
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Working paper 103 June 1975

Zi Preliminary Report on a Program tor
Generating Ratural Language

by

David McDonald

Rbstract

A program framework has bben designed in which the lingLuistic facts and heuristics
necessary for generating fluent natural language can be encoded. The linguistic data is
represented in annotated procedures and data structures which are designed to make English
translations of already formulated messages given:in a primary program's internal
representation. The messages must include the program's intentions in saying them, in order
to adequately specify the grammatical operations required for a translatibn.

The pertinant questions in this research have been,: what structure does natural
language have that allows it to encode mutifaceted messages; and how must that structure be
taken into account in the design of a generation facility for a computer.program.

This paper describes the control and data structures of the design and and their
motivation. It is a condensation of my Master's Thesis <1>, to which the reader is refered for
further information. Work is presently underway on implementing the design in LISP and
developing a grammar for use in one or more'of the domains given below.

This paper will appear in the Proceedings of the Fourth International Joint Conference On
Artificial Intelligence, September 3-8, 1975, Tibilisi, USSR.

Working papers are informal papers intended for internal use.

This report describes research done at the, Artificial Inteligence Laboratory of the
Massachusetts Institute of Technology. Suport for -the laboratory's artificial intelligence
research is provided in part by the Advanced Research Projects Agency of the Department of
Defence under Office of Naval Research contract N00014-70-A-0362-0003.



McDonald IJC/ll-4

Introduction

At the present time, there are 'intelligent, interactive programs under development which

will require greater fluency in generating natural language than any current system can offer.

Three such programs, in particular, are a personal scheduling program (Goldstein <2>), a

programmer's assistant (Rich and Shrobe <3>), and the MACSYMA advisor (Geneserith <4>).

A characteristic of all these programs is that they will employ models of their users - of

their habits, and the things they are likely to know in various situations. They will also

maintain models of themselves and their intentions as they reason and interact with their

users. This will have a large effect on the design of a suitable generating facility for them.

Level ol Fluency I)esired

The sort of conversations we hope these programs will. eventually be able to have. are

typified by the short example below, between a scheduling program (P) playing the part of a

secretary scheduling appointments for a professor,.and a student (S).

(S) I want to see Professor Winston sometime in the next few days.
(P) He's pretty busy this week. Can it wait?
(H) No, I need his signature on my petition before Friday.
(P) Well, maybe he can squeeze you in tomorrow morning. Give me your name and check

back in an hour.

These are very fluent answers by human standards. The wording is colloquial - "pretty

busy", "squeeze you in" - but at the same time, it deliberately conveys useful information;

casual speech can give an impression of flexibility. Impressions like this can be as important

to the total message as the sentence's propositional content. Similarly, the use of "well" at

the beginning of a reply can signal an admission on the part of the speaker that the answer

which follows may not be adequate. This realizes a need within the discourse situation that is

June 18, 1975



McDonald IJCAI-4

properly -part of conversations among people, and should be included in conversations

between computers and people.

n 5eparate Linguistic Component

The total process of generating language involves making a large variety of decisions and

having available the information on whith to base them. The initial urge to speak comes from

somewhere to fulfill some need which must then be made:more precise, Models of .the

audience, their present knowledge and expectations, must be consulted. The available

procedures for putting together an utterance will never be totally adequate and therefore

compromises must be reached. Finally, the most appropriate linguistic representations must be

found and organized, probably requiring more compromise. Despite the intricacy of this

process, I believe it is both meaningful and profitable to divide it two: decision making which

requires cognitive/domain knowledge, versus decisions requiring linguistic knowledge.

In some early communicating programs (Winograd. <5>, Woods <6>), linguistic and domain.

knowledge were freely mixed. This was possible because the programs only worked in a very

small number of situations where'the relevant linguistics could be "built in". However, if, as

seems to be the case, an extensive amount of "linguistic reasoning" is required to meet the

needs of more sophisticated programs (and people), then the programming difficulties of

designing a mixed system become insurmountable. (n.b. the more recent systems, Goldman

<7>, and Slocum <8>, incorporate essentially the same division as my own.)

A possible objection to this compartmentalization is that people don't work that way. A

grammar that is organized in a different way than human grammar may have difficulties

June 18, 1975



McDonald IJC/II-4

representing the same rules. People often consider the potential impact on their audience of

their use of particular words, or of the ordering of their phrases. Poets, in particular, are

certainly as conscious of choosing syntax and meter as they are of choosing cognitive content.

When I say that the generation process should be divided in two, I do intend the

strongest interpretation: namely, that the "cognition" will have totally developed the message

to be communicated before any linguistic processing is done. Futhermore, the linguistic

processing should not change the meaning in any way that the cognitive domain cares about,

and the message, once determined, should not be modified. This design will, indeed, not be

able to behave as people do on the tasks above.

However, I believe that computer programs will not be able to motivate such behavior for

a long time, and that the division in the design is a useful one for the purpose of current

research. (In my thesis, <1>, I describe how the design might be upgraded to handle

increasingly sophisticated human linguistic behavior, and what additional information such

behavior would require the cognitive "component" to have.)

The Translation Process

In this design, the generation of English utterances in context is seen as involving two,

computationally separate components. (All of this work has been done in English, though there

should not be any difficulty in applying it in other languages.) Since there are two

components, there must be a communications channel between them and a language which the

cognitive component uses to describe to the linguistics component what it wants said (the use

of the term "linguistics component" in this paper only refers to generation processes and not

to interpretive processes, see <1>).

June 18, 1975



McDonald IJC/AI-4 5 June 18, 1975

Messages

Before the linguistic component is called in,.the main program (-for example <2>,<3>, or

<4>) has as total a picture as it needs of what is to be said. It knows that it wants to mention

certain particular entites and certain relations among them, and to achieve a certain effect

upon its audience. To communicate with the linguistic component, this. information is collected

into a data structure, a "message". A message can be viewed.as consisting of two sorts of

things.

1. A collection of pointers to the internal objects. that are to be talked about,. The pointers
are annotated to describe how the objects relate to each other and the message as a
whole.

2. A list of features which characterize the primary program's communicative intent in making
that message.

The following structure is an example of what a message might look like.. The word on

the left of each pair is the annotation, and the phrases on the right in angle-brackets

represent objects in the main program with roughly the meaning.of those phrases.

message-I
features (prediction)
proposition

<status-of-person>
Itype <busy>
jof <Winston>

hedge <70% chance>
time-predicted <12:00-17:00>

This message may be translated into the sentence: "Professor Winston will probably be busy

all afternoon".

The character of the translation

Translation from the internal representation of a computer program to natural language is

very much like translating from one language to another, and the same problems arise.



McDonald IJC/Il-4

Basically, the problems are that the same concepts may not exist as primitives in each

language, and that the conventions of the target language may require additional information

that was not in the source language. Translation, therefore, cannot be simply one for one.

What English phrase should be used for a particular element in the program's message

will vary as a function of what is in the rest of the message and of what the external context

is. To allow these factors to be adequately considered, the translation of an element is carried

out by special procedures called "composers" which may take into account a wide variety of

phenomena as they do their translation.

Every concept, name, structure, process, or other entity which the main program might

employ in a message will be associated with such a describing procedure. The association

might be a direct pointer from a unique name in the program to its composer, or it might be

derived by examining "is-a" links or "type" features associated with the object (e.g. all things

of type "event" might share a composer). Composers are run at predetermined points in the

translation process and are designed to expect a particular computational/grammatical context

at that point.

The translation to English, then, does not employ a single, unified grammar, such as an

ATN (<7>,<8>). Instead, the grammatical information is distributed among the individual

composers. This is in part a matter of programming aesthetics, and in part due to a belief that

the attendant increase in modularity and flexibility will make the grammar more tractable and

easier to improve.

June 18, 1975



AlcDonald IJC/1-4

ControI 5tructure

With the grammar distributed among a very large number of.separate processes, the task

of coordinating their actions becomes of paramount importance. Roughly speaking, the

translation process has this character: the intentions and objects in the message will suggest

(via their composers) strategies for realizing themselves in English. However, these strategies

may be blocked or modified by general linguistic information in "the grammar", or by the

effects of decisions made by earlier strategies. .(The term "the grammar" refers to the

collective information in the composers and their data structures, -rather than some central

body of constraints.)

The control structures required to implement this process are themselves, very simple.

This is because the descriptive apparatatus of the.grammar can provide a rich enough

description of the situation to direct the actions of the composers and keep them, in effect,

from tripping over each other's feet.

This would not be possible if it were no.t for the fact that natural languages are very

complex entities with rich structures. In more concrete terms, this is to say that languages

are made up of a relatively large number of types of structures (noun phrases, function

words, inflectional endings, modifiers, etc.) and that the possible arrangements of these

structures are very highly restricted - only a few combinations are possible. By encoding this

information into a system of features and data structures, and then writing, a grammar for the

composers in terms of that system, a tremendous, implicit coordination should be achieved.

This coordination does not come automatically of course. Since situations are defined in

terms of features, a composer will recognize where it is by using conditional statements

June 18,.1975



McDonald IJCl1-4

involving those features. The larger the number of possible situations that a particular

composer may be run in, the more intricate its conditionals will be, and the harder the

composer will be for the human designer to write.

Part of the job of cutting down on the complexity can be done in the grammar by

increasing each feature's descriptive power (and probably adding to their total number). The

more information that a given feature codes for, then the more decisions that can be made

solely on its basis. An even more effective technique is Jo closely control when the individual

composers will be run. This can provide implicit situational information. Also, if it can be

arranged that a decision, once made, seldom has to be reconsidered, then a considerable

overhead in mechanism and composer code will be saved.

The requirement ol linear ordelr

One of the fundamental characteristics of natural language is that utterances. are

necessarily made up of linear strings of words. This requirment is an inescapable fact of the

"physics" of natural language and accordingly, it has been given a large role in conveying

information. It can realize propositional meaning and rhetorical intent, and permit

abbreviations throughout the utterance for example.

Fortunately for the program designer and the linguist, those things that are ordered are

not arbitrary clumps of words, but rather structural units (noun phrase, adverb, etc.) with two

important characteristics.

1. They seem (not coincidentally) to describe categories of experience which are natural to us*

as people and which we will probably want to introduce into our computer programs.

2. Linguistically speaking, they are very modular and can usually be "moved" to several

June Is, 1975



AMcDona-ld IJCI-41

different positions within an utterance to achieve rhetorical effects, and require only

minimal, well specified structural changes in each position.

The majority of the descriptive composers' in the lexicon will describe their

corresponding internal entities with just such coherent grammatical structures. Most of the

syntactic details of these structures vary with position in the sentence. If these composers

can be given a guarantee that the position of their object will not be shifted as the utterance

is further developed, there will be a considerable savings -in the complexity of individual

composers and in the overhead required to manage them.

Two Phases

To provide this quarantee, the translation process is divided.into two phases. During the

first phase, the message as a whole is examined.accor d ing to the intentions given for it and

the annotation for each object that it mentions. A "plan" is selected for it (see below) which

embodies the syntactic structure of the ultimate utterance and which has "slots" in it into

which the largely "unexpanded" objects of the message are transfered. In this phase, all of

the elements in. the message which will involve ordering conventions in their realization

(translation) are found and the plan modified to accomodate them.

During the second phase, the developed plan, which is essentially a constituent structure

tree with the possible positions explicitly labeled, is "walked" from left to right and top down -

as it would be spoken - and the objecis in it are described by their composers as they are

encountered. With the "proto-utterance" represented in its surface structure form during this

phase, relationships become apparant which could not otherwise be .seen. These include the

lune 18, 1975



McDonald IJCII-4

possibilites for pronominalizing elements, and the actual scope of quantifiers. These can be

dealt with by syntactic procedures associated with the features and grammatical units in the

plan.

U.)fa-directed processing

in both phases, control is data-directed. In the first phase, the data structure being

interpreted is the message, and in the second, it is the plan that was chosen and filled in

during the first phase. This is another source of coordination for the composers since the

control of their order of execution is now governed by structures which can be written to be

very rich in grammatical information.

Let me summarize what has.been said so'far. This design proposes that.a very loose,

modular framework can be used in language generation; that it will be. most convenient if the

domain and audience specialists in the program be allowed to work out their message

independently of its ultimate linguistic details;. and that when the time comes to consider the

linguistics, the process should be viewed as a translation which is performed by a large

number of specialist procedures associated with the possible things which may appear in a

message. The operation of these specialists can be coordinated implicitly by the grammar and

data structures that are developed.

In the rest of this paper, I will describe some of operations and structures of this design

in more detail.

June 18, 1975



McDonaCd IJCfli-4

Plans

All natural language programs and linguistic theories employ, in one form or another, a

tree structured constituent analysis of their sentences in terms of the traditional grammatical

units. My design is no different, except that I have found it necessary to augment the usual

descriptive framework to make it capable of the task at hand. This has resulted in the data

structure I call a "plan".

The principle function of plans is to mark the possible positions in a grammatical unit, in

terms of a fixed vocabulary of slots such as "subject", "main verb", "post-verb-modifiers", and

so on. The slots in a plan are arranged in a fixed order corresponding-to the normal English

surface structure. For example, if we used the grammar developed by Winograd in his SHRDLU

program <5>, the slots in a noun phrase would be as follows.

NG - Ideterminer
lordinal
Inumber
ladjectives
Iclasifiers
Ihead noun
lqualifiers

Since the slots are named, they can be referred to directly from within the grammar,

rather than requiring some complicated tree walk and string matching operation as in

PROGRAMMAR <5>, or in transformational grammars. The grammar can, for example when it is

doing verb agreement, ask what is the number .of the object in the subject slot, or, when

considering using extraposition, ask if the subject will be described using a clause.

The major motivation for naming the possible positions within a grammatical unit involves

more than convenience in writing grammatical rules. The basic operation during the first

.June IS, 1975:



McDonald IJC/II-4

phase is to insert another element from the message into an .established plan. To do this, the

composing procedure must know: 1) what positions are open in this plan where it is

grammatically feasable to put this element; and 2) if more that. one position is available, in

what ways do their properties vary so that a reasoned decision .an be made as to which one

is best in this case.

When the possible positions in an utterance are marked with.unique names, it becomes

possible to associate grammatical information with them to use in situations such as above.

Most of this information will probably reside directly in the relevant composers, but some will

be used by functions which mediate the insertion of an object into a slot.

The function of such mediation is to relieve the composers of the need to know low level

syntactic information. The verb group is a prime example. Because of the intricacy of -its

syntax, it will be convenient to have only one slot, VG,.in a clause or verb phrase plan, and let

a function associated with VG manage a full verb group plan below it. The function determines

what sub-slot should be filled (perhaps even changing the actual configuration of the slots)

and adjusts the features of the group if necessary. This way, the bulk of the composers no

longer need to know about details such as: "if you add a modal verb ("would") to a verb

group, you have to add a marker to the main verb to inhibit the later morphological expression

of tense".

Plans are associated with grammatical units, with possibly a separate plan for each set of

grammatical features that a unit might have, reflecting the different slots that. may be present

in each case. By knowing the features of a unit, a composer will know exactly what slots to

expect it to have. The next section has examples of how plans are used.

June 18, 1975



McDonald IJCi/i-4

Translating a Tess.age

Most. of the work in the first phase is done by organizational composers associated with

the intentional features on the messages. Each such composer will include code which

understands the possible annotations that typically are mentioned with such intentions, and

which will govern their insertion into a plan at the proper time. Consider the example

message given earlier and repeated here.

message-1
features (prediction)
proposition

<status-of-person>
Itype <busy>
lof <Winston>

hedge <70% chance>
time-predicted <12:00-17:00>

Here, the organizing composer will be associated with the feature "prediction". Typically, one

element of the message will be most important. and is translated first. The others will

probably refer to it and may need to be realized inside the plan that it was translated into. In

this case, the prime element is the one annotated "proposition", an object of 'the sort "status

of a person". Plan selection is done by the descriptive composer for this sort and is guided

by further characteristics of the object. The lexicon will record that the type property

<busy> must be, realized as a predicate adjective. This leads to the following, partially filled in

plan.

node-I
features (clause major copular pred-adj)
slots Ipre-sentential-modifiers <>

Isubject <Winston>
Ivg BE
Ipred-adj. "busy"
Icomplement <>
Ipost-sentential-modifiers <>

June 18, 1975



McDonald IJC1/1-4

The rest of the message is transferred by the prediction composer chunk by chunk.

Predictions are of future events, so "will" is added to the verb group; the "hedge", <70%

chance> will be realized as an adverb, say, "probably", and so it is added to the adverb slot in

the verb group; and "time-predicted" is a time modifier to the clause, making it part: of the

post-sentential-modifiers. With the entire message transfered, the plan looks like this.

node-I
features (clause major copular pred-adj)
slots Ipre-sentential-modifiers <>

Isubject <Winston>
Ivg node-2

features (verb-group future modified)
slots Imodal "will"

Ipre-vb-adv "probably"
Imvb BE

Ipred-adj "busy"
Icomplement <>
Ipost-sentential-modifiers

<12:00-17:00>

lnnotating Composers.

To properly fit the pointers/objects in a message into a plan, the organizing composer

must know what sort of grammatical object they will be. This can not always be directly

deduced from the nature of the annotation on the message. For example, in this sentence, the

"hedge" might well have been an object corresponding to the phrase "unless something comes

up", which is a bound clause and would have to go at the end of the post-sentential-modifiers.

The necessary information can be maintained by each descriptive composer as a

permanant annotation in the form of a feature list which describes what sort of grammatical

unit it constructs. To check this for an object in the message, an organizing composer will

look up the object in the lexicon to see what composer will describe it, and then read the

annotation on that composer. In this case, the features might be "(adverb event-modifer)",

fun@ 18, 197.S



McDoniald IJC/JI-4

versus "(clause bound conditional)".

Fin Example-o a Composer

Each of the objects in a message will eventually be described by a general descriptive

composer which is keyed to the sort of object that they. are, plus additional information

associated with the names in each object. As there are "sorts" of objects in a program, there

will be descriptive composers in the lexicon. Some sorts might be reasons, actions, people,

appointments, activities, times of the day, and so on. This design makes no restrictions on the

possible composers; only that they should reflect what properties objects have in common

and common ways that they can be described. Individual objects will usually only supply

parameters to their composers, but some may be idiosyncratic and instead point to complete

words or phrases or to specially tailored composing procedures.

licNions

Actions are things that something does.: "making an appointment", "eval-uating a

procedure", "defending a chess piece", etc. The function of "the action composer" is to set up

the syntactic environment that all actions have in common. In this analysis, actions are

realized as verb phrases, with the internal name of the action indicating in the lexicon what

the verb should be, and the objects asociated with the name (if any) becoming its syntactic

objects in the phrase.

An example of an action in a likely internal representation might be the following (in a

programmer's assistant)

June 18, 1975



McDonald IJCJi-4

<action-427>
action set-value-of
variable switch1 ;a name from a program
set-to -nil

We might see this in an utterance like "it is necessary to set the value of switchl to nil before

leaving this routine".

The first thing any composer does when it begins to run is find out where it is. In the

above utterance, the location would be in the second phase, with the action-object in the

"complement" slot. Other slots where actions could occur are "subject", and as the main-

proposition in an answer to a question. With the situation known, the composer might dispatch

to a particular block of code which handles that situation, but. in this case, the only difference

is that complements must have infinitival verbs. This is done by edding a feature to the verb

group at the end of the operation.

All actions yield verb groups, so the composer begins by replacing the pointer ih the

complement slot with a syntactic node for a verb group. It must then get a plan for this verb

group, and fill in the appropriate slots of that plan, with the subcomponents of the object.

Then it is finished and the node and plan are in turn refined by their own composers as the

second phase controler walks along the plan to them.

The information on what plan to use and what. transfers to make is part of an object's

specific lexical entry. To. get at it, the action composer must know what property of the

object describes its structure (of course, the programmer must see to it that such a property

exists) and then follow it into the lexicon for a plan and a mapping of properties on the object

to slots in the plan. For the example action this entry is given below.

June 18, 197S



McDonald IJC/I-4

set-value-of
plan (vg SET ;a pointer into a morphological lexicon

object1 (noun group
det -"the"
head "value"
of-group

(prep "of"
np <> ))

prep "to"
object2 <> )

mapping
((variable object l.of-group.np)

(set-to object2))

Note that this plan is not so much a grammatical skeleton as a variablized English phrase. With

such information in the lexicon, the action composer can employ straightforward pattern

substitution functions to finish its job.

The Syntactic Environment

The primary operation in the second phase is to describe the chunks of the message that

have been embedded in the plan. This is done by walking the plan with a simple controler to

run the composer for each object as it is encountered; print out. the words given literally, and

ignore any empty slots. Since a plan is esentially a constituent structure tree, walking it

topdown, from left to right results in words being uncovered (and:"spoken") in the same order

as would occur if a human were making the utterance. At the same time, parts of the plan

further on, which have not yet been walked, retain their unexpanded character, presenting

those characteristics which may be important to know in decisions involving the whole

utterance while hiding those details that are unimportant.

This points out that plans can be viewed as providing an environment that composers can

June 18, 1975



McDonald I)C/11-4

ask questions of. Some questions are easy because-their answers are represented directly

("what is the transitivity of the main verb?") and others are much harder because they must

be computed ("are there any intervening noun groups between me and that previous

occurance of me way back there?" - needed for reflexive pronouns). However, in

environments with different structures than that of plans, answering such question could

become simple.

Such additional environments could be created as a side-effect of the construction and

walking of a plan. Because the walking follows the temporal order of the generation of an

utterance, it readily marks what the audience can be presumed to know at any given point.

I have not yet done any work on determining just what such parallel environments should

look like. That will come as grammars are written for this design. However, it is clear that

they must encode some very subtle aspects of what the audience knows, and should describe

the syntactic situation in such a way as to guide pronominalization and "deletion" of later

structures.

Pronoininalization

Pronominalization is only one instance of a very general phenomena in language which

"encourages" the speaker to abbreviate their utterance wherever possible. Languages contain

conventional structures which themselves mark the relationships that are going on, so that the

actual words need not be physically present (e.g. equi-np-deletion: "John is ready to please"

- the subject "John" does not need to be repeated with each verb).

Often conventions which allow potential descriptions to be omitted take into account

semantic information that the audience is assumed to share. For example consider the

sentence "White's knight can take a pawn". What is interesting here is that there is no need

18 June .8, 1975



McDonald IJC/lI-4

to say "... take a black pawn". Presumably, it is what we know about the semantics of "take"

in chess games - that its subject and object will be. pieces of opposite colors - which has

taken effect here.

Every composer describing an object will have to examine the "discourse" environment to

see if it would be most appropriate to use a pronoun or otherwise cut down on the normal

amount of description.

Quantifier gcope

Certain relationships become apparent during the second phase that can not be seen at.

other times. One very important one is quantifier scope. Certain accidental misreadings can

be generated as the plan is walked, precisely because the. individual composers work

independantly of each other. This can be corrected by introducing "global" syntactic

processes associated with the grammatical units, which can "monitor" the activities of the

composers and insert corrective patches when necessary.

Situations in the grammar where such accidents are possible must. be identified and

routines designed for them. Then, when any syntactic unit is eptered by the second phase

controler, a check will first be make for any monitoring routine% which are then run before

going on.

One situation that would be checked for would be that of a verb followed by a conjoined

object. The monitor would be associated with the verb group and go to work if it saw that a

conjoined noun phrase followed. The problem is that the structure "(are (not A) and (B))" is

usually misinterpreted by people as "(are not (A and B))" with the scope of. "not" inadvertently

taking in B as well. The monitor must watch as the first conjunct is described, and if it begins

with "not", it should patch the construction by copying the "are" after the "and" - "(are not A

19 June 18, 1975



McDonald IJC/ll-4

and are B)". A repetoire of such monitors and patches will be required in the grammar.

Present Directions

The design that I have described here (see <1> for greater detail) represents some

contentions about what a very fluent "generation grammar" for English must deal with, and

what control and data structures will be convenient to write that grammar in. At this writing

(June 1975), a LISP implementation of the design is well under way, and it is anticipated that

part of a grammar can be completed before the end of the summer. However, until a working

grammar exists, and the generator has been interfaced with some primary program, many of

the things described in this paper remain contentions which I believe to.be true, but which

may turn out to be without substance, necessitating possibly drastic changes in the design. In

particular, the program has made these assumptions.

1. That the candidate primary programs will have a sufficiently rich organizing structure that

very general composers can be written, cutting down on the bulk'of the lexicon, and that

associating objects with composers will be a straightforward thing to do.

2. That the messages constructed by a main program will naturally be translatable without

editing. Some problems in a message could be patched by the grammar, but others; like

too much necessary embedding, could not be fixed without going directly back to the

program and "explaining" that some material must be cut, letting the main program decide

what is to be left out.

3. The proposed grammar depends on having good information at all times, otherwise, the

composers may thrash and will continually find themselves in unanticipated. situations.

June 18, 1975



McDonald IJCfI-4

This information will be encoded in a system of features and possible plans and slots. It

must be possible to devise an adequate grammatial system, or else the resulting

inefficiences may swamp the generator.

4. The grammar will organize linguistic constructions in terms of the reasons why speakers

use them. However, the reasons for using the bulk of the constructions in English are

poorly understood. It is hoped that a combination of the fact that programs are

presently rather simple minded compared to humans, and that initial hunches about the

use of those grammatical constructions which are called for will be close to correct, will

make it possible to write a grammar without unmanagable gaps in it.

Some people in A.I. have said that language generation is "easy". Basically I agree with

them. I think that the structure of language is well enough understood that we should be able

to have our programs speak in very fluent English without excessive research. As in many

things; however, to make a system "easy" to work with seems to require first introducing a

rather complicated structuring framework in order to separate out its component influences

into managable chunks, and let the messy interfacing details work themselves out, away from

our view.

Bibliography

<1> McDonald, D. (in press) The Design of a Program for Generating Natural Language, Masters
thesis, Department of Electrical Engineering and Computer Science, MIT, Cambridge,
Mass.

June 18, 1975



McDonald IJCfll-4

<2> Goldstein I. et al. (in press) "Progress on the Personal Assistant Project", working paper
MIT A.I. Lab.

<3> Rich C. and Shrobe H. (1974) "Understanding LISP Programs: Towards a Programming
Apprentice", working paper 82 MIT A.I. lab.

<4> Genesereth.M. (1975) "A MACSYMA Advisor", memo, Project- MAC, MIT.

<5> Winograd T. (1972) Understanding Natural Language, in Cognitive Psychology, 3, 1,: 1-191.

<6> Woods W. (1972) "The Lunar Sciences Natural Language System", BBN report 2378, Bolt
Beranek and Newman, Cambridge, Mass.

<7> Goldman N. (1974) "Computer Generation of Natural Language from a Deep Conceptual
Base", memo AIM-247, Stanford Artificial Intelligence Lab., Stanford, Calif.

<8> Slocum J. (1973) "Question Answering via Cannonical Verbs and Semantic Models:
Generating English from the Model", technical report NL 13, Department of Computer
Science, University of Texas, Austin, Texas

June 18, 1975


