
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

WORKING PAPER 180 FEBRUARY 1979

SECURITY AND MODULARITY
IN MESSAGE PASSING

Carl Hewitt, Giuseppe Attardi, and Henry Lieberman

ABSTRACT

This paper addresses theoretical issues involved for the implemen-
tation of security and modularity in concurrent systems. It expli-
cates the theory behind a mechanism for safely delegating messages
to shared handlers in order to increase the modularity of concurrent
systems. Our mechanism has the property that the actions caused by
delegated messages are atomic. That is the handling of a message
delegated by a client actor appears to be indivisible to other users
of the actor. Our mechanism for delegating communications is a
generalization suitable for use in concurrent systems of the sub-
class mechanism of SIMULA. Our mechanism has the benefit that it
easily lends itself to the implementation of efficient flexible ac-
cess control mechanisms in distributed systems. It is a generaliza-
tion of the protection mechanisms provided by capability-based sys-
tems, access control lists, and the access control mechanisms provi-
ded by PDP-10 SIMULA.

A.I. Laboratory Working Papers are produced for internal circulation,
and may contain information that is, for example, too preliminary or
too detailed for formal publication. Although some will be given a
limited external distribution, it is not intended that they should
be considered papers to which reference can be made in the literature.

This report describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support
for this research was provided in part by the Office of Naval Re-
search of the Department of Defense under Contract N00014-75-C-0522.

-MASSACHUSETTS INSTITUTE OF TECHNOLOGY 197M

Security and Modularity

II -- INTRODUCTION

The implementation of a robust concurrent system requires very careful design. Not many
conceptual or programming tools are provided to perform such a task. We address this problem by
presenting some mechanisms to better structure a concurrent system. They are centered around a
primitive for synchronization in message-based systems which is a further development of serializers
[Atkinson and Hewitt 19781. This primitive deals with problems of protection and modularity in the
implementation of concurrent systems.

Protection is achieved by allowing message constructors to be given to different users. Guardians
are abstractions that can implement the following functions for their resources: scheduling access,
providing protection, and implementing recovery from hardware failures which manifest themselves as
time-outs or data with an incorrect checksum. A guardian of protected resources will only perform tasks
for messages which have been constructed by the appropriate message constructors. In a distributed
system this constraint can be enforced using cryptography. Each of these messages understood by a
guardian corresponds to an operation which the resource can perform. A message constructor for one
of these messages can be communicated to those who are allowed to perform operation associated with
the message. Serializers facilitate the implementation of efficient flexible access protection that
subsumes the abilities of both capability based systems and access control systems.

Two important mechanisms to support modularity in our system are delegation and inheritance.
Both of them are derived from a generalization of the subclass mechanism in SIMULA.

*1

DRAFT February 1979

ZI

DRAFT February 1979 2 Security -and Modularity

Delegation allows some of the requests received by an actor to be delegated to another actor called
a handler. The delegated actor can be common to many actors thereby increasing the modularity of the
system. Delegation is accomplished in such a way that handlers can perform atomic transactions for the
actors which delegate requests to them.

Inheritance allows the sharing of descriptions common to many actors. Our description system
facilitates the construction of a flexible hierarchy of descriptions. Invariant properties of actors can
easily be expressed in this language which makes our description system useful for declaring the types
of identifiers and state components in programs. The description system also is useful for expressing
conditional tests to be performed in the course of the execution of programs.

The description language is used here for expressing properties for guardians (such as checking
accounts) in distributed systems which communicate using message passing. A special language
construct called a primitive serializer is presented which can efficiently implement guardians in a
modular fashion. Furthermore primitive serializers provide mathematical behavioral denotations for
the actors which they implement. We have developed a proof methodology for proving strong
properties of network utilities e.g. a handler performs an atomic transaction for its client. This proof
methodology is illustrated by proving properties of a handler which manages handles messages
delegated by checking accounts. This research is a further step in a research program to develop a
Programming Apprentice to aid software engineers in constructing and evolving large distributed
software systems.

Security and Modularity

III -- PRIMITIVE SERIALIZERS

The design goals for monitors is that they were intended to be a structuring construct for
implementing operating systems. There have been some attempts to develop useful proof rules for
monitors [Howard: 1976; Gjessing: 1977; Hoare: 1974; Owicki: 1978] Serializers [Hewitt and Atkinson: 1976]
are a further .step toward these goals. However the language construct developed by Hewitt and
Atkinson. may be too complicated to be useful both as a formal foundation and as a basis for the proof
methodology. In the study we present here the approach has been reversed. Instead of designing a
desirable set of primitives and then trying to describe their semantics in a formnal way, we started with a
S basic.primitive with a simple semantics.

The general format of a simple primitive serializer is the following:

(creacte..erialized actor

(state:
[component 1 : descriptionrl]

(componentn: descriptionn]]
[initialize:

[component 1 expression1]

[componentn ~- expressionn]]

[constraints: ...universally true properties declared here...]
[receivers:

S(patternJformessage then body 1)

(patternjfor.messagen. then body)])

Serializers are. introduced to create actors whose state may change after the receipt of a
communication. A convenient way to express this is by means of the notion of state. The behavior of
..an. actor depends on its (local) state, and its state may change as communications are received. The
actors: created by create..serilized_actor behave in the following way. A serializer can be either locked
or unlocked. When, it is created it is unlocked. When the first communication arrives, the serializer
becomes locked. If there are any receivers in the receivers section whose patterns match the message
received, then the body of one of them is selected for execution.

When a result of the form

DRAIF .February 1979

DRAFT February 1979 4 Security and Modularity

(unlock [reply: expression]
[component 1 expression 1]

[component n - expression])

is computed then the serializer replies to the message it received with the value of expression and
unlocks in a state with the state components component 1, ..., and component n having the values
expression1, ..., and expression, respectively.

Note that there are three separate events which must occur before a message M can be received by
a serialized actor T. First it must be transmitted in a transmission event of the form

(a Transmission [target: J] [message: M])

Next it must arrive in a arrival event (synonymous with delivery event) of the form

(an Arrival [target: T] [message: MýJ)

Hardware modules called arbiters are used to establish an arrival ordering for all communications
delivered to T. Finally it must be received in a receipt event of the form

(a Receipt [recipient: T] [message: M])

Messages are received in the order in which they are delivered. A receipt event marks a transition in
which the target changes from unlocked to locked. Thus if a serialized actor becomes locked then no
more messages can be received until it unlocks.

Security and Modularity

IV -- DESCRIPTIONS of MESSAGES

As an example of how delegation is done using primitive serializers we give the
of a very simple checking account guardian.

There.are two kinds of messages which must be dealt with by the guardian:
Deposit which can be described as follows:

implementation

Withdrawal and

(describe (a Withdrawal)

(a Message)
(a Withdrawal [amount: (a NonnegativeUS.currency)])])

(deseribe (a Deposit)

(a Message)
(a Deposit [amount: (a Non.negativeUScurrency)])])

which says that both kinds of messages have an attribute named amrount which must be. a non-negative
: US currency.

V -- DELEGATION of COMMUNICATIONS

Modularity is promoted by the SIMULA subclass mechanism by the way in which subclasses
inherit procedures from their superclasses. Primitive serializers achieve this same effect in concurrent
systerms" by facilitating the ability of an actor x to delegate communications which. it receives to a
handler which can be shared b.y a large number of actors that are similar to x. Usually the effects of a
communication delegated by x should appear to be atomic to other users of x.

DRAFT February 1979

DRAFT February 1979 6 Security and Modularity

V.1 --- A Concurrent Case Expression

Clearly some kind of conditional test is needed in implementations. Use will be made of
select_case_for expressions of the following form:

(select_case.for expression
(pattern 1 then body 1)

(patternn then bodyn)
.[noneofjheabove: alternative-body])

which when evaluated first evaluates expression to produce a value V.

If the value V matches any of the pattern then the corresponding body, is evaluated and its value
is the value of the select_case for expression. If the value V matches more than one of the pattern.
then an arbitrary one of the corresponding body is selected to be executed. However, if the value of
expression can match two different patterns then the Programming Apprentice will warn the user if it
cannot demonstrate that the results of executing the bodies are indistinguishable. This rule has the
advantage that it makes bdy. depend only on pattern making it easy add more selections later.

We shall say that two activities are concurrent if it is possible for them to occur at the same. The
concurrent case statement facilitates efficient implementation by allowing concurrent matching of
expression against the patterns. This ability is important in applications where attempts to determine
whether or not conditions hold take large amounts of time.

If the value V does not match any of the pattern then alternative-body is executed. This rule
provides the. ability to have the patterns represent special cases leaving the alternative-body to deal with
the general case if none of the special cases apply.

V.2 --- A Simple Guardian

Using these definitions we can implement the checking account guardian as follows by means of
a serialized actor:

Security and Modularity

(de.fine (create.account [initial.balance: =i (a Non.negative.US-currency)])
'[preconditions:]
[is: (a, Serialized.actor [responds.to: ((a Deposit) (a Withdrawal))])]
[definition:

(creatoeserialized_actor
[state: [balance: (a NonnegativeUS.currency)]]
[initialize: [balance '* i]]
[receivers:

((a Withdrawal [amount: =a]) then
(select-caseJfor balance

((M a) then
(unlock

[reply: (a Transaction.completedjreport)]
[balance - (balance - a)]))

((< a) then
(uaklock

[complaint: (a Transaction.not.completed [reason: overdraft])]))))
((a Deposit [amount: =d]) then

(unlock
[reply: (a Transaction_completed.report)]
[balance 4- (balance + d)]))

[delegate-to: account-handler]l)])

V.3 --- A Simple Handler

If a message received by a serialized actor does not match any of the patterns of the receivers
then then the alternative receivers are applied. The alternative receivers will often be of the form

[delegate-to: handler]

which will result in handler being sent a message of the form

(a Buck.pass [message: m] [inside: insideclient] [outside: client])

where client is the serialized actor itself and inside.client is an unlocked representative of the-client. This
mechanism for delegating other communications is a slightly cleaned up and generalized version of the
mechanism used in SIMULA [Birtwistle et. al.: 1973, Palme: 1973), SMALLTALK [Ingalls: 19781, and
S DIRECTOR [Kahn: 1978]. It was developed jointly with Ken Kahn.

DRA.FT February 1979

DRAFT February 1979 8 Security and Modularity

Note that the above implementation of checking accounts delegates all communications which are
not deposits or withdrawals to the actor account-handler which is defined below.

(describe (a Slip)
[is:

(a Slip
[transactions:

(a Sequence
[each_element:

(either
(a Deposit)
(a Withdrawal))])])])

If account-handler receives a communication which is a Slip with a sequences of transactions t, then it
performs as many transactions as possible as an atomic operation and returns a list of the transactions
that could not be done. The implementation below makes us of the unpack construct to manipulate
sequences. The unpack construct is explained in an appendix. An account handler performs the
transactions on a Slip for an account by going through the transactions in turn and attempt to perform
each transaction. The account-handler communicates with insidethe_account in order to make its actions
appear to be atomic to other external users.

We will use expressions of the form form (send t *- m) and (send m -+ 1) to denote the result of
sending the message m to the actor t.

In addition syntax of the select_casefor command is extended slightly to enable it to deal with
complairnts generated by the evaluation of expression so that its new syntax is:

(selectcase for expression
(reply-pattern 1 then reply_body1)

(reply-patternn then reply-bodyn)
[complaints:

(complaint-pattern1 then complaint_body 1)

(complaint-patternj then complaint_bodyj)]
[noneofthe.above: alternativebody])

The accounthandler is unserialized (never changes state). This means that it can concurrently be
handling messages delegated by several different accounts.

DRAFT February 1979 9 Security and Modularity

(define accourithandler

[is: (an Unserialized.actor [respondsto: (a Buck..pass [message: (a Slip)])])]
[definition:

(create._unserializedactor
[receivers:

((a Buck.pass [message: (a Slip [transactions: =t])] [inside: =insidetheaccount]) then
(selectLcaseJor t

([] khen (a Transaction..completedjreport))
([=first. !=restt] then
(select_casejfor (send insideJhe.account * firstt)

((a. Transaction.,comnpleted..report) then
(send account..handler e

(a Buckypass
[message: (a Slip [transactions: rest)t])]
[inside: insidetheaccount])))

[complaints:
((a Transaction-not.completedcomplaint) then
(complain

(a Transaction.notcompletedcomplaint
[anomalous-transaction: firstt]
[complaint: c]
[remainingtjransactions: rest.t])))]))))])])

Security and Modularity

VI -- Atomicity of Transactions

We want to show that the handler for the account guardian processes a Slip containing a sequence
of transactions as if they were a single atomic transaction. This means that no other request is
considered by the guardian until the account handler has completed all its transactions. At this point
some more explanations are needed of the semantics of delegation. Consider a serialized actor s which
delegates a message m to a handler by an expression of the form:

[delegate-to: handler]

The actor s is locked by having received the message m. It will become unlocked when the handler will
return with a value. The state of s will be the state as modified by the handler. The effect of.
delegating is a message of the form:

(a Buckpass [message: m) [inside: insideofs] [outside: s])

being sent to the handler. The inside_pfs is a serialized actor similar to s with which it shares the state
and the behavior. They have however distinct queues of incoming messages. If the insideofs happens
to also delegate a message to a handler H, then it will send H a new actor representing the inside of
insideof_..s. Each one of these representatives is conceptually a level of nesting and, at the same time, a
level of locking. Each one can become unlocked while the actors of lower nesting level still remain
locked. (One could compare this mechanism to the nesting of interrupts in some machines.) With this
model in mind it is to prove that the transactions in a Slip are performed by the account handler as if
they were a single transaction. In fact if a Slip is received by the account actor A, then A immediately
locks. The slip is delegated to the account handler, and A will not become unlocked until the handler
returns. A standard proof by induction on the length of the Slip proves that the handler always returns.
When the handler makes a request to the account using

(send insideJhe-account 4- firstt)

inside.theaccount remains locked while this request is processed.

DRAFT February 1979

Security and Modularity

VII -- PROTECTION

The use of abstraction allows us to protect actors from arbitrary manipulations which can destroy
their integrity. A further level of protection is usually.required to prevent the use of an operations by a
particular class of users.

In our system, protection is achieved by allowing message constructors to be given or not to a user.
A guardian of protected resources will only perform tasks for messages which have been constructed by
the appropriate message constructors. In our previous example the message constructors are:

(a Withdrawal)
(a Deposit)

Each of these messages understood by a guardian corresponds to an operation which the resource can
perform. A message constructor for one of these messages ca.n be communicated to those who are
allowed to perform the. operation associated with the message. We can protect the account against
withdrawals from unauthorized users by keeping them from knowing the constructor for withdrawal
messages. In a distributed system this constraint can be enforced using cryptography.

Serializers facilitate the implementation of efficient flexible access protection that subsumes the
abilities of both capability based systems and access control systems. For example, the set of users
authorized to perform withdrawals can be kept distinct from the set of those authorized to perform
deposits on, the same account. An employee might want to give their employer the right to deposit
money in their account but keep the right to make withdrawals to themselves!

VII.! --- Protection using Classes

Protection mechanisms based only on data abstraction and scoping rules in general give the same
access rights to all users which are within the scope of the protected resource. For example it is
apparently -impossible [Moller-Pedersen: 1978] to achieve the goal of having some users only be able to
make deposits and others only to be able to make withdrawals from an account implemented using the
class mechanism of SIMULA (even with the additions proposed by [Palme: 1973) that have been
implemented on the PDP-10).

DR-AFT February 19799

DRAFT February 1979 12 Security and Modularity

VII.2 --- Protection using Qualified Types

The incorporation of qualified types [Jones and Liskov: 1976] in programming languages has
been proposed to permit the implementation of abstract data types in a way that enables compile time
checking of access control. In order to investigate the issues, we provide an implementation in ACTI of
the associative memory example treated in their paper:

(define (createassociative_memory)

[is:: (a Serializedactor [responds.to: ((on Insertion) (an Update) (a Lookup) (a Deletion))])]
[definition:

(create_s.erialized_actor
[state:

[memory: (a Set [each-element: (an Entry)])]]
[initialize:

[memory - ()]]

[receivers:
((an Insertion [name: =n] [value: =v]) then

(if (memory is ((an Entry [name: n]) ...))
then (iunlock [complain: (an Insertionerror)])
else (unlock (memory - (memory U ((an Entry [name: n] [value: v])))])))

((an Update [name: =n] [value: =v])
(if (memory is (((an Entry [name: n]) which_is =e) ...))
then (unlock [memory *- ((memory - e}.) U ((an Entry [name; n] [value: v])))])
else (unlock [complaint: (an Updateerror)])))

((a Lookup [name:.=n])
(if (memory is ((an Entry [name: n] [value: =v]) ...))
then (unlock [reply: v])
else (unlock [complaint: (a Lookup.error)])))

((a Deletion [name: =n])
(if (memory is (((an Entry [name: n]) which_is =e) ...))
then (unlock [memory *- (memory - (e))])
else (unlock [complaint: (a Deletionerror)])))

[delegate-to: associative..memory.handler]])])

DRAFT February 1979 13 Security and Modularity

Given.an actor x, we can create a new actor which is restricted to handling a set of message types
S using the following definition:

(de•fine (restrict =x to =S)
' [definition:

(createunserialized.actor
[receivers:

(((a =messageconstructor) whichis =the.message) then
(if (message..constructor (S)
then (send x -the..message)
else (complain (an Access controlerror))))])])

For example if v is an associate memory then

(restrict v to (Insertion Update))

will create a new actor which will.only accept Insertion and Update messages. Intuitively, the restrictions
.oni how an actor can be used are expressed by the restrictions imposed on the messages as they traverse
a path to the actor. Thus, using one path rather than another to send messages to an actor changes the
way the actor can be manipulated. For example, suppose v is an associative memory and

(x is: (restrict v to (Lookup Insertion)))
(y is (restrict v to (Lookup)))

Using y it is. impossible to modify v since only Lookup messages will reach v. On the other hand using x,
Insertion messages can be sent to v which might cause v to change state.

VII.3 --- Protection using Trademarks

Trademarks [Morris: 1973) have been proposed as a very elegant basis for protection in
programming languages. In this section we show how this proposal can be incorporated in the
framework proposed here. We postulate the existence of a primitive procedure called create.marker
which is called with. no arguments an returns a newly created marker each time it is called. For each
marker m, (m x) is an actor which behaves exactly like x in terms of its behavior when sent messages.

* Furthermore we postulate the existence of a primitive function called trade-mark such that for each
marker m, (trade.mark m) is the trademark which is affixed by m. We require that for each marker m
and actor x that

((m x) is (a Markedactor [mark: (trademark m)]))

Security and Modularity

which says that the result of marking x using m bears the trademark of m. Furthermore we require that
for any two markers ml and m2 and any actor x,

((ml (m2 x)) is (a Marked-actor [mark: (trademark m2)]))

which says that the order in which trademarks are applied is immaterial.

VIII -- FUTURE WORK

One important area in which work remains to be done is to demonstrate that primitive serializers
can be implemented as efficiently as other synchronization schemes involving the use of semaphores,
monitors, etc. We have designed primitive serializers with this goal in mind. On the basis of some
preliminary investigation we believe that they can be implemented at least as efficiently as monitors and
communicating sequential processes.

The third author has constructed some preliminary implementations in a dialect of the language
described in this paper that runs on the PDP-10. In the course of the next year, we will continue to
work to improve this implementation and to transfer it to the MIT CADR MACHINE where it can be
supported by micro-code. In this way we will construct an efficient implementation in which no
program depends on the physical representation of any actor. I.e. the behavior of any actor in the
system can always be extended.

Another area in which work remains to be done is automating proofs such as the one in this
paper. We feel that we are getting close to the point where a Programming Apprentice can do most of
the proof under the guidance of expert programmers. Russ Atkinson is working on automating the
proofs for the version of serializers in [Hewitt and Atkinson: 1977]. We hope to be able to use some of
the techniques which he has developed in our symbolic evaluator.

DRAFT February 1979

DRAFT February 1979 15 Security and Modularity

IX -- CONCLUSIONS

In this paper we have developed a construct for delegating the implementation of concurrent
operations on shared resources so that each operation appears to be atomic to other users of the
resource. The construct generalizes the delegation mechanism used in SIMULA which consists of
subclasses and virtual procedures. Apparently there is no convenient way to accomplish this delegation
using monitors which has unfortunately led to the development of ? confused literature on "nested
rmonitor calls". Also there is apparently no way to accomplish delegation in Communicating Sequential
Processes [Hoare: 1978]. Our proposal helps to make concrete some ideas in [Fisher: 19701 on "relative
continuity".

The same mechanisms which support. delegation also provide a protection mechanism that
incorporates in distributed systems the most powerful and flexible capabilities of operating systems
(Dennis: .1966, Lampson: 1971, Bishop: 1977) and programming languages [Palme: 1973, Morris: 1973, Jones
and Liskov: 19761.

X -- ACKNOWLEDGEMENTS

This paper -has benefited from ideas that sprang up in conversations in the summer and fall of
1978 with Jean Ramon Abrial, Ole-Johan Dahl, Edsger Dijkstra, David Fisher, Stein Gjessing; Tony
Hoare, Jean Ichbiah., Gilles Kahn, Dave MacQueen, Robin Milner, Birger Moller-Pedersen, Kristen
Nygaard,. Jerry Schwarz, and Bob Tennent. The first author would like to thank Luigia Aiello and
Gianfranco Prini and .the participants in the summer school on Foundations of Artificial Intelligence
and Computer Science in Pisa for helpful comments and constructive criticism.

Valdis Beizins, Howard Cannon, Dan Shapiro, Richard Stallman, Deepak Kapur, Vera
Ketelboeter, and. the members of the Message Passing Systems Seminar have given us valuable
feedback and suggestions on this paper. Russ Atkinson is implementing a symbolic evaluator for the
version. of serializers in [Hewitt and Atkinson: 1977]. Vera Ketelboeter has independently developed a
notion: of "responsible agents" that is very close to the transaction managers described in this paper.
Jerry Barber and..Maria Simi have developed methods for proving the guaranteed response property
for. actor systems that allow the possibility of unbounded nondeterminism.

Although we have criticized certain aspects of monitors and communicating sequential processes
in.this paper, both proposals -represent extremely important advances in the state of the art of
developing more modular concurrent systems and both have deeply influenced our work.

Security and Modularity

The description system presented in this paper is intended as a first step toward the development
of a universal type system in the sense that it is powerful enough to express essentially any invariant

property of an actor. The intellectual roots of our description system go back to von
Neumann-Bernays-Godel set theory [Godel: 1940], the o-order quantificational calculus, and the lambda
calculus. Its development has been influenced by the property lists of LISP, the pattern matching
constructs in PLANNER-71 and its descendants QA-4, POPLER, CONNIVER, etc., the multiple
descriptions and beta structures of MERLIN, the class mechanism of SIMULA, the frame theory of
Minsky, the packagers of PLASMA, the stereotypes in [Hewitt: 19751, the tangled hierarchies of NETL,
the attribute grammars of Knuth, the type system of CLU, the descriptive mechanisms of KRL-0, the
conceptual representations of [Yonezawa: 1977], the class mechanism of SMALLTALI([Ingalls: 1978], the
goblets of Knowledge Representation Seniantics [Smith: 1978], the selector notation of BETA [Nygaard
et. al.: 1977], the inheritance mechanism of OWL, the mathematical semantics of actors [Hewitt and
Attardi: 1978], the type system in Edinburgh LCF, the XPRT system of Luc Steels, and the constraints
in ThingLab. Conversations with Alan Borning, Scott Fahlman, William Martin, Allen Newell, Alan
Perlis, Dana Scott, Brian Smith, and the participants in the "Message Passing Systems" seminar were
extremely helpful in getting it nailed down.

PLASMA [Hewitt and Smith: 1975, Hewitt: 1977, Hewitt and Atkinson: 1977 and 1979, Yonezawa:
1977] adopted the ideas of pattern matching, message passing, and concurrency as the core of the
language. It was developed in an attempt to synthesize a unified system that combined the message
passing, pattern matching, and pattern directed invocation and retrieval in PLANNER [Hewitt: 1969;
Sussman, Charniak, and Winograd: 1971; Hewitt: 1971], the modularity of SIMULA [Birtwistle et. al.: 1973,
Palme: 1973], the message passing ideas of an early design for SMALLTALIK [lKay: 1972], the functional
data structures in the lambda calculus based programming languages, the concept of concurrent events
from Petri Nets (although the actor notion of an event is rather different than Petri's), and the
protection inherent in the capability based operating systems. The subclass concept originated in [Dahl
and Nygaard: 1968] and adapted in [Ingalls: 1978] has provided useful ideas. However, as discussed in
this paper, we have found it useful be able to separate the inheritance of attributes from the delegation
of communications in concurrent systems. The subclass mechanism of SIMULA attempts to perform
both the role of description system and the role of communication delegation.

The pattern matching implemented in PLASMA was developed partly to provide a convenient
efficient method for an actor implemented in the language to bind the components of a message which
it receives. This decision was based on experience using message passing for pattern directed
invocation which originated in PLANNER [Hewitt: IJCAI-69] (implemented as MICRO-PLANNER by
[Charniak, Sussman, and Winograd: 1971]). A related kind of simple pattern matching has also be used
to select the components of messages by [Ingalls: 1978] in one of the later versions of SMALLTALK and
by [Hoare: 1978] in a design for Communicating Sequential Processes. However both SMALLTALK

DRAFT February 1979

Security and Modularity

and CSP use assignment to pattern variables instead of binding which was used in PLANNER,
SIMULA, and PLASMA.

XI -- BIBLIOGRAPHY

Birtwistle, G. M.; Dahl, O.; Myhrhaug, B.; and Nygaard, K. "SIMULA I egin" Auerbach. 1973.

Bishop, P. B. "Computer Systems with a Very Large Address Space and Garbage Collection".
T-78. MIT Laboratory of Computer Science. May 1977.

Brinch Hansen, P. "The Programming Language Concurrent Pascal" IEEE Transactions on
Software Engineering. June, 1975. pp 199-207.

Dennis, J. and van Horn E. C. "Programming for Multiprogrammed Computations. CACM 9,
3. pp 143-155. 1966.

Fisher, D. A. "Control Structures for Programming Languages" Doctoral Dissertation.
Carnegie-Mellon University. 1970.

Hewitt, C.; Attardi, G.; and Lieberman, H. "Specifying and Proving Properties of Guardians for
Distributed Systems" MIT AT Lab Working Paper 172. December 1978. Revised February
1979.

Hewitt, C. "Concurrent Systems Need Both Sequences and Serializers" MIT Al Lab Working
Paper 179. December 1978. Revised February 1979.

Hewitt, C. "Evolving Parallel Programs" MIT AI Lab Working Paper 164. December 1978.
Revised January 1979.

Hoare, C. A. R. "Monitors: An Operating System Structuring Concept" CACM. October 1974.

Hoare, C. A. R. "Language Hierarchies and Interfaces" Lecture Notes in Computer Science No.
46. Springer, 1976. pp 242-265.

Hoare, C.A.R. "Communicating Sequential Processes" CACM, Vol 21, No. 8. August 1978. pp.
666-677.

DRAFTT February 1979

Security and Modularity

Ingalls, D. H. H. "The Smaltalk-76 Programming System Design and Implementation"
Conference Record of the Fifth Annual ACM Symposium on Principles of Programming
Languages. January 23-25,.1978. Tucson, Arizona. pp. 9-16.

Jones, A. K. and Liskov, B. H. "A Language Extension for Controlling Access to Shared Data"
1976.

Lampson, B. W. "ProteCtion" Proceedings of Fifth Annual Princeton Conference on Information
Science ans Systems. Princeton. pp 437-443. 1971.

Moller-Pedersen, B. Private Communication. August, 1978.

Morris, J. H. "Protectibn in Programming Languages" CACM. January 1973. pp. 15-21.

Owicki, S. "Verifying concurrent Programs With Shared Data Classes" Formal Description of
Programming Cbicepts edited by E. J. Neuhold. North Holland. 1978.

Palme, J. "Protected Program Modules in SIMULA-67" Swedish Research of National Defense.
Report FOAP C8372-m3 (E5). July 1973.

Wulf, W. A.; Cohen, E.; Corwin, W.; Jones, A.; Levin, R.; Pierson, C.; and Pollack, R. "HYDRA:
The Kernel of a multiprocessor Operating System" CACM 17, 6. pp 337-345. 1974.

DRAFT February 1979

Security and Modularity

APPENDIX I --- Thumbnail Sketch of the Description System

This appendix presents a brief sketch of the syntax and semantics of our description system. A
paper which more fully presents the description system and compares it with other formalisms which
.have been proposed is in preparation.

XI.1 --- Syntax

If <xi is a syntactic category then an expression of the form <x>* will be used to denote an
arbitrary, sequence of zero or more items separated by blanks in the syntactic category <x>. An
expression of the form <x>. will be used to denote an arbitrary sequence of one or more items separated
by blanks in the syntactic category <x>.

The following is the syntax for descriptions and statements:

<description> ::= <identifier> I
.=<identifier> I ;the character = is ied to mark local identifiers

<statement> I ;note that statements (which are described below) are descriptions
<attribute.description> I
<instance-description> I
<criterial-description> I
<mappingdescription> I
<sequence description> I
•<setdescription> I
<multiset..description> I
<instancedescription> I
(<description> .vie, ed_as <description>)
(<description> if <statement>) I
(<description> thatis <description>) I
(<description> suchthat <statement>) I
(A <description>t) I
(v <description>t) I
(either <description>t)
-,<description> I
(<relation> <description>*)

DRAFT 'February 1979

Security and Modularity

<criterialdescription> := (theonly <description>t)

<instancedescription> ::= 4indefinite-instance> I <definiteJnstance>
<indefinitejinstance> :w= (<indefinite-article> <concept> <attribution>*)
<definiteinstance> ::= (the <concept> <attribution>*)

;definite_instances are used only for criterial descriptions
<indefinite.article> ::=a I an

;there is no sernantic significance attached to the choice of which article is used

<concept> ::= <description> ;note that this is o order

<attribution> ::= [<binaryjre!ation.description> : <description>]

<binaryjrelation_description> ::= <description> ;note that this is o order

<attributedescription> ::= <projective.attribute.description> I

(<indefinitearticle> <binary.relation.description> of <description>)
<projective attribute.description> ::= (the <binary.relation-description> of (description>)

;ex presses that <binaryjrelation-description> is projective for <description>
;see example below for anl explanation of projective binary relations

<mappingldescription> ::= [<description> F-- <description>]

<sequence.description> ::= [<elements_description>*] I
<set-description> ::= {<elements-description>*) I ;{ and) are used to delimnit sets
<multisetdescription> ::= {(<elements_description>lj} j ; and I) are used to delimit multisets
<elementsdescription> ::= ...

<description> I
!<description> ;! is the unpack construct

<statement> ::= (<predicate> <description>*) I
<predication> I
(<description> coref <description>) I ;statement of coreference
((<description>*) eachis <description>) I
(and <statehment>t) I

(or <statement>") I
(xor <statement>) I
(not <statement>) I
(implies <statement> <statement>)

<predication>-::= (<subject> is <complement>)
<subject> ::= (description>
<complement> ::= <description>

DR.AFT Februlary 19799

Security and Modularity

Note that the syntax of our description system reads somewhat like template English [Hewitt:
i975, Bobrow and Winograd: 1977, Wilks: 1976] Thus for example we write (an Integer) in this paper
instead of writing that (integer) as was done in PLANNER-71. However we also allow the use of
instance descriptions such as (the Integer [>: 0] [<: 2]) to describe the Integer which is greater than 0
and less than 2.

We feel that it is quite important that a description expressed in template English correspond in a
natural: way with the intuitive English meaning. For this reason we use the indefinite article in
attribute descriptions of such as the one below:

(4 is (an element of 12 4 6)))

where the binary relation element can occur multiply in an instance description such as the following:

(({2 4 6) is (a Set [element: 2] [element: 4])))

Attribute descriptions only make use of the definite article in cases like the one below

((the imaginary.part of (a Real)) is 0)

where the binary relation imaginary-part projectively selects the imaginary part of a Real. In this case
the relation imaginary.part might be inherited from Complex via the following description:

((a Real) is (a Complex [imaginary-part: 0]))

For the purpose of describing mappings, I prefer the syntax

[=x ...x...]

[cf Bourbaki: Book I, Chapter II, Section 3] to the syntax

(x. ...x...

of the lambda calculus. For example the mapping cubes which takes a number to its cube can be
described as follows:

(describe cubes
[is: [=n-"4 n3]])

DRAFT February 1979

DRAFT February 1979 22 Security and Modularity

XI.2 --- Axioms

The behavioral semantics of the description system is defined by its underlying message-passing
semantics. The axiomatization given below is significant in that it represents a first attempt to
axiorlatize a description system of the power of the one described here. As far as I know previous to
the development of this one, there did not exist similar axiomatizations for FRL, KRL, OWL, MDS,
etc.

The most fundamental axiom is Transitivity of Predication which says that for any <description 3 >

Transitivity of Predication
(implies

(and
(<description.l> is <description 2>)
(<description 2 >, is <description 3)))

(<descriptionl> is <description3>))

Another fundamental axiom is Reflexivity of Predication which says that for any <description>

Reflexivity of Predication
(<description> is <description>)

Other important axioms are Commutativity, Deletion, and Merging:

Commutativity
((a <descriptionl> <attributionsl> <attribution2> <attributions3> <attribution 4> <attributions 5>) is

(a <descriptionl> <attributions1> <attribution4 > <attributions3 > <attribution 2 > <attributions 5 >))

which says that the order in which attributions of a concept are written is irrelevant,

Deletion
((a <descriptionl> <attributionsl> <attributions2 >) is (a <descriptionl> <attributions 2>))

which says that attributions of a concept can be deleted, and

Merging
(implies

(and
(<description1 > is (a <description 2 > <attributions 1>))
((deseriptionl> is (a <description 2 > <attributions2>)))

(<descriptionl is (a <description 2> <attributionsl> <attributions2>)))

Security and Modularity

which says that attributions of the same concept can be merged.

Additional axioms are given below for other descriptive mechanisms:

Coreference
(<description1 > ýcoref <description 2>) if and Only if

(<description1 > is <description2 >) and (<description2> is <description 1>)

Criteriality
(implies

(and
(<description1> is (the-only <description3>))
(<description 2 > is (the_lonly <description3 >)))

(<descriptionl> coref <description 2>))

Definite Selection
((the <descriptionl> of (a (description 2> [<description1 >: <description3 >])) is <description 3 >)

Indefinite Selection
(<descriptionl> is (a <description 2> [<description3 >: <description4 >])) if and only if

(<description4 > is (a <description3 > of (<description1> viewed-as (a <description 2>))))

SConstrained Description
(<description1) is (<description2 > suchjthat <statement>)) if-and_onlyif

(and
(<descriptionl> is (description 2>)
<statement>)

Qualified Description
(<description1 •> is (<description2 > thatgis <description3>)) if_and_only_if

(arid
(<descriptionl> is <description 2>)
(<description1> is <description3>))

View Point
((<description1 > viewed_as <description 2 >) is (<description2) such-that (<descriptionl> is <description2 >)))

Negation
S(description1> is -,;description 2>). if_and_onlyif

(not (<descriptionl> is <description 2>))

D'JRAFT. February JR79

Security and Modularity

Conjunction
(<description 1> is (A <description 2 > <description3g)) if.and..aonlyjif

(a•nd

(<description1 > is <description 2 >)
(<description1 > is <description3 >))

Inclusive Disjunction
(<descriptioni> is (v <description 2> <description 3))) ifandonly_if

(or
(<<descriptionl> is <description2>)
(<description1 > is <description3)))

E]xclusive Disjunction
(<description> is. (either <description 2 > <description3 >)) if.andonlyif

(xor
(<descriptionl> is. <description 2 >)
(<description1 > is <description3>))

Conditional Description
(<description1> is (<description2)> if <statement>)) ifandonly_if

(<statement> implies (<description1 > is <description2>))

XI.3 --- Examples

X3S.a --- Articulation

Additional axioms hold for each of the primitive descriptive mechanisms of the system. For
example

(describe cubes

[ist (a Mapping [=n- n3])])

can be articulated as follows:

(cubes is (a Mapping [1--- 1] [2-4 8] [3-4 27] [4- 64] [5- 125] ...))

where ... is ellipsis,

DRAAFT ·Febi-tiaryy 1979 24

Security and Modularity

XI.3.b --- Sets and Multisets

Sets :and multisets can be described in ter'ms of mappings using the usual mathematical
isomorphisms. For example

(describe {a b}
[is: (a Mapping [ai-" 1] [b- 1] [-,a A vb"-4 0])])

describes the set {a b) as a mapping from a and b onto 1 since they are present in the set and

everything.else maps to 0 since there are no occurrences of other elements. Extending the same idea to
multisets gives the following example:

(de.scribe la b al)
[is: (a Mapping [a->H 2] [b--- 1] [-,a A ,bH 0])])

XI.3.c --- Transitivity

If (3 i*. (an Integer [<: 4])) and (4 is (anr Integer [<: 5])), it should be possible to conclude that
(3 is (an Integer [<: 5])). This goal can be accomplished by the command

(describe <
[is: (a Transitive-relation [for: Integer])])

Which says that <(is a transitive relation for Integer and by the command

(describe (a =concept [=R: (a =concept [=R: =m])])
[preconditions: (=R is (a Transitive-relation [for: =concept]))]
[is: (a concept [R: m])])

which. says that.if x is an instance of a concept which has a relationship R with something which is.the
same concept which has the the relationship R with m where R is a transitive relationship for concept,
then x has the relationship R with m. This example of transitivity cannot be done in most type systems;
the above solution makes use of the o-order capabilities of our description system.

DRAFT February 1979 25

Security and Modularity

XIS.d --- Projective Relations

If (z is .(a Complex [realpart: (> 0)])) and (z is (a Complex [realpart: (on Integer)])) then by
merging: it follows that (z is (a Complex [real.part: (> 0)] [realpart: (an Integer)])) However in order to
be abl.e to conclude that (z is (a Complex [real.part: (> 0) (an Integer)])) some additional information is
needed; One very general way to provide this information is by

(describe realpart
[is: (a Projectiverelation [concept: Complex])])

and by the command

(describe (a =C [=R: =descriptionl] [=R: =description2])
[preconditions: (R is (a Projectivejelation [concept: C]))]
[is: (a C [R: description1 description2])])

The -desired conclusion is reached by using the above description with C with bound to Complex, R
bound to real-part, descriptionl bound to (> 0), and description2 bound to (an Integer).

XI.3.e --- Quantification and Existence

The treatment of local identifiers in our description system differs in an important respect from
the treatment of universally quantified variables in naive w-order logic where universal quantification
implies existence. For example the following sentence clear holds in o order logic:

VP Vx (P x) if and only if (P x)

From the above sentence the following follows by the usual rule for quantifiers:

VP 3Q Vx (Q x) if and only if (P x)

Using the following definition for P

(define (P =X)
[definition: (not (x x))])

we get

3Q Vx (Q x) if and only if (rot (x x))

DRAFT February 1979

Security and Modularity

Using 3-elimination with QO for Q we get

Vx (Qo x) if and only if (not (Qo QO))

Substituting Q0 for x we obtain Russell's paradoxical formula:

(Qo qO) if and only if (not (Q0 QO))

However the above formula. is a contradiction
Boolean which are described as follows:

in our description system on-ly if (Q QO) is a

(describe (a Boolean)
[is:. (either true false)]).

(describe true
[is:

-false
(a Boolean)])

(descrlibe false

-,true
(a Boolean)])

W.e propose to restrict the
double negation elimination

rules of logic to statements which are Boolean. For example the rule of
can be expressed as follows:

(describe (not (riot =p))
[precondition: (p is (a Boolean))]
[is: p]).

In this way we hope to avoid contradictions in our description system. In the course of the next year we
will attempt to adapt one of the standard proofs to demonstrate its consistency.

DRAFT February 0979 27

