving these
distinguished actors will be recorded as behavior of the system. To specify desired
behavior of a system one writes axioms which any behavior of the system must satisfy. At
avery high level of detail these axioms will essentially be input-output constraints, i.e. what
is to be done, not how. If more detailed specifications are made, the possible behaviors
which will realize those input-output constraints become more restricted. Generally, in order
to prove that a set of specifications is satisfied by a particular system, one examines the
behaviors of the system at a level of detail greater than that of the specifications and
proves that these behaviors realize the behavior that is required.

These points should give some indication of how the simple actor concept can be
used as a building block to define the higher level concepts which are useful descriptive
tools. After the formal definitions of behaviors of actors in the following section, we will
give semantic definitions of several familiar systems, illustrating the application of these
concepts.

3 Note that while the activator as a source of energy for computation may be analogous to
some notion of process, the activator is definitely not meant to connote any of the following
concepts: program counters, pushdown stacks, or address spaces.



Behaviors

Since actors are defined by their behaviors, the concept of behavior will have to be
defined. Behaviors consist of events.

Definition: An event is a four-tuple, <t m a ec> where t is the target, m is the
transmission, a is the activator, and ec is the event count of the activator a.

As stated earlier, an event is a description of the transmission of m to t by a. Since
the events of a single activator are totally ordered in time, an event count can be used to
completely characterize a particular transmission. This means that if identical transmissions
occur involving some particular t, m, and a then the two can in fact be distinguished by the
proper time for a at which they occurred.

The event count ec' denotes the time immediately after ec. Therefore
<ti mi a ec> immediately precedes <t2 m2 a ec'> and we can write <ti mi a ec> ->

<t2 m2 a ec'>. For events with different activators, <tI mI al ec l> --> <t2 m2 a 2 ec2 > if a2 is
created in the event <tl mi al ecl>. (Some actors have the ability to create new activators.)

The transitive closure of the relation --> is referred to as causally precedes i.e. for events El
and E2 , El --> E2 is read as "El causally precedes E2." This is an ordering which can

reasonably be considered to be an intrinsic property of the actor system in question. Other
orderings may be imposed by axioms for primitive actors. (For example a synchronization
primitive introduces constraints in the causally precedes relation.)

Definition: A history is a set of events partially ordered by the transitive closure
of the relation -->.

An external environment for an actor system is a set of actors constituting the
"outside"' of the system. This includes an assignment of an initial set of activators and
initial events for each activator which will determine the "beginning of history" for this
system and environment. These initial events will always be about transmissions which
cross the boundary and enter the actor system, i.e. events which have a target inside the
system and a message outside the system. Histories are written for systems with arbitrary
but fixed external environments.

The behavior of an arbitrary system of actors can be extracted from the history by
choosing only those events which involve certain distinguished actors. Note: we will
consider any new actor created by an event involving an actor in the system Z to be in I
also.



Definition: For any history of the actor system I the behavior of system X with
respect to the set of distinguished actors A c 2 is the subset of the events of the
history containing events <t m a ec> where either

i. t is in Z2 and m is not.
2. m is in X and t is not
3. Either t or m is in A.

Thus an event will be in the behavior if it describes either a. transmission across the
boundary of 2 (i.e. with target inside and transmission outside or vice versa) or a
transmission with a distinguished actor as either target or message. This is how the level of
detail of a behavior is fixed by the choice of A. Note that if the set A is empty then the
minimally detailed behavior results, i.e. the behavior of Z as seen from the outside.

Two actor systems are equivalent with respect to some set of distinguished actors if
and only if they have identical behaviors with respect to that same set of actors. The
choice of distinguished actors can make a difference in equivalence of actor systems. For
example, two programs for factorial can be seen to be equivalent at the level of
input-output transformation (i.e. with no actors distinguished) even if a larger set of
distinguished actors would reveal one to be a "counting-up" factorial and the other to be
"counting-down."

If multiplication, represented by a, is considered to be a distinguished actor then in
any behavior of one factorial there might be a series of events < [1 1] a ec> -->
<* [2 1] a ec'> --> <* [3 2] a ec"> and so on, while in the other there might be a series
<s [n 1] a ec> --> <* [n-I n] a ec'> --> <, [n-2 nsn-l] a ec">.

Behavioral Specifications of Systems

Since behaviors of most actors are infinite objects it will not often be possible to
write out completely the set of behaviors of any given (or desired) actor. In fact, many
behaviors of a system will contain incidental. information about events in the environment.
Instead, characteristics common to all behaviors of any actor system containing
the actor in quest ion can be specified in the form of axioms about events and the
causally precedes relation. These are not Hoare (1969] style axioms about transformations
of predicates over the occurrence of an operation or of a line of code,.but rather are about
the kinds of events that can possibly occur in a computation and how they must be ordered.

When an actor is being specified as a primitive, that is, when it is not defined in
terms of other actors, the axioms describe conditions which must be satisfied by any history.
Any actor can be described from the outside but if an actor is to be implemented in terms
of other actors it should be understood that between any two events there may be an
arbitrary number of other events if we examine a history (or even a more detailed



behavior). However, all events related by causally precedes will remain so related. When
.we do not wish to imply that E2 immediately follows E3 we will write, "?" in the event

count. In general "?"' can be used in any place in an event to indicate that we do not care
about what actor, activator, or event count appears there.

Recall that if two events El and E2 are known to be in a behavior, we can write

El --> E2 to indicate that El causally precedes E2. When El and E2 have not previously

been mentioned, a statement of the form El --> E2 should be read as "whenever El is in the
history (behavior) then so is E2 and El causally precedes E2," or alternatively as "if E 1 is in

the history (behavior) it will cause E2." This is a way in which we guarantee response in
finite time from an actor.

We will continue to use the labelling convention on the transmission actors. The
transmissions are of the following general form:

(apply: message (then-to: continuation) (else-to: complaint-dept))

We will often omit the else-to part when. it is not of interest.

Sequences

The following axioms about the behaviors of sequences summarize some of the
familiar properties of sequences while illustrating the use of axioms to constrain the kinds
of behavior an actor can have. Note that since sequences are indeed functional objects they
could have been described in more conventional mathematical notation [Scott and Strachey,
1971].

An actor which is a sequence of n elements has the property (among others) that it
can be asked for its Ith element. If a sequence is represented by [xi ... xn] this property can
be specified by the following axiom:

<[x ... xn] (apply: [i] (then-to: c) (else-to: cd)) a ec>
--> <c (apply: xi) a ec'> for 1 i i5 n

This means that at the level of detail at which sequences are "black boxes" the event in
which the sequence [xi ... xn] is sent the message [i] and the continuation, c, always causes as
the next event the transmission of the ith element of the sequence to that continuation.
This transmission had three components: a message, a continuation, and a complaint
department. This last actor is the one to which 'not-applicable messages are sent if the
target actor does not like its message. For instance, for 1 > n, it is the case that the sequence
satisfies

<[xl ... xn] (apply: [i] (then-to: c) (else-to: cd)) a ec)
--> <cd (apply: 'not-applicable) a ec').



When using axioms as specifications of all possible behaviors we assume that for any
messages not explicitly dealt with the actor being described causes 'not-applicable to be sent
to the complaint department. Thus at this stage in the definition it can be assumed that
sending any transmission (apply: x (then-to: c) (else-to: cd)) to a sequence where x is not a
sequence containing an integer, causes 'not-applicable to be sent to cd.

Ce lls

Cells do not fit as neatly into a functional notation. A cell is created with some initial
contents. It is possible to ask for the contents of a cell. Update messages to that cell can
change its contents. Thus it is possible that several events in a single behavior can have
identical' targets (namely the cell) and identical transmissions and yet cause different events
to occur. This occurs when the events have transmissions

(apply: 'contents (then-to: continuation))

but the contents have been changed between the two events. In each case the contihuation
is sent different actors.

This means that cells are side-effect primitives. Loosely speaking, an actor system has
undergone a side-effect if its behavior has changed over time. In terms of functions. a
side-effect has occurred when the same procedure p has been called on two different
occasions with the same argument and has returned different values. This can. be
generalized to behaviors by looking at future events rather than just at values returned..

Cells correspond to side-effect primitives in various languages. Therefore, it is likely
that most readers have relied on them in programming. We will now try to formulate
exactly which properties are being, relying on. First would be that creation of a cell (or
allocation of space for a cell) with its initial value should be an operation guaranteed to
take only finite amount of time. This is also a desirable property of updates and contents
queries. (Any argument that a given program which contains assignment statements always
terminates is based on these properties).

Axiom 0:

Cons-cell creates cells.

<cons-cell (apply: [x] (then-to: continuation) (else-to: cdl)) a ecl>

--> <continuation (apply: cell*) oa ec')

where cell is a newly created actor.



Axiom 1:

Cells can respond to contents queries and updates.

<cell (apply: 'contents (then-to: continuation) (else-to: cd)) a ec>

--> <continuation ? a ec'>.

<cell (apply: [(- x] (then-to: continuation) (else-to: cd)) a ec>

--> <continuation (apply: cell) a ec'>.

[Notice that a cell returns itself,
not its contents after update]

Newly created actors are marked in events by an asterisk[*]. It is often useful to be
able to tell explicitly that an actor, a, appears for the first time'in event E since for any

other event, El, in which a occurs it must be the case that E --> El.

The next two properties that some procedures rely on are closely related to each other.
Initially we expect contents queries to find the original contents in the cell. This should be
true until an update transmission is sent. Similarly, once an: update transmission is sent, say
[+- y], we would expect to find y in.the cell until it is updated. Thus we shall give two
more axioms, one about retrieving the initial contents and the other about retrieving the
last contents stored.

Axiom 2 says that if cell first appears in event El and if no update occurs between El
and contents query E2, then. ES will be an event which sends the initial contents to the

continuation.

Axiom 2

Initial Contents -- A cell created with x as its contents will respond to the message 'contents
with x if no new value has been explicitly placed there yet.

* This has implications for the relation "knows about" which can be formalized and
which has implications for the definition of kinds of control structure and the explanation
of how garbage collection fits into the model. [See Appendix]



Suppose that EO --> E1 is in the behavior where

Eg is <cons-cell (apply: [x] (then-to: c) (else-to: cd)) ai ecl>
E1 is <c (apply: cell*) al ecl'>

If there are events E2 , E3 where
El --> E2 --> E3
E2 is <cell (apply: 'contents (then-to: cd) (else-to: cdl)) a ec>
E3 is <c1 (apply: y) a ec'>

and - 3E (E1 --> E --> E2)
where E is of the form
<cell (apply: [- ?] (then-to:?) (else-to: ?))? ?>

then y = x.

Axiom 3 makes a similar statement about the last contents stored by an update, rather
than about the initial contents. The only significant change from the statement of Axiom 2
is that EO is:

<cell (apply: [4- x] (then-to: c) (else-to: cd)) a ecl>.

Unfortunately these axioms are reasonable only in the absence of parallelism since we
are ignoring the fact that --> only refers to causal relations between events. In programs
without parallelism, the relation --> is necessarily a total ordering making. these axioms
sufficient. (Also, due to the predictable nature of the cell in the absence of parallelism its
use does not really increase power [See Appendix].) But in general there may also be update
events due to another activator which are occurring independently of the ordering of the
first activator.

In a behavior such as:

<cons-cell (apply: 2] (then-to: c)) a ec>

<c (apply: cell*) a ec'>

<cell (apply: [- 3] (then-to: cl)) al ecl> <cell (apply: [t 4] (then-to: 2 )) a2 ecS>

<cl (apply: cell) ai eci'> <c2 (apply: cell) a 2 ec3'>

<cell (apply: 'c ntents (then-to: c3)) al ec2>

<C3 (apply: ?) al ec2'>

The message place marked by the question mark can represent either the message 3 or 4.
Which actor it will be is not a property of the system. Axiom 3 would force it to be 3.



The obvious patch is to weaken the axiom from saying exactly what has to be
returned to the continuation, to just restricting the set of actors it could be. This requires
adjusting the last line of axiom 2 to say that y is in the set

(z I z = x v 3E4 such that
(E4 is <cell (apply: [- z] (then-to: c) (else-to: cd)) ??>

A -(E 4 --> E2 or E2 --> E4))).

That is, y can be the initial contents or any value stored in parallel with this activator.

Axiom 3 should be adjusted similarly, such that the contents could be either the
contents stored in the last update event to causally precede the contents query, or the
contents stored in any update which is parallel to the activator.

Now observe the following behavior:

<cons-cell (apply: [2] (then-to: c)) a ec>

<c (apply: cell*) a ec')
/\

<cell (apply: [- 3] (then-to: cl)) aI ecl> <cell (apply: [" 5]. (then-to: ?)) a2 '?>

<cell (apply: 'contents (then-to: c2)) a ec2> <cell (apply [- 6] (then-to: f)).a 2 ?>

<c2 (apply: ?1) a1 ec2'>

<cell. (apply: 'Icntents (then-to: c3)) al ec3>

<c3 (apply: ?2) aI ec3'>

In fact, our intuition about the contents of cells is that it is even more restricted than stated,
because if ?1 has value 5, then ?2 can no longer have any value in (3, 5, 6), but rather can
only have values in (5, 6). There are many examples in which we can make deductions that
severely restrict the possible contents of a cell. These are actually deductions about
constraints in addition to those imposed by --> as to the order in which events for a given
cell could have occurred.

A first reaction to these examples might be that although the current definition jars
with intuition, it may be reasonable to accept bizarre behavior once non-determinism is a
possibility. Perhaps we simply should not rely on accidental timing characteristics of
systems. However, there are occasions when such behavior of cells is relied upon in the
presence of parallelism. For instance, several solutions to the mutual exclusion of critical
sections which do not make use of semaphores [Dijkstra, 1965; Knuth, 1966], implicitly make
use of the cell's retaining its last contents stored even in the presence of parallelism.



We found that the fact from which all our deductions about reasonable behaviors
were made was that the contents retrieved had to be consistent with some possible total
ordering of all references to that cell. In that ordering each event in which the contents is
checked must agree with the last contents stored. Thus cells allow one to make deductiotis
about the actual order in which events involving that cell occur even though the events
may not be necessarily ordered by -->. This is the property of cells which makes it possible
to use busy waiting to synchronize independent processes.

In order to axiomatize the behavior of cells in the presence of parallelism we define
the last contents stored in a cell with respect to an arbitrary total ordering ->.

Definition: For the event E, the last contents stored in a cell, cell, with respect to
an arbitrary total ordering, ->, is defined to be either

the initial contents, if cell is created in event EO and there is no event E3
which is an update to cell and such that EO -> E3 -> E

or

the actor stored in update event E0, if EO -> E and there is no other event
E3 updating cell such that EO -> E3 -> E.

Axiom 4:

In any behavior containing an actor, s, created by. cons-cell, there is at least one total
ordering, =>s, on the events in that behavior which have s as target. This ordering has the
following properties:

1. El - E2 implies El =>s E2

2. If El --> E

where E =- <s (apply: 'contents (then-to: c)) a ec>

and E = <c (apply: x) a ec'>

then x is the last contents stored in s with respect to >s.

This is almost enough. From any single cell's .point of view there is a total ordering
of all events in which it is the target. Thus it is reasonable for the behavior of that cell to
depend on that ordering. This is the meaning of Axiom 4.

In fact, more information about actual ordering of events can be deduced from
checking contents of cells. For instance if it is important for some set of events performed
by a 2 to precede some event of a1, a cell can be used as follows:



<cons-cell (apply: [4] (then-to: c)) a ec>

<c (apply: cell) I

if contents of cell = 5
then proceed

<cell (apply: [- 5] (then-to: ?)) a 2 ?>

The reason that this synchronization works is that in addition to knowing that if the

contents of cell is found to be 5 then <cell (apply: [+- 5] (then-to: ?)) a 2 ?> must have

occurred, we also know from the causally precedes relation that the "important events" must

have occurred. Thus --> and =>cell can be used together to make deductions about

ordering of events other than those involving cell.

The additional axiom is needed to constrain behaviors of cells in cases where there is

more than one cell. The contents of any single cell must then be consistent not only with

total ordering on events involving it but also with any partial ordering which can be
derived from both --> and the total ordering implicit in other cells. As an example, the

following case would not be sufficiently specified by the above axioms.

<cons-cell (apply: [3] (then-to: cl)) a ec1>

<cl (apply: cell, ) a ecl'>

<cons-cell (apply: [4] (then-to: c2 )) a ec2 >

<c2 (apply: cell 2) a ec2'>

<cell 2 (apply: 'contents (then-to: c3 )) al ec3> <cell, (apply: [(- 5] (then-to: ?)) a• ?>

<c3 (apply: 6) a1 ec3'> <cell 2 (apply: [" 6] (then-to: 7)) a2 ?>

<cell, (apply: 'contents (then-to: c4)) al ec4>

<c4 (apply: ?l) al ec 4'>

By axiom 4, ?1 could be 3 or 5. In fact, since cell 2 is known to have contents 6, cell1 must

have been updated to 5 and the only possible value for ?1 is 5.

Axiom 5:

In any behavior containing actors, si, created by cons-cell, it must be the case that

there are orderings, =>si, satisfying axiom 4 such that the events of that behavior can be

partially ordered by an irreflexive partial order, =>, which has the following properties:



1. El -> E2 implies El => E2.

2. El >si E2 implies El - E2.

There can still be non-determinism since although in any computation the events
referring to the cell, s, are totally ordered by some *s, in fact, axiom 4 does not completely
determine that ordering. That is, there may be many total orderings on the events with s as
target which have the properties enumerated in axiom 4, and which satisfy axiom 5.

Synchronization

A synchronization primitive imposes a total ordering on all events of activators which,
pass through it. This-means that if some synchronization actor always encased a cell it
would never be necessary to worry about unordered updates and contents queries. The
synchronization would impose an ordering and the cell would always contain the last (in the
causally precedes relation) contents stored.

This is part of a general form for specifying behaviors of any system using
synchronization. There must be an axiom to the effect that an ordering is imposed, and
the axioms about other properties of the system can be dependent on this ordering,

One way to protect a cell would be to define a primitive cons-protected-cell which can
create protected cells. Externally cons-protected-cell should have behavior satisfying:

<cons-protected-cell (apply: x (then-to: c)) a ec
--> <c (apply: protected-cell*) a ec'>.

In order to describe the behavior of protected-cell, it is necessary to describe
cons-protected-cell in some more detail. Although its means of synchronization can be left
unspecified, the fact that it contains a locally known cell and that this cell is encased in a
protective actor which is known to the world should be axiomatized.

In more detail, the behaviors of cons-protected-cell also satisfy:

<cons-protected-cell (apply: x (then-to: c)) a ec>
--> <cons-cell (apply: x (then-to: cl*)) a ?>

where cl has behaviors which satisfy:

<cl (apply: cell*) a ?>

--> <c protected-cell* a ?>.

Now we can describe the behavior of protected'-cell.



Axiom 1:

From the outside a protected cell should look like a cell.

<protected-cell (apply: 'contents (then-to: c)) a ec>
-- > <c (apply: ?) a ec'>

and
<protected-cell (apply: [- ?] (then-to: c)) a ec>

--> <c (apply: protected-cell) a ec'>.

The rest of the properties of protected-cell can be inferred from further details about
what it does with its messages:

Axiom 2:

Protected-cell sends messages to cell.

<protected-cell (apply: 'contents (then-to: c)) a ?>
--> <cell (applyi 'contents (then-to: ccontent*)) a ?>

where
<ccontent t a ec>

--> <c t a ec'>.

and

<protected-cell (apply: [- x] (then-to: c)) a ?>
--> <cell (apply: [- x] (then-to: cx*)) a ?>

where
<cx t a ?>

--> <c (apply: protected-cell) a ?>.

Thus protected-cell has side-effects because its behavior reflects the behavior of cell.

Axiom 3:

Protected-cell adds ordering to a behavior.

If E l --> E 2 and E3 --> E4 where

El = <protected-cell (apply: xl (then-to: cl)) a ?>

E2 = <cell (apply: xl (then-to: clx*)) a, ?>

E3 = <protected-cell (apply: x2 (then-to: c2 )) a2 ?
E4 = <cell (apply: x2 (then-to: c2x*)) a 2 ?



then either E2 --> E4

or E4 --> E2.

This says that somewhere in the interface between protected-cell and cell there is
locking and unlocking going on which causes all events with cell as target to be ordered: by
causally precedes. The exact mechanism cannot be seen at this level of detail but it exists.

Axiom 4:

Given El, E2, E3, and E4 as above and E2 -> E4, then in fact

E2 --> <l x (apply: ?) aI ?> --> E4.

That is, the event in which a response is made from the cell triggers protected-cell
and allows another transmission to the cell. Thus clx must know how to free the cell.
Again, since the synchronization mechanism is primitive -we cannot see the chain of events
causing the unlocking. It is simply a property of this mechanism that it. causes the
protected cell to let someone else get to the cell.

Now, from the point of view of the cell, all events are totally ordered by causally
precedes. If cells were always used. inside protectors only the simpler single activator axioms
for cells would be important. The more complex global ordering constraints can be
deduced from a combined understanding of synchronization which imposes ordering, and
of cells which remember their contents.

Conc7usions

We can express characteristics of a side-effect primitive in the presence of
parallelism. Side-effects are described by delineation of possible changes in behavior
rather than in a state vector. Synchronization can be used to impose additional ordering
constraints.

Further research is in progress on applying this semantic formalism to structured
synchronization actors, similar to monitors [Hoare, 19743 or serializers [Hewitt, 1974]. Once a
sufficiently expressive set of descriptions is developed we will implement some systems, such
as an airline reservation system or a solution to the readers-writers problem, and prove
"correctness" relative to these descriptions.

The formalism can also be used in comparative studies of the behaviors characteristic
of a variety of control structures. An example of this kind of work accompanies a result on
elimination of cells presented in the Appendix.



Appendix

Concerning Side-Effects

A Controversy

There is some controversy at present over the desirability and necessity of use of
side-effect primitives. There are at least two major aspects of this controversy. One relates
to the clarity and reliability of code. There are programmers who would prefer to at least
restrict, if not eliminate, entirely, the use of side-effect primitives such as cells in programs.
Styles of programming without side-effects are compared to styles dependent on side-effects
later in this appendix.

Another aspect of the controversy is the effect on implementation requirements of use
of particular kinds of side-effect primitives such as cells. Implementations of cells must
handle possible cycles in the knows about relation. for actors, Each actor knows about a
finite number of other actors. We will say that there is a cycle in an actor system if there is
soine actor which knows about itself. These cycles make it necessary to use a copying

garbage collection algorithm rather than a reference count algorithm.*

It is well known that it is impossible to create cycles in the pure A-calculus.
Furthermore, it is easy to see that generalizing the A-calculus to allow transmissions to be
explicitly sent and received [making co-routines efficient] does not generate any cycles.
Since there does not seem to be any economical way to detect the formation of cycles during
program execution one cannot rely solely on a reference count garbage collection scheme for
programs when cells are in use.

In this section a result is presented to the effect that cells can be eliminated from
programs without parallelism and that this can be done within certain bounds on loss in
efficiency. When considered in light of the actor semantics of this paper this fact. can be
seen to be true even in the presence of iteration, generators, and co-routines. We will
present the result with informal argument rather than proof and then proceed with
discussion of side-effects in various control and data structures.

.Elimination of Cells

Theorem: There is a uniform procedure for eliminating cells from programs with
side-effects, but no parallelism. It causes at most an (n (In n)) vs n loss of efficiency in
time, and at most a (c s m) vs m increase in storage where c is a constant.

* The question of which type of garbage collection is preferable in a given implementation
depends on a variety of considerations (for discussion see [Denriis, 19741).



The general idea is that instead of having cells with contents which can be changed,
the system has to keep track of these contents in some format which can be referenced by
the cells when they want to know their contents. We call this object a map. Whenever the
contents of a cell is needed, it can be found by asking the map. Whenever the value of a
cell, n1 , is to be updated to v, this change must be simulated without an actual side-effect.
That is, the existing map, mapl, must not be changed by the operation. of simulating
updating the contents of a cell. This can be accomplished by creating a new map, which we
shall call map 2 , whose behavior is identical to that of map 1 except that when asked for the
contents of nI it must respond with v. The new map, map2 , must be the one examined in
the future in the next update or content operations on cells. To see how this can be
accomplished, assume that map 1 is stored as

* 90

* .9.

Then if the third cell was to be changed to have contents q, map 2 could be stored as

S"

.4 -
M a

mar,

All statements involving cells must have access to the current map. The way to give
them this access is to always pass around the current map. This can be done in applicative
programming languages by passing an additional argument, namely the map, to all
functions. The map would then be available as a local variable in each procedure body.

In imperative languages this would be done by rewriting sequential code to pass the
map from one statement to the next so that the simulated side-effects will propagate
through the sequence. In both cases all creation of new cells, and all updating or accessing
of the contents of cells will be simulated by operations on the current map.



In an actor based language in which the basic operation is the transmitting. of a
transmission actor to a target actor, the current map must.be included in all transmissions.

We will continue to use the message passing metaphor to explain the bound on loss
of efficiency. In accordance with this decision, time is measured by the number of
transmissions which must occur. Transmissions can be thought of as taking one unit of
time, although an arbitrary amount of real time may pass. between transmissions, depending
on how the program is being run. The addition of the map to each transmission only
linearly increases the time taken by a factor of (1 * e). where I can be made arbitrarily
small. The important inefficiency comes in the number of transmissions needed to look up
information in the map. The bound is based on a tree structured implementation of the
map. It is well known that a tree with n nodes can be searched in time proportional to (in
n). Thus at any time if there are m nodes in the map a simulation of a cell statement
(creation, updating, accessing) causes extra transmissions in a number proportional to (ln m).
At the nth transmission of the original computation there can be at most n transmissions in
which a cell was created and the size of the map increased.. Therefore a computation of n
transmissions can be simulated in at worst (n In n) transmissions.

The bound on space is based on one possible physical storage arrangement for the
tree. If it is stored in the form used above, then if the original computation created m cells
(realized physically in m locations) the simulation requires 3m.

Implications of the Theorem

The result is directly applicable to implementation with reference count in the
following way. If the only concern is that it be possible to run programs without having to
do mark/sweep or copying garbage collection, then programs which do not involve
parallelism in any language (SIMULA-67, LISP with setq and rplaca) could simply be
translated to programs with maps and primitives which imitate cells using maps. The loss.
in efficiency in time is then known to be bounded by (n In n) vs n. The space needed

increases by a constant factor."'

Also, it is not necessary that this implementation create extra garbage when creating
new maps and abandoning old ones. If the storage scheme chosen is the one illustrated
above then garbage is recognizable at the time it becomes garbage. Part of the process of
creating a new map can be the placing of new garbage into free storage. This can be done
with only a small constant factor of further inefficiency and makes it possible to assume

* We have since realized (Jan. 1975) that this application to reference count implementations
is misleading since the simulation of cells simulates the cycles as well. Instead of having, a
lot of inaccessible cycles of cells which are not garbage collected, there are now as many
accessible locations containing information. about what was in that cycle. These locations
will never be accessed or garbage collected.



that the new program will not require more garbage collection than the old one did
(independent of how that garbage collection will be implemented). Thus there is no
additional inefficiency not covered by the bounds given.

The implications of this theorem for goals such as readable code are less direct. The
fact that elimination is possible without loss of generality is reassuring, but the bound on
loss of efficiency is not directly applicable. The Elimination of Side Effects Theorem
cannot be applied directly to arbitrary programming styles for the following reason. If one
goal in eliminating cells is to make programs more understandable, programming with cells
and then simply simulating their use to technically eliminate them would be of no use. The
overall structure of the program would remain unchanged and it will not be of greater
clarity. It is possible that the "most understandable" style, when discovered, will turn out to
require such complete and possibly redundant rewriting and restructuring of code that it
will be considerably more efficient or even considerably less efficient than the bound
calculated in the theorem.

However, we will show below how to apply the method of the theorem to standard
cases that are generally encountered in programming.practice to cause only fairly reasonable
loss of efficiency. The styles illustrated in the following section are all based on the same
principle as the procedure used in the elimination of cells. That is, the information that
would be stored in a cell is instead passed around to those who might need it. However, it
is usually passed in such a way that extra garbage collection becomes necessary. Thus there
is a trade-off between efficiency gained by using reference count garbage collection, and
inefficiency due to generation of extra garbage.

One further point, should be made before going on to programming styles. It
concerns the restriction of this result to systems without parallelism. The procedure for
eliminating cells depends on the existence of exactly one activator so that each event is
guaranteed to have the current map when it occurs. The procedure will not work in the
presence .of more than one activator. One difficulty is in simulating the non-determinism
which could occur due to the presence of both parallelism and cells.

Programming Styles which do not use Cells

Note that the Elimination of Cells Theorem applies to actor systems with explicit
access to transmissions as opposed to the A-calculus where there is explicit access only to the
message part of a transmission. Thus it applies to systems with iteration, generators, and
co-routines (e.g. systems as powerful as SIMULA-67 [Birtwistle et al, 19741 which use
quasi-parallelism but not real parallelism]. Each of the above control structures has its. own
programming style which does not involve the use of cells and which is related to the use
of continuations as in [Mazurkiewicz, 1971; Fischer, 19721. We illustrate these styles and the
trade-offs involved using simple examples below.



Iteration and Side-effects

Iterative control structures can be realized in the A-calculus and thus without cells.
We will give a simple example to illustrate how this is done:

(label iterative-factorial
(Q [n a]

(if (n = 1)
then a
else (iterative-factorial (n - 1) (n c a)))))

Of course the above definition is also a recursive definition of iterative-factorial in the
sense that it is defined in terms or itse l. However, in terms of the actor semantics it
is not a recursive definition in the sense of ALGOL-like languages. I.e., it does not use
up arbitrarily large amounts of intermediate working storage in order to do the
computation. Using the actor semantics the following version of factorial is recursive in
both senses of recursive:

(label recursive-factorial
(x [n]

(if (n = 1)
then I
else (n * (factorial (n - 1))))))

The reason that storage increases is that the number of actors currently pointed to
("known about") continues to increase. Actors which are pointed to are not eligible for
garbage collection. The fact that iterative-factorial only requires a bounded amount of
working storage can be demonstrated by analysis of the computations of iterative-factorial.
In the course of the computation several new actors will be created but only a bounded
number of these actors will be known about at any given instant. This establishes an
upper bound on the amount of temporary storage needed. In the case of iteration, it is just
as efficient to program without the use of cells as it is to use cells and the programs seem
more readable without cells.

Generators With and Without Cells

We shall demonstrate how to define generators with and without using cells by
defining generators that produce the squares 1, 4, 9, 16, etc. in sequence on demand using a
device called streams by Peter Landin [1965). We will develop two implementations that use
the same interface with the polymorphic operator next which requests the next element.
The interface is defined in such a way that it will work with streams with side-effects
(Balzer, 1971; Krutar, 1971; and Mitchell, 1971] as well as with functional streams [Landin,
19651. The polymorphic operator next which makes this happen works by immediately
turning around and passing the buck to the-supply using the message

(next: (else-complain-to: the-complaint-dept))



to politely ask the-supply for its next and to complain to the-complaint-dept if it doesn't have
a next.

A stream-sequence consists of two components: a first which is the next element in the-
stream, and a rest which is another stream that holds the rest of the elements after the first.
Below we define a stream that produces integers which are squares up to some limit. It
produces the next larger square each time it is asked for it, and returns the square along
with a stream for generating more squares.

To construct a stream of squares,
receive a sequence of

a limit of how many squares to produce
and a count from which to begin producing squares.

Then return an actor which,
when asked either to produce the next element
or to complain to a complaint-dept if it doesn't have one,

checks the count to see
if it is greater than the limit

and if so complains to the complaint-dept.
Otherwise it

returns a stream-sequence which has
the square of the current count as its next element
and rest which is a stream of squares

with the same limit
but whose count is one greater than the input count.

Below we define a polymorphic operator print-elements which prints the elements of any
stream which it is given.. For example

(print-elements (cons-stream-for-squares (limit: 3) (count: 1)))

will print 1, 4, 9, and then print "done"

To print-elements of a stream
receive a stream.

Ask the stream for its next.
If it has a next,

receive the stream-sequence and bind its first and rest.
Print the first of the stream-sequence.
Then print-elements of the rest of the stream-sequence.

If the stream has no next,
print "done."

Below we define a port [a stream with side effects] that produces square integers up
to some limit. It produces the next larger square each time it is asked for its next, returning
itself (with its behavior modified by a side effect] as the "rest."



To construct a port for squares,
receive a sequence of

a limit of how many squares to produce
and a count from which to begin producing squares.

Let current-count be a cell that initially contains the initial count.
Label the actor whose behavior is defined below as the-port.

Return the-port which is an actor which,
when asked either to produce the next
or to complain to a complaint-dept if it doesn't have one,

checks the contents of current-count to see
if it is greater than the limit,

and if so complains to the complaint-dept.
Otherwise it

increments the contents of the current count.
Then returns a stream-sequence which has

as its next element
the square of

the contents of current-count
and rest which is the-port.

Note that we have defined the port in such a way that the polymorphic operator next can
also be used to obtain squares from it. Thus in many cases the decision of which of the
two implementations of the square generator to use can often be deferred or even later
reconsidered. For example

(print-elements (cons-port-for-squares (limit: 3) (count: 1)))

will also print 1, 4, 9, and then print "done." However, the behavior of
cons-stream-for-squares is not exactly the same as that of cons-port-for-squares. Once a port

for squares has been printed then it is "totally used up" and has no more useful behavior.

There is no "backup" capability built into ports. The burden of providing such a

capability if it is desired is placed upon the user of the port. Debugging a system where

ports are used as the basic communication primitive can be painful because useful

debugging activities such as printing the contents of a port sometimes have unfortunate

side-effects.

In contrast, a stream for squares does not change its behavior as a result of being

printed and can be used for other purposes at the same time such as searching for

successive squares whose sum is an odd prime. Generators can always be implemented

almiost as efficiently without the use of cells as by using cells except that avoiding the use

of cells imposes more of a garbage collection problem. The extra garbage collection in the

style of programming without cells stems from the fact that old generators disappear only

when they are no longer being referenced.



Data Structures and Side-Effects

The style of programming used for generators is applicable to definition of actors
which behave like a variety of data structures such as stacks, queues, sets, deques, and bags,
making it possible to implement them either with or without side-effects. For example
(pop the-stack) can return a. value of the form

(next: the-top-of-the-stack (rest: astack-without-the-top-element))

The technique is also applicable to implementing control structures [such as iteration and
co-routines] which can be implemented either with or without cells.

Co-routines and Side-effects

Co-routines are a control structure which are often used by programmers in artificial
intelligence and systems programming. They have recently found increasing popularity
[Hewitt, 1971; Bobrow-Wegbreit, 1972; McDermott and Sussman, 1972; Davies, 1972; Hewitt,
Bishop, and Steiger, 19731 in knowledge-based applications as the foundation for a
dialogue-based programming style. Early Artificial Intelligence programs were mainly
organized as multi-pass heuristic programs consisting of a pass of information gathering,- a
pass of constraint analysis, and a pass of hypothesis formation. It is now generally
recognized that multi-pass organizations of this kind are inflexible because it is often
necessary for information to flow across these boundaries in both directions in a
dialogue at all stages of the processing.

Co-routines were used by Conway [1963] to convert the separate lexical and syntactic
passes of a two-pass compiler into a single pass compiler. Using cells and gotos, a
co-routine control structure [in a language like PAL, GEDANKEN, or CONNIVER] can
be built to do this in the following way. We assume that there are four cells known
globally to both the lexical analyzer and the syntactic analyzer of the compiler:

messageto-lexical: cell for messages to lexical analyzer
messageto.syntactic: cell for messages to syntactic analyzer
resumelexical: cell for resume-points of lexical analyzer.
resumesyntactic: cell for resume-points of syntactic analyzer

To start the system execute the following:

Update the contents of resumesyntactic with starting-syntactic-resume-point
Call the procedure start-lexical-analysis with the-input-character-stream as its argument

Whenever the a-lexical-procedure of the lexicat analyzer has found the next lexical
item L then it can resume the syntax analyzer by executing the code in the box below:



Define a-lexical-procedure to be
(A argument-to-a-lexical-procedure

Update the contents of resumelexical to be a-lexical-resume-point I
which is defined below.

Then update the contents of messageto-syntactic to be L
and then goto the contents of resumesyntactic-

a-lexical-resume-point: I
Read the contents of messageto-lexical.

Return valueexical as the value of a-lexical-procedure.)

Note that within the lexical analyzer, a-lexical-procedure is an ordinary procedure; it is
called with an ordinary procedure call and returns with an ordinary procedure return. The
lexical analyzer need have no knowledge that a-lexical-procedure interacts with the .syntax
analyzer.

Whenever a-syntax-procedure of the syntactic analyzer needs more input it can
resume the lexical analyzer by executing the code in the box below-

Define a-syntax-procedure to be
(A argument-to-a-syntax-procedure

Update the contents of resumesyntactic to be a-syntactic-resume-point I
which is defined below.

Update the contents of messagetol*exical to be 'next I
and then goto the contents of resumelexical.

a-syntactic-resume-point:
Read the contents of messageto-syntactic.

Return valuesyntactic as the value of a-syntax-procedure.)

Using transmissions we shall indicate how to eliminate the side effects involved in
co-routining between the syntactic and lexical analyzers without severe loss of efficiency.
Our scheme can be viewed as an extension to ,-calculus in which we assume that we have
the ability to explicitly bind transmissions as opposed to only being able to bind the
message in a continuation which is all that the ,-calculus allows. The scheme is very
similar to the one used in the Elimination. of Cells Theorem in that we will increase the size
of all the messages passed around inside the lexical analyzer to include what would have
been the contents of resumesyntactic and increase the size of the messages passed in the
syntax analyzer to include what would have been the contents of resumelexical. The
language PLANNER-73 has been designed for the direct realization of actor semantics and



so has a syntax which allows access to transmissions when this is desirable. The advantage
of explicitly binding transmissions is that it provides a powerful straightforward co-routine
mechanism with simple rigorous semantics defined in terms of actors. The semantics of
alternative co-routine mechanisms [such as Landin's J-operatorl seem to be inextricably
bound up with the detailed evaluation mechanisms of the language in which they are
implemented [Reynolds, 19721.

Using transmissions to implement coroutines, the system is started by executing the
following procedure call:

(start-lexical-analysis input-character-stream begin-syntactic-analysis)-

Whenever a-lexical-procedure of the lexical analyzer has found the next lexical item'
L, then it can resume the syntax analyzer by executing the code in the box below:

Define a-lexical-procedure to be
Receive-transmission (apply: [argument-to-lexical-procedure resumesyntactic]

(then-to: reply-to-lexical))

S resumesyntactic is sent the transmission
(apply: L

(then-to:
receive-transmission (apply: messageto-lexical

(then-to: another-resumesyntactic)) I

reply-to-lexical is sent the message [valuelexical another-resumesyntactic])) I

Whenever a-syntax-procedure of the syntax analyzer needs more input from the
lexical analyzer it can resume the syntax analyzer by executing the code In the box below:

Define a-syntax-procedure to be
Receive-transmission (apply: [argument-to-syntax-procedure resumelexical]

(then-to: reply-to-syntactic))

resumelexical is sent the transmission
(apply: 'next

(then-to:
receive-transmission (apply: messageto-syntacti c  I

(then-to: another-resumelexical))

reply-to-syntactic is sent the message [valuesyntactic another-resumelexical,))I

Use of co-routines for the above application becomes more justifiable in cases where a



dialogue between the lexical analyzer and the syntax analyzer is needed. This happens
when more interesting messages than simply 'next need to be sent to the lexical analyzer by
the syntax analyzer. An application which needs this kind of sophistication is an error
correcting compiler where both lexical and syntactic errors occur in programs being
compiled.

Should Cells be Eliminated?

There has been a shift away from heavy reliance on side-effects in formalisms for
artificial intelligence. It is apparent in the development of the context mechanism in QA-4
[Rulifson, 19721, in the definition of PLANNER worlds in terms of actors [Hewitt, Bishop,
and Steiger, 19731, and in the communication -between PLANNER-73 plans in terms of
message passing [Smith and Hewitt, 1974].

A programming style that avoids the use of cells seems very attractive if the
programs are almost as efficient, since they seem to be more readable to many people. In
the case of iterative programs, a programming style which does not use cells is just as
efficient and imposes no additional garbage collection overhead. In the case of generators
and co-routines, not using cells does circumvent pitfalls of using side-effects but imposes
some additional garbage collection overhead.

We would like to re-emphasize that we do not advocate rewriting programs using the
algorithm described in the proof of the Elimination of Side-effects Theorem. For the

purposes of clarity and easy debugging of programs, such activity is just as pointless as
systematically rewriting programs that use the goto construct by substituting while loops-and
boolean variables. Instead a style of programming that has certain definite advantages
must be developed.
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