
Working Paper 187

May 1979

Towards a Better Definition of Transactions

Barbara S. Kerns

A.I. Laboratory Working Papers are produced for internal
circulation, and may contain information that is, for example,
too preliminary or too detailed for formal publication. Although
some will be given a limited external distribution, it is not in-
tended that they should be considered papers to which reference
can be made in the literature.

This report describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support
for this research was provided in part by the Office of Naval
Research of the Department of Defense under Contract N00014-75-
C-0522.

Artificial Intelligence Laboratory

Massachusetts Institute of Technology

@IMSSrlJ~l "ITUITE OF TEICNOLOG• 9y

Towards a Better Definition of Transactions

by

Barbara S. Kerns

Abstract

This paper builds on a technical report written by Carl Hewitt and Henry Baker
called "Actors and Continuous Functionals". What is called a "goal-oriented activity" in
that paper will be referred to in this paper as a "transaction". 'The word "transaction"
brings to mind an object closer in function to what we wish to present than does the
word "activity".

This memo, therefore, presents the definitions of a reply and a transaction as
given in liewitt and Baker's paper and points out some discrepancies in their definitions.
That is, that the properties of transactions and replies as they were defined did not
correspond with our intuitions, and thus the definitions should be changed. The issues of
what should constitute a transaction are discussed, and a new definition is presented which
eliminates the discrepancies caused by the original definitions. Some properties of the
newly defined transactions are discussed, and it is shown that the results of Hewitt and
Baker's paper still hold given the new definitions.

PACE 2

i. Introduction

A transaction corresponds to our usual notion of a subcomputation needed for
subroutites. It includes those events which occur because a certain request is made, up to
and including the resultant reply. The notion of a request, followed by steps leading to a
reply, appears over and over again in many different kinds of programming applications.
Rlecursive function invocation, data bases, and interactive systems, for example, each
illustrate the need for the concept of a transaction. In recursive function invocation a
request is made for the value of some expression, and a reply is subsequently returned.
When working with data bases, one often wishes to retrieve a piece of information and
thus will submit a request. Here again, the activity involved in replying to that request
constitutes a transaction. Interactive systems are really nothing more than a series of
requests and replies. Lisp, for example, uses the classic "read-eval-print" loop.

The concept of a transaction is therefore an important one, and is extremely
useful in reasoning about sequential program semantics. We need to establish a robust
definition of a transaction that applies to distributed systems as well, where many
machines or processors interact through a network. Communication between processes is
n(cessary for cohcurrent programming to be useful; thus we wish to construct and
examine a rlefinition of a transaction which can be used to reason about such inter-process
communication.

II. BacLground

Actors and events are the basic concepts of the actor theory. Actors
communicate with one another by sending messengers to each other. Each messenger
contains information which the receiving or "target" actor then acts upon. An actor may
create another actor, in fact, most messengers (which are also actors) are created just
before being sent off to another actor. An event occurs when a messenger arrives at its
target actor. Often we use the notation:

E: [T <~~ MI]

to mean that target(E) = T and messenger(E) = M.

PACE 3

Actors which a given actor directly knows about are called its "acquaintances".
For an event E, the "participants" of E are the target(E), the messenger(E), and the
acquaintances of targe((E) and 6f messenger(E). An actor maintains a vector of
acquain(altces, which may or may not change over time. It may gain new acquaintances (or
forget old ones) through the acquaintances of a message sent to it. An example of an
actor whose acquaintances change over time is a "cell". It has one acquaintance, and can
rec.ive either a "contents?" request, in which case it replies with its acquaintance, or a
update request, in which case it forgets its old acquaintance and remembers the new one
given to it by the update request. The behavior of other actors whose vectors of
acquaintances may change with time are given in [Hewitt and Attardi, 1978).

The significance of an event causing an actor to change its vector of
acquaintances is that such actors therefore are "order-dependent". That is, the order in
which they receive messages can effect the replies they send to these messages. Such
actors are "serialized" so that they can assign an "arrival ordering" to their messengers. If
the message of event EI arrives at a serialized actor S before the message of event E2,
then we write:

E, -arrs -> E2

Another type of ordering is the "activation ordering". If as a result of
receiving a messenger M in an event E2 the target actor sends another messenger M2 to
an actor A, then E2 is said to activate E3 where E3 is the arrival of M2 at A. We write:

E2 -act-> E3

The transitive closure of these two kinds of orderings is called the "combined
ordering", and according to the above two examples we could write:

PACE 4

It. 'rans:actions

II. i. Request and Reply Events

In order to study transactions we must have a formal definition of a request and
a reply. A request is simply the messenger in any event of the form:

[... [request: ...,reply-to: c]]

where c is a continuation. The definition of reply as given in [Hewitt and Baker, 1977] is:

if an event E is of the form
[... <~~ [request: ...,reply-to: c]]

then any event E' of the form
[c <-~ [reply: ...] I

such that E--act->E' will be said to be a reply to E.

(We will frequently refer to an event whose messenger is a request or a reply as a
request or reply event, respectively. We use the notation "reply(RQ)" to mean the event
whose messenger is the reply of the request event RQ. This paper assumes that at most
one reply exists for each request.) But this definition of a reply is too strict. Consider
the case in which a request is sent to a. serialized actor X in event RQ. Suppose that
before sending a reply, X demands that it receive "permission" to do so. Permission is
granted in the form of the receipt of a clock pulse, which may arrive before or after the
receipt of the request event. Calling the event in which the clock pulse arrives at X
event E, we have E: [X <-~ pulse]. The pulse allows the reply to the first message to be
sent, and it arrives at the continuation in event RP, such that RP: [C <~~ [reply: ...] i.

RQ: iX <~~ [request: M, reply-to: C] I

E: [X <~~ pulse] -act-> RP: [C <-~ [reply: ...]]

PACE S

We see that RQ-.arrx->E-act->RP. There is no activation ordering between RQ and RP;
but RP should still constitute a reply to RQ. We therefore propose that the definition of
reply he weakened to:

If an event E is of the form
[... <~~ [request: ...,reply-to: c]]

then any event E' of the form
[c <-- [reply: ...]]

such that E--->E' will be said to be a reply to E.

By changing the requirement of an activation ordering between the request and its
associated reply to a combined ordering, we allow events which are ordered by arrival
ordering to enter the path between request and reply.

II. ii. Redefining Transactions

Hewitt and Baker's definition of a transaction (given this paper's assumption that
at most one reply exists for each request) is:

transaction(RQ) = RQ-- > fl -- >reply(RQ)

where RQ is an event whose messenger is a request.

Intuitively, a transaction is an attempt to characterize the notion of a process in
conventional programming languages, since only those events which contribute towards the
request's reply are included in the transaction.

For example, consider an event RQI in which a message M arrives at a serialized
actor X with continuation C, that is, RQI: [X <~~ [request: M, reply-to: C] 1. Let X
then receive a second message M', such that RQ2: [X <-- [request: M', reply-to: C'] i.
X replies to M' first by sending R' to the continuation C'. It then replies to M. The
following events and orderings are relevant.

PACE 6

RQ I: [X <'~ [request: M, reply-to: C)]
RQ2: [X <~~ [request: M', reply-to: C'I]
RQ1 -arx -> RQ2
RP2: [C' <- R']
RP,: [C <~~ RI
RQI -act-> RPI
RQ2 -act-> RP2

RQI: [X <~~ [request: M, reply-to: C]] -act-> RP1: [C <~~ R]

I
arrx

RQ2: [X <-~ [request: M', reply-to: C'] -act-> RP2: [C' <-- R']

Now, transaction(RQI) = {RQI, RPI}, and transaction(RQ 2) {RQ 2, RP2). Although
RQI--->RQ 2, RQ2 is not an element of transaction(RQI), because it is not true that
RQ2.--->RPI.

However, as originally pointed out by Craig Schaffert, we note that a
discrepaiicy can arise with this definition. Consider the case in Il.i. above in which a clock
pulse was used to activate the reply to a request. According to Hewitt and Baker's
definition of a transaction, transaction(RQ) = {RQ, E, RP). But if the clock pulse arrives at
X before RQ, we have the following situation:

E -arrx -> RQ -act-> RP

Now transaction(RQ) = {RQ, RP). This raises several questions concerning just what
should he included in a transaction. Should E be included in the transaction in either case?
Should it not? Should the whole computation fail to be recognized as a transaction?

. PAGE 7

In keeping with our intuitive discussion of transactions, it seems that we
shouldn't throw out the whole computation, but we must now decide whether E should be
included or not, and in either case, its inclusion or exclusion should be consistent and not
dependent on the arrival ordering of E.

Carl Hewitt has proposed that those events which are not request events or
reply events (where a reply is extended to include complaints), should not be allowed to
be members of any transaction. T'his constraint is in keeping with our concept of a
transaction as that "thing" which models the classical notion of a process as a set of
nested request events and events which reply to those requests.

Adding this constraint to our definition of a transaction, we see that in order to
determinie whether E should be included in transaction(RQ), we must know whether it
constitutes a request event or not (clearly it is not replying to X). If E is not a request
event, then F will not he a member of transaction(RQ) regardless of where it comes in the
arrival ordering of X with respect to RQ. However, if E is a request event, it necessarily
has an associated reply event. We will assume then that there is an event R such that R =
reply(E). We can now put some constraint on R in order to include or exclude E (and R)
from transaction(RQ). Following our intuitions (this is a definition, after all), we add the
constraint that if E is a request, in order for E to be an element of transaction(RQ),
R--->reply(RQ). More formally, we now have:

For some request or reply event E', E' (transaction(RQ) iff
RQ---->E', E'--->reply(RQ), and if E' is a request event,

then reply(E')--->reply(RQ).

What this means is that if a request event is to be part of a transaction, its associated
reply event should be also. For the clock pulse example then, transaction(RQ) = {RQ, RP)
where E is not included at all, since E is neither a request nor a reply event. Note that
since we have added constraints to the definition of transaction but not eliminated any,.
that no event which was not part of a given transaction will now be defined to be. We
have only eliminated certain "ad hoc" events from some transactions. We will examine
later how this effects some of the results presented in [Hewitt and Baker, 1975].

PACE 8

II. iii. Properly Nested Transactions

We would now like to prove some properties of these transactions. In
particular, it would be nice to be able to say that transactions are "properly nested". That
is, that two (ransactions are either disjoint, or that one is a subset of the other.
UInfortunatelv, a counter-example follows.

Consider the following event network and its associated orderings (Where the
RQ's are request events, the RP's are reply events, and the E's are neither. RP's
correspond to the RQ with the same subscript):

RQ1 -act-> RQ2 RP4 -act-> E3, E4
RQ2 -.act-> RQ3, RQ4 E, -arrx -> E3
RQ3 -act-> RP3 E2 -arrx -> E£4
RQ4 -act-> RP4 E3 -act-> RPI
RP3 -act-> El, E2 E4 -act-> RP2

act-> El

arrx

act--> RQ3 -act-> RP3 act-> E3 -act-> RPI
RQI -act-> RQ2

'act-> RQ4 -act-> RP4 act-> E2

arrx4TT,

act-> E4 -act-> RP2

We wish to determine which events are members of transaction(RQ I) and which
are members of transaction(RQ 2). Transaction(RQ1) consists of RQI (obviously), but not
RQ2 , since RP2 = reply(RQ 2) has no ordering with respect to RPI = reply(RQl). RQ3 and
HQ 4 are both elements, since they are ordered with respect to RQ1 and RP1 , and their
respective replies precede RPI. Then their replies RP3 and RP4 are also members. El

PACE 9

through E4 are not members of transaction(RQ I) since they are neither request events nor
reply events. Finally, RPI is a member of transaction(RQ 1). Therefore, transaction(RQI) =
{RQI, RQ3, RQ4, RP3, RP4, RPI). Similarly, transaction(RQ 2) = (RQ2, RQ3, RQ4, RP3, RP4,
RP2}.

The intersection of transaction(RQ1) with transaction(RQ 2) consists of four
events, {RQ 3, RQ4, RP3, RP4}, and although this set is not a transaction itself, it consists
of the union of two transactions. (it is possible to show that the intersection of two
transactions is always equal to the union of some number of other transactions.) However,
transaction(RQ I) is clearly not contained in transaction(RQ 2), nor is transaction(RQ 2)
contained in transaction(RQl).

Well, all is not lost, for we can prove at least a slightly weaker property,
though one which is still quite useful. Though we can not show that given any two
transactions with at least one event in common, one transaction must be contained in the
other, we can show that if a request event RQ is an element of transaction(RQ'), then
transaction(RQ) c transaction(RQ'). This is called the Law of Containment for
Tra nsactions.

Assume that E (transaction(RQ). To show that E (transaction(RQ'), we must
show

Coal 1: RQ'--->E--->reply(RQ')

and if E is a request event, that

Coal 2: reply(E)--->reply(RQ').

Since E < transaction(RQ) we have:

RQ--->E--->reply(RQ)

and since RQ (transaction(RQ'):

RQ'--->RQ--->reply(RQ)--->reply(RQ').

PACE 10

Then

RQ'--->RQ--->E--->reply(RQ)--->reply(RQ')

Thus RQ'--->E--->reply(RQ'), which proves Coal 1.
Assume E is a request event in order to prove Coal 2:

reply(E)--->reply(RQ').

Since E (transaction(RQ) then

reply(E)--->reply(RQ),

and since RQ (transaction(RQ'), and RQ is a request event,
we know

reply(RQ)--->reply(RQ').

Thus reply(E)--->reply(RQ'). [Done]

il. Coritinuous Functionals

III. i. Continuation Ordering

Before we go on, let's briefly characterize those events which we have
eliminated from transactions. First of all, we have eliminated from transactions all those
events which are neither request nor reply events. Secondly, we have eliminated all those
request events whose associated reply events do not also participate in the transaction.

Hlewitt and Baker have defined a third ordering on events called the
continuation ordering. In this ordering, El -cont-> E2 if 1) there is some transaction Vc
such that E, and E2 are both members of a., and 2) El --- > E2. Our redefinition of
transaction affects this ordering to the extent that now if El -cont-> E2, we may
automatically conclude that El arid E2 are either request or reply events since no other

PACE 11

type of event may be an element of some transaction, and furthermore, given the ordering
RQ1 --con,-> RQ2, we can conclude reply(RQ2) -cont-> reply(RQI). It is also the case that
some continuation orderings that once held between two events may no longer hold, since
some events have been eliminated from transactions. But no additional continuation
orderings will hold due to the redefinition of transaction.

ill. ii. Fork and Join Behavior

''he fork and join behavior discussed in Section IX of [Hewitt and Baker, 1975]
holds up beautifully under the new definition of transaction, as long as no join occurs
without a previous fork first providing the components of the join. This prerequisite is
easy to fulfill, however, since the classic notion of a process implies that that is always
the case.

Ill. iii. Procedures and Mathematical Functions

The definition of a procedure as given in [Hewitt and Baker, 1975] requires that
1) all events involved in the procedure are either request or reply events, 2) there is at
most one reply event for each request event, and 3) the transactions are properly nested.
That is, for any two transactions in the procedure, either one is a proper subset of the
other, or they are disjoint.

W\e wish to show that any transaction which was a procedure under the old
definition is still a procedure under the new definition. That is, we wish to show that any
event which was eliminated from a transaction by the new definition of transaction would
not have pa-Posd as an event which could be part of a procedure anyway. If we can do this,
then the results given in [Hewitt and Baker, 1975] for continuous functionals will still hold,
since they are based on actors which behave like mathematical functions, and mathematical
functions depend on procedures for their definition.

PAGE 12

We have already characterized the events which were eliminated from
(ransactions. Those which are neither request nor reply events can not be part of a
procedure under the first restriction. Those request events whose corresponding reply
events were not part of the transaction cannot be part of a procedure either, under the
following reasoning. Assume the existence of a request event RQ which is a member of
transaction(R), but whose reply RP is not. Then RQ is also a member of transaction(RQ),
as is its reply, RP. Then transaction(R) and transaction(RQ) are not disjoint in that they
both contain RQ, but there is no containment since RP is not an element of transaction(R)
(thereforec transaction(RQ) is not contained in transaction(R)), and since R--->RQ, R
cannot be an element of transaction(RQ) (therefore transaction(R) is not contained in
transaction(RQ)). Thus, no such transaction would pass as a procedure anyway.

Thus, even with the new improved definition of transaction, we can still show
that if an actor behaves like a mathematical function, then it is the limit of a continuous
functional in the sense of Scott. It remains to be seen if analagous results can be shown
to hold true for order-dependent actors.

IV. Conclusions

We have uncovered two "bugs" in the [Hlewitt and Baker, 1975 paper, one with
the definition of "reply", and one with the definition of a "transaction". We proposed
alternative definitions for both, and showed how these new definitions solved the
discrepancies raised by the original definitions. Using the new definition of transaction,
the Law .1f Contaainmtient for Transactions was proved, and the definitions of a procedure
and a mathematical function were shown to hold true. Because these definitions held, we
were able to maintain the result that if an actor behaves like a mathematical function, then
it is the limit of a continuous functional in the sense of Scott.

PACE 13

V. Future Work

We have not yet discussed the uniqueness of replies, or indeed how multiple
replies miiht affect the definition of a transaction. Although normally a request has only
one reply, it is conceivable that an actor might have a behavior that causes multiple replies
to be sent in response to some request.

VI. Ackhowledgements

I wish to thank Carl Hewitt for many valuable discussions on transactions and
actors. Bill Kornfeld and Roger Duffey acted as helpful sounding boards for some of my
ideas, and encouraged my quest for the "perfect transaction".

VII. Bihliorraphy

Ilewitt, C. and Baker, I-I. Actors and Continuous Functionals. MIT LCS TR-194,December
1977

Hewitt, C. and Attardi, C. Proving Properties of Concurrent Programs Expressed as
Behavioral Specifications. In preparation.

Hewitt, C. and Baker, 1H. Laws for Communicating Parallel Processes. MIT Artificial
Intelligence Working Paper 1314A. December 1976.Invited paper at IFIP-77

Hiewitt, C. "Viewing Control Structures as Patterns of Passing Messages". Al Journal, V8,
1977. pp323-364.

